LOG NO: 0219	RD.
ACTION:	12/88
44 pp	
FILE NO:	

FILMED

......

到下

 $\bigcirc \approx$

BRAN REPO

Junor Long

27

 \bigcirc \square

In S

\$ 6

.

15 1 AV 2/1

GEOLOGICAL, GEOCHEMICAL AND

Sec. 2

GEOPHYSICAL REPORT ON THE

MT. EVELYN PROPERTY

HUDSON BAY MOUNTAIN

OMINECA MINING DIVISION

Location NTS 93L/14W Latitude 54⁰52'N Longitude 127⁰19'W

FOR

More Resources Ltd. P.O. Box 167, Station A Vancouver, B.C. V6C 2M3

BY

J. Duro Adamec, Ph.D., and D.L. Kuran, B.Sc., F.G.A.C. Hi-Tec Resource Management Ltd. 1500 - 609 Granville Street Vancouver, B.C.

January 1988

MINIS AND F	TRY OF	EN	IERG A RE	Y, MINES Sources
Rec'd	FER	1	7	188
SUB	JECi _			
FILE				

____ ______

· .

TABLE OF CONTENTS

	Page No.
SUMMARY	1 /
1.0 INTRODUCTION	2
 1.1 Location and Access 1.2 Property and Ownership 1.3 History and Previous Work 1.4 The 1987 Field Program 	2 / 3 / 3 / 4 /
2.0 GEOLOGY AND MINERALIZATION	4
2.1 Regional Geology 2.2 Property Geology and Mineralizati	on 5 /
3.0 GEOCHEMICAL SURVEY	6
 3.1 Sampling and Analytical Procedure 3.2 Discussion of Results 3.2.1 Rock Geochemical Results 3.2.2 Soil Geochemical Results 	s 67 77 9
4.0 GEOPHYSICAL SURVEY	10 /
4.1 Discussion of Results - Last Hope4.2 Discussion of Results - Spondulix	Grid 10 Grid 11
5.0 CONCLUSIONS AND RECOMMENDATIONS	12 /
COST ESTIMATE FOR TRENCHING & DIAMOND	DRILLING 13
REFERENCES	14 /

 \cdot

APPENDICES

APPENDIX I Statements of Qualifications , APPENDIX II Analytical Results / APPENDIX III Statement of Costs /

ILLUSTRATIONS

		Afte	er Page
Figure	1.	General Location Map	2 /
Figure	2.	Claim Map	3 /
Figure	3.	Last Hope Grid - Rock Sample Locations in p	ocket /
Figure	3a.	Last Hope Grid - Soil Geochemistry,	11
Figure	3b.	Last Hope Grid - Soil Geochemistry,	11
Figure	3c.	Last Hope Grid - Soil Geochemistry, copper and arsenic	" /
Figure	4.	Spondulix Grid - Rock Sample Locations	11 /
Figure	4a.	Spondulix Grid - Soil Geochemistry,	п /
Figure	4b.	Spondulix Grid - Soil Geochemistry,	/
Figure	4c.	Spondulix Grid - Soil Geochemistry, copper and arsenic	"
Figure	5.	Property Geology	" /
Figure	6a.	Last Hope Grid - VLF-EM Survey (Profiled)	n _
Figure	6b.	Last Hope Grid - VLF-EM Survey (Fraser Filtered)	"
Figure	6C.	Last Hope Grid - Magnetometer Survey	" /
Figure	7a.	Spondulux Grid - VLF-EM Survey (Profiled)	"
Figure	7b.	Spondulux Grid - VLF-EM Survey (Fraser Filtered)	11 /
Figure	7c.	Spondulux Grid - Magnetometer Survey	" /

SUMMARY

The Mt. Evelyn claims consist of seven reverted crown grants and two located claims which are owned by More Resources Ltd. of Vancouver, B.C. The property is located approximately 12 km northwest of Smithers on the northern flank of Hudson Bay Mountain.

The geology underlying the property consists mainly of metavolcanic rocks (massive dacite, rhyodacite flows and tuffs) and intrusives (medium grained granodiorite and quartz monzonite). Occasionally small quartz porphyry dykes occur on the property.

The initial exploration program conducted on the property has delineated anomalous precious metal/base metal trends within the surveyed area. The Spondulix vein is the main anomalous zone with sampling indicating silver values from 0.06 oz Ag/ton across 15 cm to 25.81 oz Ag/ton across 30 cm.

In order to fully evaluate the mineral potential of the claims, an exploration program of trenching and diamond drilling is recommended.

1.0 INTRODUCTION

Hi-Tec Resource Management Ltd. conducted a program of grid soil geochemistry, magnetometer and VLF-EM geophysical surveys, rock sampling and geological mapping on the Last Hope and Spondulix claims on Hudson Bay Mt. from September 22 to October 12, 1987.

This report summarizes the results of the 1987 exploration program and provides recommendations for further exploration of the property.

1.1 Location and Access

The claims are located some 12 km northwest of Smithers on the northern flank of Hudson Bay Mountain (Figure 1). More specifically, the claims are located at the headwaters of Toboggan Creek around Schufer Creek. Approximate geographic coordinates are latitude 54⁰52'N and longitude 127⁰19'W.

The terrain is generally very steep and elevations range from 1000 meters to 2002 meters. The claims are situated above tree line and ground is covered by grass and shrubs.

Access is from Smithers by a 4-wheel drive road on the north side of Toboggan Creek, which branches north from the Glacier Gulch/Twin Falls road at the power line west of Kathlyn Lake or by helicopter from Smithers (Figure 1).

1.2 Property and Ownership

The property consists of seven reverted crown granted 2 post claims, totalling 100.73 hectares and two located mineral claims (see Figure 2).

Name of Claim	Record <u>No.</u>	Area in <u>Hectares</u>	Record Date
Last Hope	8426	19.04	June 5, 1987
Spondulix	8424	17.96	June 5, 1987
Fisher	8427	9.09	June 5, 1987
Rico Aspen	8425	20.90	June 5, 1987
Big Hope	8425	2.00	June 5, 1987
Little Joe	8429	13.12	June 5, 1987
Iron Dollar	8428	18.62	June 5, 1987
Eve	8961	500	Sept. 21. 1987
Lyn	8960	500	Sept. 21, 1987

The claims are owned 100% by More Resources Ltd. and are located in the Omineca Mining Division, B.C.

1.3 History and Previous Work

The Mt. Evelyn claims cover an area which has undergone considerable prospecting and exploration work over the past seventy years. The claims cover known surface showings and minor underground workings. Old assays from B.C. Bureau of Mines Annual Reports indicate significant silver and gold values were found in the sulphide veins explored in the past. Development work consisted mainly of open cuts, short tunnels and adits. In 1913 two tonnes of ore grading 0.50 oz/ton Au and 83.5 oz/ton Ag were shipped from the Spondulix claim.

1.4 The 1987 Exploration Program

Our exploration program has been based on recommendations by D. Kuran, B.Sc., who conducted

mapping, sampling and prospecting on Mt. Evelyn claims in 1983.

Fieldwork in 1987 was conducted by Hi-Tec Resource Management Ltd. between September 22 and October 12, 1987. Two grids were established on the property in order to provide control for detailed mapping, VLF-EM, magnetometer and geochemical surveys.

Rock and soil samples were shipped to and analyzed by Min-En Laboratories Ltd. in North Vancouver. Transportation to the property was by 4-wheel drive truck and daily set out by helicopter from Northern Mountain Helicopters Inc. based in Smithers.

2.0 GEOLOGY AND MINERALIZATION

2.1 Regional Geology

The claims are situated on the northern flank of Hudson Bay Mountain. This area is underlain mainly by metavolcanic and metasedimentary rocks of the Lower-Middle Jurassic Hazelton Group and metasedimentary rocks of the Upper Jurassic to Lower Creataceous Bowser Group. A few small bodies of the Creataceous Bulkley intrusive of granodiorite and quartz monzonite composition intrude the older stratigraphy. Minor quartz porphyry dykes in the area are possibly related to the Bulkley intrusive. Regional metamorphism has not exceeded lower greenschist faces.

2.2 Property Geology and Mineralization

The property is underlain by acid to intermediate volcanic rocks of the Hazelton Group. This complex has been intruded by the Bulkley intrusive and quartz feldspar porphyry dykes. Geological mapping on the grid was done at a scale of 1:2500 and 1:1000 presented on Figures 3 and 4 and property geology at scale 1:2500 (Figure 5).

The base of the stratigraphy on the property consists of acid to intermediate volcanic rocks which represent the This group can be divided into three Hazelton Group. Unit 1a consists of massive dacite, rhyodacite units. flows and tuffs which are locally autobrecciated. These rocks are pale green, blocky weathering and locally Unit 1a contains a 10-15 meter thick cliff forming. acid tuff horizon which has been bleached and shattered. This rock type locally contains siderite and quartz stringers and is referred to as Unit 1b. The top of the massive intermediate volcanic Hazelton group is а package of andesite flows and tuffs - Unit 1c.

Bulkley intrusives are represented by medium grained homogenous equigranular granodiorite (Unit 2) and quartz monzonite bodies (Unit 3).

On the Spondulix grid a quartz porphyry dyke was mapped, which weathers flesh white and has a very fine grained ground mass of quartz and feldspar. Numerous fractures or shear fillings with sulphide veins are exposed on the They range in thickness from 3 cm to 3 meters property. and contain variable amounts of base and precious Sulphides found in the veins include pyrite, metals. pyrrhotite, chalcopyrite, galena and arsenopyrite, Copper mineralization is very rarely sphalerite.

evident as secondary malachite or azurite. The gangue minerals are quartz, siderite and pyrolusite. The Spondulix vein trends 115° and dips 65° west and can be traced for 150 meters in length. It represents a multielement anomaly containing 25.81 oz Ag/ton and only trace gold. The Spondulix vein contains mainly galena, sphalerite, pyrite, chalcopyrite, pyrolusite and arsenopyrite.

Mineralized structures on the property consist mainly of shearing and faulting. Shearing generally trends north from 115° azimuth to 10° azimuth, dipping from 10 to 65 degrees west.

3.0 GEOCHEMICAL SURVEYS

3.1 Sampling and Analytical Procedure

Two grids were established on the property in order to provide control for detailed mapping, VLF-EM, magnetometer and geochemical surveys.

The grid over the Spondulix claim consists of a 450 meter long baseline running 140[°] azimuth with crosslines at 50 meter intervals totalling 6.00 km of lines. Stations were chained and flagged and soil sampled at 25 meter intervals along the crosslines.

The Last Hope grid has a 650 meter baseline oriented at a 150° azimuth with crosslines 50 m apart with a total of 9.075 km of lines. Stations were chained, flagged and soil sampled with pickets at 25 meter intervals.

A total of 367 soil samples were collected with a mattock and a shovel from a depth of 10-25 cm.

Additional prospecting, geological mapping and rock chip sampling was performed over the surveyed area. A total of 190 rock chip samples were collected. Soil and rock samples were shipped to Min-En Laboratories Ltd. in North Vancouver, B.C. and analyzed for Ag, Cu, Pb, Zn, As and Ni by ICP with Au analyses by atomic absorption.

