Off Confidential: 89.02.17 District Geologist, Kamloops ASSESSMENT REPORT 17085 MINING DIVISION: Osoyoos Similkameen PROPERTY: LOCATION: LAT 49 16 45 LONG 120 04 56 UTM 10 5462368 712211 NTS 092H08E Lost Horse 1-4, Lost Horse A-B, Lost Horse 86 CLAIM(S): OPERATOR(S): Chevron Can. Res. McAllister, S.G.; McPherson, M.D. AUTHOR(S): REPORT YEAR: 1988, 92 Pages COMMODITIES SEARCHED FOR: Gold GEOLOGICAL The Late Triassic Whistle Creek Formation underlies most of the SUMMARY: property and consists predominantly of westerly dipping andesitic tuffs with minor interbedded clastic sediments and limestone lenses. The Copperfield conglomerate is a limestone boulder conglomerate that is found at the base of the Whistle Creek Formation and overlies the Hedley Formation of interbedded clastic sediments, carbonates and minor tuffs. Jurassic Cahill Creek granodiorite crops out on the eastern part of the claim. Hornblende-feldspar porphyry sills, also of Jurassic age, cut the Triassic rocks. The clastic sediments of the Hedley Formation are hornfelsed and have undergone calcic alteration. ЗK Geological, Geochemical, Drilling DONE: 187.8 m 1 hole(s);NQ DIAD Map(s) - 2; Scale(s) - 1:500, 1:100440.0 ha GEOL Map(s) - 4; Scale(s) - 1:5000, 1:500125 sample(s) ;ME ROCK 368 sample(s) ;ME SOIL Map(s) - 2; Scale(s) - 1:5000092HSE050

MINFILE:

	And a second sec
GEOLOGICAL, GEOCHEMICAL,	TRENCHING
AND	UN DUI
DIAMOND DRILLING REI	PORT

on the

SIMILKAMEEN PROPERTY

MONTELLO OPTION

LOST HORSE I - 4, LOST HORSE A - B,

and LOST HOST 86 Claims

OSOYOOS MINING DIVISION

Ream

ME

GEOLOG ASSESSI

N.T.S. 92H/8E

49°16'30" 120°06'

Owners: Chevron Minerals Ltd. and Montello Resources Ind. Operator: Chevron Canada Resources Linhied Authors: S. G. McAllister M. D. McPherson

January 1988

TABLE OF CONTENTS

Page

1.0	INTRODUCTION	1	
2.0	LOCATION, ACCESS AND TOPOGRAPHY	1	
3.0	CLAIMS	2	
4.0	HISTORY	3	
5.0	PHYSICAL WORK	4	
6.0	GEOLOGY	4	
	6.1 REGIONAL GEOLOGY6.2 PROPERTY GEOLOGY6.3 ALTERATION AND MINERALIZATION	4 5 11	
7.0	GEOCHEMISTRY	12	
	7.1 SOIL GEOCHEMISTRY7.2 ROCK GEOCHEMISTRY	2 3	
8.0	TRENCHING PROGRAM		
	8.1 TRENCHING RESULTS	15	
9.0	DIAMOND DRILLING PROGRAM	18	
	9.1 DIAMOND DRILL RESULTS	19	
10.0	CONCLUSIONS AND RECOMMENDATIONS	22	
11.0	REFERENCES		

ţ

-

.....

.....

LIST OF FIGURES

Page

Page

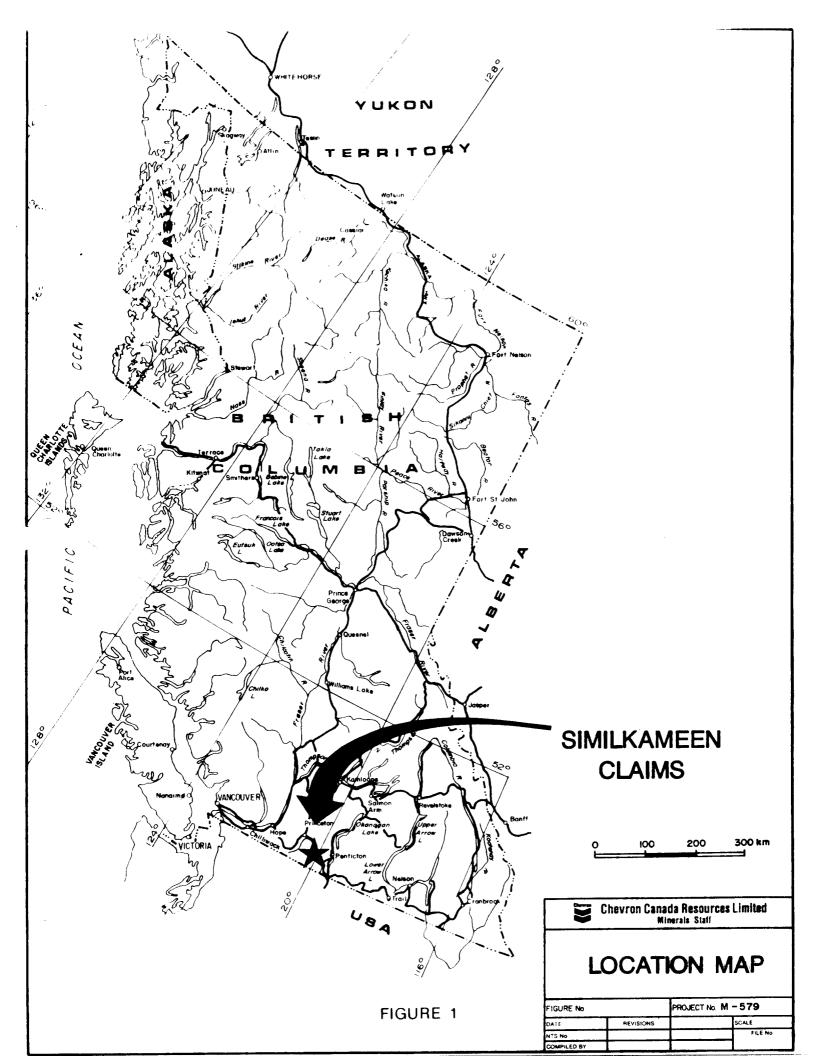
1.	Location Map	after page l
2.	Claims (M579-L-1)	after page 2
3.	Sample Location Sheet 1 (M579-C-8)	in pocket
4.	Soil Geochemistry Sheet 1 (M579-C-7)	in pocket
5.	Geology and Rock Geochemistry Sheet 1 (M579-G-11)	in pocket
6.	Trench S87TR001 (M579-G-4)	in pocket
7.	Trench S87TR002 (M579-G-14)	in pocket
8.	Trench S87TR003 (M579-G-16)	in pocket
9.	Cross Section S87DH001 (M579-G-17)	in pocket
10.	Orthophoto Sheet 1 (M579-T-2)	in pocket
11.	Strip Log S87DH001	in pocket

APPENDICES

25 APPENDIX I Statement of Qualifications 28 Cost Statement APPENDIX II 33 APPENDIX III **Geochemical Data** 34 Analytical Techniques APPENDIX IV Geoheader 35 APPENDIX V 36 Diamond Drill Logs APPENDIX VI Statement of Exploration and Development 37 APPENDIX VII 38 APPENDIX VIII Petrographic Descriptions

1.0 INTRODUCTION

Chevron Canada Resources Limited conducted a property scale exploration program during the 1987 field season on the Similkameen property. This property consists of 24 claim units and is located south of Hedley, B.C. in the Osoyoos Mining Division. These claims were optioned from Montello Resources Ltd. in the spring of 1987.


The purpose of the exploration program was to evaluate the property for Hedleytype gold-skarn mineralization in the favourable Hedley-hosting sequence of rocks. The exploration program concentrated on the eastern half of the claims and did not test the western half that is underlain primarily by tuffs of the Triassic Whistle Creek Sequence.

The exploration program consisted of soil sampling, 1:5,000 scale geological mapping, bulldozer trenching and diamond drilling. The work was carried out on an area of the claim block underlain by a north trending belt of Triassic Hedley Sequence carbonates and clastic sediments, which are the favourable host rocks for Hedley-type skarn mineralization.

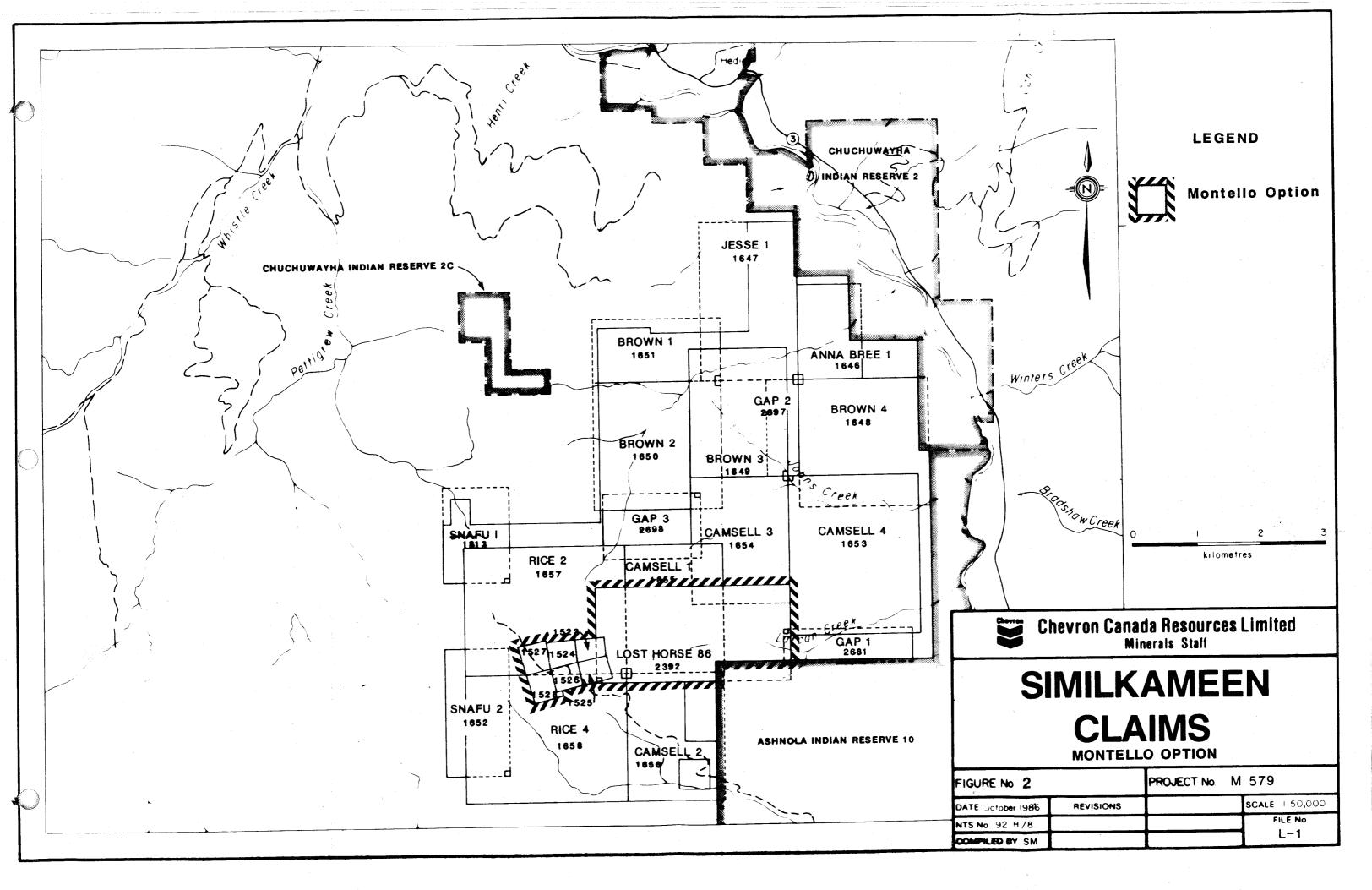
The field work was conducted during the period from May 21, 1987 to October 21, 1987 with a 4 person field crew. A field office and crew quarters were maintained for the duration of the field season in a rented house located in Keremeos.

2.0 LOCATION, ACCESS AND TOPOGRAPHY

The Montello option mineral claims are located approximately 8.5 kilometres south of Hedley and 22 kilometres west of Keremeos in the Osoyoos Mining Division (Figure 1). The property is located at the headwaters of Larcan Creek and extends

east down the grassy slope to the top of the cliffs. The western boundary of the claims is located 1.5 kilometres southeast of B.C. Tel's microwave tower.

The property can be accessed by two routes using a 4 wheel drive vehicle. The property can be accessed by a dirt logging road that heads west across the Ashnola Indian Reservation along the south side of the Similkameen River and continues westward along Paul Creek. This road eventually leads to the microwave tower. Permission to use this road is required from the Similkameen Indian Band in Keremeos.


The second route to the property is along the B.C. Tel's recently completed service road to the microwave tower that heads southeast from the Whistle Creek Mainline at approximately kilometre 6.

Elevations on the property range from 1450 metres at the eastern boundary along the base of the grassy slope to 1980 metres at the western edge of the property. Total relief on the claims is 530 metres. The topography consists of gentle rolling slopes over most of the claim group.

Large grassy areas that are found on some of the south-facing hills are surrounded by stands of fir, pine and spruce. A dense growth of immature evergreens is found at the north end of the Lost Horse 86 claim in the area of an old burn.

3.0 CLAIMS

The work outlined in this report was conducted by Chevron Canada Resources Limited on the Montello option claims. The 24 claims in the Osoyoos Mining Division are held under option from Montello Resources Ltd. (Figure 2).

These claims are 65% owned by Chevron Minerals Ltd. and 35% owned by Montello Resources Ltd. These claims are located entirely in the Osoyoos Mining Division. The Montello option claims are as follows;

Group	<u>Claim</u>	Record <u>Number</u>	<u>Lot #</u>	Record Date	Record <u>Units</u>	Expiry <u>Date</u> (before submission of this report)
Lost Horse I	9 87					
	Lost Horse #1	1523	L3239	21-Apr-82		21-Apr-97
	Lost Horse #2	1524	L3240	21-Apr-82		21-Apr-97
	Lost Horse #3	1525	L3241	21-Apr-82	1	21-Apr-97
	Lost Horse #4	1526	L3242	21-Apr-82	1	21-Apr-97
	Lost Horse A	1527	L3243	21-Apr-82	ļ	21-Apr-97
	Lost Horse B	1528	L3244	21-Apr-82	1	21-Apr-97
	Lost Horse 86	2392		24-Mar-86		24-Mar-97
		TOTAL			24	

4.0 HISTORY

During the 1900's there was much prospecting for gold in the Hedley camp. The hand trenches in the south east corner of the claim block on the south facing slope of the Lost Horse 86 claim are evidence of some early work. The dates of this work are not known.

During the 1986 field season Shangri-La Minerals Limited carried out an exploration program on the Montello option claims for Montello Resources Ltd. This work consisted of geological mapping, soil geochemistry, as well as ground geophysics (Falconer et al, 1986). Both magnetometer and VLF-EM surveys were conducted.

Chevron Canada Resources Limited conducted an exploration program on the Montello option during the 1987 field season. That program is the subject of this report.

5.0 PHYSICAL WORK

During the 1987 field season a D-6 cat and operator were contracted from High Alpine Contracting Limited in Penticton for bulldozer work on the Similkameen property during September. This included upgrading the access road leading onto the Lost Horse 86 claim and constructing one drill pad and a new access road to this pad. Additionally, the D-6 was used to expose bedrock in three trenches in the northeastern part of the claim group.

All the bulldozer work was conducted on the Lost Horse 86 claim. A low-bed truck was used to transport the D-6 from Penticton to a location on the B.C. Tel service road approximately one kilometre northwest of the microwave tower where there was space enough on the road for the low-bed to turn around. The operator walked the bulldozer onto the property from the truck off load point.

Approximately 900 metres of existing roads were upgraded to improve the road access of the claims. A total of 235 metres of new road were constructed for access to the drill pad.. The average width of roads constructed is 4 metres.

6.0 GEOLOGY

6.1 REGIONAL GEOLOGY

The Similkameen property is located in the Hedley gold camp within the Intermontane Belt of the Canadian Cordillera. The western half of the region is underlain by a predominantly sedimentary sequence of the Triassic Nicola Group (Rice, 1947). This group has been subdivided into the volcaniclastic rocks of the Whistle Creek Sequence and the sedimentary rocks of the underlying Hedley Sequence. The rocks of the Nicola Group are primarily north-south striking and westerly dipping. Two plutonic phases intrude the Nicola Group rocks. Granodiorite of the Jurassic-age Cahill Creek Pluton occupies the contact between the Hedley Sequence to the west and the underlying Paleozoic volcanics and sediments of the Apex Mountain Complex to the east (Ray and Dawson, 1987). Jurassic-age diorite stocks, sills and dykes of the Hedley Intrusions cut the central belt of Hedley Sequence rocks.

6.2 PROPERTY GEOLOGY

The Late Triassic-age Whistle Creek Sequence underlies the western half of property and consists predominantly of westerly dipping andesitic tuffs with minor interbedded clastic sediments and limestone lenses (Figure 5). The Copperfield Conglomerate, a limestone boulder conglomerate, occurs at the base of the Whistle Creek Sequence forming a distinctive marker horizon that crops out along a north-south trending zone in the centre of the property. The underlying Late Triassic Hedley Sequence consists of interbedded clastic sediments and carbonates with minor tuff. These sediments are found in a central belt on the Similkameen claims. It is within these sediments at the top of the Hedley Sequence that gold-skarn mineralization is found at Mascot's Nickel Plate deposit.

Early Jurassic-age Cahill Creek granodiorite crops out at the extreme east end of the property. The belt of Hedley Sequence rocks have been intruded by numerous hornblende feldspar porphyry sills and dykes that are known as the Hedley Intrusions. A small diorite stock crops out at the north end of the Lost Horse 86 claim. The Cahill Creek granodiorites are younger than the Hedley Intrusions (Ray, et al., 1986 and 1987). Table I outlines the stratigraphy of the property.

TABLE I

STRATIGRAPHY OF THE SIMILKAMEEN PROPERTY

EARLY CRETACEOUS

SPENCES BRIDGE GROUP: Quartz Feldspar Porphyry and Quartz Porphyry

INTRUSIVE CONTACT

EARLY JURASSIC

CAHILL CREEK PLUTON: Granodiorite and Aplite

HEDLEY INTRUSIONS: Hornblende Feldspar Porphyry, Hornblende Porphyry

and Diorite

INTRUSIVE CONTACT

LATE TRIASSIC

NICOLA GROUP

WHISTLE CREEK SEQUENCE: Tuff, Lapilli Tuff, Crystal Tuff,

Tuffaceous Siltstone and Limestone Boulder Conglomerate

CONFORMABLE CONTACT

HEDLEY SEQUENCE: Siltstone, Argillite, Hornfels, Biotite Hornfels, Calc-hornfels, Limestone and Marble.

HEDLEY SEQUENCE

The Late Triassic-age Hedley Sequence consists of interbedded siltstones, argillites and limestones. Individual beds range from 1 centimetre to 10 metres in width. The argillites are typically altered to hornfels and biotite hornfels. Many of these hornfelsed sediments have undergone pervasive calcic alteration and are referred to as calc-hornfels. These Hedley Sequence rocks occur as a southerly trending belt in the centre of the property that are exposed for over 700 metres.

The siltstones and argillites of the Hedley Sequence are dark grey to black, fine to very fine grained, typically well bedded and contain traces of finely disseminated pyrite. The siltstones are slightly coarser grained than the argillites. The argillites are occasionally rusty weathered. These sediments strike approximately north-south and dip to the west from 40 to 70 degrees.

The hornfelsed rocks are quite siliceous with a moderately to well developed conchoidal fracture. Pale brown crystalline gypsum is often seen as a coating on fracture surfaces. The biotite hornfels has a characteristic brown-purple colour due to the very fine grained biotite present. Occasionally, disseminated to blebby pyrrhotite and arsenopyrite are associated with the hornfelsed sediments.

The calc-hornfels is typically pale grey, buff, pink or pale green and is aphanitic. The calcic alteration of hornfels has resulted in a strong bleaching effect within these rocks. This bleaching is used to identify calc-hornfels in the field. The calcic alteration occurs as narrow bleached selvages permeating outward along bedding planes or small fractures to bleached patches and pervasive zones of bleaching. Rare red-brown garnets and dark green patches of diopside are found with the calc-hornfels.

The limestone lenses and beds found within the Hedley Sequence are grey, fine to medium grained with an equigranular texture. The limestone is interbedded with other rocks of the Hedley Sequence or alone in small exposures. Where interbedded, the limestone is recessively weathered and makes up from 5 to 55% of the total outcrop. Occasional white, coarsely crystalline calcite vein with widths up to 3 centimetres are found within the limestone. The limestone has been metamorphosed to a marble in a few locations. The marble is pale pink, grey or white, fine to medium grained, with a crystalline fabric. Well developed rhombohedral calcite crystals are common.

WHISTLE CREEK SEQUENCE

The Late Triassic-age Whistle Creek Sequence conformably overlies the sedimentary Hedley Sequence and is exposed over the western half of the property. This sequence contains the basal Copperfield Conglomerate and a thick section of interbedded tuff, lapilli tuff, crystal tuff and tuffaceous siltstones. The lower contact of the Whistle Creek Sequence with the Hedley Sequence is offset in several places by east to northeast trending faults. This contact is not seen in outcrop.

The Copperfield Conglomerate lies at the base of the Whistle Creek Sequence forming a marker horizon between the overlying volcaniclastic rocks and the sedimentary rocks below. Outcrops of Copperfield Conglomerate are found along a narrow north trending band in the centre of the property at the contact between the Hedley and Whistle Creek Sequences.

The limestone boulder conglomerate has sub-angular to well rounded grey limestone clasts ranging from from pebble to boulder size. The conglomerate is matrix supported with a dark grey, weakly calcareous silty and fine grained matrix. The rocks have a distinct pock-marked texture on the weathered surface due to the preferential weathering of the limestone clasts.

The upper Whistle Creek rocks are volcaniclastic in origin, dominantly tuffaceous with minor tuffaceous siltstones. The tuffs are dark grey-brown,

probably andesitic in composition, fine grained, relatively equigranular and typically massive. Where bedding is seen, it dips 50 to 70 degrees to the west. Particle size ranges 1 to 2 centimetres in diameter for lapilli. Minor blebs of pyrite and traces of pyrrhotite are more commonly found in lapilli tuffs.

The crystal tuffs are similar in composition to the tuffs, but contain up to 7% white feldspar crystals that are 1 - 2 millimetres in length. The tuffaceous siltstones are most often found close to the contact with underlying sedimentary rocks. This rock is dark grey, fine grained and occasionally weakly calcareous on fracture surfaces. The volcaniclastic rocks of the Whistle Creek Sequence are often altered to hornfels and biotite hornfels. Additionally, these hornfelsed sediments may have undergone alteration which is defined by bleaching. These sediments are similar in appearance to the hornfelsed and altered argillites of the Hedley Sequence. However, remnant tuffaceous textures within the Whistle Creek Sequence usually allow for correct identification of the two sequences.

HEDLEY INTRUSIONS

The Early Jurassic Hedley intrusions present on the property are hornblende feldspar porphyry sills and dykes as well as a diorite plug. The sills and dykes cut the Hedley and Whistle Creek Sequence of rocks in the central part on the claims. These sills are particularly abundant in the area of the old hand trenches around trench S87TR002. One small diorite stock is found at the north end of the property.

The hornblende feldspar porphyry sills and dykes are pale pink-grey to beige, mottled, very fine grained with black lath-shaped hornblende phenocrysts that are typically 1 to 4 millimetres in length. These rocks weather a rusty orange colour. The feldspar phenocrysts, when present, are pale coloured, lath-like and range up to 3 millimetres long. The matrix is siliceous and is often bleached. From 1 to 5% hornblende phenocrysts occur in these rocks. The textural variation of the Hedley Intrusions ranges from porphyritic to almost equigranular. The medium to coarse grained hornblende is characteristic of the sills. The sills commonly contain pyrite disseminations, pyrrhotite blebs and arsenopyrite veins and disseminations.

The diorite stock intrudes the rocks of the Whistle and Hedley Sequences on the Similkameen property. This stock is approximately 100 x 400 metres in size and crops outs at the north end of the Lost Horse 86 claim just west of the baseline. This quartz-hornblende-biotite rich diorite is equigranular, mottled grey-beige to beige-black and fine to medium grained. The diorite contains minor blebs and disseminations of pyrite. This intrusion may cause local weak skarning within the sediments.

CAHILL CREEK PLUTON

The Middle to Lower Jurassic-age Cahill Creek Pluton is composed of granodiorite and minor aplite. These plutonic rocks crop out at the east end of the property.

The granodiorites are pale grey to orange-pink and fine to medium grained. Compositionally, the granodiorite is quartz-feldspar-biotite rich and in the southern portion of the property, moderately magnetic. Occasional outcrops are friable, showing strong mechanical weathering. One zone of aplite occurs at the southeastern edge of the Lost Horse 86 claim. The aplite is buff to pale reddish-brown, fine grained and siliceous with a resinous to glassy lustre and a fine grained to sugary texture. These rocks contain occasional rusty blebs which may be altered sulphides.

6.3 ALTERATION AND MINERALIZATION

On the Similkameen property biotite and calcic alteration are seen within the rocks of the Hedley Sequence. The biotite alteration occurs primarily within the hornfelsed argillites and interbedded siltstones. The biotite altered hornfels is characteristically a dark brown-purple colour, due to the very fine grained biotite present, siliceous and very fine grained. The zone of biotite hornfels extends over the entire exposure of Hedley sediments on the property.

The calc-hornfels (calcic) alteration is characteristically buff, very fine grained, siliceous and variable in form. Calcic alteration occurs as pervasive zones, distinct patches, as well as selvages that extend outward from bedding planes and along fracture that cut bedding.

Skarn on the property is comprised of garnet, diopside, minor wollastonite, idocrase and and tremolite within Late Triassic limestones, marbles and calcareous siltstones of the Hedley Sequence. Garnets are red-brown blebs or crystals up to 5 millimetres in diameter and also as red-brown diffuse aphanitic bands or stringers with widths up to 3 centimetres. Diopside is dark green, aphanitic to granular and typically occurs in bands or patches with widths up to 3 centimetres. Garnet and diopside are occasionally seen as blebby cores to calc-hornfels alteration. Wollastonite and tremolite are accessory to garnet or diopside and usually occur as radiating crystal aggregates.

Garnetiferous marble and weak garnet-idocrase-wollastinite skarn are seen in the Hedley Sequence sediments adjacent to the margin of the Cahill Creek granodiorite. This skarn development is thought to be associated with the intrusion of the Jurassic pluton.

7.0 GEOCHEMISTRY

During the 1987 field season a total of 125 rock and 368 soil samples were collected on the Similkameen property (Figure 3 and 4). Of the 125 rock samples 38 are trench chip samples and 40 are diamond drill core samples. The samples were shipped to Chemex Labs in North Vancouver for sample preparation and analysis. All samples were analysed for the following elements; Au, Al, Ag, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Se, Sr, Ti, Tl, U, V, W and Zn. The assay results are tabulated in Appendix III. The analytical techniques used are outlined in Appendix IV.

7.1 SOIL GEOCHEMISTRY

The 368 soil samples were collected from the B horizon at an average depth of 15 centimetres using a mattock. The samples were stored in gussetted Kraft sample bags and were analyzed for the elements outlined above.

Soils were collected at 50 metre spacings along 100 metre spaced lines that ran east and west from the north-south baseline. The grid was designed so that the soil lines cut across the strike of the central belt of Hedley Formation carbonates and clastic sediments, the favorable host rocks for Hedley-type skarn mineralization. Approximately 19.6 kilometres of soil line were established on the Similkameen property.

The baseline was established by a two man field crew using a chain, compass and axes. The baseline was marked every 50 metres with a picket, as well as with orange and blue flagging tape.

All soil lines were flagged with orange flagging. Blue flagging was used to mark sample sites along the soil lines. All lines were slope corrected. Hip chain, compass, clinometer and 1:5,000 scale orthophotos (Figure 10) and topographic bases were used for control in locating the grid lines.

Soil gold values range up to 45 ppb and soil arsenic values range up to 65 ppm (Figure 4). The distribution of arsenic in the soils is very sporadic with only one zone of contiguous anomalous values. This zone is located at the southeast end of the Camsell 3 claim and extends in a less continuous manner to the southeast onto the Camsell 4 claim. There was no apparent correlation between the occurrence of arsenic and gold in these soil samples.

This corresponds with an area underlain by interbedded calc-hornfels, limestone and siltstone that has been intruded by the Cahill Creek granodiorite, as well as by arsenopyrite-bearing hornblende feldspar porphyry sills. The arsenic soil anomaly occurs near the intrusive contact.

7.2 ROCK GEOCHEMISTRY

The 47 rock samples collected on the Similkameen property were analyzed for gold and for the 32 additional elements outlined above. The rocks sampled are

representative of all lithologies found on the property as well as of altered and mineralized material.

Gold values from rock grab samples ranged up to 270 ppb. The highest gold value was obtained from a hornblende porphyry sill on the Last horse 86 claim. There was no associated anomalous arsenic with this sample. No clear relationship was established between the presence of sulphides or degree of bleaching, calcic alteration, and gold value.

Arsenic values from rock samples range up to 1970 ppm. This high arsenic value was from a sample of biotite hornfels with disseminated pyrite at the western end of the property. Arsenic values are closely tied to the occurrence of arsenopyrite within the rock.

8.0 TRENCHING PROGRAM

The 1987 trenching program was designed to expose bedrock in areas of sporadic outcrop at the south end of the property where there is potential for Hedley-type skarn mineralization. During the trenching program a total of 443.1 metres of bedrock were exposed in three trenches. The average trench width was 4 metres. These trenches were targeted as a guide to mapping and to expose continuous sections of bedrock in areas of favorable geology.

Trench S87TR001 is located on the Lost Horse 86 claim approximately 150 metres north and upslope from the property access road (Figure 6). The trench trends northeast for 370.2 metres. Trench S87TR002 is located on the Lost Horse 86, claim approximately 70 metres downslope and south of the northern edge of the clearing in an area of numerous old hand trenches and trends southeast. Trench S87TR003 is located 100 metres south and downslope from trench S87TR002 on the Lost Horse 86 claim and extends east-west.

A D-6 cat and operator were contracted from High Alpine Contracting Limited in Penticton for bulldozer trenching on the Similkameen property during September. The trenches were cleared using a pelican pick and a broom. The Geolog format was used to map the trenches as well as to record the survey information.

8.1 TRENCHING RESULTS

Chip samples were taken of altered and mineralized rocks throughout the trenches. This included sulphide-rich zones as well as areas of skarning, however weak. In areas with no alteration, mineralization or little change from previous exposures a two metre chip sample was collected approximately every 10 metres. In this way about 20% of each trench was sampled.

