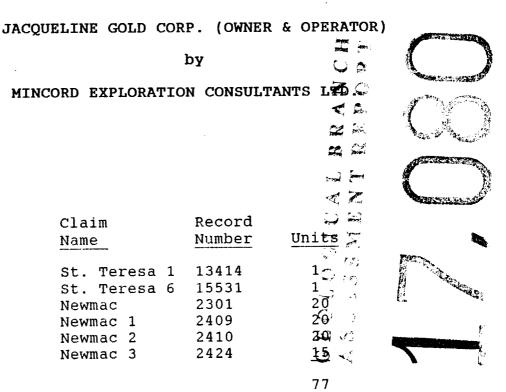
District Geol	logist, Prince George	Off Confidential: 89.02.17
ASSESSMENT RE	EPORT 17080 MINING DIVISION: Cl	inton
PROPERTY:	Newmac	
LOCATION:	LAT 51 45 00 LONG 124 40 00 UTM 10 5734329 384946 NTS 092N10E 092N15E	
CLAIM(S):		
	Jacqueline Gold	a
• •	Morton, J.W.;Chapman, J.;Tregaskis,	5.
REPORT YEAR:	1988, 71 Pages	
COMMODITIES	Cold Silver	
SEARCHED FOR: GEOLOGICAL	Gold, Silver	
SUMMARY:	Early Cretaceous volcanic and volca	niclastic rocks have been
	cruded by Late Cretaceous to Early Ter	tiary diorite plugs. Gold
and	d silver values are associated with qu	artz-carbonate or quartz-
	nganese veins. A gold-copper occurren	ce in mafic volcanics may be
rel	lated to a separate event.	
WORK		
	ochemical	
ROC	CK 139 sample(s) ;ME	
	Map(s) - 1; Scale(s) - 1:2000 IL 878 sample(s) ;ME	
501	Map(s) - 2; Scale(s) - 1:5000,1:2000	
MINFILE:	092N	

LOG NO: 0219	RD.
ACTION:	2187
FILE NO:	


F!! { {

PRELIMINARY GEOLOGIC REPORT

on the

NEWMAC CLAIM, BRITISH COLUMBIA

for

Clinton Mining Division Southwestern British Columbia Lat.: 51 degrees, 44 minutes North Long.: 124 degrees, 39 minutes West NTS Sheets: 92N/10E and 15E Jim Chapman Scott W. Tregaskis J. W. Morton

January, 1988

TABLE OF CONTENTS

_

Page No.

A.	SUMMARY	1
в.	INTRODUCTION	1
c.	LOCATION AND ACCESS	2
D.	PROPERTY STATUS	2
Е.	HISTORY AND PREVIOUS WORK	3
F.	GEOLOGY 1. Regional 2. Property 3. Mineralization	4
G.	GEOCHEMICAL PROGRAM 1. Introduction 2. Discussion 2(a) A Grid Area 2(b) B Grid Area 2(c) C Grid Area 2(d) Lower Butler Creek	6
н.	CONCLUSIONS AND RECOMMENDATIONS 1. Phase I 2. Phase II	8
Ι.	BUDGET ESTIMATES 1. Phase I 2. Phase II	9
APPEN	NDICES: 1. STATEMENTS OF QUALIFICATION 2. STATEMENT OF EXPENDITURES 3. ROCK SAMPLE DESCRIPTIONS 4. REFERENCES 5. CERTIFICATES OF ANALYSIS	
		SUB-RECORDER
		FEB 17 1988
		M.R. # \$

VANCOUVER, B.C.

LIST OF FIGURES

Figure	1	Location Map
Figure	2	Claim Map with Grid Locations
Figure	3	Regional Geology
Figure	4	Generalizied Property Geology
Figure	5	Grid A - Soil Geochemistry Gold (ppb), Silver (ppm)
Figure	6	Grid A - Soil Geochemistry Lead (ppm), Zinc (ppm)
Figure	7	Grid A - Trenching & Rock Sampling
Figure	8	Grid B - Soil Geochemistry Gold (ppb), Silver (ppm)
Figure	9	Grid B & Upper Butler Creek Rock Geochemistry, IP Anomaly, Gold (ppb), Copper (ppm)
Figure	10	Grid C & R Series Soil Traverses Soil Geochemistry Gold (ppb)
Figure	11	MacDonald Road Traverse & Lower Butler Creek Area Rock Geochemistry Gold (ppb), Silver (ppm)

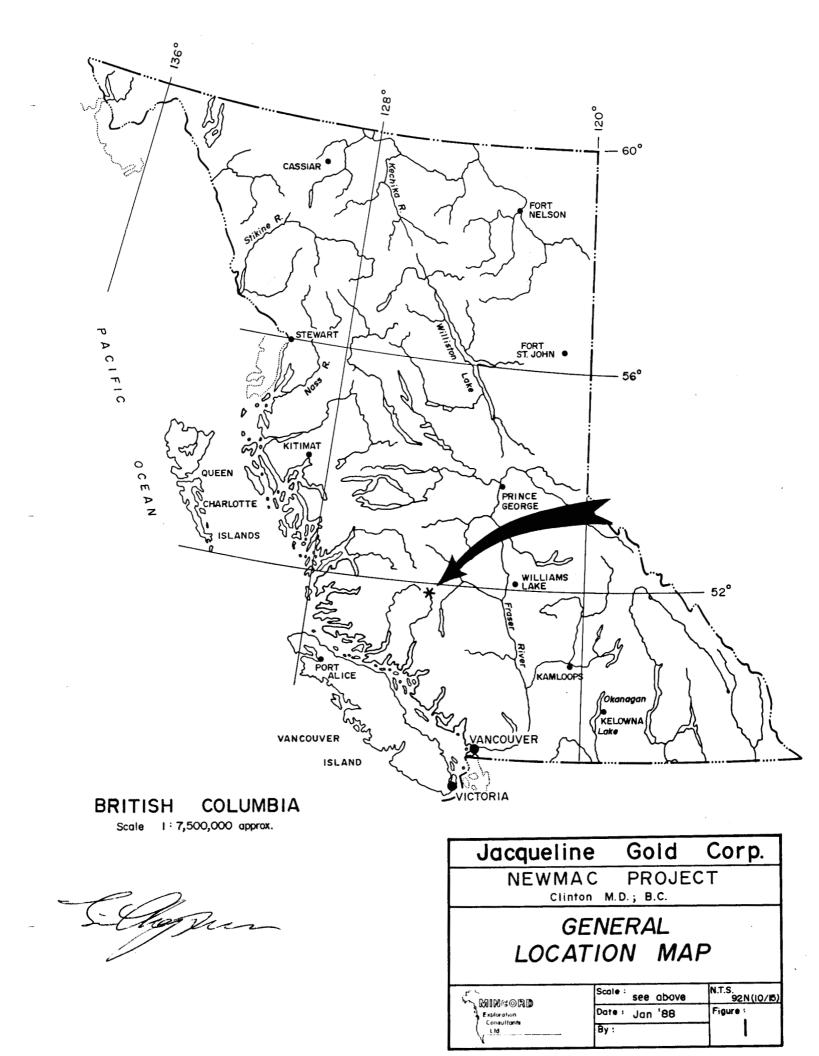
A. SUMMARY

During September 1987, a program of rock and soil geochemical sampling, mapping and limited trenching was carried out on the Newmac Claim group for Jacqueline Gold Corp. This work was carried out under the supervision of Mincord Exploration Consultants Ltd.

Previous work on the property by Noranda Exploration Ltd. and Imperial Metals Corporation had outlined two anomalous areas. The objective of the current program was to further define these zones and test for additional mineralized trends.

As a result of the 1987 work, three discrete anomalous trends were delineated. The previously known Cow Trail vein, located on the A grid, was enlarged and a new quartz-sulfide stockwork zone, the Goat Trail zone, was outlined. Samples from this new zone returned values up to 14.0 oz/t silver and 0.03 oz/t gold.

Additional soils collected over the previously known copper anomaly on the B grid defined a strong coherent copper-gold zone with dimension exceeding 1300 metres in length and 50-400 metres in width. Float samples from this area contained up to 2% copper and 0.06 oz/t gold.


The third zone, known as the Road Gossan, shows a north-south trending gold, silver, copper, zinc anomaly with dimensions exceeding 600 metres in length and 200 metres in width.

A two phase exploration program is proposed for 1988. Phase I will entail additional geochemical sampling, mapping, trenching, geophysical surveys and drilling. The estimated cost of this program will be \$100,000.00. Contingent upon favorable results from this program, a Phase II program of diamond drilling, estimated to cost approximatley \$210,000.00 would be warranted.

B. INTRODUCTION

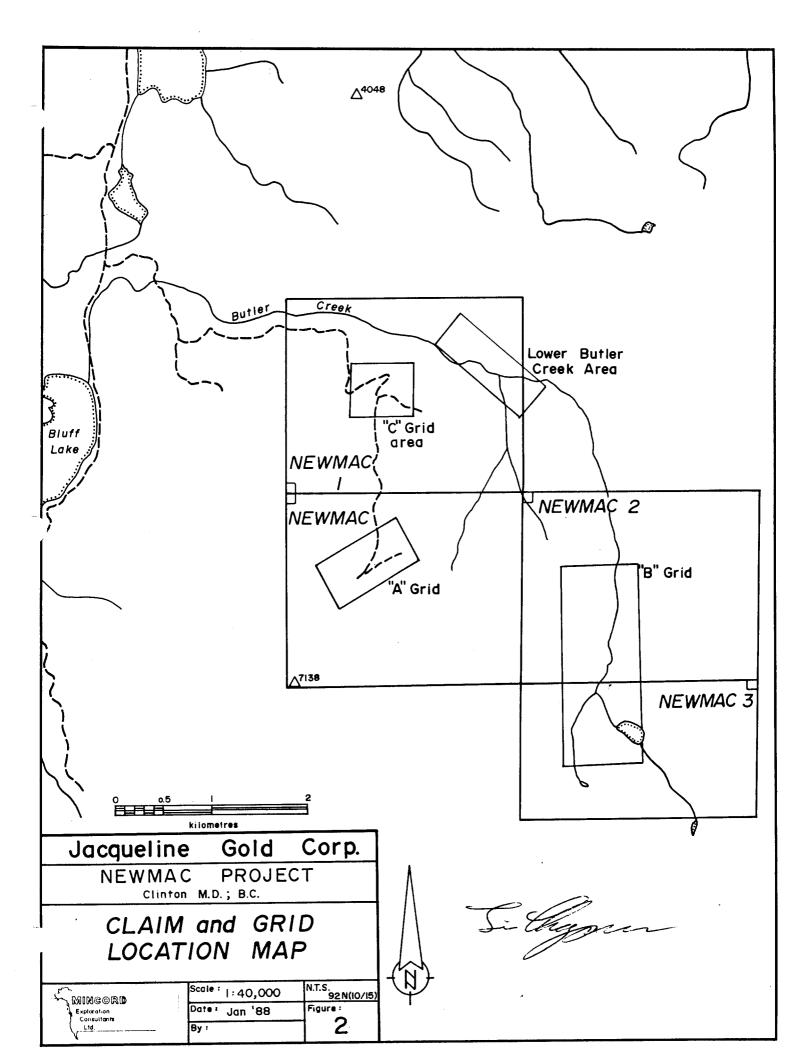
In November 1987, J. Chapman, consulting geologist, was commissioned by Canevex Resources Ltd. to write a summary report of the company's Newmac property situated in the Niut Range of southwestern British Columbia.

The upper Chilcotan region has to date remained quite isolated from early prospecting rushes largely due to its inaccessibility. The copper porphyry exploration programs of the 1960's and 1970's saw the earliest systematic work in the area. During this period several copper, gold and silver showings were located and some of the earliest claims staked. Interest in the gold potential of the region prompted renewed

exploration in the 1980's. It is as a result of this continued search that the present discoveries are attributed.

This report is based upon the writer's knowledge of the area and upon an on site examination of the property.

C. LOCATION AND ACCESS


The Newmac property is centered at 51 degrees 44' North latitude, 124 degrees 39' West longitude on NTS sheets 92N/10 E and 15 E (Figure 1). This lies within the Clinton Mining Division of southwestern British Columbia. The property is located approximately 180 kilometers west of Williams Lake and 23 kilometers south of the village of Tatla Lake. The claims are situated three kilometers east of Bluff Lake and south of lower Butler Creek. Elevations range from 3500 feet on lower Butler Creek to 7500 feet at the southwest corner of the Newmac 3 claim. Terrain is steep and contains rugged rocky cliffs along the western flanks of the mountain. The south and central portions of the claims are vegetated by open, grassy alpine meadows. Below 5000 feet, the claims are covered with thick Lodgepole Pine thickets.

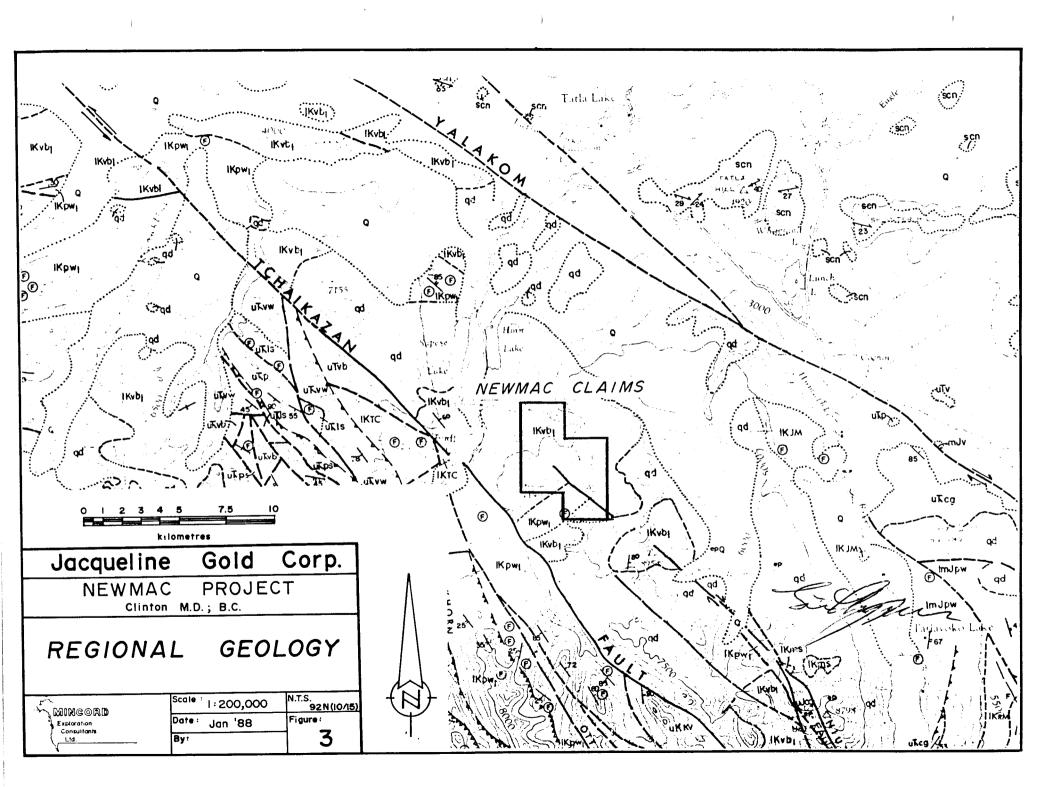
Good quality paved and gravel roads provide year round access from Williams Lake to within three kilometers of the western edge of the claims. A steep, rocky jeep trail provides access to the western portions of the claims but is accessible only to 4 X 4 vehicles. Access to the eastern portions of the claims is by foot or helicopter.

D. PROPERTY STATUS

The Newmac group of claims consists of six claims totalling seventy-seven units (Figure 2). All claims are owned by Jacqueline Gold Corp. through an option agreement with Canevex Resources Ltd.

The following table summarizes pertinent data for the claim block:

Table 1


Claim Name	Record Number	<u>Units</u>	Recording Date	Expiry Date
St. Teresa 1	13414	1	66/13/07	88/13/07
St. Teresa 6	15531	1	67/25/07	88/25/07
Newmac	2301	20	87/18/06	88/18/06
Newmac 1	2409	20	87/22/09	88/22/09
Newmac 2	2410	20	87/22/09	88/22/09
Newmac 3	2424	<u>15</u>	87/26/10	88/26/10

77

E. HISTORY AND PREVIOUS WORK

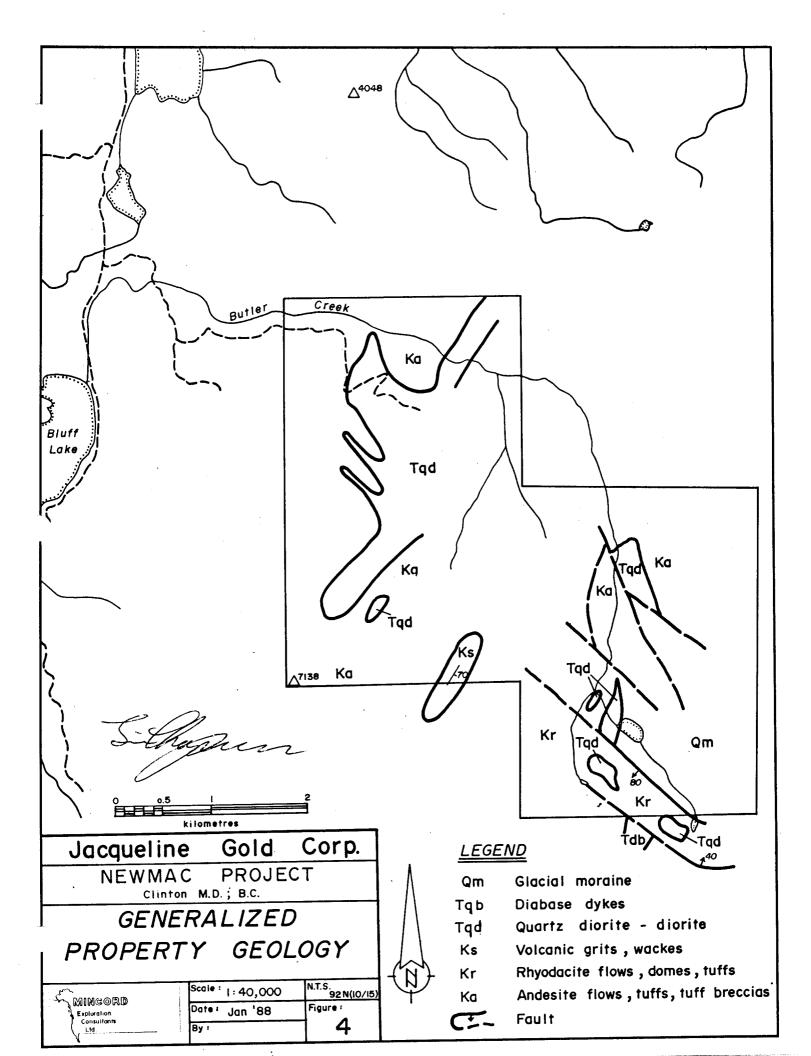
The first known claims in the area were the "St. Teresa Claims" which were staked in about 1966 by A. McDonald. McDonald spent the next 18 years building the access road to the Cow Trail vein on the St. Teresa 6 claim then passed away shortly after completing it. Noranda was the first company to attempt a systematic exploration program during a porphyry copper exploration program in 1972. Noranda staked their 37 around Butler Creek and Butler B.U. claims Lake (approximately two kilometres west of the Cow Trail vein) then conducted a geochemical grid soil survey, a geological survey and an I.P. survey. This work defined a broad copper geochemical anomaly and a good geophysical I.P. response. who are thought not to have analysed samples for Noranda, gold content, dropped the claims without conducting any follow up work. The area in which Noranda worked saw little activity for the next ten year period.

In 1984, Ryan Explorations (a subsidiary of U.S. Borax) staked the M.S.B. claims in upper Butler Creek after silt arsenic detected anomalous copper and sampling In 1984, Imperial Metals staked the Mac concentrations. claims after acquiring an option on the St. Teresa claims. grid soil sampling the Cow Trail vein area and After conducting some bulldozer trenching, Imperial Metals drilled two diamond drill holes on the Cow Trail vein (to 67.7 metres feet] and 66.1 metres [217 feet] respectively). The [200 assay results from the drilling were disappointing and Imperial Metals subsequently dropped its option on the property. In 1987, Canevex Resources Ltd. staked the Newmac claims and purchased the St. Teresa claims from the estate of Canevex optioned the property to Jacqueline McDonald. Α.

Gold Corporation in the fall of 1987 and Jacqueline Gold contracted Mincord Exploration Consultants to conduct a preliminary exploration program on the property.

1987, а senior geologist and three During October geotechnicians spent fourteen days on the property conducting soil grid surveys, mapping, and backhoe geochemical successful in defining This program was trenching. extensions to the "Cow Trail vein" and additionally located a quartz-sulfide stockwork zone in the "A grid" area. Soil sampling outlined a 1300 meter long copper-gold anomaly in the "B grid" area and reconnaissance sampling indicated a new zone of gold, silver, copper and zinc mineralization in the "Road Gossan - C grid" area.

F. GEOLOGY


1. Regional

The Newmac property is located in a structural block between the right-lateral strike-slip Yalakom Fault and the left-lateral strike-slip Tchaikazan Fault. The early Tertiary/Tchaikazan Fault has an apparent displacement of about 32 kilometers, and a splay fault known as the Niut Fault runs through the heart of the property (Roddick et The Yalakom Fault trends northwest and is 1979). al. situated about 5 kilometers northeast of the claims. The transcurrent Yalakom fault is at least 225 kilometers apparent displacement of 130 to 190 has an long. kilometers and divides the Coast Mountains plutonic complex from the Intermontane Belt (Figure 3).

2. Property

The Newmac property covers a thick sequence of Early Cretaceous volcanics and volcanic sediments which have been intruded by Late Cretaceous to Early Tertiary diorites and quartz diorites related to the Coast Mountains plutonic complex (Figure 4).

The lowermost portions of the volcanic sequence consist largely of andesitic tuffs, tuff breccias and porphyritic andesites are typically pervasively flows. The propylitically altered to dark green chloritic rocks with epidote clots and quartz-calcite fracture fillings. Pyrite and pyrrhotite occur as fracture fillings and disseminations and are present in amounts up to 10-15% in silicified structural zones. Overlying the andesites, possibly as a structural block, is a thick sequence of rhyodacites which form the cliffs to the south of Bulter The rhyodacites consist of flows, flow domes and Lake. tuffs cut by the Nuit Fault and small bodies of quartz

diorite. The rhyodacites show pervasive propylitic evidenced by fine fractures filled with alteration as chlorite, epidote and calcite. The rhyodacites contain up to 5% pyrite adjacent to diorite dikes. Locally the rhyodacites have been intruded by diabase dikes which were subsequently cut by low and high angle faults. The next youngest portion of the volcanic sequence, displayed in a conspicuous ridge situated in upper volcanic sandstone. Butler Creek, consists of This clastic package is cut by a few high angle barren quartz veins but shows only weak alteration. Probably the youngest volcanic rock known is a thin layer of fresh vesicular basalt which occurs on the ridge due south of Much of the area around Butler Lake, and Butler Lake. the B grid, is covered by a mantle of glacial moraine which probably ranges from 5 - 20 meters in thickness.

The project area was intruded by series of а quartz-diorite to diorite intrusives in late Cretaceous to early Tertiary time. The largest exposure of intrusive is located in the western portion of the claims and can be followed intermittently from the Cow Trail vein (A grid) area down through the C grid area to Butler The diorite ranges from finely to coarsely Creek. crystalline but is typically a medium crystalline, medium-dark green porphyritic diorite to quartz diorite. exposures exhibit a moderate pervasive propylitic Most alteration but trenching has exposed some intensely argillized zones adjacent to mineralized structures. Other structures show intense quartz-sericite-pyrite alteration over zones ranging from a few centimeters to tens of meters and are common within the C and B grid areas.

3. Mineralization

Mineralization is thought to be directly associated with the diorite to quartz- diorite intrusives where it occurs in the form of discrete quartz veins. These veins contain chalcopyrite, galena, sphalerite and pyrite in structural zones such as the Cow Trail vein as well as in quartz manganese stockworks, and silicified, pyritized zones related to structures and intrusive contacts.

Four mineralized areas were investigated during the 1987 program and will be discussed separately in the following section.

G. GEOCHEMICAL PROGRAM

1. Introduction

A total of 878 soil samples and 139 rock samples were collected over the three main grid areas and additional reconnaissance traverses. All soil samples were taken from the B horizon where possible. These were packaged in paper sample bags and shipped to Acme Analytical Laboratories in Vancouver, B.C. for analysis by I.C.P. Samples which exceeded the threshold values for lead, zinc and silver were then assayed.

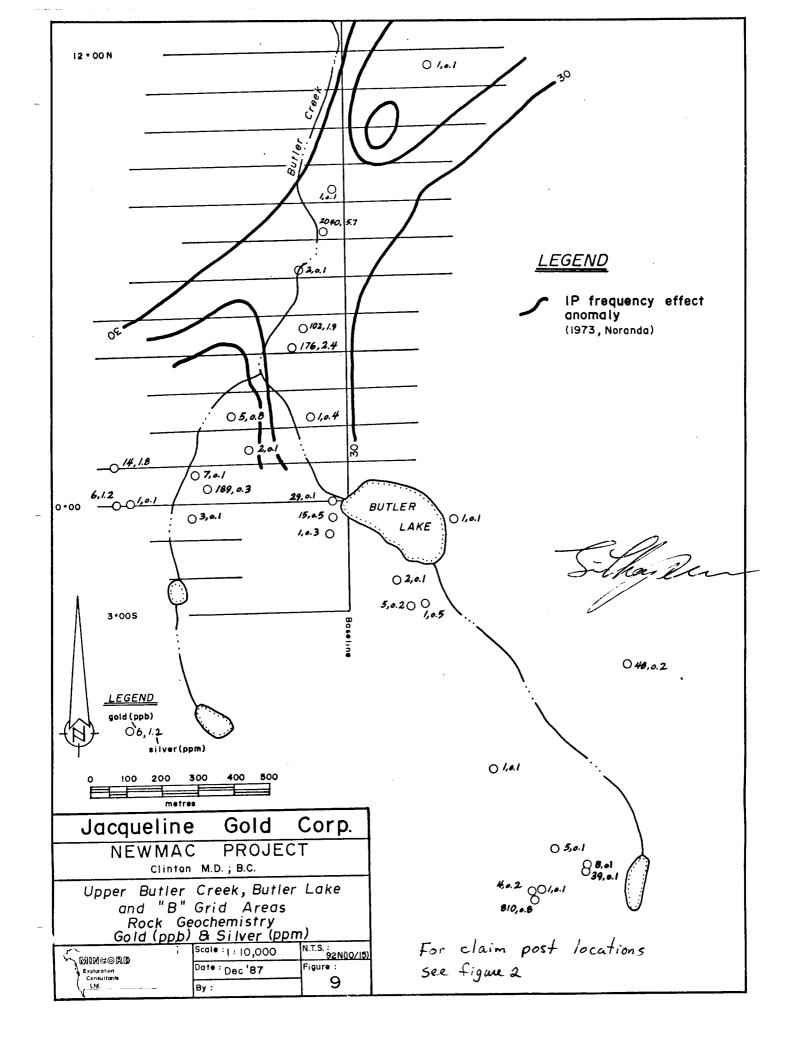
Rock samples collected during the work program were also analyzed by I.C.P. and assayed if significant results were obtained geochemically.

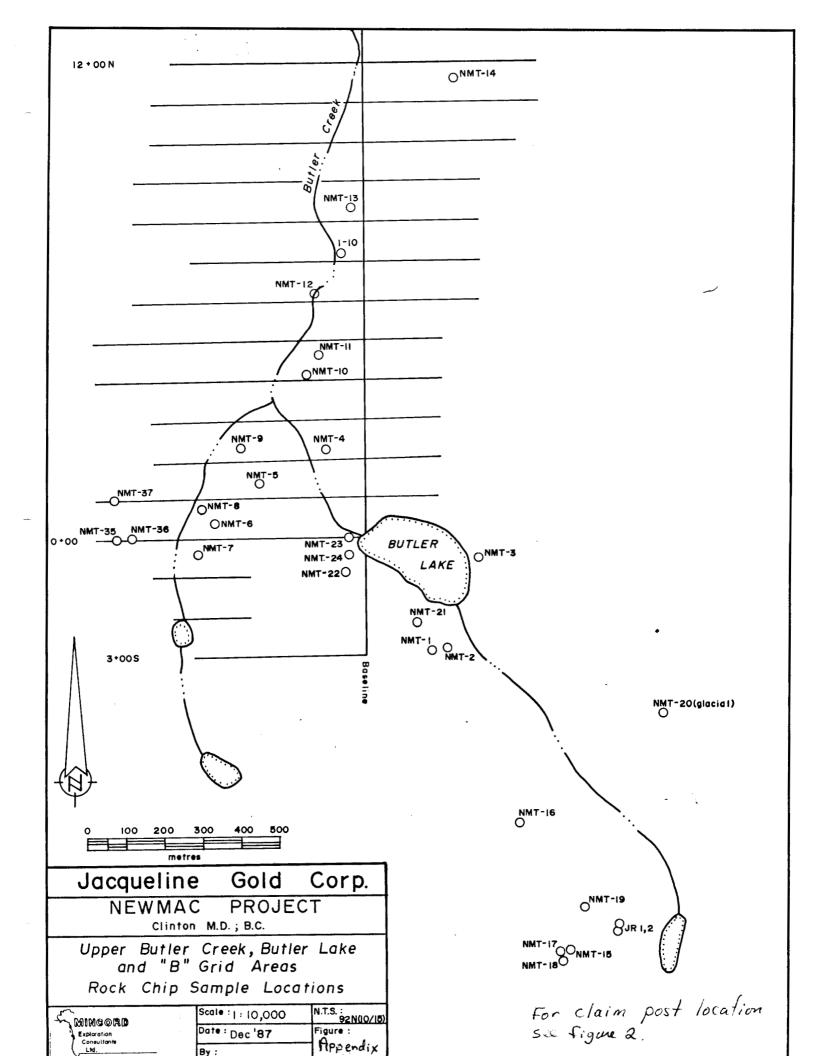
2. Discussion

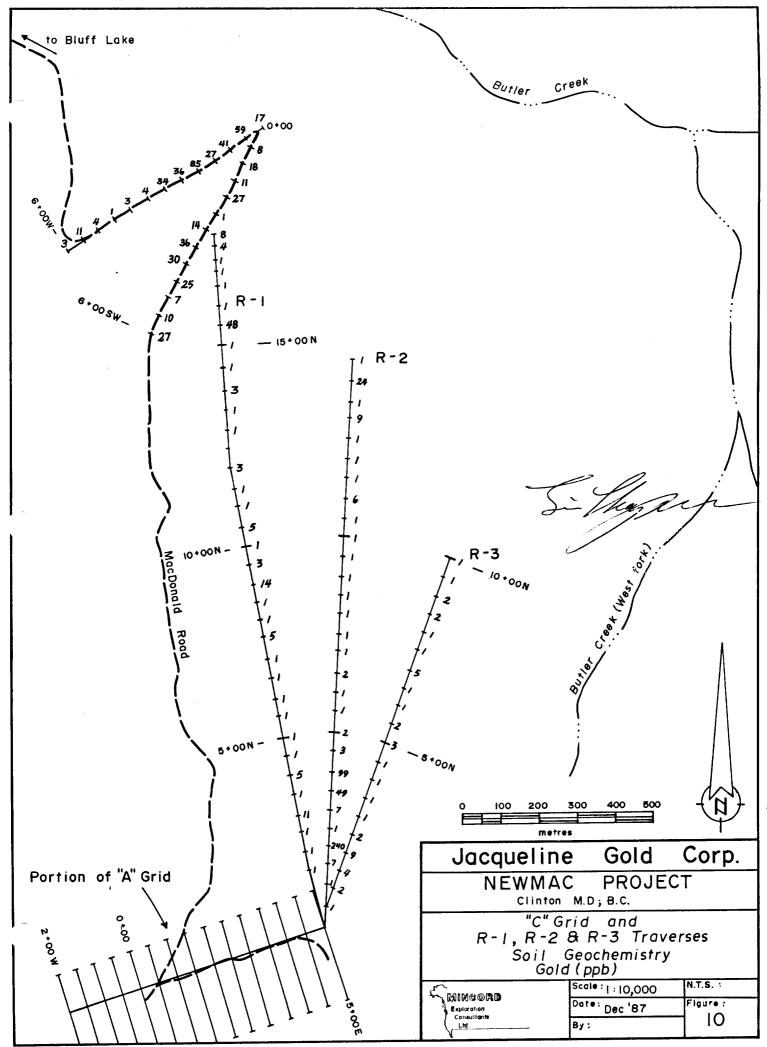
2(a) A Grid Area

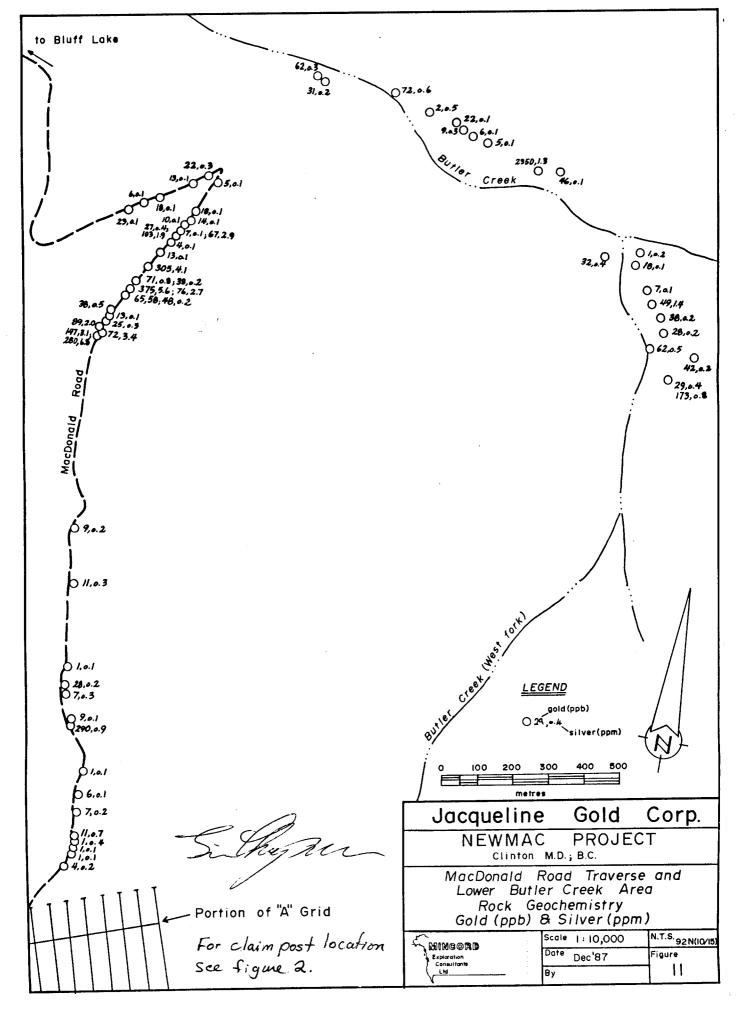
The A grid area was the focus of most of the work Imperial Metals was conducted by Imperial Metals. successful in delineating the trace of the Cow Trail vein and located quartz vein samples which contained up to 0.355 oz/ton gold, 33.3 oz/ton silver with 2.0% lead and Recent work (1987) entailed enlarging the 3.7% zinc. soil grid and backhoe trenching across projections of the The grid sampling was successful in Cow Trail vein. defining several new anomalous zones which contained zinc and lead values. significant gold, The most encouraging anomaly is a 350 metres long, northwest trending soil gold anomaly with values up to 395 ppb gold and which is open in both directions (Figure 5). A second anomaly was detected in the canyon above the Cow Trail vein consisting of a 125 metre by 50 metre zone silver, lead and zinc values. coincident gold, with located area а series of Prospecting in this quartz-galena sphalerite veins named the Goat Trail zone. These contained up to 14.0 oz/t silver, .026 oz/ton gold, lead and 6.8% zinc. The veins in this zone are 2% typically from .1 to 1 metre thick but could potentially form a stockwork system. A third zinc-lead anomaly with dimensions of approximately 200 metres by 75 metres was partially delineated in the northeast portion of the grid (Figure 6). Little is known of this area and the lack of gold or silver geochemistry is not understood.