Soil samples were dried at approximately 90°C and then sieved to minus 80 mesh. A 0.5 gram portion of each sample was extracted by digestion with nitric acid and aqua regia followed by six element ICP analysis. Rock samples were crushed before extraction and ICP analysis. Gold in rock samples was extracted by aqua regia solution and measured by atomic absorption.

3.2 Discussion of Results

The analytical data for the rock chip soil and geochemical surveys is presentd in Appendix III. Rock chip samples are plotted on Figures 3 and 4. Figures 4a, 4b and 4c give the contoured soiil geochemical values and anomalous thresholds for silver/gold, lead/zinc and copper/arsenic for the Spondulix grid. Figure 3a, 3b and 3c show the contoured results from the same element groups on the Last Hope grid.

3.2.1 Rock Geochemical Results

Only one of the 190 rock samples contain anomalous amounts of gold. Sample 87038JA-102 taken from the Last Hope grid, contains 0.019 oz/ton Au.

A total of 34 samples contained greater than 2.0 ppm silver and are considered to be anomalous. Silver values range from 0.1 oz/ton Ag up to a high of 25.81

oz/ton Ag in sample 87038JA-189 taken from the Spondulix vein.

Copper values in rocks range from a low of 1 ppm to 2,894 ppm in sample 87038JA-055, which was taken from the east section of the Spondulix grid. Sample 87038JA-188 contains 18,327 ppm Cu taken from the Spondulix vein.

Lead values range from 5 ppm up to 9,015 ppm in sample 87038JA-055 taken from a trench on the southern portion of the Spondulix vein. In general, lead anomalies are coincident with silver and zinc and to a lesser extent copper.

Zinc values vary from 12 ppm up to 3,170 ppm in sample 87038JA-067 taken from the Spondulix vein. Anomalous values of 2,089 ppm, 1,664 ppm and 1,691 ppm in samples 87038JA-082, 084 and 085 respectively were taken from the northeast corner of the Last Hope grid.

Arsenic values are generally low on the grid areas. Values range from 1 ppm up to 1,148 ppm in sample 87038JA-133 from the Last Hope grid. This anomaly is coincident with lead and zinc anomalies of 2,956 ppm and 1,510 ppm respectively.

Antimony and nickel values are generally low on the grids. Antimony values ranged from 1 ppm up to an extremely anomalous value of 545 ppm in sample 87038JA-045. This anomalous antimony value is also coincident with anomalous As, Cu, Zn and Ag values.

3.2.2 Soil Geochemical Results

On the Spondulix grid, silver values in soil range up to 6.7 ppm. The longest silver anomaly as seen on Figure 4a is west of the baseline and correlates well with VLF-EM conductor A, seen on Figures 7a and 7b. Gold values reach the do not anomalous threshold of 20 ppb. Anomalous zinc values shown on Figure 4b are generally high and range up to 4,586 ppm. This site at 450S/175E forms an open anomaly and corresponds to the location of rock unit 1b on Figure 5. Zinc anomalies correlate well with conductors A and B on Figures 7a and 7b. Lead values range up to 225 ppm and anomalies also correlate with VLF-EM conductors A and B. Lead also correlates well with zinc and copper. Copper values are generally low and range up to 391 ppm.

The Spondulix soil geochemical results show a strong correlation between Cu, Pb, Zn and Ag. Several anomalies appear to be open and show good correlation with VLF-EM conductors.

On the Last Hope grid, silver values range up to 12.9 ppm and have a direct correlation with spotty anomalous gold values of up to 30 ppb. These silver anomalies show a good correlation with VLF-EM conductors A and D on Figures 6a and 6b. The northeastern portion of the contains arid and down the east side coincident anomalies in Cu, Pb and Zn with values ranging up to 541 ppm, 1,609 ppm and 4,767 ppm respectively. This area is coincident with the Last Hope vein zone and is open along strike both north and south. There is also a good correlation in this area with VLF-EM conductor A shown on Figures 6a and 6b.

The strong open ended multielemental anomalies with coincident geophysical signatures on the Spondulix vein, Last Hope vein and rock unit 1b provide strong support for further exploration on these target areas.

4.0 GEOPHYSICAL SURVEY

A VLF-EM/Magnetometer survey was performed over the two established arids usina an EDA Omni Plus VLF-EM/Magnetomter (Serial No. 208035) as the field system and the EDA Omni IV Magnetometer as the recording base station. Both systems are microprocessor based. Using a Toshiba T1100 computer the data was stored, corrected, contoured and profiled.

Three VLF transmitting stations were recorded: Cutler-Maine, Jim Creek-Washington and Hawaii. For interpretive purposes only, Jim Creek was used as it is most closely aligned with the geological trends. Readings were taken at 12.5 meter intervals along lines separated by 50 meters. Magnetic total field and vertical gradient, VLF-EM total field, in-phase vertical component and quadrature component readings were stored automatically.

4.1 Discussion of Results - Last Hope Grid

The results of the VLF-EM in-phase vertical component (%) shows numerous anomalous zones of low magnitude alphabetically named on Figure 6a. The Fraser Filtered data clearly delineates an anomalous conductive zone labelled conductor A on the east side of the grid shown on Figure 6b. Trending roughly NW-SE, it extends 550 meters from LN 1+00N through LN 6+50N at a width of approximately 100 meters wide and is coincident with an observed shear zone. A weaker conductor labelled D lies

west of the baseline and has a weak geochemical signature.

The magnetic survey shows readings ranging from 56,000 to 58,500 gammas as shown on Figure 6c. There are numerous small zones of both high and low magnetics often typical of volcanic terrain. A series of low magnetic zones coincide with VLF-EM conductor A, however, the contrast is moderate, indicating that the rock composition is very similar. This correlates well with the geological mapping.

4.2 Discussion of Results - Spondulix Grid

The results of the VLF-EM survey are shown as profiles on figure 7a and contoured Fraser Filtered data on Figure 7b. The data shows an anomalously conductive zone, labelled A, which correlates well with the geochemcial anomalies but is tangential to the trend of the surface trace of the Spondulix vein. This may indicate a separate zone or the down dip expression of the vein. On the eastern portion of the grid, conductor B is of moderate strength and has good geochemical correlation.

The magnetics on this portion of the property varied greatly with readings ranging from 56,900 to 61,000 gammas. A particularly anomalous zone of high magnetics is centered at 2+00S/0+25W exhibiting nearly a 2,000 gamma contrast to the adjacent station. The anomalous conductive zone is coincident with the flanks of a series of magnetic highs.

5.0 CONCLUSIONS AND RECOMMENDATIONS

Considerable prospecting and exploration work has been done over the past seventy years on the Mt. Evelyn area. Development work consisted mainly of open cuts, short tunnels and adits. Geological evaluation carried out on the property during the 1987 field program revealed that surveyed area is underlain by acid to intermediate volcanic rocks, medium grained granodiorite and a small outcrop of quartz porphyry dyke was recognized.

The soil and rock sampling generally confirmed former results. The 1987 work delineated base metal/precious metal trends within the surveyed area and anomalous silver, lead and zinc values were recorded. A VLF-EM survey has revealed a northwest trend with coincident anomalous silver, zinc and lead values (Spondulix vein). It is concluded that the Mt. Evelyn property has every indication that at least one high grade silver-zinc bearing vein structure is present on this ground.

In order to fully evaluate the mineral and economic potential of the property, further exploration work is recommended. Selection of drill sites for possible continuation of the Spondulix vein trending northwest should follow trenching of the zone. Zones with anomalous values on the Last Hope grid are lower priority targets, but warrant trenching. An exploration program is recommended for the Mt. Evelyn claims with mainly trenching and diamond drilling estimated to cost \$85,000.00 (see cost estimate).

COST ESTIMATE FOR TRENCHING & DIAMOND DRILLING

Road access - approx. 4 km	\$15,000.00
Trenching	10,000.00
Diamond Drilling - 300 m @ \$120.00/m (all incl.)	36,000.00
Supervision/Core logging	5,000.00
Engineering and reporting	5,000.00
Mobilization and Domicile	6,000.00
Contingency	8,000.00
TOTAL:	\$85,000.00

Respectfully submitted,

HI-TEC RESOURCE MANAGEMENT LTD.

J. Duro Adamec, Ph.D.

David L. Kuran, B.Sc., F.G.A.C.

January 1988

REFERENCES

- Holland, R. 1982. Summary report on the Carroll and Matuss mineral claim group.
- Kindle, E.D. 1954. Mineral Resources, Hazelton and Smithers Areas, Cassiar and Coast Districts, B.C. GSC Memoir 223.
- Kuran, D.L. 1983. Assessment report on the Mt. Evelyn property.

Ministry of Mines, B.C. Annual Reports: 1900 - 1980.

APPENDIX I

Statements of Qualifications

STATEMENT OF QUALIFICATIONS

I, J. DURO ADAMEC of 4337 Capilano Road, North Vancouver, B.C. hereby certify that:

- 1. I graduated in geology from Commenius University of Bratislava, Czechoslovakia (1978) and I hold a Ph.D. in geology (1982) from the same University.
- 2. I have been practising my profession for over 8 years.
- 3. I am presently employed as a geologist with Hi-Tec Resource Management Ltd. of 1500 - 609 Granville St., Vancouver, B.C.
- 4. The information contained in this report was obtained from fieldwork conducted by myself and others in 1987.

J. Hlame

J. Duro Adamec, Ph.D.

January , 1988

STATEMENT OF QUALIFICATIONS

I, DAVID L. KURAN of 25630 Bosonworth Avenue, in the Municipality of Maple Ridge, in the Province of British Columbia, hereby certify that:

- 1. I am a graduate of the University of Manitoba (1978) and hold a B.Sc. in Geology.
- 2. I am a Fellow of the Geological Association of Canada.
- 3. I have been employed in my profession as an Exploration Geologist by various mining companies and consulting firms for the past ten years in Canada, U.S.A. and Mexico.
- 4. I have actively supervised exploration work on the mineral occurrences now owned by More Resources Ltd. between September 29 and October 5, 1983.
- 5. I have participated in the evaluation and interpretation of field data obtained during the exploration program completed for More Resources Ltd. by Hi-Tec Resource Management Ltd. between September 22 and October 12, 1987.

Dated at Vancouver, British Columbia this 20th day of January, 1988.

Signed: David L. Kuran, B.Sc., F.G.A.C.