TRENCH S87TR001

Approximately 370 metres of bedrock were exposed in trench S87TR001 on the Lost Horse 86 claim (Figure 9). Copperfield Conglomerate is exposed in the western end of the trench. This is underlain by a sequence of interbedded calc-hornfels and tuffs with minor marble or limestone present. Locally lapilli tuff occurs. These Hedley Sequence sediments strike north-south and dip moderately to the west. The strikes range from 145 to 200 degrees and dips vary from 12 to 51 degrees.

Three hornblende feldspar porphyry sills and dykes intrude the sediments in the northeastern half of the trench. These range from 1 to 7 metres wide. The

sills and dykes are typically sulphide-rich and are weathered a rusty orange colour.

The interbedded calc-hornfels and tuff at the northeastern end of the trench are intruded by medium grained relatively unaltered Cahill Creek granodiorite.

The calcic alteration of both the hornfels and the tuff is patchy to pervasive and extends the length of the trench. Disseminated pyrite occurs within the calc-hornfels and tuff. Minor occurrences of disseminated arsenopyrite, chalcopyrite and pyrrhotite are found in the calc-hornfels. Limonite coated fractures are common.

Gold values from trench chip samples ranged up to 5420 ppb. The highly anomalous value of 5420 ppb Au was obtained from a 0.5 metre sample in a zone of 5% disseminated pyrite within calc-hornfels. This is the highest gold value seen on the property to date. A second highly anomalous gold value of 830 ppb came from a 2 metre wide sample of calc-hornfels at the western contact of a vertical hornblende feldspar porphyry dyke.

One weakly skarned, 1.3 metre wide bed of marble, at 216 metres along the trench is the only evidence of skarning seen in this trench. This marble contained 3% diopside blebs and 1% each of garnet and pyrite. The gold value from a chip sample across the skarned marble is 150 ppb. The arsenic value for the same sample is 455 ppm. Both values are considered weakly anomalous.

Despite the extensive calcic alteration, as well as highly anomalous arsenic and weakly anomalous gold values in the trench samples, only one small zone of skarn was observed. Calc-hornfels predominated in this section and only minor limestone was observed.

TRENCH S87TR002

A total of 58 metres of bedrock were exposed in trench S87TR002 on the Lost Horse 86 claim (Figure 7). This trench is located in an area of numerous old hand trenches that were presumably dug to expose the rusty weathering arsenopyrite-rich Hedley sills.

The trench is underlain predominantly by interbedded grey limestone and hornfels with minor tuff at the western end. These Hedley Sequence sediments strike approximately north-south and dip moderately to steeply to the west. Strikes range from 110 to 200 degrees while dips vary from 28 to 72 degrees. A 0.5 metre wide ultramafic sill is exposed at 49 metres in the trench. This rock is recessively weathered and was never seen in outcrop on the property.

Gold values from trench samples were all less than the detection limit of 5 ppb. Arsenic values range up to 15 ppm.

Despite the favorable stratigraphy with abundant limestone, no evidence of gold mineralization, skarn development or calcic alteration was seen in the sediments.

TRENCH S87TR003

A total of 38 metres of bedrock were exposed in trench S87TR003 on the Lost Horse 86 claim (Figure 8). Interbedded grey limestone and hornfels occur throughout the trench.

The Hedley Sequence sediments strike approximately north-south and dip moderately to the west. The strikes vary from 120 to 210 degrees and dips range from 43 to 85 degrees. The nose of a small fold is exposed in the trench at 30 metres. The fold hinge plunges 33 degrees towards 220 degrees.

Gold values from samples in this trench were less than 5 ppb. Arsenic values ranged up to 25 ppb.

9.0 DIAMOND DRILLING PROGRAM

The 1987 diamond drilling program on the Similkameen claims was designed to test one distinct zone on the property. The target was an extensive area of calc-hornfels on the Lost Horse 86 claim. The soil and rock geochemistry did not provide a suitable target for drilling, rather, the one hole drilled was located based on geology and alteration. Drill hole S87DH001 was collared on the Lost Horse 86 claim and was drilled to a total depth of 187.76 metres at an azimuth of 077 degrees and a dip of -65 degrees. The collar is located 150 metres north of the property access road in an area of extensive calcic alteration of hornfelsed sediments (Figure 5). This is east of, and stratigraphically below, an outcrop of Copperfield Conglomerate. This hole was drilled to test the potential for skarn mineralization within the underlying carbonates and intensely calcic altered clastic sediments of the Hedley Sequence. The core was transported to Vancouver at the end of the drilling project and is currently stored at Chevron's warehouse in Burnaby, B.C.at the following address; Burnaby Mini Warehouse, 7705 – 19th Street, Building F, Doors 19 and 20.

Connors Drilling Ltd. of Kamloops was contracted to drill the one diamond drill hole on the Similkameen property in the fall of 1987. The drilling was carried out from October 8, 1987 to October 12, 1987 using a Nodwell mounted BBS-37A diamond drill and NQ rods. This proved to be a very efficient unit that was able to move around the property without the aid of a bulldozer.

The Nodwell mounted drill, like the bulldozer, was transported on a low-bed truck along the B.C. Tel access road to within a few kilometres of the microwave tower. From the off load point the Nodwell mounted drill walked into the drill set up.

Due to the low water volume in Larcan Creek, water had to be hauled by truck from a site on Paul Creek. Connors contracted Gallant Trucking Ltd. of Kamloops for this purpose. The water was hauled using a truck-mounted 2500 gallon tank and transferred to a 3500 gallon storage tank located near the drill site. Water was pumped from the storage tank to the drill.

9.1 DIAMOND DRILL RESULTS

The drill core was transported to the Keremeos field office at the end of each shift and was logged using the Geolog format. The drill logs are tabulated in Appendix VI. A geoheader outlining the Geolog format used for the drill logs is in Appendix V. Samples were taken of altered and mineralized rocks in each drill hole. These included sulphide-rich zones, areas of skarning (however weak), and zones of intense calcic-alteration. Where such altered and mineralized rock was not found a representative two metre sample was collected approximately every 10 metres. In this way about 20% of each drill hole was sampled.

DRILL HOLE S87DH001

Drill hole S87DH001 was completed to a total depth of 187.76 metres. This drill hole intersects an interbedded sequence of calc-hornfels, hornfels, limestone and tuffs (Figure 9 and 11). The calcic alteration of these Hedley Sequence sediments occurs primarily in the upper half of the hole. Numerous hornblende feldspar porphyry sills cut the sediments in the same section of the hole. There is a spatial relationship between the sills and the area that has undergone calcic alteration.

Interbedded calc-hornfels, limestone and tuff was intersected from 0.91 to 114.87 metres. Light grey to pink calc-hornfels predominates in this interval. The calcic alteration of the hornfels is pervasive and ranges from bleached envelopes surrounding micro-fractures to extensive patches. Remnant patches of unbleached hornfels occur as dark grey to black elongate areas that are parallel to the bedding observed in the drill core. Up to 0.3% pyrite and trace amounts of pyrrhotite occur as disseminations in this interval.

Minor tuff beds that range from 4 to 15 centimetres in width are found in the upper 35 metres of the hole. Occasionally lapilli tuffs are also present. The limestone within this interval is pale grey and forms massive beds from 10 to 50 centimetres thick. Trace amounts of garnet are visible within the limestone. Light to dark grey hornblende feldspar porphyry sills that range in thickness from 0.5 to 9 metres intersect this interval of calcic altered sediments. The sills are pervasively bleached, sulphide-rich and have limonite envelope surrounding fractures. Up to 0.3% pyrite occurs within the sills as disseminations. Pyrrhotite is more abundant (up to 5%) and occurs as irregular blebs. Up to 3% arsenopyrite is found as disseminations and as veins within the sills.

The interval from 114 to 133 metres consists of interbedded hornfels and limestone. The hornfels is black and thinly banded with up to 1% pyrrhotite blebs present. There are up to 20% patches of calcic alteration over this interval.

The drill hole intersected interbedded thinly banded black hornfels and dark grey calcareous siltstone from 133 metres to the end of the hole. There is 5 % patchy calcic alteration of the hornfels in this area and up to 1% pyrrhotite as blebs. Three hornblende feldspar porphyry sills less than a metre wide intersect these sediments.

Gold values for this hole range up to 565 ppb. The high value of 565 ppb is from a 2 metre sample of interbedded calc-hornfels and limestone. The anomalous gold values are spatially associated with the hornblende feldspar porphyry sills in the zone of pervasive calcic alteration from 38 to 104 metres. Often the sediments overlying the sill are anomalous. This is best seen from the gold histogram that is plotted adjacent to the geology on cross section AA' (Figure 13). Arsenic values in hole S87DH001 range up to 4430 ppm. The anomalous values are associated with the occurrence of arsenopyrite as disseminations and veins in both the sills and the surrounding sediments.

Despite the encouraging gold and arsenic geochemistry in the zone of highly calcic altered sediments and sulphide-rich Hedley-type sills no evidence of skarn mineralization was seen in drill hole S87DH001.

10.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the work carried out on the Montello Option claims during the 1987 field season the following conclusions have been reached:

- A stratigraphic sequence favourable for skarn development, such as that seen at Mascot's Hedley Mine, is exposed on the Similkameen property. This sequence consists of interbedded clastic sediments and carbonates of the Hedley Formation that have been intruded by the hornblende feldspar porphyry sills and a small diorite stock;
- 2. The highest gold value on the property, 5420 ppb, came from a 0.5 metre sample of sulphide-rich calc-hornfels in trench S87TR001;
- 3. Weakly to highly anomalous gold and arsenic values are found within a 60 metre interval of calc-hornfels and limestone that has been intruded by Hedley-type sills in diamond drill hole \$87DH001.

A diamond drilling program is recommended to further test and follow-up the zone of interest identified as a result of the 1987 field work. The target is the geochemically anomalous zone defined by drill hole S87DH001 and trench S87TR001 on the Lost Horse 86 claim. The hornfelsed sediments in this area are intensely altered and bleached. This alteration may represent a halo peripheral to a mineralized skarn body. Drilling is needed to test for the presence of skarn.

11.0 REFERENCES

- Falconer, J.S., et al, 1986, Geophysical, Geochemical and Geological Surveys on the Lost Horse Project for Montello Resources by Shangri-La Minerals Limited, Assessment Report.
- Ray, G.E., Simpson, R, Wilkinson, W. and Thomas, P. 1986, Preliminary Report on the Hedley Mapping Project, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1986-1, pp.101-105.
- Ray, G.E. and Dawson, G.L., 1987, Geology and Mineral Occurrences in the Hedley Gold Camp, Southern British Columbia (92H/8E), B.C. Ministry of Energy, Mines and Petroleum Resources, Open File 1987-10.
- Ray, G.E., Dawson, G.L. and Simpson, R., 1987, Geology, Geochemistry and Metallogenic Zoning in the Hedley Gold-Skarn Camp, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1988-1, pp.59-80.
- Ray, G.E., Dawson, G.L. and Simpson, R., 1986, Geology and Controls of Skarn Mineralization in the Hedley Gold Camp, Southern British Columbia (92H/8E), B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1987-1, pp.65-79.
- Rice, H.M.A., 1947, Geology of the Princeton Map Area 92H (East Half), Geological Survey of Canada, Map 888A.

APPENDIX I

STATEMENT OF QUALIFICATIONS

1

Statement of Qualifications

1, Sandy G. McAllister, hereby certify that:

- 1. I am presently employed as a geologist by Chevron Canada Resources Limited at 1900 - 1055 West Hastings Street, Vancouver, B. C.
- 2. I graduated from Queen's University in Kingston, Ontario with a B.Sc. (Honours, Geological Sciences) in May 1981.
- 3. I have practiced geology for the past 7 years in B.C.
- 4. I am a member in good standing of the Geological Association of Canada, Society of Economic Geologists and a Licensee of the Association of Professional Engineers, Geologists and Geophysists of Alberta.
- 5. The work outlined in this report was conducted under my supervision.
- 6. I hold no direct or indirect interest nor do I expect to receive any interest in the property or in any securities of Montello Resources Ltd., or in any associated companies.
- 7. This report may be utilized by Montello Resources Ltd. for inclusion in a Prospectus or Statement of Material Facts.

Dated the 8th day of February 1988

Signed

Sandy G. McAllister

Statement of Qualifications

- I, Margaret Diane McPherson, hereby certify that:
- I am presently employed as a geologist by Chevron Canada Resources Limited at 1900 - 1055 West Hastings Street, Vancouver, B. C.
- 2. I graduated from the University of British Columbia in May 1987 with a B.Sc. in Geology.
- 3. I have practiced geology since graduation.
- 4. I am a member, in good standing, of the Geological Association of Canada Cordilleran Section.
- 5. I assisted with the field work outlined in this report.
- 6. I hold no direct or indirect interest nor do I expect to receive any interest in the property or in any securities of Montello Resources Ltd., or in any associated companies.
- 7. This report may be utilized by Montello Resources Ltd. for inclusion in a Prospectus or Statement of Material Facts.

.

Dated the 11th day of January, 1988

APPENDIX II

.

COST STATEMENT

COST STATEMENT

MONTELLO OPTION

SALARIES

.

	Field	Office	
L. Dick S. McAllister M. McPherson T. Zanger	2.5 45.5 13.0 29.0	10.5 15.0 1.5	
J. Burgoyne M. Dittrick	21.5 	6.0	
	115.5	33.0	
148.5 days @ \$150/dc (see attached sheet f			22,275.00
DISBURSEMENTS			
Rocks (Au & 32 elem Soils (Au & 32 eleme Thin sections & stain Polished sections	ent ICP)	25 @ \$ 6.50 368 @ \$ 4.50 5 sections @ \$ 8.70 section @ \$ 8.00	2,062.50 5,336.00 93.50 18.00 441.76
Freight Truck rental Food Gas Radio rental	daumpliaa	0.85 months @ \$1200	1,025.68 1,067.17 821.50 83.14 1,888.89
Camp requipment and House rental Telephone Power	a soppries	2.15 months @ \$600	1,000.00 1,290.00 426.25 83.66
Drafting Reprographics Maps & publications Orthophoto		104 hrs @ \$20 . 23	2,103.92 394.31 103.64 2,000.00
Trenching		22.1 hrs @ \$75 10.6 hrs @ \$75	l,657.50 795.00
Road Building Road Upgrading		4.0 hrs @ \$75	300.00
D-6 mob/demob Diamond drilling 18 (see attached s	7.76 metres heet for det		175.00 25,960.43
MONTELLO OPTION TOTA	L COST		<u>\$ 70,402.84</u>

DIAMOND DRILLING COSTS

MONTELLO OPTION

MOB/DEMOB

.....

Mob to disch Demob from Mob Demob	narge point discharge point 17 man hrs @ \$34 26 man hrs @ \$34		\$	1,250.00 1,000.00 578.00 884.00	
DRILLING					
DDH I DDH I	Overburden Coring	3' @ \$24.00 613' @ \$21.50		72.00 13,179.50	
DRILL MOVE AND	SET UP				
DDH I DDH I	53 man hrs @ \$34 16 rig hrs @ \$24			1,802.00 384.00	
TRAVEL					
DDH I	38 man hrs @ \$34			1,292.00	
WATER TRUCK					
Truck rental 6 days x \$736/day Room and board for 2 drivers 6 days @ \$82.32				4,416.00 493.93	
OTHER					
37 core boxes @ \$14.50 Core splitter rental 1 acid test @ \$60				536.50 12.50 60.00	
	TOTAL		<u>\$</u>	25,960.43	

7

;

MONTELLO OPTION TIME DISTRIBUTION

1987 Date	L. Dick	S. McAllister	T. Zanger	M.McPherson	J. Burgoyne	<u>M. Dittrick</u>
21-May		0.5	0.5	0.5	0.5	
22-May 26-May		1.0	1.0			
27-May	0.5		1.0			
28-May			0.5			
29-May		0.5				
30-May		1.0 1.0	0.5	1.0	0.5	
31-May 02-Jul		0.5	0.5	1.0 0.5	0.5	
03-Jul		0.5	0.5	0.5	0.5	
04-Jul		0.5	1.0			
09-Jul		0.5		0.5		
10-Jul		0.5				
4-Ju 6-Ju	1.0	0.5 0.5		0.5	1.0	
18-Jul	1.0	0.5		0.5	1.0	
19-Jul				1.0	1.0	
20-Jul		0.5	1.0	0.5	1.0	
24-JUI		0.5	1.0	0 F	o	
25-Jul 26-Jul		0.5 1.0	0.5	0.5	0.5 1.0	
28-Jul 27-Jul		1.0		1.0	1.0	
28-Jul		1.0		1.0	1.0	
29-Jul		1.0			1.0	
30-Jul		0.5	0.5	0.5	0.5	
17-Aug		1.0			1.5	
8-Aug 9-Aug		1.0			1.5	
20-Aug		1.0			1.0	
21-Aug		1.0			1.0	
22-Aug		1.0		1.0	1.0	
23-Aug		1.0		1.0	1.0	
24-Aug 25-Aug		1.0 1.0		1.0	1.0	
25-Aug	1.0	0.5				
27-Aug		1.0			1.0	
28-Aug					1.0	
			1.0		0.5	
•						
		0.5	1.0			
08-Sep		1.0	1.0			
			0.5			
29-Aug 30-Aug 31-Aug 01-Sep 02-Sep					1.0 0.5	

ļ

Ì

MONTELLO OPTION TIME DISTRIBUTION

1987 Date	L. Dick	<u>S. McAllister</u>	T. Zanger	M.McPherson	J. Burgoyne	<u>M. Dittrick</u>
13-Sep		1.0	0.5			
14-Sep 15-Sep		0.5 1.0	0.5 1.0			
13-3ep 17-Sep		1.0	0.5			
21-Sep		1.0	1.0			
22-Sep		1.0	1.0			
23-Sep		1.0	1.0			
24-Sep			0.5			
26-Sep		0.5				
28-Sep 30-Sep		0.5	0.5			
04-Oct			0.5			
06-Oct			1.0			
07-Oct			1.0			
08-Oct		1.0	1.0			
09-Oct		1.0	1.0			
10-Oct 11-Oct		0.1 0.1	1.0 1.0			
12-Oct		1.0	1.0			1.0
12-0ct		1.0				1.0
14-Oct						1.0
15-Oct						1.0
16-Oct			1.0			
7-0ct 8-0ct		1.0	1.0 1.0			
18-0ct		1.0	1.0			
20-Oct		1.0				
21-Oct		0.5	0.5		- <u></u>	
	2.5	45.5	29.0	13.0	21.5	4.0
		TOTAL				

TOTAL MAN DAYS - 115.5

•

APPENDIX III

- 33 -

GEOCHEMICAL DATA

ALC: NOT THE REAL PROPERTY.

in the second second

Chemex Labs Ltd.

212 BROOKSBANK AVE , NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221 To: VRON CANADA RESOURCES LTD. MINERALS STAFF 1900 - 1055 W. HASTINGS ST. VANCOUVER, B.C. V6E 2E9 Project: M575 Comments: CS: S. MCALLISTER Page No. : . A Tot. Pages: 1 Date : 17-AUG-87 Invoice # : I-8719305 P.O. # : 36865

238 238 238 238 238 238 238 238 238 238	$ \begin{array}{c} 115 \\ 30 \\ 45 \\ < 5 \end{array} $ $ \begin{array}{c} 60 \\ 20 \\ 270 \\ < 5 \end{array} $ $ \begin{array}{c} 60 \\ 20 \\ 270 \\ < 5 \end{array} $ $ \begin{array}{c} 60 \\ 20 \\ 270 \\ < 5 \end{array} $ $ \begin{array}{c} 60 \\ 20 \\ 270 \\ < 5 \end{array} $ $ \begin{array}{c} 60 \\ 20 \\ 270 \\ < 5 \end{array} $ $ \begin{array}{c} 60 \\ 20 \\ 270 \\ < 5 \end{array} $ $ \begin{array}{c} 60 \\ 20 \\ 270 \\ < 5 \end{array} $ $ \begin{array}{c} 60 \\ 75 \\ < 5 \end{array} $	0.86 1.43 3.83 0.21 0.88 3.28 1.72 1.46 0.52 1.18 0.41 1.13 1.97 1.23 1.46 0.45 2.03	0.2 0.2 0.2 0.2 0.2 1.4 0.2 0.2 1.4 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	5 10 175 65 < 5 50 < 5 < 5 < 5 10 305 5 10 5 10 305 5 10 305 5 10 305 5 10 305 5 10 175 50 10 175 175 175 10 175 175 175 175 175 175 175 175	10 570 80 110 40 80 70 100 40 100 20	< 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.	<pre>< 2 < 2</pre>	1.41 7.62 2.69 5.07 5.52 1.57 1.26 0.80 1.68 1.52 0.66 1.10 7.21 5.29	$\begin{array}{c} 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \end{array}$	6 4 16 5 19 9 13 3 19 5 9 7 6	22 86 31 141 39 41 48 72 68 37 121 62 57	307 176 7 33 33 < 125 880 45 126 40 128 52 31 57	0.45 0.27 0.56 0.35 2.78 3.59 1.12 2.22 0.14 0.95 0.42 1.28 0.69	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10</pre>	<1 <1 <1 <1 <1 <1 1 1 1 1 1 1 1 1	0.12 0.05 0.12 0.01 0.01 0.02 0.86 0.11 0.54 0.03 0.12 0.06 0.25 0.10	< 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10	0.26 0.04 0.13 0.04 0.03 1.22 0.25 0.51 0.03 0.11 0.09 0.28 0.05 0.03	177 230 117 15 3 11 15 9 21
238 238 238 238 238 238 238 238 238 238	$ \begin{array}{r} 45 \\ < 5 \\ \hline 60 \\ 20 \\ 270 \\ < 5 \\ \hline 10 \\ 100 \\ 5 \\ < 5 \\ < 5 \\ < 5 \\ \hline < 5 \\ < 5 \\ 10 \\ 75 \\ \end{array} $	3.83 0.21 0.88 3.28 1.72 1.46 0.52 1.18 0.41 1.13 1.97 1.23 1.46 0.45	0.2 0.2 0.2 1.4 0.2 1.4 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 11.6	175 65 < 5 50 < 5 < 5 10 305 5 10 5 10 105	90 20 10 570 80 110 40 80 70 100 40 	< 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	2.69 5.07 5.52 1.57 1.26 0.80 1.68 1.52 0.66 1.10 7.21 5.29	< 0.5 < 0.5	16 5 19 9 13 	31 141 31 39 41 48 72 68 37 121 62	7 33 < 1 25 880 45 126 40 128 52 31	0.56 0.33 2.78 3.59 1.12 2.22 0.14 0.95 0.42 1.28 0.69	< 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10	3 <1 <1 <1 <1 1 1 1 1 1 1	0.12 0.01 0.02 0.86 0.11 0.54 0.03 0.12 0.06 0.25 0.10	< 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10	0.13 0.04 0.03 1.22 0.25 0.51 0.03 0.11 0.09 0.28 0.05 0.03	10 17 23 11 15 30 11 15 9 21
238 238 238 238 238 238 238 238 238 238	60 20 270 < 5 10 100 5 < 5 < 5 < 5 < 5 < 5 10 75	0.88 3.28 1.72 1.46 0.52 1.18 0.41 1.13 1.97 1.23 1.46 0.45	0.2 0.2 1.4 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 11.6	<pre>< 5 50 < 5 < 5 10 305 5 10 5 10 10 105</pre>	10 570 80 110 40 80 70 100 40 100 20	$ \begin{array}{c} < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ \end{array} $	<pre>< 2 < 2</pre>	5.52 1.57 1.26 0.80 1.68 1.52 0.66 1.10 7.21 5.29	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	5 19 9 13 3 19 5 9 7	31 39 41 48 72 68 37 121 62	< 1 25 880 45 126 40 128 52 31	2.78 3.59 1.12 2.22 0.14 0.95 0.42 1.28 0.69	< 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 1 1 < 1 1 < 1 1 1 1	0.02 0.86 0.11 0.54 0.03 0.12 0.06 0.25 0.10	< 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10	0.03 1.22 0.25 0.51 0.03 0.11 0.09 0.28 0.05	176 147 233 116 15 36 117 15 9 216
238 238 238 238 238 238 238 238 238 238	20 270 < 5 10 100 5 < 5 < 5 < 5 < 5 < 5 10 75	3.28 1.72 1.46 0.52 1.18 0.41 1.13 1.97 1.23 1.46 0.45	0.2 1.4 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 11.6	50 < 5 < 5 10 305 5 10 5 10 105	570 80 110 40 80 70 100 40 10 20	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1.57 1.26 0.80 1.68 1.52 0.66 1.10 7.21 5.29	< 0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	19 9 13 3 19 5 9 7	39 41 48 72 68 37 121 62	25 880 45 126 40 128 52 31	3.59 1.12 2.22 0.14 0.95 0.42 1.28 0.69	< 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10	< 1 1 1 < 1 1 1	0.86 0.11 0.54 0.03 0.12 0.06 0.25 0.10	< 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10	1.22 0.25 0.51 0.03 0.11 0.09 0.28 0.05	230 110 15: 30 11: 15: 9: 210
238 238 238 238 238 238 238 238 238 238	20 270 < 5 10 100 5 < 5 < 5 < 5 < 5 < 5 10 75	3.28 1.72 1.46 0.52 1.18 0.41 1.13 1.97 1.23 1.46 0.45	0.2 1.4 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 11.6	50 < 5 < 5 10 305 5 10 5 10 105	570 80 110 40 80 70 100 40 10 20	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1.57 1.26 0.80 1.68 1.52 0.66 1.10 7.21 5.29	< 0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	19 9 13 3 19 5 9 7	39 41 48 72 68 37 121 62	25 880 45 126 40 128 52 31	3.59 1.12 2.22 0.14 0.95 0.42 1.28 0.69	< 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10	< 1 1 1 < 1 1 1	0.86 0.11 0.54 0.03 0.12 0.06 0.25 0.10	< 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10	1.22 0.25 0.51 0.03 0.11 0.09 0.28 0.05	234 114 15 3 11 15 9 21
238 238 238 238 238 238 238 238 238 238	270 < 5 10 100 5 < 5 < 5 < 5 < 5 10 75	1.72 1.46 0.52 1.18 0.41 1.13 1.97 1.23 1.46 0.45	1.4 0.2 0.8 0.2 0.2 0.2 0.2 0.2 0.2 2.6 0.2 11.6	<pre>< 5 < 5 < 5 10 305 5 10 5 10 10 5</pre>	80 110 40 80 70 100 40 10 20		< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1.26 0.80 1.68 1.52 0.66 1.10 7.21 5.29	0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <	9 13 3 19 5 9 7	41 48 72 68 37 121 62	880 45 126 40 128 52 31	1.12 2.22 0.14 0.95 0.42 1.28 0.69	< 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10	1 1 < 1 1 1	0.11 0.54 0.03 0.12 0.06 0.25 0.10	< 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10	0.25 0.51 0.03 0.11 0.09 0.28 0.05	11 15 3 11 15 9 21
2 38 2 38 2 38 2 38 2 38 2 38 2 38 2 38	< s 10 100 5 < s < s < s 10 75	1.46 0.52 1.18 0.41 1.13 1.97 1.23 1.46 0.45	0.2 0.8 0.2 0.2 0.2 0.2 0.2 0.2 0.2 11.6	< 5 10 305 5 10 5 10 105	110 40 80 70 100 40 10 20	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.80 1.68 1.52 0.66 1.10 7.21 5.29	< 0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	13 3 19 5 9 7	48 72 68 37 121 62	45 126 40 128 52 31	2.22 0.14 0.95 0.42 1.28 0.69	< 10 < 10 < 10 < 10 < 10 < 10 < 10	1 1 < 1 1 1	0.54 0.03 0.12 0.06 0.25 0.10	< 10 < 10 < 10 < 10 < 10 < 10 < 10	0.51 0.03 0.11 0.09 0.28 0.05 0.03	15 3 11 15 9 21
238 238 238 238 238 238 238 238 238 238	100 5 < 5 < 5 < 5 < 5 < 5 10 75	1.18 0.41 1.13 1.97 1.23 1.46 0.45	0.2 0.2 0.2 0.2 2.6 0.2 11.6	305 5 10 5 10 10 105	80 70 100 40 10 20	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1.52 0.66 1.10 7.21 5.29	< 0.5 < 0.5 < 0.5 0.5 < 0.5	19 5 9 7	68 37 121 62	40 128 52 31	0.95 0.42 1.28 0.69	< 10 < 10 < 10 < 10 < 10	< 1 1 1	0.12 0.06 0.25 0.10	< 10 < 10 < 10 < 10	0.11 0.09 0.28 0.05	11 15 9 21
238 238 238 238 238 238 238 238 238	\$ < \$ < \$ < \$ < \$ < \$ < \$ 10 75	0.41 1.13 1.97 1.23 1.46 0.45	0.2 0.2 0.2 2.6 0.2 11.6	5 10 5 10	70 100 40 10 20	< 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2	0.66 1.10 7.21 5.29	< 0.5 < 0.5 0.5 < 0.5	5 9 7	37 121 62	128 52 31	0.42 1.28 0.69	< 10 < 10 < 10	< 1 1 1	0.06 0.25 0.10	< 10 < 10 < 10	0.09 0.28 0.05 0.03	15 9 21
238 238 238 238 238 238 238 238 238	< 5 < 5 < 5 < 5 10 75	1.13 1.97 1.23 1.46 0.45	0.2 0.2 2.6 0.2 11.6	5 10 105	40 10 20	< 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2	1.10 7.21 5.29	< 0.5 0.5 < 0.5	9 7	121 62	52 31	1.28 0.69	< 10 < 10	1	0.25	< 10 < 10	0.28 0.05 0.03	9 21
238 238 238 238 238 238	< 5 < 5 10 75	1.23 1.46 0.45	2.6 0.2 11.6	10 105	10 20	< 0.5	< 2	5.29	< 0.5									0.03	
238 238 238 238 238	< 5 10 75	1.46 0.45	0.2 11.6	105	20					6	47	64	0 K 0	< 10	1	0.06	< 10		-
238 238 238	10 75	0.45	11.6				< 1	9.98	< 0.5	7	60	96	0.34	< 10	< i	0.06	< 10	0.09	21
238	-	2.03			50	< 0.5	< 2	2.44	< 0.5	6	55	107	0.15	< 10	< 1	0.05	< 10	0.10	6
238		0.93	3.4 0.4	390 35	20 20	0.5 < 0.5	< 2 < 2	7.77 11.50	< 0.5 < 0.5	11	70 47	328 12	0.70 0.13	< 10 < 10	 <	0.03 0.03	< 10 < 10	0.20 0.05	15: 22:
1 1	< 5	0.10	0.2	5	20	< 0.5	< 2	12.65	< 0.5	3	41	6	0.14	< 10	< 1	0.01	< 10	0.07	20
238	< 5	5.25 3.44	0.2 0.6	< 5 65	420 < 10	< 0.5 < 0.5	< 2 < 2	3.31	< 0.5	31 8	25 96	409 163	2.36 3.27	< 10 < 10	1	0.56	< 10 < 10	0.89 0.23	8 37:
238	< 5	1.39	0.4	< 5	30	< 0.5	< 2	1.34	< 0.5	6	25	30	0.66	< 10	< 1	0.12	< 10	0.02	54
238	30	3.10	0.2	155	50	< 0.5	< 2	2.59	< 0.5	17	57	56	1.46	< 10	1	0.12	< 10	0.12	9:
238	25	3.23	0.2	190	40	< 0.5	< 2	10.60	< 0.5	14	76	119	1.13	< 10			< 10	0.09	424 691
238	5	1.71	0.2	< 5	60	< 0.5	< 2	6.75	1.0	7	33	54	0.48	< 10	< 1	0.13	< 10	0.08	18.
238 238	25 25	0.72 0.90	0.2 0.2	1 30 3 50			< 2 < 2			11 11	73 149	82 58	0.51 0.53	< 10 < 10	< 1	0.07 0.02	< 10 < 10	0.05 0.03	16. 17
238	10	0.85	0.2	45	60	< 0.5	< 2	>15.00	< 0.5	7	37	30	0.75	< 10	< 1	0.03	< 10	0.02	79
238	3 5	2.38	0.4	80	450	< 0.5	4	2.25	< 0.5	29	59	112	5.11	10	< 1	0.75 ₁	< 10	1.06	70
238	1 ·····	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		•					······································			i.	1	10	0.21	43
238		1.75	U . 2j	10	10	< 0. sj	21	/15.00	< U. 3	- 1	4 9 j	je =	0.42	9		0.01	~ 10	0.03	42
	238 238 238 238 238 238 238 238	238 25 238 70 238 5 238 25 238 25 238 10 238 35 238 25	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Γ