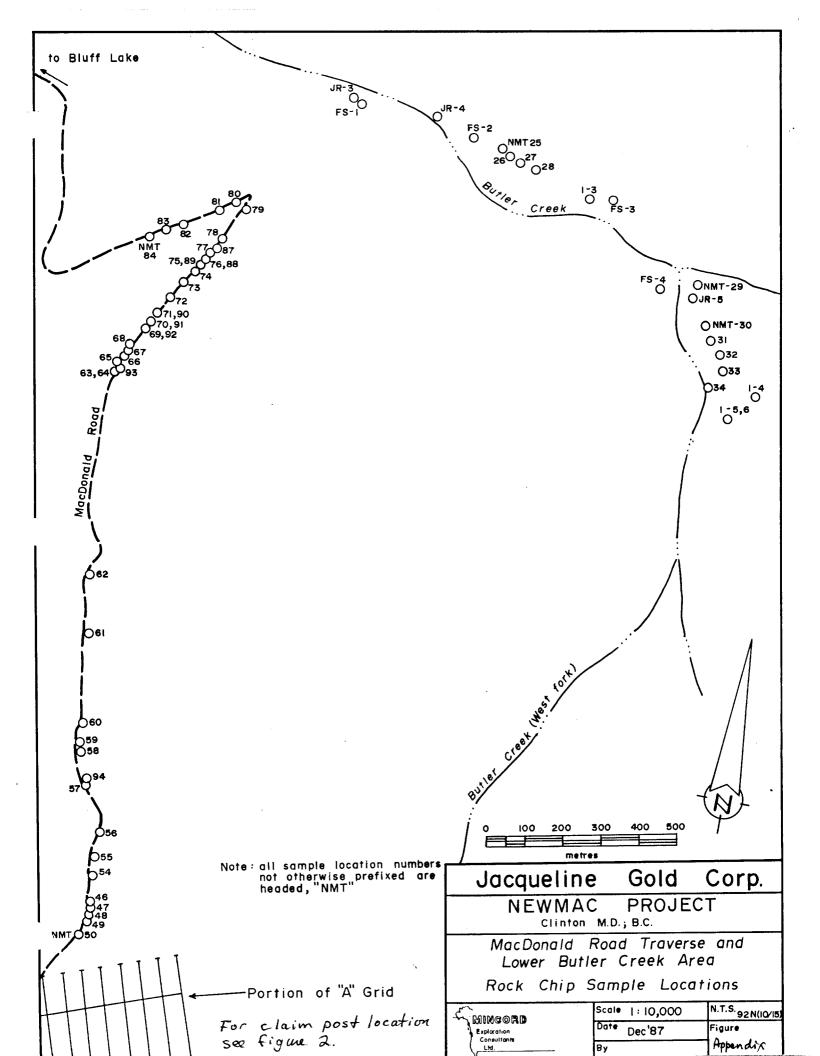
Trenching along the Cow Trail spur road was successful in exposing mineralization in trenches 2, 3, 4 and 5 (Figure Trench 2 exposed strongly argillized diorite with 7). quartz-manganese veinlets. Channel samples abundant indicate widespread gold, silver, copper, zinc and arsenic mineralization, although of subeconomic grades. argillized diorite with abundant Trench 3 cut quartz-manganese veinlets. Channel sampling returned anomalous gold, silver and arsenic values.


Trench 4 cut the Cow Trail vein and a wide zone of intense quartz-manganese veining. Ten vertical channel samples taken across this area show a 7 metre wide zone which carries an average of 1.4 oz/ton silver and anomalous gold, lead, zinc and arsenic. As this anomaly has a significant width, it may offer a bulk tonnage, stockwork type target. Trench 5 was on the original Cow Trail vein exposure. Recent sampling confirmed the original high silver values and indicated widespread zinc, lead, silver mineralization over at least a 15 metre wide structural zone.


2(b) B Grid Area


The B grid is situated along upper Butler Creek and runs from Butler Lake for 1800 metres to the north. The terrain is fairly open, alpine shrubs and grasses on moderately to gently rolling hills. Much of the grid area is covered with a mantle of glacial moraine material, but limited outcrop exposures of goethite stained diorite and andesitic volcanics are found along the creek bottom. Results of the geochemical analyses of defined a minimum 1300 metre long soil grid the copper-gold anomaly, still open to the north (Figure 8). Outcrop and float sampling along the creek has confirmed for the copper-gold situ-bedrock source an in mineralization, and one rock sample from the middle of anomaly contained 0.06 oz/t gold and 2% copper the The Induced Polarization survey conducted by (Figure 9). Noranda in 1973 also indicated a coincident Frequency Effect anomaly over the copper-gold geochemical anomaly This Zone offers an exciting exploration (Figure 9). target and additional follow-up work is needed.


2(c) C Grid Area


Two short 600 metre rock and soil lines were conducted along the lower access road through an area with strongly iron-stained soil. A series of rock chip samples were taken from the most strongly silicified and pyritized

outcrops and a series of shallow pits were dug on the gossanous zones. Although this sampling was almost reconnaissance in nature, it served to show that the zone fcontained anomalous gold, silver, copper and zinc values over an area of at least 600 metres by 200 metres and that additional sampling is warranted (Figure 10).

2(d) Lower Butler Creek

A brief reconnaissance survey was conducted along Butler Creek in an attempt to find a rumored bornite showing (Figure 11). Widespread shearing and pyritization in altered diorites and andesites was found, but none of the samples were anomalous. One chip sample (I-3) from a quartz-pyrite-arsenopyrite shear zone along the creek contained 0.07 oz/t gold and anomalous copper, zinc and arsenic and may indicate a new gold zone. The area is steep and covered with extremely dense deadfall, Lodgepole Pine and alder, lines would need to be cut for a grid survey.

H. CONCLUSIONS AND RECOMMENDATIONS

The Newmac property contains several promising copper-gold exploration targets at this time. On the A grid the Cow Trail and Goat Trail veins, while narrow in themselves, contain significant precious metal values and have associated wide stockwork and structural zones which may offer a bulk tonnage potential.

The copper-gold anomaly on the B grid is extremely encouraging due to the extent and magnitude of the coincident anomalies. Chloritic andesites with pyrite chalcopyrite mineralization have returned values as high as 2% copper and 0.06 oz/t gold indicating a significant trend.

Preliminary mapping and sampling, mostly along the road, on the C grid has returned anomalous gold values from both soil and rock samples. Further sampling and mapping are warranted to outline this zone.

Additionally, much of the claim block has had little or no systematic work completed over it and this should be carried out during the more detailed programs on the established anomalies.

A two-phase, success contingent exploration program is recommended.

- 1. Phase I
 - 1(a) Conduct geologic reconnaissance mapping over the entire claim block to determine the intrusive/volcanic contact relationships and to locate additional exploration targets.
 - 1(b) Conduct additional soil and silt reconnaissance surveys in the central portions of the claim block.
 - 1(c) Extend the A grid to the north and south between LO+OO and L5+OO E.
 - 1(d) Extend the B grid to the north along Butler Creek for an additional 1000 meters.
 - 1(e) Conduct detailed fill-in soil and rock sampling within the main copper-gold anomaly on the B grid and attempt hand trenching to find a bedrock source. Additional IP, magnetometer and VLF-EM geophysical surveys could better define mineralization.
 - 1(f) Complete a grid soil survey over the C grid area.
 - 1(g) Improved access on the A grid would facilitate further trenching operations.
 - 1(h) An initial diamond drilling program on the best targets to provide down dip information.
- 2. Phase II

This program is contingent upon favorable results from the Phase I program.

- 2(a) Diamond drilling of the best targets in the A and B grid
- 2(b) Fill-in sampling, additional grid sampling of any new targets generated during the Phase I work.

I. BUDGET ESTIMATE

....

Costs for the Phase I program are estimated at \$100,000.00 with an additional \$210,000.00 for Phase II if warranted. Details of these costs are outlined as follows:

1. Phase

Soil Sampling, Labour & Analyses	\$ 16,250
IP Surveys	8,000
Geologic Mapping	9,000
Room & Board (90 man days @ \$60/day)	5,400
Transportation & Communications	3,000
Helicopter (3 hrs @ \$550/hr)	1,650
Bulldozer Work (40 hrs @ \$55/hr)	2,200
Line Cutting	1,500
Technical Report	3,000
Diamond Drilling - All Inclusive (1000 ft @ \$50/ft)	50,000
	\$ <u>100,000</u>

2. Phase II

Geological,, Geochemical, Geophysical Surveys to follow up Phase I generated anomalies	\$ 30,150
Diamond Drilling (300 ft @ \$50/ft)	150,000
Geologist, Assist	15,000
Transportation	1,500
Room & Board (60 man days @ \$60/day)	3,600
Helicopter (15 hrs @ \$550/hr)	8,250
Technical Report	1,500
	\$ <u>210,000</u>

APPENDIX 1: Statements of Qualification

.....

STATEMENT OF QUALIFICATIONS

I, Jim Chapman, of 580 West 17th Avenue, Vancouver, British Columbia hereby certify:

- 1. I am a graduate of the University of British Columbia (1976) and hold a BSc. degree in geology.
- 2. I am presently self-employed as a consulting geologist.
- 3. I have been employed in my profession by various mining companies since graduation.
- 4. I am a professional geologist with the Association of Professional Engineers, Geologists, and Geophysicists of Alberta.
- 5. The information contained in this report was obtained from on site examination of the property and a review of data listed in the bibliography.
- 6. I do not have, nor expect to receive, direct or indirect interest in the property or in the securities of Jacqueline Gold Corp. or any of its subsidiaries.
- 7. I consent to and authorize the use of the attached report and my name in the Company's Prospectus, Statement of Material Facts or other public document.

- Chang

Jim Chapman Consulting Geologist

Dated at Vancouver, British Columbia, this 4th day of January, 1988.

STATEMENT OF QUALIFICATIONS

I, Scott W. Tregaskis, residing at 11065 Broken Hill Road, city of Reno, Nevada, do hereby certify:

- I am a practising geologist and have been since 1975 after completing a B. Sc. in Geology at Oregon University including the period during which I completed a M. Sc. in Geochemistry from Pennsylvania State University (1979).
- I am a fellow member of the Society of Exploration Geologists and the Society of Geochemical Explorationists.
- 3. The conclusions and statements made in this report are my own and are the results of my own fieldwork and data interpretation.

Sout he pasters

S. W. Tregaskis Consulting Geologist

Dated at Reno, Nevada, USA, this 13 of January, 1988.

STATEMENT OF QUALIFICATIONS

I, James William Morton, of 955 Braeside, West Vancouver, British Columbia, hereby certify:

- 1. I graduated from Carleton University, Ottawa, in 1971 with a Bachelor of Science in Geology.
- 2. I graduated from the University of British Columbia, Vancouver, in 1976 with a Master of Science in Soil Science.
- 3. I have worked for various mining and exploration companies since graduation.
- 4. I supervised the work described in this report.

Mar

J. W. Morton, M. Sc. Geologist

Dated at Vancouver, British Columbia, this 27th day of January, 1988.

APPENDIX 2: Statement of Expenditures

.

STATEMENT OF EXPENDITURES

...

Professional Services:

.....

S. W. Tregaskis J. Chapman J. W. Morton G. L. Garratt	28 days @ \$300/day 3 days @ \$300/day 5 days @ \$300/day 3 days @ \$300/day	\$ 8,400.00 900.00 1,500.00 900.00
Field Personnel:		
J. Green I. Hayton F. Sivertz T. MacKenzie	18 days @ \$200/day 14 days @ \$200/day 18 days @ \$200/day 5 days @ \$250/day	3,600.00 2,800.00 3,600.00 1,250.00
Truck Rental	28 days @ \$50/day	1,400.00
Helicopter Charter	3.3 hrs @ \$545/hr	1,798.50
Communications:		
Radio Rental Telephone Courier	\$ 614.80 72.88 61.00	748.68
Drafting		670.00
Analyses:		
	e Determinations ately \$11.52/sample	12,266.00
Freight		287.70
Field Equipment & Consumab	les	687.79
Recording Fees		95.00
Room & Board		4,436.14
Fuel		663.68
Airfare		772.08
Map & Report Copying		355.79
Miscellaneous Expenses		241.14
Secretarial		400.00
TOTAL EXPENDITURES		\$47,772.50

FIELD DATES

Tregaskis	October 8 - November 25, 1987
Chapman	November 13 - 15, 1987
Morton	November 13 - 15, 1987
Green	October 3, October 10 - 26, 1987
Hayton	October 13 - 27, 1987
Sivertz	August 31, September 1 - 3, October 13 - 1 7, 1987
MacKenzie	August 31, September 1 - 3, 1987

APPENDIX 3: Rock Sample Descriptions

SAMPLE LOCATION

ROCK SAMPLE DESCRIPTIONS

,

(NMT-)

•			
1	B Grid Area	N10E80W vuggy qtz-epidote veins in rhyodacite	2 🛚 chip
2	Π	Mafic gabbro dike w/qtz, calcite, tr. py veining	grab
3	π	Potassically altered diorite cut by qtz-calcite veining	20 m grab
4	Π	Strongly silicified andesite tuff 1-5% py, tr cpy	3 m chip
5	Π	Silicified andesite tuff 3% py	grab
6	Π	Silicified andesite 2-5% py	2 m chip
7	n	Sheared, silicified andesite N10E structure 1-2 cm py veinlets	2 🛚 chip
8	n	Strongly silicified andesite w/py veinlets	2 m chip
9	π	Strong N40E zone of py veining adjacent to fresh rhyodacite	1 m chip
10	n	N60W structure in dark green chloritic tuff, strong silicification, 5% py	1 m chip
11	r	Weakly pyritic, partially foliated diorite	2 m chip
12	Π	Andesite in creek, 1% py - unmineralized	2 m chip
13	7	Strongly fractured, goethitic andesite, possibly glacial	grab
14		NW Grid area, Hornblende diorite, hematite stained	grab
15	Π	Bleached dacite, 1-2% py, po	grab
16	Butler LK Ridge	N55W90 structure cutting cliffs of rhyodacite	5 🖬 chip
17	n	Diorite porphyry dike into rhyodacite	grab
18	Π	Silicified, hematitic rhyodacite contact zone w/diorite	grab
19	n	N50W90 structure cutting rhyodacite, bleached, moderately silicified, strongly goethitic	10 m chip
20	Upper Butler	Glacial erratics – strongly pyritic, goethitic rhyodacite	grab
21	Butler LK	Strongly pyritic diorite dike	5 m chip
22	B Grid	Fine grained diorite, .5–1% diss. po. N90W shear	3 m chip
23	0+00N-0+50W	Fine grained diorite dike, .5-1% diss. po.	grab
24	0+50S-0+50W	Sheared diorite, diss & units of po.	2 m chip

.

SAMPLE	LOCATION	ROCK SAMPLE DESCRIPTIONS	SANPLE TYPE & WIDTH
(NMT-) 25	Lower Butler Creek	Large cliff of flat lying andesite, locally silicified 2% py	3 m chip
26		n	n
27	n	T	n
28	Π	T	π
29	Mouth South FK of Butler CK "Bornite Show"	Large zone of sheared, silicified, goethitic diorite w/1-2% py on fractures	5 n chip
30	π	•	Π
31	n	7	R
32	Ħ	Π	π
33	Ħ	π	Π
34	n	Very strong fracturing and goethite	grab
35	B Grid	Goethitic, weakly qtz veined rhyodacite	grab
36	π	Goethitic rhyodacite	2 m chip
37	n	Goethitic rhyodacite	
38	A Grid	Silicified diorite w/2-3% py	
39	ដ	N60W75S qtz-galena vein, terminated by flat fault	.2 m chip
40	8	Float boulders of qtz vein w/diorite frags 1% py 1% gal, 2% sph	
41	Π	Float below drill site - coarsely Xtln qtz diorite	
42	π	N50E35N shear zone 4–5 n thick, silicified, py, goethitic diorit	e
43	A Grid Creek Bottom	•	
44	ħ	•	
45	Π	a.	
45	McDonald Road	Mod-strongly pyritic rhyodacite, diorite, andesite float	
47	Π		

SAMPLE	LOCATION	ROCK SAMPLE DESCRIPTIONS	SAMPLE TYPE & WIDTH
(NMT-) 48	McDonald Road	Nod-strongly pyritic rhyodacite, diorite, andesite float	
49	n	١	
50	n	Pyritic diorite and rhyodacite float	
51	Π	7	
52	n	n	
53	Drill Site	High grade qtz vein float	
54	NcDonald Road	Green andesite tuff, tuff breccia, locally bleached	2 n chip
55	n	Andesite tuff, bleached, fractured goethitic	7 m chip
56	Π	Pyritic diorite, rhyolite breccia, andesite float	
57	۳	Vuggy qtz vein w/tr gal, sph float	
58	n	Med xtaline sericitic, pyritic qtz diorite	3 m chip
59	8	Felsic chloritic volcanic, 1–3% py, pink matrix	2 m chip
60	n	Densely silicified andesite/diorite 5-10% py	5 m chip
61	ñ	Pervasively silicified felsic volcanic 5-6% dess. py	7 🖬 chip
62	n	Med gray diorite, pervasive qtz-ser-py alt 5–10% py minor brecciation	3 u chip
63	Top of Road Gossan McDonald Road C Grid	Coarsely xtaline diorite, weak argillite alt 3–5% py	3 a chip
64	17	Vitreous qtz veining adjacent to diorite dike 1–3% py	grab
65	n	Qtz vein, fractured, minor goethite	1 m chip
66	T	Coarsely xtaline pyritic diorite, mod qtz veining, strong goethitie	3 m chip
67	π	n	2 🖬 chip
68	Π	Strongly goethitic, qtz-ser-py altered qtz diorite?volcanic?	3 m chip
69	Π	Coarsely xtaline diorite, strong argillic	2 🛛 chip
70	C Grid	Vuggy qtz vein, some chalcedony with fine dissem. pyrite, MnOx in vugs, subcrop	grab
71	Π	Silicified, slightly pyritic qtz diorite, outcrop	grab
72	"	Silicified qtz diorite w/vuggy qtz-pyrite-magnetite veinlets	2 n chip

.....

SAMPLE	LOCATION	ROCK SAMPLE DESCRIPTIONS	SAMPLE TYPE & WIDTH
(NMT -)	п		
73	n	Coarsely xtaline diorite w/1-2% py, mod. argillic alt.	2 a chip
74	11	Qtz diorite dike w/locally strong qtz-ser-py alteration	2 m grab
75	31	π	
76	C Grid	Qtz diorite dike w/locally strong qtz-ser-py alteration	2 n grab
77	n	Strong propylitically altered diorite	
78	۱	3	
79	n	Chloritic, silicified diorite w/1-3% diss. py	50 m grab
80	Π	Diorite w/qtz-ser-py alteration	
81	ज	Strongly silicified med. gray diorite 2-5% py	2 🛛 chip
82	n	Hod. silicified pyritic diorite float	
83	17	Strongly qtz-ser-py altered diorite	2 u chip
84	π	Silicified diorite w/qtz pyrite veinlets	2 m chip
85	Lower McDonald Road Backhoe Trenches	9' pit into rotten andesites WK goethite	pit sample
86	Ħ	Strong N90W 30S shear in diorite strong goethite	5 a chip
87	7	Strongly qtz-seriate-py altered diorite next to NHT-87-77	pit grab
88	Ħ	N65W70S silicified shear in argillized diorite	3 m chip
89	n	Mod. silicified, pyritic diorite	
90		Mod. silicified N85E90	
91	π	Strong N85E shear, strong py, silicification	
92	Ħ	Fresh diorite	
93	R	Qtz vein cutting argillically altered diorite	
94	រា	Propylitically altered diorite	
95	Goat Trail Zone	6" calcite, qtz, py vein in andesite	
96	aone n	Qtz-galena-pyrite vein, outcrop in creek N35W90-65W 3-6" thíck	
97-102	18	Qtz-galena-sphalerite veins 3 – 10"	chips along veins
103	2	Sidebank slump with abundant float of qtz-galenz-sphalerite veing	5

.

-

......

.

.

APPENDIX 4: References

REFERENCES

- Heim, R.C. et al, 1973: Geological Survey, Induced Polarization and Resistivity survey and Geochemical Survey of the B.U. claims, Noranda Exploration Co, Ltd. Assessment Report 4540
- Morton, J.W., 1985: MAC St. Teresa Summary Report of Geology and Drilling Results, Imperial Metals Ltd. Summary Report.
- Roddick, J.A. et al, 1985: Mt. Waddington Geologic Map Sheet 92N, OF 1163

APPENDIX 5: Certificates of Analysis

Soil samples collected from the 'B horizon' at an average depth of 30 cm.

.....

i

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716

ſ

(

1

£

ť.

(

(

ł

t

i.

t

GEOCHEMICAL ANALYS S CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEC. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR M5 BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: P1-2 ROCK P3-17 SOIL AUX ANALYSIS BY AA FROM 10 GRAM SAMPLE. 0 0

DATE RE	CEIV	ED:	OCT	21 198	37	DAT	TE R	EPOI	RT M	AILE	ED:	Kov	3/2	97		ASS	AYE	r. /	las	be je	1D	EAN	τογ	Έ, ά	ERT	IFIE	ED B	.c.	ASS	AYEF	ł
						MI	NCO	RD 8	EXPL	JRAT	'ION	PRC	JEC.	T-NE	W M	AC	Fi	le †	ŧ 87	-515	50	Fa	ağe	1							
SAMPLE	NO PPN	CU PPM	PB PPM	ZN PPM	A5 Ppm	NI PPM	CO PPM	NN PPN	FE Z	AS PPM	U PPM	AU PPM	TH PPN	SR PPM	CD PPM	SB PPM	BI PPM	V PPN	CA I	P I	LA PPN	CR PPN	MG Z	BA PPM	TI Z	B PPM	AL I	NA Z	K Z	N PPN	AU I PPB
NHT-07-1 NMT-07-2	1	13 22	12 13	72 78	.2 .5	29 69	6 12	977 67 4	2.51 2.96	19 3	5 5	ND ND	1	43 48	1	3 2	2	41 59	8.82 5.22	.024	2 2	60 119	1.14	6	.12 .35		1.36 2.33	.01 .02	.05 .01	1	5 1
NHT-87-3	1	8	11	89	.1	9	3	1072	2.09	4	5	ND	i	24	1	2	2	9	3.27	.030	2	14	.89	52	.01		1.56	.04	.08	1	1
NMT-87-4	1	323	7	36	.4	28	12	383	6.71	5	5	ND	1	21	1	2	2	41	1.29	.065	2	62	.55	6	.22	6	1.67	.10	.02	1	1
NNT-87-5	2	189	6	40	.1	27	18	555	5.84	5	5	ND	1	33	1	2	2	97	2.44	.068	2	25	1.14	9	.14	8	2.86	.17	.05	1	2
NMT-87-6	7	253	6	28	.3	16	7	378	5.34	98	5	ND	i	15	i	2	2	74	1.34	.056	2	64	.83	9	.15		2.13	.11	.02	i	189
NHT-87-7	3	159	9	29	.1	21	9	459	4.92	4	5	ND	1	7	1	2	2	64	1.39	.042	2	67	.95	9	.24			.08	.01	1	3
NMT-87-8	7	372	6	31	.1	33	15	389	5.10	21	5	ND	1	11	1	2	2	65	1.37	.061	2	57	.87	5	.15		1.94	.08	.02	1	7
NHT-87-9		1271	6	29	.8	12	19	346	7.47	2	5 5	ND	1	19	1	2	2	70	1.67	.034	2	7	1.07	8	.08		3.14	.09	.01	3	5 176
NMT-87-10	15	1672	53	40	2.4	120	14	238	5.37	4	2	ND	1	32	. 1	2	2	44	1.30	.041	2	159	1.15	4	.18	14	2.47	.14	.05	1	1/0
NHT-87-11	20	1355	7	32	1.9	11	9	208	3.03	2	5	ND	1	9	1	2	2	43	.83	.047	2	14	1.00	4	.09	10	1.60	.08	.02	i	102
MMT-87-12	1	178	8	35	.1	36	13	717	4.25	15	5	ND	1	23	1	2	2	62	2.90	.116	2	74	1.18	3	.18	-	1.59	.08	.02	1	2
NHT-87-13	1	116	19	43	.1	17	14	359	3.62	18	5	ND	1	26	1	2	2	36	2.20	.033	2	62	.57	3	.27		2.38	.04	.01	1	1
STD C/AU-R	20	57	40	131	7.5	67	28	1040	3.96	39	19	7	39	49	18	17	21	55	.47	.086	37	55	.88	172	.07		1.87	.08	.15	13	510
NHT-87-14	1	33	4	25	-1	2	2	280	2.75	2	5	ND	1	45	1	2	2	52	1.27	.036	2	22	.83	9	.09	7	2.38	.20	.04	1	1
NMT-87-15	1	22	24	111	.1	4	4	453	4.10	29	5	ND	1	8	1	2	2	13	.11	.016	19	4	1.06	43	.01	2	1.82	.05	.05	1	1
NMT-87-16	2	12	2	58	.1	2	3	522	2.69	9	5	ND	1	14	1	2	2	9	1.66	.046	2	1	.54	21	.04		1.22	.05	.08	1	1
NMT-87-17	1	6	5	66	.2	10	14	870	4.14	2	5	ND	1	28	1	2	2	72	1.82	.034	2	26	1.92	30	.07		2.33	.09	.03	1	4
NHT-87-18	6	9	15	131	.8	9	5	1118	4.65	44	5	ND	1	19	1	2.	2	37	1.59	.019	2	- 11	4.01	43	.01		3.43	.03	.04	1	810
NMT-87-19	4	31	14	103	1	2	2	946	4.73	20	5	ND	1	4	1	2	2	30	.03	.035	4	8	1.71	60	.01	2	1.83	.03	.10	1	5
NHT-87-20	5	44	10	33	.2	1	1	440	3.12	24	5	ND	1	5	1	2	2	5	.07	.021	4	2	.32	63	.01	3	.58	.02	.13	1	48
NMT-87-21	1	87	4	57	.1	85	17	813	7.58	20	5	ND	1	24	i	2	2	59	1.66	.033	2	159	1.18	7	.29	6	2.37	.19	.14	1	2
NHT-87-22	1	264	5	39	.3	47	22	590	4.11	9	5	ND	1	19	1	2	2	56	2.25	.057	2	70	.85	8	.22		1.88	.16	.05	3	1
NHT-87-23	1	7	8	49	.1	76	18	729	3.03	45	5	ND	1	34	1	2	2	85	3.64	.066	2	141	1.02	6	.37		2.14	.27	.10	1	29
NMT-87-24	1	249	5	31	.5	35	22	472	4.54	25	5	ND	1	26	1	2	2	60	1.66	.083	2	101	.71	5	.17	4	1.96	.06	.04	1	15
NNT-87-25	2	22	9	65	.1	4	7	827	3.33	15	9	ND	i	43	1	2	2	42	.67	.041	2	6	1.59	13	.18		1.92	.06	.05	i	22
NMT-87-26	2	19	13	57	.3	2	5	764	3.62	19	5	ND	1	34	1	2	2	35	.52	.038	2	4	1.28	22	.18		1.69	.06	.05	1	9
NMT-87-27	2	31	29	71	.1	5	7	724	3.54	24	5	ND	1	50	1	2	2	51	.78	.032	2		1.77	16	.21		2.34	.05	.05	1	6
NHT-87-28	1	13	7	45	.1	1	3	841	4.38	32	5	ND	1	19	1	2	2	28	.58	.046	2		1.13	34	.11		1.97	.10	.13	1	5
NMT-87-29	1	151	5	23	.2	5	5	684	4.65	3	5	ND	1	50	i	2	2	86	1.09	.032	2	20	1.50	12	.15	2	3.33	.08	.02	1	1
NMT-87-30	4	158	2	35	.i	31	9	643	4.07	17	5	ND	1	10	1	2	2		2.17	.031	2		1.90	12	.23		3.74	.05	.03	1	7
NMT-87-31	2	448	4	20	1.4	26	7	246	5.30	2	5	ND	1	22	1	2	2	52	1.16	.025	2	140	.80	27	.23	-	2.22	.15	.11	1	49
NHT-87-32	11	229	2	34	.2	19	5	284	3.74	2	5	ND	1	13	1	2	2		1.40	.023	2	204	1.08	9	.31		2.18	.09	.09	1	28
NHT-87-33	8	70	5	19	.2	4	3	460	3.21	4	5	ND	1	6	1	2	2	56	2.62	.036	2	19	.85	6	.15		3.22	.05	.03	1	28
NMT-87-34	4	178	7	44	.5	93	23	451	6.85	9	5	ND	1	8	1	2	2	77	3.41	.034	2	278	. 91	3	.23	11	3.46	.04	.02	1	62
NMT-87-35	i	454	10	133	1.2	3	2	130	7.86	630	5	ND	1	10	1	2	9	32		.025	4	4	.19	27	.10	2	.70	.07	.04	1	6
NHT-87-36	1	154	6	56	.1	4	4	407	4.51	64	5	ND	1	19	1	2	2	55	.42	.017	2	10	.94	34	.08	5	1.99	.11	.06	1	1

ł

SAMPLE	MO PPN	CU PPM	PB PPM	ZN PPH	AG PPN	NI PPM	CO PPM	MN PPM	FE I	AS PPM	U PPM	au Pph	TH Ppm	SR PPM	CD PPM	SB PPM	BI PPM	V PPM	CA Z	P Z	LA PPN	CR PPM	NG Z	BA PPM	TI Z	B PPM	AL Z	NA Z	K Z	N PPM	AU : PPB
NMT-87~37 NMT-87~38 NMT-87-39 ∑ NMT-87-40 NMT-87-41	1 1 5 11 3	274 58 57 441 4	7 6 822 1063 8	52 97 1605 3780 62	1.8 .3 .8 42.6 .1	22 18 16 3 12	12 15 13 4 11	831 1201 2597	6.84 4.55 3.78 1.77 5.30	14 37 58 56 9	5 5 5 5 5 5	ND ND ND ND ND	2 1 1 1	33 33 46 87 54	1 8 33 1	2 2 13 2	5 2 2 2 2	55 3	5.48 15.84	.037 .041 .033 .009 .019	11 3 2 2	57 39 27 1 16	.61 1.83 1.20 .11 1.57	19 39 91 7 26	.05 .16 .10 .01 .15	5 7 3	1.33 2.85 2.26 .18 5.17	.02 .21 .10 .01 .25	.09 .04 .06 .05 .01	2 1 1 1 2	14 4 27 205 1
NMT-87-42 NMT-87-43 NMT-87-44 NMT-87-45 NMT-87-46	2 5 2	36 35 29 35 46	15 7 9 6 110	30 32 43 22 48	.4 .3 .2 .1 .7	2 3 7 4 4	3 8 6 4 5	373 346 235	4.52 6.20 4.07 4.36 4.32	72 100 15 26 23	5 5 6 5 5	ND ND ND ND	1 1 1 1	3 9 13 10	1 1 1 1	2 2 2 2 2	6 2 2 2 2	22 45 62 44 45	.14 .21 .64 .27 .25	.046 .044 .038 .041 .034	2 2 2 2 2	8 7 17 14 8	.38 1.09 1.21 .70 .53	19 19 66 42 51	.01 .03 .18 .20 .08	4 7	.64 1.32 1.95 1.15 1.41	.03 .03 .05 .04 .06	.12 .11 .09 .11 .08	1 1 1 1	4 23 19 7 11
NMT-87-47 NMT-87-48 NMT-87-49 NMT-87-50 NMT-87-51	2	59 70 86 68 69	5 5 4 3 2	114 87 64 93 60	.4 .1 .1 .2 .1	14 15 19 13 58	19 17 14 19 17	797 904	5.34 5.10 5.72	9 13 18 13 8	5 5 5 6 5	ND ND ND ND ND	1 1 1 1	14 63 30 31 27	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	96 103 104 142 60	.26 1.68 1.00 .84 .99	.031 .032 .034 .028 .030	2 2 2 2 3	29 43 22	1.94 1.39 1.25 1.21 2.14	20 18 42 18 47	.06 .20 .18 .17 .16	2 4 4	3.37 5.07 3.19 2.79 2.41	.08 .36 .17 .21 .08	.07 .02 .06 .06	1 1 1 1	1 1 1 4 1
NMT-87-52 NMT-97-53 NM-FS-1 NM-FS-2 NM-FS-3		23 21	5 2864 4 21 5	47 2203 68 56 42	.1 80.2 .2 .5 .1	15 3 1 3 3	9 6 3 4 2	639 844 1072 843 506	3.19 5.32 3.84 3.86 1.91	2 69 9 1B 240	5 5 5 5 5	ND ND ND ND ND	1 1 1 1 1	22 14 31 21 28	1 19 1 1 1	2 152 2 2 2	2 2 2 2 2	6 39 30	1.04 4.58 1.10 .91 3.43	.025 .010 .051 .041 .009	2 2 2 2 2 2	31 4 1 2 1	1.28 .16 1.23 1.29 .21	19 5 24 14 15	.16 .02 .15 .15 .01	2 5	2.20 .35 2.88 1.93 .21	.14 .01 .06 .06 .03	.03 .04 .09 .04 .04	1 1 1 2	2 111 31 2 46
NM-FS-4 NM-JR-1 NM-JR-2 NM-JR-3 NM-JR-4	3 1 1 1 4		7 2 10 6 10	57 84 41 49 43	.4 .1 .3 .6	67 1 4 1 7	20 4 3 13		3.13 1.67 3.74	4 6 11 33	5 5 5 7	ND ND ND ND	1 1 1 1	12 8 18 35 19	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	11 - 4	1.48 .05 .08 1.29 5.29	.036 .012 .007 .048 .032	2 3 2 2 2	174 2 1 1 9	1.69 1.04 .24 .92 .91	13 168 1273 37 34	.26 .01 .01 .14 .01	2 4 3	2.90 1.71 .70 2.80 1.02	.09 .04 .02 .05 .03	.07 .04 .06 .08 .09	1 1 2 2 1	32 8 39 62 72
NM-TR-5 I-3A 1-4 I-5 I-6	2 3 2 3 3	298 225 274	17 23 2 4 9	56 330 27 31 52	1.6 1.3 .2 .4 .8	13 5 21 8 12	16 15 13 16 19	224 1284 387 291 1263		6 274 2 509 1031	5 7 6 5 5	ND ND ND ND	4 1 1 2	5 75 12 57 120	1 3 1 1 1	2 2 2 2 2	2 2 2 2 29	63 47	.63 7.10 1.57 3.40 11.37	.014 .008 .029 .035 .013	2 3 2 2 3	6 1 49 10 6	.37 .83 .88 1.39 1.43	10 15 19 16 8	.07 .01 .20 .01 .01	4 9 7	1.06 1.11 1.97 1.78 1.97	.04 .01 .09 .04 .01	.04 .04 .05 .06 .04	4 1 1 2 1	88 2350 42 29 173
I-10 R-5 RK-I2 STD C/AU-	1		3 11 2 39	135 37 93 133	5.7 .1 .1 7.0	51 5 7 68	32 7 18 27	424 1462		7 5 6 42	5 5 5 17	ND ND ND 7	1 1 38	70 18 88 50	2 1 1 18	2 2 2 18	2 2 2 20	37	2.09 1.19 4.61 .48	.034 .041 .035 .086	2 2 3 37	133 10 3 61	.58 .77 1.93 .84	11 24 14 177	.15 .10 .29 .08	3 2	2.95 1.52 8.22 1.80	.16 .12 .03 .08	.04 .04 .03 .14	1 1 13	2040 18 24 490

lge 2

(

í.

£

(

(

(

L

(

(

(

£

£

٤

1

SAMPLE	MO PPM	CU PP n	PB PPM	ZN PPM	AG PPM	NI PPM	CO PPN	MN Pph	FE Z	AS PPM	U PPM	AU Ppn	TH PPM	SR PPN	CD PPN	SB PPM	BI PPM	V PPM	CA Z	P I	LA PPM	CR PPM	H6 Z	BA PPM	TI Z	B PPM	AL Z	NA Z	K Z	N PPM	AU s PPB
NMA L1+50E 2+00N NMA L1+50E 1+80N NMA L1+50E 1+60N NMA L1+50E 1+40N NMA L1+50E 1+20N	1 1 1 1	28 31 23 31 41	19 13 12 14 10	93 77 74 66 72	.2 .1 .5 .6 .1	12 16 12 12 16	8 10 10 10 13	233 219 243	4.12 4.23 3.76 4.23 4.65	12 17 13 21 21	5 5 5 5 5	ND ND ND ND ND	1 2 2 2 1	15 14 14 17 14	1 1 1 1	4 2 2 2 2	2 2 2 2 2	86 80 78 81 89	.19 .19 .28 .25 .22	.029 .024 .022 .027 .024	3 3 3 2	28 32 25 26 30	.44 .59 .48 .63 .93	34 36 38 32 41	.07 .07 .06 .07 .10	2 2 2	2.69 3.06 2.54 2.92 3.26	.02 .02 .02 .02 .02	.01 .02 .02 .02 .01	1 1 1 1	1 1 1 1
NMA L1+50E 1+00N NMA L1+50E 0+80N NMA L1+50E 0+60N NMA L1+50E 0+40N NMA L1+75E 1+00N	1 1 1 1	31 39 28 35 27	11 12 13 15 11	70 65 82 61 62	.2 .2 .9 .4 .1	13 14 12 13 12	11 11 10 10 9	280 224 235	4.07 4.12 3.78 3.98 3.96	19 25 11 16 15	5 5 5 5 5	ND ND ND ND	2 2 1 1 2	12 12 14 13 15	1 1 1 1	3 2 2 2 2	2 2 2 2 2	84 78 78 74 82	.22 .16 .22 .20 .20	.023 .023 .026 .036 .021	2 2 2 2 2 2	25 26 25 27 26	.70 .79 .66 .64 .61	27 33 26 33 38	.08 .07 .08 .08 .08	4 8 2	3.00 3.27 2.78 3.26 2.61	.02 .03 .03 .02 .02	.03 .03 .03	1 1 1 1	360 33 2 1 2
NMA L1+75E 0+60N NMA L1+75E 0+80N NMA L2+00E 1+00N NMA L2+00E 0+80N NMA L2+00E 0+60N	1 1 1 1 1	36 28 29 28 36	9 9 11 12 7	71 65 73 58 64	.1 .1 .1 .2	15 10 13 13 14	13 8 10 9 11	225	4.31 3.88 4.27 3.87 4.30	21 18 20 10 14	5 5 5 5 5	ND ND ND ND	1 1 1 1 2	15 16 15 14 16	1 1 1 1	2 2 2 2 2	2 2 2 2 2	85 81 85 86 90	.21 .22 .22 .21 .21	.025 .022 .022 .021 .024	2 3 3 3 3	30 21 26 23 27	.76 .60 .67 .62 .73	33 33 42 29 37	.08 .06 .09 .09 .11	4 4 3	3.18 2.63 2.99 2.70 3.35	.03 .02 .03 .03 .03	.02 .02 .04 .03 .03	1 1 2 1 1	14 2 1 11 1
NMA L2+00E 0+40N NMA L2+00E 0+30S NMA L2+00E 0+35S NMA L2+00E 0+40S NMA L2+00E 0+45S	1 2 1 1 1	19 42 24 30 41	10 11 8 9 10	50 77 55 57 62	.1 .6 .5 .2 .3	9 13 9 14 16	7 12 7 9 14	207 301 207 236 287	3.51 4.24 3.24 3.61 4.35	6 39 22 17 20	5 5 5 5	ND ND ND ND	1 1 1 2	18 11 12 13 13	1 1 1 1	2 2 2 2 2	2 2 2 2 2	85 70 67 75 84	.23 .15 .17 .19 .21	.015 .033 .023 .030 .026	2 2 2 2 2 2 2	23 21 22 27 32	.50 .62 .55 .63 .91	37 30 29 30 38	.09 .07 .07 .09 .12	4 9 3	2.16 2.89 2.60 2.91 3.50	.02 .02 .02 .02 .03	.01 .04 .03 .02 .03	3 1 2 1 1	1 1 3 28
NMA L2+00E 0+50S NMA L2+00E 0+55S NMA L2+00E 0+60S NMA L2+00E 0+65S NMA L2+00E 0+70S	1 1 1 1	19 26 31 25 36	6 7 8 7 8	93 54 58 53 60	.1 .2 .1 .7 .1	9 12 15 11 15	5 7 10 8 12	191 242 232	3.06 3.30 3.95 3.70 4.26	19 26 22 18 21	5 5 5 5 5 5	ND ND ND ND	1 1 2 2 1	13 15 15 18 15	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	68 70 80 83 85	.19 .22 .21 .28 .21	.030 .025 .021 .025 .025	3 3 2 2 2	25 27 32 25 31	.41 .55 .76 .61 .86	23 28 34 35 42	.07 .08 .11 .10 .12	3 4 3	2.12 2.47 3.01 2.55 3.51	.02 .02 .03 .03 .03	.03 .03 .02 .04 .02	1 1 2 1 3	1 5 1 1 1
STD C/AU-S NMA L2+00E 0+75S NMA L2+00E 0+80S NMA L2+00E 1+00S NMA L2+00E 1+20S	19 1 1 1	60 31 21 23 22	36 8 7 7 5	133 56 47 56 49	· 7.6 .2 .1 .1 .1	68 13 12 11 12	28 11 7 8 7	231 200 211	4.01 3.78 3.31 3.33 3.30	40 16 21 15 8	21 5 5 5 5	8 ND ND ND ND	39 2 1 1 1	50 14 16 14 16	18 1 1 1	18 2 2 2 2	21 2 2 2 2 2	57 77 75 74 79	.48 .20 .22 .20 .21	.086 .021 .022 .023 .017	2 2 2 2 3 2 38	60 27 28 25 25	.84 .77 .55 .61 .60	172 41 30 33 36	.07 .12 .09 .10 .12	4	1.80 3.46 2.56 2.60 2.50	.08 .03 .02 .02 .03	.14 .03 .01 .02 .02	14 1 1 2	48 1 1 1
NMA L2+00E 1+40S NMA L2+00E 1+60S NMA L2+00E 1+80S NMA L2+00E 2+00S NMA L2+25E 1+00N	1 1 1 1 2	31 29 34 37 35	8 4 7 7 8	71 65 66 74 82	.1 .3 .1 .1	23 15 15 17 13	11 11 11 13 10	253 306 598	3.81 3.92 4.14 4.49 4.21	6 2 8 6 18	5 5 5 5 5	ND ND ND ND	1 1 1 1	14 16 15 18 14	1 1 1 1	2 2 2 2 4	2 2 2 2 2 2	79 84 87 99 79	.21 .24 .22 .27 .16	.028 .031 .030 .020 .029	2 2 2 2 2 2 2	38 32 28 35 29	.78 .79 .93 1.00 .66	29 22 22 29	.12 .12 .13 .14 .08	4	3.47 3.53 3.68 3.55 2.96	.03 .03 .03 .03 .02	.02 .02 .03 .02 .03	1 1 1 2 1	2 1 8 2 1
NMA L2+25E 0+80N NMA L2+25E 0+60N	1 1	35 25	12 7	74 60	.2 .1	13 11	12 8	247 207	4.37 3.85	17 11	5 5	ND ND	1 1	17 14	1 1	2 2	2 2	86 84	.22 .19	.02B .023	2 2	28 27	.70 .57	37 31	.08 .10	-	3.26 2.86	.02 .02	.04 .03	1 1	4 2

kge 3

ł.

