Off Confidential: 89.02.22 District Geologist, Kamloops ASSESSMENT REPORT 17095 MINING DIVISION: Nicola Flop **PROPERTY:** 119 47 30 50 03 00 LONG LAT LOCATION: 11 5547704 300144 UTM 082L04W NTS CLAIM(S): Flop Chevron Min. OPERATOR(S): AUTHOR(S): Ziebart, P. REPORT YEAR: 1988, 11 Pages COMMODITIES SEARCHED FOR: Gold, Copper, Molybdenum/Molybdenite GEOLOGICAL A northwesterly striking sequence of siliceous argillites with SUMMARY: minor limestone and volcanic rocks of Upper Paleozoic age are cut by small quartz-monzonite and quartz porphyry bodies. WORK Prospecting DONE: 375.0 ha PROS Map(s) - 1; Scale(s) - 1:500020 sample(s) ;ME ROCK 3 sample(s) ;ME SILT

| LOC NO: 0303                              | RD. |
|-------------------------------------------|-----|
| Pice ( Just)                              |     |
| $\mathbb{E}_{\mathcal{F}} \in \mathbb{N}$ | :   |
| FILE NO:                                  |     |

### PROSPECTING

### **ASSESSMENT REPORT**

## on the

FLOP CLAIM

Faltry

**KELOWNA AREA** 

# NICOLA MINING DIVISION, B.C.

GEOLOGICAL BRANCH ASSESSMENT REPORT

| NTS:         | 82L/4W                |      |
|--------------|-----------------------|------|
| LATITUDE:    | 50° 03'               | OOF  |
| LONGITUDE:   | 119° 47.5'            | INNO |
| OWNER:       | Chevron Minerals      |      |
| CONSULTANTS: | Discovery Consultants |      |
| AUTHOR:      | Paul Ziebart          |      |
| DATE:        | January 28, 1988      |      |



# TABLE OF CONTENTS

| INTRODUCT | ION     | ••         | •••   | • • • • | • • • | ••• | ••    | •••   | •••   | •••   | ••• | • • • | ••• | •••   | ••• | • • • | .Page | 1   |
|-----------|---------|------------|-------|---------|-------|-----|-------|-------|-------|-------|-----|-------|-----|-------|-----|-------|-------|-----|
| GEOLOGY   | • • • • | •••        | •••   | • • • • | •••   | ••• | •••   | •••   | • • • | • • • | ••  | •••   | ••• | • • • | ••• | • • • | .Page | 1 . |
| INTERPRET | ATIC    | D N        | •••   | •••     | •••   | ••• | •••   | • • • | •••   | • • • | ••• | • • • | ••• | •••   | ••• | • • • | .Page | 2   |
| TECHNICAL | DAI     | ΓA         | • • • | •••     | ••••  |     | •••   | •••   | • • • | •••   | ••  | •••   | ••• | •••   | ••• | •••   | .Page | 3   |
| STATEMENT | O F     | <b>C</b> 0 | STS   | • • •   |       | ••• | • • • | • • • | •••   | • • • | ••  | •••   | ••• | • • • | ••• | •••   | .Page | 5 , |
| STATEMENT | 0 F     | QU         | ALI   | FICA    | TIC   | NS  | ••    | •••   | •••   | • • • | ••  | •••   | ••• | • • • | ••• | • • • | .Page | 6   |
| APPENDIX  | J.      |            |       |         |       |     |       |       |       |       |     |       |     |       |     |       |       |     |

# ILLUSTRATIONS

| Figure 1 | Location Map           | Following Page 1 |
|----------|------------------------|------------------|
| Figure 2 | Sample Location Map 1: | In Pocket        |

### INTRODUCTION

The FLOP claim is located 3.5km north of Tadpole Lake and 25km N.W. of Kelowna, B.C. A total of 3 days was spent by the author prospecting the property from July 2, 1987 to July 4, 1987. Twenty rock samples and three stream sediment samples were collected and sent to Bondar-Clegg & Company Ltd. in North Vancouver, B.C., for geochemical analysis. A number of samples proved to be anomalous and can be grouped in one of two categories of anomalies: (1) narrow quartz veins with copper and molybdenum, and (2) narrow quartz veins in quartz-feldspar porphyry that are high in lead, silver, and bismuth. The lack of any significant gold values in the narrow quartz veins diminishes their economic potential considerably.

#### GEOLOGY

A northwesterly striking sequence of siliceous argillites with minor limestone and volcanic rocks of Upper Paleozoic age are cut by small quartz-monzonite and quartz porphyry bodies.