January 20, 1988

APPENDIX II

Analytical Results

COMPANY: HI-TEC RE PROJECT NO: 87 BC ATTENTION: P SORAG	SOURCES 038 184		705 WEST	MIN-E 15TH ST (604)980-	N LABS I NORTH V SR14 OR	CP_REPORT /ANCOUVER. 8.C. (604:988-4574	(ACT:F31) PAGE 1 OF 1 V7H 1T2 FILE NO: 7-1618/P1+2 * TYPE ROCK SEDCHEN * DATE:OCT 19, 1987
(VALUES IN PPM)	49	CH	NT	PR	SR		
87038.14 001	4	5	7	17	1	54	
87038JA 002	q	A		(7	1	41	
8763836 663	1Å	7	;	12	2	174	
8703836 004	4	6	î	16	1	154	
8703834 005	16	55		43	Ę	73	
87038JA 005	<u>-</u> {	23		15	2	97	
87038JA 007	7	8	2	17	4	86	
87038JA 008	12	13	6	20	1	61	
87038JA 009	6	2	2	8	1	43	
87038JA 010	27	98	2	30	7	205	
87038JA 011	31	47	4	70	7	291	***************************************
87038JA 012	33	89	4	71	16	323	
87038JA 013	22	18	5	93	10	141	
87038JA 014	10	2	2	7	1	12	
87038JA 015	5	10	4	21	1	100	
87038JA 016	18	5	7	17	2	95	
87038JA 017	19	4	ę	22	1	102	
87038JA 018	12	12	2	13	3	53	
87038JA 019	1	14	14	29	2	193	
87038JA 020	1	6	4	24	1	100	
87038JA 021	7	20	3	20	1	79	
87038JA 022	38	57	1	69	24	434	
87038JA 023	2	5	10	23	í	83	
87038JA 024	7	8	2	17	2	41	
87038JA 025	12	7	2	22	2	91	
97038JA 026	!	15	3	14	2	43	
87038JA 027	5	16	2	19	2	56	
97038JA 028	5	8	3	19	2	45	
87038JA 029	20	10	1	21	2	88	
87038JA 030	8	5	1	23	}	89	
87038JA 031	15	5	3	19	4	58	
87038JA 032	11	£	2	23	1	28	
87038JA 033	4	1	1	9	2	21	
87038JA 034	2	1	1	9	L	20	
87038JA 035	15	14	3	24	<u>}</u>	4(14	
87038JA 036	30	9	21	107	11	314	
87038JA 037	1	2	1	16	1	97	
87038JA 038	5	3	1	19	1	73	
87038JA 039	6	1	1	5	1	15	
87038JA 040		2	<u> </u>	8		48	
87038JA 041	9	2	1	9	1	27	
87038JA 042	1	1	2	11	1	39	
87038JA 043	10	18	1	16	2	59	
87038JA 044	14	8	1	28	4	258	
87038JA 045	713	1967			545	774	
87038JA 046]]	53	!	33	5	105	
8/03BJA (04/	18	18	1	25	5	74	
87038JA 048	5	4	2	57	1	45	
8103899 04A	3	24	1	12	2	36	
87038JA 050	· - · · - · · · · · · · · ·					251	
B10383B 001	}	4	1	17	4	54	
8703838 057	1	155	1	21	1	563	
87038JA 053	20	4) 	1	13	j	363	
8/038JA 034	17	26	3	- 28	1.	1007	
8/V38J8 000	18	1874		10		30	
87V38JA 056	21	24	Ľ	40	1	1184	
8703014 AEA	1	15	1	16	1	55 174	
0/03008 038 0707010 000	14	ב י	3	30	כ י	45 L * =	
57V383H V37	1	1	i i	12	ر ۲	10 28	
8107898 AP0	9	1	1	16	4	42	

	COMPANY: HI-TEC RE PROJECT NO: 87 BC	SOURCES 038		705 WEST	MIN-EN LABS	ICP REPORT I VANCOUVER, B.C.	(ACT:F31) PAGE 1 QF 1 V7M 1T2 FILE NQ: 7-1618/P3+4
	ALIENTIUN: P. SUNBA	KR			1 1186-087(100)	18 15041988-9314	* THE RULA BEULHER * DRIE: ULT 17, 1987
	(VALUES IN PPM)	AS	<u> </u>	<u> </u>	P8 51	<u>I IN</u>	
i di ini	87038JA 061	1	}	1	16	94	
	87038JA 062	16	15	1	36	239	
	87038JA 663	34	32	7	38 3	403	
	87038JA 064	3	ç	2	20	92	
	870383A 065	1	1	!	30	131	
	8703834 066	1	1	1	19 1	56	
	87038JA 067	44	423	3	9015 4	3 3170	
	97038JA 068	9	7	2	151 5	i 104	
	87038JA 069	76	4	6	241	5 1683	
	87038JA 070		1	i	35 7	116	
	87038JA 071	7	1	2	32 1	91	
	87038JA 072	15	12	1	102	5 102	
	87038JA 073	29	1	6	24 3	45	
	8703BJA 074	5	1	1	22	32	
	87038JA 075	1	25	2	16 1	57	
	87038JA 076	18	6	3	62 7	256	
	87038JA 077	15	1	1	35	287	
	87038JA 078	75	5	6	261 33	505	
	87038JA 079	9	91	2	78	450	
	8703810 090	í	17	2	14 1	56	
	8763816 081	 q			17 17	7.0	
	0703000 001 0703010 001	13	217	5	140 1	2000	
	0703008 VO2	5	74		40 7	(0)	
	0707010 000	3 57	20/	1	40 .	171	
	07030JH V09	37	370	1	178	1004	
	0707016 40/				40	1873	
	87038JA V85	5	11	1	36 3	239	
	8103878 (8)	6	49	4,	228	506	
	8103898 088	1	4	7	23	1(17	
	87038JA 089	9	16	1	40	357	
	87038JA 090	40	12	<u></u>	6	192	*****
-	87038JA 091	5	1	3	15 5	40	
	870383A 092	6	12	1	18 3	5 66	
	87038JA 093	5	1	1	4 1	33	
	87038JA 094	10	1	2	19	59	
	87038JA 095	<u> </u>	6	3	20 5	101	
	87038JA 095	23	3	3	1312 5	2494	
	87038JA 097	12	2	2	47 4	94	
	87038JA 098	2	28	1	16 1	45	
	87038JA 099	2	101	2	16	48	
	87038JA 100	1	38	1	5 1	51	
	87038JA 101	10	54	1	13 1	26	
-	87038JA 102	220	323	6	2207 10	2046	
	87038JA 103	47	36	20	54 1	71	
	87038JA 104	7	19	1	93	111	
	87038JA 105	2	50	10	16 2	36	
	87038JA 106	3	}	i	18 7	37	***************************************
	87038JA 107	6	1	2	8 4	51	
	87038JA 108	12	17	2	15 1	33	
	870383A 109	42	19	1	43 3	99	
	87038JA 110	33	22	2	37 1	105	
	87038JA 111	44	76	 5	19 7	748	
	8703834 112	\$1	26		9 j	74	
	8763834 117	, , ,	2.V 7.8	7	: ۱۹۰۸ (۲	. 45	
	970301A (13	د ج		L t	240 Y	00 317	
لسب	9763916 114 9763916 115	* 0	ن ډري د ۲۳	i 7	30 C	1010	
	9763916 114			<u>-</u>	<u></u>	1737 Q7	
	01100000 110 070301A 117	11 01	11	1 1	ل در ۱۱	0/ 5 07	
	070303H 117 070303H 117	10	170	i 2	10 .	; 1/ L0	
-	0100008 110 070701A (40	51 7	۱ ۱	¥ ۲		97 1 7A	
	114 HUBCULE	6 1.1	1	1	13	• JN 175	
	A1A2A9H 33A	14	:	Ľ	41	173	

C.(P] 67	OMPANY: ROJECT (H]-T(NO: 8 N- P 0	C RESOURCES 7 BC 038		705 WEST	MIN-E 15TH ST.	N LABS NORTH	ICP REPORT VANCOUVER, B	.C. V7M 1T2 A + TYPE ROCK SEGULE	(ACT:F31) PAGE 1 DF FILE ND: 7-1618/P5+ M * DATE:011 19 190
H \	VIALUEO	14 51				1004 (004)	-1814 BA	711	4 * STE RUL BEULDE	лт DHIE:DL1 19, 198.
	1VBLUES	191 11	(<u>n</u>) <u>R</u> b 5	2U 70	NI	75	58	1M 700		
s (070300H 070701A	122	.; 21	07 10	2	20	5	104		
r r	070300H	197	1, S	1)	i i	14	ل ج	107		
i j	8763838 8763838	123	1 5	1 72	ء ج	16	A.	100		
ç	8763838	125	ت ځ	6	1 {	10	ד פ	54		
2	8703834	176		123			<u>-</u>	178		
(87038JA	177	12	86	1	17	1	39		
Ę	870383A	129	1	47		9	•	41		
í	8703834	129	-	254	?	70	1	163		
Ę	37038JA	130	10	16	1	13	1	48		
Ē	37938JA	131	4	103	6	31	7	349	***************************************	****************
E	8703BJA	132	1	34	2	16	1	64		
8	37038JA	133	1148	92	1	2956	25	1510		
{	87038JA	134	31	116	3	84	7	671		
9	97038JA	135	3	60	1	24	1	48		
8	37038JA	136	12	25	1	416	10	\$19		
6	87038JA	137	12	16	1	827	4	1015		
8	37038JA	139	10	5	1	24	4	64		
{	87038JA	139	1	2	1	12	1	44		
8	37038JA	140	13	2	i	14	1	65		
8	37038JA	141	j	8	6	25	1	79		*******
ŧ	87038JA	142	1	13	1	14	2	162		
8	97038JA	143	1	1	2	10	ł	44		
6	87039JA	144	6	1	1	9	1	21		
6	37038JA	145	3	14	1	11	4	32		
8	37038JA	146	17	11	2	20	4	562		
6	87038JA	147	7	1	2	4	1	17		
8	37038JA	148	1	i	2	12	1	45		
1	8703BJA	149	17	ł	8	22	3	94		
88	37038JA	150	15		3	15	4	71		****
8	37038JA	151	20	95	5	143	5	328		
6	87038JA	152	1	31	1	15	1	56		
8	1703BJA	153	9	1	1	14	1	49		
6	87038JA	154	12	1	2	15	÷	33		
8	87038JA	155		1			2	25		*****
8	87038JA	156	16	45	1	39	4	894		
1	8102894	10/	12	3	1	33	1	111		
ਹ -	3703838	308	2	1	2	19	4	/1		
: እ	8/038JA	109	10	3	2 	10	1	44		
5 	170701A	350						83		* * * * * * * * * * * * * * * * * * * *
c 5	3793888 ALO7676	101	1	43 4	1 7	21	1	55		
t 0	079380A 276701A	101 117	1) t C	4 วก	ن ۱	21 70	3 5	74 105		
0 (976701A	163	53 24	4 10	1	3£ 10	3	172		
، م	1767914	145	LV L	* 70	(۳ ۲	10	1 =	333		
	70380H	144	ο 	/ T / A T	<u>ل</u> د 	17	 	10J 171		
0 0	87030.10	147	ب تر 1	ڭ ۱۷۲	.) 1	رد د	ن. ح	111 77		
, A	27038.18	(49	715	ن ۲۲	1 E.	J 414	17	31 1 A7A		
ι) ¢	87638.10	149	130	30 7.6	کر، 1	017 77	<u>ند</u> ج	000 FIF6		
9	(7038.16	170	10	37	2	15	ں 1	21.) 35		
9	7(13RJA	171	, , ; (<u>+</u> 5	17		من جونی ا		
s S	3703814	172	17	د ۱	∡ ?	14 14	1 1	55 57		
a a	(703934	173	5 L 1 1	1 (۲ ج	10	1	00 7.4		
ю С	17030.14	174	11	1	د ٦	14	1 1	07 54		
9	3703834	175	10 10	1	ت ۲	10	i I	36 A f		
	17038.14	176			···· 7	<u>}</u>	<u>à</u>	149		
F	8703834	177	13	127	14	27 78	ר 7	453		
8	17038JA	178	16	197	5.	34	8	197		
	97038JA	179	10	4	1	16	2	50		
9	7639.14	1.90	1	а	7	1 Ú	1	31		

H	COMPANY: PROJECT N	HI-TEC RESOL NO: 87 BC 031	JRCES B		705 WEST	HIN-I 15TH ST.	en labs , north	ICP REPORT VANCOUVER.	8.C. '	V7K 1T2				(60)	FILE N	PAGE 10: 7-1	1 OF 1 618/P7
	ATTENTION	I: P. SORBARA				(604) 980-	-5814 DR	(604)988-	4524	*	TYPE	ROCK	GEOCHE	M *	DATE:	OCT 19	. 1987 -
	(VALUES	IN PPM)	AS	CU	NI	PB	SH	ZN						~~~-			
ji –	87038JA	181	1	167	1	11	Ą	47									
	87038JA	182	17	5	2	12	5	44									
	87038JA	183	3	50	4	20	1	62									
	87038JA	184	12	74	1	9	1	27									
IJ	87038JA	185	2	1	3	17	1	27									
	87038JA	186	65	1	2	\$77	5	552									
	87038JA	187	1	1	2	16	1	49									
H.	87038JA	188	9	18327	2	31	23	33									

é

Specialists in Mineral Environments

705 West 15th Street North Vancouver, B.C. Canada V7M 112

PHONE: (504) 980-5814 OR (504) 988-4524

Certificate of ASSAY

Company:HJ TEC RESOURCES Project:878C038 Attention:P.SORBARA File:7-1618/P1 Date:OCT 19/87 Type:ROCK ASSAY

TELEX: VIA USA 7601067 UC

We hereby certify the following results for samples submitted.