(

(

1

{`

1

ł

(

1

(

(

1

(

(

(

(

SAMPLE#	MO PPN	CU PPM	PB PPM	ZN PPM	AG PPM	NI PPM	CO PPM	NN PPH	FE X	AS PPM	U PPM ·	AU PPM	TH PPN	SR PPM	CD PPM	SB PPM	BI PPM	V PPM	CA X	P I	LA PPM	CR PPM	MG I	BA PPM	TI X	B PPM	AL X	NA Z	K Z	N PPM	AU X PPB
NMA L2+25E 1+05S NMA L2+25E 1+10S NMA L2+25E 1+15S NMA L2+25E 1+20S NMA L2+25E 1+25S	1 1 1 1	20 21 33 18 26	9 9 7 5 5	59 72 64 48 62	.5 .8 1.0 .2 .2	11 9 14 8 11	7 7 11 6 9		2.87	33 28 59 12 20	5 5 5 5 5	ND ND ND ND ND	1 2 1 1 2	15 16 15 18 15	1 1 1 1	2 2 2 2 2	2 2 2 2 2	72 75 71 71 75	.21 .23 .22 .25 .23	.026 .030 .029 .024 .030	2 2 2 3 2 3	26 20 24 18 24	.52 .52 .76 .44 .65	39 33 47 35 32	.10 .10 .12 .10 .11	2 2 3	2.24 2.31 2.96 1.87 2.80	.02 .03 .03 .03 .03	.03 .04 .02 .04 .02	1 1 1 1	3 1 14 1 2
NMA L2+25E 1+405 NMA L2+25E 1+605 NMA L2+25E 1+805 NMA L2+25E 2+005 NMA L2+50E 2+00N	1 1 1 1	25 23 29 16 49	2 3 5 31	57 56 63 51 117	.1 .6 .2 .3 .9	12 12 14 9 12	9 8 9 6 11	305 320	3.62 3.19 3.54 2.79 5.69	17 5 4 5 19	5 8 5 5 5	ND ND ND ND	1 1 2 1 1	18 18 14 17 14	1 1 1 1	2 2 2 2 2	2 2 2 2 2	81 70 75 63 87	.23 .24 .20 .22 .12	.026 .027 .036 .026 .037	2 2 2 2 3 2 3	27 25 26 21 26	.73 .71 .84 .60 .59	34 36 33 32	.12 .12 .13 .11 .05	3 2 2	2.81 2.65 3.13 2.27 3.21	.03 .03 .03	.02 .04 .02 .03 .06	1 1 1 1	1 1 9 1 2
NMA L2+50E 1+80N NMA L2+50E 1+60N NMA L2+50E 1+40N NMA L2+50E 1+20N NMA L2+50E 1+00N	1 1 1 1 1	40 48 35 21 46	42 25 15 12 11	137 141 80 69 71	.6 .5 .4 .4 .1	12 10 13 9 17	10 10 11 7 13	355 321 257	5.25 5.93 4.25 3.56 4.82	17 27 16 10 20	5 5 6 5	ND ND ND ND	2 1 1 2 2	14 13 15 14 15	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	86 90 75 77 86	.13 .12 .19 .20 .19	.036 .045 .031 .025 .031	3 2 3 3 4	22 19 26 20 28	.60 .55 .71 .47 .87	40 43 32 35 41	.04 .05 .07 .07 .11	4 2 2	3.18 3.39 2.73 2.27 3.33	.02 .03 .03 .03 .03	.06 .06 .05 .04 .02	1 1 1 1	1 1 118 7
NMA L2+50E 0+90N NMA L2+50E 0+80N NMA L2+50E 0+70N NMA L2+50E 0+60N NMA L2+50E 0+50N	2 2 1 1 1	34	12 18 12 7 8	80 82 73 67 74	.4 .1 .2 .3 .4	13 16 12 15 15	11 15 9 12 11	382 306 268	4.70 4.90 4.21 4.25 4.17	20 23 17 9 10	5 5 5 5 5	ND ND ND ND ND	1 1 2 2 1	14 18 16 17 15	1 1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	86 85 85 88 91	.18 .22 .22 .25 .23	.031 .025 .023 .020 .024	4 3 4 3 3	25 31 23 31 30	.68 .97 .62 .91 .79	41 44 37 30 41	.09 .12 .10 .13 .12	4 2 2	2.91 3.35 2.68 3.34 3.05	.03 .03 .03	.04 .03 .03 .03 .02	1 1 1 1	5 10 72 6 3
NMA L2+50E 0+45N NMA L2+50E 0+40N NMA L2+50E 0+35N NMA L2+50E 0+30N NMA L2+50E 0+40S	1 1 1 1 1	28 20 32	12 7 14 17 8	65 71 71 97 56	.1 .5 .4	13 13 11 14 13	9 10 7 10 9	281 224 275	3.80 3.87 3.87 4.40 3.87	10 11 13 19 20	5 5 5 5 5	ND ND ND ND ND	2 2 2 1 1	16 14 16 13 13	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	84 82 91 92 77	.23 .21 .23 .19 .17	.024 .028 .021 .026 .037	2 2 2 2 2 2 2	24 28 26 26 23	.74 .74 .60 .77 .64	43 32 45 35 28	.12 .12 .09 .09 .09	3 2 3	2.82 2.95 2.53 3.09 2.90	.03 .03 .02 .03 .03	.03 .03 .03 .02 .04	1 1 1 1	1 2 1 53 71
NMA L2+50E 0+60S NMA L2+50E 0+80S NMA L2+50E 1+00S NMA L2+50E 1+20S NMA L2+50E 1+40S	1 1 1 1	28 21 34	6 5 6 7	47 53 47 66 57	· .4 .2 .2 .2 .2	9 17 11 17 14	6 8 7 12 10	202 184 271	3.33 3.55 3.22 4.08 3.69	14 21 14 22 33	5 5 5 5 5	ND ND ND ND	1 1 1 1 1	19 15 15 14 13	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	80 72 72 83 70	.25 .22 .25 .20 .20	.028 .032 .024 .030 .031	2 2 2 2 2 2 2	19 33 23 31 26	.51 .58 .59 .83 .72	29 27 30 41 40	.07 .10 .09 .13 .11	2 2 2 2	2.13 2.71 2.52 3.20 3.17	.03 .03 .03	.03 .03 .03 .03	1 1 1 1	i36 18 5 4 69
NMA L2+50E 1+60S NMA L2+50E 1+80S NMA L2+50E 2+00S NMA L2+75E 1+00N NMA L2+75E 0+90N	1 1 1 2 2	24 29 30	8 5 2 23 18	54 59 61 178 115	.1 .2 .1 .1	11 13	7 7 10 12 19	220 217	3.38 3.19 3.37 4.34 5.65	11 5 3 21 29	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	16 14 14 13 12	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	71 64 70 67 79	.21 .20 .19 .52 .14	.031 .042 .032 .034 .036	3 4 3 3	27 20 25 23 22	.54 .61 .74 .64 .83	34 29 33 38 40	.09 .09 .11 .01 .05	3 3 2	2.67 2.96 3.36 3.11 3.41	.03 .03 .03	.03 .04 .04 .05 .02	3 1 1 1 1	1 3 2 15 31
NMA L2+75E 0+BON STD C/AU-S	1 18		39 39	76 133	.3 7.1	12 69	9 27	239 1029	3.95 3.97	12 42	5 22	ND 7	2 39	13 50	1 18	2 17	2 22	75 57	.18 .47	.031 .089	3 37	23 64	.59 .88	32 177	.07 .08	-	3.02 1.79	.03 .08	.05 .14	1 13	1 47

ige 4

1

Į

(

(

(

ť

(

ſ

(

(

(

Ċ

(

ſ

C

í

Ĺ

ź

SANPLE	NO PPH	CU PPM	PB PPM	ZN PPM	AG PPM	NI PPM	CO PPN	MN PPM	FE Z	AS PPN	U PPM	AU PPM	TH PPM	SR PPM	CD PPM	SB PPM	BI PPM	V PPM	CA Z	P I	LA PPM	CR PPM	MG Z	BA PPM	TI Z	B PPN	AL Z	NA Z	K I	W PPM	AU X PPB
NMA L2+75E 0+70N STD C/AU-S NMA L2+75E 0+60N NMA L2+75E 0+60S NMA L2+75E 0+80S	1 19 1 1 1	26 58 26 27 24	19 40 9 9 9	65 126 60 56 40	.2 7.0 .1 .2 .1	11 66 10 11 9	8 27 8 9 7	1016 336 223	3.94 3.87 3.72 3.78 3.36	14 42 10 27 19	5 20 5 5 5	סא 7 ND ND ND	1 39 1 2 1	15 49 21 17 15	1 18 1 1 1	4 17 2 2 2	2 19 2 2 2	83 56 82 75 75	.22 .47 .26 .20 .23	.023 .083 .029 .030 .021	3 37 3 4 3	22 58 22 22 20	.65 .89 .58 .57 .51	27 172 37 33 32	.07 .07 .07 .08 .09	36 2 2	2.77 1.83 2.60 2.68 2.33	.03 .08 .03 .02 .03	.03 .16 .03 .04 .02	1 14 1 1	1 47 2 45 25
NMA L2+75E 1+00S NMA L2+75E 1+20S NMA L2+75E 1+40S NMA L2+75E 1+60S NMA L2+75E 1+60S	1 2 1 1 2	25 25 22 22 28	8 8 3	56 73 63 56 56	.1 .1 .3 .1	10 10 11 9 14	7 9 5 6 8	1115 178 310	3.38 3.65 2.52 3.07 3.34	15 12 11 23 28	5 5 5 5 5	ND ND ND ND ND	1 1 1 2 1	15 15 14 14 14	i 1 1 1	2 2 2 2 2	2 2 2 2 2	74 69 53 66 57	.20 .20 .22 .22 .22	.029 .062 .042 .042 .045	3 4 3 4	23 20 23 16 25	.61 .63 .43 .46 .64	31 42 40 41 46	.08 .08 .05 .06 .08	2 2 3	2.52 2.66 2.23 2.23 2.71	.03 .03 .03	.02 .03 .03 .04 .03	1 2 1 1 1	395 11 18 10 6
NMA L2+75E 2+00S NMA L4+25E 1+00N NMA L4+25E 0+80N NMA L4+25E 0+60N NMA L4+25E 0+60N	1 1 2 1 2	25 48 69 62 69	5 22 45 45 13	57 69 82 89 73	.1 .1 .3 .6 .1	12 11 11 12 18	8 7 8 9 12	252 268 327	3.46 5.15 5.89 5.02 5.47	5 21 24 19 19	5 5 5 5	ND ND ND ND ND	1 2 1 1 1	14 12 13 14 17	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	67 85 87 74 90	.12	.045	2 2 2 2 2 2 2	23 25 23 21 32	.71 .56 .61 .62 .98	40 37 51 46 46	.09 .05 .06 .06 .10	2 2 2	2.91 2.83 3.41 3.34 3.55	.03 .02 .02 .03 .03	.02 .04 .05 .06 .03	1 1 1 1	4 11 5 3 4
NMA L4+25E 0+20N NMA L4+25E 0+20S NMA L4+25E 0+40S NMA L4+25E 0+60S NMA L4+25E 0+60S	1 1 1 1 1	30 45 34	8 4 5 5	79 86 67 61 66	.5 .6 .1 .1	11 15 14 15 18	10 11 13 12 16	266 275 275	4.13 3.39 4.26 3.91 4.23	18 2 17 5 11	5 5 5 5 5	ND ND ND ND ND	2 1 1 1 1	14 14 13 14 13	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	78 67 76 82 90	.18 .19 .16 .18 .19	.027 .030	3 3 3 2 2	24 24 27 26 36	.62 .76 .70 .88 1.06	34 38 45 35 40	.06 .07 .08 .09 .14	2 2 2	3.09 3.20 3.54 3.32 3.99	.03 .03 .03 .03	.05 .04 .03 .02 .02	1 1 1 2	1 1 19 4 4
NMA L4+25E 1+00S NMA L4+25E 1+20S NMA L4+25E 1+40S NMA L4+25E 1+60S NMA L4+25E 1+80S	1 1 1 1	35 31 23	3 7 5 6 7	67	.1 .2 .1 .4 .1	13 17 15 12 9	10 13 10 8 6	297 269 254	3.32 4.36 4.41 3.56 2.80	5 10 12 5 4	5 5 5 5 5	ND ND ND ND	2 1 2 1 1	15 15 14 12 14	1 1 1 1	2 2 3 2 2	2 2 2 2 2	71 96 94 79 68	.19 .24 .19 .17 .17	.022 .025 .024	3 2 3 3 3	24 33 29 22 21	.71 1.02 .92 .74 .59	36 49 44 34 53	.10 .11 .11 .09 .09	2 2 2	3.10 3.60 3.50 3.14 2.38	.03 .03 .03 .03 .02	.02 .03 .02 .03 .03	1 2 1 1 1	3 2 1 1 1
NMA L4+25E 2+00S NMA L4+50E 1+00N NMA L4+50E 0+80N NMA L4+50E 0+60N NMA L4+50E 0+60S	1 1 2 1 1	77 76 33	5 20 28 108 8	63 80 85 77 68	· .3 .5 .1 .4 .3	11 10 14 6 12	9 7 11 4 10	285 315 172	3.08 6.32 5.66 3.83 3.93	2 28 28 18 22	5 5 5 5 5	ND ND ND ND	1 1 1 1 1	13 9 12 10 13	1 1 1 1	2 2 2 2 2	2 2 2 2 2	67 86 87 58 75	.18 .08 .10 .11 .18	.041 .044	3 2 2 2 3	24 21 24 13 23	.73 .60 .83 .34 .73	37 31 38 35 36	.10 .03 .06 .02 .06	2 2 2	3.11 2.96 3.48 2.20 3.01	.03 .02 .03 .02 .02	.03 .05 .03 .03	1 2 1 1 1	2 3 1 62
NMA L4+50E 0+80S NMA L4+50E 1+00S NMA L4+50E 1+20S NMA L4+50E 1+40S NMA L4+50E 1+40S	1 1 1 1	28 34 26	5 8 4 6 9	70 57 61 69 61	.1 .9 .1 .5 .3	11 10 15 11 15	10 9 11 9 11	242 260 209		24 11 10 12 11	5 5 5 5 5	ND ND ND ND	1 1 1 1	15 14 12 11 13	1 1 1 1	2 2 3 2	2 2 2 2 2	70 66 81 65 80	.23 .19 .17 .14 .17	.027 .028 .034	2 3 3 3 3	22 19 25 20 24	.66 .61 .94 .63 .93	43 42 43 31 51	.05 .06 .10 .05 .09	2 2 2	3.02 2.84 3.69 3.05 3.71	.03 .03 .03 .02 .03	.04 .04 .03 .03 .03	1 1 1 1	61 8 11 1 2
NMA L4+50E 1+80S NMA L4+50E 2+00S	2 1		7 6		.2 .1	11 11	9 10		3.23 3.50	5 8	5 5	ND ND	1 1	12 12	1 1	2 2	2 2	64 69	.17 .17	.037 .042	2 2	22 21	.66 .65	22 22	.07 .07		3.08 3.64	.03 .03	.03	1 1	1 1

.age 5

1

(

ŕ

(

(

Ć

(

(

(

(

£

€

(

ŧ

C

i

SAMPLE	MO PPM	CU PPM	PB PPM	ZN PPN	AG PPN	NI PPM	CO PPN	MN Ppm	FE I	AS PPH	U PPM	AU PPM	TH PPN	SR PPM	CD PPM	SB PPM	BI PPM	V PPH	CA Z	P I	LA PPM	CR PPM	M5 I	BA PPM	TI X	B PPN	AL Z	NA Z	K Z	N PPM	AUI PPB
NMA L4+50E 2+20S NMA L4+50E 2+40S NMA L4+75E 1+00N NMA L4+75E 0+80N NMA L4+75E 0+60N	1 1 2 2 2	23 35 55 78 39	5 6 16 13 40	74 81 92 104 94	.1 .2 .3 .1 .4	12 14 12 17 9	10 11 9 11 7	370 326 422	3.61 3.88 5.30 7.25 4.64	7 4 48 40 17	5 5 5 5 5	ND ND ND ND ND	1 2 2 1 2	14 11 11 9 11	1 1 1 1	2 2 2 2 2	2 2 2 2 2	70 70 80 79 70	.23 .16 .14 .08 .12	.037 .056 .050 .073 .047	3 2 2 3	25 29 24 25 21	.80 .99 .64 .65 .48	48 39 34 44 42	.07 .06 .02 .02 .04	2 2 2	3.00 3.92 2.92 3.29 2.94	.03 .03 .02 .02 .02	.04 .04 .08 .06 .06	í 1 1 1 2	8 1 1 1 1
NMA L4+75E 0+40N NMA L4+75E 0+20N NMA L4+75E 0+20S NMA L4+75E 0+40S NMA L4+75E 0+60S	1 1 1 1 1	32 32 43 34 28	11 11 6 4 6	63 78 73 67 63	.4 .6 .7 .2 .6	10 11 15 15 11	9 11 11 13 9	208 286 278	4.00 3.63 4.27 4.06 3.71	15 10 10 3 8	6 5 5 5 5	ND ND ND ND ND	3 2 1 2 1	12 13 12 14 14	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	73 63 80 88 76	.14 .15 .17 .19 .21	.029 .036 .031 .021 .024	3 3 3 3 3	17 22 30 31 23	.56 .46 .80 .93 .60	37 42 47 43 33	.05 .05 .09 .12 .08	2 2 2	2.88 3.58 2.99 3.49 2.57	.02 .02 .02 .03 .02	.06 .08 .03 .03	1 1 1 1 1	1 1 1 1 1
NMA L4+75E 0+80S NMA L4+75E 1+00S NMA L4+75E 1+20S NMA L4+75E 1+40S NMA L4+75E 1+60S	1 2 1 1 1	48 34 34 21 27	6 9 7 7 8	68 62 71 48 62	.1 .4 .3 .3 .1	16 10 10 9 11	14 9 10 6 10	289 255 201	4.69 3.81 3.59 3.17 3.85	18 23 15 18 13	5 5 5 5 5	ND ND ND ND ND	2 2 2 1 2	15 13 13 13 13	1 1 1 1	2 2 2 2 2 2	2 3 2 2 2	92 66 62 64 76	.21 .18 .16 .20 .21	.029 .033 .032 .042 .042	2 3 3 3 3	33 17 19 19 22	1.08 .65 .66 .50 .75	48 48 47 42 51	.08 .03 .03 .04 .05	2 2 2	3.63 2.74 2.90 2.14 2.84	.03 .02 .02 .02 .02	.04 .05 .05 .03 .05	1 1 1 2 1	1 1 1 1 7
NMA L4+75E 1+80S NMA L4+75E 2+00S NMA L5+00E 1+00N NMA L5+00E 0+80N NMA L5+00E 0+60N	1 1 3 1 1	30 21 63 39 51	3 6 20 18 17	72 61 83 73 88	.1 .2 .1 .2	13 11 8 6 14	11 8 6 5 10	295 279 275	4.02 3.41 5.36 4.98 4.72	8 7 25 11 18	5 5 5 5 5	ND ND ND ND	1 2 1 2 2	15 13 8 11 10	1 1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	80 71 68 77 76	.21 .22 .07 .10 .11	.036 .028 .064 .051 .041	2 3 3 3 3	24 22 18 17 25	.83 .65 .48 .49 .64	51 46 41 36 43	.08 .06 .01 .03 .05	2 2 2	3.37 2.67 3.00 2.60 3.29	.03 .02 .02 .02 .02	.02 .03 .06 .05 .05	1 1 1 1	1 4 1 1 3
NMA L5+00E 0+60S NMA L5+00E 0+80S NMA L5+00E 1+00S NMA L5+00E 1+20S NMA L5+00E 1+40S	1 1 1 1	53 34 33 40 24	10 8 9 9 7	55 62 59 52 60	.1 .1 .1 .1	12 14 10 9 10	10 12 7 7 8	225	4.96 4.10 4.36 4.44 3.92	33 14 18 19 19	55555	ND ND ND ND	1 2 2 1 1	9 10 11 12 12	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	69 78 68 74 75	.11 .14 .13 .12 .16	.040 .027 .045 .042 .037	3 2 3 3 3	22 29 22 17 19	.56 .81 .54 .53 .61	52 38 52 48 38	.06 .08 .06 .07 .05	2 3 2	2.90 3.27 2.91 3.00 2.55	.02 .02 .02 .02 .02	.05 .04 .04 .03 .04	1 1 1 2 1	63 6 1 1 1
NMA L5+00E 1+605 NMA L5+00E 1+805 NMA L5+00E 2+005 NMA L2+00N 1+00N NMA L2+00N 0+80N	1 1 1 1	29 21 28 43 58	12 7 8 7 6	60 62 73 70 66	1 .3 .1 .1	11 9 14 13 16	9 8 10 11 14	283 330 396	4.19 3.35 3.75 4.28 4.20	35 23 7 21 15	55555	ND ND ND ND	1 2 2 2 2	11 12 14 15 22	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	71 67 73 79 81	.15 .17 .25 .26 .40	.026 .024 .043 .038 .036	3 3 2 4 4	21 20 26 25 32	.57 .54 .86 .85 1.10	53 44 37 42 39	.02 .02 .05 .07 .12	2 2 2	2.77 2.31 3.07 3.00 3.21	.02 .02 .03 .03 .03	.04 .06 .04 .05 .04	1 1 1 1	3 1 1 1 5
NMA L2+00N 0+60N NMA L2+00N 0+40N NMA L2+00N 0+20N NMA L2+00N 0+00 NMA L2+00N 0+20S	1 2 1 1 1	66 26 21 35 24	10 7 7 5 7	71 49 46 58 52	.1 .1 .1 .1	16 10 9 12 9	14 6 9 6	182 151 236	4.18 3.20 2.81 3.35 2.94	19 9 4 8 12	5 5 5 5 5	ND ND ND ND	3 2 1 2 1	32 11 11 10 13	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	78 76 68 70 66	.52 .17 .16 .17 .17	.041 .021 .021 .034 .017	3 3 2 2 2	29 23 24 25 19	1.10 .59 .53 .64 .53	45 24 24 32 29	.13 .12 .09 .10 .09	2 2 2	3.13 2.02 2.19 2.66 1.93	.04 .02 .02 .02 .02	.04 .03 .04 .02 .03	1 1 1 1 1	3 1 1 1 4
NMA L2+00N 0+405 STD C/AU-S	2 18	31 57	5 40	51 133	.1 7.1	9 67	7 27	190 1029	2.85 3.95	11 37	5 19	NĎ 7	1 38	12 50	1 18	2 18	2 18	62 56	.20 .47	.021 .087	2 37	16 58	.49 .87	32 177	.07 .08		2.55 1.79	.02 .08	.01 .16	i 12	1 50

lge 6

ſ

(

(

(

(

(

€

(

(

f

(

(

(

L

(

C

1

SAMPLE	NO PPM	CU PPM	PB PPM	ZN PPM	AG PPM	NI PPM	CO PPM	MN PP n	FE	AS PPM	U PPM	AU PPM	TH PP N	SR PPM	CD PPM	SB PPM	BI PPM	V PPM	CA I	P Z	LA PPM	CR PPM	HG I	BA PPN	TI Z	B PPN	AL Z	NA Z	K Z	N PPH	AU I PPB
NMA L2+00W 0+60S NMA L2+00W 0+80S NMA L2+00W 1+00S NMA L2+00W 1+20S NMA L2+00W 1+40S	2 2 1 2	36 25 39 33	8 6 10 13 10	70 50 63 49 64	.1 .1 .1 .1	11 9 12 10 12	9 6 9 8 9	175 273 201	3.46 3.32 3.60 2.98 3.57	14 8 12 8 16	5 5 5 5 5	ND ND ND ND	i 2 1 1 1	14 12 14 12 12	1 1 1 1	2 2 2 2 2	2 2 2 2 2	63 74 71 61 69	.22 .18 .22 .19 .21	.038 .021 .031 .026 .032	2 2 2 2 3	22 20 24 20 24	. 63 . 51 . 72 . 59 . 69	50 28 38 34 38	.07 .11 .09 .09	2 2 2	2.61 2.51 2.70 2.62 3.08	.03 .02 .03 .03	.04 .01 .02 .03 .02	1 1 1 1 1	1 12 1 1
NMA L2+00W 1+60S NMA L2+00W 1+80S NMA L2+00W 2+00S NMA L1+75W 1+00N NMA L1+75W 0+80N	2 1 1 2 1	27 37 48 51 32	10 8 6 11 10	62 66 64 66 58	.1 .1 .1 .1	10 12 14 16 12	8 10 12 14 7	285 291 597	3.12 3.54 3.87 4.26 3.68	9 35 15 12 5	5 5 5 5 5	ND ND ND ND	1 1 2 1 1	16 13 12 18 15	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	66 68 72 82 85	.31 .28 .23 .40 .26	.029 .034 .027 .037 .024	3 4 3 4	22 24 27 34 25	.63 .73 .90 1.13 .74	34 32 39 38 33	.07 .08 .11 .13 .12	3 4 3	2.65 3.82 3.92 2.97 2.57	.03 .03 .03 .04 .03	.03 .03 .02 .03 .01	1 2 1 1 1	1 1 1 1 1
NHA L1+75W 0+60N NHA L1+75W 0+40N NHA L1+75W 0+20N NHA L1+75W 0+00 NHA L1+75W 0+20S	2 2 1 1 2	36 35 42 19 21	10 12 9 9 11	66 82 118 44 47	.1 .1 .1 .1	11 12 12 6 7	10 9 11 4 5	278 349 165	3.38 3.61 3.44 2.47 3.06	25 18 49 6 7	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	13 15 23 12 13	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	66 67 63 59 77	.23 .37 .60 .18 .19	.023 .041 .045 .024 .030	2 3 3 4	25 24 27 15 17	.76 .73 .78 .39 .45	36 38 39 27 27	.07 .06 .06 .07 .10	4 3 3	3.07 2.84 2.95 1.68 2.04	.03 .03 .04 .02 .02	.03 .03 .04 .03 .03	1 1 2 2	1 1 3 1 1
NMA L1+75W 0+405 NMA L1+75W 0+805 NMA L1+75W 1+005 NMA L1+75W 1+205 NMA L1+75W 1+405	1 1 1 1 1	34 25 31 35 30	6 8 10 7 11	45 51 53 58 59	.1 .1 .1 .1	10 8 9 12 11	8 5 8 10 9	166 196 275	3.18 2.91 3.44 3.66 3.34	9 5 8 11 7	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	13 12 13 13 15	1 1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	67 65 75 75 70	.21 .18 .19 .21 .23	.018 .025 .024 .022 .022	2 2 2 2 2 2 2	23 16 19 26 21	.67 .48 .59 .81 .70	37 24 31 31 41	.11 .08 .10 .11 .10	2 4 2	2.47 2.47 2.95 2.72 2.52	.02 .02 .02 .03 .03	.01 .02 .02 .02 .02	2 3 2 1 1	1 1 1 1
NMA L1+75W 1+60S NMA L1+75W 1+80S NMA L1+75W 2+00S NMA L1+55W 1+00N NMA L1+50W 1+20S	1 2 2 2 1	33 31 36 38 25	11 11 6 7 24	65 64 69 59 80	.1 .1 .1 .1	11 11 13 14 10	9 8 9 13 8	238 264 262	3.62 3.40 3.62 3.97 3.52	11 11 13 10	5 5 5 5 5	ND ND ND ND	1 1 1 1 1	14 16 13 12 13	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	69 70 71 72 72	.23 .26 .19 .20 .19	.033 .031 .041 .032 .024	2 3 3 3 3	23 22 23 26 20	.72 .64 .75 .80 .66	39 36 36 42 32	.07 .08 .10 .10 .10	4 3 2	2.78 2.44 2.66 3.65 2.38	.03 .03 .03	.02 .03 .04 .02 .02	2 1 1 4 1	1 1 11 1
NMA L1+50W 1+40S NMA L1+50W 1+60S NMA L1+50W 1+80S NMA L1+50W 2+00S NMA L1+25W 1+00N	1 2 1 2 2	35 32 24 28 18	9 11 9 7 11	59 57 53 51 53	· .1 .3 .1 .1 .1	13 10 9 12 6	9 7 7 8 5	226 202 225	3.59 3.50 3.34 3.58 2.65	12 11 13 12 10	5 5 5 5 5	ND ND ND ND ND	1 2 1 1	12 12 12 14 16	1 1 1 1	2 5 2 2 2	2 2 2 2 2	69 72 70 77 67	.22 .21 .20 .21 .26	.035 .033 .023 .022 .025	2 2 2 2 3	24 20 20 22 15	.75 .62 .59 .73 .42	34 28 27 29 40	.11 .10 .10 .11 .09	4 3 2	2.76 2.56 2.24 2.30 1.62	.03 .03 .03 .03	.03 .04 .02 .02 .04	1 2 1 2 1	4 1 1 5
NMA L1+25W 0+80N NMA L1+25W 0+60N NMA L1+25W 0+40N NMA L1+25W 0+20N STD C/AU-S	2 1 2 2 18	22 23 30 31 57	16 12 11 10 40	62 59 58 72 130	.1 .3 .1 .2 6.9	8 9 11 12 67	6 7 9 10 27	256	3.07 3.61 3.53 3.70 3.91	11 15 10 10 38	5 5 5 20	ND ND ND ND 6	1 2 1 38	14 16 12 12 48	1 1 1 18	2 2 2 18	2 2 2 2 21	65 75 76 72 54	.23 .28 .20 .21 .46	.029 .024 .019 .031 .084	2 2 2 2 2 2 2 2	17 20 22 21 56	.55 .66 .71 .77 .90	42 34 36 35 178	.07 .07 .11 .11 .08	3 2 4	2.08 2.29 2.72 2.81 1.85	.08 .02 .02 .02	.03 .04 .03 .03 .13	2 1 2 1 13	8 1 1 1 47
NMA L1+25W 0+00	2	20	11	58	.1	11	8	246	3.87	11	5	ND	1	15	1	2	2	81	.23	.022	3	22	. 68	37	.11	3	2.34	.03	.01	i	1

lage 7

1

1

í.