- 1 -



## INTERPRETATION

The Dobbin porphyry molybdenum property (held by Cominco) is located immediately south of the copper-molybdenum, silver, lead, and bismuth anomalies. The two types of mineralization discovered are typical of the type of veins found near the periphery of copper-molybdenum porphyry deposits.

Exploration work on the Flop claim had been targeted toward the discovery of epithermal type gold mineralization but the sampling and prospecting failed to show any indications of this type of mineralization.

- 2 -

#### TECHNICAL DATA

- Sample No. Description
- Z-87-R-107 Outcrop in ditch. Silicified argillites cut by numerous quartz veins & veinlets. Sampled 5cm wide quartz vein with weak py. Quartz vein zone is minimum 15 metres wide.
- Z-87-R-108 Outcrop. Same location as R-107. Sampled rusty siliceous argillite host rock.
- Z-87-R-109 Local angular float. Quartz monzonite with quartz veinlets, weak py.
- Z-87-R-110 Outcrop. Silicified argillite cut by numerous quartz veins & veinlets, pyritic.
- Z-87-R-111 Silicified argillite boulder (1 m wide) with pyritic quartz veinlets.
- Z-87-R-112 Sub-outcrop. Light green-grey highly siliceous rock with molybdenum, pyrite and occasional specks of cpy. Numerous quartz veinlets.
- Z-87-R-113 Outcrop. Highly siliceous, altered meta-seds. Rusty weathering, blue-grey colour with heavy disseminations of pyrite. Quartz veinlets. Some interbedded limestones.
- Z-87-R-114 Outcrop. Rusty weathering siliceous argillites with pyrite & quartz veinlets. Pyrite is disseminated and in the quartz veinlets.
- Z-87-R-115 Local angular boulders siliceous limestone with disseminated pyrite.
- Z-87-R-116 Outcrop. Blue-grey, fine-grained siliceous rock (sed?) with v.f.g. disseminated pyrite.
- Z-87-R-117 Outcrop. Highly siliceous, rusty weathering meta-sed, cut by quartz veinlets.
- Z-87-R-118 Outcrop. Quartz monzonite cut by several parallel quartz veins up to 4 cm wide  $(040^{\circ}/75^{\circ}E)$  No visible sulphides. Limonitic.
- Z-87-R-119 Outcrop. Same description as R-118.

2 m.

- 3 -

÷...

- Z-87-R-120 Outcrop. Cat trench, south wall, shear zone l m wide with abundant pyrite & quartz bands, veinlets. Zone hosted by a medium grained diorite. The sheared rocks are highly altered and badly weathered (shear zone 055°/50°E).
- Z-87-R-121 Cat trench, south wall 40 cm wide zone consisting of intrusive dyke with narrow faults on both contacts. Highly altered, bleached, pyritic  $(330^{\circ}/90^{\circ})$ . Dyke can be traced to north side of trench.
- Z-87-R-122 Cat trench, north wall, 26 cm wide intrusive dyke, highly altered, bleached, pyritic, same dyke as in south wall.
- Z-87-R-123 Cat trench, north wall. Diorite, well fractured pyritic, silicified, epidote alteration bleached where shearing is most intense. Dyke in R-121, 122 is probably the same diorite that is bleached & highly altered near the shear zones.
- Z-87-R-124 Float, ultramafic with heavy magnetite.
- Z-87-R-125 Outcrop. Light green-grey highly siliceous foliated rock (acid vol.?) with lenses of calcite parallel to foliation planes. Disseminations & patches of fine grained pyrite. Several small aplite dykes.
- Z-87-R-126 Outcrop. Feldspar porphyry. Several quartz veins up to 3 cm wide pyritic.

| Flop - | 1 | Stream | sediment | sample |
|--------|---|--------|----------|--------|
| Flop - | 2 | Stream | sediment | sample |
| Flop - | 3 | Stream | sediment | sample |

- 4 -

# STATEMENT OF COSTS

| 1). | Prospecting, Paul Zeibart<br>July 2-4, 1987 3 days @ \$2<br>Report Writing<br>Paul Ziebart 1 day @ \$22 | 205/day<br>25/day | \$ 615.00<br>225.00 |
|-----|---------------------------------------------------------------------------------------------------------|-------------------|---------------------|
| 2). | Expenses<br>Transport 4x4 Scout<br>486km @ .30/km                                                       | 170.10            |                     |
|     | Drafting                                                                                                | 44.00             |                     |
|     | Secretarial, photocopies,<br>map prints                                                                 | 75.00             | 289.10              |
| 3). | Geochemical Analysis<br>Sample Preparation<br>3 @ \$ .90 2.70<br>20 @ 3.25 <u>65.00</u>                 | 67.70             |                     |
|     | Analysis for As, Ag, Bi, Co,<br>Cu, Mo, Pb, Sb, Th, Zn, Au<br>23 samples @ \$13.50                      | 310.50            | 378.20              |
|     |                                                                                                         | Total             | \$1507.30           |

.