Sample Number	AU G/TONNE	AU OZ/TON	AG GZTONNE	AG OZ/TON	
87038JA 001	.01	0,001	1.8	0.05	
87038JA 002	.01	0.001	2.1	0.06	
87038JA 003	,01	0.001	2.0	0.06	
87038JA 004	.01	0.001	1.2	0.04	
87038JA 005	.03	0.001	2.0	0.06	
87038JA 006	.01	0.001	1.8	0.05	
87038JA 007	.01	0.001	2.1	0.06	
87038JA 008	.01	0,001	. 8	0.02	
87038JA 009	" O 1	0.001	1.2	0.04	
87038JA 010	. ் i	0.001	2.7	0.08	
870383A 011	.01	0.001	2.0	0.05	
87038JA 012	. 02	0.001	4 . O	0.12	
87038JA 013	.03	O.OOI	3.9	0.11	
87038JA 014	.02	0.001	- 53 - 53	0.01	
87038JA 015	.01	0.001	1.2	0,04	
87038JA 016	.01	0,001	. 8	0.02	
87038JA 017	. O t	0,001	1.9	0.06	
87038JA 018	. Oi	0.001	1.7	0.05	
87038JA 019	. O 1	0.001	1.5	0.04	
87038JA 020	.01	0.001	1.0	0.03	
87038JA 021	.01	0.001	. 6	0.02	
87038JA 022	.02	0.001	7.2	0.21	
87038JA 023	. O j	\circ . \circ	1.8	0.05	
87038JA 024	.ot	0 . OO1	1.4	Ö.O4	
87038JA 025	.0i	0.001	. 9	0.03	
87038JA 026	.01	0.001	1.0	0.03	******
87038JA 027	.01	0.001	1.2	0.04	
87038JA 028	, O1	0.001	. És	0.02	
87038JA 029	. 01	0,001		0.01	
87038JA 030	. O 1	0.001	1.2	0.04	

Specialists in Mineral Environments

705 West 15th Street North Vancouver, B.C. Canada V7M 1T2

PHONE: (604) 980-5814 OR (604) 988-4524

Certificate of ASSAY

Company:HI TEC RESOURCES Project:878C038 Attention:P.SORBARA File:7-1618/P2 Date:OCT 19/87 Type:ROCK ASSAY

TELEX: VIA USA 7601067 UC

We hereby certify the following results for samples submitted.

Sample Number	AU GZTONNE	AU OZZTON	AG GZTONNE	AG DZ/TON	
87038JA 031	.01	0.001	1.2	0.04	
87038JA 032	. Ó I	0.001	1. O	0.03	
87038JA 033	.01	0.001	.5	0.01	
87038JA 034	" O 1	0.001	. 4	0.01	
87038JA 035	.01	0.001		0.01	
87038JA 036	. 02	0.001	1.2	Ö.04	
87038JA 037	. O i	0.001	. 6	0.02	
87038JA 038	.01	0.001	. 3	0.01	
87038JA 039	" O 1	0.001	. 2	0.01	
87038JA 040	. 01	0.001	. 4	0.01	
87038JA 041	,01	0.001	. 3	0.01	
87038JA 042	.01	0.001	. 2	0.01	
87038JA 043	. O i	0.001	. 4	0.01	
87038JA 044	.01	0.001	t " O	0.03	
87038JA 045	.06	0.002	82.2	2.40	
87038JA 046	. 02	0.001	2.2	0.06	
8703838 047	.02	0.001	1.0	0.03	
87038JA 048	. 01	0.001	. 3	O,Oi	
87038JA 049	.01	0.001	.8	0.02	
87038JA 050	.01	0.001	. 4	0.01	
87038JA 051	.01	0.001	.6	0.02	
87038JA 052	. OB	0.001	2.0	0.06	
87038JA 053	.02	0.001	1.8	0.05	
87038JA 054	.02	O, OOI	1.7	0.05	
87038JA 055	.05	0.001	2.1	0.06	
8703834 056	.01	0,001	2.3	0.07	
87038JA 057	" O I	0.001	1.9	0.06	
87038JA 058	.01	0.001	2.2	0.06	
87038JA 059	. O I	0.001	1.0	0.03	
87038JA 060	.01	0.001	2.1	0.06	

MIN-EN LABORATORIES LTD.

Specialists in Mineral Environments 705 West 15th Street North Vancouver, 8.C. Canada V7M 172

PHONE: (604) 980-5814 8R (604) 988-4524

(M)

Certificate of ASSAY

Company: HI TEC RESOURCES Project: 8780038 Attention: P.SORBARA

File:7-1618/P3 Date: OCT 19/87 Type:ROCK ASSAY

TELEX: VIA USA 7601067 UC

We hereby certify the following results for samples submitted.

Sample Number	AU G/TONNE	AU OZ/TON	AG GZTONNE	AG OZ/TON	
970383A 061	.01	0.001	1.5	0.04	
87038JA 062	. O 1	0.001	1.2	0.04	
870383A 063	.02	0.001	2.3	0.07	
87038JA 064	.01	0.001	1.0	0.03	
87038JA 065	.01	0.001	1.6	0.05	
87038JA 066	.01	0.001	1.8	0.05	*****
87038JA 067	.07	0.002	76.8	2.24	
87038JA 068	.02	0,001	2.0	0.06	
87038JA 069	" 04	0.001	2.4	0.07	
87038JA 070	. 01	0.001	1.7	0.05	
87038JA 071	.01	0.001	2.1	0.06	
87038JA 072	.02	0.001	2.2	0.06	
87038JA 073	.03	0,001	1.5	0.05	
87038JA 074	.01	0.001	1.8	0.05	
87039JA 075	.01	0.001	2.0	0.06	
87038JA 076	.01	0,001	2.3	0.07	
87038JA 077	.01	0.001	1.2	0,04	
8703834 078	.02	\circ . $\circ\circ$ i	2.0	0.06	
87038JA 079	, O 1	0,001	2.1	0.06	
87038JA 080	.05	0.002	1.0	0.03	
97038JA 081	. O i	0.001	1.5	0.04	
87038JA 082	. 02	0.001	2.2	0. O&	
87038JA 083	.03	0.001	з.О	0.09	
87038JA 084	. 02	0.001	4.1	0.12	
87038JA 085	. 02	0.001	3.2	0.09	
87038JA 086	. 02	0.001	1.0	0.03	
8703838 087	" () 1	0,001	8.0	0.23	
87038JA 088	. O i	0.001	i.O	0.03	
87038JA 089	.01	0.001	1.9	0.06	
8703804 090	.02	0.001	1.8	0.05	

MIN-EN LABORATORIES LTD.

Specialists in Mineral Environments 705 West 15th Street North Vancouver, B.C. Canada V7M 112

PHONE: (604)980-5814 OR (604)988-4524

(11)

Certificate of ASSAY

Company:HI TEC RESOURCES Project:878C038 Attention:P.SORBARA

File:7-1618/P4 Date:OCT 19/87 Type:ROCK ASSAY

We hereby certify the following results for samples submitted.

Sample Number	AU 67 TONNE	AU 02/TON	AG G/TONNE	AG OZ/TON	
 870383A 091	.01	0.001	1.0	0.03	
87038JA 092	. O 1	0.001	1.7	0.05	
87038JA 093	. 01	0.001		0.01	
87038JA 094	.01	0.001	t.0	0.03	
87038JA 095	.02	0.001	2.0	0.06	
87038JA 096	. 02	0.001	2.5	0.07	
87038JA 097	.01	0.001	1.7	0,05	
87038JA 098	. 01	0.001	1.5	0.04	
87038JA 099	- 01	0.001	1.9	0.06	
87038JA 100	.01	0.001	, Ą	0.01	
87038JA 101	. 02	0.001	. 3	0.01	
87038JA 102	. 64	0.019	70.4	2.05	
87038JA 103	.03	0.001	. 6	0.02	
87038JA 104	.02	0.001	2.4	0.07	
87038JA 105	.01	0.001	. 4	0.01	
87038JA 106	.01	0.001	,2	0,01	
87038JA 107	.01	0.001	.3	0.01	
87038JA 108	.01	0.001		0.01	
87038JA 109	.02	0.001	2.1	0.06	
87038JA 110	.02	0.001	. 5	0.01	
87038JA 111	.02	0.001	.9	0.03	
87038JA 112	. O I	0,00t	. 1	0.01	
87038JA 113	. 01	0,001	ू मे	0.01	
87038JA 114	,01	0.001	1.3	0.04	· · · · · · · · · · · · · · · · · · ·
87038JA 115	.01	0.001	1.7	0.05	
87038JA 116	.02	0.001	. 2	0.01	
87038JA 117	.02	0.001	.6	0.02	
87038JA 118	.01	0.001	1.5	0.04	
87038JA 119	. O 1	0.001	. 1	O " O 1	
8703834 120	.01	0.001		0.01	

L [5 Certified by

MIN-EN LABORATORIES LTD.

TELEX: VIA USA 7601067 UC

Specialists in Mineral Environments 705 West 15th Street North Vancouver, B.C. Canada V7M 112

PHONE: (604) 980-5814 OR (604) 988-4524

Certificate of ASSAY

Company:HI TEC RESOURCES Project:8780038 Attention:P.SORBARA File:7-1618/PS Date:OCT 19/87 Type:ROCK ASSAY

We hereby certify the following results for samples submitted.