)

SAMPLE	MO PPM	CU PPM	PB PPM	ZN PPM	A5 PPM	NI PPM	CO PPN	MN PPM	FE	AS PPM	U PPM	AU PPM	TH PPM	SR PPM	CD PPM	SB PPM	BI PPM	V PPM	CA Z	P X	LA PPM	CR PPN	M5 Z	BA PPM	TI Z	B PPM	AL Z	NA Z	K Z	N PPM	AU I PPB
L15+00N 3+50N L15+00N 3+25W L15+00N 3+00N L15+00N 2+75W L15+00N 2+50W	2 1 2 2 2	62 18 29 32 42	6 9 7 7 10	90 131 126 105 81	.1 .1 .2 .1 .1	14 10 15 21 20	8 6 7 10 8	221 310 400	4.04 2.54 4.28 4.06 3.54	43 8 17 17 17	5 5 5 5 5	ND ND ND ND ND	1 1 1 2	10 9 10 10	1 1 1 1	2 2 2 3	2 2 2 2 2 2	55 46 64 66 64	.16 .14 .16 .19 .17	.043 .064 .109 .095 .079	3 3 4 3 4	25 22 31 40 37	.81 .48 .72 .68 .71	43 27 41 35 32	.06 .05 .04 .08 .07	2 2 3	2.37 1.91 2.55 2.49 2.48	.02 .02 .02 .02 .03	.03 .02 .04 .05 .03	1 3 2 2 1	1 1 3 1 1
L15+00N 2+25W L15+00N 2+00W L15+00N 1+75W L15+00N 1+50W L15+00N 1+25W	4 7 3 3 4	103 226 187 114 199	10 34 11 8 15	95 75 74 87 87	.1 .1 .2 .2 .1	26 41 27 26 34	12 16 11 10 14		5.21 5.71 4.82 4.20 5.55	38 68 52 33 82	5 5 5 5 5	ND ND ND ND ND	1 1 2 2 1	9 13 9 10 11	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	86 85 78 76 93	.19 .22 .22 .19 .28	.081 .051 .076 .054 .068	3 3 2 4 3	41 47 42 40 47	.95 1.09 1.05 .82 1.13	49 54 29 33 51	.07 .08 .07 .07 .07	2 3 2	3.26 3.88 3.06 2.48 3.32	.02 .03 .03 .02 .03	.03 .02 .02 .03 .02	3 2 2 1 3	1 2 1 1
L15+00N 1+00W L15+00N 0+75W L15+00N 0+50W L15+00N 0+25W L15+00N 0+00W	9 2 2 2 2 2	291 67 79 222 435	10 10 9 9 6	84 97 95 72 68	.3 .2 .2 .1 .5	27 18 26 35 31	15 13 11 11 16		4.24	65 30 29 49 75	5 5 5 5 5 5	. ND ND ND ND ND	1 1 2 1 1	12 13 13 10 17	1 1 1 1	2 2 2 2 2 2	2 2 3 2 2	83 75 82 73 74	.31 .28 .30 .22 .41	.058 .057 .054 .057 .057	3 3 3 4	33 31 42 56 52	1.02 .65 .80 .96 1.10	43 45 52 40 47	.07 .08 .08 .07 .05	2 5 5	3.08 2.07 2.51 2.93 2.50	.03 .03 .03	.05 .05 .05 .03 .04	1 1 2 1	1 4 3 1 14
L15+00N 0+25E L15+00N 0+50E L15+00N 0+75E L15+00N 1+00E L15+00N 1+25E	3 6 4 4	183 350 162 36 179	5 17 5 7 9	66 123 74 72 88	.1 .5 .1 .1	52 53 40 21 43	15 13 9 8 12	314	4.35 2.81 3.94	37 77 17 12 40	5 5 5 5 5	ND ND ND ND ND	1 2 1 2 2	14 24 16 15 11	1 1 1 1 1	2 3 2 2 2	2 2 2 2 2 2	65 72 50 67 79	.32 .73 .46 .37 .27	.040 .034 .014 .026 .035	4 5 5 4	62 90 53 33 70	1.22 1.01 1.05 .77 1.19	60 112 64 73 59	.09 .06 .07 .05 .07	4 2 2	2.92 3.90 2.34 2.24 2.93	.03 .04 .03 .03 .03	.03 .05 .03 .05 .05	3 1 1 1 1	2 1 1 1 3
L15+00N 1+50E L15+00N 1+75E L15+00N 2+00E L15+00N 2+50E L14+00N 4+50W	3 3 3 2	118 200 119 137 48	4 9 5 10 6	72 102 88 166 71	.4 .1 .1 .2 .1	87 35 67 38 114	17 13 16 16 19	285 339 354 655 584	3.81 4.28	30 28 30 79 7	5 5 5 5 5	ND ND ND ND	1 1 1 1	11 11 12 14 19	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	93 74 91 73 82	.51 .28 .51 .32 .88	.027 .043 .049 .037 .024	3 4 3 4 3	136 59 107 50 190	1.60 .79 1.43 .99 2.64	39 59 62 77 41	.10 .08 .10 .07 .12	3 3 5	2.90 2.50 2.79 2.75 3.01	.04 .03 .03 .03 .04	.05 .03 .02 .07 .02	1 1 2 1 1	2 11 3 4 1
L14+00N 4+00W L14+00N 3+50W L14+00N 3+25W L14+00N 3+00W L14+00N 2+75W	2 2 1 1 2	19 25 34 30 35	9 7 4 5 9	81 161 121 113 95	· .2 .1 .2 .2 .1	14 17 19 15 17	5 8 8 7 7	269 296 336	3.03	17 9 14 22 18	5 5 5 5 5	ND ND ND ND	1 1 2 1 1	10 9 8 12 10	1 1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	64 48 48 58 67	.15 .15 .13 .17 .13	.089 .064 .070	4 3 3 4 4	30 30 37 29 31	.55 .57 .68 .76 .72	28 34 37 45 34	.04 .06 .06 .06 .06	2 5 5	2.04 2.82 2.54 2.54 2.40	.02 .03 .02 .02 .02	.02 .03 .04 .03 .03	2 1 1 1 1	1 1 1 1 1
L14+00N 2+50W L14+00N 2+25W L14+00N 2+00W L14+00N 1+75W L14+00N 1+50W	1 2 3 4 4	21 62 60 53 77	8 8 8 8	94 116 97 91 100	.1 .1 .3 .2	10 24 26 15 17	5 10 10 9 10	229 350 319 269 387	4.30 4.53	14 30 33 33 44	5 5 5 5 5	ND ND ND ND ND	1 1 2 1 1	9 11 11 11 13	1 1 1 1 1	2 3 2 2 2	2 2 2 2 2 2	62 74 85 87 90	.12 .19 .20 .22 .29	.082 .032	4 4 2 3	22 36 39 26 29	.51 .86 .89 .59 .72	33 34 49 27 41	.06 .07 .07 .07 .06	3 5 2	2.10 2.52 2.77 2.01 2.24	.02 .03 .03 .02 .03	.02 .02 .03 .03 .03	1 1 1 2 1	18 1 1 2 4
L14+00N 1+25W STD C/AU-S	4 19	98 57	9 40	89 131	.5 7.2	31 67	10 27	317 1030	4.71 3.95	47 40	5 20	ND 7	2 37	10 50	i 17	3 17	2 19	86 57	.19 .47	.041 .085	4 38	53 57	.93 .87	45 178	.08 .08		2.82 1.79	.03 .08	.03 .16	1 13	1 49

rage 8

ž

1

1

(

í

ť

(

(

(

(

(

(

ι

١

Ę

													••••		- · ·																	<u> </u>
SAMPLE	NO PPM	CU PPM	PB PPM	ZN PPM	A5 PPM	NI PPM	CO PPM	NN PPH	FE Z	AS PPN	U PPM	AU PPM	TH PPM	SR PPN	CD PPH	_₿ PPM	BI PPM	V PPM	CA I	P I	LA PPM	CR PPM	M6 I	BA PPH	TI Z	B PPM	AL Z	NA Z	K I	¥ PPM	r PPB)
L14+00N 1+00W L14+00N 0+75W L14+00N 0+50W L14+00N 0+25W L14+00N 0+25E	3 3 2 7 6	181 129 67 209 335	9 7 3 12 7	83 92 82 87 73	.3 .1 .3 .1 .9	38 35 19 22 25	15 14 7 9 12	386 297 242	5.48 4.55 3.39 5.37 4.95	75 46 27 85 69	5 5 5 5 5	ND ND ND ND ND	2 1 1 1 1	13 14 13 15 17	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	96 81 66 91 79	.22 .27 .26 .34 .41	.041 .036 .047 .129 .070	4 4 4 4	55 48 37 41 44	1.20 .93 .60 .74 1.07	62 46 37 48 42	.11 .09 .09 .07 .06	6 5 3	4.19 3.22 2.22 2.52 2.83	.03 .03 .03 .03	.05 .05 .03 .06 .04	2 1 1 1 1	86 16 5 22 40	
L14+00N 0+50E L14+00N 0+75E L14+00N 1+00E L14+00N 1+25E L14+00N 1+50E	3 3 3 4 2	147 309 286 262 38	9 3 7 7 7	93 111 112 164 102	.3 .2 .5 .2 .2	38 45 28 41 18	12 12 11 13 7	398 355	4.40 4.02 4.19 4.42 3.40	46 51 45 82 20	5 5 5 5 5 5	ND ND ND ND ND	1 1 1 1 1	11 10 12 11 11	1 1 1 1	2 2 2 2 2	2 2 2 2 2	74 61 70 71 67	.21 .21 .22 .22 .24	.065 .071 .054 .045 .053	4 3 4 3	61 59 42 58 41	1.03 1.03 .85 1.08 .54	49 47 35 51 40	.08 .07 .09 .07 .07	2 2 6	3.50 3.59 3.07 3.55 2.26	.03 .03 .02 .03 .03	.04 .05 .04 .04 .04	1 1 1 1	1 11 7 27 1	
L14+00N 1+75E L14+00N 2+00E NM L13 3+75W NM L13 3+25W NM L13 2+75W	3 6 1 1 1	99 87 30 18 26	9 4 7 8 5	86 97 78 78 114	.1 .3 .1 .1	33 21 19 9 12	10 9 9 5 6	469 345	5.03 3.59 3.11 3.14 3.29	77 98 12 10 15	5 5 5 5 5 5	ND ND ND ND	1 1 1 1	13 17 11 12 13	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	95 83 54 55 59	.28 .54 .19 .14 .21	.031 .023 .060 .047 .044	4 5 4 4 5	54 44 37 21 25	.92 .75 .68 .47 .57	50 52 33 26 33	.09 .07 .07 .06 .05	5 6 2	2.74 2.12 2.19 1.78 1.97	.03 .03 .03 .02 .02	.06 .04 .04 .03 .04	2 1 1 1 1	4 5 1 1	
NN L13 2+50W NN L13 2+25W NN L13 2+00W NN L13 1+75W NN L13 1+50W	1 2 1 1 3	39 60 16 17 63	6 8 7 5 6	104 123 115 78 95	.2 .1 .2 .2 .2	18 22 10 15 17	8 12 5 6 9	640 636 240	3.53 3.85 2.78 2.99 4.70	20 35 8 10 35	5 5 5 5 5	ND ND ND ND ND	1 2 1 1 1	15 15 17 10 15	1 1 1 1	2 2 2 2 2	2 2 2 2 2	58 55 56 62 87	.28 .27 .30 .23 .32	.064 .063 .038 .023 .037	4 3 4 3 3	32 34 20 31 35	.73 .92 .55 .55 .62	38 70 44 34 36	.06 .07 .05 .05 .08	2 2 2	2.58 2.87 1.81 2.13 2.62	.02 .03 .02 .03 .03	.05 .05 .04 .06 .03	1 1 1 1 1	5 1 1 43 11	
NH L13 1+25W NH L13 1+00W NH L13 0+75W NH L13 0+50W NH L13 0+25W	3 2 2 8 2	83 44 21 258 39	9 10 9 12 8	84 120 60 74 74	.3 .4 .2 .4 .4	20 18 9 21 10	9 8 5 9 5	440	4.58 3.93 2.64 4.71 3.03	44 24 9 80 19	5 5 5 5 5	NÐ ND ND ND ND	1 1 1 2 2	12 13 17 13 13	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	79 74 62 83 61	.22 .24 .29 .27 .19	.065 .049 .045 .062 .047	4 4 3 4	35 35 18 44 24	.79 .63 .42 .88 .39	38 38 51 45 27	.07 .08 .06 .05 .07	5 3 5	2.57 2.31 1.50 2.51 1.72	.03 .02 .02 .03 .02	.05 .04 .05 .05 .03	1 1 1 1	4 1 15 1	
NM L13 0+00 NM L13 0+25E NM L13 0+50E NM L13 0+75E NM L13 1+00E	8 4 2 4 2	511 267 270 400 61	9 8 9 8	77 87 123 77 91	.9 .4 .3 .3 .5	27 27 22 22 23	12 14 7 8 7		4.36	87 53 39 65 21	5 5 5 5 5	ND ND ND ND ND	1 1 1 1 2	14 16 24 11 13	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	93 75 55 75 58	.44 .81 .30	.081 .069 .059 .054 .056	3 2 4 3 5	46 46 45 43 42	1.10 1.25 .67 .88 .69	57 48 59 39 48	.06 .07 .03 .05 .08	2 2 2	3.06 2.24 2.36 2.38 2.41	.03 .04 .03 .03 .02	.04 .07 .07 .06 .05	1 1 2 2 1	36 5 4 5 68	
NN L13 1+25E NN L13 1+50E NN L13 1+75E NN L13 2+00E NN L13 2+25E	3 2 2 2 2 2	92 184 60 81 73	8 9 4 3	90 80 78 82 87	.1 .2 .1 .1 .3	27 28 19 25 27	9 12 8 10 10	493 285 452	3.77 3.89 3.35 3.58 3.41	34 36 19 30 35	5 5 5 5 5	ND ND ND ND	2 2 2 2 1	14 11 11 12 11	1 1 1 1	2 2 2 2 2	2 2 2 2 2	67 70 69 74 69	.23 .19 .19 .23 .23	.039 .024 .016 .016 .016	4 3 4 4 4	48 42 33 40 43	.88 1.14 .70 .86 .88	41 56 38 40 49	.08 .08 .07 .07 .04	2 3 3	2.64 2.72 1.92 2.17 2.36	.03 .03 .02 .03 .02	.05 .05 .06 .06	1 1 1 1	4 13 21 1 18	
NM L13 2+50E STD C/AU-S	2 18	61 57	5 40	110 132	.2 7.2	34 67	11 27	732 1020		19 37	5 22	ND 6	1 39	12 49	1 18	2 17	2 22	83 56		.048 .086	29 2	64 57	.89 .87	43 176	.09 .08		2.19 1.87	.03 .08	.06 .14	1 13	6 49	

.

Fage 9

4

.

1

í

1

ţ

(

í.

(

(

(

ξ.

t

(

(

ţ

																- · ·																•	
	SAMPLE	ⁱ Mo PPM	CU PPM	PB PPM	ZN PPM	A5 PPM	NI PPM	CO PPM	MN PPM	FE I	AS PPM	U PPM	au PPM	TH PPM	SR PPM	CD PPM	J PPM	BI PPN	V PPM	CA I	P Z	LA PPM	CR PPM	MG Z	BA FPM	TI Z	B PPM	AL Z	NA Z	K I	W PPM	ь. PPB	1
•	NM L13 2+75E NM L13 3+00E NM L13 3+50E NM L13 4+00E NM L13 5+00W	2 3 2 2 1	90 92 147 121 29	14 10 14 13 13	89 137 101 102 86	.4 .1 .3 .6 .3	45 27 20 9 18	14 18 20 19 6	-	4.28 4.77 4.88 5.22 3.17	127 147 17 26 9	5 5 5 5 5	ND ND ND ND	1 1 2 3 1	14 17 20 30 18	1 1 1 1	2 2 2 2 2	2 3 2 2 2	83 67 91 76 58	.33 .24 .38 .51 .23	.026 .060 .057 .063 .042	3 8 13 12 6	72 38 31 14 25	.93 .64 1.53 1.57 .48	48 89 115 73 78	.06 .04 .08 .10 .04	2 2 4	2.65 2.54 3.31 3.35 1.67	.03 .03 .03 .04 .02	.04 .06 .10 .12 .05	1 1 1 1	37 900 11 3 1	
	NM L12 4+50N NM L12 4+00W NM L12 3+50W NM L12 3+00W NM L12 2+50W	1 1 1 2	25 21 21 27 36	6 5 10 10	88 70 82 118 129	.5 .1 .2 .4 .4	13 12 15 18 18	8 5 7 7 9	269 325 355	3.19 3.16 3.08 3.72 3.76	9 11 9 15 19	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	17 11 12 12 11	1 1 1 1	2 2 2 2 2	2 2 2 2 2	56 55 54 61 61	.29 .16 .21 .20 .16	.065 .048 .062 .073 .064	4 4 5 4	28 29 32 36 29	.55 .46 .54 .62 .71	38 31 32 40 42	.05 .05 .07 .06 .07	2 6 2	2.26 1.99 2.01 2.48 2.66	.02 .02 .03 .03 .02	.05 .04 .04 .03 .05	1 1 1 1 1	32 4 1 1 2	
	NH L12 2+00W STD C/AU-S NH L12 1+50W NH L12 1+00W NH L12 0+50W	1 20 2 2 6	23 58 41 46 632	9 39 10 10 10	89 135 124 94 67	.3 7.3 .4 .1 .9	11 70 17 19 21	5 28 9 8 14	1075 806 325	2.91 4.01 3.97 4.84 4.11	12 38 25 35 120	5 20 5 5 5	ND B ND ND	1 40 2 1 2	14 50 19 11 20	1 18 1 1 1	2 17 2 2 2	3 22 2 2 4	55 57 79 85 79	.22 .49 .39 .16 .44	.053 .086 .053 .084 .083	5 38 5 4 6	23 57 28 44 319	.45 .85 .67 .75 .50	30 184 61 31 52	.07 .08 .08 .08 .08	36 2 2	1.78 1.86 2.25 2.60 2.14	.03 .03 .03	.03 .13 .09 .03 .04	1 13 1 1	1 51 5 6 12	
	NM L12 0+00W NM L12 0+00E NM L12 0+25E NM L12 0+50E NM L12 0+75E	9 11 4 2 2	759 766 229 48 58	9 8 15 8 7	87 96 76 69 85	.6 .9 .5 .5	33 41 28 20 25	22 20 18 8 9	488 753 312	6.10 6.49 4.71 3.46 3.43	119 121 79 32 25	5 5 5 5 5	ND ND ND ND	1 2 1 1	24 18 22 18 18	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	84 95 89 70 65	.72 .44 .46 .35 .37	.070 .069 .065 .051 .043	4 4 5 5	55	1.22 1.35 1.08 .85 .93	55 62 49 53 53	.05 .07 .09 .08 .08	3 4 3	2.90 3.67 2.54 2.46 2.30	.04 .03 .04 .03 .03	.06 .05 .04 .05 .04	2 2 1 1 1	24 36 9 25 2	
	NN L12 1+00E NM L12 1+25E NM L12 1+50E NM L12 1+75E NM L12 2+00E	-	100 303 57 1369 1519	10 7 11 13 5	97 101 112 184 166	.3 .4 .2 .9 .1	27 47 21 43 37	9 13 9 12 11	413 357 734	3.31 4.37 6.18 4.20 3.96	18 50 26 42 31	5 5 5 5 5	ND ND ND ND	1 1 1 2 1	17 14 11 34 28	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	55 72 88 67 66	1.03	.037 .068 .138 .064 .039	6 5 18 19	42 68 49 48 39	.86 1.16 .89 .90 .82	70 62 48 94 85	.07 .09 .07 .06 .07	3 2 5	2.48 3.25 3.02 3.87 3.61	.03 .03 .03 .04 .04	.04 .04 .08 .08 .01	1 1 2 1	2 11 1 25 1	
	NM L12 2+25E NM L12 2+50E NM L12 2+75E NM L12 3+00E NM L12 3+25E	3 3 3 4 19	358 119 250 398 374	13 7 9 11 7	139 169 80 124 88	.5 .5 .5 .5 .3	19 37 43 38 26	10 10 13 23 12	511 409 884	3.40 3.32 4.40 6.99 8.11	24 37 52 94 77	5 5 5 5 5	ND ND ND ND ND	1 1 2 2 1	25 22 14 14 11	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	74 62 84 72 77		.027 .029 .030 .080 .068	9 4 3	24 38 58 38 37	.79 .81 1.08 1.01 .87	48 58 68 57 45	.08 .09 .09 .05 .02	4 8 7	2.57 2.58 3.08 4.56 3.59	.04 .04 .03 .03 .03	.04 .06 .05 .10 .03	1 1 1 3	1 9 5 2 8	
	NN L12 3+50E NM L12 3+75E NH L12 4+00E NM L12 4+50E NM L11N 5+50W	10 23 31 2 1	420 474 378 59 30	10 10 7 9 8	80 59 55 132 124	.5 .8 .2 .6 .4	70 53 66 14 15	17 16 15 14 8	340 524 2611	11.60 10.85 9.57 3.82 3.37	83 39 83 9	5 5 5 5 5	ND ND ND ND	1 2 2 2 2	9 9 15 32 12	1 1 1 1	2 4 2 2 2	2 2 2 2 2	101 100 102 <i>5</i> 2 51	.16 .45	.090 .074 .072 .171 .106	3 4 5 5	104 149	1.18 1.08 1.37 1.06 .55	44 38 76 120 38	.04 .06 .02 .08 .07	3 2 4	4.34 3.60 3.32 2.91 2.76	.03 .02 .02 .03 .02	.05 .04 .05 .16 .05	2 3 1 1	25 36 122 6 6	
	NM L11N 5+00W NM L11N 4+50W	1 1	16 23	4 5	47 102	.1 .3	7 24	3 7		2.29 3.08	7 11	5 5	ND ND	2 1	10 12	i 1	2 2	2 2	43 56		.042 .061	4 5	17 57	.34 .69	22 37	.02 .06		1.48 2.26	.02 .03	.04 .04	i 1	2 130	

Page 10

1

t

1

Ĺ

{

4

ť

(

(

C

(

(

L

Ċ

SAMPLE	MO PPN	CU PPM	PB PPM	ZN PPM	AG PPN	NI PPM	CO PPM	MN PPH	FE I	AS PPM	U PPH	AU PPH	TH PPM	SR PPM	CD PPM	SB PPM	BI PPM	V PPM	CA Z	P Z	LA PPM	CR PPM	MG Z	BA PPN	TI X	B PPM	AL I	NA Z	K Z	N Ppn	AU S PPB
NM L11N 4+00W NM L11N 3+50W NM L11N 3+00W NM L11N 2+50W	1 1 1 1	24 50 24 15 23	7 8 9 10 10	86 87 120 158 117	.1 .4 .3 .3	14 23 13 9 15	5 10 7 6 9	296 510	4.01 3.99 3.41 3.14	15 18 16 10	5 5 5 5	NÐ ND ND ND	1 1 1 2 2	10 7 12 13	1 1 1 1	2 2 2 2 2	2 2 2 2 2	61 60 55 52	.15 .15 .16 .18	.070 .055 .065 .053	4 3 5 5 5	31 37 26 22	.51 .95 .53 .43	31 37 43 37	.05 .02 .06 .06	2 2 2	2.38 2.92 2.69 2.05	.02 .02 .02 .02	.04 .04 .04	1 1 2 1	4 9 2 1
NH L11N 2+00W NH L11N 1+50W NH L11N 1+25W NH L11N 1+00W NH L11N 0+75W NH L11N 0+50W	2 1 1 3 3 2	23 53 50 104 124 118	8 10 10 10 8 12	103 90 86 76 90	.1 .1 .1 .2 .1	22 23 26 15 46	9 8 9 7 17	417 406 288 295 252 344	3.38 4.13 4.24 4.37 4.28 5.38	12 27 29 171 41 26	5 5 5 5 5 5	ND ND ND ND ND ND	2 1 1 1 1 2	14 11 9 11 12 14	1 1 1 1 1	2 2 2 2 2 2 2	2 2 2 2 2 2 2	64 69 69 74 78 102	.27 .18 .16 .20 .23 .23	.035 .050 .055 .059 .049 .061	5 4 5 3 4	30 37 42 51 29 67	.58 .79 .84 .72 .62 1.03	35 35 36 33 27 55	.08 .07 .08 .08 .08 .24	3 3 3 4	2.19 2.86 2.79 2.55 2.58 4.12	.03 .03 .03 .03	.05 .03 .04 .03 .03 .05	1 2 1 1 1	1 6 1 9 7 3
STD C/AU-S NM L11N 0+25W NM L11N 0+00E NM L11N 0+25E NM L11N 0+50E	19 3 14 2 2	60 349 1003 90 93	37 13 8 11 14	133 120 86 79 93	7.4 .5 .6 .3 .3	68 32 37 23 30	27 14 24 8 9	1024 426 521 288 385	4.03 4.66 7.18 3.83 4.55	41 54 182 28 33	21 5 5 5 5	8 ND ND ND ND	40 2 1 1 1	50 12 28 14 16	18 1 1 1 1	18 2 2 2 2	21 2 2 2 2 2	57 79 99 70 71	.48 .20 .65 .24 .29	.088 .049 .053 .051 .099	38 5 4 5 5	61 48 49 41 48	.84 1.06 1.34 .69 .91	172 53 71 36 45	.08 .10 .05 .08 .08	3 4 2	1.83 3.23 3.95 2.49 2.56	.08 .03 .04 .03 .03	.15 .06 .06 .04 .06	13 1 2 1 1	47 49 32 10 5
NM L11N 0+75E NM L11N 1+00E NM L11N 1+25E NM L11N 1+50E NM L11N 1+75E	2 2 1 1 2	43 23 38 38 34	11 8 9 5 11	43 43 98 72 84	.3 .3 .1 .2 .5	15 11 20 20 20	5 4 11 10 9	145 695	2.62 1.96 4.19 3.47 3.84	23 12 23 22 26	5 5 5 6	ND ND ND ND	í 1 1 2	14 16 17 24 18	1 1 1 1 1	2 2 2 2 2	2 2 2 2 2	56 49 79 67 74	.30 .28 .29 .53 .33	.084 .027 .091 .049 .068	5 4 5 5 4	31 22 37 37 41	.48 .41 .89 .95 .97	36 38 45 61 60	.07 .07 .08 .09 .08	2 3 3	1.63 1.26 2.27 1.97 2.29	.03 .03 .03 .04 .03	.05 .05 .04 .06 .06	2 1 1 1 1	5 2 9 4 24
NM L11N 2+00E NM L11N 2+25E NM L11N 2+50E NM L11N 2+75E NM L11N 3+00E	2 2 2 3 2	76 79 22 51 187	12 7 9 9	88 95 70 62 150	.3 .1 .1 .4 .3	24 24 10 16 22	9 9 4 6 10	199	4.15 4.16 3.25 3.71 3.23	32 31 9 30 26	5 5 5 5 5	ND ND ND ND	2 2 1 2 1	14 13 15 14 28	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	70 72 68 78 68	.20 .18 .19 .20 .65	.055 .045 .040 .037 .036	6 5 5 6 7	42 41 28 34 34	.87 .85 .40 .57 .81	52 43 34 45 67	.08 .08 .09 .07 .08	4 2 2	2.96 2.92 2.03 2.20 2.51	.03 .03 .02 .03 .04	.05 .04 .01 .04 .04	1 1 1 1	1 107 10 9 1
NM L11N 3+25E NM L11N 3+50E NM L11N 3+75E NM L11N 4+00E NM L11N 4+50E	4 6 3 2 7	362 36 619	13 11 8 9 8	91 109 84 91 86	.4 .3 .2 .4 .4	20 26 10 21 24	10 11 6 10 9		3.42 2.92 3.76 3.66 4.35	22 37 12 29 26	5 5 5 5 5	ND ND ND ND ND	1 1 2 1 2	32 23 20 28 15	1 1 1 1	2 2 2 2 2	2 2 2 2 2	63 58 90 71 78	.76 .64 .27 .54 .27	.049 .035 .043 .026 .035	17 9 4 12 6	29 38 22 28 44	.77 .64 .64 .83 .81	81 68 42 58 50	.06 .05 .10 .08 .09	4 3 4	2.75 2.44 2.31 2.82 2.63	.04 .04 .03 .03 .03	.04 .04 .03 .06 .04	1 1 1 1	2 2 2 2 2
NMB L10+00N 5+50W NMB L10+00N 5+25W NMB L10+00N 5+00W NMB L10+00N 4+75W NMB L10+00N 4+50W	2 2 1 1	34 58 51 27 43	7 7 10 9 7	100 110 137 79 116	.4 .2 .4 .2 .3	12 17 23 12 17	6 7 9 5 7	326 337 313 191 292	4.58 4.41	17 47 37 16 30	5 5 5 5 5	ND XD ND ND ND	1 1 2 1 1	11 10 10 11 12	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	52 59 60 47 56	.13 .14 .14 .13 .15	.067 .076 .070 .052 .057	4 5 5 6	25 31 41 26 32	.52 .74 .81 .51 .62	31 42 51 33 47	.05 .06 .07 .06 .06	3 3 2	2.69 2.98 3.10 2.46 2.78	.03 .03 .03 .02 .02	.04 .04 .03 .03 .03	1 1 2 1 1	2 18 2 2 8
NMB L10+00N 4+25W NMB L10+00N 4+00W	2 1	75 32	7 11	118 108	.3 .2	19 16	7 7	331 279	4.79 3.67	58 21	5 5	ND ND	2 2	10 13	1 1	2 2	2 2	56 56	.11 .16	.063 .064	5 6	29 30	.80 .67	46 40	.07 .07		2.89 2.53	.02 .02	.03	1 1	2 3

Fage 11

τ

7

(

1

{

t

(

í

(

(

(

Ú.

SAMPLE	MO PPH	CU PPN	PB PPM	ZN PPM	AG PPM	NI PPM	CO PPM	MN PPM	FE Z	AS PPM	U PPM	AU PPM	TH PPM	SR PPM	CD PPM	SB PPM	BI PPM	V PPM	CA Z	P I	LA PPN	CR PPM	MG X	BA PPM	TI Z	B PPM	AL I	NA Z	K Z	W PPM	AU I PPB
NMB L10+00N 3+50N NMB L10+00N 3+00N NMB L10+00N 2+50N NMB L10+00N 2+00N NMB L10+00N 1+50W	1 1 1 1	19 14 45 36 34	7 8 9 10 8	155 122 132 142 101	.1 .1 .2 .2 .2	14 8 14 16 29	7 4 7 8 9	453	3.75 2.96 3.87 3.57 4.13	14 9 23 20 13	5 5 5 5 5	ND ND ND ND ND	1 1 2 1 1	10 10 10 11 11	1 1 1 1	2 2 2 2 2	2 2 2 2 2	52 47 54 58 75	.13 .17 .12 .16 .23	.067 .072 .072 .047 .071	4 4 4 5	33 21 26 30 54	.57 .37 .61 .69 .93	35 22 37 36 35	.06 .05 .07 .06 .08	2 2 2	2.76 2.23 3.09 2.46 2.57	.02 .02 .03 .03	.03 .02 .04 .03 .05	1 2 3 1 1	11 1 4 1 1
STD C/AU-S NMB L10+00N 1+00W NMB L10+00N 0+50W NMB L10+00N 0+50 NMB L10+00N 0+50E	19 3 11 1 1	60 233 1033 41 54	39 11 9 7 9	131 84 89 72 114	7.3 .3 .4 .5 .1	68 24 36 18 23	27 9 22 7 8	221	3.94 4.38 6.26 3.60 3.66	37 33 139 8 18	21 5 5 5 5	8 ND ND ND ND	39 1 1 2 1	48 14 31 11 11	18 1 1 1	18 2 2 2 2	23 2 2 2 2 2	55 76 89 63 63	.46 .23 .75 .19 .21	.085 .072 .046 .065 .083	37 4 4 4	57 45 51 40 40	.90 .71 1.45 .55 .73	171 40 61 29 36	.07 .07 .05 .06 .09	2 5 2	1.86 3.92 3.90 2.53 3.06	.08 .03 .04 .02 .03	.15 .03 .03 .03 .04	14 2 2 1 1	48 31 565 13 6
NMB L10+00N 1+00E NMB L10+00N 1+50E NMB L10+00N 2+00E NMB L10+00N 2+50E NMB L10+00N 3+00E	2 1 2 2 1	64 54 84 50 36	12 8 11 8 9	142 65 98 103 83	.1 .2 .4 .1 .4	36 17 30 27 22	11 6 9 8 10	191 302	4.09 2.89 4.40 4.11 3.26	34 13 46 16 16	5 5 5 5 5	ND ND ND ND ND	1 1 2 1 1	13 12 11 11 21	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	71 57 71 73 63	.30 .19 .19 .21 .44	.066 .046 .069 .054 .045	4 5 5 5 4	48 32 57 60 41	.79 .58 .93 .86 1.09	41 43 40 35 52	.11 .07 .08 .09 .08	2 4 3	3.05 2.26 3.34 2.74 2.09	.03 .03 .03 .03 .04	.03 .03 .04 .03 .05	1 1 2 1 1	25 6 3 4 6
NMB L10+00N 3+50E NMB L10+00N 4+00E NMB L9+00N 5+50N NMB L9+00N 5+00N NMB L9+00N 4+50N	2 16 2 2 1	159 470 35 37 21	8 7 8 9 5	73 178 91 159 91	.1 .3 .1 .2 .1	30 179 13 21 9	9 29 5 10 5	383 439 218 494 245	3.52 6.31 3.11 3.84 2.84	28 294 23 25 10	5 5 5 5	ND ND ND ND ND	2 1 1 2 1	14 11 10 12 12	1 1 1 1	2 2 2 2 2	2 2 2 2 2	59 88 47 55 45	.22 .31 .14 .15 .13	.056 .067 .049 .057 .054	4 4 5 5 4		1.09 2.05 .59 .74 .49	52 48 36 58 32	.08 .10 .04 .07 .05	5 2 3	2.77 4.06 2.34 3.06 2.25	.03 .03 .02 .03 .02	.04 .02 .03 .04 .03	4 2 1 1 1	7 8 4 1 1
NMB L9+00N 4+00N NMB L9+00N 3+50H NMB L9+00N 3+00H NMB L9+00N 2+50H NMB L9+00N 2+00H	3 2 2 1 2	120 47 32 42 32	12 7 7 5 8	127 160 126 203 150	.1 .4 .1 .4 .1	25 14 8 19 16	9 8 5 11 7	445 352 347 532 260	4.30 4.46 3.59 3.74 3.77	29 47 30 26 27	5 5 5 5 5	ND ND ND ND	1 2 1 2 2	15 9 9 14 11	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	66 55 44 57 59	.25 .11 .11 .19 .14	.068 .073 .095 .076 .066	5 4 4 5 5	43 28 18 29 33	.84 .78 .49 .75 .71	53 38 31 48 42	.07 .06 .05 .06	3 2 6	2.78 3.28 2.85 3.23 2.80	.03 .03 .02 .03 .03	.03 .04 .03 .03	2 1 1 2 4	1 17 1 1 4
NMB L9+00N 1+50W NMB L9+00N 1+00W NMB L9+00N 0+50W NMB L9+00N 0+50E NMB L9+00N 1+00E	2 13 1 3 2	43 888 125 132 67	10 12 8 10 12	144 84. 88 107 110	.2 1.8 .5 .1	18 32 50 31 28	9 23 11 10 8	652 305	4.19 7.17 4.41 4.40 3.89	19 133 24 33 40	5 5 5 5 5	ND ND ND ND	1 1 2 1 2	15 23 12 15 10	1 1 1 1	2 2 2 2 2	2 2 2 2 2	74 83 82 74 62	.25 .57 .29 .31 .18	.081 .077 .059 .068 .049	4 3 4 5 5		.60 1.32 1.18 .94 .89	32 34 42 58 39	.09 .06 .10 .07 .07	5 7 3	3.63 3.25 3.35 2.90 3.29	.03 .04 .03 .03 .03	.04 .04 .04 .04 .03	3 2 1 1 1	1 44 6 1 6
NMB L9+00N 1+50E NMB L9+00N 2+00E NMB L9+00N 2+50E NMB L9+00N 3+00E NMB L9+00N 6+00W	11 2 1 2 1	246 32 51 93 29	8 10 7 9 7	140 91 131 100 112	.6 .1 .4 .1	58 21 72 29 16	12 9 17 8 6	266 505 667 277 245	5.27 4.28 4.32 4.46 3.30	215 10 9 11 15	5 5 5 5 5	ND ND ND ND ND	2 1 1 1 1	15 12 17 11 13	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	84 63 88 79 50	.29 .16 .71 .20 .16	.045 .050 .057 .052 .049	4 4 4 6		.95 1.47 1.70 .90 .54	32 72 42 45 39	.10 .05 .08 .08 .06	5 3 2	3.20 3.77 3.00 3.00 2.49	.03 .03 .04 .03 .03	.04 .05 .04 .02 .02	1 1 1 1	31 10 2 3 7
NMB L8+00N 5+50W NMB L8+00N 5+00W	1 2	18 42	9 11	91 146	.1 .1	11 17	5 9	401 615	2.59 4.12	7 34	5 5	ND Nd	1 2	12 12	1 1	2 2	2 2	44 59	.16 .15	.058 .049	4	21 27	.49 .90	41 51	.05 .07	-	1.96 3.09	.02 .03	.03 .04	1 1	12 1

age 12

;

ŧ

£

(

1 C

4

(

(

ŧ

C

Ĺ

1

																										-					••••
SAMPLE#	MO PPM	CU PPM	PB PPM	ZN PPH	AG PPM	NI PPM	CO PPM	MN PPM	FE	AS PPM	U PPM	au PPN	TH PPM	SR PPH	CD PPM	SB PPM	BI PPM	V PPM	CA Z	PI	LA PPM	CR PPM	MG I	BA PPM	TI Z	8 PPM	AL I	NA I	K I	W PPM	AUI PPB
NMB L9 4+50W NMB L8 4+00W NMB L8 3+50W NMB L8 3+00W NMB L8 3+00W	1 1 2 1 1	29 25 18 20 18	9 9 6 8 10	161 117 113 112 137	.2 .1 .4 .2 .5	17 18 11 11	8 7 6 7 6	1471 982 909	3.62 3.18 2.72 2.91 3.23	17 12 8 13 8	5 5 5 5 5	ND ND ND ND ND	1 1 1 2	11 17 15 16 12	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	56 53 46 50 55	.15 .24 .23 .22 .17	.067 .068 .064 .065 .102	4 4 4 5	34 34 26 23 28	.79 .70 .53 .51 .55	37 60 48 49 34	.06 .05 .04 .05 .06	2 2 2	2.88 2.46 2.12 2.00 2.02	.03 .03 .02 .02 .02	.01 .03 .03 .04 .03	2 2 1 2	6 8 7 1 2
NMB L8 2+00W NMB L8 1+50W NMB L8 1+00N STD C/AU-S NMB L8 0+50W	1 2 3 18 1	72 40 152 58 39	11 9 11 38 6	125 124 90 128 100	.3 .1 .4 7.2 .5	22 28 25 67 25	9 8 11 27 8	391 537 1029	4.11 3.75 3.97 3.88 3.82	35 15 30 40 13	5 5 5 21 5	ND ND NĐ 7 ND	1 1 38 1	11 13 18 49 14	1 1 18 1	2 2 2 17 2	2 2 2 20 2	65 75 66 56 71	.16 .27 .32 .47 .25	.068 .065 .060 .085 .070	5 5 7 38 4	37 58 40 60 51	.94 .95 .81 .89 .81	42 39 62 176 44	.06 .09 .07 .07 .08	2 2 37	2.87 2.65 2.39 1.84 2.31	.03 .03 .03	.01 .04 .04 .13 .02	1 1 3 12 1	1 1 3 52 1
NMB L8 0+00M NMB L8 0+50E NMB L8 1+00E NMB L8 1+50E NMB L8 2+00E	1 1 1 1	61 23 20 11 17	8 8 9 6 8	84 91 97 67 79	.4 .3 .2 .2 .1	47 18 16 9 16	11 6 5 4 7	268 320	4.10 3.71 3.48 2.85 3.61	15 11 12 4 9	5 5 5 5 5	ND ND ND ND ND	1 1 1 1 1	13 12 13 14 12	1 1 1 1	2 2 2 2 2 2	2 2 3 2 2	86 69 61 57 60	.33 .21 .23 .23 .17	.039 .052 .066 .041 .030	4 4 4 3	91 43 32 18 28	1.23 .61 .61 .51 1.06	42 32 47 36 38	.10 .08 .09 .05 .05	4 3 2	2.56 2.05 1.90 1.80 2.63	.03 .03 .03 .03 .02	.02 .02 .02 .05 .02	- 1 1 1 1	1 1 5 2 1
NMB L8 2+50E NMB L8 3+00E NMB L7+00N 4+50N NMB L7+00N 4+00N NMB L7+00N 3+50N	1 1 1 1 1	27 12 28 46 19	9 9 6 12 8	98 62 117 116 111	.1 .3 .2 .3 .2	17 9 18 29 8	10 4 7 9 5	707 352 292 305 336	3.38 3.15 3.13 4.17 2.87	5 3 16 25 13	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	18 14 11 11 11	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	61 65 51 63 49	.25 .18 .13 .13 .12	.026 .037 .058 .079 .061	6 4 5 6 5	32 18 33 53 22	1.05 .45 .68 .87 .41	71 39 38 52 29	.05 .05 .06 .08 .05	2 3 3	2.89 1.81 2.69 3.35 2.31	.03 .02 .03 .03 .02	.05 .04 .03 .03 .01	1 2 2 1 1	1 11 1 2 2
NMB L7+00N 3+00W NMB L7+00N 2+50N NMB L7+00N 2+00W NMB L7+00N 1+50W NMB L7+00N 1+00W	1 1 1 2 2	15 50 38 193 118	6 8 7 11 11	80 155 242 118 103	.2 .1 .1 .3 .4	12 39 20 31 19	5 12 11 12 8		3.94	10 21 26 36 20	5 5 5 5 5	ND ND ND ND	1 2 1 1 1	12 12 14 13 13	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	49 68 69 76 63	.14 .20 .26 .23 .19	.044 .057 .095 .097 .083	5 6 5 5 5	32 58 32 46 33	.50 1.15 .91 .99 .76	31 51 49 63 46	.06 .07 .07 .09 .07	2 2 3	1.90 3.23 2.76 3.81 2.96	.02 .03 .03 .03 .03	.02 .04 .03 .04 .03	2 1 1 2 1	17 1 16 12
NMB 17+00N 0+50N NMB 17+00N 0+00N NMB 17+00N 0+50E NMB 17+00N 1+00E NMB 17+00N 1+50E	4 2 1 1 1	1200 428 27 23 49	9 8 10 6 8	85 85 68 78 106	· .4 .8 .1 .5 .1	61 44 16 13 29	16 10 6 8	549 367 338 231 395	4.29 3.19 2.26	131 24 10 8 23	5 5 5 5 5	ND ND ND ND	1 1 1 1 1	16 15 14 16 12	1 1 1 1	2 2 3 2 2	2 2 2 2 2	72 79 66 41 62	.30 .23 .23 .24 .19	.053 .063 .043 .029 .068	4 4 3 5 4	75 81 35 26 45	1.73 1.05 .74 .56 .97	52 38 33 39 49	.07 .11 .07 .06 .07	3 4 3	4.00 2.65 2.34 2.01 3.33	.03 .03 .03	.02 .02 .02 .03 .03	2 1 1 1 1	63 41 1 24 14
NMB L7+00N 2+00E NMB L7+00N 2+50E NMB L7+00N 3+00E NMB L6 6+00M NMB L6 5+50W	1 1 1 1	24 24 20 31 36	7 3 7 9 6	109 74 103 72 144	.1 .1 .1 .2 .2	16 19 9	6 8 4 10	331 523 274	3.25	13 6 10 26 25	5 5 5 5 5	ND ND ND ND	1 1 1 1	13 14 12 10 12	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	53 58 58 49 50	.19 .19 .14 .11 .14	.025 .039 .050	5 5 4 4 4	28 31 32 18 24	.86 .90 1.39 .50 .62	47 48 53 33 49	.06 .06 .05 .03 .05	2 3 3	2.37 2.27 2.84 1.93 2.47	.03 .03 .03 .02 .03	.03 .02 .05 .04 .04	1 1 1 1	10 12 7 1 34
NMB L6 5+00W NMB L6 4+50W	1 1	46 25	9 5	122 99	.1 .3			489 410	3.67 3.62	26 24	5 5	ND ND	1 1	13 12	1 1	2 2	2 2	54 57	.19 .13		5 4	38 27	.69 .50	41 38	.06 .07		2.60 2.17	.03 .03	.05 .03	2 2	8 1

age 13

1

(

1

(

ł

(

Ĺ

f

(

t.