Chemex Labs Ltd.

and the second second

212 BROOKSBANK AVE , NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221 To EVRON CANADA RESOURCES LTD. ...INERALS STAFF 1900 - 1055 W. HASTINGS ST. VANCOUVER, B.C. V6E 2E9 Project : M579 Comments: CC: S. MCALLISTER

العراقية المراجع المراجع المحمد المحمد والمراجع والمحمود والمراجع والمحموم والمراجع والمراجع والمراجع والمراجع

Page No. B Tot. Pages: 1 Date : 17-AUG-87 Invoice #: 1-8719305 P.O. # : 36865

SAMPLE DESCRIPTION	PREP CODE	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Se ppm	Sr ppm	Ti 96	T1 ppm	U ppm	V ppm	W ppm	Za ppm		
M7S-127 /	205 238	< 1	0.11	2	390	8	< 5	< 10	81	0.11	< 10	< 10	22	< 5	49	<u>, </u>	
M7S-128	205 238	3	0.19	15	690	6	5	< 10	326	0.08	< 10	< 10	19	< 5	21		
M7S-129	205 238	< 1	0.56	2	490	2	< 5	< 10	210	0.14	< 10	< 10	21	< 5	20		
M7S-130	205 238	< 1	0.03	20	1660	< 2	< 5	< 10	228	0.06	< 10	< 10	12	< 5	7		
M7S-133/	205 238	34	0.01	3	920	2	< 5	< 10	80	0.04	< 10	< 10	23	10	20		
M7S-134	205 238	< 1	0.33	4	500	8	< 5	< 10	242	0.16	< 10	< 10	106	5	36		
M7S-135	205 238	7	0.31	3	410	14	< 5	< 10	152	0.12	< 10	< 10	21	< 5	42		
M7S-136	205 238	< 1	0.21	5	620	6	< 5	< 10	72	0.19	< 10	< 10	65	< 5	27		
M7S-137	205 238	33	0.05	14	1230	20	< 5	< 10	68	0.12	< 10	< 10	124	< 5	29		
M7S-138	205 238	2	0.24	33	980	18	< 5	<.10	96	0.18	< 10	< 10	25	< 5	16		
M7S-139	205 238	1	0.09	.6	930	8	< 5	< 10	43	0.12	< 10	< 10	26	< 5	24		
M7S-104 M7S-105	205 238	1	0.25	17 16	970 1240	6 16	< 5	< 10 < 10	88 192	0.13 0.10	< 10 < 10	< 10 < 10	42 15	< 5 < 5	17 38		
WD 3* 107.	205 250	•	0.35	10	1240	10	~ >	< 10	194	0.10	< 10	< 10	1.5	~ >	30		
M7S-106	205 238	1	0.22	31	2550	20	5	< 10	369	0.03	< 10	< 10	6	< 5	29		
M7S-107-	205 238	< 1	0.08	29	1200	4	< 5	< 10	393	0.06	< 10	< 10	6	< 5	15		
M7S-108	205 238	< 1	0.07	25	1890	8	25	< 10	129	0.06	< 10	< 10	10	< 5	25		
M7S-109 M7S-110	205 238 205 238	l 5	0.10	88	2080	8	25	< 10	217	0.07	< 10	< 10	24	< 5	51		
MJ3-110	205 250	,	0.28	11	3350	24	5	< 10	351	0.05	< 10	< 10	20	< 5	10		
SM7S-111	205 238	<1	0.02	4	1810	2	< 5	< 10	285	0.04	< 10	< 10	11	< 5	15		•
SM7S-112	205 238	< 1	0.73	12	670	6	< 5	< 10	1165	0.14	< 10	< 10	57	< 5	28		
SM7S-113	205 238	< 1	0.01	5	1600	4	35	< 10	63	0.11	< 10	< 10	88	10	14		
M7S-114'	205 238	< 1	0.56	11	1030	4	< 5	< 10	107	0.08	< 10	< 10	6	< 5	11		
M7S-115	205 238	< 1	0.27	11	810	6	< 5	< 10	147	0.14	< 10	< 10	44	< 5	14		
SM7S-116	205 238	1	0.10	24	2250	10	5	< 10	99	0.10	< 10	< 10	43	< 5	49	•	
SM7S-117	205 238	< 1	0.30	27	3060	< 2	< 5	< 10	411	0.03	< 10	< 10	17	< 5	16		
SM7S-118 SM7S-119	205 238 205 238	< 1	0.46 0.22	11	1450	16	< 5	< 10	233	0.09	< 10	< 10	11	< 5	61		
M7S-120	205 238	5	0.11	25 59	1280 1580	14 14	< 5 < 5	< 10 < 10	122 94	0.10 0.09	< 10 < 10	< 10 < 10	15 143	< 5 < 5	13 10		
SM7S-121	205 238	< 1	0.13	22	1780	22	5	< 10	721	0.07	< 10	< 10	21	< 5	22		
SM75-06	205 238	< 11	0.32	16	1220	< 2	s	10	113	0.27	< 10	< 10	224	< 5	78	· ·	
SM7S-07	205 238	i	0.16	2	410	8	< 5	10	118	0.08	< 10	< 10	40	< 5	/8 54		
	·	┣			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	·			···			·····				·
SM7S-20-	205 238	 < 1	0.16	18	1490	< 2	5	< 10	1295	0.07	< 10	< 10	9	< 5	12		1

.

Chemex Labs Ltd.

Analytical Chemists • Geochemists • Registered Assayers 212 BROOKSBANK AVE , NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221 To : CHEVRON CANADA RESOURCES LTD. MINERALS STAFF 0 - 1055 W. HASTINGS ST. VGUVER, B.C. V6E 2E9 Project : M579 Comments: ATTN: S. MCALLISTER

Page No. : 1-A Tot. Pages: 4 Date : SEP-\$7 Invoice # : 1-8721866 P.O. # : 27049

SAMPLE DESCRIPTION	PR CO		Au ppb F aia a	۸۱ %	Ag ppm	As ppm	Ba ppn	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fc %	Ga ppm	Hg ppm	к %	La ppm	Mg 50	Ma ppm
B7S 745		238	< 5	2.02	< 0.2	45	320	< 0.5	< 2	0.54	0.5	3	8	23	1.57	< 10	< 1	0.04	10	0.15	6
B7S 746	201	238	< 5	2.85	< 0.2	15	180	< 0.5	4	0.26	1.0	2	7	47	2.06	< 10	< 1	0.05	10	0.18	12
B7S 747			< 5	2.68	< 0.2	45	130	< 0.5	< 2	0.51	< 0.5	2	18	70	2.28	< 10	< 1	0.05	10	0.23	6
B7S 748	201	238	< 5	3.29	< 0.2	30	270	< 0.5	< 2	0.34	< 0.5	1	13	30	2.32	< 10	< 1	0.10	10	0.30	8
187S 749		1	< 5	3.51	< 0.2	40	90	< 0.5	< 2	0.19	< 0.5	1	13	31	2.43	< 10	1	0.04	10	0.28	
1B7S 750	201	238	< 5	2.56	< 0.2	10	200	< 0.5	< 2	0.20	< 0.5	2	11	22	2.09	< 10	< 1	0.05	< 10	0.22	
B75 75L	201	238	< 5	2.73	< 0.2	30	90	< 0.5	10	0.15	< 0.5	2	9	33	2.04	< 10	< 1	0.04	< 10	0.14	
B7S 752	1 · · ·	238	< 5	3.13	< 0.2	20	130	< 0.5	< 2	0.24	< 0.5	2	8	21	2.02	< 10	< 1	0.05	10	0.19	
B7S 753	201		< 5	2.58	< 0.2	15	100	< 0.5	< 2	0.16	< 0.5	3	67	15	1.51	< 10	< 1	0.03	< 10	0.12	
1875 754- 1875 755	201	238	< 5	1.81 2.71	< 0.2 < 0.2	40 20	170 230	< 0.5 < 0.5	< 2	0.43 0.57	< 0.5	32	13	38	1.48	< 10 < 10	< 1	0.09	10 10	0.17 0.26	
					<u> </u>					· · · · · ·		•			•	<u> </u>	<u> </u>		····	V. 10	
B7S 756		238	< 5	3.02	< 0.2	< 5	250	< 0.5	< 2	1.45	1.0	2	14	40	2.30	< 10	2	0.22	20	0.35	
187S 757	201		< 5	2.47	< 0.2	15	230	< 0.5	2	0.70	< 0.5	2	14	29	2.14	< 10	< 1	0.23	10	0.29	
IB7S 758		238	< 5	1.78	< 0.2	20	220	< 0.5	< 2	0.68 0.87	< 0.5	3	11	34 40	1.73	< 10	< 2	0.19	10 10	0.23	
1875 759 1875 760		238	< 5	2.02	< 0.2 < 0.2	< 5 15	250 280	< 0.5	< 2 < 2	0.87	0.5 0.5	3	10	33	1.76	< 10 < 10	< 1	0.17 0.17	10	0.26 0.22	
2Uup	<u> </u>			• • • • •		••						·····									
JB7S 761	201	238	< 5	1.43	< 0.2	< 5	250	< 0.5	< 2	0.78	1.0	3	9	30	1.35	< 10	< 2	0.15	10	0.21	
JB7S 762		238	< 5	2.71	< 0.2	25	210	< 0.5	< 2	1.21	< 0.5	< 1	28	50	3.08	< 10	< 1	0.33	20	0.42	
JB7S 763		238	< 5	3.25	< 0.2	40	400	< 0.5	< 2	0.64	< 0.5	1	16	22 35	2.36	< 10 < 10	< 2	0.23	20 10	0.35	
JB7S 764 JB7S 765		238	< 5	1.72	< 0.2 < 0.2	< 5 < 5	350 260	< 0.5 < 0.5	< 2	0.59 0.85	< 0.5	1	8 20	33	1,56	< 10	< 1 < 2	0.13 0.23	20	0.24	
	Ľ.					· · · · · · · · · · · · · · · · · · ·			· ·			• • • • •									
JB7S 766	1	238	< 5	2.28	< 0.2	20	380	< 0.5	< 2	0.50	< 0.5	I.	17	26	2.58	< 10	< 2	0.29	10	0.41	
JB7S 767		238	< 5	2.88	< 0.2	10	300	< 0.5	2	0.38	< 0.5	2	8	23	1.99	< 10	4	0.09	10	0.25	
JB7S 768 JB7S 769		238	< 5 < 5	2.68 2.41	< 0.2 < 0.2	< 5 40	270 220	< 0.5 < 0.5	< 2 < 2	0.84	< 0.5 < 0.5	1	22 12	30 43	2.69 2.46	< 10 < 10	< 1	0.26	20 20	0.40	
JB7S 770		238	$\overline{\langle s \rangle}$	2.40	< 0.2	< 5	260	< 0.5	$\langle 2 \rangle$	1.15	0.5	2	14	33	2.17	< 10	< 1	0.14	10	0.30	
JB7S 778		238	< 5	1.83	< 0.2	< 5	230	< 0.5	< 2	0.53	0.5	3	8	24	1.43	< 10	< 1	0.07	10	0.19	1
JB7S 779		238	< 3	2.12		30	200	< 0.5	2	1.20	0.5	2	ŷ	39	2.06	< 10	< i	0.11	10	0.21	•
JB7S 780		238	< 5	1.91	< 0.2	20	170	< 0.5	< 2	0.27	< 0.5	3	8	28	1.57	< 10	< 1	0.08	10	0.18	
JB7S 781	201	238	< 5	1.42	< 0.2	< 5	130	< 0.5	4	0.36	1.0	3	7	13	1.19	< 10	< 1	0.07	< 10	0.15	
JB7S 782		238	20	1.46	< 0.2	50	170	< 0.5	< 2	0.31	< 0.5	3	8	15	1.50	< 10	< 1	0.06	< 10	0.16	1
JB7S 783		238	< 5	2.95	< 0.2	55	180	< 0.5	4	0.54	< 0.5	2	14	24	2.28	< 10	< 1	0.05	10	0.26	
JB7S 784 JB7S 785		238	< 5	2.74	< 0.2 < 0.2	65 < 5	180	< 0.5	< 2	2.05	1.0 1.0	2	10	54 42	2.44	< 10 < 10	< 1	0.11	10 10	0.18 0.17	
	1																·				
JB7S 786	201	1	< 5	2.49	< 0.2	30	240	< 0.5	2	0.71	0.5	2	12	40	1.75	< 10	< 1	0.11	10	0.29	
JB7S 787		238	< 5	2.01	< 0.2	20	160	< 0.5	< 2	0.42		2	10	18	1.57	< 10	< 1	0.07	10	0.19	
JB7S 788 JB7S 789		238	< 5 < 5	2.31	< 0.2 < 0.2	< 5	250	< 0.5	< 2	0.26	0.5	1	13	29	2.33	< 10 < 10	< 1	0.11	10 < 10	0.28	1
JB75 790		1 238		2.17		10	170		< 2	0.49	< 0.5	2	17	15	1.79	< 10		0.08	10	0.22	1
JB7S 791	1	1 238	1	1.79		< 5						-		•••		-			_		
JB7S 792	1 1	1 238		1.89		10	200		< 2 6	, 0.31		3	8 1 1	11	1.58	< 10	< 1	0.07	< 10	0.16	
JB7S 793		1 238			< 0.2	20		< 0.5	< 2	0.42		2	18	28	1.81	< 10 < 10	-	0.08 0.06	10	0.18	

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE , NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984-0221

To: CHEVRON CANADA RESOURCES LTD. MINERALS STAFF 19(1055 W. HASTINGS ST. VAN_JUVER, B.C. V6E 2E9 Project : M579 Comments: ATTN: S MCALLISTER

Page No. : 1-B Tot. Pages: 4 Date : 21- -87 Invoice # : 1-8721866 P.O. # : 27049

																J
SAMPLE	PREP	Mo	Na	Ni	P	РЪ	Sb	Se	Sr	Ti	TI	U	v	w	Zn	
B7S 745-	201 238	< 1	0.04	15	58 50	4	< 5	< 10	60	0.03	< 10	< 10	20	5	248	
B7S 746	201 238	< 1	0.03	8	1260	4	< 5	< 10	34	0.10	< 10	< 10	32	< 5	94	
B7S 747	201 238	< 1	0.03	15	7 50	-4	< 5	< 10	29	0.12	< 10	< 10	48	< 5	180	
B7S 748	201 238	< 1	0.03	10	3 50	24	< 5	< 10	57	0.15	< 10	< 10	55	5	66	
B7S 749	201 238	1	0.02	8	2160	12	< 5	< 10	23	0.12	< 10	< 10	54	< 5	90	
B7S 750	201 238	< 1	0.05	9	780	< 2	< 5	< 10	23	0.14	< 10	< 10	49	< 5	64	•
B7S 751-	201 238	< 1	0.04	9	670	14	< 5	< 10	17	0.13	< 10	< 10	44	< 5	50	
B7S 752	201 238	< 1	0.04	13	1270	20	5	< 10	27	0.12	< 10	< 10	37	\$ < 5	62 36	
B7S 753	201 238 201 238	< 1	0.04 0.04	6 13	670 1000	14 12	< 5 < 5	< 10 < 10	25 78	0.11 0.07	< 10 < 10	< 10 < 10	28 27	< 5	117	
B7S 754/ B7S 755/	201 238	2i	0.04	13	1330	< 2	$\overline{\langle s \rangle}$	< 10	96	0.10	< 10	< 10	40	23	97	
	201 238	< 1	0.09		1260	6	5	< 10	728	0.12	< 10	< 10	40	5	86	 <u></u>
375 756× 875 757×	201 238	< 1	0.09	21 11	1240	18	5	< 10	136	0.12	< 10	< 10	47	ŝ	116	
B7S 758	201 238	< i	0.03	8	1150	14	< 5	< 10	103	0.07	< 10	< 10	35	ŝ	112	
B7S 759	201 238	< 1	0.05	16	1380	8	< 5	< 10	135	0.08	< 10	< 10	34	< 5	92	
B7S 760×	201 238	< 1	0.04	13	1490	< 2	< 5	< 10	137	0.06	< 10	< 10	27	< 5	126	
B7S 761	P 201 238	<1	0.04		1400	< 2	< 5	< 10	123	0.06	< 10	< 10	26	5	113	
B7S 762	201 238	$\langle 1 \rangle$	0.04	31	570	20	< 5	< 10	300	0.16	< 10	< 10	53	Ś	109	
B7S 762	201 238	$\langle 1 \rangle$	0.05	19	510	18	$\langle \dot{s} \rangle$	< 10	137	0.18	< 10	< 10	44	ŝ	85	
B7S 764	201 238	< i	0.03	ģ	1070		Ś	< 10	115	0.08	< 10	< 10	28	< 5	114	
B7S 765	201 238	< 1	0.08	21	4 50	6	5	< 10	293	0.17	< 10	< 10	57	< 5	87	
B7S 766	201 238	< 1	0.04	19	1330	12	< 5	< 10	121	0.16	< 10	< 10	52	10	79	
JB7S 767	201 238	< 1	0.04	9	2080	14	< 5	< 10	56	0.15	< 10	< 10	38	< 5	91	
JB7S 768	201 238	< 1	0.08	17	560	4	5	< 10	246	0.18	< 10	< 10	61	< 5	89	
JB7S 769	201 238	< 1	0.13	25	780	8	5	< 10	723	0.13	< 10	< 10	29	5	194	
JB7S 770-	201 238	< 1	0.07	20	1060	2	5	< 10	305	0.11	< 10	< 10	42	5	72	
JB7S 778	201 238	< 1	0.03	8	1110	12	< 5	< 10	84	0.07	< 10	< 10	28	< 5	801	
JB7S 779	201 238	< 1	0.05	20	1900	22	5	< 10	436	0.07	< 10	< 10	31	< 5	111	
JB7S 780	201 238	< 1	0.03	7	1180	28	< 5	< 10	40	0.06	< 10	< 10	30	< 5	87	
B7S 781	201 238	< 1	0.03	8	590	4	< 5	< 10	65	0.06	< 10	< 10	25	< 5	39	
JB7S 782	201 238	< 1		11	7 50	10	< 5	< 10	45	0.08	< 10	< 10	32	< 5 < 5	134 94	
JB7S 783	201 238			29	1100	14	< 5	< 10	167	0.12	< 10 < 10	< 10 < 10	44 23	10	165	
JB7S 784 JB7S 785	201 238 201 238			37 19	1840 1290	14 < 2	5 < 5	< 10 < 10	1040	0.08	< 10	< 10	21	5	138	
	201 230				-											
JB7S 786	201 238 201 238			17 11	1120 640	4 2	< 5	< 10 < 10	134 127	0.10 0.10	< 10 < 10	< 10 < 10	35 29	< 5 < 5	77 65	
JB7S 787 JB7S 788	201 238			11	2480	2	< 5 5	< 10	62	0.10	< 10	< 10	45	Ś	133	
JB75 789	201 238	1		8	3940	6	< 5	< 10	56	0.08	< 10	< 10	37	ŝ	120	
JB7S 790	201 238			17	910	30	< 5	< 10	99	0.11	< 10	< 10		< 5	101	
JB7S 791	201 238	1		8	2000	10	< 5	< 10	59	0.10	< 10	< 10	30	5	98	
JB7S 792	201 238			23	8 50	18	< 5	< 10	100	0.10	< 10		32	< 5	106	
JB7S 793	201 238			26		< 2	< 5		143	0.15	< 10	< 10	50	5	87	

100 a 100

Chemex Labs Ltd.

المحادية والمحادية والأحجاج والمتحاد والمحادية والمحاد والمحاد والمحاد والمحاد والمحاد والمحاد والمحاد والمحاد

212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221 To: / JVRON CANADA RESOURCES LTD. IERALS STAFF 1900 - 1055 W. HASTINGS ST. VANCOUVER, B.C. V6E 2E9 Project: M579 Comments: ATTN: S. MCALLISTER

₩

Page No. : Tot. Pages: . Date : 20-SEP-87 Invoice # : I-8721865 P.O. # : 27049

										ł	<u></u>								·········	<u></u>	+	
	SAMPLE DESCRIPTION	PR CO		Au ppb F AIA A	A1 %	Ag ppm	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hş ppn	K %	La ppm	М д %б	Ma ppm
	JB7S 1134 JB7S 1135 JB7S 1135 JB7S 1136 JB7S 1137 JB7S 1138	201 201 201	238 238 238 238 238 238	<pre></pre>	1.80 1.42 1.98 2.09 1.76	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	20 < 5 < 5 < 5 < 5 15	210 290 180 140 150	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.71 0.66 0.51 0.63 0.63	< 0.5 0.5 0.5 0.5 < 0.5	5 4 6 5 4	16 11 15 11 11	29 21 17 15 18	1.83 1.22 1.57 1.58 1.44	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.24 0.19 0.16 0.20 0.11	20 20 20 20 20 20	0.28 0.17 0.23 0.22 0.17	664 1170 421 422 908
(JB7S 1139 JB7S 1140 JB7S 1141 JB7S 1141 JB7S 1142 JB7S 1143	201 201 201 201 201 201	238 238	< 5 < 5 < 5 < 5 < 5	1.30 2.27 2.47 1.18 0.69	< 0.2 < 0.2 < 0.2 0.4 < 0.2	< 5 < 5 < 5 10 < 5	230 280 200 150 170	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 < 2 < 2 2 2 < 2 2 < 2	0.89 0.74 0.83 2.74 0.85	0.5 0.5 0.5 1.5 1.5	5 6 9 5 3	14 14 20 20 8	36 23 24 131 37	1.39 1.88 2.24 1.38 0.69	< 10 < 10 < 10 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.12 0.25 0.30 0.18 0.12	20 20 20 50 20	0.22 0.29 0.33 0.23 0.12	940 829 532 474 965
	JB7S 1144	201	238	< 5	0.99	< 0.2	< 5	220	< 0.5	< 2	0.91	1.5	4	11	39	0.99	< 10	< 1	0.10	20	0.14	978
	JB7S 1151 JB7S 1152 JB7S 1153	201	238 238 238	< 5 < 5	1.43 2.69 1.60	< 0.2 0.2 < 0.2	10 15 10	260 200 190	< 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2	0.79 0.94 1.06	1.0 0.5 2.0	4 10 7	10 14 10	34 43 41	1.17 1.95 1.37	< 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1	0.10 0.17 0.22	20 30 30	0.19 0.30 0.19	839 936 757
	JB7S 1154 JB7S 1155 JB7S 1155 JB7S 1156 JB7S 1157 JB7S 1158	201 201 201	238	< 5 < 5 < 5 < 5	2.69 1.71 1.92 1.85 2.74	0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	30 15 < 5 15 < 5	200 200 240 280 170	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.83 0.47 0.77 0.62 0.66	1.0 2.5 2.5 0.5 0.5	12 7 8 6 9	17 8 9 13 14	49 38 40 27 25	2.16 1.30 1.63 1.59 2.09	< 10 < 10 < 10 < 10 < 10 < 10	<1 <1 <1 <1 <1 <1	0.21 0.11 0.12 0.17 0.15	30 10 20 20 20	0.34 0.15 0.23 0.24 0.31	612 1055 1235 794 469
C	JB7S 1159 JB7S 1160 JB7S 1161 JB7S 1161 JB7S 1162 JB7S 1163	20 20 20	1 238	< 5 < 5 < 5 < 5 < 5 < 5	2.53 1.77 2.69 1.68 1.83	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	15 < 5 < 5 < 5 < 5	140 240 160 230 180		< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.34 0.50 0.59 0.96 0.70	< 0.5 0.5 0.5 1.5 1.5	8 5 10 8 7	8 8 11 7 8	28 30 30 46 27	1.70 1.35 1.91 1.27 1.40	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.07 0.07 0.10 0.11 0.11	. 10 10 20 20 < 10	0.19 0.16 0.24 0.16 0.22	1375 863 630 1195 659
	JB7S 1164 JB7S 1165 JB7S 1165 JB7S 1166 JB7S 1167 JB7S 1168	20 20 20		< 5 < 5 < 5	2.09 2.83 2.28 2.90 2.05	0.2 0.4 0.2 < 0.2 < 0.2	5 15 < 5 20 10	430 250 300 270 280	0.5 < 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1.40 1.13 1.03 0.90 0.94	1.0 0.5 1.0 0.5 1.0	9 10 9 8 7	10 25 16 16 12	38 53 37 35 39	1.89 2.72 1.93 2.14 1.70	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 2	0.28 0.37 0.24 0.21 0.21	< 10 10 < 10 10 < 10	0.33 0.50 0.34 0.33 0.27	824 446 889 631 612
	JB7S 1169 JB7S 1170 JB7S 1171 JB7S 1172 JB7S 1173	20 20 20	1 238 1 238 1 238 1 238 1 238	< 5 < 5 < 5	1.83 2.53 2.16 1.74 1.69	0.2 < 0.2 < 0.2	· < \$ < \$ < \$ < \$ < \$	280 200 200 170 150	0.5 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.81 0.68 0.67 0.51 0.65	1.5 0.5 0.5 < 0.5 0.5	7 7 6 5 6	13 16 13 10 13	37 27 19 10 12	1.50 1.90 1.60 1.30 1.34	< 10 < 10 < 10 < 10 < 10 < 10	<1 <1 <1 <1 <1	0.20 0.20 0.30 0.12 0.13	< 10 10 < 10 < 10 < 10	0.24 0.31 0.24 0.19 0.20	608 290 548 392 478

CERTIFICATION : _

17

Chemex Labs Ltd.