Sample Number		AU GZTONNE	ALI OZ/TON	AG G/TONNE	AG OZ/TON	
87038JA	121	.02	0.001	. Ł	0.02	
87038JA	122	.02	0.001	. 2	0.01	
87038JA	123	" O 1	0.001	. 5	0.01	
87038JA	124	.01	0.001	. 3	0,01	
87038JA	125	.01	0.001	.2	0.01	
87038JA	126	.01	0,001	1.8	0.05	
87038JA	1.27	.02	0.001	. 2	0.01	
87038JA	128	.01	0.001		0.01	
87038JA	129	.01	0.001	" Ć	0.02	
87038JA	130	.01	0.001	.4	0.01	
87038JA	131	. 01	0.001	. 3	0.01	
87038JA	132	.01	0.001	. 5	0.01	
87038JA	133	, 22	0.006	27.4	0.80	
87038JA	134	" O 1	0.001	1.7	0.05	
87038JA	135	.02	0.001	. 6	0.02	
87038JA	136	.01	0.001	4.2	0.12	
87038JA	137	" Ó 1	0,001	2.3	0.07	
87038JA	138	. O 1	0.001		0.01	
87038JA	139	. 02	0.001	, 8	0.02	
870383A	140	.01	0,001	. 6	0.02	
87038JA	141	. 0i	0.001	1.6	0.05	
87038JA	142	. Öl	0.001	. 4	O.O.i	
870383A	143	.01	0.001	1.3	0.04	
8703834	144	, 02	0.001	112 1	O. O.1	
8703838	145	. 01	0.001	1.8	0.05	
870383A	146	. Oj	0.001	1.9	0.06	
87038JA	147	. O t	0.001	. 3	O.O1	
87038JA	148	. O 1	O.OOi		0.01	
8703846	149	.01	0.001	i .O	0.03	
8703836	$\left(\begin{array}{c} \mu \\ \gamma \end{array} \right)$.01	0.001	1.6	0.05	

Certified by

MIN-EN CABORATORIES LTD.

TELEX:VIA USA 7601067 UC

PH

Specialists in Mineral Environments

705 West 15th Street North Vancouver, B.C. Canada V7M 112

PHONE: (604) 980-5814 OR (604) 988-4524

TELEX: VIA USA 7601067 UC

Certificate of ASSAY

Company: HI TEC RESOURCES Project:878C038 Attention: P. SORBARA

File:7-1618/P6 Date: OCT 19/87 Type:ROCK ASSAY

He hereby certify the following results for samples submitted.

Sample Number	AU G/TONNE	AU OZ/TON	AG G/TONNE	AG DZ/TON	
87038JA 151	. 01	0.001	1.9	0.06	*****************
87038JA 152	. O 1	0.001	. 6	0.02	
87038JA 153	.01	0.001	. 7	0.02	
87038JA 154	. O 1	0.001	" 🕹	0.02	
87038JA 155	.01	0.001	. 3	0.01	
87038JA 156	.02	0.001	1,8	0.05	
87038JA 157	.01	0.001	1.4	0.04	
87038JA 158	01	0.001	, д	0.01	
87038JA 159	.OZ	0.001	.2	0.01	
87038JA 160	.01	0.001	. 4	0.01	
87038JA 161	. 01	0.001	1.2	0,04	
87038JA 162	.02	0.001	1 . O	0.03	
87038JA 143	. 01	0.001	1.9	0.05	
87038JA 164	.02	0.001	. 3	\odot , \odot 1	
87038JA 165	. 01	0.001	1.4	0.04	
870383A 166	.01	0,001	1.1	0.03	
8703BJA 167	.03	0.001	. 6	0.02	
87038JA 168	.03	0.001	21.8	0.64	
87038JA 169	. O 1	0.001		O.Ot	
87038JA 170	.04	0.001	. 4	0.01	
87038JA 171	, 01	0.001	. Š	0.02	
87038JA 172	.02	0.001	- 12 - 12	0.01	
87038JA 173	.01	0.001	. 3	O.Oi	
87038JA 174	.01	0.001	, 4	0.01	
87038JA 175	.01	0.001	- 100 - 100	0.01	
87038JA 176	.02	0,001	1.6	0.05	
87038JA 177	.01	0.001	1.2	0.04	
87038JA 178	.01	0.001	1.8	0.05	
87038JA 179	.03	0,001	1.4	0,04	
9703936 180	. 64	0 001	. 4	0.02	

MIN-EN LABORATORIES LTD.

Specialists in Hineral Environments 705 West 15th Street North Vancouver, B.C. Canada V7M 172

PHONE: (604) 980-5814 OR (604) 988-4524

Certificate of ASSAY

Company:HI TEC RESOURCES
 Project:878C038
 Attention:P.SORBARA

File:7-1618/P7 Date:OCT 19/87 Type:ROCK ASSAY

TELEX: VIA USA 7601067 UC

We hereby certify the following results for samples submitted.

Sample Mumber	AU G/TONNE	AU OZ/TON	AG G/TONNE	AG OZ/TON		
87038JA 181	.01	0.001	1.5	0.04	ñ -tr olt ver in in an earle e an earle e an an earle an	,
_ 87038JA 182	.01	0.001	.9	0.03		
97038JA 183	. 01	0.001	5.1	0.04		
87038JA 184	.01	0.001	. 6	0.02		
87038JA 185	.01	0.001	1.0	0.03		
87038JA 186	.03	0.001	2.7	0.08		, 199 af 1 an 20 af 20 an 10 an 20 an 2
87038JA 187	.01	0.001	. 4	0.01		
a 87038JA 188	.09	0.003	1.3	0.04		

Certified by

MIN-EN LABORATORIES LTD.

Specialists in Mineral Environments

705 West 15th Street North Vancouver, B.C. Danada V7M 172

MONE: (504) 980-5814 DR (604/988-4524 TELEX: VIA USA 7601067 UC Certificate of ASSAY Company: HI TEC RESOURCES File:7-1767/P1 Project:87 80 038 Date: OCT 29/87 Attention:J.P. SORBARA Type:FIRE ASSAY We hereby certify the following results for samples submitted. Sample AG AG AU AU G/TONNE OZ/TON G/TONNE OZ/TON 4umber 885.0 87 038 JA 189 25.81 .01 0.001 37 038 JA 190 380.0 11.08 .03 0.001 Certified by*

MIN-EN CABORATORIES LTD.

KARAAN, A TEO REFELADET Karuedt wit 87 b o 038 Kitention, F. Sorbard			705 vil	841 - XX - KD 1987 - J. 1997 - J. 1993 1987 - J. 1997 - J. 1997	AN LABORING ALANA L. NORTH VENCOVER, P.C.		(A(T:23)) - 452 () 7* :T2 FILE NO: 7-15:55/?:-
4):tN::811 t, 5048 	488 			<u>. 1664 930-1814 .</u>	<u>18 (604)238</u>	-4536 	A TYPE SOLE GEOCHEM & DATE: OFT CS. :SE
(VALUES IN PPM)	A6	<u>A9</u>			6 <u>/</u> \	<u> 46 - 26 -</u>	
0004 0258	,7	24	ð.	4 5	⊈ <u>}</u> (?7	10	
000N 050E	.7	4 - 1 2	54	2 3	5 120	ŝ	
000N 075E	. 6	16	7	2 2	152	5	
000N 125E	1.5	27 27	159	4 3	4 379	30	
000N 150E	2.2	24	55	1 30) 1089	10	
000N 1755	1.2		78	2 26	7 37		
000N 200E	.9	4	51	4 3	4 (89	5	
000N 225E	. 9	1	30	1 6	7 150	ę	
000N 250E	4,7	27	179	3 79	7 333	5	
000N 275E	2.3	15	104	k 47	. 200 7 787	:0	
0005 0255	3.4		777	<u>-</u>	57/	 5	
000S 050F	7.6	1	105	1 54) 525 N 576	с с	
0005 0755	5.0 5.0	ZÁ	100	I J'	2 330 L 240	ں ء	
0000 0752	1.0		00 07	J J(10 71		ل ۱۵	
0000 0208 0000 0500	1.7	2J +7	00 74	نۍ <u>۲</u>) 100 100	10 r	
ASAR AREF		10		4 <u>4</u>	206		
0005 0208. 0505 0505	1.7	17	123	6 S.	2 191	5	
0505 0505	2.2	34	80	4 6	371	5	
050S 400E 40M	1.8	11	81	2 3.	\$ 633	5	
0505 025#	1.6	1	140	3 2	l 160	10	
050S 075W	1.5	23	42	5 30	7 250	5	
050N 025E	1.1	17	17	1 1	116	5	
050N 050E	.6	10	18	2 15	i 1 1 7	10	
050N 075E	.8	1	36	1 33	5 155	5	
050N 200E	1.1	18	45	1 8/	185	10	
050N 275E	.6	20	57	3 50	129	5	
050N 300E	3.4	43	101	4 11	304	5	
050N 000	1.3	14	127	1 71		្ដ	
050N 075W	7	17	20	1 10	· · · · ·	् इ	
ASAN ASAW	4	14	بر ۲۵	1 7	- 107 107	್ ೮	
0000 000W 050N 0750	,0	10	27	1 2*	120 1 (00	ປ ຮ	
0000 V708 050N 100W		<u>-</u>	<u>49</u>	47 23	177		
VOUN IVUN 1AAN ATEU	• 7	01 4 A	110	10 Z.	> 170 \ +c7	2	
IVVN VZJ# Kaan ofan	•0	10	34 54	1 [[1 13/	5	
LOOM LOOM	.0	Z1	<u> </u>	1 1	(140 .~~	3 	
1000 100%	1.4	1		8 J) 	4/2	10	
100N 125W	1.7		48	2 33	485		***====================================
100N 150W	1.4	21	53	4 23	430	5	
100N 050E	1,0	29	60	5 72	151	5	
100N 100E	1.8	20	58	1 160	224	5	
100N 150E	1,6	5	63	1 251	171	5	
100N 175E	, <u>a</u>	17	61	4 41	130	10	
100N 250E	.2	2	53	2 47	i11	5	
100N 300E	8,9	7 ()	213	2 915	679	ç	
1008 0255	.8	18	.39	4 46	311	5	
10 05 4 005	3.1	34	171	1 56	¢92	5	
1005 4255	3,0	2	134] 49	1019	10	
1005 025¥			57		230		
100S 050w	1.4	22	45	5 45	256	ç	
1005 0750	1 7	1	AZ.	7 77	:50	т Е	
1005 (00b	: 2	22	20 70	2 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	107 717	ਾ ਵ	
1068 1254	· · · ·	4.A. 1	00 45	- 01	707	ل م	
1944 1209 1946 1473	······································						
1999 1992 (Engli Kner	142	2 - -	57 A-	. 64	143	-	
IJOH IIZE (EAN IEAN	л. х.	. 5	41	25	111	5	
LOUR IOUE	:.0	1	72	2 166	101	ц. С.	
10/00 1/55	÷.	11	44	1 23	101	5	
150N 200E		7	139	1 1609	<u>- 411</u>	200	
150N 225E	.6	16	87	1 38	91	10	
150N 259E	.7	14	77	4 28	113	5	
150N 275E	1.3	27	155	2 47	158	5	
150N 300E	1.2		274	2 33	209	5	
150% 025⊎	.8	21	71	3 127	19X	5	
	the second second second second second					-	