(

(

(

.

1

	7																														
SAMPLE	MO PPM	CU PPM	PB PPM	ZN PPH	AG PPM	NI PPM	CO PPM	MN PPM	FE Z	AS PPM	U PPM	AU PPM	TH PPM	SR PPM	CD PPM	SB PPM	BI PPM	V PPM	CA I	P I	LA PPM	CR PPM	M5 X	BA PPM	TI 1	B PPN	AL Z	NA Z	K Z	N PPM	AU# PPB
NMB 15 4+00W	1	25	11	149	.2	18	10	1444	3.77	22	5	ND	1	15	1	2	2	68	.29	.058	4	27	.77	50	.05	2	2.54	.03	.07	1	31
NHB L6 3+50W	1	18	7	134	.1	15	7	591	2.89	9	6	ND	1	15	1	2	2	59	.23	.046	4	32	.52	45	.06		1.88	.03	.05	1	7
NMB L6 3+00W	1	27	8	162	.1	26	13		2.82	17	5	ND	2	19	1	2	2	74	.40	.034	4	46	.87	66	.07		2.47	.03	.09	1	4
NMB 16 2+50N	1	38	7	117	.1	99	19	398	5.01	13 28	5	ND	2	11	1	2	2	121	.21	.030	3	192	2.30	37	.08		3.43	.03	.04	1	2
NMB L6 2+00W	3	115	9	107	.3	26	9	374	4.26	28	5	ND	1	12	1	2	2	71	.19	.059	5	46	.81	45	.07	5	3.20	.03	.03	1	62
NMB L6 1+50W	11	717	8	78	.8	25	15	642	7.00	133	5	ND	2	22	1	2	2	95	.50	.074	3	35	1.18	57	.06	4	4.13	.04	.04	2	36
NMB L6 1+00N	10	865	7	87	1.0	26	15	611	6.18	134	5	ND	2	21	1	2	2	90	.49	.090	2	38	1.14	72	.06	-	3.91	.03	.07	1	13
NMB L6 0+50W		1744	10	97	1.3	73	27		5.68	51	5	ND	2	15	1	2	3	80	.31	.062	3	87	1.26	45	.09		3.98	.04	.05	1	95
NMB L6 0+00 NMB L6 0+50E	2	101 16	10 4	88 48	.1 .1	24 11	8 3	367 189	3.29 1.78	28 10	5 5	ND ND	2 1	15 15	1	2 2	2	59 46	.29 .24	.047 .025	4	37 21	.59 .27	52 32	.08 .09		2.08 1.19	.03 .02	.02 .04	1 3	15
NUB FO AAROC		10	•	70	••				1.70	10	3	10		13	•	-	-	70		.013	т.		• 2 /	52		2	1.17		•••	5	
NMB L6 1+00E	2	14	7	51	.2	9	3	197	2.40	7	5	ND	1	13	1	2	2	55	.20	.034	4	19	.32	30	.08	2	1.38	.02	.03	2	7
NMB L6 1+50E	1	23	10	76	.1	17	5	227	3.38	18	5	ND	2	12	1	2	2	55	.18	.031	5	32	.53	34	.08		2.32	.03	.01	1	8
NMB L6 2+00E	2	31	9	77	.2	18	6	280	3.57	13	5	ND	2	13	1	2	4	61	.19	.046	4	29	.66	46	.07		2.16	.02	.03	1	1
NMB L6 2+50E NMB L6 3+00E	1 2	26 94	7	74 98	.2	16 22	5 7		3.57 3.55	20 23	5 5	ND ND	1 1	13 16	1	2	2	62 60	.19 .25	.044	4 5	29 38	.61 .64	41 54	.05 .06		2.19 2.25	.03 .03	.04	1	8 9
HIB ED STOVE	-	14	,	/0	••	**	,	101		2.4	J	112	•		•	•	•				Ŭ	00			.00	•	2.20			•	'
NMB 15N 7+00W	1	23	6	73	.1	11	5	208	2.94	13	5	ND	1	10	1	2	2	45	.10	.036	5	17	.50	35	.05	3	2.23	.02	.01	1	2
NMB LSN 6+50W	1	35	8	87	.3	13	6		2.86	21	5	ND	2	9	1	2	2	42	.09	.057	5	24	.49	36	.07		3.06	.02	.02	1	7
NMB LEN 6+00W	1	65 29	8 5	82 76	.1 .1	15 13	7 5		3.91 2.55	45 15	5 5	ND ND	1 1	10 9	1	2 2	2 2	53 41	.10	.043 .034	5 4	24	.57	39 29	.07		2.54 2.33	.03 .03	.03 .02	1 1	4
NMB LSN 5+50W NMB LSN 5+00W	1 2	27	3	78 68	.1	20	3 7	233	4.04	15	ы 5	ND	1	15	1	2	2	75	.07	.034	4	20 36	.62 .68	27 38	.04 .07		2.33	.03	.02	1	19
	-	•.	1	00			,	201			-		•		•	-	-				•					·				•	
NMB L5N 4+50W	1	43	6	102	.4	22	7	204		16	5	ND	1	15	1	2	2	55	.22	.047	4	22	.52	31	.07	2	2.60	.03	.04	1	1
NMB L5N 4+25W	1	68	7	105	.1	42	11	387	4.23	23	5	DN	1	13	1	2	2	61	.27	.053	3	57	1.02	42	.09	-	3.40	.03	.04	1	17
NMB LSN 4+00W NMB LSN 3+50W	2	38 25	6 4	93 69	.5 .2	35 17	10		4.29 3.57	24 16	6 5	ND ND	1 2	16 16	1	3 2	2 3	70 64	.27 .31	.056 .052	4	49 37	1.00	51 43	.08 .07		2.98	.03	.06 .05	1	23 7
NMB LSN 3+00W	2	121	8	71	.2	30	9		3.68	10	5	ND	1	15	1	2	2	67	.31	.032	3	38	.76	42	.07		2.49	.03	.03	1	1
	-		-								-							•													
NMB L5N 2+50W	2	584	6	83	-1.1	44	9		4.82	54	5	ND	1	13	1	2	2	73	.21		4	64	.89	40	.08		3.17	.03	.06	1	8
NMB LEN 2+00W	11	707 823	6 9	73 87	1.5	23 23	10	387	6.12	110	5 5	ND ND	2 2	15	1	4	2	86 90	.27	.085	2 3	33 33	1.03	50 45	.05		3.92 4.23	.03 .03	.03	23	5 5
NMB L5N 1+50W NMB L5N 1+00W	12 4	623 74	7	146	.5	23 24	16 8	286	7.07 5.49	127 63	3	ND	2	16 11	1 1	2	2	90 74	.16	.077 .063	ა 5	33 43	1.10	49	.05 .07		4.23 3.41	.03	.04 .03	3 1	13
NMB LSN 0+50W	2	100	8	139	.4	31	10		5.97	56	5	ND	2	13	i	2	2	80	.30	.233	4	54	.99	49	.06		4.20	.03	.05	i	6
NMB LEN 0+00W	1	27	6	128	.1	17	8		3.48	17	5	ND	1	15	1	2	2	68	.25	.034	6	28	.67	44	.06		2.43	.03	.04	1	76
NMB L5N 0+50E NMB L5N 1+00E	1	55 40	5 8	106 134	.3 .2	23 15	9 6		4.36 3.40	30 33	5	ND ND	1	12	1	2 2	2 2	71 53	.17	.067	5 5	38 28	.79 .60	52 42	.06 .04	-	3.29 2.78	.03	.03 104	1	3 4
NHB L5N 1+50E	1	45	8	139	.1	13	6		3.52	43	5	ND	1	13	1	2	2	49	.16	.059	4	20	.50	42	.05	-	2.47	.03	.02	1	2
NMB LSN 2+00E	1	48	9	95	.1	16	6	235		35	5	ND	1	11	1	2	2	50	.11	.043	6	28	.53	55	.08		2.77	.02	.03	1	1
			-				-				_					-										-	.				
NMB L4N 7+00W STD C/AU-S	1	55 57	5 39	129 132	.3 7.3	12 68	7 דר	283 1025	3.70	42 · 40	5 21	ND 8	1 38	10 50	1 18	3 18	2 20	44 56	.10	.072 .085	4 38	22 59	.53 .84	38 177	.05 .08		3.11 1.89	.03 .08	.03	1 13	12 47
510 U/H0+5	10.	3/	37	197	1.0	00	21	1023	J.70	40	21	0	70	20	10	10	20	70	.40	.083	-20	37	.07	111	.08	34	1.07	.00	.15	10	7/

age 14

(

ŧ

ŧ

ŧ

(

C

ŧ

٠

SAMPLE	MO PPM	CU PPM	PB PPM	ZN PPM	A5 PPM	NI PPM	CO PPN	MN PPM	FE 1	AS PPH	U PPH	AU PPM	TH PPN	SR PPH	CD PPN	SB PPM	BI PPM	V PPM	CA I	P I	LA PPM	CR PPN	NG 7	BA PPM	TI Z	B PPM	AL Z	NA Z	K Z	W PPN	AU1 PPB
NMB L4 6+50W NMB L4 6+00W NMB L4 5+50W NMB L4 5+00W NMB L4 4+50W	1 2 1 1 1	43 95 37 29 23	10 11 12 11 8	88 121 106 111 110	.1 .1 .1 .1	15 15 13 13 12	7 8 6 6 6	410 738 322 804 295	3.84 3.91 3.83 3.35 3.01	56 69 38 27 20	5 5 5 5 5	ND ND ND ND ND	2 2 2 2 2	13 14 14 12 13	1 1 1 1	2 2 2 2 2	2 2 2 2 2	57 43 53 52 51	.18 .22 .14 .14 .17	.065 .091 .069 .067 .035	4 5 5 5	22 22 24 25 23	.60 .66 .51 .51 .51	43 48 49 53 39	.05 .05 .07 .07 .07	2 2 2	2.17 3.00 2.58 2.52 2.11	.03 .03 .02 .03 .02	.03 .04 .03 .02 .05	1 3 1 1 1	1 2 1 5 2
STD C/AU-S NMB L4 4+00W NMB L4 3+50W NMB L4 3+00W NMB L4 2+50W	18 2 1 6 4	60 74 22 284 223	13 13 13	130 126 99 174 115	7.0 .1 .2 .2 .2	67 18 8 27 25	27 8 5 12 10	387	3.94 3.54 2.39 4.17 4.44	42 25 9 40 43	18 5 5 5 5	7 ND ND ND ND	39 1 2 3 1	47 16 15 16	17 1 1 1	17 2 2 2 2	21 2 2 2 2	55 58 49 71 66	.48 .25 .29 .38 .29	.087 .063 .045 .015 .061	37 4 4 4 4	57 31 16 31 36	.87 .62 .46 1.07 .84	176 63 52 40 58	.08 .07 .05 .07 .07	2 2 2	1.86 2.32 1.62 3.07 2.84	.08 .03 .02 .03 .03	.14 .07 .07 .03 .03	13 1 1 1 1	52 5 8 6 9
NMB L4 2+00W NMB L4 1+50W NMB L4 1+00W NMB L4 0+50W NMB L4 0+50W	8 2 1 2	382 411 614 67 52	12 7 16 10 11	87 93 101 96 94	.6 .4 .5 .3	17 15 26 21 39	7 8 12 10 11	445 718 1245	3.76 3.76 4.12 3.43 4.28	53 32 29 16 29	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	18 16 16 16 17	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	62 60 66 59 66	.36 .20 .28 .30 .30	.085 .047 .053 .053 .050	5 4 3 3	32 28 42 34 55	.68 .86 1.12 .79 .98	39 48 53 51 48	.05 .05 .08 .07 .09	2 3 2	2.69 2.86 2.89 2.25 3.17	.03 .03 .03	.06 .05 .05 .06 .05	1 1 1 1	9 39 16 14 42
NMB L4 0+50E NMB L4 1+00E NMB L4 1+50E NMB L4 2+00E NMB L3 5+50W	1 1 1 1	22 27 19 27 18	8 9 12 8	95 81 65 130 51	.3 .1 .1 .2 .1	23 30 10 24 7	7 8 4 8 3	558 344 639 581 205	3.30 3.75 2.03 4.02 2.6B	13 21 7 16 17	5 5 5 5 5	ND ND ND ND	1 1 1 2 2	14 15 21 15 13	1 1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	48 63 41 55 50	.23 .27 .39 .37 .12	.043 .032 .046 .085 .031	3 4 3 6	35 47 15 39 17	.86 .91 .36 .91 .36	60 34 68 43 34	.08 .10 .06 .07 .06	2 2 2	2.38 2.60 1.49 2.79 2.02	.03 .03 .03 .03 .02	.04 .03 .06 .06 .02	1 2 1 1 3	9 23 5 24 2
NMB L3 5+00W NMB L3 4+50W NMB L3 4+00W NMB L3 3+50W NMB L3 3+25W	2 2 1 4 9	26 83 24 60 233	12 9 4 12 14	102 170 144 130 133	.1 .1 .3 .1	9 19 11 17 23	5 11 6 8 19	290	4.32	20 68 18 59 108	5 5 5 5 5	ND ND ND ND	2 1 2 2 2	12 11 12 12 15	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	46 54 59 71 100	.12 .17 .19 .20 .27	.044 .095 .055 .034 .083	6 4 5 5 4	19 31 20 28 37	.43 .83 .57 .73 1.13	43 44 36 41 51	.06 .05 .05 .07 .08	2 2 2	2.58 3.66 2.39 2.71 3.77	.02 .03 .02 .03 .03	.03 .03 .05 .04 .05	1 1 2 2 4	1 18 4 1 19
NMB L3 3+00N NMB L3 2+75N NMB L3 2+50N NMB L3 2+00N NMB L3 1+50N	46 11 4 6 2	919 539 114 748 66	10 11 12 9 12	41 82 94 93 83	7 .2 .3 .3	12 25 25 39 22	30 18 10 17 12	592 345	7.07 7.59 5.27 4.55 4.22	136 132 78 98 24	5 5 5 5 5	ND ND ND ND ND	4 2 1 2 2	36 21 14 18 15	1 1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	47 106 74 82 77	.58 .36 .24 .39 .29	.057 .058 .053 .035 .029	9 4 5 4 4	12 34 42 61 34	.66 1.26 .96 1.22 .99	20 47 42 75 36	.02 .09 .08 .07 .09	2 12 3	2.96 4.08 3.22 3.32 2.65	.03 .03 .03 .04 .03	.04 .04 .03 .09 .07	7 3 1 1 1	17 12 6 12 7
NMB L3 1+00W NMB L3 0+50W NMB L3 0+50E NMB L3 1+00E NMB L3 1+00E	1 1 1 1		9 8 9 8	82 109 86 107 98	.4 .1 .3 .1	25 21 22 36 25	10 8 8 9 8	388 383 438 352 438	3.53 3.85 4.00	22 17 17 19 21	5 5 5 5 5	ND ND ND ND	2 1 2 2 1	19 16 20 14 15	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	65 57 68 65 49	.34 .25 .34 .24 .25	.045 .042 .041 .050 .058	4 4 3 3	44 33 36 62 37	.82 .67 .95 .99 .89	35 47 47 38 39	.08 .08 .06 .08 .09	2 2 3	2.51 2.69 2.62 3.31 2.77	.03 .03 .03	.05 .04 .07 .05 .05	2 1 2 1 1	1 11 10 41 50
NMB L3 1+50E NMB L3 2+00E	1 1		9 6	87 66	.1 .2	16 33	10 5	655 266	3.37 3.37	17 14	5 5	ND ND	1 1	18 14	1 1	2 2	2 2	53 59	.38 .23	.054 .040	4	42 33	.74 .54	52 36	.08 .09		2.31 1.98	.03	.07 .05	1 1	18 31

age 15

(

(

£.

í

í

1

(

í

t

ŧ

(

1

																																-
SAMPLE#	MO PPM	CU PPM	PB PPN	ZN PPM	AG PPM	NI PPM	CO PPN	MN Pph	FE Z	AS PPN	U PPM	AU PPM	TH PPM	SR PPM	CD PPM	SB PPM	BI PPM	V PPM	CA Z	P 2	LA PPM	CR PPM	M6 1	BA PPM	TI Z	B PPN	AL Z	NA Z	K Z	W PPH	AUI PPB	
NMB L2N 5+50W	1	34	12	130	.2	11	7		3.51	20	5	ND	1	14	1	2	2	51	.20	.063	5	22	.51	37	.06		2.03	.02	.06	1	25	
NMB L2N 5+00W	1	23	6	104	.3	9	5	241	2.82	15	5	ND	1	13	1	2	2	45	.15	.044	5	16	. 44	27	.05		1.90	.02	.05	1	9	
NMB L2N 4+50W	2	28	11	191	.4	11	7		3.56	17	5	ND	2	12	1	2	2	57	.15	.063	5	23 32	.59	44 42	.05		2.10 3.58	.02 .03	.05 .05	1 2	3 5	
NMB L2N 4+00W	4	51 258	9 9	182 70	.3	19 10	11 7	582	4.71 9.59	42 20	5 5	ND ND	1	16 14	1	2 2	2 2	70 85	.35	.075	5	52 16	.89 .45	38	.05 .07		2.89	.03	.05	2	32	
NMB L2N 3+50W	8	238	7	70	••	10		210	7.17	20	J	ΝØ	4	17	4	2	2	03	.10	•125	5	10	. 75			v				v	Ű.	
NMB L2N 3+00W	5	216	11	79	.5	28	14	374	5.78	313	5	ND	1	12	1	2	2	73	.19	.061	3	28	.93	45	.07	3	4.26	.03	.03	1	23	
NMB L2N 2+50W	2	47	10	76	.4	13	7	316	4.05	41	5	ND	1	14	1	2	2	88	.22	.037	4	25	.59	34	.08	-	2.40	.03	.06	1	5	
STD C/AU-S	17	61	38	129	7.2	69		1047		38	24	7	39	50	18	17	19	56	. 48	.086	38	60	.84	176	.08		1.81	.08	.14	12	49	
NMB L2N 2+00W	1	51	9	93	.3	23	10		3.79	18	5	ND	1	19	1	2 2	2	69 83	.34 .31	.043 .057	4 3	35 31	1.19	49 45	.07 .07		3.06 2.70	.03	.08 .05	1	5 60	
NMB L2N 1+50W	4	71	7	126	.3	18	10	361	5.08	50	5	ND	1	15	1	2	4	80	• 21	.03/	3	21	./0	40	••/	-	2.70	.05	.03	1	20	
NMB L2N 1+00W	1	20	8	72	.1	10	6	426	3.19	8	5	ND	1	18	1	2	2	55	.22	.051	3	20	.66	57	.04	2	2.51	.03	.07	1	14	
NMB L2N 0+50W	1	41	6	90	.3	24	9	328		15	5	ND	2	15	1	2	2	62	.21	.043	4	39	.87	41	.08	4	2.97	.03	.05	1	1	
NMB L2N 0+00N	1	30	8	84	.2	25	8		3.76	23	8	ND	1	16	1	2	2	60	.25	.059	3	43	.75	43	.07		2.53	.03	.05	1	23	
NMB L2N 0+50E	1	28	9	83	.2	35	9	357	3.84	18	5	ND	i	14	1	2	2	63	.24		3	63	1.00	40	.08		3.01	.03	.05	1	21	
NMB L2N 1+00E	1	27	4	87	.4	33	9	336	3.56	15	5	ND	1	17	1	2	2	54	.30	.057	4	51	.85	40	.08	5	2.95	.03	,06	1	26	
NMB L2N 1+50E	1	28	9	92	.1	38	9	352	4.14	26	5	ND	1	15	1	2	2	71	.27	.043	3	62	.94	43	.10	4	2.73	.03	.05	1	35	
NMB L2N 2+00E	2	28	6	100	.1	27	8		3.48	22	5	ND	1	14	1	2	2	56	.24	.046	4	42	.72	42	.07	4	2.39	.03	.04	1	42	
NMB L1 0+00E	1	35	9	93	.3	31	11	356	3.44	16	5	ND	i	15	1	2	2	60	.22	.042	4	41	.92	49	.08	3	3.17	.03	.04	1	18	
NMB L1 0+50E	1	30	9	79	.3	29	10	347	3.40	10	5	ND	1	16	1	2	2	58	.24	.037	3	49	.92	46	.06		2.87	.03	.04	1	29	
NMB L1 1+00E	1	47	6	107	.2	42	14	933	3.99	32	5	ND	1	21	1	2	2	62	.46	.069	3	60	1.01	60	.07	5	2.89	.03	.10	1	113	
NMB L1 1+50E	2	31	7	124	.2	30	9	391	4.09	23	8	ND	1	22	1	2	2	66	.40	.050	4	45	.97	50	.07	3	2.46	.03	.08	1	24	
NMB L1 2+00E	2	42	5	131	.1	29	9	466		47	5	ND	1	11	1	2	2	55	.19		4	39	1.05	45	.05	3	3.12	.03	.05	i	20	
NMB 3005 4+50W	2	26	10	108	.1	14	10	885	3.83	6	5	ND	1	24	1	2	2	70	.36	.059	4	25	.78	75	.04	3	2.72	.03	.08	1	1	
NMB 3005 4+00W	1	18	16	125	.1	15	9	635	3.67	7	7	XD	1	21	1	2	2	68	.35	.044	4	26	.90	39	.07		2.50	.03	.06	1	20	
NMB 3005 3+50W	2	25	15	122	.1	14	8	743	4.29	11	5	ND	1	19	1	2	2	72	.20	.042	4	25	.73	59	.06	2	2.28	.03	.07	1	2	
NMB 3005 3+00W	2	61	11	91	1	19	8	482	3.57	23	5	ND	1	18	1	2	2	61	.32	.048	5	31	.75	51	.07	3	2.31	.03	.05	1	1	
NMB 3005 2+50W	2	52	11	96		17	7		3.57	16	5	ND	ī	17	1	2	2	56	.24		4	29	. 68	51	.06	2	2.44	.03	.05	1	16	
NHB 3005 2+00W	1	42	15	88	.1	19	9	854		11	5	ND	2	23	1	2	2	52	.37	.050	7	27	.94	90	.08	3	2.54	.03	.06	1	i	
NMB 3005 1+00W	2		11	91	.2	11	6	447	3.49	7	8	ND	1	18	1	2	2	58	.21	.058	4	25	.75	51	.06		2.32	.03	.05	1	1	
NMB 3005 0+50W	1	18	9	84	.1	10	7	961	3.29	2	5	ND	1	19	1	2	2	68	.24	.058	4	19	.70	87	.07	2	1.97	.03	.05	1	1	
NMB 2+005 5+00W	3	82	15	123	.1	21	11	720	3.94	48	5	ND	1	19	1	2	z	65	.30	.098	6	42	.77	70	.05	2	2.78	.03	.05	1	1	
NHB 2+005 5+00W	3 1	61	9	123	.1	29	13		4.25	18	5	ND	1	23	1	2	2	77	.39	.047	4	46	1.30	58	.08		3.53	.03	.08	1	15	
NMB 2+005 4+00W	1		13	105	.1	28	10	724		13	5	ND	1	20	1	2	2	72	.31		4	36	.99	59	.07	2	2.54	.03	.04	1	5	
NMB 2+005 3+50W	1		12	114	.1	19	12	864		8	5	ND	1	19	1	2	2	83	.30	.042	4	35	1.08	56	.09		2.80	.03	.06	1	1	
NMB 2+005 3+00W	1		14	122	.1	29	11	662	3.96	8	5	ND	1	19	1	2	2	74	.35	.044	4	46	1.38	39	.08	2	2.82	.03	.05	1	1	
		4	n	170		18	9	410	3.68	48	5	ND	1	13	1		2	63	.13	.047	6	30	.71	51	.04	4	2.30	.02	.03	2	1	
NMB 1+00N 7+00W NMB 1+00N 6+50W	1	61 40	8			18	75		3.13	37	5	ND	1	13	1	2	2	57	.14		5	22	.48	48	.04		2.16	.02	.04	ī	11	
WUETO NUUTI GIN	1	4V	9	73	•••	11		740				110	•	4 T	•	•	•				-					-						

age 16

1

1

(

(

(

(

ł

(

ŧ

ł

3

SAMPLE	MO PPN	CU PPM	PB PPM	ZN PPM	AG PPM	NI PPM	CO PPN	MN Pph	FE Z	AS PPM	U PPM	AU PPM	TH PPH	SR PPM	CD PPN	5B PPM	BI PPM	V PPN	CA Z	P I	LA PPN	CR PPM	MG Z	BA PPM	TI Z	B PPM	AL Z	NA Z	K Z	¥ PPM	AU : PPB
NMB 1+00N 6+00W	1	36	8	86	.2	10	5	258	3.58	45	5	ND	1	13	1	2	2	60	.11	.040	5	23	. 48	55	.05	2	2.07	.02	.04	1	4
NMB 1+00N 5+50W	1	57	6	121	.3	10	5	288	4.02	50	5	ND	i	13	i	2	2	58	.12	.057	5	21	.52	47	.04	3	2.20	.02	.03	1	1
NMB 1+00N 5+00W	2	49	7	108	.1	10	6	282	3.90	41	5	ND	1	10	1	2	2	67	.07	.039	4	24	.59	37	.04	3	2.21	.02	.03	1	1
NMB 1+00N 4+50W	1	48	9	161	.4	16	10	413	4.32	37	5	ND	1	13	1	2	2	57	.17	.095	5	28	.62	42	.05	3	3.23	.02	.05	2	6
NMB 1+00N 4+00W	1	40	14	114	.1	24	13	596	4.03	25	5	ND	1	15	1	2	2	73	.20	.040	2	35	1.09	44	.04	2	2.54	.01	.03	1	1
NMB 1+00N 3+50W	2	73	13	106	.1	26	16	842	4.68	21	5	ND	2	16	1	2	2	88	. 21	.055	4	40	1.08	51	.09	3	3.15	.03	.04	1	5
NMB 1+00N 3+00N	2	43	10	89	.1	24	12	522	4.16	13	5	ND	1	16	1	2	2	88	.19	.028	4	36	.98	49	.10	3	2.93	.03	.03	1	1
NMB 1+00N 2+50W	. 3	87	11	108	.4	23	9	528	3.97	33	5	ND	1	16	1	2	2	65	.24	.058	5	40	.76	58	.06	5	2.50	.03	.04	1	7
NMB 1+00N 2+00W	1	14	8	73	.1	12	6	475	2.69	5	5	ND	1	15	1	2	2	61	.19	.042	4	26	.63	39	.07	2	1.76	.03	.03	1	1
NMB 1+00N 1+50W	1	25	10	149	.2	13	8	1076	3.66	8	5	ND	1	16	1	2	2	58	.19	.068	4	21	.70	62	.05	3	2.22	.02	.05	1	3
NMB 1+00N 1+00W	1	17	8	96	.2	12	7	393	3.19	5	5	ND	1	16	1	2	2	62	.23	.055	4	23	.79	37	.05	2	2.21	.03	.06	1	1
NMB 1+00N 0+50W	2	35	8	105	.1	18	9	503	3.76	9	5	ND	1	19	1	2	· 2	65	.28	.074	3	31	.87	52	.05	3	2.96	.03	.04	2	5
NMB 1+005 5+50¥	3	48	8	132	.3	11	6	524	2.64	40	5	ND	1	15	2	2	2	39	.18	.099	5	20	.42	44	.02	6	2.26	.02	.04	1	3
NMB 1+005 5+00W	3	57	12	172	.5	17	16	1738	5.38	103	7	ND	1	20	1	2	2	84	.29	.153	5	42	.70	59	.02	4	2.63	.02	.07	2	1
NMB 1+005 4+50W	2	70	10	. 112	.1	21	10	633	3.96	23	5	ND	1	17	1	2	2	69	.28	.065	4	36	.84	57	.05	2	2.52	.03	.04	2	1
STD C/AU-S	18	59	38	128	7.4	66	28	1046	3.92	38	21	7	39	49	18	18	19	56	.46	.085	38	57	.81	174	.07	36	1.75	.08	.13	12	48
NMB 1+005 4+00W	2	57	14	97	.3	15	7	432	3.26	18	5	ND	1	17	1	2	2	60	.26	.050	4	26	.62	62	.05	3	2.00	.03	.05	2	4
NMB 1+005 3+50W	1	18	12	92	.1	10	6	386	3.31	4	7	ND	1	13	1	2	2	62	.17	.056	3	23	.62	34	.05	2	1.86	.02	.04	1	i
NMB 1+005 3+00W	2	49	12	94	.3	17	7	446	3.46	13	5	ND	2	16	1	2	2	69	.23	.048	5	29	.67	67	.06	2	2.15	.02	.04	2	8
NMB 0+00N 4+50W	2	88	19	124	.4	19	9	511	3.22	28	5	ND	1	19	1	2	2	51	.29	.062	7	22	.62	109	.05	3	1.99	.03	.05	2	8
NMB 0+00N 5+00W	2	60	9	126	.2	16	9	766	3.73	30	5	ND	1	18	1	2	2	62	.22	.068	5	28	.74	59	.05	3	2.25	.03	.05	1	8
NMB 0+00N 5+50W	3	51	17	121	.1	16	6	478	3.39	29	5	ND	1	18	1	2	2	47	.42	.058	6	25	.58	71	.04	7	2.04	.03	.04	1	7
NMB 0+00N 5+00W	2	27	10	110	.2	10	6	522	3.34	14	6	ND	1	15	1	2	2	61	.12	.037	5	20	.52	51	.05	2	1.91	.02	.05	2	4
NMB 0+00N 4+50W	2	55	11	99	.4	19	8	483	3.32	15	5	ND	1	19	1	2	2	68	.28	.043	6	32	.62	81	.06	3	2.00	.03	.05	1	3
NMB 0+00N 4+00W	2	26	9	96	.2	12	8	737	3.04	12	5	ND	1	21	1	2	2	66	.31	.048	4	21	.55	56	.06	2	1.82	.03	.05	2	6
NMB 0+00N 3+50W	2	66	19	102	• .5	21	7	526	2.87	13	5	ND	3	21	1	2	2	49	.32	.049	11	34	.48	113	.06		1.80	.03	.07	1	4
NMB 0+00N 3+00N	1	39	8	70	. 1	22	11	543	3.56	8	5	ND	2	12	1	2	2	70	.25	.036	4	40	1.16	44	.12		2.39	.03	.03	1	1
NMB 0+00N 2+50W	2	29	9	88	.1	21	10	517	4.19	9	5	ND	1	14	1	2	2	94	.18	.047	4	39	.94	43	.10	3	2.69	.03	.03	2	1

age 17

1

t

(

(

ŧ

ŧ,

(

¢

(

ŧ

....

(

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - . SOO GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEC. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: P1-10 SULL P11-13 ROCK AUX ANALYSIS BY AA FROM 10 GRAM SAMPLE.

DATE RECEIVED: OCT 29 1987 DATE REPORT MAILED: Nov 13/87 D. Joyun. DEAN TOYE, CERTIFIED B.C. ASSAYER ASSAYER ...