 والاستعادة والمساور

212 BROOKSBANK AVE , NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221 To: (TVRON CANADA RESOURCES LTD. . ERALS STAFF 1900 - 1055 W. HASTINGS ST. VANCOUVER, B.C. V6E 2E9 Project: M579 Comments: ATTN: S. MCALLISTER

الجارجا المتحد وسجور الموالية موالع والمراس

Page No. : Tot. Pages: _ Date : 20-SEP-87 Invoice # : I-8721865 P.O. # : 27049

									L								
	SAMPLE DESCRIPTION	PREP CODE	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Se ppm	Sr ppm	Ti %	Ti ppm	U ppm	V ppn	W ppm	Zn ppm	
	JB7S 1134 JB7S 1135 JB7S 1136 JB7S 1136 JB7S 1137 JB7S 1138	201 238 201 238 201 238 201 238 201 238 201 238	< 1 < 1 < 1 < 1 < 1	0.04 0.03 0.05 0.05 0.04	9 6 14 10 12	550 1500 1960 830 1050	4 10 8 < 2 < 2 < 2	< 5 < 5 < 5 < 5 < 5	< 10 < 10 < 10 < 10 < 10 < 10	89 93 84 96 75	0.11 0.07 0.08 0.11 0.09	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	43 25 31 33 30	< 5 < 5 < 5 < 5 < 5 < 5	84 137 153 78 146	
	JB7S 1139 JB7S 1140 JB7S 1141 JB7S 1141 JB7S 1142 JB7S 1143	201 238 201 238 201 238 201 238 201 238 201 238	2 < 1 < 1 < 1 < 1 1	0.05 0.05 0.06 0.08 0.02	10 13 20 33 7	670 750 1420 1060 650	6 8 6 10 < 2	\$ < 5 < 5 5 < 5	10 < 10 < 10 10 < 10	145 172 220 497 117	0.07 0.12 0.11 0.06 0.03	< 10 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	29 35 39 31 12	< 5 < 5 < 5 < 5 < 5	88 107 113 101 76	
	JB7S 1144	201 238	1	0.03	13	990	12	5	< 10	171	0.03	< 10	< 10	13	< 5	200	
1	JB7S 1131 JB7S 1152 JB7S 1153	201 238 201 238 201 238	< 1 < 1 < 1	0.03 0.04 0.04	11 21 11	2170 2090 1580	6 6 < 2	< 5 < 5	< 10 10 < 10	83 89 61	0.04 0.08 0.06	< 10 < 10 < 10	< 10 < 10 < 10	22 37 27	< s < s < s	124 151 122	
	JB7S 1154 JB7S 1155 JB7S 1155 JB7S 1156 JB7S 1157 JB7S 1158	201 238 201 238 201 238 201 238 201 238 201 238	<1 <1 <1 <1 1	0.04 0.03 0.03 0.03 0.05	24 8 9 10 10	2370 1480 1710 1980 1140	10 4 14 4 < 2	\$ 5 5 5 5 5 5	< 10 < 10 < 10 < 10 < 10 < 10	68 45 71 73 62	0.07 0.05 0.07 0.06 0.12	10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	41 23 34 30 47	< \$ < \$ < \$ < \$ < \$	151 173 143 137 77	
	JB7S 1159 JB7S 1160 JB7S 1161 JB7S 1161 JB7S 1162 JB7S 1163	201 238 201 238 201 238 201 238 201 238 201 238 201 238	<1 <1 <1 <1 <1 <1 <1	0.04 0.03 0.03 0.03 0.03	4 7 8 4 7	760 840 1410 1540 1830	8 2 < 2 10 < 2	< 5 < 5 5 < 5 < 5	< 10 < 10 10 < 10 < 10	37 55 59 95 78	0.09 0.06 0.08 0.05 0.06	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	36 29 37 21 28	< 5 < 5 < 5 < 5 < 5	55 62 57 132 120	· · · · · · · · · · · · · · · · · · ·
	JB7S 1164 JB7S 1165 JB7S 1166 JB7S 1166 JB7S 1167 JB7S 1168	201 238 201 238 201 238 201 238 201 238 201 238		0.03 0.07 0.04 0.05 0.04	13 19 12 13 12	2360 690 1240 1290 2020	8 4 2 2 6	< 5 < 5 < 5 < 5 < 5	< 10 < 10 < 10 < 10 < 10 < 10	129 181 172 124 145	0.09 0.16 0.10 0.10 0.06	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	36 65 43 47 35	< 5 < 5 < 5 < 5 < 5	144 71 116 100 83	
	JB7S 1169 JB7S 1170 JB7S 1171 JB7S 1171 JB7S 1172 JB7S 1173	201 238 201 238 201 238 201 238 201 238 201 238	< 1 < 1 < 1	0.03 0.04 0.04 0.05 0.04	10 12 13 12 11	1910 880 450 690 710	2 2 6 2 6	< 5 < 5 < 5 < 5 < 5 < 5	< 10 < 10 < 10 < 10 < 10 < 10	131 106 121 85 93	0.04 0.11 0.11 0.09 0.09	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	· 29 43 32 27 30	< 5 < 5 < 5 < 5 < 5 < 5	80 63 56 70 99	

Chemex Labs Ltd Analytical Chemists • Geochemists • Registered Assayers 212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221

/

V.

the second s

To: CHEVRON CANADA RESOURCES LTD. 'ERALS STAFF . J0 - 1055 W. HASTINGS ST. VANCOUVER, B.C. V6E 2E9 Project : M579 Comments: ATTN: S. MCALLISTER Page No. : 1 Tot. Pages: Date : 21-SEP-87 Invoice #: 1-8721866 P.O. # : 27049

• •

														·							
SAMPLE DESCRIPTION	PREP CODE		ррь хіл л	A1 %	Ag ppm	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg Fr	Ma ppm
MM7S-140 MM7S-141	205 232 205 232		175	2.97	0.4	10 85	140 120	< 0.5 < 0.5	< 2 < 2	1.59	< 0.5 < 0.5	6 7	99 44	119 38	1.15	< 10 < 10	1 2	0.31	< 10 < 10	0.55	117
M/7S-143	205 23		< 5	1.27	0.4	40	\$40	< 0.5	< 2	0.42	< 0.5	9	82	20	2.19	< 10	< 1	0.62	< 10	1.04	274
SM7S-167	205 238		< 5	1.53	0.2	10	20	0.5	< 2	1.90	< 0.5	21	30	133	3.28	< 10	< 1	0.08	< 10	0.31	128
SM7S-168 SM7S-169	205 238 205 238		20 < 5	4.50	0.6 0.2	50 < 5	50 20	0.5 < 0.5	< 2 < 2	3.12 0.94	0.5 < 0.5	23 15	47 53	143 100	4.31 2.43	< 10 < 10	< 1	0.15	< 10 < 10	0.57 0.16	204 103
SM75-173	205 23	1	< 5	4.96	0.2	15	200	0.5	2	13.25	< 0.5	4	65		1.42	< 10	1	0.01	< 10	0.20	968
SM7S-174	205 23	· •	< 5	2.73	0.2	15	40	0.5	< 2	>15.00	0.5	4	62	25	0.82	< 10	1	< 0.01	< 10	0.16	510
MTS-326	205 231	8 [< 5	1.59	0.4	30	210	O. 5	< 2	1.19	0.5	12	26	21	2.66	< 10	< 1	0.06	< 10	0.15	1.54
M75-333	205 23		< 5	2.44	0.2	90	20	0.5	< 2	1.86	< 0.5	14	74	44	0.58	< 10	< 1	0.03	< 10	0.03	4
M75-334	205 23	8	< 5	1.28	0.2	10	90	< 0.5	< 2	0.94	< 0.5	11	59	51	1.75	< 10	2	0.28	< 10	0.45	29
MITS-335	205 23	8	75	2.61	0.2	1970	220	0.5	48	1.74	< 0.5	22	40	104	2.09	< 10	< 1	0.39	< 10	0.63	2.2
M75-336	205 23		< 5	4.34	0.2	5	320	0.5	< 2	2.40	0.5	11	61	40	1.79	< 10	1	0.48 0.22	< 10 < 10	0.70	25
M7S-337	205 23		< 5 < 5	1.47	0.2	< 5	30 20	0.5 1.5	< 2 < 2	2.63 2.92	< 0.5	4	45 32	ð t	1.40	< 10 < 10	< 1	0.05	< 10	0.17 0.20	79
MM7S-338 JB7S-1341	205 23		< 5	2.07	0.2	< 5	240	0.5	$\overline{\langle 2 \rangle}$	1.91	1.5	10	14	49	2.29	< 10	< 1	0.21	< 10	0.25	681
JB7S-1342/	201 23		< 5	1.81	0.2	5	200	0.5	< 2	7.65	1.0	10	12	59	1.97	< 10	< 1	0.14	< 10	0.24	348
JB7S-1343/	201 23		< 5	2.76	0.2	10	260	1.5	< 2	4.02	1.5	10	10	55	2.71	< 10	1	0.09	< 10	0.09	81
JB7S-1344/	201 23	8	< 5	1.89	0.2	10	210	0.5	< 2	7.16	0.5	7	8	41	1.61	< 10	< 1	0.09	< 10	0.21	400
JB7S-1345	201 23		< 5	1.96	0.2	10	270	0.5	< 2	1.44	1.0	. 7	14	39	1.92	< 10	1	0.29	< 10	0.28	719
JB7S-1346	201 23	8	< 5	2.15	0.2	5	270	0.5	< 2	2.07	1.0	9	12	47	2.25	< 10	< 1	0.20	< 10	0.26	57
JB7S-1369	201 23	8	< 5	1.37	< 0.2	< 5	230	0.5	< 2	1.01	1.0	7	10	38	1.36	< 10	< 1	0.25	< 10	0.25	816
JB7S-1370-	201 23		< 5	1.01	< 0.2	5	160 320	0.5	< 2 < 2	1.01	1.0	5 14	6 27	39 69	0.86 3.10	< 10 < 10	< 1	0.08	< 10	0.14	603
JB7S-1371	201 23		< 5 < 5	3.07	< 0.2 < 0.2	10 5	220	1.5	$\langle \hat{2} \rangle$	1.00	0.5		18	43	2.21	< 10	1	0.28	10 < 10	0.66	74
JB7S-1372	201 22		< 5	2.66	0.4	15	220	0.5	< 2	1.02	0.5	10	16	41	2.10	< 10	3	0.32	< 10	0.38	45
JB7S 1174	201 2		< 5	1.19	< 0.2	< 5	200	< 0.5	< 2	0.52	0.5	5	8	9	1.16	< 10	< 1	0.14	< 10	0.14	534
JB7S 1175	201 2	38	< 5	1.74	< 0.2	< 5	130	< 0.5	< 2	0.43	< 0.5	6	10	10	1.36	< 10	1	0.08	< 10	0.15	350
JB7S 1176	201 2		< 5	2.17	< 0.2	5	140	0.5	< 2	0.93	< 0.5	10	18	22	2.26	< 10 < 10	< 1	0.33	10 < 10	0.40	20
JB7S 1177	201 2		< 5 < 5	1.54	< 0.2 < 0.2	< 5 < 5	180	< 0.5	< 2 < 2	0.52	0.5	76	12	13	1.53	< 10		0.12	< 10	0.18	85 49
JB7S 1178	201 2	30		2.00	< V.1																
JB7S 11791	201 2		< 5	1.37	< 0.2	5	140		< 2	0.92	< 0.5	7	14	15	1.47	< 10	< 1	0.25	< 10	0.25	523
JB7S 1180	201 2		< 5 < 5	1.79	0.2 < 0.2	< 5	160 320		< 2 < 2	0.89 0.98	0.5	76	18	21 41	1.78	< 10 < 10	> >	0.30	< 10 < 10	0.32	37' 87
JB7S 1186 ¥ JB7S 1187	201 2 201 2		< 5	1.10	< 0.2	15	240		≥ 2	1.13	0.5	7	11	43	1.67	< 10	< 1		< 10	0.31	57
JB7S 1188	201 2		< 5	1.48	< 0.2	5	220		< 2	0.67	0.5	5	8	20	1.24	< 10	< 1	0.10	< 10	0.17	89
JB7S 1189	201 2	18	< 5	1.74	< 0.2	5	220	< 0.5	< 2	0.92	0.5	7	10	33	1.40	< 10		0.19	< 10	0.23	54
JB7S 1190		38	< 5	2.68	0.2	5	200		< 2	0.69	1.0	10	14	33	1.95	< 10	< 1	0.16	< 10	0.32	56
JB7S 1191		38	< 5	2.21	0.2	< 5	210		< 2	0.79	1.5	7	12	35	1.74	< 10	< 1		< 10	0.30	57
JB7S 1192		38	< 5	2.25	< 0.2 < 0.2	15 10	190 170		< 2 < 2		< 0.5	9 7	17	32 22	2.37	< 10 < 10	1	••••	10 < 10	0.40	33 51
JB7S 1193	201 2		< 5			10	170								<u> </u>						
JB7S 1194	201 2		< 5	2.16		10	220		< 2		0.5	10	11	36	1.87	< 10		2 0.12	< 10	0.27	105
JB7S 1195	201 2		< 5 < 5	1.85		\$ \$	210		< 2 < 2		1.0	8	9	29 37	1.62	< 10 < 10	<		< 10 < 10	0.20	93 93
JB7S 1196 JB7S 1197	201 2		< 5	1.25		5	140		$\geq \frac{1}{2}$			5	5	13	1.06	< 10	~		< 10	0.11	72
JB7S 1198	201 2		< 5	1.45		< 5	2 50		< 2			7	8	19	1.20	< 10	<		< 10	0.17	127
• I																			•		

E

Chemex Labs Ltd.

212 BROOKSBANK AVE , NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984-0221

To: CHEVRON CANADA RESOURCES LTD. MINERALS STAFF DO - 1055 W. HASTINGS ST. ANCOUVER, B.C. V6E 2E9 Project : M579 Commenus: ATTN: S MCALLISTER

Page No. : 1-B Tot. Pages Date : -SEP-87 Invoice # : 1-8721866 P.O. # : 27049

SAMPLE	PREP	Мо	Na	Ni	P	Pb	Sb	Se	Sr	Ti	TI	U	v	w	Zn	
DESCRIPTION	CODE	ppm	%	ppm	ppn	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	
M7S-140	205 238	2	0.45	6	470	8	< 5	< 10	173	0.12	< 10	< 10	30	< 5	15	
MM7S-141*	205 238	3	0.25	13	6 50	< 2	< 5	< 10	192	0.09	< 10	< 10	6	< 5	8	
M75-143	205 238	< 1	0.12	6	570	8	< 5	< 10	79	0.17	< 10	< 10	73	< 5	47	
SM/S-167-	205 238	< 1	0.07	12	710	< 2	< 5	10	30	0.22	< 10	< 10	65	< 5	21	
SM7S-168	205 238	< 1	0.60	19	990	4	10	10	304	0.20	< 10	< 10	63	< 5	35	
SM05-169	205 238	1	0.17	15	1010	4	< 5	< 10	61	0.16	< 10	< 10	32	< 5	10	
SM7S-173-	205 238	< 1	0.08	2	390	4	< 5	< 10	4220	0.03	< 10	< 10	7	< 5	39	
SM0S-174	205 238	4	0.05	19	1220	< 2	5	10	1970	0.08	< 10	< 10	24	< 5	35	
M/7S-326	205 238	< 1	0.18	5	630	10	< 5	< 10	219	0.12	< 10	< 10	16	< 5	26	
MM7S-333	205 238	< 1	0.47	25	1060	6	< 5	< 10	189	0.09	< 10	< 10	12	< 5	12	
MM75-334-	205 238	< 1	0.18	10	910	< 2	< 5	< 10	135	0.16	< 10	< 10	76	< 5	35	
M05-335	205 238	< 1	0.42	15	900	10	< 5	< 10	152	0.10	< 10	< 10	67	< 5	36	
M/7S-336	205 238	< 1	0.61	9	710	< 2	< 5	< 10	199	0.11	< 10	< 10	58	< 5	34	
MJS-337	205 238	</td <td>0.18</td> <td>2</td> <td>1250</td> <td>4</td> <td>< 5</td> <td>< 10</td> <td>119</td> <td>0.12</td> <td>< 10</td> <td>< 10</td> <td>51</td> <td>< 5</td> <td>34</td> <td></td>	0.18	2	1250	4	< 5	< 10	119	0.12	< 10	< 10	51	< 5	34	
M/7S-338	205 238	< 1	0.07	2	560	8	< 5	< 10	173	0.13	< 10	< 10	55	< 5	49	
JB7S-1341	201 238	< 1	0.06	26	1650	2	< 5 < 5	< 10 < 10	387 969	0.07	< 10 < 10	< 10 < 10	30 25	< 5 < 5	112	
JB7S-1342 JB7S-1343	201 238 201 238	< 1 < 1	0.11 0.26	35 37	1660 2510	2	< 5	10	2340	0.07 0.07	< 10	< 10	18	< 5	75 141	
JB7S-1344	201 238	< 1	0.14	23	1240	2	< 5	< 10	987	0.06	< 10	< 10	21	< 5	76	
JB7S-1344	201 238	< i	0.09	19	8 50	6	< 5	< 10	441	0.09	< 10	< 10	34	< 5	126	
JB7S-1346	201 238	< i	0.05	30	1310	4	< 5	10	391	0.08	< 10	< 10	28	< 5	127	
JB7S-1369	201 238	< 1	0.03	13	1190	• 4	< 5	< 10	95	0.07	< 10	< 10	· · · · · · · · · · · · · · · · · · ·			
JB7S-1370	201 238	< 1	0.03	9	1330	2	< 5	< 10	69	0.07	< 10	< 10	26 17	< 5 < 5	108	
JB7S-1371	201 238	i	0.03	24	1190	10	< 5	10	174	0.03	< 10	< 10	61	< 5	102 120	
JB7S-1372	201 238	<i< li=""></i<>	0.04	15	990	2	< 5	< 10	193	0.12	< 10	< 10	52	< 5	68	
JB7S-1373	201 238	< 1	0.05	17	1600	8	< 5	< 10	140	0.11	< 10	< 10	45	\geq \hat{s}	89	
													-			
JB7S 1174	201 238	< 1	0.03	7	2000 1220	8 4	< 5 < 5	< 10 < 10	71 55	0.06	< 10 < 10	< 10 < 10	25 26	< 5 < 5	82	
JB7S 1175	201 238 201 238	<1	0.04 0.07	16	790	2	< 5	< 10	208	0.08	< 10	< 10	43	< 5	56 68	
JB7S 1176	201 238		0.07	13	1140	2	< 5	< 10	116	0.09	< 10	< 10	30	< 5	102	
JB7S 1177 JB7S 1178	201 238		0.04	13	370	4	< 5	< 10	190	0.12	< 10	< 10	37	< 5	58	
JB7S 1179 ·	201 238	< 1	0.05	9	460	2	< 5	< 10	133	0.10	< 10	< 10	33	< 5	57	••••••••••••••••••••••••••••••••••••••
JB7S 1180	201 238	< 1	0.05	13	820	6	< 5	< 10	145	0.12	< 10	< 10	44	< 5	63	
JB7S 1186 1 -	201 238	< 1	0.03	11	2010	4	< 5	< 10	111	0.03	< 10	< 10	20	< 5	137	
JB7S 1187-	201 238	< 1	0.05	8	720	< 2	< 5	10	73	0.08	< 10	< 10	40	< 5	62	
JB7S 1188-	201 238	1	0.03	8	2130	2	< 5	< 10	54	0.05	< 10	< 10	25	< 5	90	
JB7S 1189-	201 238	< 1	0.05	12	1770	6	< 5	< 10	89	0.06	< 10	< 10	30	< 5	84	
JB7S 1190	201 238	< 1	0.04	21	2160	2	< 5	< 10	70	0.08	< 10	< 10	43	< 5	142	
JB7S 1191	201 238	< 1	0.03	14	2000	4	< 5	< 10	79	0.08	< 10	< 10	37	< 5	127	
JB7S 1192 JB7S 1193	201 238 201 238	< 1 < 1	0.04	12	810	< 2	< 5	< 10	66	0.13	< 10	< 10	58	< 5	78	
			0.03	10	1050	< 2	< 5	< 10	60	0.08	< 10	< 10	37	< 5	85	
JB7S 1194	201 238		0.03	9	1390	4	< 5	< 10	89	0.07	< 10	< 10	43	< 5	107	
JB7S 1195	201 238		0.04	9	1060	4	< 5	< 10	74	0.08	< 10	< 10	35	< 5	58	
JB7S 1196	201 238		0.03	7	970	10	< 5	< 10	52	0.04	< 10	< 10	21	< 5	74	
JB7S 1197	201 238	< !	0.05	4	1410	< 2	< 5	< 10	39	0.06	< 10	< 10	17	< 5	44	
JB7S 1198	201 238		0.03	6	1410	4	< 5	< 10	52	0.06	< 10	< 10	23	< 5	99	

-

· _ _ _

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221 To: CHEVRON CANADA RESOURCES LTD. MINERALS STAFF 0 - 1055 W. HASTINGS ST. V. COUVER, B.C. V6E 2E9 Project : M579 Comments: ATTN: S. MCALLISTER Page No. : 1-A Tot. Pages: / Date : SEP-87 Invoice #: 1-8721866 P.O. # : 27049

																						_
	SAMPLE DESCRIPTION	PREP CODE	1	Au ppb Faiaa	A1 ' %	Ag ppm	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg 55	Ma ppm
	JB7S 1206 JB7S 1207 JB7S 1208	201 2 201 2 201 2	38	< 5 < 5 < 5	2.15 2.28 1.67	< 0.2 < 0.2 < 0.2 < 0.2	10 10 10	210 240 170	< 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2	0.48 0.53 0.43	< 0.5 < 0.5 < 0.5	9 7 6	17 15 11	17 16 9	1.96 1.91 1.58	< 10 < 10 < 10	1 2 < 1	0.15 0.17 0.11	< 10 < 10 < 10	0.31 0.31 0.19	4 51 7 20 507
	JB7S 1209 JB7S 1210 JB7S 1211- JB7S 1212 JB7S 1212 JB7S 1213	201 2: 201 2: 201 2: 201 2: 201 2: 201 2:	38 38 38	< 5 < 5 < 5 < 5 < 5	1.79 1.32 1.50 1.99 1.93	<0.2 <0.2 <0.2 <0.2 0.2 0.2	5 10 5 10 5	190 240 210 120 120	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.42 0.40 0.33 0.75 0.78	0.5 0.5 1.0 < 0.5 < 0.5	7 6 7 8 8	12 10 11 17 17	14 10 11 27 29	1.55 1.32 1.65 2.08 2.11	< 10 < 10 < 10 < 10 < 10 < 10	1 <1 <1 1 <1	0.15 0.11 0.10 0.19 0.17	< 10 < 10 < 10 < 10 10	0.20 0.15 0.18 0.39 0.40	765 595 651 261 212
/	JB7S 1254- JB7S 1255- JB7S 1256- JB7S 1257 JB7S 1258-	201 2 201 2 201 2 201 2 201 2 201 2	38 38 38	<	1.94 2.02 2.63 2.19 1.05	0.2 0.2 0.2 < 0.2 < 0.2 < 0.2	15 < 5 < 5 30 < 5	220 220 290 200 80	1.0 1.0 1.5 1.0 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1.17 1.17 0.97 0.60 0.17	1.0 1.0 < 0.5 < 0.5	7 8 8 6 2	14 14 20 14 9	48 48 35 21 8	1.71 1.70 2.10 1.71 1.14	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.27 0.28 0.28 0.21 0.08	30 30 30 20 < 10	0.30 0.30 0.34 0.26 0.12	716 709 646 \$87 249
	JB7S 1259 JB7S 1260 JB7S 1261 JB7S 1262 JB7S 1263	201 2 201 2 201 2 201 2 201 2 201 2	38 38 38	< s < s < s < s < s	1.94 2.33 2.42 2.04 1.44	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	5 10 25 15 < 5	230 170 140 160 170	< 0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.94 0.49 0.52 0.46 0.36	1.0 0.5 < 0.5 < 0.5 0.5	6 5 6 5 4	14 11 17 12 11	35 18 18 13 12	1.62 1.59 1.87 1.56 1.28	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 1 < 1	0.20 0.09 0.11 0.17 0.13	30 20 20 10 10	0.24 0.19 0.21 0.20 0.18	740 453 465 578 697
	JB7S 1264/ JB7S 1265- JB7S 1266- JB7S 1266- JB7S 1267 JB7S 1268	201 2 201 2 201 2 201 2 201 2 201 2	38 38	< 5 < 5 < 5 < 5 < 5	2.06 1.64 1.42 1.37 2.24	<0.2 <0.2 <0.2 <0.2 <0.2 0.4	20 10 < 5 < 5 5	240 220 340 190 210	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.50 0.64 0.44 0.34 1.39	< 0.5 < 0.5 1.0 1.0 0.5	7 6 6 5 11	17 15 11 8 20	20 22 20 17 37	1.88 1.75 1.31 1.14 2.47	< 10 < 10 < 10 < 10 < 10 10	<1 <1 <1 <1 <1 <1	0.23 0.22 0.17 0.10 0.40	20 20 10 10 40	0.25 0.25 0.17 0.15 0.42	472 863 1230 1185 403
	JB7S 1269 JB7S 1270 JB7S 1271 JB7S 1271 JB7S 1272 JB7S 1273	201 2 201 2	38 38 38 38 38 38	< 5 < 5 < 5 < 5 < 5	1.44 1.49 1.53 1.93 1.11	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 5 < 5 20 < 5 20	190 190 190 260 370	< 0.5 < 0.5 < 0.5 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.95 0.86 0.78 1.18 0.70	0.5 0.5 < 0.5 1.0 2.0	7 5 5 8 4	13 13 10 10 8	39 29 20 38 42	1.57 1.45 1.33 1.47 0.98	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.26 0.19 0.18 0.15 0.10	30 20 20 30 20	0.26 0.22 0.18 0.27 0.14	661 567 807 1040 1535
	JB7S 1274 JB7S 1275 JB7S 1275	201 2	38 38 38	< 5 < 5 < 5	1.46 1.55 2.27	< 0.2 < 0.2 < 0.2	< 5 5 5	200 260 180	< 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2	0.72 0.80 0.76	1.0 1.5 1.0	4 5 7	8 8 8	26 36 32	1.12 1.24 1.43	< 10 < 10 < 10	< 1 < 1 < 1	0.10 0.14 0.06	20 20 20	0.16 0.17 0.16	634 831 1015
	T275-475 T275-476 T275-476 T275-477 T275-478 T275-479	201 2 201 2 201 2	238 238 238 238 238 238	<	2.00 1.81 0.87 1.37 1.06	0.2 0.2 0.2 0.2 0.2	< 5 < 5 10 < 5 10	210 230 150 170 150	< 0.5 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.59 0.72 0.67 0.77 0.51	0.5 0.5 1.0 0.5 < 0.5	5 5 4 3	11 11 4 9 7	17 25 32 22 18	1.56 1.41 0.90 1.13 0.93	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1	0.16 0.20 0.09 0.15 0.10	10 10 < 10 < 10 < 10	0.21 0.21 0.12 0.17 0.13	340 460 742 560 555
ſ	1275-480 1275-481 1275-481 1275-482 1275-483 1275-483 1275-484	201 201	238 238 238 238 238 238	< s < s < s < s < s	1.57 1.32 0.85 2.78 1.99	< 0.2	\$ < \$ < \$ 15 < \$	210 190 120 230 250	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1.91 0.58 0.63 1.47 1.72	< 0.5 0.5 1.0 < 0.5 0.5	8 4 3 8 6	15 8 7 14 10	43 20 30 34 36	1.84 1.16 0.91 2.26 1.91	< 10 < 10 < 10 < 10 < 10 < 10	<1 <1 1 <1 <1	0.30 0.11 0.07 0.17 0.20	10 < 10 < 10 < 10 < 10 < 10	0.31 0.15 0.09 0.20 0.19	687 823 518 505 607
	T27S-485 T27S-486	201 201	238 238	< 5 < 5	2.50		\$ < 5	230 180	< 0.5 < 0.5	< 2 < 2	0.82	0.5	8 5	12 10	40 40	2.18	< 10 < 10	< 1	0.13 0.22	< 10 < 10	0.23 0.23	1070 595

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221 To: CHF ON CANADA RESOURCES LTD. MIN. ALS STAFF 1900 - 1055 W. HASTINGS ST. VANCOUVER, B.C. V6E 2E9 Project : M579 Comments: ATTN: S. MCALLISTER

Page No. : 1-B Tot. Pages: 4 Date : 21-SEP-87 Invoice # : 1-8721866 P.O. # : 27049

																	······································	
SAMPLE	PREP		Мо	Na	Ni	P	РЪ	Sb	S¢	Sr	Ti	TI		v	w	Zn		
JB7S 1206	201 2	38	< 1	0.04	18	700	< 2	< 5	< 10	104	0.11	< 10	< 10	43	< 5	109		
JB7S 1207	201 2	38	< 1	0.04	17	730	2	< 5	< 10	98	0.11	< 10	< 10	40	< 5	138		
JB7S 1208-	201 2	38	< 1	0.04	11	510	2	< 5	< 10	96	0.10	< 10	< 10	32	< 5	134		
JB7S 1209	201 2		< 1	0.04	13	790	4	< 5	< 10	104	0.09	< 10	< 10	30	< 5 < 5	145 172		
JB7S 1210	201 2		< 1	0.04	16	1680	~ 2	< 5 < 5	< 10 < 10	85 49	0.07 0.08	< 10 < 10	< 10 < 10	29 31	< 5	194		
JB7S 1211 JB7S 1212	201 2 201 2		< 1 < 1	0.04 0.06	19 12	1680 600	< 2 2	< 5	< 10	67	0.14	< 10	< 10	61	< 5	45		
JB7S 1213	201 2		< 1	0.07	12	290	2	< 5	< 10	78	0.15	< 10	< 10	64	< 5	37		
JB7S 1254	201 2		< 1	0.04	15	1830	10	5	10	210	0.07	< 10	< 10	37	< 5	114		
JB7S 1255-	201 2		1	0.04	14	1810	8	10	< 10	210	0.07	< 10	< 10	36	< 5	113		
JB7S 1256	201 2		< 1	0.07	16	1200	2	5	< 10	250	0.12	< 10	< 10	46	< 5	100		
JB7S 1257	201 2 201 2		< 1	0.05 0.02	15	480 990	< 2	< 5 < 5	< 10 < 10	143 38	0.10 0.06	< 10 < 10	< 10 < 10	36 21	< 5 < 5	71 84		
JB7S 1258	201 2	<u> </u>	<u> </u>	0.02		990	~ 4	<u> </u>	<u> </u>	30	0.00	< 10	<u> </u>	<u> </u>	<u> </u>	04		
JB7S 1259	201 2		< 1	0.05	14	660	< 2	5	< 10	237	0.09	< 10	< 10	29	< 5	106		
JB7S 1260	201 2		< 1 < 1	0.04 0.04	13 23	630 1000	6 6	< 5 5	< 10 < 10	90 108	0.10 0.09	10 10	< 10 < 10	29 31	< 5 < 5	95		
JB7S 1261 JB7S 1262	201 2		$\langle 1 \rangle$	0.04	10	1120	8	< 5	< 10	69	0.10	< 10	< 10	31	< 5	123 82		
JB7S 1263	201 2		< 1	0.03	8	1050	4	< 5	< 10	51	0.07	< 10	< 10	25	25	105		
		_							< 10				4.10					
JB7S 1264	201 2 201 2		< 1	0.04 0.04	14 8	1280 470	< 2 4	5 < 5	< 10 < 10	113 192	0.10 0.10	10 < 10	< 10 < 10	32 30	< 5 < 5	143 86		
JB7S 1266	201 2		< i	0.03	13	1640	4	$\vec{< s}$	< 10	95	0.06	< 10	< 10	21	$\vec{<}$	160		
JB7S 1267		38	< 1	0.02	7	990	8	< 5	< 10	64	0.06	< 10	< 10	20	< 5	102		
JB7S 1268-	201 2	38	< 1	0.09	18	510	10	5	< 10	255	0.15	10	< 10	50	< 5	92		
JB7S 1269	201 2	:38	< 1	0.05	10	1130	16	< 5	< 10	85	0.08	< 10	< 10	39	< 5	89		
JB7S 1270	201 2	238	1	0.03	9	1070	14	< 5	< 10	91	0.07	< 10	< 10	32	< 5	69		
JB7S 1271	201 2		< 1	0.04	6	1330	2	< 5	< 10	63	0.06	10	< 10	27	< 5	64		
JB7S 1272	201 2		< 1	0.03	13	2120	6	10	< 10	106	0.06	< 10	< 10	30	< 5	121		
JB7S 1273	201 2	238	4	0.02	9	2930	4	< \$	< 10	74	0.02	< 10	< 10	18	< 5	277		
JB7S 1274	201 2	238	1	0.02	8	1970	< 2	5	10	63	0.03	< 10	< 10	21	< 5	93		
JB7S 1275	201 2		1	0.03	11	2190	8	5	< 10	79	0.04	< 10	< 10	22	< 5	132		
JB7S 1276	201 2	- 1	< 1	0.04	9	1940	14	5	< 10	56	0.06	10	< 10	27	< 5	107		
T275-475	201		< 1	0.03	12	1 590	10	< 5	< 10	72	0.07	< 10	< 10	33	< 5	92		
T275-476-	201 2		< 1	0.03 0.02	11 6	1350 910	4	< 5 < 5	< 10 < 10	76 69	0.07 0.04	< 10 < 10	< 10 < 10	30 20	< 5 < 5	79 107		
T275-478	201			0.02	7	1870	12	< 5	< 10	82	0.04	< 10	< 10	23	< 5	63		
T275-479-	201		< i	0.03	s	370	< 2	< 5	< 10	60	0.06	< 10	< 10	20	< 5	45		
T275-480-	201	2 18	$\overline{<1}$	0.05	14	1070	10	< 5	< 10	184	0.10	< 10	< 10	45	< 5	103		• • • • • • • • • • • • • • • • • • • •
T275-481	201		< 1	0.03	10	1270	< 2	< 5	< 10	99	0.05	< 10	< 10	23	< 5	133		
T27S-482	201		< 1	0.02	14	590	4	< 5	< 10	195	0.04	< 10	< 10	16	< 5	139		
T275-483	201		< 1	0.17	25	1030	4	< 5	< 10	814	0.11	< 10	< 10	33	< 5	98		
T275-484	201	238	_ < 1	0.10	23	920	2	< 5	< 10	632	0.09	< 10	< 10	25	< 5	123		
T275-485	201	238	< 1	0.03	18	1530	10	< 5	< 10	145	0.09	< 10	< 10	35	< 5	247		
T275-486/	201	238	< 1	0.04	16	1070	4	< 5	< 10	193	0.06	< 10	< 10	28	< 5	103		