÷

## STATEMENT OF QUALIFICATIONS

I, Paul A. Ziebart, of the city of Kelowna, in the Province of British Columbia, do hereby state that:

- 1. I completed a two year course in Mining Technology at the Haileybury School of Mines in Haileybury, Ontario in 1969.
- 2. I have been employed as a prospector and/or technician in various phases of mining exploration for the last nineteen years.
- 3. I have been involved in mineral exploration programs carried or in B.C., the Yukon, N.W.T. and Quebec in the last nineteen years.

2 ?-lat

Paul Ziebart

January 28, 1988 Vernon, B.C.

- 6 -

APPENDIX

### GEOCHEMICAL RESULTS

A total of three stream sediment samples using the -80 mesh fraction and twenty rock samples using the -150 mesh fraction was analysed by Bondar-Clegg and Company. Analysis for gold was carried out by standard fire assay/atomic absorption methods and for Cu, Pb, Zn, Mo, Ag, Co, Bi, As, Sb and Tl by D.C. Plasma/Atomic Emission Spectroscopy following HNO<sub>3</sub>-HCl extraction.

| Sample ID   | Cu  | Pb  | Zn  | Mo   | Ag   | Co  | Bi   | As  | Sb  | Tl  | Au  |
|-------------|-----|-----|-----|------|------|-----|------|-----|-----|-----|-----|
|             | ppm | ppm | ppm | ppm  | ppm  | ppm | ppm  | ppm | ppm | ppm | ppb |
| FLOP1       | 20  | 17  | 54  | 19   | -0.5 | 5   | -2   | 9   | - 5 | 1.  | -5  |
| FLOP2       | 26  | 14  | 79  | 4    | -0.5 | 9   | -2   | -5  | -5  | 1   | -5  |
| FLOP3       | 34  | 55  | 108 | 36   | -0.5 | 20  | 4    | -5  | -5  | 2   | -5  |
| Z-87-R-107  | 13  | 9   | 14  | 20   | -0.5 | 2   | -2   | -5  | -5  | -1  | -5  |
| Z-87-R-108  | 19  | 7   | 52  | 10   | -0.5 | 5   | -2   | -5  | -5  | 1   | -5  |
| Z-87-R-109  | 30  | 37  | 19  | 5    | 0.9  | 2   | 9    | 85  | 7   | 3   | 10  |
| Z-87-R-110  | 204 | 13  | 246 | 93   | -0.5 | 12  | 2    | -5  | -5  | 2   | -5  |
| Z-87-R-111  | 234 | 14  | 70  | 116  | -0.5 | 11  | 5    | -5  | -5  | 2   | -5  |
| Z-87-R-112  | 300 | 19  | 59  | 2351 | -0.5 | 13  | -2   | -5  | - 5 | -1  | - 5 |
| Z-87-R-113  | 167 | 9   | 71  | 429  | -0.5 | 14  | ·· 2 | -5  | -5  | 1   | -5  |
| Z-787-R-114 | 68  | 5   | 92  | 58   | -0.5 | 10  | 4    | -5  | -5  | 1   | -5  |
| Z-87-R-115  | 62  | 9   | 29  | 14   | -0.5 | 3   | -2   | -5  | -5  | -1  | -5  |
| Z-87-R-116  | 56  | 9   | 43  | 7    | -0.5 | 9   | 6    | -5  | -5  | 2   | ~5  |
| Z-87-R-117  | 49  | 17  | 63  | 51   | -0.5 | 5   | 2    | -5  | -5  | 2   | -5  |
| Z-87-R-118  | 5   | 17  | 20  | 15   | 1.5  | 1   | 42   | ~5  | -5  | 1   | -5  |
| Z-87-R-119  | 4   | 28  | 25  | 29   | 0.6  | 1   | 29   | - 5 | -5  | 3   | ~5  |
| Z-87-R-120  | 103 | 22  | 79  | 13   | 0.7  | 10  | 4    | -5  | 9   | 1   | 30  |
| Z-87-R-121  | 88  | 25  | 64  | 17   | 1.2  | 4   | 11   | 7   | 6   | 2   | -5  |
| Z-87-R-122  | 56  | 15  | 50  | 70   | -0.5 | 4   | 4    | -5  | -5  | 1   | 25  |
| Z-87-R-123  | 66  | 15  | 72  | 4    | -0.5 | 14  | -2   | -5  | -5  | 1   | ~5  |
| Z-87-R-124  | 79  | -5  | 71  | 2    | -0.5 | 26  | -2   | -5  | -5  | -1  | ~5  |
| 2-87-R-125  | 72  | 16  | 18  | 27   | 0.5  | 7   | 6    | -5  | -5  | 1   | ~5  |
| Z-87-R-126  | 17  | 416 | 91  | 54   | 20.2 | 3   | 739  | - 5 | -5  | 1   | -5  |