> MINCORD EXPLORATION File # 87-5366 Fage 1

SAMPLE	MO PPM	CU PPM	PB PPM	ZN PPM	AG PPM	NI PPM	CO PPM	MN PPM	FE I	AS PPM	U PPH	AU PPM	TH PPN	SR PPM	CD PPM	SB PPN	BI PPM	V PPM	CA Z	Р 2	LA PPN	CR PPM	M6 7	BA PPM	TI X	B PPM	AL I	NA Z	K I	N PPM	AU t PPB
NM-A L1+50M 0+60S NM-A L1+50M 0+70S NM-A L1+50M 0+80S NM-A L1+50M 0+90S NM-A L1+50M 1+00S	1 1 1 1	22 36 23 16 23	6 9 12 4 12	61 69 53 43 60	.1 .2 .1 .1	8 10 9 6 7	7 10 7 5 7	307 198 171	3.84 4.05 3.44 2.69 3.54	12 17 11 6 12	5 5 5 5 5	ND ND ND ND ND	2 2 1 1 1	16 14 14 15 14	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	84 76 67 64 75	.25 .24 .22 .23 .21	.033 .043 .026 .020 .031	2 2 2 2 2 2 2 2	18 22 19 15 18	.50 .66 .48 .37 .49	34 35 27 29 32	.08 .07 .07 .07 .08	4 2 3	2.46 3.13 2.69 1.82 2.23	.01 .01 .01 .01	.03 .03 .03	1 1 2 1	1 1 2 1
NM-A L1+25W 0+20S NM-A L1+25W 0+40S NM-A L1+25W 0+60S NM-A L1+25W 0+80S NM-A L1+25W 1+00S	2 1 1 1 1	24 36 45 32 31	12 6 13 13 6	63 61 61 54 65	.3 .1 .1 .1	9 10 14 10 10	8 9 13 9 10	265 344 276	3.55 4.13 4.24 3.80 3.90	12 20 20 14 22	5 5 5 5	ND ND ND ND ND	1 1 1 2	15 15 13 13	1 1 1 1	2 2 2 3	2 2 2 2 2 2	73 79 78 75 69	.26 .25 .22 .22 .18	.024 .033 .029 .020 .027	2 2 2 2 2 2 2 2	20 21 26 22 21	.61 .62 .90 .66 .61	27 31 3 8 35 34	.06 .08 .10 .09 .09	2 2 3	2.57 2.90 3.39 2.85 3.07	.01 .01 .01 .01	.03 .02 .03 .02 .02	1 1 1 1	1 1 2 1 1
NM-A L1+25W 1+20S NM-A L1+25W 1+40S NM-A L1+25W 1+60S NM-A L1+25W 1+80S NM-A L1+25W 1+80S NM-A L1+25W 2+00S	1 1 2 1	35 29 38 40 52	10 6 9 11 13	60 54 67 65 77	.1 .1 .1 .1	12 9 13 12 11	11 8 12 12 17	266 317 377	4.13 3.83 4.24 4.41 4.55	19 14 22 23 24	5 5 5 5 5	ND ND ND ND	1 1 1 2	15 16 14 18 26	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	80 77 80 80 79	.26 .25 .26 .35 .54	.025 .023 .030 .024 .034	2 3 3 2 3	23 21 24 24 25	.75 .67 .84 .94 .99	31 34 33 36 36	.09 .09 .09 .09 .10	4 2 5	2.96 2.45 2.76 2.82 3.29	.01 .01 .01 .01 .01	.03 .03 .03 .02 .04	1 2 1 1 1	1 1 1 4
NM-A L1+00N 1+60N NM-A L1+00N 0+80N NM-A L1+00N 0+70N NM-A L1+00N 0+60N NM-A L1+00N 0+70S	1 1 1 1	39 16 19 19 37	12 14 10 15 23	66 60 75 70 63	.1 .1 .1 .1	13 6 8 7 12	12 6 6 10	329	3.95 2.54 3.19 3.03 4.07	16 9 16 13 16	5 5 5 5 5	ND ND ND ND ND	2 1 1 2 1	15 18 12 15	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	72 57 63 62 77	.24 .32 .19 .23 .26	.035 .024 .028 .020 .024	2 2 2 2 2 2 2	24 14 17 17 23	.83 .43 .49 .50 .72	41 47 29 42 37	.08 .05 .05 .06 .09	224	3.26 1.74 2.01 1.87 2.86	.01 .01 .01 .01 .01	.03 .03 .03 .04 .02	i i i 1	5 7 1 7 5
NM-A L1+00W 0+80S NMA L1+00W 0+90S NMA L1+00W 1+00S NMA L1+00W 1+20S NMA L1+00W 1+40S	1 1 1 1 1	20 20 35 29 42	13 5 9 15 12	50 47 55 49 68	.1 .1 .1 .1	7 6 11 8 13	7 6 11 8 13	232 198 284 242 468	3.27 3.23 4.16 3.62 4.15	12 9 20 16 22	5 5 5 5 5	ND Hd Nd Hd Nd	2 1 2 2 2	15 13 13 14 18	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	72 69 79 74 75	.25 .19 .21 .24 .33	.015 .018 .023 .019 .026	2 2 2 2 2 2 2	18 18 24 19 25	.54 .46 .73 .60 .91	38 25 36 36 48	.07 .07 .10 .08 .09	2 3 3	2.20 2.35 3.02 2.36 2.73	.01 .01 .01 .01 .01	.04 .02 .02 .03 .03	2 1 1 1 1	1 6 14 6 1
NMA L1+00W 1+60S NMA L1+00W 1+80S NMA L1+00W 2+00S NMA L0+75W 1+00N NMA L0+75W 0+80N	1 5 1 1 1	42 68. 57 16 44	10 14 15 16 20	64 49 81 49 72	.1 .2 .1 .1 .3	12 10 14 6 15	13 26 18 5 13	667 782	4.21 5.22 4.55 2.68 4.03	19 16 39 14 19	5 5 5 5 5	ND ND ND ND ND	2 3 2 1 2	17 161 41 19 16	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	76 77 76 60 73	.33 1.23 .79 .27 .24	.029 .028 .039 .024 .020	3 2 4 3 4	25 19 24 14 30	.91 .98 1.09 .40 .95	32 65 53 38 44	.09 .10 .10 .04 .08	3 4 3	2.54 4.33 3.11 1.76 3.00	.01 .02 .02 .01 .01	.05 .03 .07 .04 .03	1 2 1 1 2	10 5 34 1 40
NMA L0+75W 0+60N NMA L0+75W 0+40N NMA L0+75W 0+20N NMA 0+75W BL NMA L0+75W 0+20S	1 1 1 2 1	14 31 33	17 16 17 19 26	47 40 64 57 77	.1 .1 .1 .1	5 4 8 8 10	6 4 9 9 11	185 161 290 269 346	2.99 2.45 3.77 4.06 3.96	11 9 16 18 21	5 5 5 5 5	ND ND ND HD ND	1 1 2 2	13 11 16 14 11	1 1 1 1 1	3 2 2 2 2	2 2 2 2 2 2	70 66 74 82 73	.18 .16 .23 .21 .20	.015 .010 .020 .021 .019	2 2 2 2 2 2 2	17 13 21 20 21	.45 .35 .65 .62 .78	34 31 35 38 35	.06 .07 .08 .07 .05	3 2 2	1.97 1.61 2.78 2.73 2.97	.01 .01 .01 .01 .01	.03 .02 .02 .03 .03	2 1 1 1 1	7 1 1 1 1
NMA LO+75W 0+40S NMA L0+75W 0+60S STD C/AU-S	2 2 19	21	14 18 39		.2 .2 7.0	5	6 5 28	195 188 1040	2.86 2.58 4.12	13 11 39	9 8 20	ND ND 7	1 1 37	12 11 49	1 1 17	2 2 17	2 2 21	66 57 55	.17 .21 .47	.015 .024 .083	3 3 3	15 14 58	.46 .38 .97	26 28 178	.06 .05 .06	4	1.98 1.66 1.93	.01 .01 .06	.02 .03 .13	2 1 13	1 7 47

SAMPLĘ#	HO PPM	CU PPH	PB PPM	ZN PPN	A6 PPM	NI PPM	CO PPM	MN PPH	FE	AS PPM	U PPM	AU PPN	TH PPM	SR PPN	CD PPM	SB PPM	BI PPM	V PPM	CA Z	P Z	LA FPN	CR PPH	M6 1	BA PPN	TI Z	B PPM	AL Z	NA Z	K I	W PPM	AU : PPB
NMA L0+75W 0+80S NMA L0+75W 1+00S NMA L0+75W 1+20S NMA L0+75W 1+20S NMA L0+75W 1+40S NMA L0+75W 1+60S	1 1 1 2	47 36 56 45 63	14 8 4 7 23	71 59 69 68 67	.3 .1 .1 .1	13 12 11 12 14	14 10 20 13 17	306 804 463	4.60 4.10 4.72 4.11 5.48	39 15 15 16 21	5 5 5 5	ND ND ND ND	1 1 1 1	20 13 44 27 42	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	70 80 79 73 79	.36 .25 .64 .45 .50	.053 .040 .044 .035 .032	3 3 3 3	25 24 22 25 24	.80 .76 .92 .88 .98	22 26 42 41 41	.07 .08 .09 .09 .11	2 2 4	3.42 2.34 2.90 2.91 3.21	.01 .01 .01 .01	.02 .02 .08 .03 .02	1 1 1 1	2 1 1 3
NMA L0+75W 1+80S NMA L0+75W 2+00S NMA L0+50W 0+90N NMA L0+50W 0+80N NMA L0+50W 0+60N	1 1 1 1	39 38 45 32 35	10 B 19 17 13	62 56 76 70 60	.1 .1 .1 .1	12 12 14 9 12	12 12 13 9 10	355 540 371	3.85 3.89 4.37 3.89 4.09	13 8 20 17 17	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	15 13 15 14 12	1 1 1 1	2 2 2 2 2 2	2 4 2 2 2	73 75 78 74 79	.28 .19 .30 .25 .20	.021 .017 .025 .025 .022	3 4 3 2 3	24 25 25 21 24	.89 .88 .97 .81 .77	36 39 35 33 34	.09 .10 .08 .06 .09	2 3 2	2.45 2.45 2.50 2.30 2.61	.01 .01 .01 .01 .01	.03 .01 .03 .02 .02	1 1 1 1	1 1 2 4
NMA L0+50W 0+40N NMA L0+50W 0+405 NMA L0+50W 0+605 NMA L0+50W 0+605 NMA L0+50W 1+005	1 1 1 1	40 30 46 34 45	12 19 11 18 15	70 56 59 56 68	.2 .1 .1 .1 .2	11 9 16 9 13	11 8 13 9 14	359 258 356 307 550	4.20 3.72 4.11 3.54 4.17	20 17 13 25 54	5 5 5 5 5	ND ND ND ND	1 1 1 1	13 13 14 18 23	1 1 1 1	2 2 3 2 2	2 2 3 2 2	80 75 74 64 74	.24 .24 .25 .37 .61	.022 .014 .021 .030 .039	3 3 3 4	22 20 29 18 26	.80 .62 .95 .62 .89	39 33 40 38 22	.08 .06 .10 .07 .08	3 2 2	2.69 2.03 2.86 2.03 2.39	.01 .01 .01 .01	.03 .03 .02 .03 .03	1 1 1 1	1 1 7 3
NMA LO+50W 1+205 NMA LO+50W 1+405 NMA LO+50W 1+605 NMA LO+50W 1+805 NMA LO+50W 2+005	1 1 1 1	47 39 32 42 35	9 9 13 11 3	67 63 61 66 61	.1 .1 .1 .1	13 13 11 13 12	13 11 10 12 11	321		12 16 13 17 10	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	21 13 12 14 15	1 1 1 1	2 2 2 2 2 2	3 2 2 2 3	72 78 76 79 73	.36 .20 .21 .25 .30	.033 .020 .022 .032 .033	4 3 3 3 3	26 25 23 27 23	.98 .83 .77 .91 .61	36 36 34 42 40	.09 .09 .08 .10 .09	2 2 6	2.42 2.72 2.47 2.84 2.17	.01 .01 .01 .01	.02 .02 .02 .03 .03	1 1 1 1	2 5 2 1 1
NMA LO+25W 1+00S NMA LO+25W 1+20S NMA LO+25W 1+40S NMA LO+25W 1+60S NMA LO+25W 1+80S	1 1 1 1 1	46 44 44	6 34 11 9 11	78 80 69 71 102	.1 .2 .1 .1	15 13 14 13 14	18 13 14 14 14		4.51 4.03 4.36	25 25 19 18 29	5 5 5 5 5	ND ND ND ND	1 1 1 3	22 17 15 18 21	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	89 75 73 78 78	.47 .33 .28 .32 .56	.029 .036 .031 .025 .097	4 3 3 6	31 26 26 25 24	1.19 .94 .96 .95 1.08	33 43 37 34 86	.10 .08 .09 .08 .15	3 3 2	2.67 2.61 2.61 2.69 2.29	.01 .01 .01 .01 .01	.04 .04 .03 .03 .24	1 1 1 1	2 1 4 1 3
NMA L0+25W 2+005 NMA L0+00E 1+00N NMA L0+00E 0+80N NMA L0+00E 0+60N NMA L0 0+605	1 1 1 1 1	31 36 54	9 18 18 14 18	74 129 94 76 75	.1 .1 .1 .2 .2	14 12 12 16 13	15 13 13 18 13	535 718 797		31 20 14 24 21	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	35 23 17 21 33	1 1 1 1 1	2 2 2 3 2	2 2 3 2	71 65 72 79 70	.52 .45 .36 .38 1.17	.034	6 3 4 3	26 23 23 29 24	.90 .74 .76 1.13 .85	48 48 64 57 86	.11 .06 .06 .10 .07	3 2 2	2.49 2.41 2.50 2.92 3.66	.01 .01 .01 .01 .01	.05 .04 .03 .02 .03	1 1 1 1 1	21 26 11 42 5
NMA LO 0+805 NMA LO 1+005 NMA LO 1+205 NMA LO 1+605 NMA LO 1+805	1 1 4 5	48 57 152	6 12 169	72 77 92 250 314	.1 .1 .2 1.3 3.4	15 15 15 22 13	15 15 15 55 49	441 574 4353	4.72 4.82 4.69 6.80 11.40	19 20 22 96 85	5 5 5 8	ND ND ND ND	1 1 1 1	21 19 21 17 12	1 1 1 3 4	2 2 2 7 15	2 3 2 4 4	87 87 82 59 46	.38 .30 .68 .33 .26	.019 .030 .048	4 3 5 5 5	30 31 29 16 8	.99 1.06 1.10 .73 .63	49 36 46 34 24	.09 .10 .07 .05 .02	2 2 2	2.94 3.12 3.03 2.10 1.91	.01 .01 .02 .01 .01	.03 .02 .03 .05	1 1 1 1	2 1 110 93 27
NMA LO 2+00S STD C/AU-S	1 18		16 44	102 133			19 28		6.04 4.26	13 39	5 16	ND B	2 39	84 52	1 18	2 16	2 20	60 57	1.11 .49	.057 .088	2 38	15 61	.78 .90	51 180	.07 .07	_	4.84 1.81	.03 .07	.05 .14	1 10	11 53

Page 2

L

ŧ

1

BAMPLE®	HŪ PPH	CU PPM	PB PPM	ZN PPH	A6 PPH	NI PPM	CO PPN	HN PPH -	FE	AS PPH	U PPM	AU PPM	TH PPM	SR PPM	CD PPM	SB PPM	BI PPM	V PPM	CA Z	P 7	LA PPM	CR PPM	M6 7	BA PPM	TI Z	B PPM	AL Z	NA Z	K	¥ PPM	au‡ FPB
NMA L0+25E 1+00N NMA L0+25E 0+80N NMA L0+25E 0+60N NMA L0+25E 0+40N NMA L0+25E 0+40S	1 2 1 2 2	40 32 34 31 32	19 14 9 17 17	112 97 98 135 117	.1 .1 .2 .1 1.4	14 11 9 12 10	14 13 11 13 11	388 768 360	4.35 3.87 3.67 4.03 4.40	21 40 8 17 20	5 5 5 5 5 5	ND ND ND ND ND	1 1 1 1	20 20 19 17 15	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	87 71 69 77 84	.36 .39 .48 .35 .27	.022 .027 .088 .031 .038	2 2 2 2 2 2 2	27 23 20 23 23	.84 .71 .62 .71 .71	52 52 55 60 32	.08 .05 .08 .07 .05	7 6 6	3.30 2.86 2.64 2.91 2.68	.01 .01 .01 .01 .01	.05 .05 .09 .05 .05	1 1 1 1	5 1 2 3 62
NMA L0+25E 0+60S STD C/AU-S NMA L0+25E 0+80S NMA L0+25E 1+00S NMA L0+25E 1+20S	1 17 1 1 1	50 59 41 35 28	12 37 10 7 6	80 127 79 72 64	.1 7.3 .1 .1	10 64 13 15 11	10 29 13 13 11	1073 707 382	3.97 3.95 4.46 4.27 3.80	9 38 14 5 4	5 18 5 5 5	ND 9 ND ND ND	1 38 1 1 1	17 50 18 18 24	1 18 1 1 1	2 16 2 2 2	2 21 2 2 2	79 57 82 88 86	.32 .49 .33 .30 .42	.032 .088 .030 .024 .020	2 2 2 3 3 3 2 2	22 60 26 27 26	.67 .88 .79 .75 .70	42 174 39 36 40	.04 .07 .07 .08 .09	34 5 4	2.71 1.91 3.24 3.05 2.65	.01 .06 .01 .01	.05 .14 .05 .04 .04	1 14 1 1	1 47 2 3 1
NMA L0+25E 1+405 NMA L0+25E 1+605 NMA L0+25E 1+805 NMA L0+25E 2+005 NMA L0+50E 1+00N	1 1 1 1 2	59 53 60 51 16	17 9 12 11 15	90 69 76 72 92	.2 .1 .1 .1 .4	16 15 17 16 6	20 18 22 19 8	652 814 1000	5.41 4.91 5.56 4.73 3.38	24 18 24 14 18	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	29 27 28 27 16	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	102 99 104 93 61	.55 .43 .51 .54 .27	.029 .023 .033 .060 .050	5 4 3 4 3	34 37	1.24 1.15 1.30 1.12 .39	38 40 36 36	.13 .13 .12 .10 .03	6 4 6	3.38 3.39 3.54 3.39 2.44	.02 .01 .01 .01 .01	.04 .03 .06 .07 .06	1 1 1 1	3 6 430 1 102
NMA L0+50E 0+80N NMA L0+50E 0+60N NMA L0+50E 0+40N NMA L0+50E 0+40S NMA L0+50E 0+60S	3 1 1 1 2	31 31 55 50 33	20 10 16 11 26	89 105 78 90 109	.1 .1 .3 .1	9 13 16 15 9	13 13 17 14 12	363 420 619	3.69 4.04 4.65 4.63 4.68	40 22 34 29 19	5 5 5 5 5	ND ND ND ND	1 1 1 1	21 17 27 21 18	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	58 75 77 83 87	.52 .28 .44 .44 .36	.031 .027 .029 .029 .029	2 2 2 2 2 2 2	15 25 28 27 24	.61 .70 .99 .81 .72	39 45 47 48 42	.02 .07 .07 .03 .05	6 6 5	2.72 2.84 3.90 3.41 2.97	.01 .01 .01 .01 .01	.07 .04 .05 .06 .05	1 1 1 1	1 10 5 45 2
NMA L0+50E 1+00S NMA L0+50E 1+20S NMA L0+50E 1+40S NMA L0+50E 1+60S NMA L0+50E 1+80S	2 1 1 1 1	38 35 29 39 33	12 8 8 5 3	83 78 66 72 61	.1 .1 .1 .1	14 14 12 16 13	14 13 13 13 12	437 304 351	4.34 4.10 3.99 4.29 4.09	7 6 3 13 9	5 5 5 5 5	ND ND ND ND	i 1 1 1	19 19 20 18 16	1 1 1 1	2 2 2 2 2	2 2 2 2 2	87 86 90 86 85	.35 .32 .32 .28 .22	.040 .023 .023 .031 .029	4 3 3 3 3	26 28 30 30 29	.84 .87 .81 .91 .78	60 43 30 32 29	.07 .10 .11 .10 .09	9 5 6	3.18 3.08 3.08 3.40 3.24	.01 .01 .01 .01 .01	.06 .05 .04 .05 .03	1 1 1 1	1 1 37 2 44
NMA L0+50E 2+00S NMA L0+75E 1+00N NMA L0+75E 0+80N NMA L0+75E 0+60N NMA L0+75E 0+60N NMA L0+75E 0+40N	1 2 1 1 1	42 29 16 28 25	6 11 9 31 16	63 78 49 107 100	.2 .2 .4 .5 .1	13 8 6 11 10	14 10 5 11 11	256 172 281	4.39 3.82 2.64 3.68 3.66	20 40 11 30 18	5 5 5 5	ND ND ND ND	1 1 1 1	17 15 14 18 18	1 1 1 1	2 2 2 2 2	2 2 2 2 2	83 61 54 67 71	.25 .20 .18 .21 .22	.037 .032 .018 .027 .021	3 3 4 3 3	29 18 17 23 22	.87 .66 .38 .64 .63	36 34 25 31 32	.08 .02 .05 .05 .07	5 4 3	3.62 2.79 2.15 2.89 2.87	.01 .01 .01 .01 .01	.03 .05 .04 .04 .04	1 1 1 1	3 1 1 6 1
NMA L0+75E 0+40S NMA L0+75E 0+60S NMA L0+75E 0+80S NMA L0+75E 1+00S NMA L0+75E 1+20S	2 3 3 2 1	42 51 72 41 38	14 12 179 17 9	70 97 1020 8B 67	.2 .1 .4 .1	12 15 16 15 15	16 15 16 13 13	375 701 551	4.63 4.76 4.83 4.47 4.32	48 21 41 11 7	5 5 5 5 5	ND ND ND ND	1 1 6 1	22 19 16 16 17	1 1 1 1	2 2 4 2 3	2 2 2 2 2 2	83 80 70 92 91	.36 .31 .43 .32 .28	.025 .030 .027 .028 .016	3 4 4 4	24 25 24 30 34	.76 .68 .95 .89 .92	42 51 64 49 36	.06 .07 .02 .08 .10	3 8 5	3.08 3.87 3.69 3.36 3.31	.01 .01 .01 .01 .01	.05 .05 .07 .05 .04	1 1 1 1	2 5 4 1 2
NMA L0+75E 1+40S NMA L0+75E 1+60S	1 1	25 27	8 4	66 86	.1 .1	13 13	11 13		3.83 3.80	3 4	5 5	ND Da	1 1	19 20	1 1	2 2	2 2	85 81	.28 .25	.015 .019	2 2	29 30	.77 .83	33 22	.10 .11	-	2.92 3.22	.01	.04 .04	1 1	1 1

Page 3

ć

1

1

(

(

1

(

ŧ

ł

i.

SAMPLE#	MO PPM	CU PPM	P8 PPM	ZN PPH	A s PPN	NI PPM	CO PPN	MN PPh	FE I	AS PPN	U PPM	AU PPM	TH PPM	SR PPM	CD PPM	SB PPM	BI PPM	V PPM	CA I	P I	LA PPH	CR PPM	MG Z	BA PPM	TI Z	8 PPM	AL Z	NA Z	K I	W PPM	AU‡ PPB
NMA L0+75E 1+805 NMA L0+75E 2+005 NMA L1+00E 1+00N NMA L1+00E 0+80N NMA L1+00E 0+60N	1 1 1 1	21 28 22 42 24	10 10 15 18 17	52 58 61 70 71	.1 .1 .4 .5 .1	10 11 8 11 11	8 10 8 13 10	337 215	3.45 3.67 3.08 4.38 3.85	9 12 19 57 24	5 5 5 5 5	ND ND ND ND	1 1 1 1	17 17 13 13 14	1 1 1 1	2 5 2 3 2	2 2 2 2 2	76 79 60 68 72	.24 .23 .20 .21 .21	.021 .021 .024 .028 .023	3 4 3 3	26 24 18 21 21	.59 .68 .56 .73 .64	28 31 29 41 27	.08 .09 .05 .04 .06	2 2 4	2.43 2.74 2.58 3.23 2.73	.01 .01 .01 .01 .01	.04 .04 .04 .04 .03	1 2 1 1 1	1 48 1 1 5
NMA L1+00E 0+40N NMA L1+00E 0+40S NMA L1+00E 0+60S NMA L1+00E 0+80S NMA L1+00E 1+00S	1 1 2 1 1	23 29 33 32 35	11 21 18 11 13	66 58 59 65 65	.1 .3 .1 .1	8 9 12 11 13	9 10 11 11 12	285 463	3.58 3.86 3.93 3.96 4.15	18 28 19 15 13	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	14 15 16 16	1 1 1 1	2 2 3 2	2 2 2 2 2	72 75 80 85 99	.20 .25 .25 .26 .25	.020 .019 .018 .021 .021	3 3 4 3	20 20 25 25 28	.55 .62 .74 .72 .89	32 36 38 37	.06 .03 .10 .08 .10	4 3 4	2.47 2.82 3.27 2.84 3.12	.01 .01 .01 .01	.04 .05 .03 .04 .04	1 1 2 1 1	1 7 1 3 21
NMA L1+00E 1+20S NMA L1+00E 1+40S NMA L1+00E 1+50S NMA L1+00E 1+80S NMA L1+00E 2+00S	1 1 1 1	30 26 32 40 27	8 8 12 7 13	63 73 77 63 57	.1 .1 .1 .1	14 12 14 17 12	13 12 15 14 11	336 340 327	4.18 3.53 4.02 4.36 3.53	10 6 49 15 7	5 5 5 5 5	ND ND ND ND ND	1 1 1 2 1	21 17 17 18 14	1 1 1 1	2 2 2 4 2	2 2 2 2 2 2	93 76 79 90 77	.33 .28 .26 .28 .20	.019 .018 .019 .021 .018	3 2 3 3 3	30 27 27 38 25	.96 .90 .83 1.12 .72	38 32 39 42 32	.11 .10 .07 .11 .10	4 2 3	3.05 3.09 3.07 3.45 2.84	.01 .01 .01 .01 .01	.04 .03 .04 .03	1 1 1 1 1	6 1 10 2 4
NMA L1+25E 1+00N NMA L1+25E 0+80N NMA L1+25E 0+60N NMA L1+25E 0+40N NMA L1+25E 0+40S	2 1 1 1 1	29 26 30	14 17 26 18 9	48 60 64 65 58	.2 .5 .1 .3 .2	6 10 10 12 11	6 9 10 10	245 281 252	2.82 3.56 3.90 4.14 3.83	14 23 25 20 13	5 5 5 5 5	ND ND ND ND	1 1 1 1 1	15 14 15 16 14	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	62 62 79 80 79	.23 .19 .20 .21 .20	.018 .024 .023 .022 .024	3 4 3 3 3	16 21 23 25 25	.47 .61 .65 .67 .66	29 31 33 35 32	.04 .07 .06 .07 .09	3 4 2	2.06 2.90 2.6B 2.96 3.03	.01 .01 .01 .01 .01	.03 .04 .05 .03 .04	2 1 1 1	3 2 4 3 1
NMA L1+25E 0+60S NMA L1+25E 0+80S NMA L1+25E 1+00S NMA L1+25E 1+20S NMA L1+25E 1+40S	1 1 1 1 1	25 28	11 B 10 15 15	58 51 53 58 69	.1 .2 .1 .1	14 13 11 13 15	11 9 9 11 14	248 268	4.04 3.40 3.51 3.79 4.18	10 7 5 10 7	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	14 14 14 13 18	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	89 79 79 79 90	.19 .20 .18 .17 .28	.019 .015 .013 .026 .021	2 2 2 2 2 2 2	28 25 25 27 33	.86 .74 .73 .80 1.06	33 34 32 44 48	.11 .10 .11 .10 .10	2 5 2	3.10 2.94 2.80 3.15 3.52	.01 .01 .01 .01 .01	.03 .03 .03	1 1 1 1	3 2 1 8 4
NMA L1+25E 1+60S NMA L1+25E 1+80S NMA L1+25E 2+00S NMA L1+50E 0+40S NMA L1+50E 0+60S	1 1 1 1 1	25 27 26	5 13 10 9 10	61 62 69 51 51	.1 .1 .1 .3	14 12 13 12 11	12 11 12 9 10	238 519 259	3.78 3.47 3.79 3.57 3.77	5 5 6 10 12	5 5 5 5 5	ND ND ND ND	1 1 1 2	16 16 17 15	1 1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	80 73 81 77 81	.24 .23 .24 .18 .20	.021 .030 .024 .015 .022	2 2 2 2 2 2 2	31 27 30 27 27	.94 .72 .89 .84 .71	35 29 38 35 33	.11 .10 .11 .11 .09	4 4 2	3.00 2.97 2.96 2.79 2.87	.01 .01 .01 .01 .01	.03 .04 .04 .02 .03	1 1 1 1	2 1 4 3 1
NMA L1+50E 0+80S NMA L1+50E 1+00S NMA L1+50E 1+20S NMA L1+50E 1+40S NMA L1+50E 1+60S	1 1 1 1	32 25 29 23 20	9 9 8 13	62 54 55 48 48	.1 .2 .1 .1	13 11 12 10 10	10 9 9 9 8	241	3.51	18 12 10 8 9	5 5 5 5 5	ND ND ND ND	1 1 1 1	14 14 14 15 16	1 1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	77 73 74 78 74	.20 .18 .17 .20 .20	.030 .025 .023 .017 .017	2 2 2 2 2 2 2	26 23 26 24 24	.75 .64 .72 .66 .64	26 32 35 31 35	.08 .08 .08 .10 .09	4 4 5	2.87 2.79 2.87 2.62 2.44	.01 .01 .01 .01 .01	.03 .03 .02 .02 .02	1 1 1 2	2 9 5 1 1
NMA L1+50E 1+80S STD C/AU-S	1 18	37 59	5 39	58 132	.1 7.4	16 68	14 29	279 1035	4.10 4.07	6 41	5 20	ND 8	1 39	19 52	1 18	2 18	2 19	87 57	.21 .48	.016 .084	3 39	34 61	1.10 .90	43 179	.13 .07		3.52 1.91	.01 .07	.02	1 10	1 49

Fage 4

ı

(

(

E

(

(

(

(

ł

(

(

¢.

}

ł

SAMPLE	MD PPM	CU PPM	PB PPM	ZN Ppm	as PPM	NI PPN	CO PPM	MN Pph	FE Z	AS Ppm	U PPM	AU PPM	TH PPM	SR PPM	CD PPM	SB PPM	BI PPM	V PPM	CA Z	P I	LA PPM	CR PPM	M6 I	BA PPM	TI Z	B PPM	AL Z	NA Z	K I	W PPN	AU : PPB
NMA L1+50E 2+00S NMA L1+75E 0+60S NMA L1+75E 0+80S NMA L1+75E 1+00S NMA L1+75E 1+20S	1 1 1 1	35 19 34 32 33	8 2 9 2 2	63 37 52 54 55	.1 .4 .2 .2 .1	17 6 13 15 14	13 5 10 12 11	167 292 265	3.88 2.59 3.86 3.74 3.86	4 8 25 13 14	55555	ND ND ND ND ND	1 2 2 2 1	17 17 16 14 13	1 1 1 1	2 2 2 2 2	2 2 2 2 2	81 63 78 79 80	.22 .20 .22 .19 .18	.032 .022 .029 .019 .027	3 4 3 3	30 18 24 25 25	.98 .41 .72 .84 .79	43 30 39 34	.12 .05 .08 .10 .09	2 4 5	3.19 2.03 2.93 3.10 3.03	.01 .01 .01 .01 .01	.03 .04 .03 .02 .03	1 3 1 1 1	4 2 8 1 1
NMA L1+75E 1+405 NMA L1+75E 1+605 NMA L1+75E 1+805 NMA L1+75E 2+005 NMA L3E 1+00N	1 1 1 1	31 27 28 40 62	2 2 8 7 20	51 61 57 60 126	.1 .1 .1 .8	15 13 13 17 16	10 11 10 14 16	259 281 385	3.49 3.54 3.70 4.19 5.36	7 6 11 6 31	55555	ND ND ND ND ND	1 1 2 2	14 15 17 22 17	1 1 1 1	2 2 2 2 2	2 2 2 2 2	76 78 79 92 85	.18 .21 .22 .26 .13	.019 .021 .033 .018 .048	2 2 2 2 2 2	27 25 26 33 24	.82 .76 .73 1.15 .70	32 30 33 49 28	.10 .11 .09 .12 .07	3 4 2	2.95 3.06 2.96 3.17 3.37	.01 .01 .01 .01	.02 .03 .03 .03	1 1 1 1	7 3 1 1 2
NMA L3E 0+80N NMA L3E 0+50N NMA L3E 0+40N NMA L3E 0+40S NMA L3E 0+60S	1 1 1 1	26 52 44	17 14 3 4 6	88 71 71 66 61	.6 .3 .1 .2	13 10 16 17 13	14 9 16 15 12	262 372 347	5.33 3.89 4.91 4.46 3.65	25 12 23 13 10	5 5 5 5 5 5	ND ND ND ND ND	2 2 1 1	12 15 14 17 14	1 1 1 1	2 2 2 2 2	2 2 3 2 2	82 81 91 93 78	.09 .17 .17 .21 .19	.043 .025 .028 .020 .023	3 3 3 3	23 21 29 33 25	.64 .57 .95 1.10 .75	30 28 44 44 32	.05 .06 .09 .12 .10	2 2 4	3.20 2.69 3.50 3.37 3.07	.01 .01 .01 .01 .01	.05 .05 .04 .03 .03	1 1 1 1	32 1 1 1
NMA L3E 0+805 NMA L3E 1+005 NMA L3E 1+405 NMA L3E 1+605 NMA L3E 1+605	1 1 1 1 1	44 34 36 27 29	9 12 8 5 3	58 57 59 56 51	.2 .1 .2 .2 .3	15 13 14 10 12	15 12 11 9 9	275 270 272	4.22 3.85 3.60 3.46 3.30	16 15 18 23 27	5 5 5 5 5	ND ND ND ND ND	2 1 1 1 2	14 14 12 12 11	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	84 79 71 69 61	.17 .19 .15 .16 .17	.015 .024 .028 .031 .036	3 3 3 4	31 26 24 20 21	1.08 .79 .73 .58 .59	40 29 33 30 32	.12 .10 .09 .07 .06	2 2 2	3.37 3.15 3.01 2.66 2.69	.01 .01 .01 .01 .01	.03 .02 .03 .02 .03	1 1 1 1	5 12 118 130 34
NMA L3E 1+80S NMA L3E 2+00S NMA L3+25E 1+00N NMA L3+25E 0+80N NMA L3+25E 0+60N	1 1 1 1	30 35 75 69 53	6 3 47 25 20	57 61 221 146 91	.1 .4 .3 .4 .4	13 14 20 18 14	11 12 23 20 11	299 600 516	3.68 3.90 6.38 5.65 5.43	21 12 29 39 27	5 5 5 5 5	ND ND ND ND ND	1 2 1 2 2	12 13 18 17 14	1 1 1 1	2 2 2 2 2	2 2 2 2 2	71 78 99 87 92	.19 .22 .16 .16 .11	.034 .040 .042 .041 .035	2 2 3 2 3	23 25 28 26 24	.68 .89 .85 .78 .63	36 41 42 44 39	.07 .09 .09 .08 .05	2 2 4	3.26 3.47 4.06 3.90 3.48	.01 .01 .01 .01	.03 .03 .05 .05	1 1 1 1 1	13 1 3 16 2
NMA L3+25E 0+40N NMA L3+25E 0+20N NMA L3+25E BL NMA L3+25E 0+20S NMA L3+25E 0+40S	1 1 1 1 1	58 30 32 36 44	15 11 3 7 5	97 60 60 59 56	.4 .3 .1 .2 .3	16 12 15 14 17	17 10 13 13 15	254 276 289	4.92 3.51 4.01 4.18 4.34	24 10 9 13 14	5 5 5 5 5	ND ND ND ND ND	1 1 2 1 1	11 14 13 14 15	1 1 1 1	2 2 3 2	2 2 2 2 2	86 76 89 87 86	.13 .18 .18 .18 .18	.032 .019 .023 .027 .026	3 2 3 3 3	26 23 27 26 28	.82 .64 .86 .77 .94	34 28 35 28 38	.08 .08 .10 .09 .09	4 3 2	3.63 2.65 3.16 3.14 3.39	.01 .01 .01 .01 .01	.05 .04 .04 .04 .03	1 1 1 2	3 16 3 19 1
NMA L3+25E 0+60S NMA L3+25E 0+80S NMA L3+25E 1+00S NMA L3+25E 1+20S NMA L3+25E 1+40S	1 1 1 1 1	26 31 27	4 6 5	53 59 58 49 58	.1 .3 .2 .2 .5	16 14 13 11 13	13 11 12 10 10	257 266 245	4.36 3.54 3.68 3.41 3.52	9 7 12 15 24	5 5 5 5 5	ND ND ND ND	1 2 1 1 1	15 16 13 13 11	1 1 1 1	2 3 2 2 2	2 2 2 2 2	94 77 80 71 64	.19 .20 .17 .18 .18	.023 .025 .026 .024 .041	2 2 2 2 2 2 2	29 24 24 21 21	.95 .70 .74 .64 .58	42 29 28 33 30	.10 .09 .10 .08 .07	3 5 4	3.23 3.01 3.15 2.86 3.13	.01 .01 .01 .01 .01	.02 .04 .03 .03 .03	1 1 2 1 1	13 1 2 35 52
NMA L3+25E 1+60S STD C/AU-S	i 19	22 60	9 41	42 131	.2 7.4	12 71	8 30	222 1079	2.80 4.05	20 41	6 21	ND B	2 38	11 54	1 19	3 17	2 23	52 59	.19 .48	.025 .088	4 40	18 59	.53 .89	180 33	.06 .07		2.24 1.92	.01 .07	.03 .13	2 13	i 47

Page 5

1

(

ć

(

(

(

(

(

(

(

(

ί

Ç.

(

ł

SAMPLE	NO PPM	CU PPM	PB PPM	ZN PPM	AG PPM	NI PPM	CO PPM	NN Pph	FE	AS PPN	U PPM	AU PPM	TH PPM	SR PPM	CD PPH	SB PPM	BI PPM	V PPN	CA I	P X	LA PPN	CR PPM	MG X	BA PPM	TI Z	B PPN	AL X	NA I	K I	N PPM	AU t PPB
NMA L3+25E 1+50S NMA L3+25E 2+00S NMA L3+50E 1+00N NMA L3+50E 0+50N NMA L3+50E 0+60N	1 1 1 1 1	35 42 75 79 54	3 2 247 101 86	58 62 125 108 109	.1 .1 1.9 .4 1.5	14 15 11 14 13	12 15 13 12 13	354 360 454	4.03 4.46 5.68 6.24 5.20	6 7 29 29 24	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	12 13 12 20 16	1 1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	88 95 89 93 87	.20 .22 .11 .12 .15	.026 .027 .043 .044 .038	2 3 3 4 3	26 30 21 26 22	.96 1.19 .67 .84 .70	44 48 37 31 42	.10 .11 .05 .08 .05	4 3 2	3.66 3.97 3.87 3.30	.01 .01 .01 .01	.02 .02 .08 .04 .06	1 1 1 1	1 78 3 15 27
NMA L3+50E 0+60S NMA L3+50E 0+90S NMA L3+50E 1+00S NMA L3+50E 1+20S NMA L3+50E 1+40S	1 1 1 1	48 28 34 36 39	7 5 3 4 2	67 57 70 64 59	.2 .1 .2 .1 .1	16 10 15 13 13	15 10 12 12 12	371 289 297	4.83 3.75 4.00 4.23 4.27	8 8 11 35	5 5 5 5	ND ND ND ND ND	1 1 1 1	17 16 14 14 13	1 1 1 1 1	2 2 5 3 2	2 2 2 2 2	105 83 86 87 79	.25 .23 .22 .22 .22	.022 .023 .027 .028 .036	5 4 3 4	34 25 27 27 24	1.32 .76 .91 .90 .82	48 35 32 37 34	.12 .09 .10 .10	2 7 2	4.14 2.93 3.76 3.70 3.35	.01 .01 .01 .01	.02 .03 .03 .03 .04	1 1 1 1	1 1 1 1
NMA L3+50E 1+60S NMA L3+50E 1+80S NMA L3+50E 2+00S NMA L3+75E 1+00N NMA L3+75E 0+80N	1 1 1 1 2	28 24 42 42 98	11 2 2 41 417	59 54 64 70 146	.3 .1 .1 .7 .6	11 11 15 8 11	10 10 14 7 10	264 360 250	3.68 3.68 4.39 4.37 6.82	15 16 7 19 40	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	14 14 13 12 16	1 1 1 1 1	4 2 2 2 3	2 2 2 2 2	71 80 92 80 92	.21 .24 .20 .10 .09	.032 .021 .030 .028 .057	4 4 2 3 4	22 22 31 15 20	.69 .75 1.18 .47 .63	35 36 45 37 40	.07 .06 .11 .04 .05	2 5 2	3.17 2.94 4.12 2.98 3.24	.01 .01 .01 .01 .02	.04 .03 .02 .06	1 1 1 1	2 1 1 4 1
NMA L3+75E 0+60N NMA L3+75E 0+40N NMA L3+75E 0+20N NMA L3+75E 0+20S NMA L3+75E 0+40S	1 1 1 1	46 49 35 41 39	35 16 9 8 5	89 82 112 68 71	.2 .1 .3 .6 .2	12 12 11 17 19	10 12 12 16 15	337 485 358	4.81 4.72 3.73 4.51 4.33	20 21 6 7 8	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	14 15 17 15 16	1 1 1 1	2 2 3 2 2	2 2 3 2	90 83 94 96 87	.14 .15 .32 .23 .25	.030 .033 .045 .025 .031	3 3 4 2 3	-	.59 .64 .76 1.14 1.17	40 38 32 35 34	.05 .06 .11 .10 .08	3 6 2	3.45 3.22 2.93 3.73 3.57	.01 .01 .01 .01 .01	.06 .04 .06 .04 .04	1 1 1 1	3 2 1 2 4
NMA L3+75E 0+60S NMA L3+75E 0+60S NMA L3+75E 1+00S NMA L3+75E 1+20S NMA L3+75E 1+40S	1 1 1 1	25 34 25 32 24	3 10 7 2 6	59 63 60 58 50	.1 .1 .2 .1	13 14 13 13 10	11 13 10 11 8	318 287 295	3.83 4.43 3.96 4.11 3.42	5 10 3 17 48	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	17 19 19 14 13	1 1 1 1	2 2 2 2 4	2 2 2 2 2	84 91 89 85 59	.30 .26 .28 .20 .20	.042 .030 .030 .030 .030	2 2 2 2 2 2	26 26 25 25 20	.85 .92 .83 .87 .57	31 36 31 36 34	.09 .08 .09 .08 .05	3 5 5	3.06 3.55 3.24 3.31 2.93	.01 .01 .01 .01 .01	.05 .04 .04 .03 .03	1 1 1 1	3 1 1 8 5
NMA L3+75E 1+605 NMA L3+75E 1+805 NMA L3+75E 2+005 NMA L4+00E 1+00N NMA L4+00E 0+80N	1 1 1 1 1	26 32 83	5 3 5 27 163	61 58 63 83 110	.2 .1 .1 .1 .5	9 11 13 12 14	8 10 10 11 11	257 297 447	3.79 3.45 3.85 6.42 6.88	23 25 7 35 36	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	14 12 14 16 19	1 1 1 1	2 2 3 2	2 2 2 2 2	77 71 81 91 93	.25 .18 .22 .11 .10	.026 .021 .039 .047 .052	2 2 2 2 2 2 2	18 21 25 21 26	.60 .68 .88 .66 .73	34 38 39 52 42	.04 .04 .07 .10 .09	3 3 2	2.81 3.29 3.33 4.20 3.35	.01 .01 .01 .01 .02	.05 .03 .06 .06	1 1 1 1	3 4 1 6 1
NMA L4+00E 0+60N NMA L4+00E 0+60S NMA L4+00E 0+80S NMA L4+00E 1+00S NMA L4+00E 1+20S	1 1 1 1 1	88 40 29 18 33	47 4 2 3 9	86 73 64 48 63	.3 .1 .3 .5	16 17 13 9 14	12 14 10 8 11	388 264 204	6.00 4.50 3.84 2.79 3.84	28 7 6 3 22	5 5 5 5 5	ND ND ND ND ND	1 1 2 1 1	14 16 17 15 17	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	87 91 84 66 77	.09 .26 .26 .19 .23	.042 .032 .043 .018 .041	3 3 3 4	27 31 25 20 23	.83 1.16 .78 .57 .73	47 33 33 31 32	.08 .07 .10 .08 .07	5 3 4	3.77 3.66 3.12 2.65 3.24	.01 .01 .01 .01 .01	.05 .04 .04 .03 .04	1 1 1 1	15 9 1 2 40
NMA L4+00E 1+40S STD C/AU-S	1 19	24 62	4 42	60 132	.1 7.4	9 73	9 31	262 1068	3.73 4.05	15 42	5 19	ND 7	1 40	14 52	1 19	2 18	2 19	81 58	.21 .50	.038 .088	4 39	22 62	.61 .93	35 180	.07 .07	-	2.80 1.97	.01	.04 .14	i 11	1 48

.