To: C"TVRON CANADA RESOURCES LTD. IERALS STAFF 1 y00 - 1055 W. HASTINGS ST. VANCOUVER, B.C. V6E 2E9 Project: M579 Comments: ATTN: S. MCALLISTER

ads

Analytical Chemists * Geochemists * Registered Assayers

PHONE (604) 984-0221

212 BROOKSBANK AVE , NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1

والجفة سيميد بالالا الكاس بيوتيقون المحامية ساسيا الأريلان

.

an an an an tha tha tha an tha an tha tha tha tha tha tha tha **tha an tha an tha an tha tha tha tha tha a**n tha t

Page No. : 2 4 Tot. Pages: : 20-SEP-87 Date Invoice # : 1-8721865 P.O. # :27049

	SAMPLE DESCRIPTION	PREP CODE	Au ppb F AIA A	A1 %	Ag ppm	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Ma ppm
	JB7S 1214 JB7S 1215 JB7S 1216 JB7S 1216 JB7S 1217 JB7S 1218	201 238 201 238 201 238 201 238 201 238 201 238	< 5	1.86 1.97 1.41 1.53 2.19	< 0.2 0.2 < 0.2 < 0.2 < 0.2 0.2	\$ \$ < \$ < \$ < \$	1 50 1 10 1 90 1 20 1 50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.72 0.44 0.37 0.32 0.65	< 0.5 < 0.5 0.5 < 0.5 0.5	7 8 7 6 10	16 12 11 9 18	28 17 9 8 26	1.89 1.58 1.48 1.47 2.06	< 10 < 10 < 10 < 10 < 10	1 <1 <1 1 <1	0.21 0.11 0.12 0.10 0.20	< 10 < 10 < 10 < 10 < 10 < 10	0.34 0.27 0.17 0.17 0.37	298 290 568 323 406 577
0	JB7S 1219 JB7S 1220 JB7S 1221 JB7S 1222 JB7S 1222 JB7S 1223	201 238 201 238 201 238 201 238 201 238 201 238	< 5 < 5 < 5	2.05 2.20 1.58 1.94 1.95	< 0.2 < 0.2 0.2 < 0.2 < 0.2 < 0.2	5 5 10 < 5 5	170 170 100 120 120	< 0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.52 0.42 1.58 0.52 0.51	< 0.5 0.5 1.0 < 0.5 < 0.5	8 8 7 9 7	13 14 11 14 13	16 18 52 16 18	1.70 1.69 1.50 1.79 1.83	< 10 < 10 < 10 < 10 < 10	1 <1 <1 <1	0.11 0.10 0.09 0.12 0.12	< 10 < 10 < 10 < 10 < 10	0.25 0.24 0.21 0.31 0.32	577 469 509 344 282
	JB7S 1230 JB7S 1231- JB7S 1232- JB7S 1233-	201 233 201 233 201 233 201 233 201 233	8 < 5 8 < 5	1.92 2.39 1.56 1.57	< 0.2 < 0.2	< 5 10 5 < 5	160 150 170 130	0.5 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.41 0.45 0.60 0.31	< 0.5 < 0.5 0.5 < 0.5	8 8 8 7	17 16 12 11	12 12 13 10	1.74 1.95 1.64 1.42	< 10 < 10 < 10 < 10	<1 <1 <1 <1	0.18 0.19 0.14 0.08	< 10 < 10 < 10 < 10	0.29 0.31 0.19 0.17	431 348 540 278 664
	JB7S 1234 JB7S 1235 JB7S 1236 JB7S 1236 JB7S 1237 JB7S 1238	201 23 201 23 201 23 201 23 201 23 201 23	8 < 5 8 < 5 8 < 5	1.90 1.95 1.74	0 < 0.2 0 < 0.2 0 < 0.2 0 < 0.2	< 5 < 5 < 5 10 10	160 220 180 130 120	0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.44 0.56 0.56 0.38 0.41	0.5 0.5 < 0.5 < 0.5 < 0.5	7 8 9 7 7	13 12 12 11 11	12 15 15 12 14	1.65 1.65 1.80 1.66 1.53	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1	0.10 0.15 0.12 0.08 0.10	< 10 < 10 < 10 < 10 < 10	0.24 0.24 0.21 0.23	980 462 434 404
C	JB7S 1239 JB7S 1240 JB7S 1241 JB7S 1241 JB7S 1242 JB7S 1243	201 23 201 23 201 23 201 23 201 23 201 23	8 < 5 8 < 5 8 < 5	1.62 2.20 1.5	$\begin{array}{rrrr} 2 & < 0.2 \\ 0 & < 0.2 \\ 5 & < 0.2 \\ \end{array}$	10 < 5 20 5 20	180 120 180 120 130	0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.42 0.32 0.52 0.40 0.36	< 0.5 < 0.5 < 0.5	6 5 8 6 7		12 9 15 12 14	1.53 1.43 1.89 1.61 1.69	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.17 0.09 0.17 0.10 0.07	10 10 20 10 10	0.20 0.14 0.28 0.20 0.19	432 429 398 309 251
	JB7S 1244 JB7S 1245 JB7S 1245 JB7S 1246 JB7S 1247 JB7S 1248	201 23 201 23 201 23 201 23 201 23 201 23	38 < 38 < 38 < 38 < 38 < 38 < 38 < 38 <	5 2.5 5 1.5 5 1.6	8 < 0.2 7 0.2 8 < 0.2	5 50 10 < 5 25	1 10 1 20 1 20 2 30 2 50) 1.0) 0.5) 0.5	< 2 < 2 < 2 < 2 < 2 < 2 2 2	0.36 0.43 0.28 1.06 0.89	<0.5 <0.5 1.0	6 7 5 5 7	15 10 10	7 40	1.60 1.84 1.45 1.37 1.70	< 10 < 10 < 10 < 10 < 10 < 10	<1 <1 <1 <1 <1	0.08 0.07 0.07 0.17 0.16	10 10 10 30 20	0.18 0.21 0.12 0.21 0.21	231 360 608 773 871
	JB7S 1249 JB7S 1250 JB7S 1251 JB7S 1251 JB7S 1252 JB7S 1253		38 < 38 < 38 <	5 1.8 5 1.5 5 2.4	$\begin{array}{ccc} 4 & 0.2 \\ 0.1 & < 0.2 \\ 0.1 & < 0.2 \\ 0.2 \end{array}$	10 15 20 15 < 5	440 250 230 280 240	0.5 0.5 0.5 0.1.0	< 2 < 2	1.20 0.84 1.19) 1.0 4 1.0 9 1.0	7 4 7	7 13 1 9 7 14	43 48 44	1.01 1.69 1.31 1.75 1.44	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.14 0.22 0.14 0.25 0.19	20 30 20 30 30	0.14 0.26 0.17 0.26 0.21	75 71

C

Analytical Chemists * Geochemists * Registered Assayers

a la companya da la característica de la companya d

212 BROOKSBANK AVE, NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221 To: VRON CANADA RESOURCES LTD. N...JERALS STAFF 1900 - 1055 W. HASTINGS ST. VANCOUVER, B.C. V6E 2E9 Project : M579 Comments: ATTN: S. MCALLISTER Page No. : Tot. Pages: 5 Date : 20-SEP-87 Invoice # : I-8721865 P.O. # : 27049

.

	·					· · · · · · · · · · · · · · · · · · ·							<u> </u>			
SAMPLE	PREP	Мо	Na	Ni	P	РЪ	Sb	Se	Sr	Ti	TI	U	v	w	Za	
DESCRIPTION	CODE	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppn	ppm	ppm	ppm	ppm	
JB7S 1214	201 238	< 1	0.05	12	\$ 50	< 2	< 5	< 10	103	0.12	< 10	< 10	50	< 5	48	
JB7S 1215- JB7S 1216	201 238 201 238	< 1 < 1	0.05 0.04	18 14	1050 1370	< 2	< 5 < 5	< 10 < 10	46 43	0.09 0.09	< 10 < 10	< 10 < 10	37 35	< 5 < 5	102 101	
JB7S 1217~	201 238	< 1	0.04	15	1450	2	< 5	< 10	35	0.09	< 10	< 10	36	< 5	82	
JB7S 1218	201 238	< 1	0.05	14	7 50	8	< 5	< 10	92	0.13	< 10	< 10	52	< 5	76	
JB7S 1219	201 238	<1	0.05	13	1180	2 4	< 5	< 10 < 10	67 60	0.10 0.11	< 10 < 10	< 10 < 10	40 36	< 5	102	
JB7S 1220 JB7S 1221	201 238 201 238	<:	0.06 0.07	15 12	1220 300	4	< 5 < 5	< 10	98	0.09	< 10	< 10	33	< 5 < 5	104 84	
JB7S 1222-	201 238	< 1	0.04 0.04	15 12	920 790	< 2	< 5 < 5	10 < 10	42 41	0.12 0.12	< 10 < 10	< 10 < 10	44 45	< 5 < 5	52 46	
JB7S 1223-	201 238	< 1	0.04	12	790	*	< 3	< 10	41	0.12	< 10	< 10	43	<u> </u>	40	
JB7S 1230	201 238	<1	0.05	15	940	2	< 5	10	59	0.11	< 10	< 10	39	< 5	99	
JB7S 1231 JB7S 1232	201 238 201 238	< 1 < 1	0.04	16 18	720 1620	< 2	< 5 < 5	< 10 < 10	72 100	0.12 0.08	< 10 < 10	< 10 < 10	42 34	< 5 < 5	128 129	
JB7S 1233	201 238	< 1	0.04	17	1150	2	< 5	< 10	49	0.08	< 10	< 10	30	< 5	101	
JB7S 1234	201 238	< 1	0.05	19	1340	10	< 5	< 10	65	0.09	< 10	< 10	35	< 5	127	
JB7S 1235	201 238	< 1	0.05	18	940	2	< 5	< 10	60	0.11 0.09	< 10 < 10	< 10 < 10	37 39	< 5 < 5	112 83	·
JB7S 1236 JB7S 1237	201 238 201 238	< 1 < 1	0.05 0.05	15 13	1800 1390	< 2 2	< 5 < 5	< 10 < 10	55 43	0.10	< 10	< 10	39	< 5	83 87	
JB7S 1238	201 238	< 1	0.05	16	1800	< 2	< 5	< 10	56	0.08	< 10	< 10	34	< 5	101	
JB7S 1239- IB7S 1240	201 238	< 1	0.05	17	1 500	4	5	< 10	56	0.09	< 10	< 10	33	< 5	96	· · · · · · · · · · · · · · · · · · ·
JB7S 1240 JB7S 1241	201 238 201 238	< 1	0.05 0.06	13 14	1780 1290	4	5 5	< 10 < 10	53 48	0.08	< 10 < 10	< 10 < 10	29 42	< 5 < 5	75 76	
JB7S 1242	201 238	< 1	0.04	12	1020	2	< 5	< 10	41	0.11	< 10	< 10	40	< 5	75	
JB7S 1243	201 238	< 1	0.05	15	890		< 5	< 10	35	0.12	< 10	< 10	36	< 5	87	
JB7S 1244 JB7S 1245	201 238 201 238	< 1 < 1	0.05 0.06	9 15	950 280	2 10	< 5 5	< 10 < 10	31 46	0.11 0.13	< 10 < 10	< 10 < 10	40 42	< 5 < 5	54 50	
JB7S 1246-	201 238	< 1	0.03	5	1880	6	< 5	< 10	27	0.09	10	< 10	32	< 5	66	
JB7S 1247 JB7S 1248	201 238 201 238	<1	0.04 0.03	14 13	1 580 1 760	8 12	\$ < 5	< 10	105 97	0.06 0.08	10 10	< 10 < 10	25 34	< 5 < 5	146 154	
JB7S 1249 JB7S 1250	201 238 201 238	1 < 1	0.02 0.04	7 9	3510 1440	< 2	< 5 < 5	10 10	108 147	0.03 0.08	< 10 < 10	< 10 < 10	15 36	< 5 < 5	208 124	
JB7S 1251	201 238	< 1	0.03	9	1650	< 2	< 5	10	105	0.04	< 10	< 10	27	< 5	107	
JB7S 1252 JB7S 1253	201 238 201 238	1	0.04 0.04	11 10	2 3 9 0 1 9 5 0	12	5 5	< 10 < 10	178 164	0.07 0.06	< 10 < 10	< 10 < 10	33 29	< 5 < 5	102 115	
L		h				·										

CERTIFICATION :

, NA<u>MBERS</u> A DE BERER BERER EN BERER AND BERER BERER

C. 3

Chemex Labs Ltd.

212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221 To: C'EVRON CANADA RESOURCES LTD. IERALS STAFF 1900 - 1055 W. HASTINGS ST. VANCOUVER, B.C. V6E 2E9 Project : M579 Comments: ATTN: S. MCALLISTER

								L				- <u></u>	<u> </u>							
SAMPLE DESCRIPTION	PREP CODE	Au ppb FAtaa	A1 %	Ag ppm	As ppm	Ba ppm	Be ppm	Bi ppn	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fc %	Ga ppm	Hg ppm	K %	La ppm	Mg 9b	Ma ppm
JB7S-1374/ JB7S-1375/ JB7S-1376/ JB7S-1376/ JB7S-1377/ JB7S-1378/	201 238 201 238 201 238 201 238 201 238 201 238	< 5 < 5	1.40 1.71 2.45 1.90 2.74	< 0.2 < 0.2 0.2 0.4 0.2	5 10 < 5 15 < 5	240 250 180 220 240	0.5 0.5 1.0 1.0 1.0	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1.30 1.32 1.92 1.59 1.15	1.0 1.0 1.0 0.5 0.5	7 7 12 9 11	9 13 17 17 20	44 50 54 55 37	1.31 1.64 2.48 2.20 2.46	< 10 < 10 < 10 < 10 < 10 < 10	< 1 2 2 < 1 1	0.23 0.27 0.32 0.35 0.37	< 10 < 10 < 10 < 10 < 10 10	0.23 0.27 0.38 0.40 0.36	740 789 489 458 622
JB7S-1379 JB7S-1380 JB7S-1381 JB7S-1381 JB7S-1382 JB7S-1383	201 238 201 238 201 238 201 238 201 238 201 238	< 5 < 5 < 5	2.06 2.53 2.26 1.88 2.50	< 0.2 0.4 0.4 < 0.2 < 0.2	5 15 30 15 25	250 250 280 210 300	0.5 0.5 0.5 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1.16 1.49 1.50 1.14 0.81	1.0 0.5 0.5 1.0 0.5	7 11 11 8 10	16 25 18 13 18	40 63 44 39 27	1.85 2.63 2.27 1.71 2.20	< 10 < 10 < 10 < 10 < 10 < 10	2 2 1 1 1	0.42 0.34 0.35 0.19 0.30	< 10 < 10 < 10 < 10 10	0.32 0.58 0.35 0.27 0.37	682 518 641 738 894
JB7S-1389 JB7S-1390- JB7S-1391- JB7S-1392- JB7S-1392/ JB7S-1393-	201 233 201 233 201 233 201 233 201 233 201 233	s < s s < s s < s	2.69 2.57 2.15 1.74 2.11	0.2 0.2 < 0.2 < 0.2 < 0.2 < 0.2	30 10 10 < 5 5	160 120 240 200 120	0.5 0.5 0.5 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.99 0.71 0.66 0.28 0.34	0.5 0.5 0.5 < 0.5 0.5	16 11 13 6 8	17 13 14 13 13	91 86 38 10 13	2.57 1.97 2.09 1.67 1.71	< 10 < 10 < 10 < 10 < 10 < 10	2 < 1 < 1 < 1 < 1	0.23 0.11 0.17 0.10 0.11	< 10 10 < 10 10 10	0.54 0.26 0.37 0.17 0.22	604 774 1040 635 397
JB7S-1394/ JB7S-1395/ JB7S-1396/ JB7S-1397/ JB7S-1397/ JB7S-1398/	201 23 201 23 201 23 201 23 201 23 201 23	8 < 5 8 < 5 8 < 5	1.81 1.90 1.86 1.98 2.38	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 5 10 < 5 < 5 5	140 120 130 90 130	0.5 0.5 0.5 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.29 0.24 0.30 0.70 0.29	0.5 <0.5 <0.5 1.0 <0.5	7 6 7 6	11 11 11 19 13	12 13 11 23 15	1.69 1.62 1.52 1.95 1.74	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.07 0.05 0.09 0.06 0.08	10 10 10 20 10	0.20 0.14 0.16 0.22 0.22	692 657 508 605 340
JB7S-1399 JB7S-1400 JB7S-1401 JB7S-1401 JB7S-1402 JB7S-1403	201 23 201 23 201 23 201 23 201 23 201 23	8 < 5 8 < 5 8 < 5	2.41 1.67 2.59 1.44 2.53	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	10 < 5 5 5 5	140 100 140 170 110	0.5 0.5 0.5 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.29 0.49 0.38 0.37 0.24	< 0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 7 8 5 7	13 19 16 11 11	16 23 20 13 18	1.79 2.04 1.81 1.59 1.89	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.08 0.09 0.08 0.07 0.07	10 20 10 10 10	0.23 0.31 0.24 0.16 0.18	379 197 267 821 314
JB7S-1404 ' JB7S-1405 ' JB7S-1406 ' JB7S-1406 ' JB7S-1407 ' JB7S-1408 '	201 23 201 23 201 23 201 23 201 23 201 23	8 < 5 8 < 5 8 < 5	3.54 3.97 4.59 2.27 2.25		5 < 5 30 5 10	130 170 170 80 50	1.0 1.0 1.0 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.73 1.15 0.86 0.37 0.27	< 0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	8 11 10 8 8	23 26 23 13 11	76 98 87 20 15	2.90 3.42 3.81 1.86 2.02	< 10 < 10 < 10 < 10 < 10 < 10	<1 <1 <1 <1 <1	0.08 0.15 0.09 0.05 0.09	30 40 30 10 10	0.34 0.50 0.36 0.18 0.19	544 513 657 267 133
JB7S-1409 F T27S-0945 T27S-0946 T27S-0946 T27S-0947- T27S-0948	201 23 201 23 201 23 201 23 201 23 201 23	8 < 5	2.51 1.56 1.91 1.77 2.09	< 0.2 < 0.2 < 0.2	< 5 25 5 5 20	160 ¹ 110 150 130 150	0.5 < 0.5 0.5 0.5 0.5	< 2 2 < 2 < 2 < 2 < 2 < 2	0.49 1.84 1.50 0.71 0.63	< 0.5 < 0.5 0.5 < 0.5 < 0.5	8 6 7 7 8	20 15 17 15 15	19 101 58 32 31	2.08 1.52 1.95 1.82 2.03	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.13 0.09 0.13 0.06 0.10	20 40 40 20 20	0.30 0.29 0.32 0.25 0.32	423 468 550 294 278

in an the structure wave at the low waveful and waveful in the state of the state of the state of the state of

÷

Chemex Labs Ltd.

212 BROOKSBANK AVE., NORTH VANCOUVER. BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221 To: CVVVRON CANADA RESOURCES LTD. I ERALS STAFF 1900 - 1055 W. HASTINGS ST. VANCOUVER, B.C. V6E 2E9 Project: M579 Comments: ATTN: S. MCALLISTER

Page No. : 2-" Tot. Pages: 4 Date : 21-SEP-87 Invoice # : I-8721866 P.O. # : 27049

SAMPLE DESCRIPTION	PREP CODE	Mo ppm	Na %	Ni ppm	ppm 9	Pb ppm	Sb ppm	Se ppm	Sr ppm	Ti %	Ti ppm	U ppm	V ppm	w	Zn ppm	
JB7S-1374 JB7S-1375 JB7S-1376 JB7S-1376	201 238 201 238 201 238 201 238 201 238	< 1 < 1 < 1 < 1	0.03 0.04 0.08 0.06	8 14 29 26	1 5 30 1 390 1 000 1 500	2 2 6 4	< 5 < 5 < 5 < 5	< 10 < 10 < 10 < 10	155 217 490 386	0.05 0.07 0.12 0.08	< 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	28 32 41 40	<	115 126 84 119	
JB7S-1378	201 238	< 1	0.07	20	1140	8	< 5	10	344	0.11	< 10	< 10	45	< 5	108	
JB7S-1379 JB7S-1380 JB7S-1381 JB7S-1382 JB7S-1383	201 238 201 238 201 238 201 238 201 238 201 238 201 238	< 1 < 1 < 1 < 1 < 1	0.04 0.09 0.08 0.04 0.03	13 23 20 17 15	1490 800 1220 1290 1210	6 2 2 4 6	< 5 < 5 < 5 < 5	< 10 10 < 10 < 10 < 10	216 447 382 205 171	0.08 0.13 0.09 0.07 0.11	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	35 64 42 33 44	<	1 10 88 103 94 148	
				• ••• •••••												
JB7S-1389	201 238	<1	0.05	17	1670 1040	6	< 5 < 5	< 10 < 10	95 48	0.11	< 10 < 10	< 10 < 10	64 38	< 5	88 82	
JB7S-1390 JB7S-1391 JB7S-1392 JB7S-1393	201 238 201 238 201 238 201 238 201 238	< 1 < 1 < 1 < 1	0.03 0.03 0.03 0.04	13 9 11	1670 1990 1650	4 2 4 4	< 5 < 5 5	< 10 < 10 < 10 < 10	72 32 36	0.10 0.07 0.10 0.10	< 10 < 10 10 < 10	< 10 < 10 < 10 < 10	47 37 38	< s < s < s	114 97 91	
JB7S-1394 JB7S-1395 JB7S-1396	201 238 201 238 201 238 201 238		0.03 0.03 0.04	10 14 14	1150 1730 1550	6 10 < 2	< 5 < 5 < 5	< 10 < 10 < 10	36 24 28	0.10 0.09 0.09	< 10 < 10 < 10	< 10 < 10 < 10	42 32 33	< 5 < 5 < 5	111 127 90	· · · · · · · · · · · · · · · · · · ·
JB7S-1397 JB7S-1398	201 238 201 238	< 1 < 1	0.04 0.04	12 13	290 1290	12 6	< \$ < \$	< 10 < 10	50 31	0.13 0.11	< 10 < 10	< 10 < 10	42 36	< 5 < 5	74 92	
JB7S-1399 JB7S-1400 JB7S-1401 JB7S-1401 JB7S-1402 JB7S-1403	201 238 201 238 201 238 201 238 201 238 201 238	< 1 < 1 < 1 < 1 < 1	0.04 0.03 0.05 0.03 0.05	13 9 17 9 8	1 3 10 480 1 3 50 1 7 30 2 3 40	< 2 10 14 < 2 8	<	< 10 < 10 < 10 < 10 < 10	31 60 34 27 23	0.11 0.14 0.12 0.09 0.10	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	37 57 38 37 42	<	94 47 79 88 73	•
JB7S-1404 JB7S-1405 JB7S-1406 JB7S-1406 JB7S-1407	201 238 201 238 201 238 201 238 201 238	<1 <1 <1 <1	0.03 0.03 0.05 0.05 0.04	16 15 22 8 6	310 590 460 370 930	8 6 14 2 < 2	< 5 < 5 < 5 < 5 < 5	10 10 10 < 10 < 10	63 102 73 32 22	0.11 0.10 0.12 0.12 0.12	10 20 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	64 67 69 42 51	< s < s < s < s	74 68 51 40 41	
JB7S-1409 JB7S-1409 T27S-0945- T27S-0946-	201 238 201 238 201 238 201 238	<1 <1 <1 <1	0.04 0.06 0.06	10 9 11	530 830 790	4 6 2	< 5 < 5 < 5	< 10 < 10 < 10	59 99 93	0.15 0.08 0.09	10 < 10 10	< 10 < 10 < 10	54 38 52	< 5 < 5 < 5	· 57 46 67	
T275-0947 T275-0948	201 238 201 238	< 1 < 1	0.04 0.04	8 11	1030 1460	2 6	< 5 < 5	< 10 < 10	67 58	0.10 0.11	< 10 10	< 10 < 10	47	< 5 < 5	62 59	

en her her de senselet per selecter de Maria et de Maria de platiker verser del 18 Maria et de ser en er er er الأربعان المكتبي

er

a série a

•

abs Analytical Chemists * Geochemists * Registered Assayers V6E 2E9 212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 Project : M579 PHONE (604) 984-0221

To : C''EVRON CANADA RESOURCES LTD. IERALS STAFF 1 700 - 1055 W. HASTINGS ST. VANCOUVER, B.C. Comments: ATTN: S. MCALLISTER

Page No. : 7 * Tot. Pages: : 21-SEP-87 Date Invoice # : I-8721866 P.O. # :27049

										L						an - 11 -	·····				-	
	SAMPLE DESCRIPTION	PREP CODE	Au p FAI	-	A1 %	Ag ppm	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppn	Cr ppm	Cu ppm	Fc %	Ga ppm	Hş ppm	K %	La ppm	Mg Fo	Ma ppm
	T275-0949 T275-0950 T275-0951 T275-0951 T275-0952	201 238 201 238 201 238 201 238 201 238	s <	5 5 5 5 5	1.67 1.64 0.85 2.24 2.17	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 5 15 < 5 25 < 5	110 150 60 100 160	0.5 0.5 < 0.5 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.47 1.53 2.43 0.76 0.71	< 0.5 0.5 < 0.5 < 0.5 < 0.5 0.5	8 7 3 7 7	12 16 11 17 17	26 67 41 22 24	1.81 1.69 0.82 2.08 2.07	< 10 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.09 0.10 0.05 0.15 0.29	10 40 50 20 20	0.28 0.27 0.20 0.26 0.31	341 700 207 263 318
/	T275-0953 T275-0954 T275-0955 T275-0956 T275-0957 T275-0958	201 233 201 233 201 233 201 233 201 233 201 233 201 233	8 < 8 < 8	<pre></pre>	1.61 1.44 2.71 1.75 2.39	0.2 0.2 0.2 0.4 0.2 0.4	5 15 15 25 < 5	150 170 170 170 80 190	1.0 0.5 1.0 1.0 1.0	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 2	4.44 0.89 1.56 8.90 1.18	0.5 0.5 0.5 < 0.5 0.5	6 7 11 8 9	14 13 23 11 15	42 37 60 85 54	1.78 1.73 3.05 2.14 2.38	< 10 < 10 10 30 10	<1 <1 <1 <1 <1	0.32 0.21 0.31 0.16 0.25	70 20 50 100 40	0.27 0.19 0.49 0.19 0.26	572 1060 536 454 793
	T27S-0959 T27S-0960 T27S-0961	201 23 201 23 201 23 201 23	8 <	5 < 5 < 5	2.04 2.01 2.04	0.4 0.4 0.2	10 15 15	290 200 170	1.0 1.0 1.0	< 2 < 2 < 2 < 2	1.17 1.77 1.46	0.5 0.5 0.5	11 8 8	17 13 16	54 45 38	2.33 2.08 2.36	< 10 10 10	<1 <1 <1	0.32 0.23 0.28	40 50 40	0.40 0.31 0.36	566 504 477
1	T27S-0965/ T27S-0966/ T27S-0967/ T27S-0967/ T27S-0968/	201 23 201 23 201 23 201 23 201 23	8 <	< 5 < 5 < 5 < 5	1.90 1.78 1.59 1.36	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	<	120 170 200 260	0.5 0.5 0.5 0.5	< 2 < 2 < 2 < 2 < 2	0.44 0.54 0.83 1.28	< 0.5 < 0.5 0.5 1.5	7 5 5 6	11 10 11 8	16 11 39 54	1.75 1.45 1.49 1.06	< 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1	0.09 0.08 0.22 0.13	10 10 20 30	0.24 0.16 0.24 0.17	206 335 567 907
	T27S-0969 T27S-0970 T27S-0971 T27S-0971 T27S-0972 T27S-0973	201 23 201 23 201 23 201 23 201 23 201 23	8 < 8 <	< 5 < 5 < 5 < 5 < 5	1.47 1.92 1.95 2.65 1.94	< 0.2 < 0.2 < 0.2 0.2 < 0.2 < 0.2	35 40 40 60 < 5	100 120 120 150 180	0.5 0.5 0.5 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.97 0.70 0.69 0.86 0.63	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 2.5	5 8 8 12 7	11 13 14 23 8	98 62 57 95 31	1.23 1.76 1.83 3.32 1.60	< 10 < 10 < 10 < 10 < 10 < 10	<1 <1 <1 <1 <1	0.07 0.16 0.17 0.26 0.06	30 20 20 30 20	0.16 0.23 0.24 0.53 0.15	945 326 287 345 945
i)	T27S-0974. T27S-0975 T27S-0976 T27S-0976/ T27S-0977/ T27S-0978/	201 23 201 23 201 23 201 23 201 23 201 23	8	< 5 < 5 < 5 < 5 < 5	1.62 3.11 3.20 2.47 2.08	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	< 5 10 < 5 10 < 5	80 130 190 90 150	< 0.5 0.5 1.0 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.39 0.55 0.77 0.42 0.41	0.5 < 0.5 0.5 < 0.5 < 0.5	10 15 19 11 7	16 20 20 17 17	32 48 69 26 13	1.97 2.66 2.89 2.25 1.89	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.07 0.18 0.19 0.10 0.11	10 20 20 10 10	0.32 0.49 0.52 0.30 0.23	164 490 780 299 503
	T27S-0979' T27S-0980 T27S-0981' T27S-0982' T27S-0983'	201 23 201 23 201 23 201 23 201 23 201 23	8	< 5 < 5 < 5 5 10	1.72 1.34 1.73 2.02 2.30	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	10 20 < 5 15 25	210 220 180 180 170	0.5 < 0.5 0.5 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.50 0.86 0.93 0.86 0.25	0.5 0.5 0.5 1.0 < 0.5	5 6 6 5	11 8 12 11 10	23 34 30 30 11	1.38 1.20 1.44 1.44 1.47	< 10 < 10 < 10 < 10 < 10 < 10	<1 <1 <1 <1 <1 <1	0.10 0.09 0.17 0.13 0.07	10 20 20 20 10	0.18 0.17 0.21 0.21 0.16	974 659 683 644 522
	T27S-0984 T27S-0985 T27S-0986 T27S-0987 T27S-0987 T27S-0988	201 2 201 2 201 2 201 2 201 2 201 2	38 38 38	\$ < 5 15 < 5 < 5	2.04 2.18 1.90 2.12 2.25	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 5 < 5 20 < 5 < 5	120 90 170 150 150	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.36 0.40 0.60 0.52 0.61	0.5 < 0.5 < 0.5	8 7 9 8 9	13 12 12 13 15	10 12 17 20 30	1.70 1.66 2.05 1.78 2.00	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 2 1	0.09 0.07 0.11 0.09 0.14	10 10 20 10 20	0.19 0.19 0.29 0.25 0.33	549 429 972 389 349