:- 1	t, litter		5 C. 075 BIRLY			ىقى ئۆچىمەردە					
	- 250 ji	ECT NO	. 87 BC 038	~ '	70 <u>5</u> 4-	en nor. Recentle en la recent	ia ventanda-	8. T. 1	28 (12 - C	c.	u 17. – t≓ip – triu. N P 654 Distrototi
-	ATTEN	v110x	P. SORPARA			160-1980-1514	18 - <u>601</u> 1090	-152	र १४२२ द्वा	4490483 v	
	(VAL	UES	N FFR :	Ng - 2	5 5		P 24	4,1-225			್ಯಾಗಿ ಕೊಟ್ಟಿ ಸಿಕ್ಕಿ ಸಿಕ್ಕಿ ಹಾಗೂ ಮಾಡಿದ್ದ ಕಾರ್ಯವರ್ಷ ಹಾಗೂ ಮಾಡಿದ್ದ ಕಾರ್ಯವರ್ಷ
	1505	050			6 24	4	8 202	 C			
	:501	(075)		.3	1 24	3	7 147	5			
	:50N	1254		8 2	5 84	1 3	1 708	5			
	(SON	1 150%	2.	0	3 53	14 3	7 295	5			
	1504	175%	1.	6 2	5 39	4 3	7 243	5			
	150%	(200%	1	6 2	0 23	1 1	7 116	5	******		
. 1	1509	0254	1.	è	1 66		2 643	10			
ين الم الم	1505	075*	2.	0	1 162	4 2	4 171	5			
	1505	125W		8 1	9 44	1 1	9 198	5			
1	1505	150%	:	71	1 39	2	3 247	5			
	1509	375E	2.	8 5	7 180	6 7	0 1664	5			
	1505	400E	1 2 :	8 1	1 159	2 4	7 774	10			
	1505	425E	2.	2 1	3 150	6 5	3 826	5			
	1505	4505	40M 2.	1 1	1 147	2 4	9 784	5			
	200N	000		2	4 23	1	9 113				
	ZOON	0255	1,	0 24	6 41	1 2	2 192	5			
	ZOUN	0/3E	•	4 1.	3 41	: 2	3 134	5			
ala d	ZUUN	1005	•	4	1 26	3 2	4 115	5			
	200N	1235	•	ວັ	1 26	1 2	3 112	10			
- 1	200N	1305		52(0 32	3 1	<u> </u>				
	2008	1/35	1		5 70	2 2	3 104	5			
-	2008 2008	220E		9 Z. 7	S 108	2 8	2 218	5			
	200N 5868	2005	1.	ა : ი ი	1 130	4 22	5 377	5			
	2008	2735	1.	V .	/ 142.	. 3. 3.	3 111	5			
	2008	100%		0 1/	68 		181	5			
	2008	1208	1.1	V Z4 4 75	+ 61 7 / A	1 1.	269	Ę			
	2008 2008	1304	4.	1 33 A 55	> 5\ 7 77	ó 4. o o:	506	10			
	200N	170 8 2009	1.1	V 23 7 E		Z Z(296 2007	5			
	200A 200N	200#	•	/ <u>.</u> D 4	J 31	0 . 3. 7 - 4-		5 -			
: 4	2008 2008	2500		10			143				
B	2009	2008	10H 2 ··	7 10 (\A) 110 \\	2 80) 7/6	5			
	2005	300E	· · · · ·	i 17 7 7	1 17J 1 17D) 044 \ •••	3			
	2008	3252	1 0	, , 17	102 170	U 01 1 41	-4j . A01	0 10			
	2005	350F		, iu (2	102 101	0 40 5 45	981 /04	10			
	7005	3756		· 	<u></u>						
	2005	4258	2.1	32	212	1 1 0 7 41	912 1719	3 5			
	2005	4 50E	2.8	34	156	2 60	510	c,			
	2008	075⊌	1.4	2	37	3 35	- 774	10			
	2009	125₩	204 1.3	5	20	3 77	174	, v 5			
	2005	150₩]	72	5 77	301				
	250N	000	1,0	: 1	65	4 38	602	5			
_	250N	0253	1.1	1	93	2 32	906	5			
	250N	100F		1	18	7 169	123	5			
1	25(4	125E	, ,	!	47	1	[3]	5			
	250 v	1735			78	2 29	175				
· A	250N	2005	. 2	10	47	1 23	96	9			
	250X	0255	, 7	;2	51	1 160	269	5			
	15(4	2308	3,4	•	÷.,	4 27	<u>3</u> 94	5			
	_230N	275E.				3 125	571	10			
調	250\	3005	- C		:07	2 82	244	5			
	2 5 0× -	0504			.70	; ; ()S	1472	5			
-	250X -	975%	<u>2</u> .	Ĩ	÷3	2 <u>3</u> 7	L.2	Ē			
3	250N	1.04	1.8	Ş	:57	n 87	466	10			
	2500	125%	1.7		<u>\$</u> 0	1 14	340	۴.			
	250%	150¥	, ۲			5 18	213				
	250N	175%	.e	2	27	: 27	227	C U			
	25)4 (2004	8.5	:	4 <u>-</u>	T 26	321	ł.			
	250N 1	225×	2.0		Б (А С 1	7 122	343	Š			
	2506	<u></u>				41	205	e S			

artexte di com de	talli vitta			Alberta (His	ar Stree			4µC(+2), PeBe (-3
ROVECT NO: 87 BC	038		.705 wEET	15TH ST., NORTH	v4xCCUVEr,	. E.C. V	7× 12	FILE NO: 7-16188/P
NIENIIUN: VIU ERI	ICASON			(604)980-5814 08	-639(406)	-4574	I TYPE SOIL GEO	CHEM & DATE:007 23, 19
(VALGES IN PPN)	Ab	#5 	<u> </u>	NI PE		AU-PPB		
250N 275X	1,0			47	177	5		
250N 300W	1.0	1	53	í 44	162	5		
2508 275E 40M	3.0	19	97	5 59	485	-10		
2509 300E	3.5	14	89	66 - 3	477	5		
2509 325E	2.4	ĥ	95	3 63	408	5		
2505 350E 40M	1.5	9	76	4 54	318	5	· - · · · · · · · · · · · · · · · · · ·	
2509 075W	1.7	t 1	57	7 32	214	5		
2505 100W	1.5	2	35	1 37	779	5		
2505 125W	2.3	1	- 114	4 7.4	767	10		
2505 1500	7	. 22	10	1 75	140	1 V 5		
2500 130W		·	+0					
13V3 1738 3EAC 3AAU	•7 E	11	10	0 4 <u>7</u> 7 70	491	J		
2005 200W	• Ū	1	136	3 3Z	14/	5		
200M 079M	. 4	1	89	1 55	710	5		
300N 050W	2.8	. 8	230	2 118	2115	10		
300N 075W	1.4		104		820	5		· · · · · · · · · · · · · · · · · · ·
300N 100W	1.1		50	1 30	633	- 5		
300N 125W	1.2	ú	80	2 61	460	5		
300N 150W	1.1	6	48	2 49	638	5		
300N 175W	1.8	5	. 69	5 70	767	10		
300N 200W	.7	2	36	3 31	362	5		
300N 300W		· <u>-</u> 1	17	1 15	 Q1.	ž		
300N 350W	 	, 72	195	2 1	140	ں ج		
700N 000N 700N 000	1 7	20	100	ט ג דר ד	170	L A k		
7004 000 7008 000	1,0	20		J 2/	321	10		
JUUN UZJE Jaan Asas	••	22	- 49	2 28	156	5		
SUON 0505		20	38	2 33	144	5		
300N 075E	.2	1	20	1 17	114	5		
300N 150E	* Š	1	42	3 48	170	5		
300N 175E	,2	12	27	2 23 -	105	5	`	
300N 200E	5.5	9	94	1 208	246	10		
300N 225E	3.8	1	128	4 84	223	5		
300N 275E	.6	1	123	1 59	256			
300N 300E	4.9	49	175	2 537	434	Ę		
3005 200F 40M	1.5	10	77	2 81	745	ب ج		
3005 225E 40M	17	7	20 71	1 102	270 701	. 5		
CONC 2505 20M	1 6	; ; ;	40 10	1 100	471	ل ن ح	· · · · ·	
1000 1300 100 1000 9760 900	<u>7-</u>				200	;;.		
2000 2796 200 2000 2005	0./	7	20 52	2 62	311	10		
3003 300E 5003 3055	2.8	11	48	1 /2	3/5	ַל		
5005 3Z3E	2.3	d	20	2 76	400	- 15		
SOUS 350E 40M	1.6	9	. 40 .	1 73	369	5	···. ·	
3005_025%			25	1 23	160	10		
3005 050W	.5	3	22 -	2 . 24	201	5		
3005 075₩	,3	22	34	4 24	205	5		
3009 100W	.9	6	45	2 25	202	10		
3009 125W	.5	18	28 -	1 21	i 4 4	5		
3005 175W	.1	1	- 26	3 22	108	5		
005 200W			83	2 62	: <u>4</u> 0	;ē-		
50N 000 40M	1.1		. 37		 710	1.0		
50N 025F	i ,	:5	5. 5.1	7 56	010	1 V 5 R	· .	
SON ASAF	.,= 7 7		00	7 UV Q (01	10V 100	2J . c		
50N 0755	0:0 5 5	10	, ru 516	0 171 (74	- ₩30 8725	. 0 e		
SAN 10AC					470/ 			
GAN 1975	· • • •	Ĺ	11/	1 27	396	<u>:0</u>		
JUN 1251	1	1	32	1 18	172	10		
50N 150E 40M	,2	2	22	1 18	148	Ę		
50N 1755	1,2	16	73	2 33	195	60		
50N 200E	.8	1	107	3 54.	181	s ·		,
50N 250E	<u>4,2</u>	22	195	2 308	371	. -		·····
50N 300F	1.5	K	187	· 1 🗛 '	707	- 5		
50% 075¥	1 1	Δ	£7	- 97 7 40	507	ن ج ت		
508 0508	141 7	- 1	07 50	е 84 7 Ал	17/ 191	:2 e		
IGON VOUR Isan Atel	* /		3V 57) 4' , •··		 		
WC (V MVG)	• L	4	L_{i}	_ ŠV	144	11:		

Handa a

A.C.

1.00

j.

1

a particular

r .