Page 6

£

1

,

(

(

(

ţ.

(

C

í.

SAMPLE	NO PPM	CU PPN	P9 PPM	ZN PP n	AG PPM	NI PPM	CO PPM	MN PPM	FE I	AS FPM	U PPM	AU PPM	TH PPM	SR PPM	CD PPM	SB PPM	BI PPM	V PPM	CA Z	P X	LA PPM	CR PPM	M6 I	BA PPM	TI Z	8 PPM	AL Z	NA Z	K Z	N PPM	AU l PPB
NMA L4+00E 1+±05 NMA L4+00E 1+±05 NMA L4+00E 2+005 NMC 4+00W NMC 5+50W	1 1 1 1	21 27 20 31 43	11 8 11 17 12	52 55 54 75 112	.2 .2 .1 .3 .2	9 12 10 11 9	7 9 7 8 8	224 258 215 286 460	3.51 3.41 3.49	6 10 10 9 13	5 5 5 5	ND ND ND ND ND	1 2 1 1	12 12 15 17 21	1 1 1 1	3 2 2 2 2 2	2 2 2 2 2	74 74 75 72 41	.21 .18 .21 .31 .46	.016 .025 .025 .027 .019	55544	24 25 23 23 17	.61 .70 .55 .65 .66	27 34 30 35 38	.09 .08 .09 .08 .07	4 3 6	2.53 3.25 2.54 2.96 2.08	.01 .01 .01 .01 .01	.02 .02 .02 .03 .06	1 1 1 1	10 6 1 3 11
NMC 5+00W NMC 4+50W NMC 4+00W NMC 3+50W NMC 3+00W	1 1 2 15	53 60 51 58 54	13 19 14 18 20	190 85 66 179 140	.2 .1 .3 .3 .4	15 9 10 20 22	8 9 10 13	455 461 352 414 276	3.49	23 30 25 24 38	5 5 5 5 5	ND ND ND ND ND	1 2 2 1 2	21 23 17 20 11	1 1 1 1 1	2 2 4 2 5	2 2 2 2 2	48 47 49 47	.49 .45 .40 .35 .25	.020 .022 .019 .023 .042	2 2 2 2 2 2 2 2	18 18 18 20 22	.83 .92 .72 .82 .55	51 60 73 44	.10 .09 .07 .07	2 3 4	2.30 2.55 2.48 2.97 2.99	.01 .01 .01 .01 .01	.07 .08 .07 .06 .06	1 1 2 1 1	4 1 3 4 34
NMC 2+50N NMC 2+00H NMC 1+50N NMC 1+00H NMC 0+50N	16 6 3 3 2	71 191 83 82 114	20 34 23 20 21	93 77 82 71 103	.2 .4 .4 .1 .7	12 9 15 12 38	9 9 11 9 15	363 538 405	5.09 7.01 4.92 4.45 4.44	46 67 45 33 32	6 5 5 5	ND ND ND ND ND	3 1 2 1 2	14 16 23 19 13	1 1 1 1	4 3 2 2 2	2 2 2 2 2	55 52 54 51 49	.24 .20 .38 .31 .22	.067 .090 .045 .040 .046	4 5 3 6	22 19 27 24 35	.71 .54 .99 .81 .86	69 49 113 74 54	.09 .12 .09 .09	3 5 3	3.40 2.61 3.64 3.01 4.25	.01 .02 .01 .01 .01	.05 .05 .09 .05 .05	1 1 1 1	36 85 27 41 59
NMC 0+005W NMC 0+505W NMC 1+005W NMC 1+505W NMC 2+005W	2 2 2 2 3	134 98 144 48 42	28 19 31 24 24	74 118 71 84 103	.3 .1 .1 .2 .5	31 30 14 12 15	14 12 8 7 11	518 344 370 331 375	4.98 4.69 6.67 4.26 5.41	41 33 40 28 35	5 5 5 7	ND ND ND ND ND	2 2 2 2 2 2	25 13 10 10 12	1 1 1 1	2 4 2 2 2	2 3 2 2	54 52 59 47 55	.37 .17 .15 .14 .19	.038 .031 .065 .043 .042	4 4 3 3	26 29 25 20 22	1.08 .76 .76 .64 .63	156 62 48 62 54	.08 .06 .10 .07 .08	4 2 7	4.11 3.16 2.98 2.80 2.99	.01 .01 .01 .01 .01	.08 .04 .04 .04 .06	1 1 1 1	17 8 18 11 27
NMC 2+505W NMC 3+005W NMC 3+505W NMC 4+005W NMC 4+505W	4 3 9 10 5	41 52 68 139 108	29 21 26 39 31	244 214 288 94 67	.5 .1 .8 1.0 3.0	8 11 17 5 7	6 10 12 6 7	367 535 504 401 369	4.52 4.78 5.08 4.54 4.35	39 46 61 56 37	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	14 14 17 17 15	1 1 1 1	2 4 2 3 2	2 2 2 2 2	48 46 54 43 49	.27 .30 .42 .23 .19	.029 .029 .042 .041 .041	4 3 2 3 3	18 20 22 17 20	.66 .87 .79 .74 .78	35 32 47 51 68	.07 .07 .08 .06 .07	4 2 2	1.91 2.00 3.23 2.12 2.79	.01 .01 .01 .01 .01	.04 .06 .08 .05 .05	1 1 1 1	1 14 36 30 25
NMC 5+005W NMC 5+505W NMC 6+005W NM R1 19+00N NM R1 18+50N	3 5 16 6 4	51 54 91 69 68	18 22 35 25 22	92 55 65 182 225	1.9 .6 .8 .4 .6	12 5 3 14 11	8 5 10 12	265 289 366	3.78 4.81 7.40 4.87 4.08	23 39 79 49 45	5 6 5 5 5	ND ND ND ND ND	2 1 1 1 1	16 13 11 15 16	1 1 1 1	2 2 14 4 2	2 2 2 2 2	47 43 52 55 55	.22 .14 .12 .22 .26	.033 .046 .082 .048 .035	2 2 2 2 2 2 2	19 16 24 21 20	.66 .61 .66 .69 .62	53 47 44 74 67	.06 .05 .03 .07 .06	2 2 6	2.72 2.28 2.15 3.18 2.62	.01 .01 .01 .01 .01	.05 .05 .06 .06 .06	1 1 1 1	7 10 27 22 5
NM R1 18+00N NM R1 17+50N NM R1 17+00N NM R1 16+50N NM R1 16+00N	5 3 5 1 1	88 56 33 28 35	29 13 54 16 11	172 131 239 236 107	.6 .1 .2 .2 .3	9 10 9 12 14	11 15 19 16 11	485 531 638 1259 432	3.32 3.22 2.89	38 21 25 13 19	5 5 5 5 5	ND ND ND ND	2 1 2 1 1	19 20 28 21 19	1 1 1 1	2 2 2 2 3	2 2 2 2 2 2	53 52 53 46 50	.28 .35 .45 .39 .38	.035 .031 .033 .036 .027	3 3 4 3 3	17 16 17 17 18	.52 .47 .43 .58 .65	91 66 70 69 44	.05 .05 .06 .09 .09	5 4 5	2.65 1.90 1.82 1.74 2.05	.01 .01 .01 .02 .01	.07 .07 .06 .07 .05	1 1 1 1	8 4 1 1 1
NM R1 15+50N STD C/AU-S	2 18	25 58	8 40	157 132	.1 7.1	12 67	9 29	352 1044	3.16 3.98	17 42	5 17	ND 7	1 38	13 51	1 17	2 16	2 18	54 56	.29 .48	.021 .086	28 2	18 61	.57 .89	31 179	.09 .07		1.76 1.88	.01 .06	.05 .14	1 11	1 48

Page 7

í

٤

í

(

(

(

(

(

(

(

(

C

SAMPLE	HØ PPM	CU PPM	PB FPM	ZN Ppm	AG PPM	NI PPM	CO PPH	MN PPM	FE Z	AS PPM	U PPM	AU PPH	TH PPM	SR PPM	CD PPM	SB PPM	BI PPM	V PPM	CA I	P Z	LA PPM	CR PPM	M6 Z	BA PPM	TI X	B PPM	AL Z	NA Z	K I	W PPM	AU t PPB
NM R1 15+00N NM R1 14+50N NM R1 14+00N NM R1 13+50N NM R1 13+00N	1 1 2 1 2	25 67 29 26 34	4 4 10 5 15	101 277 73 104 72	.2 .1 .1 .1 .1	11 21 8 13 10	10 9 10 10 11	416 428 550	3.13 3.31 3.51 3.37 4.18	22 21 16 23 42	5 5 5 5 5	ND ND ND ND ND	1 1 2 2 2	20 20 20 17 32	2 1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	52 54 63 58 71	.45 .49 .40 .31 .61	.022 .029	2 2 2 2 2 2 2	19 20 17 19 21	.62 .73 .58 .61 .66	31 33 44 55 38	.09 .08 .08 .09 .09	2 2 4	1.98 2.12 2.19 2.33 2.22	.01 .02 .01 .01 .01	.08 .04 .05 .07 .08	1 1 1 1	1 3 1 1
NH R1 12+00N NH R1 11+50N NH R1 11+00N NH R1 10+50N NH R1 10+90N	1 1 1 2 2	24 29 16 31 18	5 11 8 5 5	99 86 92 106 122	.1 .1 .1 .1	14 14 8 13 9	13 11 10 11	388 342	3.51 3.81 2.74 3.70 3.12	31 36 11 35 19	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	18 20 19 18 16	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	60 62 54 64 57	.32 .39 .37 .38 .35	.028 .023 .026 .034 .030	2 2 2 2 3 3	20 21 16 23 20	.64 .73 .43 .73 .48	45 46 52 41 43	.08 .08 .07 .07 .06	4 3 6	2.56 2.74 1.80 2.30 2.25	.01 .01 .01 .01	.07 .07 .08 .06	1 1 1 1 1	3 1 1 5 1
NM R1 9+50N NM R1 9+00N NM R1 9+50N NM R1 8+00N NM R1 7+50N	2 1 1 1 1	48 16 18 21 17	5 5 4 7 5	73 177 79 65 57	.1 .1 .1 .1	10 12 7 9 8	10 11 8 9 7	625 246 290	3.41 2.86 3.22 3.81 3.40	54 15 14 24 18	5 5 5 5 5	ND ND ND ND ND	1 1 2 1 1	13 20 15 14 13	1 1 1 1	2 2 2 2 2	2 2 2 2 2	47 54 62 72 63	.37 .42 .25 .26 .22	.022	3 3 4 4 4	17 18 16 18 17	.71 .54 .48 .54 .48	46 86 30 37 33	.02 .08 .06 .04 .04	2 2 9	2.21 2.22 1.87 2.31 2.16	.01 .02 .01 .01	.08 .10 .05 .05	1 1 1 1	3 14 1 5
NN R1 7+00N NN R1 6+50N NN R1 6+00N NN R1 5+50N NM R1 5+00N	1 1 1 1	20 14 17 21 17	7 2 3 10 3	64 76 56 51 52	.1 .1 .2 .1 .1	9 8 9 8	7 8 7 8 8	231 308	3.05 2.68 3.27 2.93 2.80	12 8 11 20 11	5 5 5 5 5	ND ND ND ND ND	1 2 1 1 1	13 13 13 13	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	57 50 62 48 50	.24 .27 .27 .25 .26	.028 .064 .037 .022 .032	4 3 4 3	19 19 17 16 17	.53 .45 .44 .55 .51	31 41 42 45 30	.05 .04 .04 .02 .03	3 5 3	2.04 1.86 2.05 1.87 1.93	.01 .01 .01 .01 .01	.05 .08 .06 .05 .06	1 1 1 1	1 1 1 1 1
NH R1 4+50N NH R1 4+00N NH R1 3+50N NH R1 3+00N NH R1 2+50N	1 1 1 1 1	16 19 20 26 48	2 3 12 5 3	51 46 61 55 123	.3 .1 .1 .1 .4	7 6 10 9 8	7 7 9 7 7	250 306	2.78 3.29 3.48 3.37 4.31	10 12 9 22 2	5 5 5 5 5	ND ND ND ND ND	1 1 2 2 1	13 15 16 14 18	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	54 60 62 54 66	.20 .21 .31 .26 .66	.021 .022 .023 .027 .050	3 4 4 8	14 15 17 19 11	.41 .52 .57 .63 .68	33 30 43 48 40	.02 .02 .02 .03 .01	4 3 4	1.81 2.00 2.36 2.30 2.93	.01 .01 .01 .01 .02	.06 .04 .08 .06 .05	1 1 1 1	1 5 1 11 1
NM R1 2+00N NM R1 1+50N NM-A R2 14+00N NM-A R2 13+50N NM-A R2 13+00N	1 1 4 2 2	56 68 45 19 30	6 12 26 11 10	38 72 58 37 52	.3 .3 .1 .2 .2	5 11 9 7 8	6 12 9 5 9	302 369 221	5.59 5.46 4.89 3.61 4.37	12 16 95 30 34	5 5 5 5 5	ND ND ND ND ND	2 2 1 1	7 16 18 12 12	1 1 1 1	2 2 3 3 2	2 2 2 2 2 2	68 69 59 55 70	.12 .27 .16	.071 .057 .041 .028 .041	2 4 3 3 3	17 20 18 13 20	.27 .53 .62 .44 .61	31 49 49 31 43	.01 .02 .03 .03 .05	4 4 5	2.06 3.60 2.27 1.88 2.56	.01 .01 .01 .01 .01	.05 .08 .07 .06 .04	1 1 1 1	1 24 1 9
NH-A RZ 12+50N NH-A RZ 12+00N NH-A RZ 11+50N NH-A RZ 11+00N NH-A RZ 10+50N	2 2 1 1 1	33 16 16 23 25	2 13 9 6 7	47 51 114 86 107	.1 .1 .1 .1	11 6 9 12 14	10 7 8 13 13	325 634 612	4.34 2.79 2.88 3.34 3.10	30 13 13 28 13	5 5 5 5 5	ND ND ND ND	1 1 1 1	11 10 11 14 27	1 1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	67 55 55 60 59	.30 .19 .20 .24 .39	.028 .019 .025 .032 .028	3 2 3 3 3	22 13 18 21 22	.76 .49 .52 .63 .68	35 25 29 62 55	.03 .02 .03 .06 .07	5 3 4	2.39 1.79 1.74 2.56 2.51	.01 .01 .01 .01 .01	.06 .03 .04 .05 .05	2 1 1 1	1 1 6 1
NM-A R2 10+00N STD C/AU-S	2 18	46 59	7 40	89 132	.i 7.2	12 67	11 29	1038 380	5.06 4.03	31 39	5 19	ND 8	2 38	12 52	1 18	3 17	2 18	73 57	.16 .49	.051 .084	3 39	23 33	.78 .89	49 179	.04 .07		3.05 2.01	.01 .07	.06 .14	1 12	1 52

Page 8

1

f

÷

4

l

7

í

1

(

÷

ì

SAMPLE	MO PPM	CU PPM	PB PPM	ZN PPH	A5 PPM	NI PPM	CD PPH	MN PPH	FE Z	AS PPM	U PPM	AU PPN	TH PPM	SR PPM	CD PPM	SB PPM	BI PPN	V PPM	CA I	P I	LÀ PPH	CR PPH	MG Z	BA PPM	TI I	B PPM	AL Z	NA I	K I	W PPN	AU : PPB
NN-A R2 9+50N NM-A R2 9+00N NM-A R2 8+50N NM-A R2 8+00N NM-A R2 7+50N	1 1 1 1	21 25 24 14 25	11 11 6 3 6	61 150 47 61 73	.1 .1 .1 .1	15 13 11 8 11	9 14 10 8 9	1231 371 274	3.42 3.31 3.58 2.79 3.27	15 13 11 3 15	5 5 5 5 5	ND ND ND ND	2 1 1 1 1	20 17 16 14 15	1 1 1 1	2 2 2 2 2	2 2 2 2 2	58 56 65 54 59	.34 .36 .40 .24 .34	.021 .034 .015 .019 .034	6 4 3 3 3	24 21 21 18 19	.61 .62 .69 .51 .59	65 68 46 54 88	.07 .06 .06 .05 .05	7 2 2	2.49 2.60 2.43 2.12 2.80	.01 .01 .01 .01 .01	.05 .05 .05 .04 .05	1 1 1 1	1 1 1 1
NM-A R2 7+00N NM-A R2 6+50N NM-A R2 6+00N NM-A R2 5+50N NM-A R2 5+00N	1 1 1 1 1		5 7 9 8 10	68 54 67 67 59	.1 .1 .1 .1	14 9 12 13 10	11 7 9 9 8	265 483 466	3.56 3.00 3.25 3.32 3.59	9 6 8 9 14	5 5 5 5 5 5	ND ND ND ND	1 2 2 1	13 12 16 14 14	1 1 1 1 1	4 2 2 2 2	2 2 2 2 2	54 57 59 54 59	.22 .27 .37 .32 .22	.062 .037 .028 .066 .039	4 4 3 3	21 18 22 24 19	.71 .49 .59 .58 .50	45 34 55 51 54	.07 .06 .06 .06 .02	2 4 9	2.70 2.06 2.54 2.49 2.38	.01 .01 .01 .01	.05 .03 .05 .04 .04	1 1 1 1	1 2 1 1 2
NM-A R2 4+50N NM-A R2 4+00N NM-A R2 3+50N NM-A R2 3+00N NM-A R2 2+50N	1 1 1 1 1	31 21 18	3 12 9 6 9	39 81 90 83 59	.1 .1 .2 .1 .1	4 10 11 10 6	4 8 10 8 6	386 860 657	2.30 3.62 3.40 3.16 2.58	14 21 7 2 4	5 5 5 5 5	ND ND ND ND ND	1 1 2 1 1	8 11 12 12 12	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	43 51 52 49 42	.21 .19 .25	.013 .027 .031 .023 .019	3 4 3 3	11 18 20 19 13	.30 .54 .59 .61 .43	40 45 69 53 50	.01 .03 .03 .03 .02	3 5 5	1.62 2.35 2.42 2.11 1.80	.01 .01 .01 .01	.03 .05 .05 .05 .05	1 1 1 1	3 99 49 7 1
NM-A R2 2+00N NM-A R2 1+50N NM-A R2 1+00N NM-A R2 0+50N NM- R3 10+00N	1 1 1 1	34 36 40	12 8 6 22 9	90 65 63 68 77	.1 .1 .3 .6 .1	17 5 18 8 12	42 5 12 6 11	302		16 7 5 14 6	5 5 5 5 5	ND ND ND ND	1 1 1 1	19 8 15 12 13	1 1 1 1	2 2 3 3	3 2 2 2 2 2	69 45 76 88 62	.20 .09 .23 .10 .26	.031 .046 .032 .056 .040	6 2 3 3	16 9 33 21 21	.60 .37 .97 .47 .63	78 38 39 54 47	.04 .01 .04 .03 .06	3 4 3	4.12 2.14 3.23 2.77 2.56	.01 .01 .01 .01 .01	.05 .05 .04 .05 .04	1 1 1 1	240 7 1 56 1
NM- R3 9+50N NM- R3 9+00N NM- R3 8+50N NM- R3 8+00N NM- R3 7+50N	1 1 1 1	34 35 36	3 9 4 2 3	52	.1 .1 .3 .1	14 13 14 11 8	11 11 11 11 7	463 338	4.09 4.25 4.15 4.14 2.99	14 19 7 12 3	5 5 5 5 5	ND ND ND ND	1 1 1 1	10 11 13 15 12	1 1 1 1	2 3 2 2 2	2 2 2 2 2 2	65 65 71 71 51	.26 .22 .51 .36 .20		2 3 3 4	26 24 26 23 18	.77 .77 .90 .73 .38	31 38 52 43 34	.04 .03 .05 .04 .05	4 7 5	2.45 2.61 2.95 2.73 2.31	.01 .01 .01 .01 .01	.04 .04 .03 .03 .03	1 1 1 1	1 2 2 1 1
NM- R3 7+00N NM- R3 6+50N NM- R3 6+00N NM- R3 5+50N NM- R3 5+00N	1 1 1 1 1	34 29 29	7 3 5 7 4	53 48	.1 .1 .1 .1	11 10	11 10 10 8 7	395 361 283	3.90 3.75 3.67 3.79 2.72	8 6 7 5	5 5 5 5 5	ND ND ND ND	1 1 1 1	12 14 14 11 12	1 1 1 1 1	2 2 2 2 2	2 3 2 2 2	62 66 63 65 49	.22 .41 .37 .20 .36	.018 .017 .024	3 4 3 4	22 21 19 18 15	.71 .76 .71 .57 .66	38 40 54 45 63	.06 .05 .04 .04 .04	8 3 2	2.79 2.40 2.42 2.32 1.94	.01 .01 .01 .01 .01	.03 .03 .03	1 1 1 1	5 1 1 2 3
NM- R3 4+50N NM- R3 4+00N NM- R3 3+50N NM- R3 3+00N NM- R3 2+50N	1 1 1 1 1	29 60 40	3 6 7 3 15	73 76 66	.1 .1 .2 .1 .4	10 12 11	6 8 12 10 8	401 421 323	2.43 3.66 5.52 4.30 5.34	2 6 15 6 10	5 5 5 5 5	ND ND ND ND ND	1 1 1 1 1	14 12 9 10	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	42 57 67 57 63	.22 .24 .10 .10 .07	.021	4 3 3 3	15 19 20 23 23	.55 .70 .71 .57 .48	45 69 51 34 41	.04 .04 .04 .03 .04	2 5 3	1.86 2.44 3.21 2.55 2.70	.01 .01 .01 .01 .01	.03 .03 .04 .03 .04	1 1 1 1	1 1 1 2
NM- R3 2+00N STD C/AU-S	1 18		6 37				9 28		4.34 4.08	9 39	5 18	ND 7	2 37	11 50	1 17	3 17	2 18	62 56	.10 .47		3 37	23 60	.65 .86	51 179	.03 .05		2.88 1.92	.01 .06	.04 .14	1 11	9 49

Page 9

f

ŧ

ŧ

1

ť

(

t

.

										MIN	CORD	EXI	PLOR	ATI	ON	FIL	.E #	87	-536	6											Faç)e 10
SAMPLE		CU PPM	PB PPN	ZN PPM	A5 PPM	NI PPM	CO PPM	MN PPM	FE I	AS PPM	U PPN	au Ppm	TH PPM	SR PPM	CD PPM	SB PPM	BI PPM	V PPM	CA I	P I	LA PPM	CR PPM	NG Z	BA PPH	TI Z	B PPM	AL X	NA Z	K Z	¥ PPM	AU : PPB	
NN-R3 1+50N	1	42	22	66	.4	7	8	248	4.23	21	5	ND	1	9	1	2	2	59	.08	.043	2	15	. 44	36	.02	2	2.32	.01	.04	1	4	
NM-R3 1+00N	1	41	17	32	1.0	i	4	178	6.36	17	5	ND	1	8	1	2	2	59	.03	.081	2	10	.27	32	.01	2	1.99	.01	.04	1	2	
NH-R3 0+50N	1	57	18	67	.6	12	12	333	5.11	26	5	ND	1	12	1	2	2	72	.11	.042	3	22	.65	44	.05	2	2.95	.01	.03	1	1	
NO NUMBER	1	37	13	62	.3	14	13	350	4.11	38	5	ND	1	17	1	2	2	64	.25	.026	3	21	. 68	41	.08	4	2.31	.01	.04	1	1	

.

)

•

1

.

ŧ

Ł

ſ

1

. .

(

í.

ŧ

(

(

(

(

L.

1

SAMPLET	MO PPH	CU PP N	PB PPM	ZN PPM	AG PPM	NI PPN	CO PPM	HN PPH	FE Z	AS PPM	U PPN	AU PPM	TH Ppm	SR PPM	CD PPM	SB PPM	BI PPM	V PPM	CA Z	P ۲	LA PPM	CR PPH	MG Z	BA PPM	11 7	B PPM	AL X	NA Z	K Z		AU tt PPB	Rocks Auby
3-1-4	5	7	6	8	.4	2	3	2514	1.34	33	5	ND	1	104	1	2	2	7	17.60	.006	3	1	.14	5	.01	4	. 28	.01	.06	1	41	
IR-11	1	17	7	76	.1	5	25	1142	6.67	2	5	ND	1	35	1	2	2	33	1.63	.041	2	2	.83	25	.07	11	2.22	.25	.07	1	1	
NH-A IR 12	2	44	11	60	.2	7	17	1098	5.06	4	5	ND	2	62	1	2	2	41	1.37	.025	2	4	1.17	35	.01	7	4.93	.35	.14	1	1	
₩H-A L01+675	1	12	9	48	.1	7	22	1406	6.79	8	5	ND	2	17	1	2	2	106	2.71	.033	3	11	1.50	13	.01	12	2.81	.02	.13	1	1	
NH-A L01+90S	6	77	367	106	32.1	3	13	710	6.45	76	5	ND	1	4	t	28	2	16	.12	.039	2	1	.36	15	.01	13	1.05	.01	.14	1	39	
✓ NM-FS-5	37	1570	1856	1575	396.0	1	1	100	1.02	175	5	ND	1	2	24	1963	2	1	.09	.005	2	1	.02	3	.01	3	.11	.01	.04	i	92	
NH-JR-6	1	38	13	53	1.1	;	9		6.31	2	5	ND	i	35	1	2	2	97	1.76	.039	2	16	1.56	16	.13		4.22	.07	.04	2	1	
NN-JR-7	2	48	20	55	7.3	12	12			109	5	ND	i	18	1	14	2	36	4.30	.035	5	19	1.12	16	.02		1.27	.01	.11	1	50	
NHT-2-1	2	93	33	656	4.8	19	27		6.82	150	5	ND	1			8	2	73	.52	.037	3	11	1.12	18	.01		1.62	.01	.11	i	82	
NNT-2-2	2	101	38	76B	6.0	10	30		7.77	151	5	ND	i	6	8	7	2	123	. 37	.043	3	13		13	.01		2.32	.01	.13	i	320	
R(11-2-2	-	101		,00	5.0		20	20,0		1	•	112	•	v	U	,	•	120			•	15	1.0,	10		'	2.02			•	920	
NHT-2-3	2	196	47	737	9.4	10	36		6.72	158	5	ND	1	4	6	14	2	41	.26	.022	3	6	.70	16	.01	11	1.48	.01	.15	i	113	
NHT-2-4	3	112	42	675	7.7	7	21	2894	6.22	83	5	ND	1	4	8	9	2	61	.36	.036	4	- 4	.94	16	.01	12	1.51	.01	.14	1	91	
NHT-2-5	2	105	18	745	3.5	7	26	2761	6.84	77	5	ND	1	4	5	7	2	58	.38	.030	3	3	1.51	17	.01		2.40	.01	.13	1	42	
NMT-2-6	3	60	16	786	2.1	15	24	2420	5.91	201	5	ND	1	5	9	11	2	54	.32	.046	4	21	1.27	17	.01	12	1.57	.01	.13	1	45	
NMT-3-1	4	101	13	68	.9	10	30	1786	7.45	128	5	ND	t	5	1	4	2	95	.15	.041	3	14	1.26	13	.01	6	2.62	.01	.13	1	96	
NHT-3-2	4	47	26	104	1.4	11	22	2797	5 00	141	5	ND	1	5	1	3	2	43	.09	.029	3	ą	.65	10	.01	5	1.25	.01	.11	1	87	
NHT-3-3	5	82	21	212	4,4	21	27	6106		132	5	ND	1	11	4	Š	2	86	.15	.040	5	11	1.19	17	.01		2.06	.01	.10	i	395	
NMT-87-54	1	52	12	64	.2	9	8		5.29	6	5	ND	i	28	1	2	2	97	.47	.026	2	16	.78	19	.29		2.75	.04	.06	i	7	
NHT-87-55	1	71	5	78	.1	7	8	841	8.04	10	5	ND	1	31	1	2	2	115	.62	.043	2	35	.63	18	.27		2.58	.04	.04	1	6	
NHT-87-56	1	24	2	78	.1	5	12	868	4.98	10	5	ND	1	13	1	2	2	69	.50	.050	3	10	.03	23	.11		2.06	.03	.09	1	1	
M01-07-30	1	47	1	/0	• 1	5	14	000	T. 70	10	J	ND	1	15	1	4	-	0,	. 30	.030	5	10	• //	25	• • • •	U	2.00	•••	.00		1	
NHT-87-57	9	66	155	336	.9	5	9		3.06	34	5	ND	1	11	8	2	2	36	•29	.019	2	12	.56	11	.07		1.15	.02	.06	1	290	
NMT-87-58	1	28	3	47	.3	9	9	590	4.04	39	5	ND	1	10	1	2	2	39	.24	.018	2	17	1.21	20	.10	9	1.72	.02	.08	1	7	
NHT-87-59	1	65	11	84	.2	3	10	1085	5.15	92	5	ND	1	10	1	2	2	66	.33	.042	2	3	1.43	13	.25	8	2.10	.02	.07	1	28	
NHT-87-60	3	24	3	54	, i	11	12	342	5.57	18	5	ND	1	16	1	2	2	49	.57	.028	2	31	1.66	101	.13	7	2.50	.04	.04	1	1	
NMT-97-61	1	37	7	71	• 3	2	10	888	5.43	50	5	ND	1	9	1	2	2	83	.18	.030	2	2	1.20	15	.27	9	1.59	.03	.05	1	11	
NHT-87-62	1	40	44	86	.2	10	6	1081	3.97	14	5	ND	1	20	1	2	2	72	.52	.022	2	33	1.72	88	.15	6	2.50	.04	.04	1	9	
NMT-87-63	4	36	123	104	3.1	6	7	363		107	5	ND	1	6	1	2	2	39	.26	.027	3	23	1.18	61	.04		1.62	.02	.11	1	147	
NMT-87-64	16	33	174	149	6.8	1	3		2.57	39	5	ND	1	4	1	3	2	6	.03	.013	2	4	.04	46	.03	5	.28	.01	.09	1	280	
NMT-87-65	16	66		22	2.0	3	Å	97	2.27	50	5	ND	1	Å	1	2	2	8	.03	.010	2	5	.08	26	.03	3	.43	.01	.10	2	89	
NMT-87-66	3	37	11	38	.3	8	9		4.04	50	5	ND	1	8	1	4	2	55	.13	.021	2	30	1.77	20	.07		1.75	.04	.09	1	25	
STD C/AU-R	18	59	40	128	7.3	68	28	1084	3.92	39	19	8	37	47	17	17	20	58	.45	.081	36	57	.89	160	.06	31	1.82	.06	.14	13	520	
NHT-87-67	2	29		120	.1	1	4	251	4.68	11	5	ND	- 1	12	1	2	2	33	.25	.031	2	19	1.09	22	.08		1.54	.03	.07	1	13	
NHT-87-68	6	123	19	51	.5	5	6	.757		38	5	ND	1	11	1	2	2	55	.23	.032	ž	20	1.54	61	.12		1.78	.05	.10	1	38	
NNT-87-69	12	123 95	24	58	1.0	3	3	287	2.97	- 38 79	5	ND	1	8	1	24	2	29	.10	.032	5	20	.68	42	.01	5	.98	.02	.12	1	65	
	12		11			5 1	2	54	1.60	52	5	ND	1	4	1	7	2	27	.02	.010	4	2	.00	21	.01	2	.26	.01	.10	1	375	
NHT-87-70	13	27	11	12	5.6	1	2	34	1.00	JZ	3	μų.	1	7	1	'	2	2	.02	• • • • •	7	4	.02	21		4	. 20	101	• 1 4	1	3/3	
NNT-87-71	5	34	49	34	.8	3	3	260	2.98	50	5	ND	i	6	1	3	2	19	.03	.016	2	9	.89	28	.12	5	.91	.01	.11	2	71	
NMT-87-72	7	35	52	25	4.1	4	4	261	2.16	51	5	ND	1	4	1	2	2	12	.06	.011	2	9	.40	12	.05	9	.42	.01	.08	2	305	
NMT-87-73	1	26	8	71	.1	10	7	1020	3.62	24	5	ND	1	6	i	5	2	69	.10	.034	3	39	2.76	52	.01	5	2.42	.02	.11	1	13	

Page 11 -

1

i

1

1

(

(

(

i

1

í.