C Chemex Labs Ltd Analytical Chemists • Geochemists • Registered Assayers

212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2CI PHONE (604) 984-0221 To: CHEVRON CANADA RESOURCES LTD. VERALS STAFF JO - 1055 W. HASTINGS ST. VANCOUVER, B.C. V6E 2E9 Project : M579 Comments: ATTN: S. MCALLISTER

المراجع والمتعاد والمتعاد والمتعالي والمتعاد والمتعادية والمتعادية والمتعادية والمتعادية والمتعادية والمتعادية

CERTIFICATION :

Page No. : 3-B Tot. Pages: Date : \$EP-87 Invoice # : I-8721866 P.O. # : 27049

	SAMPLE	PR	EP	Мо	Na	Ni	Р	Ръ	Sb	Se	Sr	Ti	TI	υ	v	w	Za			
	DESCRIPTION	∞	DE	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm			
			238	< 1	0.05		1640	10	5	< 10	36	0.10	< 10	< 10	47	< 5	64	<u></u>		
	T27S-0949 T27S-0950		238	< 1	0.05	7	600	< 2	5	< 10	121	0.10	10	< 10	46	$\langle s \rangle$	77			
	T275-0951		238	< 1	0.03	4	730	10	5	10	109	0.04	< 10	< 10	27	< 5	23			
	T27S-0952	1	238	< 1	0.05	11	280	4	< 5	< 10	154	0.14	< 10	< 10	39	< 5	55			
	T27S-0953	201	238	< 1	0.05	11	310	6	5	< 10	119	0.14	< 10	< 10	46	< 5	51			
~	T275-0954	201	238	< 1	0.10	23	900	6	5	< 10	802	0.08	< 10	< 10	25	< 5	80			
r .	T275-0955		238	1	0.05	19	520	2	< 5	< 10	201	0.07	< 10	< 10	22	< 5	122			
•	T275-0956	201	-	< 1	0.11	31	450	12	< 5	< 10	439	0.16	10	< 10	55	< 5	91			
	T27S-0957	201		< 1	0.12	38	1230	6	5	< 10	601	0.07	< 10	< 10	23 35	< 5	74			
	T275-0958	201	238	< 1	0.09	27	1110	< 2	5	< 10	305	0.10	10	< 10	33	< 5	112			
	T27S-0959		238	< 1	0.05	34	1060	16	< 5	10	253	0.08	10	< 10	32	< 5	119			
	T275-0960-		238	< 1	0.07	23	860	6	< 5	< 10	750	0.08	10	< 10	31	< 5	77			
	T27S-0961	201	238	< 1	0.07	21	6 50	12	< 5	< 10	437	0.11	10	< 10	42	< 5	84		_	
1																				
	1275-0965	1201	238	< 1	0.05	8	1160	2	< 5	< 10	39	0.10	< 10	< 10	39	< 5	58			
	T27S-0966		238	< 1	0.03	3	1640	10	Ś	< 10	42	0.07	10	< 10	30	< 5	60			
	1275-0967		1 238	< 1	0.04	8	920	2	< 5	< 10	81	0.07	< 10	< 10	36	< 5	51			
	T275-0968	20	1 238	< 1	0.03	11	2180	10	5	10	103	0.04	< 10	< 10	19	< 5	115			
	T275-0969-	120	1 238	<1	0.03	11	1740	< 2	5	< 10	54	0.05	< 10	< 10	31	< 5	95			
	T27S-0970		1 238	<1	0.05	16	1170	< 2	< 5	< 10	41	0.08	< 10	< 10	36	< 5	86			
	T27S-0971		1 238	< 1	0.05	18	1060	2	< 5	< 10	41	0.08	< 10	< 10	38	< 5	86			
	T275-0972		1 238	< 1	0.05	17	5 50	< 2	< 5	10	77	0.15	< 10	< 10	88	< 5	48			
	T27S-0973	20	1 238	< 1	0.03	6	4310	8	< 5	< 10	64	0.05	< 10	< 10	31	< 5	137			
~	T275-0974	20	1 238	<1	0.03	12	840	6	< 5	< 10	34	0.10	< 10	< 10	45	< 5	71			
	T275-0975		1 238	1	0.03	20	980	10	< 5	< 10	57	0.13	< 10	< 10	57	< 5	75			
مر زیبة	T275-0976		1 238	< 1	0.04	19	1620	12	< 5	< 10	87	0.11	< 10	< 10	67	< 5	74		-	
	T27S-0977		1 238		0.04	20	1 500	6	< 5	< 10	37 45	0.12	< 10 < 10	< 10 < 10	56 46	< \$ < \$	110 64			
	T27S-0978	120	1 238	< 1	0.03	14	1170	4	< 5	< 10	43	0.12	~ 10	<u> </u>						
	T275-0979 b.		1 238	< 1	0.03	9	1870	8	5	< 10	59	0.06	< 10	< 10	28	< 5	90			
	T27S-0980		1 238	< 1	0.03	6	1680	10	< 5	< 10	69	0.05	< 10	< 10	25	< 5	76			
	T27S-0981		1 238		0.03	10	1120	6	< 5	< 10	73	0.07	< 10 < 10	< 10 < 10	29 28	< 5 < 5	101 111			
	T27S-0982 F T27S-0983 *		1 238		0.03	13	1890 2510	2 4	5 < 5	< 10 < 10	67 30	0.06 0.09	< 10 < 10	< 10	28 30	< 5	95			
	1215-0983	120	230		0.03	×	2310	+		~ 10			~ 10							
	T275-0984		1 238	< 1	0.04	13	1330	6	< 5	< 10	40	0.10	< 10	< 10	36	<`5	70			
	T27S-0985		1 238	< 1	0.05	11	1750	< 2	< 5	< 10	31	0.10	< 10	< 10	37	< 5	59			
	T27S-0986		1 238		0.04	8	920	18	< 5	< 10	44	0.14	< 10	< 10	50	< 5	58			
	T27S-0987 T27S-0988		01 238 01 238		0.04 0.05	17	1580 1230	< 2	< 5 < 5	< 10 < 10	73 50	0.10	< 10 < 10	< 10 < 10	38 48	< \$ < \$	76 63			
	11212-0300	140	00 1 4 2 9	1 - 1	0.01	12	1230	~ 4	~ >	~ 10	20	V. 12	~ 10	~ 10	70					

To : CHEVRON CANADA RESOURCES LTD. VERALS STAFF 00 - 1055 W. HASTINGS ST. VANCOUVER, B.C. V6E 2E9 Project : M579 Comments: ATTN: S. MCALLISTER

Page No. : 4-A Tot. Pages: Date :___SEP-87 Invoice #:I-8721866 P.O. # :27049

Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE , NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221

.ads

ex

and the second sec

								L												
SAMPLE DESCRIPTION	PREP CODE	Ац ррб Рана	A1 %	Ag ppm	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	К %	La ppn	Mg %	Ma ppm
T27S-0989-	201 238	< 5	1.47	< 0.2	< 5	120	< 0.5	< 2	0.68	0.5	6	12	12	1.56	< 10	1	0.07	20	0.16	539
T275-0990.	201 238		2.01	< 0.2	10	150	< 0.5	6	0.33	< 0.5	7	10	10	1.61	< 10	1	0.07	10	0.17	729
T27S-0991-	201 238	< 5	1.45	< 0.2	< 5	110	< 0.5	< 2	0.35	0.5	7	10	9	1.57	< 10	1	0.06	10	0.14	575
T27S-0992-	201 238	< 5	1.81	< 0.2	10 5	100	< 0.5	< 2 < 2	0.34	< 0.5	67	12	12 12	1.75	< 10 < 10	< !	0.06	10	0.16	525
T27S-0993	201 238	< 5	1.58	< 0.2	••••••••••••••••••	190	< 0.5	< 2						· · · ·	·		0.09	10	0.17	930
T27S-0994	201 238	< 5	1.46	< 0.2	15	90	< 0.5	< 2	0.37	< 0.5	6	11	12	1.65	< 10	1	0.09	10	0.18	378
T27S-0995	201 238		1.69	< 0.2	10	80	< 0.5	2	0.67	< 0.5	7	15	21	1.83	< 10	< 1	0.09	20	0.25	195
T27S-0996	201 238		1.78	< 0.2	20	170	< 0.5	2	0.68	< 0.5	9	15	25	2.01 1.97	< 10	< 1	0.06	20	0.22	7 58
T27S-0997	201 238 201 238		1.80	0.2 < 0.2	20 15	110 200	< 0.5 < 0.5	< 2	1.92	< 0.5 < 0.5	5	11	48 15	1.54	< 10 < 10	2	0.09 0.18	40 10	0.32 0.19	299 532
T27S-0998																				
T27S-0999	201 238	< 5	3.16	0.2	< 5	640	< 0.5	2	0.87	0.5	19	19	46	6.03	< 10	1	1.70	40	1.71	893
T275-1004	201 238	< 5	1.84	< 0.2	15	110	< 0.5	< 2	0.52	< 0.5	9	14	17	1.89	< 10	2	0.09	< 10	0.25	437
T275-1005	201 238	s < s	1.90	< 0.2	5	100	0.5	< 2	0.39	< 0.5	9	14	20	1.91	< 10	< 1	0.08	< 10	0.28	199
T27S-1006	201 238		1.75	< 0.2	< 5	80	< 0.5	< 2	0.23	< 0.5	7	9	8	1.66	< 10	< 1	0.04	< 10	0.14	318
T27S-1007	201 : 238		1.49	< 0.2	< 5	90	< 0.5	< 2	0.25	< 0.5	7	10	11	1.57	< 10	< 1	0.04	< 10	0.17	153
T27S-1008	201 238	3 < 5	2.31	0.2	10	150	0.5	< 2	1.41	0.5	10	16	62	2.45	< 10	1	0.13	< 10	0.45	649
T27S-1009	201 238		2.06	< 0.2	5	110	0.5	< 2	0.44	< 0.5	10	11	14	1.94	< 10	< 1	0.07	< 10	0.22	396
T275-1010	201 238		2.57	0.4	< 5	50	0.5	< 2	0.19	0.5	7	9	8	1.74	< 10	< 1	0.07	< 10	0.13	113
T27S-1011	201 238		2.05		10	120	0.5	< 2	0.42	< 0.5	9	12	16	2.14	< 10	< !	0.07	< 10	0.26	209
T27S-1012	201 238		2.15	< 0.2 < 0.2	10 < 5	100 100	0.5 < 0.5	< 2 < 2	0.53 0.36	< 0.5 < 0.5	17 8	13 11	56 12	2.80 1.93	< 10 < 10	< 1	0.06 0.08	< 10 < 10	0.33 0.21	362 262
T27S-1013					<u> </u>											`	V. 08		0.21	202
T27S-1014	201 231 201 231		1.73	< 0.2 < 0.2	5 < 5	90 40	0.5 < 0.5	< 2 < 2	0.75	< 0.5 < 0.5	8 4	13 7	19 8	1.89 0.87	< 10 < 10	< 1	0.10 0.04	< 10 < 10	0.32	316 69
T27S-1015	201 23	° - '	1.01								-		_					•		
1275 432	201 231		2.32	0.4	10	180	0.5	< 2 < 2	0.53	< 0.5	777	15	30 20	1.88	< 10 < 10	< 1	0.11 0.11	10 < 10	0.23	406
T27S 433	201 231		1.76		\$ < \$	130 210	0.5 0.5	< 2	0.32	< 0.5	8	15	20	2.07	< 10	< 1	0.08	< 10	0.10	516
T27S 434	201 231	8 10	2.47		· · · · · · · · · · · · · · · · · · ·															
f 75 435	201 23	8 < 5	2.30	0.2	< 5	2 50	Q.5	< 2	0.37	< 0.5	1	15	18	1.91	< 10	_ < 1	0.09	< 10	0.23	668
JB7S 801 - 1	201 23	1		< 0.2	10	160	< 0.5	2	0.40	0.5	8	15	29	2.03	< 10	1	0.08	10	0.28	758
JB7S 802	201 23			< 0.2	10	140	< 0.5	< 2	0.45	1.0	5	8	28	1.36	< 10	<1	0.04	< 10	0.10	861
JB7S 803	201 23			< 0.2	5 < 5	210 120	< 0.5	< 2	0.38	0.5	5	9	38 28	1.48	< 10 < 10	< 1	0.05	< 10 < 10	0.13	831 995
JB7S 804 JB7S 805	201 23 201 23			< 0.2 < 0.2	15	290	< 0.5 < 0.5	< 2 < 2	0.11	2.0	5	8 13	42	1.93	< 10	< 1 < 1	0.06	< 10	0.08	3250
				<0.2	< 5	100		2	0.18	< 0.5				2.52	< 10	< 1	0.05	< 10	0.19	535
JB7S 806 JB7S 807	201 23			s < 0.2 √ < 0.2	< 3 20	100 110	< 0.5 < 0.5	< 2	0.18	< 0.5	10 7	10 10	13 15	1.67	< 10	< 1	0.05	< 10	0.19	216
JB7S 808	201 23			< 0.2	20	120	< 0.5	2	0.30	< 0.5	17	9	44	1.94	< 10	< i	0.05	< 10	0.14	1235
JB7S 809	201 23			< 0.2	< š	1 50	< 0.5	< 2	0.33	0.5	23	11	33	2.46	< 10	1	0.05	< 10	0.14	18 50
				-						-					-	52		12		

. . .

Chemex Labs Ltd.

and the second second second

Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221 To: "UEVRON CANADA RESOURCES LTD. NERALS STAFF 1900 - 1055 W. HASTINGS ST. VANCOUVER, B.C. V6E 2E9 Project : M579 Comments: ATTN: S. MCALLISTER

an teoris da statue en estatue de la construction de la construction de la construction de la construction de l

Page No. 3 Tot. Pages: Date : 21-SEP-87 Invoice #: I-8721866 P.O. # : 27049

SAMPLE DESCRIPTION	PREP CODE	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Se ppm	Sr ppm	Ti %	Tl ppm	U ppm	V ppm	W ppm	Zn ppm		<u> </u>
T275-0989 T275-0990	201 238 201 238	< 1	0.04	7	780 2280	10 < 2	< 5 < 5	< 10	65 34	0.11	< 10 < 10	< 10 < 10	38 34	< 5 < 5	57 97	 	
T275-0991 T275-0992	201 238 201 238	< 1 < 1	0.03 0.03	8 8	1130 220	< 2 2	< 5 < 5	< 10 < 10	34 44	0.10 0.11	< 10 < 10	< 10 < 10	34 33	< 5 < 5	68 49		
T27S-0993	201 238	<1	0.03	<u>-</u> 7	2020 920	4	< s < s	10	49	0.08	< 10 < 10	< 10	32	< 5 	77 	 	
T275-0995 T275-0996	201 238 201 238	< 1 < 1	0.04 0.04	9 11	580 1540	18 12	< \$ < \$	< 10 < 10	74 102	0.12 0.10	< 10 < 10	< 10 < 10	44 40	< 5 < 5	59 125		
T27S-0997 T27S-0998	201 238 201 238	< 1 < 1	0.07 0.05	10 9	570 1440	6 2	5 10	10 10	160 81	0.11 0.09	< 10 < 10	< 10 < 10	49 28	< 5 < 5	40 163		
T275-09994	201 238	< 1	0.02	4	2030	2	< 5	10	97	0.34	10	< 10	129	< 5	130		
T275-1004 T275-1005	201 238 201 238	<1	0.03	15	1070 940	4 2	< 5	< 10 < 10	47 40	0.11	< 10 < 10	< 10 < 10	46	< 5	69 61	 	
T27S-1006 T27S-1007	201 238 201 238	< 1 < 1	0.02	7 8	2280 1000	4 4	< 5 < 5	< 10 < 10	16 19	0.08 0.09	< 10 < 10	< 10 < 10	38 39	< 5 < 5	64 64		
T27S-1008	201 238 201 238	<1	0.05	15 	420	4	< 5	< 10	77 	0.13	< 10	< 10	58 	< 5	<u></u>	 	
T27S-1010 T27S-1011	201 238 201 238	< 1 < 1	0.04 0.04	8 9	1730 1330	2 2	< \$ < 5	< 10 < 10	16 30	0.10 0.12	< 10 < 10	< 10 < 10	38 54	< 5 < 5	61 47		
T27S-1012 T27S-1013	201 238 201 238	<1	0.03 0.03	18 9	800 2190	2 2	< 5 < 5	< 10 < 10	42 26	0.12 0.09	< 10 < 10	< 10 < 10	66 41	< 5 < 5	70 59	 	
T27S-1014 T27S-1015	201 238 201 238	< 1 < 1	0.05 0.03	7 5	300 250	< ⁴ < 2	< 5 < 5	< 10 < 10	56 20	0.14 0.08	< 10 < 10	< 10 < 10	49 25	< \$ < \$	30 15	•	
T27S 432 T27S 433 T27S 434	201 238 201 238 201 238 201 238	<1 <1 <1	0.05 0.05 0.05	19 15 19	1340 1390 800	< 2 4 2	< \$ < \$ < \$	10 < 10 10	112 47 87	0.11 0.10 0.13	< 10 10 < 10	< 10	36 43 45	< 5 < 5 < 5	78 105 83		
£75 435-	201 238	uffen - verseenen	0.04	12	1390	8	< 5	< 10	50	0.12	< 10			< 5	122	 ·····	
JB7S 801- + JB7S 802- JB7S 803	201 238 201 238 201 238 201 238	3	0.03 0.04 0.03	19 6 9	1420 2670 590	< 2 2 2	< 5 < 5 < 5	< 10 < 10 < 10	36 34 32	0.11 0.08 0.10	< 10 < 10 < 10	< 10 < 10	38 22 28	\$ < \$ < \$	201 128 103		
JB7S 804 JB7S 805	201 238 201 238		0.03	7 16	2770 1430	< 2 18	< 5 < 5	< 10 < 10	23	0.07	< 10 < 10	< 10		< 5 < 5	145	 	
JB7S 806 JB7S 807 JB7S 803 JB7S 809	201 238 201 238 201 238 201 238 201 238	< 1	0.03 0.03 0.04 0.03	2 7 7 9	960 900 1530 1080	2 < 2 < 2 < 2 < 2	< 5 < 5 < 5 < 5	< 10 < 10 < 10 < 10	23 39 26 30	0.14 0.12 0.10 0.12	< 10 < 10 < 10 < 10	< 10 < 10	39 36	<	70 51 103 83	7	

Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE , NORTH VANCOUVER. BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984-0221

VRON CANADA RESOURCES LTD. To : N._. JERALS STAFF 1900 - 1055 W. HASTINGS ST. VANCOUVER, B.C. V6E 2E9 Project : M \$79 Comments: C: S. MCALLISTER

al transfer and a second of the first of the first of the first of the second second second second second second

Tot. Pages 5 Date : 17-AUG-87 Invoice # :1-8719304 P.O. # :36865

> Ma ppm

1200 786

\$76

377

896 715

645 1405

1100 1195

> 761 323

676

669

998

714

556 522

472

332

5 5 9

606

955

975

679

8 52

587

1045

SAMPLE DESCRIPTION	PREP CODE	Ац ррб FAHA A	A1 %	Ag ppm	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	М в 95
	1																		
JB7S 924	201 238	< 5	1.25	< 0.2	< 5	140	< 0.5	< 2	0.31	< 0.5	5	8	14	1.21	< 10	< 1	0.05	< 10	0.16
JB7S 925	201 238		2.90	< 0.2	10	210	< 0.5	< 2	0.63	1.0	8	14	29	2.17	< 10	< i	0.05	10	0.25
JB7S 926~ **	201 238	< 5	2.52	< 0.2	10	290	< 0.5	< 2	0.60	< 0.5	5	8	15	1.53	< 10	< 1	0.07	< 10	0.17
B7S 927	201 238		2.15	< 0.2	15	190	< 0.5	< 2	1.06	2.5	9	22	83	1.98	< 10	< 1	0.15	10	0.35
JB7S 928-	201 238		1.90	< 0.2	10	240	< 0.5	< 2	0.71	2.5	5	9	64	1.60	< 10	< 1	0.15	10	0.23
JB7S 929 JB7S 930	201 238		2.92 2.68	< 0.2 < 0.2	10 20	230 260	< 0.5	< 2 < 2	0.57 0.69	< 0.5	10 15	15 11	51 126	2.33 2.30	< 10 < 10	< 1	0.13 0.15	10 10	0.35 0.37
JB7S 931-	201 238		2.23	< 0.2	20	220	< 0.5	$\geq \frac{1}{2}$	0.83	1.0	, j	10	56	1.82	< 10	~i	0.08	< 10	0.25
JB7S 932	201 238	1 < 5	2.34	< 0.2	< 5	150	< 0.5	< 2	0.40	0.5	9	9	54	1.78	< 10	<1	0.08	< 10	0.19
JB7S 933	201 238		2.29	< 0.2	10	170	< 0.5	< 2	0.67	< 0.5	6	8	23	1.64	< 10	~i	0.08	< 10	0.21
JB7S 934	201 238		2.75	0.2	5	120	1.0	< 2	0.20	1.0	8	7	32	1.94	< 10	< 1	0.06	< 10	0.14
JB7S 935-9	201 23		1.44	0.4	5	400	0.5	< 2	0.64	1.0	5	9	23	1.13	< 10	1	0.12	10	0.15
JB7S 936-1	201 231	B < 5	2.01	0.4	< 5	220	0.5	< 2	0.74	0.5	8	13	30	1.87	< 10	< 1	0.29	10	0.30
JB7S 937-	201 23		2.71	0.2	15	230	0.5	< 2	0.70	< 0.5	12	18	44	2.57	< 10	< 1	0.35	10	0.49
JB7S 938	201 23		0.90	0.2	10	210	< 0.5	< 2	0.67	3.5	3	5	32	0.85	< 10	< 1	0.09	< 10	0.13
JB7S 939 JB7S 940	201 23		2.06	0.4 0.4	10 35	190 190	0.5 0.5	< 2 < 2	0.90	2.0 1.5	9 9	12 9	35 53	1.70 1.79	< 10 < 10	<1	0.19 0.12	10 10	0.26 0.27
JB7S 941	201 23		2.14	0.2	100	190	0.5	< 2	0.74	1.5	12	12	58	1.97	< 10	i	0.09	10	0.27
JB7S 942	201 23	8 < 5	0.86	0.2	5	210	< 0.5	< 2	0.67	1.0	4	4	34	0.85	< 10	1	0.08	< 10	0.13
JB7S 943	201 23	-	1.49	0.2	20	160	< 0.5	< 2	1.16	1.5	8	10	69	1.49	< 10	< 1	0.10	10	0.26
JB7S 944-	201 23		1.18	< 0.2	5	80	< 0.5	< 2	0.23	< 0.5	4	2	27	1.10	< 10	< 1	0.03	< 10	0.09
JB7S 945 JB7S 946	201 23 201 23		1.77	0.2 0.2	< 5 10	170	0.5 0.5	< 2 < 2	0.61 0.45	0.5	5	11	18 28	1.34	< 10 < 10	< 1	0.12	10 < 10	0.18 0.22
						200		~ 4	0.43	0.5			40	1.40	< 10		·····		
B7S 947	201 23		1.67	0.2	10	180	< 0.5	< 2	0.39	0.5	3	6	18	1.05	< 10	< 1	0.06	< 10	0.11
JB7S 948 JB7S 949	201 23 201 23		1.20	0.2 < 0.2	< 5 < 5	240 220	< 0.5 < 0.5	< 2 < 2	0.55	1.0 1.0	6	10	33 30	1.18 0.76	< 10 < 10	< 1	0.14	< 10 < 10	0.21 0.12
JB7S 950 N	201 23		2.38	0.2	35	200	1.0	$\geq \frac{1}{2}$	1.63	0.5	10	20	61	2.38	10	- Zi	0.32	10	0.37
JB7S 950 B	201 23	8 < 5	1.51	0.2	< 5	150	0.5	< 2	0.68	1.0	5	10	34	1.27	< 10	۲ 2	0.09	10	0.18
JB7S 951	201 23	8 < 5	1.61	0.2	< 5	190	0.5	< 2	1.24	0.5	8	15	46	1.66	< 10	< 1	0.22	10	0.30
JB7S 952	201 23		1.53	< 0.2	< 5	210	0.5	< 2	0.66	< 0.5	4	7	12	1.19	< 10	1	0.14	< 10	0.15
JB7S 953 JB7S 954	201 23 201 23		1.39	0.2	< 5	190	0.5	< 2	0.89	0.5	6	11	30	1.37	< 10	< 1	0.18	10	0.21
JB7S 955	201 23		1.78	0.2 < 0.2	< 5 10	250 360	0.5 < 0.5	< 2 < 2	0.62	0.5	7	12	18 19	1.46	< 10 < 10	< 1	0.15	10 < 10	0.21 0.15
	-																		
JB7S 956- JB7S 957	201 23		1.31 2.28	0.4 0.2	5 5	270 250	÷ · -	< 2 < 2	1.41	1.0	6	12	43	1.44	< 10 < 10	<1	0.27 0.20	10 10	0.25 0.21
JB7S 958	201 23		1.05	0.2	5	170		< 2	0.87	0.5 1.0	63	12	26 28	0.93	< 10		0.10	< 10	0.13
JB7S 959-	201 23	8 < 5	2.32	0.4	< š	330		≥ 2	1.01	1.0	9	14	37	2.10	< 10	- i	0.21	10	0.29
JB7S 960-	201 23	38 < 5	2.38	0.4	< 5	240	0.5	< 2	1.17	1.0	9	15	35	2.12	< 10	< 1	0.30	10	0.32

CERTIFICATION :

.

.

Chemex Labs Ltd.

212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2CI

PHONE (604) 984-0221

To: EVRON CANADA RESOURCES LTD. ...NERALS STAFF 1900 - 1055 W. HASTINGS ST. VANCOUVER, B.C. V6E 2E9

Page No. Tot. Pages: 5 Date : 17-AUG-87 Invoice # : I-8719304 P.O. # : 36865

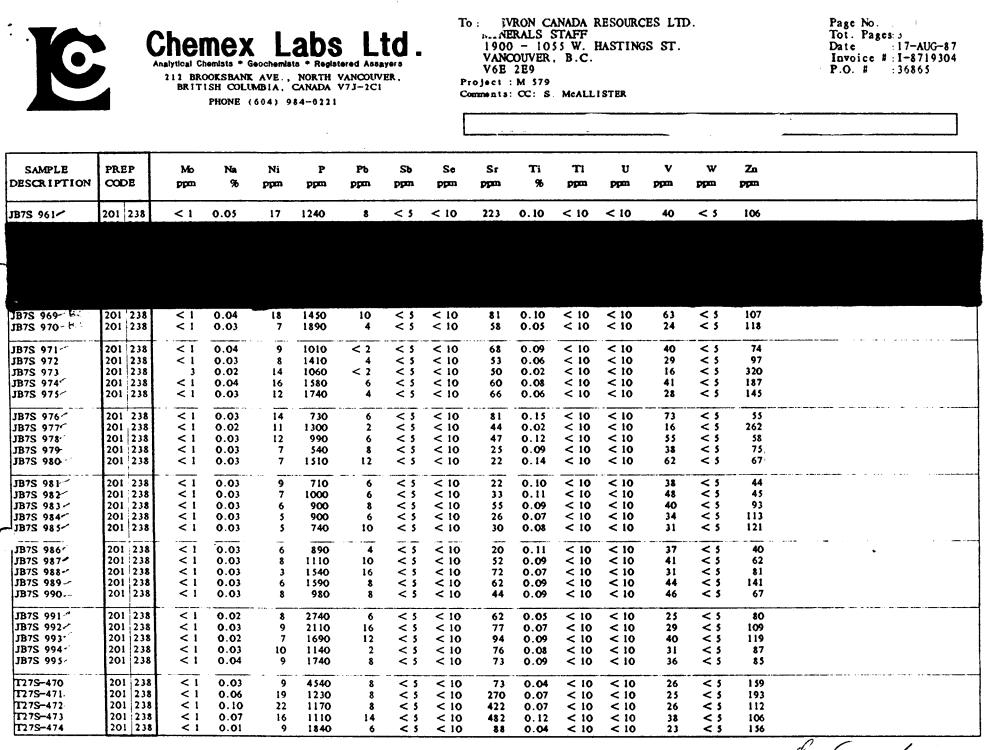
Project : M 579 Comments: CC: S. MCALLISTER

المتحجين ورداري

SAMPLE DESCRIPTION	PREP CODE	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Se ppm	Sr ppm	Ti %	Ti ppa	U ppm	V ppm	W ppm	Zn ppm		
JB7S 924	201 238	< 1	0.02	7	890	2	< 5	< 10	39	0.06	< 10	< 10	28	< 5	112		
JB7S 925 JB7S 926	201 238 201 238	1	0.04 0.05	27 10	1860 5720	4 4	< 5	< 10 < 10	80 60	0.10 0.06	< 10 < 10	< 10 < 10	40 2 5	< 5	202 114		
1JB7S 927-	201 238	< 1	0.05	29	2050	12	< 5	< 10	98	0.08	< 10	< 10	42	< 5	303		
JB7S 928	201 238	1	0.02	15	1880	6	< 5	< 10	75	0.06	< 10	< 10	31	< 5	161		
JB7S 929- JB7S 930	201 238 201 238	< 1	0.03 0.03	17 24	1220 1680	6 12	< 5 < 5	< 10 < 10	62 7 4	0.11 0.11	< 10 < 10	< 10 < 10	57 46	< 5 < 5	108 114		
JB7S 931-	201 238	< 1	0.04	18	1270	8	< 5	< 10	66	0.09	< 10	< 10	38	< 5	124		
JB7S 932	201 238	2	0.04	10	1350	10	< 5	< 10	41	0.06	< 10	< 10	39	< 5	95	- <u></u>	
JB7S 933 JB7S 934	201 238 201 238	< 1	0.04 0.04	9 5	1 5 2 O 1 3 5 O	8 16	< 5 < 5	< 10 < 10	62 22	0.08	< 10 < 10	< 10 < 10	35 32	< 5 < 5	79 179		
JB7S 935- 1	201 238	< 1	0.03	8	3590	2	< 5	< 10	78	0.05	< 10	< 10	22	< 5	174		
JB7S 936- t	201 238	< 1	0.04	8	6 50	< 2	< 5	< 10	70	0.13	< 10	< 10	47	< 5	73		
JB7S 937- JB7S 938-	201 238 201 238	< 1	0.05 0.01	11 11	560 1 590	10 6	< 5 < 5	< 10 < 10	67 55	0.18 0.02	< 10 < 10	< 10 < 10	72 17	< 5 < 5	55 189		
JB7S 939-	201 238	< 1	0.04	19	1640	12	< 5	< 10	61	0.07	< 10	< 10	41	< 5	116		
JB7S 940 JB7S 941	201 238 201 238	< 1 < 1	0.03	14 25	1410 2530	6 10	< \$ < \$	< 10 < 10	57 51	0.09 0.05	< 10 < 10	< 10 < 10	37 36	< 5 < 5	85 190		
JB7S 942	201 238	< 1	0.02	6	980	8	< 5	< 10	68	0.02	< 10	< 10	18	< 5	127	<u></u>	
JB7S 943-	201 238	< 1	0.02	19	1330	8	< 5	< 10	41	0.05	< 10	< 10	25	< 5	188		
JB7S 944- JB7S 945-	201 238 201 238	< 1	0.03 0.03	2 11	550 1690	< 2	< 5 < 5	< 10 < 10	19 77	0.05 0.07	< 10 < 10	< 10 < 10	23 28	< 5 < 5	44 77		
JB7S 946	201 238	<i><</i> i	0.03	9	610	4	< 5	< 10	56	0.10	< 10	< 10	31	< 5	85		
JB7S 947	201 238	< 1	0.04	5	2070	8	< 5	< 10	47	0.04	< 10	< 10	19	< 5	97	•	
JB7S 948	201 238 201 238	< 1	0.02	8	980	6	< 5	< 10	75	0.05	< 10	< 10	26	< 5	157		
JB7S 949 JB7S 950 A	201 238 201 238	<1	0.02 0.04	8 14	940 1050	6 2	< 5 < 5	< 10 < 10	87 243	0.03 0.12	< 10 < 10	< 10 < 10	16 47	< 5 < 5	124 88		
JB7S 950 B	201 238	< 1	0.03	13	1670	2	< 5	< 10	68	0.05	< 10	< 10	28	< 5	147		
JB7S 951-	201 238	< 1	0.04	11	760	6	< 5	< 10	147	0.10	< 10	< 10	47	< 5	91	n generalise and a set of the set	*
JB7S 952 JB7S 953	201 238 201 238	< 1 < 1	0.03 0.04	5 14	1770 1010	< 2 10	< 5	< 10 < 10	60 125	0.06 0.07	< 10 < 10	< 10 < 10	24 26	< 5	56 92		
JB7S 954	201 238	< 1	0.04	16	2100	6	< 5	< 10	112	0.07	< 10	< 10	27	< 5	144		
JB7S 955	201 238	< 1	0.02	7	2870	< 2	< 5	< 10	114	0.05	< 10	< 10	20	< 5	171		
JB7S 956 JB7S 957	201 238 201 238	< 1 < 1	0.03	14 16	1140 790	8 6	< 5	< 10 < 10	198 361	0.08	< 10 < 10	< 10 < 10	32 27	< 5 < 5	158 164		
JB7S 958-	201 238	i >	0.08	9	1170	< 2	< 5	< 10	114	0.04	< 10	< 10	17	< 5	114		
JB7S 959-	201 238		0.04	18	1830	14	< 5	< 10	194	0.08	< 10	< 10	37	< 5	138		
JB7S 960	201 238	< 1	0.05	21	1270	16	< 5	< 10	221	0.10	< 10	< 10	41	< 5	111		

_____.

•


Chemex Labs Ltd.