	1. Ar 3	N); A	to niberna			r kata see	· · · · · ·			
	PROJE	57 NJ	: 87 60 038		705 wh 5	S 1578 ST., NORT⊨	794000A55	8.C. V3#		File Wit Priol 55/9743
	ATTEN	T10k:	P, SORBARA			(604)980-5814 09	R (604)989	-4524	1 TYPE SOIL GEOC-E	K K DATE:001-20, 1981
8	(VAL	UES i	V PPM) 4	46 AS		NI PP	1 %	A0-923		
	350N	100%		2	25	1 29	(04	5		
	350N	125W	1.	2 ł	150	. 1 129	472	5	• •	
	350N	1504	1	7 7	129	2 140	1148	5 .		
1	7508	1759		, v ,	107	1 974	1070	10		
	7574	1736			101	: 200	1070	10	1	
	1000	923W		1			197			
	320N	320₩	·	- J - J		4	147	5		
1	350N	375%	•	5	26	2 97	235	10		
	350N	400W		2 3	27	1 28	96	10		·
	350S	025₩	· .	.8 24	31	2 79	479	5		
	3509	050%	1.	0 9	65	5 40	326	÷,		
	7509	0759		4 7/	75	1 49	158			
	7540	1000	1.	·	73	: 10	100	- -		
	3305	1008	-	0 1		J 20	117	5		
	3505	125W		3 10	21	1 64	108	5		
	350S	150W	•	.3 11	. 7	8 37	354	5		
	3505	175₩		2 16	52	2 32	139	5	•	
	3505	200		3 8	23	1 45	209	5		
	4005	0008		.6	38	5 117	220	5		
	4000	0258	י י	'	(17	A 205	571	10		
	4000	0208 0800	1. 7	7 44	, 1 7	T 220	001	10		
-	4005	000#	4.		.13	a 183	080	10		
	4005	0/50	408	1 55	30	2 46	140	<u>_</u>		
	400S	100W	•	.3 1		1 31	176	- 5		
	400S	125₩		.3 1	23	2 26	120	5		
-	4005	150W		.3 1	26	3 36	122	10		
4	2004	1750		7 10	57	6 37	174	5		
1000	4000	3008		-0 IV	, J, 71	0 J/	147	10		
	4005	2000		<u> </u>		4 33	146			
	4005	0258	:	6 14	56	3 81	203	5		
4	4009	050E	2.	.0 15	44	1 114	- 275	5		
	4005	0758	1.	.7 24	. 47	4 135	338	10		
	400N	000		5 2	2 53	1 40	333	5		
	400N	025F	40M 7.	2 3	28	3 57	170	5		
ú	ACON	0505		7 7	110			10		
	1004	1000	1.	7 0/	- <u>1</u> 07	1 JJ	704	10		
	400N	:005	:	.3 20	99	20	344	. 2		
	400N	1258		2 12	1 33	1 1/	147	5		
	400N	150E		.8	85	5 42	159	5		
4 CA 1 CA 1	400M	2508	40M .	7 21	. 96	4 38	170	10		
	400N	275E		4 23	106	3 26	167	5		
	ACON	3005	-	A 10	179	4 75	196	5		
1	AGON	A256		0. 1		T 10	270	=		
	400¥	0500		. 1 5 (71	U .01 (TE	207 765			
	400%	030%	1	d	. J:	1 04	232	10		
	400N	0/5₩		<u>ام</u>	24	1	192	20		
	4()() N	100W	1.	1 3	40	3 60	- 320	5		
	400N	125W		.8 23	43	3 44	. 453	5		
	400N	:50%	1.	0 1	45	2 47	4 7∆	5		
	4()()N	175W	1	7 8	56	1 71	521	5		
	400N	2569	•	р т	77	Å 47	A07	10		
	1004							 5		
	978.8 800-0	2004	i.	-1 	· 3.	2 J/ 	147	ل . ۳		
	400N	0Z3₩	:	- č	έ δ	1 57	127	3		
	45(N	050%	-	2 1	7 C	35 51	241	5		
	450×	;50¥	_ c	.8 1(63	86 68	. 367	10		
	4505	250%		4	- 38	1 41	217	10		
	4505	7,251			51	- <u>A</u> l	759	5		
	50000 5000	7240	1.				007	47.		
	5 J (J A	350W		0 -	. J/	2	Z00	10		
	450%	375¥		3 .	22	1 29	153	5		
	450N	400W		7	28	1 78	172	10		
	4505	096%	٦.	9 .7P	56	5 :47	607	5		
	4500	0250	•••••		57	1 8:	705	 Ę		
	ACV0 ACAR	AEA0	1 r 4	נ ב ני פ	32 75	: CI	EVC EVC	. c		-
	4070	000W	1.		: .30	L 7-	· 392)		
	4505	970₩	i.	4 14	- 23	· • 32	151	2		
	4508	i():)≱	1,	.0 i(3.	. 41	158	5		
•	4509	125k		.4	27	<u>i 60</u>	179	5		

COMPANY: YE IEC PROJECT NO: 07 B ATTENTION: PUSOR	RESOURCE C 036 BARA	· .	705 WES7 .:	819-19 19:01:01 19:01:00-10	- 1625 HORTH 814 - 28	107 REFOR VANCOUVER (504)988	7 . 8.0. N -4524	:407.7010 PAGE 1 SP VTM 172 F1LE NO: 7-15183/P7+ ★ TVFE SGIL GEDCHFM ★ DATF:0CT 27: 19
WALVES IN PPK) A9		Γΰ.	N -	55	211	AU-PPI	
4508 159%	1.7	45	16			573		
4505 175%	1.1 1	- 10	29	र	ц. Т.	179		5
4509 20AU	• -	20	. LT ÅR		50 TO	177	-	9 2
1503 200M	с. 1 Г	71	11	1	05 (17	174	-	
10VD 020C	5.0		205	1	140	c/ 0	ن م د	
4303 030E	2.5		<u>6</u> 7			524 555	<u> </u> 	y
4505 075E	1.1	6	43	2	78	286	5	
4505 100E	1.5	10	51	1	67	230	5	5
450S 125E	1.2	7	147	15	43	379	0,	5
4505 150E	1.3	3	41	ό.	39	261	5	5
4503 175E	3.2	14	391	3	- 63	4586	10	0
450N 000	2.4	4	58	3	66	491	5	
450N 025E 40M	1.2	i	50	4	52	270	5	5
450N 050E	.6	1	52	2	4.4	788	c	
450N 075E	1.1	12	70	3	43	317	5	- • •
450N 100F 40M	.5	14	56	1	7 <u>4</u>	777	5	
450N 125E			75					• • • • • • • • • • • • • • • • • • •
ASAN ISAS IAM	• (đ	້	J.J Ta	т т	90 77	4// 5/7	ل ۸ ه	- -
ASAN (JEE AVA	•7	- 1	/说. 47回	3.	33 70	260 700		Jan San San San San San San San San San S
. 4JVN 17JE	1.7	. 34	167	4	- 50	324	3	3
ADUN ZUUE	.5	19	57	4	31	242	5	3
450N 225E				<u>i</u>	42	324	5	
450N 250E	1.0	1	86	5	41	304	10)
450N 275E	.5	-21	119	4	27	175	15	5
450N 300E	. 4	1	97	4	25	186	5	5
500N 025W	.5	11	23	1	24	113	5	3
500N 050W	.4	1	29	3	29	191	5	
500N 075W	1.8	:4	<u>4</u> 5	5	124	441	10	***************************************
500N 100W	.7	3	31	2	44	199	5	
500N 125H	1.5	Z	-41	- 1	79	T 04	Ę	
SDON 150W	1 6	14	50	Ę	57	717	ت ج	
500N 1000	1.V L		10	ل ح		014 (00	ء د	
5000 2500	······		10 			19V 786	لہ 	
SOON LUVN	1.1	20	. Ch	. 43	30	420	C _	
JUUN 2738	• • •	25.	35	2	ز ک	321	5	
500N 300N	1.6	30	- 85	1	55	543	16	
500N 325N	1.0	1	42	£	41	244	5	
500N 350W	1.6	27	51	į	61	258	15	
500N 375W	.3	17	27	5	38	147	5	
500N 400W	.3	16	28	1	26	119	5	
500N 000	.3	16	41	-	19	148	10	
500N 025E	1.5	. 14	50	3	78	343	10	
500N 050E	1.5	i -	65	í	71	327	5	4
500N 075E	1.2	7	65		47		<u></u>	******************
500N 125E	1.6	, . , .	98.	5	 23	571	 Ę	
500N 450F	1. T	4	, gr		50 50	207 170	ن ح	
500N 375F	4 *	т. t	70		uν Tâ	74C 77A		
5008 2005	e	i i	- 17L	۳ ۱	50 Ti	200 101 1	ن 	
	· • • • • • • • • • • • • • • • • • • •		1/0 78-200				<u>-</u> ;	
SAAN SEAC	.0 	44 1	52 ·	ن ۱	j4 	161	17	
SAAN DOVE	*1	1	299	4 ~	30	12. 	1	
JUUN 2735	1.0	j -	128	į	4:	367	5	
SOUN SOOF	1.5	5.	85	8	26	343	5	
550N 625E		14	34		19	145	<u>iř</u>	
550N 050E	1.0	:	45	4	47	245	ŝ	
550N 075E	1.6	6	71	5	77	345	15	
SSON 100E	1.1	2	78	i	32	4 09	16	
350N 1255	.9	1	171	1	ς.a	1377	11	
550N 150F	: o	:3	104	• 1	55	7197	. 5	
550N 175F	;;; ;		764			100		
5500 2005	1 . I 7 . I	11 1	100 111	ວ ອີ.	сс 55	1040	20 . e	
SSAN 2000	2 A A		/ M (10	∠ £	171	010 no (ບ ຕ	
GUNN AZUC Rean gear	£.V E	:1	110	4	401 44	27:	С. 	
JJVN ZDVE	 	1	: 54	1	54	202	15	
	5 L	i	16A	i	50	711	5	

nd Store B. L.