MINCORD EXPLORATION

1	-	11	07	5	-	1	2
	<u> </u>		37		<u>نا</u>	<u> </u>	0

SAMPLE	MO PPM	CU PPM	PB PPM	ZN PPM	AG PPM	NI PPM	CO PPM	MN PPM	FE	AS Ppm	U PFM	AU PPH	TH PPM	SR PPH	CD PPM	SB PPM	BI PPM	V PPM	CA I	P	LA PPM	CR PPM	MG Z	BA PPM	TI I	B PPM	AL I	NA Z	K Z	W PPM	AU II PPB
NHT-87-74 NHT-87-75 NHT-87-76 NHT-87-77 NHT-87-78	1 1 1 1	23 36 25 43 40	19 37 77 10 14	101 105 63 80 89	.1 .4 .1 .1	16 9 6 9 17	11 10 7 8 10	1203 1181 728 610 724	4.16 4.18 4.42 4.34 4.30	21 40 21 20 38	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	11 6 18 6 10	1 1 1 1	2 3 2 3 2	2 2 2 2 2	58 42 43 32 51	.33 .18 .21 .06 .39	.030 .016 .034 .031 .039	2 2 2 2 2 2	20 21 22	2.07 1.95 1.62 1.61 1.67	35 23 43 23 57	.01 .09 .13 .01 .11	5 9 4	1.78 1.64 1.60 1.81 1.75	.07 .02 .04 .01 .04	.05 .09 .18 .11 .11	1 1 1 1	4 27 7 10 18
NMT-87-79 NMT-87-80 NMT-87-81 NMT-87-83 NMT-87-83	1 1 1 32	27 36 22 31 33	2 4 9 8 9	75 111 101 55 74	.1 .3 .1 .1	8 22 23 14 5	9 9 12 10 11	871 915 962 528 621	3.30 4.52 4.00 3.98 4.39	17 35 44 29 22	5 5 5 5 5	ND ND ND ND	1 1 1 1	29 11 14 12 14	i i 1 1	2 2 2 2 2	2 2 2 2 2	36 65 59 35 41	.90 .39 .65 .53 1.04	.031 .038 .031 .036 .036	2 2 2 2 2	53 18	1.59 2.47 2.15 1.28 1.16	38 51 41 39 55	.09 .10 .11 .08 .11	4 6 6	2.27 2.23 2.03 1.77 1.95	.06 .04 .05 .06 .05	.04 .07 .04 .09 .07	1 1 1 1	5 22 13 18 6
NHT-87-84 NHT-87-85 NHT-87-87 NHT-87-88 NHT-87-89	4 3 2 4 6	15 82 26 58 31	8 9 12 101 24	53 234 146 83 38	.1 .1 2.9 1.9	11 17 8 6 2	8 22 6 10 2	398 1459 882 969 258	3.87 6.69 4.18 4.40 2.38	18 52 27 41 74	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	13 21 3 6 5	1 1 1 1	2 2 2 2 2	2 2 2 2 2	37 139 40 40 17	.42 .57 .10 .14 .18	.030 .031 .032 .023 .014	2 2 2 2 2 2	15	1.82 1.19 2.36 1.39 .51	23 22 20 21 16	.10 .11 .02 .10 .09	3 4	1.82 3.03 2.58 1.29 .84	.04 .08 .01 .01 .01	.09 .06 .09 .09 .13	1 1 1 1	23 9 14 67 103
NMT-87-90 NMT-87-91 NMT-87-92 NMT-87-93 NMT-87-94	6 11 8 9 1	89 52 89 27 79	13 21 12 13 8	83 25 62 42 93	.2 2.7 .2 3.4 .1	7 2 4 4 17	4 2 4 3 24	617 71 579 129 1443	3.70 2.24 3.90 1.35 5.82	38 62 62 36 28	5 5 5 5 5	ND ND ND ND	1 1 1 1 1	8 3 5 7 11	1 1 1 1	2 40 2 5 2	2 2 5 2 2	59 7 47 8 69	.12 .01 .11 .09 .47	.026 .014 .035 .011 .019	2 3 2 2 2	33 3 16 4 19	2.21 .12 1.23 .17 1.59	20 19 25 16 20	.10 .01 .02 .02 .08	7 3 7	2.23 .41 1.60 .59 3.04	.02 .02 .02 .01 .02	.10 .10 .10 .05 .09	1 1 1 1 1	38 76 48 72 9
NNT-87-96 NNT-87-97 NNT-87-98 NNT-87-99 NNT-87-100	42 1 20 4 23	1363 17 339 51 466	44 6847 299		1.7 167.4 17.3	5 3 8 10 2	7 5 11 12 3	1512 3034 1208 553 2453	3.14 3.56 2.23 2.89 1.48	100 47 119 102 56	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	33 118 10 17 76	593 1 226 5 132	337 2 113 13 135	2 2 2 2 2	17 6 11	7.61 13.39 2.43 3.45 15.48	.012 .004 .027 .033 .007	3 2 3 3 4	5 3 4 8 2	.27 1.10 .11 .25 .09	8 2 14 13 7	.01 .01 .02 .01	11 7 13 12 7	.39 1.20 .47 .49 .18	.01 .01 .01 .01 .01	.05 .02 .14 .11 .04	1 1 2 1 3	890 34 135 132 480
NMT-87-101 NMT-87-102 NMT-87-103 T-2-7 T-2-7 T-4-01	5 1 14 5 14	106 52 486 92 129	136 56 1226 654 607	191 195 1385 831 633	9.6 1.5 478.3 50.9 40.0	8 6 2 12 9	9 11 4 23 15	991 969 134 4167 2567	3.26 5.20 2.04 4.27 2.57	76 9 116 143 145	5 5 5 5 5	ND ND ND ND	1 1 1 1	21 9 2 4 6	2 1 17 14 10	2 2 949 25 14	2 2 2 2 2 2	18 33 2 21 6	6.71 1.48 .06 .24 .14	.024 .046 .012 .030 .022	4 2 4 3	8 2 7 4	.61 .80 .07 .48 .06	10 18 6 20 17	.01 .01 .01 .01	13 11 8 14 16	.91 2.15 .27 .85 .35	.01 .03 .01 .01 .01	.08 .15 .05 .10 .07	1 1 2 1 1	27 25 91 295 72
- T-4-02 - T-4-03 - T-4-04 - T-4-05 - T-4-06	22 10 6 22 9	354 157 123 255 158	2309 1350 444 2637 12880	1161 761 947 5284 1429	77.5 26.2 11.7 56.6 76.2	14 6 11 9 8	12	7026 1964 1748 10955 4473	3.00 3.45 4.48 3.98 4.12	197 233 202 142 98	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	8 8 10 11 8	24 6 7 101 14	24 15 10 19 12	2 2 2 2 3	8 10 23 27 41	.09 .07 .15 .21 .18	.021 .025 .039 .034 .038	3 3 5 7 6	3 3 9 8 12	.07 .15 .56 .76 1.13	31 19 23 45 33	.01 .01 .01 .01 .01	11	.54 .59 1.10 1.58 1.70	.01 .01 .01 .01 .01	.07 .09 .09 .08 .11	1 1 1 1	104 52 38 450 460
✓ T-4-07 STD C/AU-R	4 18	52 58	399 39	597 131	5.0 7.4	8 68	17 28	2438 1034	4.07 4.04	118 43	5 20	ND 8	2 39	12 52	8 17	4 17	2 17	32 56	.19 .52	.030 .085	28 9	11 62	.86 .91	208 178	.01 .07		1.34 1.89	.01 .07	.10 .13	1 12	46 490

- ASSAY REQUIRED FOR CORRECT RESULT Jb >10,000 pm Zn 720,000 ppm Ag > 35 ppm

.ge 12

ŧ

1

t

(

Ļ.

ŧ

ſ

C.

C

1

.

SAMPLEN	NO PPH	CU PPM	PB PPM	ZN PPH	AG PPH	NI PPM	CO PPM	MN PPM	FE Z	AS Pp n	U PPM	au PPM	TH PPN	SR PPM	CD PPM	SB PPM	BI PPM	V PPM	CA X	P I	LA PPH	CR PPM	M6 I	9A PPM	TI X	B PPM	AL I	NA Z	K Z	W PPM	AU II PPB
T4-08	2	53	740	462	3.5	11	13	3410	3.94	82	5	ND	2	Ģ	5	2	3	32	.19	.037	7	11	.94	20	.01	2	1.48	.01	.10	1	22
T4-09	7	263	528	1222	7.6	10	16	7037	5.33	148	5	ND	1	12	17	2	3	39	.22	.035	Ģ	9	1.16	220	.01	10	1.94	.01	.10	1	78
T4-10	2	112	295	724	30.3	9	11	3707	3.62	77	5	ND	1	51	7	2	2	40	7.39	.029	5	11	. 99	69	.01	8	1.43	.01	.07	1	54
T4-11A	7	190	3150	6740	28.5	1	1	6090	1.03	61	5	ND	1	130	76	10	2	1	21.73	.001	2	1	.10	5	.01	2	.08	.01	.01	1	340
✓ T4-11B	40	645	20230	64111	295.5	2	3	5178	1.69	178	5	ND	1	10	711	51	2	2	2.53	.003	2	2	.08	4	.01	6	.17	.01	.02	1	605
✓ T4-12	4	186	1151	2893	31.4	1	1	5504	.93	44	5	ND	1	102	28	7	2	1	16.20	.001	2	1	.10	Ģ	.01	7	.10	.01	.01	2	210
T4-12A	7	71	2987	5351	81.9	1	1	10370	.94	57	5	ND	i	145	50	5	2	1	27.39	.001	2	1	.11	3	.01	5	.05	.01	.01	2	205
T-5-1	2	41	98	235	2.6	11	18	1469	4.63	55	5	ND	2	13	2	2	2	52	.64	.023	4	11	1.09	25	.01	7	1.66	.03	.11	1	27
T-5-2	1	35	82	318	2.6	8		3602		61	5	ND	1	70	3	2	2			.020	6	8	.55	20	.01		1.08	. 02	.10	1	26
T-5-3	1	62	229	386	4.0	14	16	1776	4.58	23	5	ND	1	29	3	2	2	70	2.02	.032	4	23	1.72	23	.01	3	2.69	.09	.06	1	16
T-5-4	1	39	33	143	.7	7	15	1285	4.74	5	5	ND	1	26	1	2	2	63	1.84	.051	5	6	1.73	20	.05	3	2.74	.08	.05	1	1
✓ T-5-5	6	194	2548	2681	93.8	7	10	3756	3.01	62	5	ND	1	5	32	15	2	17	.40	.025	3	8	. 49	11	.01	10	.73	.01	.07	2	720
T-5-6	9	94	1580	3189	22.4	5	7	2148	2.58	142	5	ND	1	20	32	6	2	3	4.27	.017	2	3	.12	7	.01	14	.28	.01	.07	2	380
7-5-7	8	78	362	524	6.8	6	9	2546	2.75	81	5	ND	2	9	7	2	2	20	1.39	.023	5	7	.60	16	.01	9	1.07	.01	.09	1	103
T-5-8	1	79	35	219	.8	7	17	1826	5.19	15	5	ND	2	24	1	2	2	96	2.82	.036	6	3	2.02	20	.01	5	3.45	.06	.09	1	3
T-5-9	1	55	40	116	1.1	12	15	1333	4.34	46	5	ND	1	12	1	2	Ą	55	.30	.031	6	14	1.22	22	.01	6	1.92	.02	.10	1	10
T-5-10	1	42	31	101	.5	14	17	1269	4.91	39	5	ND	1	17	1	2	2	77	.93	.037	4	23	1.79	20	.06	9	2.10	.10	.10	1	9
STD C/AU-R	19	59	39	132	7.2	69	29	1040	3.96	40	17	8	39	52	18	15	19	57	.47	.084	39	60	.88	180	.07	33	1.88	.07	.14	12	515

Page 13

ſ

t

A DE ANALYTICAL LABORATORIES LTD. DATE RECEIVED: NOV 17 1987 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716 DATE REPORT MAILED: Dec. 3,87.

ASSAY CERTIFICATE

- SAMPLE TYPE: Pulp AU** BY FIRE ASSAY (1 A/T)

C

ASSAYER: ... A. A. A. C. ASSAYER

MINCORD EXPLORATION File # 87-5366 R

SAMPLE#	AU** oz∕t
NM-FS-5	.002
NMT-87-96	.017
NMT-87-98	.005
NMT-87-100	.023
NMT-87-103	.003
T-2-7	.009
T-4-01	.002
T-4-02	.003
T-4-03	.001
T-4-04	.001
T-4-05	.011
T-4-06	.017
T-4-07	.001
T-4-08	.001
T4-11B	.022
T4-12	.007
T4-12A	.008
T-5-5	.021

ACTE ANALYTICAL LABORATORIES LTD. DATE RECEIVED: DEC 8 1987 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716 DATE REPORT MAILED: DUC 10. /8.7

ASSAY CERTIFICATE

- SAMPLE TYPE: Pulp

MINCORD EXPLORATION File # 87-5366 R

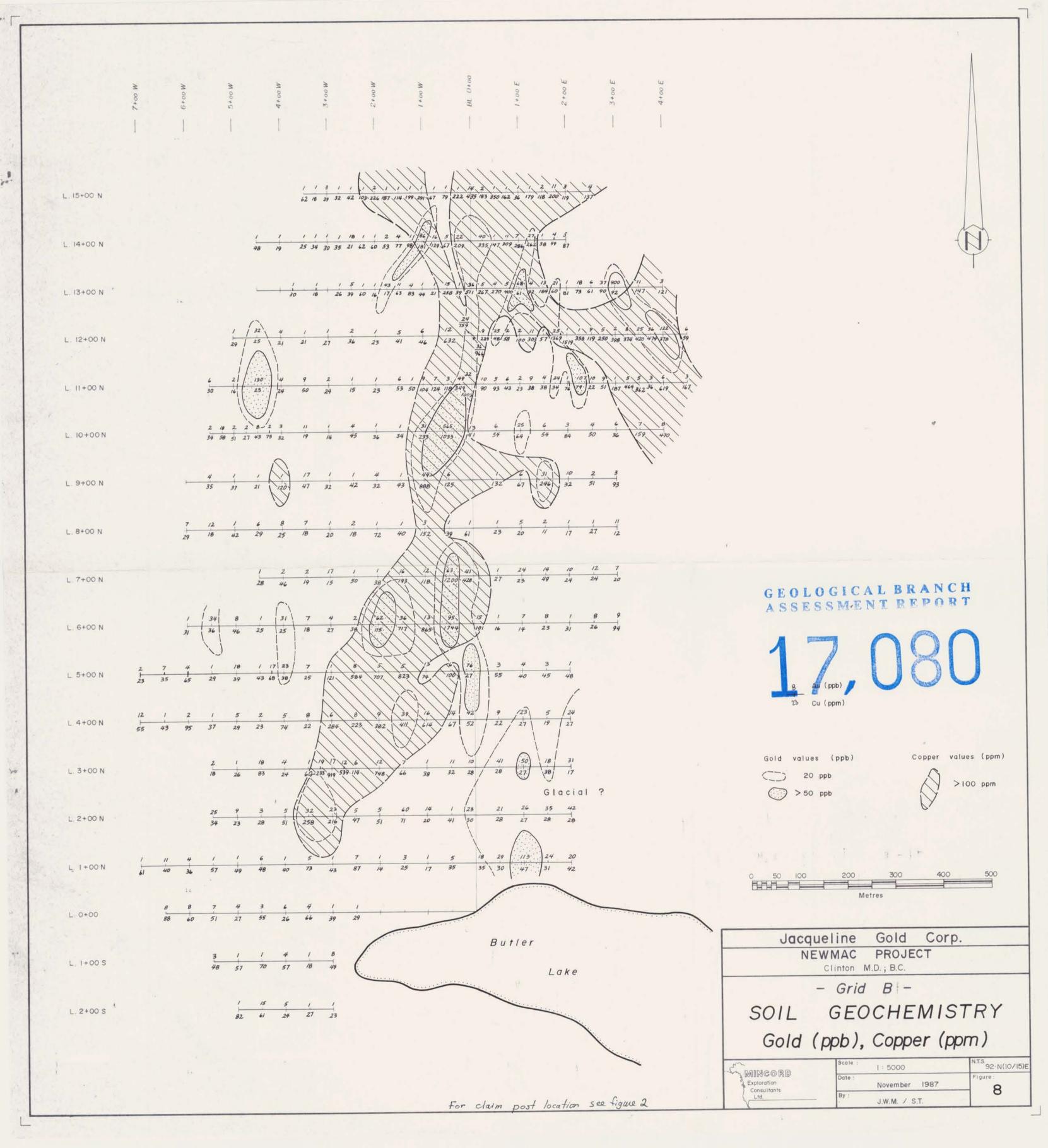
SAMPLE#	AG OZ/T
NM-FS-5	29.52
NMT-87-96	6.30
NMT-87-98	4.78
NMT-87-100	5.50
NMT-87-103	28.19
T-2-7	1.51
T-4-01	1.18
T-4-02	2.25
T-4-03	.78
T-4-04	.38
T-4-05	1.79
T-4-06	2.30
T-4-07	.11
T-4-08	.11
T-4-11B	8.96
T-4-12	.78
T-4-12A	2.31
T-5-5	2.79

A LE ANALYTICAL LABORATORIES LTD. DATE RECEIVED: NOV 17 1987 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716 DATE REPORT MAILED: Dec. 3/87.

ASSAY CERTIFICATE

- SAMPLE TYPE: Pulp AU** BY FIRE ASSAY (1 A/T) ASSAYER: ... A. Jung DEAN TOYE, CERTIFIED B.C. ASSAYER MINCORD EXPLORATION PROJECT-NEW MAC File # 87-5150 R

SAMPLE#	AU**
	oz/t
NMT-87-53	.002
I-3A	.065
1-10	.065


ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: 1 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED: DEC 8 1987

ASSAY CERTIFICATE

- SAMPLE TYPE: Pulp

MINCORD EXPLORATION PROJECT-NEW MAC File # 87-5150 R

SAMPLE#	AG OZ/T
NMT-87-53	2.23
I-3A	.03
I-10	.15

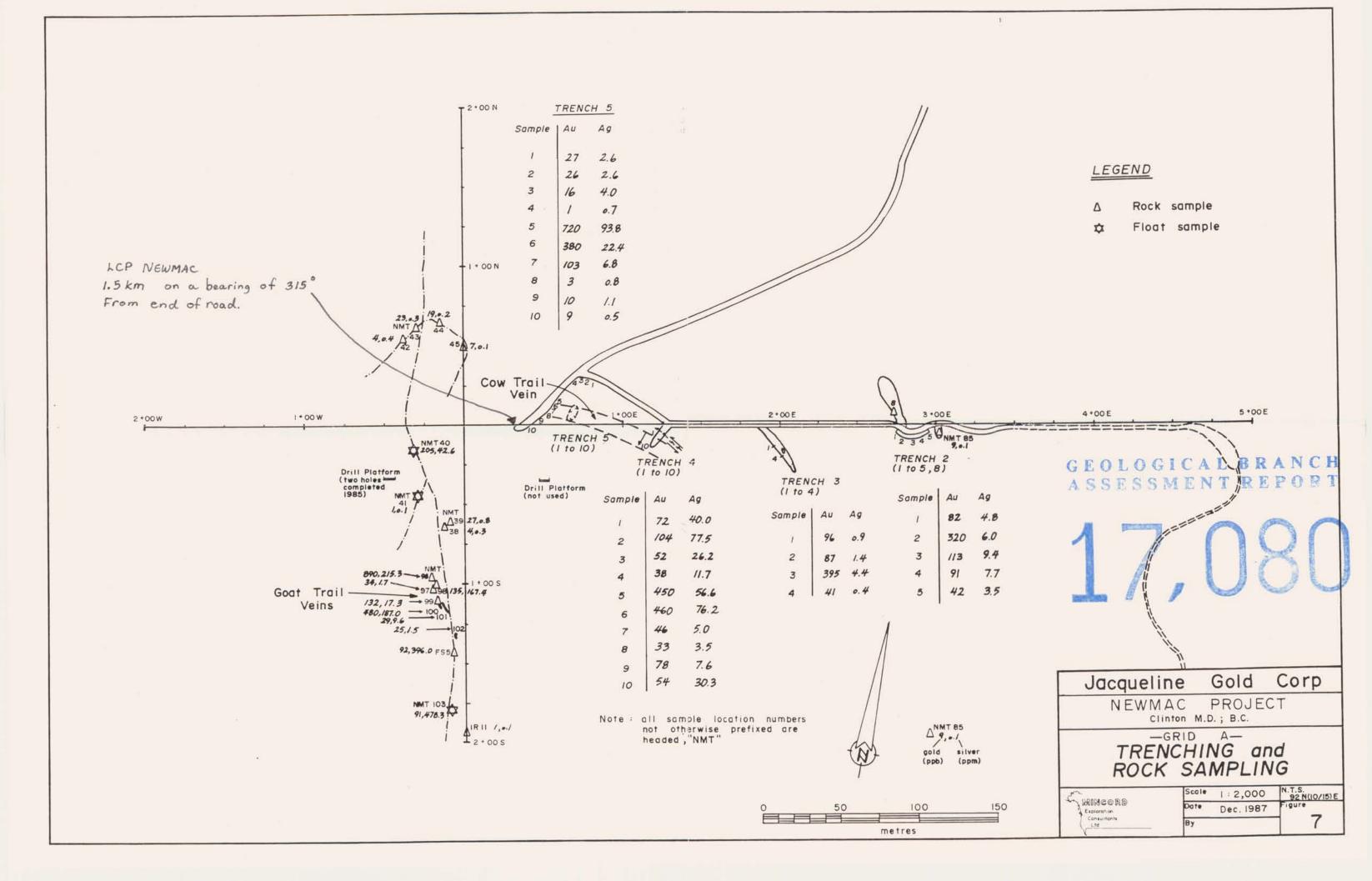
		L. 2+00 W		L. I+50 W		L. 1+00 W		L. 0+50 W		L. 0+00		L. 0+50 E		L. 1+00 E		L. 1+50 E		L. 2+00 E	C L	L. 2+50 E	
2+00 1	v —									41						T 1,0.2				T 2,0.9	
											~									2,0.7	
																- 1,0.1				- 1,0.6	
	-															- 1,0.5				- 1.0.5	ţ.
	-															-1,0.6				-1,0.4	
	-															- 1,0.1			163	118.0.4	8.10
1+00 M	/ <u> </u>	14 T 1.0.1	Τ 1,0.1	T //,o.1	T 1,0.1	T 5,0.1	⊤ 1,0.1	т		7 26.0.1	T 5, q. 1	- 102,04	T 1.0.2	T 1.0.4	T 3,02	- 360.0.2	7 2,0.1	⊤1,0.1	T /.o./ -	7,0.1	15,0
	_	- 5, 0.1	-1,0.1		- 8,0.1	- 7,0.1	- 1,0.1	- 1.0.1 - 2.0.1		- 11,0.1	- 1,0.1	- 1.0.1	- 1,0,4	- 1,0.5	2,0.5	- 33,0.2	- 2.0.1	- 11,0.1	- 4,0.2	-5,0.4	-31,0
	2	- 3, 0.1	- 1,0.1		- 1,0.3	- 1,0.1	- 1,0.1	- 4,0.1	1	42,0.2	- 2,0.2	- 10,0.1	- 6,0.5	- 10						72,02	- 1,0.
				- 5,.1	-	-5,06	- 1,	- 000	Ĺ		- 2,0.2	- 10,0.1		- 5,0.1	- 4,0.1	- 2,09	- 14,0.1	- 1,0.2	- 2,0.1	- 3, 0.4	95
	-	- 1,0.1	- 1,0.1	- 10,0.1	- 1,0.1	-5,0.1_	- 1, 0.1	- 1,0.2		- 15,0.4	-3,0.1	- 5,0.3	- 1,0.1	- 1,0.1	- 3,0.3	- 1,0.4	- 5,0.3	- 1,0.1 (85,81	-2,0.1	-5
	-	- 1,0.1	- 3,0.1	- 5,02	- 1,0-2		- 3,0.1	- 5.0.4		-	- 5,1.0	- 5,0.3	- 5,0.3	-5,05	-5,0.3	╪┛	-5,01	-5,0.2	5,02	595,10	55
BL 0+00	,	1.0.1	1.0.1	5,0.1	1.0.1	-5,0.2	1,0.1	-5,0.3 5,0.3		10,051	-45)9.0	-5,12 60,324	-5,0.4 5,1.1	-5,0.4 5,0.5	-5,0.9 -5,0.5	1.12	5,01	(20,27	5,0.1	=10,10-	5,0.
	_	- 4,0.1	-1,0.1	-5,0.1	- 1,0.3	-5	- 1,0.1	5,0.1 - 5,0.1		-5,03	-5,0.6	5,0.9	-5,0.9 -5,0.7	-5,04	-5,03 -5,03			5,97	-10,0.2	-5,0.5	5,0
			i			-5 [Ţ	-5.0.6-=	5.0.9	-5,03	-5,0.3	-5,0.4 -10,0.4	122,03	<u>–</u> –	5,02	-205,1.4 225,1.4 	-25,0.1		-5,0.
	-	- 1, 0.1	- 1,0.1	-5,01	-1,0.1	-55	- 1,0.1	- 1,0.1		5,03	62,14	#5,0.1	- 2,0.2	- 7,0.3	- 1.0.2	- 3,0.1	-5,02	3,0.2	-51	71.0.6	
	-	- 1.0.1	1		- 2,0.1	- 5,0.1	-	- 1,0.1		- 5,0.2	- 1,0.1	- 2,0.1	- 5,0.1	- 1,0.1	- 3,0.1	- 1,0.3	- 2,0.4	- 5,0.2 - 1,0.1 - 1,0.7	- /(136.0.4	- 45,0
1	-	12,0.1	- 1,0.1	-	- 1,0.1	- 1,0.1	- 1,0.1	- 7,0.1	ſ	- 2,0.1	- 2,0.1	-	- 4, 0.4	- 3,0.1	- 2,0.2	2,0.1	- 8, 0.2	-1,0.1 -1,0.2 -1,0.1	-5	18,0.2	- 25,0
1+00 S	-	- 1,0.1	-1,0.1	+	- 1,0.1	- 6.0.1 - 14,0.1	-1,0.1	- 3.0.2	- 2,0.1	1,0.1	- 3,0.1	1,0.1	- 1.0.1	- 21,0.1	- 1,0.1	9,0.2	- 1,0.2	- 1,0.1	-5 -60 -35 -3,0.5	5.0.2	395
		- 1, 0.1	- 1,0.1		- 1,0.1	- 6,0.1	- 1,0.1	-2,0.1	1	10,0.2									- 14,1.0	IL_	1
				- 1,1.4					-1.0.2		- 1,0.1	-1,0.1	- 2,0.1	- 6,0.1	- 8,0.1	- 5,0.1	- 1,0.1	- 1,0.1	- 1.0.2 - 2.0.2	4,0.2	-11,0.
	-	- 1,0.1	- 1,0.1	- 4, 0.1	- 1,0.1	- 1,0.1	- 1,0.1	- 5,0.1	-4,0.1		- 3,0.2	37,0.1	- 1,0.1	- 1,0.1	- 4,0.1	- 1,0.1	- 7,0.1	- 2,0.1	- 1,0.1	69:04	- 18,0.
	-	- 1, 0.1	- 1,0.1	-1,0.3	- 1,0.1	- 10.0.1	- 1,0.1	- 2,0.1	- 1,0.1.	93,1.3	6.0.1	2,0.1	- 1,0.1	- 10,0.1	- 2,0.1	- 1,0.1	- 3,0.1	- 1,0.3	- 1,0.6	-1,0.1	- 10,0.
	-	-1,0.1	- 1,0.1	-1,0.1	- 1,0.1	- 5,0.2	- 1,0.1	- 1,0.1	3,0.1	27,3.4	430,0.1	44,0.1	1,0.1	- 2,0.1	- 1, 0.1	1,0.1	- 1,0.1	- B, o.3	- 9,0.2	- 3,0.2	6.0.1
2+005	—	1,0.1	1,0.1	1,0.1	4,0.1	34,0.1	1.0.1	1.0.1	1 21,0.1	11,0.2	1,0.1	3,0.2	48,0.7	4,0.1	4,0.1	4.01	1,0-1	2,0.1	1,0.3	2,0.1	4,0.1

70

. 8.

-

00


Gold values (ppb)

Au (ppb)

50

For claim post location see figure 2

L. 3+50 E ш 5+00 E 3+00 4+00 4+50 1 10 1.00 T2,0.8 T 3,0.3 T3,1.9 T4,0.7 T6.0.1 T11,0.1 T3,0.5 T1.0.3 5,0.1 T1.0.1 31,0.4 ,0.3 .0.2 .0.2 - 1,0.6 - 1,0.5 - 5,0.3 - 1.0.1 32,0.6 - 16,0.4 - 15,0.4 - 1,0.1 - 1,0.2 2,0.1 1.0.3 -2,0.4 -27,1.5 -3,0.2 -15,0.3 -3,0.6 -6.0.4 -1,0.4 - 3,0.1 15,0.3 -10 1,0.3 - 3,0.4 - 10,0.3 - 2,0.1 -5,0.5 -5 -1,0.4 - 5,0.2 -5,10 3) -16,0.3 -5,0.3 -1,0.3 5,0.2 -1,0.5 -1,0.6 -5,0.1 -5.0.6 -5,0.3 Outline of area -5,0.5 ,0.1 10,0.1 soil sampled by 3,0.1 5.0.1 5,13 5.9,0.5 5,0.2 ,0.3 Imperial Metals -5,23 -5.06 Corporation (1984) -40,0.5 ,0.3 -5,0.2 -19,0.2 -5,0.1 - 2,0.6 -1,0.6 -10,0.1 - 1,0.7 -20 -5,12 5/0.4 -1.0.3 1.0.1 19.0.1 -5,0.2 - 5,0.1 +4,0.1 5,02 - 62,0. - 1,0.2 - 13,0.1 - 1,0.2 - 3,0.1 - 9,0.1 -- 43, 0.1 -1.0.1 -1.0.1 - 5,0.2 - 1,0.3 - 1,0.1 5,0.1 4,0. 1,0.1 -6,0.1 61, 95,01 12,0.1 + 2,0.2 + 1,0.2 + 1,0.1 - 2,4.3 - 3,0.1 -8,0.9 -1,0.4 - 1.0.1 118,0.2 - 35,0.2 - 1,0.1 - 2,0.2 -11,0.1 - 8,0.2 - 40,0.5 -1.0.3 -1.0.1 - 1.0.1 130,0.2 52,0.5 - 5,0.1 -1,0.5 -1,0.3 - 1,0.1 - 1,0.1 -1.0.1 34,0.3/ -1,0.2 -2,0.3 -3,0.2 -10,0.2 -1.0.4 - 2,0.3 - 7,0.1 - 3,0.1 -13,0.1 -1.0.1 -1.0.1 0.1 4,0.1 -6,0.2 - 1,0.1 -1,0.2 -1.0.1 -1,0.1 78,0.1 GEØLOGICAL BRANCH .0.1 14,0.2 1,0.3 ASSESSMENT REPORT Jacqueline Gold Corp. NEWMAC PROJECT Clinton M.D.; B.C. - Grid A -GEOCHEMISTRY SOIL Gold (ppb), Silver (ppm) Scale N.T.S. 92·N(10/15)E 1: 2000 MINCORD 150 Metres Date Figure Exploration Consultants Ltd. November 1987 5 J.W.M. / S.T.

*														A.							
		L. 2+00 W		L. 1+50 W		L. 1+00 W		L. 0+50 W		L. 0+00		L. 0+50 E		L. 1+00 E		L. 1+50 E		L. 2+00 E		L. 2+50 E	
2+00 N	_															T 19, 33				T 31,117	
	-		sia.													- 13,77				- 42,137	
	-					(1)										- 12,74			X	- 25,141	/
	-							R								- 14,66			-	- 15,80	-
	_															-10.72				- 12,69	
1+00 N	_	т 7.70	т 11,66 -	7,59	T 11,53	T 12,66	T 16,49	-		T 18,129	- 10 112	T 15 02	- // 74				T 11.62			(/
	_	-6,66	- 10,58	- 8,57	- 16,62	- 14.60	1-20,72	- 19,76		- 18,94	19,112	20,89	9,49	- 18,70	- 17,60	- 11,70	- 9,65	- 11,73	8,82	- 11,71	- 2
	_	- 10,71	- 10.66	- 3,49 - 7,60	- 12,59	- 10,75	- 17,47	-13.60		- 14,76	- 9,98	10,105	31,107	- 17.71	-	- /3, 82	- 9,71	- 12,58	- 12,74	- 18,82 - 12,73	-19.
	_	- 7,49	- /2,82	-8,27	- 11,58	-40,27			r — 7	-17,56		~		1	- 26,64		- 8, 44	- 7,64	- 7.60	- 7.67 - 8,74 - 12,65	- 9,
				-0,43		-13,65		- 12,70 - 9,61 - 31,74		- 39,121	- 17.135	-16,78	-16,100	-11,66	- 10.63 -	- 15,61	-9,52 -7,42-	- 10,50	- 6,44	- 7,71 - 14,71 - 17,97 - 44	-3
		5,58	9,118	-8,53 -8,50 6,22	- 10,72	- /3,29	- 17.64	-31,74 -27,69 -30,101 -24,78	1		-24,331/ -47,181 -425,781 -30,173	36 123 -622 399 -190 406 -106 291 910:1484	-17,94 -26,150 -31 -27,207 -41,134 34,140	-14,76 -17,80 -12,103 -9,98	-10.70 -9.66 -10.76		-2,50	-5,59	-2,58	-128 -110 -59	- 2
BL 0+00	_			-6,37		-5,37	19,57	-12.58		30,59-	-30,123. 10,75 -61,144 -19,75 -19,109	-62,159	34,140 -57,178 -36,126 -34,96	-9,91 -6,53 -9,60 -9,62	-6,65 -7,50 -6,43 -9,57	8,61 -6,58 -4,49 -5,42	-3,41 5,47 -4,55	-4,79 -4,79 -20,111 -19,79 -30,111	5.54	-15 -12 -44	-9
		- 7,52		- 6,32 - 7,47	- 12,63	85,14	- 26,77	-13,54 -17,49 -15,50]	-11,65 -	19,109 19,68 -32,134	-13,67	-19,75	-9,69	- 9,68 - 8,54	- 5,32 - 2,48	-3,52	-30,124	-6,47	-5	-7,
	_	- 5,51	- 6,45	-152,823		78,121	14.40	- 19,56		-12,48	- 17,117	- 11,90	-14,70 (- 21,58	- 9.58	9.51	- 1,45	- 11.77 - 8.55 - 9.57 - 10,62 - 6,93 - 7.54	-4,45	- 8,56	- 4;
		- 8,70	1	-	- 13,61	- 23,43	-	- 11,59		- 18,75	-12,80	- 26.109	-12,97	- 18,59	- 11,58	- 10,51	- 2,37	- 8,58 - 7.53 - 8.60	- 4,54	- 6,47	- 9,
	-	- 6,50	- 8,51		- 13,54	- 13,50 - 5,47	- 14,71	- 18,56	[- /3,72	- 10,79	1	179,1020	11,65	- 8,51	- 9.62	- 9,52	- 8,56 - 7,47	5,44 -1,51 -2,56 -4,45	- 6,53	- 9,1
1+00 5	_	- 10,63	- 10,53 -		- 6,65 -	9,55	- 8,59	- 15,68	6.78	- 6,77	- 7,72	- 12,83	-17,88 -	- 13,65	- 10,53	9,54	- 2,54	- 7,56 -	- 9,59 - 9,72	- 5,47	- 3,
	-	- 13,49	- 7,58	24,80	- 10,60	- 15,49	- 4,69	- 9.67	- 34,80	- 12,92	- 6,64	8,78	- 9,67	- 8,63	- 15,58	- 8,55	- 2,55	- 5,49	- 7,64 - 5,48 - 5,62	- 6,66	- 6,
	-	- 10,64	- 11,59	9,59	- 6,54	- 12,68	- 7,68	- 9.63	- 11,69	1	-17,90	8,66	- 8,66	- 8,73	- 15,69	- 8,48	- 2,51	- 8,71	- 2,57	- 7,57	- 6,6
	-	- 10,62	- 11,65	- 11,57	9,67	- 10.64 (- 23,67	- 13,61	- 9.7	169,250	- 9,69	- 5,72	- 4,86	- /2,77	- 5.61	- /3,48	- 2,61	- 4,65	- 3,56	- 8,54	- 8,
	-	- 8,66	- 11,64	9,53	11,65	- 14.49	- 10,62	- 11,66	- 11,102	91,314	-/2,76	- 3,61	-10,52	- 7,63	- 13,62	- 5.58	- 8,57	- 7.66	- 3,63	- 5,59	8.5
2+005	-	⊥ 6,64	6,69	7,51	- /3,77 -	. 15,81	_ 8,56 .	3,61	9,74	1 16,102	_ 11,72 _	- 6,63 -	- 10,58 -	- 13,57 -	10,69	8,63	7.60	1,74	5,51	2,61	5,
		14	15	20	. 16	24		23	C	21	24	23	24	14		29	72	32	30	35	2
1																					

70

IL

Lead values (ppm)

Pb (ppm)

For claim post locations see figure 2.

3+50 E ш ш LU 5+00 E 3+00 4+00 4+50 23,178 - 20,126 - 47,221 - 247,125 41,70 - 27,83 - 22,69 - 20,80 T16.92 T20.83 -18,115 101.108 - 417,146 - 163,110 - 45,82 - 25,85 - 13,104 9,76 19,88 - 25,146 . 18,73 19,65 9,60 14,71 20,91 86,109 - 35,89 - 108,77 -47,86 45,89 40,94 - 17.88 7,65 -23,85 -27,76 -13,73 -13,73 -13,73 -13,73 15,54 - 50,93 -13,91 91,96 - 15,97 3,71 3.65 21,78 / 16,82 -17,60 -11.63 - 15,74 -15,78 4,63 -21,86 -13,81 9,67 -10,92 -12,64 4,62 - 2,54 -11,60 -11,78 - 9,112 -20,86 - 8,79 -7,48 - 11,78 -11,63 -5,64 -3,58 -4,56 -3,60 -11,94 -5,76 -10,66 Outline of area -3,70 28,156 3,60 soil sampled by 7,68 9,207 7 7,59 -2,35 -4,45 -2,55 -3,46 -1,63 Imperial Metals 9,67 -8,69 -28,93 2,62 -6,75 Corporation (1984) 7,72 -1,61 -7,59 - 6,71 -4,77 -5,54 - 8,68 - 6,73 - 4,86 _ 1,66 1,69 -6,52 -6,65 - 5,56 1,65 - 5,61 4.66 -7,64 4,58 - 5,71 4,67 -8,47 - 4,67 -1,61 = 1,04 L -6,67 9,56 6,61 4,53 - 7,67 3,59 - 4,73 5,61 - 8,68 - 6.63 -10,55 9,40 - 5,57 9,58 6,59 - 10,63 - 2,64 - 5,66 - 5,70 - 6,68 - 8,62 + 3,70 + 7,60 3,56 - 12,57 - 4.58 - 3,48 - 3,60 - 8,57 -9.62 - 9,59 6,73 8,59 6,49 - 2,58 4.64 - 9,63 - 7,63 - 4,61 - 7,71 9,52 6,63 - 5,56 5,58 - 6,50 -2,59 4,60 - 5,65 - 7,48 - 6.69 7.60 8,56 - 3,51 - 9,42 - 11,59 - 11,52 -6,67 - 9,61 - 5,61 - 8,62 12,60 8,56 - 6,57 3,58 2,54 - 3,58 8,55 7,47 7,62 - 3,72 7.62 13.41 GIE DL2. Q CALL A. A. B.R. A.N CHI 18,73 5,57 ASSESSMENT REPORT 22 23 16 22 15 22 20 72 16 21 Jacqueline Gold Corp. NEWMAC PROJECT Clinton M.D.; B.C. - Grid A -SOIL GEOCHEMISTRY Lead (ppm), Zinc (ppm) N.T.S. 92·N(10/15)E Mincord Scale 1: 2000 150 Metres Date : Figure : Exploration Consultants Ltd. November 1987 6 J.W.M. / S.T. .