212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221 To: EVRON CANADA RESOURCES LTD. MINERALS STAFF 1900 - 1055 W. HASTINGS ST. VANCOUVER, B.C. V6E 2E9 Project : M 579

Comments: CC: S. MCALLISTER

Page No. : Tot. Pages: 3 Date : 17-AUG-87 Invoice # : I-8719304 P.O. # : 36865

																· .						
ſ	SAMPLE DESCRIPTION	PRE		Au ppb F AIA A	A1 %	Ag ppm	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Ca ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	М д %	Ma ppm
	JB7S 961-	201	238	< 5	2.39	0.2	< 5	240	0.5	< 2	1.17	1.0	9	15	34	2.07	< 10	< 1	0.29	10	0.32	569
F																						
																						i
	JB7S 969-	201 201		< 5 < 5	2.39 1.75	0.2 0.2	20 1 5	200 180	0.5 < 0.5	< 2 < 2	0.84 0.60	0.5	11	26 6	36 27	3.02 1.22	< 10 < 10	1 2	0.14 0.08	10 10	1.38 0.16	1340 777
	JB7S 971-	201		< 5	1.68	0.2	5	1 50	< 0.5	< 2	0.78	0.5	7	12	31	1.57	< 10	< 1	0.16	10	0.26	472
ļ	JB7S 972	201 201	238 238	< 5	1.64 0.70	0.2 0.2	10 < 5	180 120	< 0.5	< 2 < 2	0.57 0.60	1.0 4.5	6 3	73	26 37	1.37 0.75	< 10 < 10	< 1	0.11 0.06	< 10 < 10	0.17 0.10	816 660
	JB7S 973 JB7S 974		238	< 5	2.13	0.2	15	200	0.5	$\langle 2 \rangle$	0.00	2.0	12	12	55	2.20	< 10	< i	0.12	10	0.10	979
	JB7S 975	201		< š	1.70	0.2	5	200	< 0.5	< 2	0.81	1.5			35	1.33	< 10	i	0.13	10	0.24	726
	JB7S 976-	201	238	< 5	3.09	0.2	< 5	230	0.5	< 2	0.71	0.5	11	21	67	2.78	< 10	1	0.26	10	0.44	392
	JB7S 977.		238	< 5	0.98	0.2	< 5	180	< 0.5	< 2	0.81	5.5	5	4	43	0.94	< 10	1	0.06	< 10	0.13	1420
	JB7S 978-		238	< 5	2.78	0.2	< 5	180	0.5	< 2	0.54	< 0.5	12	11	36	2.19	< 10	< 1	0.10	10	0.34	565 1145
	JB7S 979- JB7S 980	201 201	238 238	< 5 < 5	1.89 2.79	0.2 0.2	< 5 10	160 120	< 0.5 0.5	< 2 < 2	0.27 0.23	< 0.5 < 0.5	7 10	8 23	17 49	1.60 2.98	< 10 < 10	< 1 < 1	0.05 0.07	< 10 10	0.17 0.35	524
	JB7S 981	201		30	2.29	0.2	< 5	110	< 0.5	< 2	0.21	< 0.5	6	9	15	1.58	< 10	1	0.04	< 10	0.16	428
	JB7S 982	201 201		< 5	2.36 2.30	0.2	10	100 220	< 0.5	< 2 < 2	0.37 0.51	< 0.5	7	10 9	25 27	1.79	< 10 < 10	< 1	0.05	10 10	0.21 0.21	454 1190
	JB7S 983 JB7S 984	201	238	< 5	2.04	0.2	< 5 5	130	< 0.5	$\langle 2 \rangle$	0.31	0.5 0.5	° 7	7	21	1.56	< 10	< i	0.05	< 10	0.16	1080
(B7S 985	201		< 5	2.05	0.2	10	70	< 0.5	< 2	0.28	0.5	11	7	42	1.49	< 10	< 1	0.05	10	0.13	1835
	JB7S 986	201	238	< 5	2.63	0.2	20	90	< 0.5	< 2	0.19	< 0.5	6	8	17	1.64	< 10	< 1	0.05	< 10	0.17	516
	JB7S 987.	201		< 5	2.57	0.2	< 5	170	< 0.5	< 2	0.45	0.5	11	9	24	1.96	< 10	< 1	0.08	10	0.22	735
	JB7S 988	201			2.10	0.2	< 5	220	< 0.5	< 2	0.62	0.5	8	7	29	1.66	< 10	< 1	0.08	10	0.19	1180
	JB7S 989 JB7S 990	201 201		< 5 < 5	2.51 2.27	0.2 0.2	5 < 5	160 180	< 0.5 < 0.5	< 2 < 2	0.59 0.43	1.5 0.5	12 10	10 11	30 32	2.19 1.93	< 10 < 10	< ! 1	0.07 0.06	10 < 10	0.25 0.25	1130 823
	JB7S 991-	201			1.39	0.2	\$	270	< 0.5	< 2	0.56	0.5	5	7	24	1.25	< 10	< 1	0.14	< 10	0.16	612
	JB7S 992 JB7S 993	201 201	238 238		1.78 2.08	0.2 0.2	< 5	220 320	< 0.5 < 0.5	< 2 < 2	0.63	0.5 0.5	67	10 12	20 28	1.40	< 10 < 10	< 1	0.14 0.17	10 10	0.20 0.30	423
	JB7S 994		238		2.03	0.2	< 5	190	< 0.5	$\langle 2 \rangle$	0.56	0.5	7	11	20	1.50	< 10	< 1	0.15	10	0.22	480
	JB7S 995	201			1.96	0.2	< 5	200	< 0.5	< 2	0.61	0.5	6	12	18	1.62	< 10	< i	0.15	10	0.23	388
	T275-470	201		< 5	1.73	0.2	10	360	< 0.5	< 2	0.62	0.5	5	7	19	1.32	< 10	< 1	0.09	< 10	0.16	741
	T27S-471	201	238		2.01	0.2	25	180	< 0.5	< 2	1.16	1.5	7	10	31	1.81	< 10	1	0.11	10	0.16	1100
	T275-472	201	238		1.73	0.2	30	150	< 0.5	< 2	1.47	1.5	8	9	46	1.81	10	< 1	0.17	10	0.22	782 690
	T275-473		238		2.64	0.2	5	250 340	< 0.5 < 0.5	< 2 < 2	1.19	1.0	8	14	32 41	2.07	10 < 10	< 1	0.16	20 10	0.21	1185

CERTIFICATION :

APPENDIX IV

ANALYTICAL TECHNIQUES

Chemex Labs Ltd.

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1 Phone: (604) 984-0221

Telex:

043-52597

Analytical Chemists

Geochemists

Registered Assayers

Gold F.A.-A.A. Combo Method ppb:

For low grade samples and geochemical materials, 10 gram samples are fused in litharge, carbonate and siliceous flux with the addition of 10 mg of Au-free Ag metal and cupelled. The silver bead is parted with dilute HNO3 and then treated with aqua regia. The salts are dissolved in dilute HCl and analyzed for Au on an atomic absorption spectrophotometer.

Detection limit: 5 ppb

Chemex Labs Ltd.

Analytical Chemists

Geochemists

Registered Assayers

212BrooksbankAveNorthVancouver, B.C.CanadaV7J 2C1Phone:(604) 984-0221Telex:043-52597

32 ELEMENT ICP PROCEDURE

The 32-element geochemistry package is a ICP analysis of a Nitric-Aqua Regia digestion. The package is especially suited for trace metals in soil and rock samples. The digestion liberates these metals in soils and also dissolves a major portion of trace metals from rock-forming minerals. Major element constituents of rock-forming and resistate minerals are only partly leached. Elements for which this digestion is incomplete are Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Th, Ti, V and W.

Half a gram of sample is digested in nitric acid, followed by an Aqua-Regia digestion, then taked up to a volume of 25 mls. The resulting solution is analysed via inductively coupled plasma atomic emmission spectroscopy.

APPENDIX V GEOHEADER

-

:

SIMILKAMEEN GEOHEADER - M579

This geoheader is designed to simplify the use of IGC's (International Geosystem Corporation's) geoform by outlining all the required entries for the given data set and all the possible abbreviations and scales used. This geoheader has been customized for the Similkameen project.

The Similkameen project, located approximately 30 km west of Keremeos, B.C. is comprised of the Montello and Seadrift Options. The exploration objective is to determine the potential for gold bearing skarns within the Triassic Hedley sequence clastic sediments and carbonates on the property.

The tier (Upper - U or Lower - L) and column number are found on the left side of the page, followed by an explanation or description of the entry required, together with the possible entries. Those entries requiring no tier number are preceded by the column number only.

IDENTITY DATA:

9-10	Type of Data
	DH Diamond drill hole ST Surface Trace TR Trench
11-18	Drill Hole/Traverse Name and Number, i.e.
	S87DH001 S – Similkameen S87TR003 87 – year S87ST002 001 – number
25-28	Size of Drill Core - if more than one size used, record them all, left justified
	NQ
29-34 41-46	Date the hole/traverse was collared – year month day Initials of person(s) who logged the hole
	MPD Maggie Dittrick SGM Sandy McAllister
47-52 53-70	Date the hole/traverse was completed – year month day Claim name
77-78	Units MT metres

SURVEY DATA:

- I S Survey Information
- 2-4 000
- 5-10 Meterage at starting point (0.00)
- 11-16 Meterage of first survey point (91.44)
- 21-16 Azimuth at 0.00 metres in degrees (269.21)
- 27-32 Dip of the hole/traverse at the collar, in degrees (-45.00)
- 51-60 Northing at the collar Grid Co-ordinate
- 61-70 Easting at the collar Grid Co-ordinate
- 71-80 Elevation at the collar, in metres

SURVEY INFORMATION:

For each dip test the following information must be completed:

- IS2-4Survey number: first test is 001, second test is 002, etc.5-10Meterage where dip test was taken (0000.00)
- 11-16 Meterage where next furthest dip test was taken (0000.00). If there are no further dip tests, record the total meterage of hole/traverse
- 21-26 Azimuth of hole/traverse at the meterage where azimuth test was taken, in degrees (271.50). If no azimuth test was taken, record collar azimuth
- 27-32 Dip of hole/traverse at the meterage where dip test was taken, in degrees (-45.00)

BLOCK TO BLOCK INFORMATION:

- 2-3 & Core box number, right justified
- 43-44 5-10 & Metrage of blocks (0000.00)
- 13-16 & Actual length of core measured in metres (00.00)
- 18-20 & Percentage recovery between blocks rounded to nearest 1%
- 62-64 24-27 & RQD length: measured sum of core lengths greater than 2.5 times the core diameter
- 67-70

48-52

55-58

I

- 29-31 & Block to Block RQD
- 72-74

ASSAY INFORMATION:

1	Α
2-4	FTN
5-10	From: start of sample in metres (0000.00)
11-16	To: end of sample in metres (0000.00)
17-2	Length of sample in metres (00.00)
24-26	Percent recovery over sampled interval (00.00)
28-33	Sample number, right justified

GEOLOGICAL INFORMATION:

- UI Type of Interval
 - P Primary geological interval, 'PG1'
 - D Ditto: Subinterval within the 'PG1' that has most of the same characteristics as the 'PG1'
 - N Nest: Subinterval within the 'PG1' that is substantially different from the 'PG1'

Type of Entry

- A Assay information
- L Lower tier entry
- R Remarks (columns 17-80)
- S Survey information
- U Upper tier entry
- U5-10 From: in metres (0000.00)
- UII-16 To: in meters (0000.00)
- U17-20 Recovery: the percent recovery between blocks is calculated automatically by the computer as follows; the sum of the actual length of drill core recovered divided by the calculated length between blocks, times 100.
 - RQD: Rock Quality Designator is calculated as a percentage between blocks automatically by the computer as follows; the sum of the length of pieces of core recovered which are at least 2.5 times the core diameter (i.e. HQ - 15 cm, NQ - 10 cm, BQ - 7 cm) divided by the calculated length between blocks, times 100. The core is measured from centre to centre. Centre is defined as the point where the central long axis of the core intersects the fracture surface plane that forms the circular/elliptical end of a piece of core. 'RQD' is measured over each block to block interval.
- U21-22 TMOD: Type Modifier Secondary (alteration) modifier of rock type. If rock type is BX_ _ then type modifier refers to dominant matrix composition.
 - CA calcareous
 - SK skarned

U23

% Mix:
 % Mixture - This describes the percentage of the rock type named in the subinterval that is present in the subinterval, i.e. y% mix indicates that (100-y) % of the 'PGI' rock type occurs in the subinterval. All Nested and Ditto intervals must have a % mixture. Use the G - scale.

U24-27

Rock Types

ARGL CONG	argillite conglomerate
DIOR	diorite
FAUL	fault zone
GRDR	
	granodiorite
HFBT	biotite hornfels
HFCA	calc hornfels
HFLS	hornfels
LMST	limestone
MAGA	granetiferous marble
MARB	marble
OVER	overburden
PPFX	feldspar porphyry
PPHB	hornblende porphyry
PPHF	hornblende feldspar porphyry
SILT	siltstone
SKAR	skarn
SKIG	idocrase garnet skarn
SKDI	diopside skarn
SKGD	garnet diopside skarn
TFLP	lapilli tuff
TFXT	crystal tuff
TRIC	triconed interval
TUFF	tuff
ULMF	ultramafic
	Unununc

- Colour Two C-scale symbols can be used together , i.e. RU red-brown. Dominant colour is second entry when using two colours L28-29
 - L28 Lightness L-scale
 - W white
 - 9 palest
 - 8 7 6 5 4 pale
 - light
 - lighter (m. light)
 - medium (50% light)
 - darker (m. dark)
 - . 3 2 dark
 - very dark
 - darkest 1
 - N black

- L29 Colour range <u>C-scale</u>
- Α grey
- В blue
- G green
- κ pink
- lime (YG) L
- mauve (PR) Μ
- Ν black
- 0 orange
- Ρ purple
- Q aqua (BP)
- R red
- T tan (khaki)
- brown (umber) U
- violet (BP) V
- W white
- Y yellow

QMI: Qualifying materials 1 U32-33

> bleached BL

> > ,

U34 QM1: Modifier of bleached

- х completely
- 9 extremely strong
- very strong
- strong
- fairly strong
- moderate
- 8765432 fairly weak
- weak
- very weak
- I extremely weak
- 0 patchy or nil

U35-36 TXI: TXI-4 can be used to record up to fo	four textures
--	---------------

- U37-38 TX2:
- L35-36 TX3:
- TX4: L37-38

Textures

- A* amygdaloidal
- AP aplitic
- BD bedded
- BK blocky
- BN banded
- brecciated BR
- CM chilled margin
- **clastic** CT
- equigranular EQ
- fragmental FR
- FT flattened
- granitic GT
- crackled KR
- LM laminated
- MX massive
- PA patchy
- plutonic PL
- PP porphyritic
- SH sheared
- SP sparry
- UF uniform textured

U39-42 Grain Size

- FF: Mean size of fine fraction. Use the S-scale. U39
- CF: Mean size of coarse fraction. Use the S-scale. U40
- %C: % Coarse fraction. Use the G-scale. U41
- MP: Maximum particle size. Use the S-scale. U42

IGNEOUS, METAMORPHIC & CHEMICAL	PARTICLE DIAMETER RANGE	ASSGN	IGRA	ES-SCALE IN OR PARTICLES << <i>FOR GENERAL WORK</i> <i>FOR DETAIL WORK</i> >>	SIZE	ASSGN	VOLCNI- CLASTICS	
Glassy	-2 ⁻⁸ =.004	.003 mm	0	CLAY SIZE	A	.003		
Extremely	2^{-7}		1	V.FINE SILT	В	.006	fine	
fine grained	2 ⁻⁶ =.016		-	FINE SILT	с	.011		
(aphanitic)	2 ⁻⁵		2	MEDIUM SILT	D	.022	ash	
(aphanicic)	-2 ⁻⁴ =.06-		4	COARSE SILT	E	.044		
	2 -3		3	V.FINE SAND	F	.088		
Fine	2 ⁻² =.25-			FINE SAND	G	.177	coarse	
grained	225 2 ⁻¹		4	MEDIUM SAND	Н	.354		
	$2^{0} = 1 -$		7	COARSE SAND	I	.707	ash	
Medium	$2^{1} - 1^{2}$	- 2	5	GRIT	J	1.41		
grained (granular)				GRANULE	к	2.83	•	
Coarse	$2^{3} - 2^{3}$	8	6	V.SMALL PEBBLE	L	5.66	small lapilli	
grained	$-2^4 = 16 -$			SMALL PEBBLE	м	11.3		
Very coarse	-	3.2	7	MEDIUM PEBBLE	N	22.6	large	
grained	$2^{6} = 64^{-1}$	C m	/	LARGE PEBBLE	ø	45.3	lapilli	
	2 ⁷	- 13	8	SMALL COBBLE	Р	90.5	cobble-size bombs & blocks	
Pegmatitic	-2 ⁸ =250 -			LARGE COBBLE	Q	181		
Megapegma-	2 ⁹	- ½m	9	SMALL BOULDER	R	362	boulder-size bombs & blocks	
titic	$2^{10} = 1m -$	- 2 411		MEDIUM BOULDER	S	724		
Extra-coarse	2 ¹¹	· 2 m	х	LARGE BOULDER	T	1450	extra large bombs & blocks	
megapegma- titic		£ 111	^	V. LARGE BOULDER	U	2900		

NOTE: It is quite permissible to intermix the alphabetic symbols with the numeric symbols of this S-Scale, whenever detail work demands it - no conflict ensues by doing so.

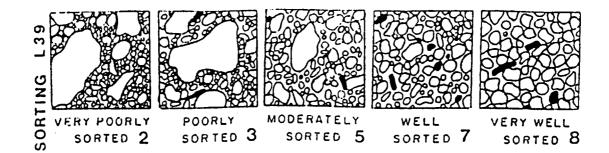
ţ

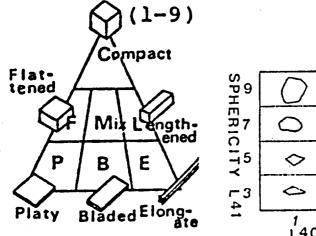
S-scale for grain or particle size

	Assigned	Value	Range				
0 I 2 3 4 5 6 7 8	0.003 0.008 0.03 0.12 0.5 2 8 3.2 13	mm	0.004 0.016 0.06 0.25 1 4 mm 1.6 6.4 cm		0.004 0.016 0.06 0.25 1 4 1.6 6.4	mm mm mm mm cm cm cm cm m	
9 x	0.5 2	m m	0.25 1 m	-	1	m	

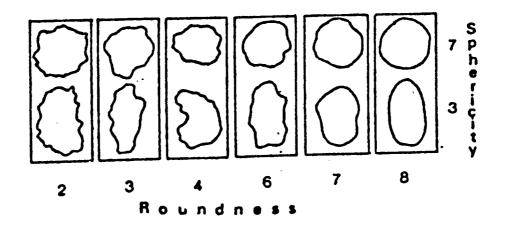
For Clastic Sediments L39-42

L39 SR: Sorting


Degree of Sorting


- extremely poor I
- very poor
- poor
- moderately poor
- 234567 moderate
- moderately good
- good
- 8 very good
- 9 extremely good

RN: Roundness L40


Degree of Roundness

- extremely angular 1
- very angular
- 234567 angular
- moderately angular
- intermediate
- moderately rounded
- rounded
- 8 very rounded
- extremely rounded 9

9	\bigcirc	\Box	\bigcirc	\bigcirc	0
7	0	\Diamond	\Diamond	0	0
5	\diamond	0	0	0	0
.3	0	0	0	0	0
<u>،</u>	1 L40	3 R O U I	5 N D N E	7 S S	9

L41 SH: Sphericity

Degree of Sphericity

- 1 extremely poor
- 2 very poor
- poor
- fair to poor
- fair
- fair to good
- 3456789BCEF good
- very good
- excellent
- bladed
- compact, cubic
- elongated
- flattened
- L lengthened
- Μ mixed
- Ρ platy
- L42 O/C: Framework
 - O open: matrix supported
 - C closed: framework supported

L46

total fracture intensity. Use the F-scale 1:

F-scale Fracture intensity

- Х shattered
- 9 extremely well fractured
- 8 7 very well fractured
- well fractured
- 6 5 4 fairly well fractured
- moderately fractured
- fairly lightly fractured
- 3 2 lightly fractured
- very lightly fractured
- 1 slightly fractured
- unfractured 0

U48 L48

- Thickness describes thickness of feature in structural TI:
- identity 1 and 2, respectively (U49-50, L49-50) using T-scale. T2:

Assigned Value

Range

U49-50 STRUC | ID: Structural identity | L49-50 STRUC 2 ID: Structural identity 2

- AX axis of fold
- BD bedding
- BN banding
- C/ contact
- EC east contact
- F/ fracture set
- LC lower contact
- S/ shear zone
- UC upper contact
- WC west contact
- U55-56 DIP: angle to long axis of core of feature identified in structural ID 1
- L55-56 DIP: and 2 respectively, in degrees (core not oriented and dip direction unknown).
- U57-76 & Alteration and ore minerals. The first column of each pair is used to L57-76 describe how the mineral occurs using the H-scale. The second column is to indicate the percentage of the mineral present, using the G-scale. (breccias - describes matrix composition only. First column of each pair describes how the mineral occurs using the H-schale i.e. #-breccia matrix infillings. The second column is percentage of total matrix composition - using G-scale).
- U57-58 Dl: diopside
- L57-58 GA: garnet
- U59-60 VE: vesuvianite/idocrase
- L59-60 WO: wollastonite
- U61-62 CY: clay
- L61-62 CL: chlorite
- U63-64 CA: calcic alteration
- L63-64 EP: epidote
- U65-66 AX: amphibole
- U67-68 & XX: for a mineral not in the other alteration columns, specify
- U75-76 YY: by using the two letter code for that mineral (if possible record metal oxides and sulphides in the 'YY' column).
 - AS arsenopyrite
 - AU augite
 - AX amphiboles, general
 - AZ azurite
 - Bl biotite
 - CA calcite
 - CL chlorite
 - CP chalcopyrite
 - CY clay
 - DI diopside
 - EP epidote
 - ES enstatite
 - GA garnet

- GY gypsum
- HB hornblende
- limonite
- MC malachite
- MF mafics, general
- MG magnetite
- PR pyrrhotie
- PY pyrite
- SX sulphides, general
- VE vesuvianite/idocrase
- wollastonite WO
- XX any mineral
- YY any mineral
- In the first column the H-scale is used to describe how the mineral in L67-68 & /67-68 or /75-76 occurs. The second column is used for percentage, use L75-76 G-scale.
- PY: pyrite U69-70
- PR: pyrrhotite L69-70
- CP: chalcopyrite U71-72
- L71-72 AS: arsenopyrite
- U73-74 LI: limonite
- FS: fine sulphides L73-74

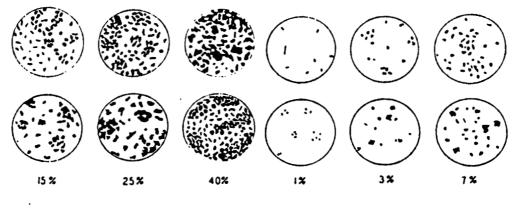
H-scale - most dominant single mode

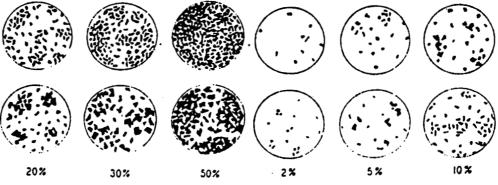
- amygdules Α
- В blebs
- С coatings
- * clasts
- D disseminations and scattered crystals
- Ε envelopes
- F framework crystals
- G gouge
- Н replaced, phenocrysts
- eyes, augen 1
- interstitial J
- Κ stockwork
- laminations bedded L
- massive Μ
- nodules N
- 0 spots
- Ρ pervasive
- patches (as in quilts) Q
- R S \$ T rosettes and crystal clusters
 - selvages
 - sheeting
 - staining (as in tarnish)
- U euhedral crystals
- V veins
- W boxwork
- dalmationite Y
- fresh primary rock 0

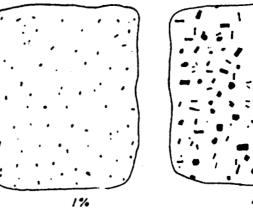
- U77 SI: Structural summary
 - 0 minor fracturing
 - fracturing, minor shearing and gouge I
 - fracturing, shearing and gouge 2
- L77 FI: Alteration facies
 - 0 Fresh, unaltered rock
 - Hornfels or marble present 1
 - Calcic alteration 2
 - 3 skarn

Facies and structural intensity, using N-scale. No modifier required if U78 L78 U77 or L77 is 0.

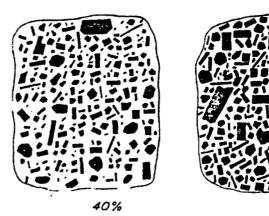
- Х completely
- extremely strong 9
- 8 very strong
- 7 strong
- fairly strong
- moderate
- fairly weak
- weak
- 654321 very weak
- extremely weak
- 0 nil


SCALES:


- C-Scale: Colour Range - see page 4 Fracture Intensity - see page 7 F-Scale:
- Percentage estimate of any geological material G-Scale:


Assigned %

Range


0		Nil, absent
Ŷ		
1		Present, no estimate given
?		Possibly present
•	.01	Trace, less than or equal to 0.02
-	.03	.0206
(.1	.052
(¥		.25
*	.3	
)	1	.5 - 2 2 - 3
+	3	2 - 3
=	5	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
1	3 5 10	7 - 15
	20	15 - 25
2 3 4 5 6	30	25 - 35
3		35 - 45
4	40	
5	50	45 - 55
6	60	55 - 65
7	70	65 - 75
, g	80	75 - 85
7 8 9	90	86 - 99
Х	100	Essentially 100%

10%

70%

How - most dominant single mode - see page 9 Lightness - see page 4 Facies and Structural Intensity - see page 10 Grain or particle size - see page 6 Thickness - see page 7 H-Scale: L-Scale: N-Scale: S-Scale:

T-Scale:

APPENDIX VI

- 36 -

DIAMOND DRILL LOGS

j

.

•

1.0

Chevron Canada Resources Ltd. SMLK

DRILLHOLE/TRAVERSE : S87DH001

							DRI	LLHO	LE/TR	AVE	RSE	: S	87DI	1001															
		CT IDEN : R NORTHING:		00	LLAR	EASTI		179.	00			C0	LLAF	RELE	EVA	TIO	N: 1	680.											
		SUF	RVEY FLAG		EY PO CATIO		FO	RESI	GHT					N							NORT	THI	NG		E	STI	NG		
			000 001	1	0.00 87.76																								
Ε	L (A G	- INTE (UNITS = FT) FROX -) - TO	RECOV- ERY (%)	M I X	RUCK Type	FYING TM TM 1 2	i MIN I Mat : QM1	TURE	S ĈI X F	HARA C %	ICS M P	turi # 1	IK I	T 1	ID	STH Azm	(DIF 1 Rt	H A CQZ	H A	H A	H A	H A	ANY Mii	H N A	H A	h an A n	VY Min	SUMMARY
- K E Y	F L G	,	,	ROCK QUAL DESIG	FOR Mem	EN RT V G	TM LC- 3	I QM2	3	4 0	NH	0	DIP SML	F I	T 2	ID	STI Azi	1 RT	° KF		Н	Н	Н	Н	Н	Н	H }	ł	
P		0.00	0.91			TRIC								Ρ															
R		0.00	0.91	C	ASING	OVER	THIS	INTE	RVAL.																				
Þ		0.91	35.53				7 A	BL7	BN	1	25	2		Р 3	4	BN		55	5			P7			Dŧ		Ε.		0 2 7
R		0.91	35.53			EDDED	LIGHT																						
R		0.91	35.53				5%), A																						
R		0.91	35.53				FINE G																						
R		0.91	35.53				PES SU																						
R		0.91	35.53				LEACHE																						
R		0.91	35.53				NGATE													ELY									
R		0.91	35.53				A MOT																						
R		0.91	35.53				LS RAN													CM									
R		0.91	35.53				MINOR										K 64	ARNET	F										
R		0.91	35.53	D			S (0.1						LIM		NE.														
	PNI	0.91	35.53		=	TUFF		BL6		3	52	6		N								P6							0
L		* •4	05 50				5A			~				3															26
N,	SNI	0.91	35.53		=	LMST			MX	ن	45	10		N 3					D(0 3 1
- -		32.96	33.36	ы	ONDI	CHAR	8A Feldsp		กออมพ	עס		. c	700		Dł	EACI	עבה	603											J I
R		32.96	33.36				IC ALT																						
R		32.96	33.36 33.35				HORNFE								<i>U</i>)	<u></u> п		1 61 1 7	11417										
	PNI	32.96	33.36	C		PPHF			рр				DA	N.		UC		35	5			Q6			B)				0
Ĺ	1.114	77:10	33.39			1 1 14	3A	567	, ,	-	Τ 1			3		LC		4(•				2 6
0. L		35.53	44.58			PPHF	7A	BL8	PP	2	52	2 5		P 3		UC LC		4(65				₽8 S (D* 8+	¥+	E(0 [.] 2. 8
- 2		35.53	44.69	н	ORNBL	ENDE	FELDSP	AR P	ORPHY	RY.	LIG	HT	TO 1	-	GR					GLY		-							
Q		35.53	44.69				7H 80%																						
		35.53	44.68				ARE A											DTE S	SELV	AGE									
Ŗ		35.53	44.58				NTACT.																						
R		35.53	44.59				CDRE A																						
R		35.53	44.68	A	RSENC	PYRIT	E ALSO	000	URS A	S D	ISSE	EMIN	ATE	D CR	YST	ALS	. :	SMALI	-										

۰ i .