108Fan	1: -3	TEC RECORDE			A A	IárEk Lést		ĩ		662	EFSIG FRÉE 1 OF 5
PROJECT	T kê:	97 BE 038		705 WEE	st ista s	1., NCETH	VAREOUVER	, 3.C. V		, File	NG: 7-16189/P11+12
ATTENT	10N:_	P.SORBARA			:664)	980-5614 OR	(604)958	-4524	+ 1775 851L	GECCHEN +	DATE: OCT 23, 1987
VALU	ES IN	FPN }	15 AE	100	h	PP PP	ZN	AG-FFE			******
550N -	300E -	•	14 J. 14	i 85		4 30	187	5		•	
SBON (JVU Angu	•	5 15 5 47	/ 35 		25	185	5			
23000	VZOW. Neau		10 I. 7 15) 15 - 50	4		106	10			
DOVK (VDUR Aven	4) <u>)</u> :) . 39 I . 10	2		370	5			
10000	1754		V	40) //	277.	ر :	**==****		
SSAN I	LEON LEON	1.	.V V E .10	2 37 5 50		36 (37	221	3 *^			
- 550N ::	17512	ě ě	D 10 2 1	/ J7 . 75		//// 1. 50	616 101	17			
SSAN C	2758 2258	•	י. ז' ל	. 20 . 57		t - 112 	· 201 779	ರ ಶ			
SSON 2	2500	1.	L 13	, 53 (84) 51	000 758	ے ج	1		
550N	2751	1.	0	43		43	205				
550N 3	SOON		7 1	47	i	50	777	्र			
550N 3	325W		2 11	75	- 7	20	134				
550N 3	75W	1.	4 1	59	. 5	46	210	•• 5			
550N 4	HOOW	1.	0 7	41	-	34	184	5			
600N ()25W	1.	3 4	44		63	243	5			
600N 0)50¥		3 25	32	1	33	245	5			
600N 1	100W	40M I.	2 7	52	i	53	271	5			
660N 1	25W	1.	6 12	62	. 5	73	326	5			
600N 1	50W	1.	0 33	35	4	39	176	10			
600N 1	75₩	1.	1 1	39	2	46	252	5	*******		
600N 2	25₩	. 1.	4 2	55	9	50	275	5			
600N 2	250 N	1.	1 12	52	14	44	232	5			
600N 2	75¥	1	58	- 87	10	53	- 394	5			
600N 3	000	**************************************	52	41		41	181	5			
600N 3	251	•	87	~ 20	2	32	196	5			
600N 3	50W	. č	5 5	34	1	33	263	10			
600N 3	759	•	6 2	- 19	1	. 37	242	5			
600N 4	000		2	57	ĩ	34	189	5			
600N 0	00 7777	1.	1 7	39	5	57	217				** ***
600N 0	255	•	<u> </u>	22	1	34	127	5			
500M 0.	JUE		5 12	21	1	15	92	10			
OVVN V	732 005	• • •	1 4	- 41	2	57	217	. 5			
LAAN 1	OUE GSE		1.4 7. E	95 · · · · · ·	1	52	- 258	3			
LOON 1	235 576		7 J 7 J				419	<u>د</u>			
4008 1	JVE 755 -		7 23 17	111 777	1	31 . 171	1627	. 1V 	•		
500N 2	00E	2.1	. 17 (57	200	1	1/0	2233 -	- 1V			
600N 2	25E	1.9	- ui - 17	011		107	1554	ت ح			
500N 2	50E	2.7	27	367.		208	1478	5			
500N 2	75E	1.6	2	[46							
530N 03	25W	2.0	22	45	. <u>5</u>	120	452	15			
620N 0	56¥	. 4		27	1	42	221	5			
650M 00	75W	2.1	11	113	2	51	511 -	5	н. 1		
650N_1	00N	1.0	2	48		52	241	- 43			
650N 1	23W	2.0	13	68		125	449	5			
650% iB	÷¢¥	Ĵ.1	120	98		111	715	5 -			
650N 11	75¥	1.7	. 10	- 105	i,	56	799	5.			
850% <u>2</u> 0	10W - 4	OM 2.1	- 1	55	- 6	. 77	513	10			
<u>650% 27</u>	75W		20_	68		82	342	5			· · ·
650N 30)() k		12	52	2	51	258	10			
650N 32	59	1.1		52	5	41	251	5			
656N 33	ĸ	- -	22	15	2	45	184	5			
650N 37	5	1.0	1	122	ġ.	47	163	5			
650N 40	HQK 	3.0		192		84	464	5			
650N 00	16 	1.3	5	43	5	74	260	5			
550N 02	:5E		•	~ • <u>1</u> 8	4	45	284	5			
550N 03	0E 2	em. 1.9	2	37	4	81	305	5	•		
650N 07	5E 	1.0	2	46	Ą	78	236	5			
50N 10	ψE	1.4		49		52	251				

him

2、4、61、1~1、14、41%をおけるたけは、「酸酸稀酸酸盐和酸酸盐和酸酸盐和药作品」。 (1)、12、12%素素的 (1)、12、12%素素的

	COMPANY: BI TEC	AE SOURCE			Mik-E	16 LABS	ICA REFOR				(ACT:FD:)	PA6E 1 0F 1
	PROJECT NO: 97 B	81 038		705 WEST	1378 ST.,	NDATH	VANCOUVER,	8.21 V7#	172		FELE NO:	7-16183.213
	ATTENTION: P.SOR	BARK			(604)980-	5814 OR	(864)988-	-2524	+ TrPi	E SOIL GEOCH	EM + 567E;	OCT 23. 1987
,	VALUES IN PPM) AG	AS	CU	NI	FB	ZN	AU-FFB			************	
	650N 125E	.7	5	45	2	59	247					
	650N 150E	.7	3	49	- 1	34	274	5				
	650N 175E	.2	18	51	1	29	453	5				
	650N 200E	.2	22	78	1	27	1029	r J				
	650N 225E	2.7	17	392	1	162	3216	5				
	650N 250E	2.6	5	196	5	152	581	10				
	650N 300E	.3	19	.73	. 3	30	213	5				
	3+50N 2+75E	1.6	1	127	3	145	283	5				

. .

.

.

Í

1.1

· ·

APPENDIX III

Statement of Costs

\$

STATEMENT OF COSTS

Mt. Evelyn Claims 1987 Exploration Program Conducted from September 22 to October 12, 1987

Salaries			
Geologist	18.0 days @	\$300.00/day	\$ 5,400.00
Technician	18.0 days @	\$200.00/day	3,600.00
Technician	18.0 days @	\$200.00/day	3,600.00
Supervisor	2.0 days 0	\$375.00/day	750.00
Mobilization/Demobil	ization		4,000.00
Project Preparation			1,000.00
Office Costs and Com	munications		1,000.00
Geochemistry 190 r	ock samples	@ \$22.00/samp]	le 4,180.00
368 s	oil samples	@ \$ 9.90/samp]	le 3,643.00
Truck Rental and Fue	1		1 400 00
	-		1,400.00
Geophysics - 18 km @ (Field magnetics, v and VLF-EM with an	\$400.00/km vertical gra n EDA Omni H	dient magnetic lus)	7,200.00 cs
Domiciles - 54 man da	ays @ \$80.00)/day	4,320.00
Helicopter Support			2,658.00
Field Supplies			1,637.00
Report Compilation a	nd Drafting		6,000.00
Project Management -	20% @ \$37,0	038.00	7,407.60
		TOTAL	\$57,795.60

- 3 + 00 E.	
038-84 87038-83	LEGEND
$\begin{array}{c} 38-55 \\ \hline & & & \\ 87038-82 \\ \hline & & & \\ 87038-3! \\ & & & \\ 87038-3! \\ & & & \\ 87038-3! \\ & & & \\ 87038-126 \\ & & & \\ 87038-126 \\ & & & \\ 87038-127 \\ & & & \\ 87038-128 \\ \hline & & \\ 87038-128 \\ \hline$	LOWER MIDDLE JURAS Hazelton Group Ia Pale green auto Ib Bleached Ic Massive d
	LOWER CRETACEOUS Bulkley Intrusive

87038-138 0 87C33-139 -4 4+00 N. 87038-137 0 87 87038-134 87038-1**33** 87038-131 87038-132 ---- 3+50 N. o 87038-135

-1 3 +00 N.

- 2+50 N.

1	2	+00 N.	

87038-101 0 87038-99

87038 - 100 -11+00 N.

87038-98 o --- 1 0 +50 N. 87038 - 97

SSIC

en massive dacite, rhyodacite flows and tuffs, locally obrecciated.

acid tuff horizon.

andesite flows and tuffs.

Medium grained granodiorite and quartz monzonite. Fine grained quartz porphyry.

87038 - 138

Geological contact.

Rock sample location. (For analytical results see Appendix III).

GEGEOGICAL BRANCH ASSESSMENT REPORT

100

200 m

- 🐢

50

MORE RESOURCES LTD.

Mt. Evelyn Properties

- LAST HOPE GRID -

ROCK SAMPLE LOCATIONS

HI-TEC RESOURCE MANAGEMENT LIMITED	DWN BY:	DATE: Jan 12,1988
	N.T.S. 931/14W SCALE: 1:2500	FIGURE No: 3

. ماليوري سيروب :

87038 - 050 9 87038 - 049 U

87038 -051

87038 - 055

-	
87033-054	

87038-053 0

87038-052 9

LEGEND

LOWER MIDDLE JURASSIC

Hazelton Group

100 m.

Pale green massive dacite , rhyodacite flows and tuffs , locally autobrecciated. la Bleached acid tuff horizon. ŀЬ lc Massive andesite flows and tutts: MENT REPORT LOWER CRETACEOUS Bulkley Intrusive Medium grained granodigrite an, 2 3 Fine grained quartz porphyry Geological contact. ° 87038-049 Rock sample location (For analytical results see Appendix III). ----- www. Vein, fault trace. F-----4 Old trenches. MORE RESOURCES LTD.

Mt. Evelyn Properties

- SPONDULUX GRID -

ROCK SAMPLE LOCATIONS

HI-TEC	DWN BY:	DATE: Jan 12,1988
MANAGEMENT	N.T.S. 931/14 W	FIGURE No:
LIMITED	SCALE: 1:1000	4

L.0+00 L.0+50 S. L.I+ 00 S-L. I+ 50 S. L. 2+00 S. 08 1.4 | 5 | 0.5 -|<u>5</u> |·5 ---<u>+5</u> |·7 L.2+50S. 10.3 0.9 2.3 |<u>5</u>||/0 0.5 0.3 L.3+00 S. **├**───**├**── 0.9 0.1 0.3 0.9 L.3+50S. **├**──-**├**── 1.8 0.3 0.6 0.2 0.3 0.3 ┝────┼── 2.8 L.4+00 S. 2.3 0.3 0.6 0.3 0.2 0.3 ⊢−−−−+ |<u>5</u> 06 1 39 L.4+50 S. 1.8 1.6

2+00

1+50

.

+ 00

.

0+50 W

•

LEGEND

LOWER MIDDLE JURASSIC

Hazelton Group

Pale green massive dacite, rhyodacite flows and tuffs, locally autobrecciated. Bleached acid tuff horizon.

Ib Ic

Bleached acid tuff horizon. Massive andesite flows and tuffs.

LOWER CRETACEOUS

Bulkley Intrusive

2	
3	

Medium grained granodiorite and quartz monzonite. Fine grained quartz porphyry.

	Geological contact.
	Strike and dip.
-	Attitude of jointing
	Mt. Evelyn vein.
 4	Old trenching.
<	Old adit.

GEOLOGICAL BRANCH ASSESSMENT REPORT

17,081

50 100.

200 metres

L0+00 L0 + 50 S

L I + 00 S **.** L | + 50 S , X L2+00S For a conferrance f . L 2 + 50 S L3+00S

<u>....</u> L4+00S ───┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼ L4+50S 1 + 00 W , 2 + 00 0 + 50 + 50

───┃────**┣**────**┣**────**┣**────**┣**────**┝**────**┝**────**┝**────**┝**───

L 3 + 50 S

4 + 00 10 4 + 50E GEOLOGICAL BRANCH ASSESSMENT REPORT 17,081 MORE RESOURCES LTD. Mt. Evelyn Properties - SPONDULUX GRID-VLF - EM Survey (profiled) (in-phase and quadrature component) HI-TEC RESOURCE MANAGEMENT LIMITED DWN BY : C.Basil DATE : Dec. 1987 FIGURE No. : 7a N.T.S. : SCALE : 1:1,000

+ <u>3</u>4 + <u>5</u>4 <u>3</u>.3 L0+00 5.0 4.4 L0 + 50 S 17.8 7.8 L I + 00 S 7.2 2.1 5.9 7.4 L | + 50 S 6.1 13.6 3.4 17.8 8.6 6.0 4.5 4.0 7.5 3.3 8.2 6.7 L2+00S 7.7 6.9 L 2 + 50 S 1 7.7 8.6 H 1.8 3.1 2.9 4.5 7.1 1.8 2.9 4.5 2.4 1.2 2.2 0.1 L3+00S 3.6 1.3 ►---+ L 3 + 50 S 3.8 2.0 11 1.0 2.4 3.8 ┝━━──-┣ L4+00S 4.5 10.6 L4+50S I + 50W 2 + 00W

L0+00

L0 + 50 S

L I + 00 S

L | + 50 S

L2+00S

L 2 + 50 S

L 3 + 00 S

L 3 + 50 S

L 4 + ÓO S

L 4 + 50 S

 $-\bigcirc$