Chevron Canada Resources Ltd. SMLK

DRILLHOLE/TRAVERSE : S87DH001 (CONTINUED)

K L E A Y G	(UNITS = FT) - T D	CORE % TYPI~QAL TEX- GRAIN FRAC- STRUCTUR-1 ALTERATION MINS ORE-TYPE MINS RECOV- M ROCK FYING MIN TURES CHARACS TURE H H H H H ANY H H H ANY ERY I TM TM MAT TX TX F C % M T ID STN DIP A A A A MIN A A MIN ERY I TM TM MAT TX TX F C % M T ID STN DIP A A A A MIN A A MIN (%) X TYPE 1 2 QM1 1 2 F F C P # TK 1 AZM RT QZ BI CY CB MG XX PY CP GL YY SUMMARY
 K F	·,	,	ROCK FOR EN RT I TM OM2 TX TX S R S O DIP F I T ID STK DIP KF MU CL EP HE HA PR MO SL HA
ΕL			QUAL MEM V Q LC-3 340 N H / SML I 2 AZM RT H H H H H H H H
ΥG			DESIG AGE COL R D P C STRUCTUR-2 A A A A A A A A
R	35.53	44.68	IRREGULAR PATCHES OCCUR WHERE PHENOCRYSTS ARE A DARK PURPLE
8	35.53	44.68	BROWN COLOUR.
P	44.58	114.84	HFCA BL7 BN 1252 P BN 60Q. Q8 D∗B− 0
2			7A 3 D. V~ 28
R	44.68	114.84	7A3D.V-28INTERBEDDED LIGHT GREY TO PALE PINK BANDED CALC-HORNFELS (80%)
R	44.68	114.84	AND WHITE LIMESTONE (20%) WITH MINOR (LESS THAN 5%) TUFF.
R	44.68		BO% CALCIC ALTERATION OF CALC-HORNFELS OCCURS AS PATCHES,
R	44.68		ENVELOPES SURROUNDING FRACTURES AND PARALLEL TO BEDDING PLANES.
R	44.68		REMNANT PATCHES OF UNALTERED HORNFELS ARE DARK GREY. SOME
R	44.68		BANDS HAVE A MOTTLED TEXTURE WITH CALCIC ALTERATION OCCURING IN
R	44.68	114.84	DISTINCT SPOTS. ZONE OF INCREASED SULPHIDES AT FOOTWALL OF
R	44.68	114.84	SILL AT 44.68-47.68 M WITH UP TO 3% BLEBS OF PYRRHOTITE. A
R	44.68	114.84	TRACE OF GARNET OCCURS AT 68.32 M AND A TRACE OF DIOPSIDE AT
R	44.68	114.84	70.50 M. POSSIBLE DIDPSIDE AT 75.00 AND 83.00 M. WEAK
8	44.68	114.84	PERVASIVE PALE GREEN ALTERATION AT 102.05-102.70 M. PALE GREEN
~~ R	44.68	114.84	HIGHLY BLEACHED HURNBLENDE FELDSPAR PURPHYRY DYKE AT 107.25-
	44.68	114.84	107.35 M. IRREGULAR CONTACTS.
N PNI	44.68	114.84 114.84	2 LMST MX 3 4 4 5 N 0
Ĺ	/_		WW 3 DARK GREY HORNBLENDE FELDSPAR SILL. SULPHIDE-RICH, WEAKLY BLEACHED, PYRRHOTITE OCCURS AS BLEBS AND DISSEMINATIONS. CALCIC ALTERATION IS WEAK AND PATCHY. ARSENDPYRITE
R	52.47	56.44	DARK GREY HORNBLENDE FELDSPAR SILL, SULPHIDE-RICH, WEAKLY
	52.47	56.44	BLEACHED, PYRRHOTITE OCCURS AS BLEBS AND DISSEMINATIONS.
R	52.47	55.44	CALCIC ALTERATION IS WEAK AND PATCHY. ARSENOPYRITE DISSEMINATIONS AND VEINS ARE PRESENT.
R	52.47	55.44	DISSEMINATIONS AND VEINS ARE PRESENT.
N PNI		56.44	X PPHF BL3 PP 3 5 2 6 N UC 85 Q1 D¥ 0 3A 3 LC 70 B≃ D+ 2 3
L			3A 3 LC 70 B≃ D+ 2 3 PINK GREY HORNBLENDE FELDSPAR PORPHYRY SILL, MOTTLED, WITH A FRAGMENTED TEXTURE. PATCHY CALCIC ALTERATION AND MODERATE
R	58.22	58.45	PINK GREY HURNBLENDE FELDSPAR PURPHYRY SILL, MUTTLED, WITH A
R			
R	58.22	58.45	BLEACHING OCCUR.
N PNI	58.22	58.45	X PPHF BL5 PP 3 5 1 5 N UC 55 Q3 0 KA 3 LC 35 B) 2 5
L	50 00	en or	KA 3 LC 35 B) 2.5 PINK GREY HORNBLENDE FELDSPAR PORPHYRY SILL, MOTTLED, WITH
R	58.83 58.83	59.86 50.86	PATCHES OF DARK PURPLE BROWN, PATCHY CALCIC ALTERATION, AND
R R	58.83	59.86 59.86	MODERATE BLEACHING OCCUR.
		59.86	X PPHF BL5 PP 3 5 2 5 N UC 45 Q3 D) C
N PNI	30.03	33.00	KA 3 LC 65 B) 2.5
L R	84.30	85.96	DARK GREY HORNBLENDE FELDSPAR PORPHYRY SILL WITH PINK PATCHES,
R	84.30	85.96	WEAK BLEACHING, 10% PATCHY CALCIC ALTERATION, SULPHIDE-RICH
R	84.30	85.96	ZONE. HORNBLENDE PHENOCRYSTS ARE DARK PURPLE BROWN AND
R	84.30	85.96	SURROUNDED BY A 1 MM ENVELOPE OF PALE PINK CALCIC ALTERATION
R	84.30	85.96	HALO. FELDSPARS ARE DARK GREY GREEN TO PALE PINK.
		85.98	X PPHF BL3 3 5 3 6, N UC 55 5(Q1 D* B* 0
			3A 3 LC 50 B+ D★ 2.2
R	35.96	97.76	INTERBEDDED LIGHT GREY CALC-HORNFELS (70%) AND WHITE LIMESTONE

. .

۱ į ステレビー・ションステレビー したい 大学校 教育学 しょうせん しんしゅう ちょうしょう たいしょう しょう

Cnevron Canada Resources Ltd. SMLK

DRILLHOLE/TRAVERSE : S87DH001 (CONTINUED)

E E E	(UNITS = FT)		CORE%TYPI- QAL TEX- GRAIN FRAC-STRUCTUR-1 ALTERATION MINS ORE-TYPE MINS STRUCTUR-1 ALTERATION MINS ORE-TYPE MINS RECOV-RECOV-M ROCK FYING MIN TURES CHARACS TUREHH <th>JMMARY</th>	JMMARY
K F E L Y B		·	ROCK FOR EN RT THOM2 TX TX S R S O DIPF T ID STK DIP KF MU CLEP HE HAPR MO SL HA QUAL MEM V G LC-3 340 N H / SML I 2 AZM RT H H H H H H H DESIG AGE COL R D P C STRUCTUR-2 A A A A A A A	
	85.96 85.96	97.76 97.76 97.76 97.76	(30%). ZONE WITH INCREASED SULPHIDES. ARSENOPYRITE OCCURS AS 3 MM WIDE VEINS AND AT 87.40 M AS A DENSE BAND OF CRYSTALS 4 CM WIDE. SMALL LOCALIZED PATCHES OF DIOPSIDE OCCUR AT 87.40 M ASSOCIATED WITH THE ARESNOPYRITE BAND AND AT 93.80 M.	
N SNI L	85.96	97.76	7 HFCA BL7 BN 1252 D BN 60 Q− Q8 D≢ B− E+ 0 7A 3 D. B)V) 2	8
N SNI L R	1 85. 96 97.76	97.76 99.44	7A 3 D. V- 2	
R R	97.76 97.76	99.44 99.44	PERVASIVE GREEN COLOUR DUE TO ALTERATION, UPPER CONTACT GRADES OVER 30 CM.	
N SN: L N SN:	(97.76 (97.76	99.44 99.44	B HFCA BL7 BN 1 2 5 2 D BN 60 Q. Q8 B+ 0 76 3 Q+ V- 2 2 LMST BL7 BN 1 2 5 2 D BN 60 Q. Q8 D+ V- 2	8
L R	99.44	100.02	8G 3 V- 2 LIGHT GREEN HORNBLENDE FELDSPAR PORPHYRY DYKE WITH A VERY FINE	8
R	99.44 99.44 99.44	100.02 100.02 100.02	GRAINED MATRIX AND PERVASIVE PALE GREEN ALTERATION. PHENDCRYSTS ARE REPLACED BY EPIDDTE. THERE IS A 1 CM WHITE BLEACHED SELVAGE AT BOTH CONTACTS.	
N FN L R	I 99.44 100.02	100.02 100.60		7
R	100.02	100.60	LIMESTONE (20%), PERVASIVE PALE GREEN ALTERATION. B HFCA BL7 BN 1 2 5 2 D BN 60 Q. QB D* 0	
L N SN			7A 3 D¥ 2 2 LMST BL7 BN 1252 D BN 50 0. 08 D≭B− 0	
E R	100.60	102.05	8A 3 V- 2 LIGHT GREEN HORNBLENDE FELDSPAR PORPHYRY DYKE, FINE GRAINED MATRIX, PERVASIVE PALE GREEN ALTERATION.	8
R N FN L	100.60 I 100.60	102.06 102.05	X PPHF BL7 PP 2 5 2 5 N UC 23 P5 D¥ 0 7A 3 LC 30 H2 2	7
R R N PN	106.72 106.72 I 106.72	107.08 107.08 107.03	DARK GREEN, UNALTERED HORNBLENDE FELDSPAR DYKE. SOMEWHAT IRREGULAR CONTACT. X PPHF BL PP 2525 N C/ 15 D(0	
Ľ			36 3 0	
р Г R	114.84	133.00 133.00	HFLS BL2 BD 1 2 5 2 P UC S5 Q1 0 NN 5 2 BN 65 D) 2 VERY THINLY BEDDED BLACK TO DARK GREY HORNFELS WITH 10% PATCHY	1
R R	114.84 114.84	133.00 133.00	WEAK CALCIC ALTERATION (60%), LIGHT GREY THINLY BEDDED LIMESTONE (20%) AND MEDIUM GREY BLEACHED CALC-HORNFELS WITH 80%	
R R	114.84 114.84 114.84	133.00 133.00 133.00	PERVASIVE CALCIC ALTERATION (20%). MODERATELY FRACTURED, 1% Disseminated pyrrhotite throughout the interval, mainly in the Hornfels beds. Minor (less than 5%) tuff occurs. Pale Green	

Ň

1

۱ i

Chevron Canada Resources Ltd. SMLK

DRILLHOLE/TRAVERSE : S87DH001 (CONTINUED)

K I (UNITS = FT)		CORE % TYPI- QAL TEX- GRAIN FRAC- STRUCTUR-1 ALTERATION MINS (RECOV- M ROCK FYING MIN TURES CHARACS TURE H H H H H ANY ERY I TM TM MAT TX TX F C % M T ID STK DIP A A A A A MIN	H H H ANY	
Y G	FROM -	TC	ERY I TM TM MAT TX TX F C % M T ID STK DIP A A A A A MIN (%) X TYPE 1 2 0M1 1 2 F F C P # TK 1 AZM RT 0Z BI CY CB MG XX		
KF		• • •	ROCK FOR EN RT TH QM2 TX TX S R S O DIP F T ID STK DIP KF MU CL EP HE HA	PR MO SL HA	
Ξú			QUAL MEM V Q LC-3 340 N H / SML I 2 AZM RT H H H H		
Υ G			DESIG AGE COL R D P C STRUCTUR-2 A A A A	A A A A	
R	114.84	133.00	PATCHES OF POSSIBLE DIOPSIDE AT 127.48 M AND 132.02 M. THIS		
R	114.84	133.00	INTERVAL EXHIBITS A DISTINCITVE TEXTURE DEFINED BY ALTERNATING		
R	114.94	133.00	BANDS OF GREY, BLACK, AND LIGHT GREY. THE EDGES OF THESE BANDS		
R	114.84	133.00	ARE SOMEWHAT IRREGULAR AND NOT SHARP. CALCIC ALTERATION OFTEN		
R	114.84	133.00	PERMEATES BLACK BANDS OF HORNFELS ALONG THIN (1-2 MM) FRACTURES		
R	114.84	133.00	THAT OCCUR PERPENDICULAR TO BANDING, GIVING THESE BANDS A		
R	114.84	133.00	"VEINED" APPEARANCE.		
N PNI L	114.84	133.00	PERMEATES BLACK BANDS OF HORNFELS ALONG THIN (1-2 MM) FRACTURES THAT OCCUR PERPENDICULAR TO BANDING, GIVING THESE BANDS A "VEINED" APPEARANCE. 2 LMST BD 3 4 4 5 N F/ 55 7A 5		0 0
N SNT	114.84	133.00	7A 5 2 HFCA BL BD 1 2 5 2 N P9		Õ
L		100100	5A 5	D)	23
P	133.00	187.76	HFLS BL1 BN 1252 P3BN 55 Q=		0
L			NN 4	D)	2 1
R	133.00	187.76	INTERBEDDED, THINLY BEDDED BLACK HORNFELS WITH 5% PATCHY CALCIC		
R		187.75			
~5	133.00	187.76	ZONE OF UP TO 3% PYRRHOTITE BLEBS AND STRINGERS SURROUNDED BY		
	133.00	187.75	30 CM OF BLEACHED HORNFELS (CALC-HORNFELS) AT 135.70 M. PALE		
R	133.00	187.75	GREEN ALTERED HORNFELS AT 141.30 M WITH DISSEMINATED SULPHIDES.		
ĥ	133.00	187.76	2 CM WIDE BAND OF PALE PINK CALC-HORNFELS WITH 3% PYRRHOTITE		
R	133.00	187.76	BLEBS AT 155.50 M. PALE GREEN ALTERATION WITH ASSOCIATED		
R	133.00	187.76	SULPHIDES AT 184.36 M.		
N PNI	133.00	187.76	CA 4 SILT BD 2353 N		0
L			3A 4		0
			DARK GREY HORNBLENDE FELDSPAR PORPHYRY SILL; WITH UP TO 3%		
R	140.62		BLEBS OF PYRRHOTITE.		
N PNI	140.52	141.08	X PPHF PP 3 5 2 6 N UC 60 Q+		Q
			3A 3 LC 60	B+	21
8	150.94	161.57	PINKISH GREY HORNBLENDE FELDSPAR PORPHYRY SILL, 30% PERVASIVE		
R	150.94	161.57	CALCIC ALTERATION, MODERATELY BLEACHED.		
N PNI	160.94	161.57	X PPHF BL5 PP 3 5 2 6 N UC 65 P3	F .	0
2			KA 3 LC 68	§+	2 5
R	161.57	164.56	ZONE OF INCREASED BLEACHING AND SULPHIDES TO 3%. PALE GREEN		
R	161.57	164.56	ALTERED HORNFELS AT 164.32 TO 164.56 M.		A
N SNI	161.57	164.56	7 HFLS BLS BN 1252 D 3 BN 55 Q3	n.	0
L			5A 4 -	D+	25
N SNI	151.57	164.56	3 SILT BL1 BN 1 2 5 2 D 3 BN 55 Q= NN 4	D)	0 2 1
R	164.56	164.96	MEDIUM GREY HORNBLENDE FELDSPAR PORPHYRY SILL, SOME PHENOCRYSTS		
R	164.56	164.96	ARE ALTERED TO A DARK PURPLE BROWN COLOUR, 10% PERVASIVE CALCIC		
R	164.56	164.96	ALTERATION.		
- N ENI	154.55	164.96	X PPHF 3L2 3 5 2 6 N UC P1		0
_			SA S LC	8+	22
R	157.02	179.28	INTERBEDDED CALC HORNFELS (60%) AND LIGHT GREEN HIGHLY BLEACHED		

Chevron Canada Resources Ltd. SMLK

DRILLHOLE/TRAVERSE : S87DH001 (CONTINUED)

KL(EA	- INTERV UNITS = FT) FROM - T	RI	DRE Ecov- Ery %)	M	-	FYI TM	NG MI Tm ma	N TU T TX	IRES TX	CH F	IAR/ C 7	ACS / M	FRAC- TURE # TK		TI	TRUCI D STI AZI	(DIP	H A	H A	H A	H A	H # A	NY MIN	H N A	H	H # A	ANY MIN	SUMMARY	
K F E L Y G		QI		MEM	en Rt V Q					0		1/	DIP F SML I		2	ID STI AZI STRUCI	1 RT			H	H	HE H A	H	H	Η	H	H		
R R N SNI L	167.02 1	79.28 79.28 79.28	TH	IS I	EOUS : NTERVI SILT	AL "I	BLOCK	-		WE 1			ACTURE	D. D			5 FOU 55				Р5			D)				15 26	

SUNMARY REMARKS

DRILL HOLE S87DH001 WAS COLLARED ON THE LOST HORSE 86 CLAIM AND DRILLED TO A TOTAL DEPTH OF 187.76 METRES, ALONG AN AZIMUTH OF 077 DEG. AND DIP OF -65 DEG. THE HOLE WAS LOCATED EAST OF THE COPPERFIELD CONGOLMERATE OUTCROP IN AN AREA OF EXTENSIVE CALCIC ALTERATION AND WAS DRILLED TO TEST THE POTENTIAL FOR SKARN MINERALIZATION WITHIN THE UNDERLYING CARBONATES AND INTENSELY ALTERED CLASTIC SEDIMENTS. INTERBEDDED CALC-HORNFELS AND LIMESTONE WAS DRILLED FROM 0.91

INTERBEDDED CALC-HORNFELS AND LINESTONE WAS DRILLED FROM 0.91 TO 114.87 METRES. THIS ZONE HAS UNDERGONE UP TO 80% CALCIC ALTERATION, PATCHY AND PERVASIVE, AND IS CUT BY A FEW SULPHIDE-RICH HORNBLENDE FELDSPAR PORPHYRY SILLS. INTERBEDDED HORNFELS AND CALCAREOUS SILTSTONE DCCUR FROM 114.87 TD 187.76 METRES. CALCIC ALTERATION OF THIS INTERVAL IS WEAK, USUALLY LESS THAN 20%, AND LOCALLY RANGES UP TO 50%. THIS ZONE IS ALSO INTERSECTED BY A FEW SILLS AS ABOVE.

S. M. Cllus

APPENDIX VII

STATEMENT OF EXPLORATION AND DEVELOPMENT

l

		· · · · · ·	
		ry of Energy, Mines and Pession - TITLES BRANCH	Lost Horse Group SUB-RECORDER etroleum Résources
	MINERA		DEC 20 1987
STATEMENT OF EXF	PLORAT		VELOPMENT
Sandy G. McAllister		Agent for Chevron Mi	nerals Ltd.
(Name) 201 - 1286 W. 14th Avenue		1900 - 1055 W.	Name Hastings Street
(Address) Vancouver, B.C.		Vancouver, B.C.	(Address)
V6H 1P9 7	136-2149	V6E 2E9	668-5491
(Postai Code)	(Telephone Number)	(Postal Code)	(Telephone Num
Valid subsisting F.M.C. No. MCALS 21864	2	Valid subsisting F.M.C. No	279240
TE THAT			
Record No(s) 1523, 1524, 1525, 1		1528, 2392	Clair
Situate at 6 km south of Hedley	•		Mining Divis
to the value of at least 71,669			
of May 19 8	7 lo the 1	Oth day of Novemb	er 19 87
2. The following work was done in the 12 months in wh	nich such work is r	equired to be done:	
[COMPLETE APPRO	PRIATE SECT	ION(S) A, B, C, D, FOLLO	WING]
PHYSICAL (Trenches, open cuts, adits, p	its, shalts, reclam	ation, and construction of roads a	and trails.)
(Give details as required by sec	ction 13 of regulati	ons.)	COST
Contract D-6 Cat and Operator:	@ \$75/hr.		
Road building 10.6 hrs.			\$ 795
Trenching 22.1 hrs.			1,657
Road upgrading 4 hrs.			300
D-6 Cat mob and demob			175
Ortho photo			2,000
			\$ 4,927

I wish to apply \$ 4,800 of physical work to the claims listed below.

(State number of years to be applied to each claim, its month of record, and identity each claim by name and record number.)

Claim	Record No.	Month	Units	Word Applied	Years Earned
Lost Horse 86	2392	Mar.	18	\$3,600	1
Lost Horse #1	1523	Apr	1	200	1
Lost Horse #2 Lost Horse #3	1524 1525	Apr.	1	200	1
Lost Horse #4 Lost Horse A	1526	Apr. Apr.	1	200	1
B. PROSPECTING	(Details in report su (The itemized cost i	bmitted as per se			COST
			t e serve		

t wish to apply \$ of this prospecting work to the claims listed below.

(State number of years to be applied to each claim, its month of record, and identify each claim by name and record number.)

.....

Lost Horse Group

C .	DRILLING	(Details in report submitted as per section 8 of regulations.) (The itemized cost statement must be part of the report.)		COST
— D.	GEOLOGICAI	., GEOPHYSICAL, GEOCHEMICAL		
		(Details in report submitted as per section 5, 6, or 7 of regu (The itemized cost statement must be part of the report.) (State type of work in space below.)	lations.)	
		· · · · · · · · · · · · · · · · · · ·		
		т	OTAL OF C AND D	

Where the above statement requires a technical report as per section C of the Mineral Act Regulations, the author of the report shall complete both copies of the ASSESSMENT REPORT TITLE PAGE AND SUMMARY form and include the completed forms in the assessment reports.

Who was the operator (provided the financing)?	Name	
use instructing) :	Addre	355
		•

Portable Assessment Credits	AMQUNT		
Amount to be withdrawn from owner(
	Name of Own	ner/Operator	
[May be no more than 30 per cent of value of the approved work submitted as assessment work in C and (or) D.]	1		
	2.		
	3.		
		TOTAL WITHDRAWAL	
	TOTAL OF C AND	OR) D PLUS PAC WITHDRAWAL	

I wish to apply \$ of this work to the claims listed below.

(State number of years to be applied to each claim, its month of record, and identify each claim by name and record number.)

 Value of work to be credited to portable assessment credit (PAC) account(s).

 [May only be credited from the approved value of C and (or D) not applied to claims.]

 Name
 AMOUNT

 Name
 2.

 3.
 3.

I, the undersigned Free Miner, hereby acknowledge and understand that it is an offence to knowingly make a false statement or provide false information under the *Mineral Act*. I further acknowledge and understand that if the statements made, or information given, in this Statement of Exploration and Development are found to be false and the exploration and development has not been performed, as alleged in this Statement of Exploration and Development, then the work reported on this statement will be cancelled and the subject mineral claim(s) may, as a result, forfeit to and vest back to the Province.

of mailuse

M579 PHY

TRENCH	LENGTH	WIDTH	AREA
	(M)	(M)	(MxM)
587TR001	370.2	व	1480.8
587TR002	48.1	व	192.4
587TR003	24.8	्व	99.2
	443.1	na mala kata kata kata kata kata kata kata k	1772.4
RDAD	LENGTH	WIDTH	AREA
	(M)	(M)	(MxM)
TO HOLE 1	235.0	4	940.0
	235.0	-	940.0

PHYSICAL WORK: LOST HORSE 1987 GROUP

A D-6 bulldozer & operator contracted from High Alpine were used to constructed the new roads and to upgraded approximately 1800 m of existing roads. The bulldozer was working on all or part of these claims during the period of Sept.8-12,1987 and Sept.14-17,1987. See attached map for details. APPENDIX VIII

PETROGRAPHIC DESCRIPTIONS

5

SIMILKAMEEN THIN SECTIONS

THIN SECTION (1): S87DH001 at 15 m.

Hand Specimen Description:

1000

Interbedded light grey to pink calc-hornfels (90%), pale grey limestone (5%) and tuff (5%).

Thin Section Description:

Very fine grained heterogeneous rock with coarser grained segments - possibly fracture fillings.

The fine grained section is predominantly quartz, calcite, and a pale yellow-brown pyroxene(?) of moderate birefringence. Calcite is very fine and looks interstitial. Very fine grains makes identification difficult. Rare, colourless isotropic garnets occur as subhedral crystals and occasionally occur rimming irregular lenses of opaque minerals. The opaque minerals also occur as subhedral blebs.

The coarse material is a possible fracture filling that has sharp contacts with the finer material and narrow reaction rims of fine interstitial carbonate. Minerals include a lathlike colourless mineral with a grainy to weakly cleaved texture, pale orange birefringence, biaxial nature and moderate positive relief. Rare twinning can be seen; this could be a feldspar. Also, large calcite crystals and small hexagonal opaque disseminations are seen. Rare poikilitic quartz occurs as very large crystals in this section.

35% Quartz
20% Pyroxene(?)
25% Calcite
2% Opaque
15% Feldspar(?)
1% Garnet

THIN SECTION (2): S87DH001 at 24 m.

Hand Specimen Description:

Interbedded light grey to pink calc-hornfels (90%), pale grey limestone (5%) and tuff (5%).

Thin Section Description:

Inequigranular medium-grained carbonates (calcite \pm dolomite?) occur with finer grained interstitial (secondary?) quartz + calcite and as inclusions in larger crystals. Several pale grey-beige stringers less than 1 mm wide consist of very fine grained material of low to moderate birefringence - possibly mix of quartz + feldspar, with occasional subhedral calcite crystals (very high birefringence). Most of the grains are too small to identify.

- 90% Calcite (± dolomite) colourless, and often with well developed cleavage lamellae at 45° and 60°. Most of the grains are subhedral hexagons. Uniaxial.
- 5% Quartz fine grained interstitial disseminations throughout calcite section is also present (very fine grained) in thin stringers.
- 5% Unidentified mineral pale brown in plane polarized light, low birefringence. Dominant in pale beige stringers and rarely in main calcite section. It occasionally has a fibrous texture. Too fine grained to identify.

THIN SECTION (3): S87DH001 at 46 m.

Hand Specimen Description:

Interbedded light grey to pink banded calc-hornfels (80%) and white limestone (20%). The rock shows patchy calcic alteration and contains a trace pyrite and up to 3% pyrrhotite at the footwall of a sill at 44.68 – 47.68 m.

Thin Section Description:

Generally a very fine grained rock composed chiefly of colourless quartz with a fine grained interstitial colourless to very pale yellow-brown mineral. This mineral has a moderate to high birefrigence appearing as very bright, pale pink-green flecks under crossed-nicols. It is probably a white mica, or more likely a carbonate (calcite?) as secondary alteration. The quartz grains occasionally form larger aggregate blebs. Opaque minerals occur locally to 5%, but average 2% of total rock. The opaques are generally as fine disseminations and occasionally subhedral hexagonal crystals. Minor brown biotite is present but less than 1%. One portion of the slide is much coarser grained quartz. The grains show sutured, irregular contacts and lack the uniform grain appearance seen in the finer material. Possibly hydrothermally altered. Also present in this section is a colourless, anhedral mineral with pale-orange birefringence and high positive relief, which is closely associated with the quartz. It could be olivine.

The contact between the coarse and fine sections is relatively sharp and marked by an irregular, discontinuous band of disseminated opaque grains.

- 80% quartz
- 1% biotite
- 2% opaques sulphides ± limonite
- 8% white, brightly birefringent interstitial mineral calcite? white mica?
- 10% very pale yellow-white, low-moderate birefringent, high positive relief mineral -olivine? chlorite?

THIN SECTION (4): S87DH001 at 97 m.

Hand Specimen Description:

Interbedded light grey calc-hornfels (70%) and white limestone (30%), with 1% pyrrhotite blebs, 1% arsenopyrite veins and a trace limonite

Thin Section Description:

Non-uniform sample. It consists of a fine to very fine grained, partially fragmental matrix with a vein or lens of medium grained, radiating crystals. Numerous very fine grained calcite stringers (less than 0.5 mm) cut the rock. The main host rock is a very fine grained mixture of guartz ± plagioclase? feldspar and a pale yellow-brown mineral of moderate birefringence; possibly a pyroxene. Minor disseminated subhedral opaques are also present. This section contains additional subhedral quartz grains coarser than the matrix but which do not look porphyritic. Texture looks possibly tuffaceous. Grain sizes are too small to allow exact identification of minerals. A veinlet less than 8 mm wide cuts the fine grained material. The contacts are fairly sharp but with less than 2 mm margins flooded with a very fine pale brown mineral. The vein is dominantly made up of colourless, aggregates of radiating, thin lath-shaped crystals of very low birefringence, possibly wollastonite. The "vein" also contains very fine grained interstitial calcite, rare disseminated opaques and a trace of dark red-brown isotropic, subhedral garnet. Also with the vein is a pale yellow-brown very fine grained mineral of moderate birefringence possibly fine pyroxene(?). The matrix also contains occasional lenses of very fine grained calcite which are also cut by later calcite veinlets. Rare, irregular stringers of a redbrown opaque mineral which could be limonite or hematite, are also seen.

- 25% quartz individual grains and fragments
- 15% calcite
- 40% pyroxene(?) pale brown-yellow in plane polarized light
- 1% garnet
- 2% opaque sulphides ± limonite?, hematite?
- 15% wollastonite? radiating crystal aggregates

- 42 -