A " - " symbol for any geochem value refers to a result less than detection limit.



| Z-87-R-107 Outcrop in ditc<br>numerous quartz<br>wide quartz vei<br>is minimum 15 m                                                                                                                                                        | ch. Silicified argillites cut by<br>c veins & veinlets. Sampled Scm<br>n with weak py. Quartz vein zone<br>netres wide.                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Z-87-R-108 Outcrop. Same<br>siliceous argil<br>Z-87-R-109 Local angular f<br>quartz veinlets                                                                                                                                               | location as R-107. Sampled rusty<br>lite host rock.<br>loat. Quartz monzonite with<br>, weak py.                                                                                             |
| Z-87-R-110 Outcrop. Silici<br>quartz veins &<br>Z-87-R-111 Silicified argi                                                                                                                                                                 | fied argillite cut by numerous<br>veinlets, pyritic.<br>llite boulder (1 m wide) with                                                                                                        |
| Z-87-R-112<br>Z-87-R-112<br>Sub-outcrop. L<br>rock with molyb<br>specks of cpv.                                                                                                                                                            | veinlets.<br>ight green-grey highly siliceous<br>denum, pyrite and occasional<br>Numerous guartz veinlets.                                                                                   |
| Z-87-R-113<br>Outcrop. Highl<br>Rusty weatherin<br>disseminations<br>Some interbedde                                                                                                                                                       | y siliceous, altered meta-seds.<br>g, blue-grey colour with heavy<br>of pyrite. Quartz veinlets.<br>d limestones.                                                                            |
| Z-87-R-114<br>With pyrite & q<br>disseminated an                                                                                                                                                                                           | weathering siliceous argillites<br>uartz veinlets. Pyrite is<br>d in the quartz veinlets.                                                                                                    |
| Z-87-R-115<br>Local angular be<br>with disseminate<br>Z-87-R-116<br>Outcrop. Blue-                                                                                                                                                         | oulders - siliceous limestone<br>ed pyrite.<br>grey, fine-grained siliceous                                                                                                                  |
| z-87-R-117 Outcrop. Highl<br>meta-sed, cut b                                                                                                                                                                                               | h v.f.g. disseminated pyrite.<br>y siliceous, rusty weathering<br>y quartz veinlets.                                                                                                         |
| Z-87-R-118<br>Qutcrop. Quartz<br>parallel quartz<br>(040 <sup>0</sup> /75 <sup>°</sup> E) No<br>Z-87-R-119<br>Qutcrop. Same                                                                                                                | z monzonite cut by several<br>veins up to 4 cm wide<br>visible sulphides. Limonitic.                                                                                                         |
| Z-87-R-120 Outcrop. Cat tr<br>1 m wide with at<br>veinlets. Zone                                                                                                                                                                           | rench, south wall, shear zone<br>bundant pyrite & quartz bands,<br>hosted by a medium grained                                                                                                |
| diorite. The sh<br>and badly weathe<br>Z-87-R-121 Cat trench, sout<br>consisting of ir<br>on both contacts<br>pyritic (330°/90                                                                                                             | heared rocks are highly altered<br>ared (shear zone 055°/50°E).<br>th wall 40 cm wide zone<br>htrusive dyke with narrow faults<br>s. Highly altered, bleached,<br>0°). Dyke can be traced to |
| Z-87-R-122 Cat trench, north<br>dyke, highly alt<br>dyke as in south                                                                                                                                                                       | rench.<br>ch wall, 26 cm wide intrusive<br>cered, bleached, pyritic, same<br>n wall.                                                                                                         |
| Z-87-R-123<br>Cat trench, nort<br>pyritic, silicif<br>where shearing i<br>122 is probably<br>bleached 6 highl                                                                                                                              | th wall. Diorite, well fractured<br>fied, epidote alteration bleached<br>is most intense. Dyke in R-121,<br>the same diorite that is<br>ly altered near the shear zones.                     |
| Z=87-R-124 Float, ultramafi<br>Z=87-R-125 Outcrop. Light<br>foliated rock (a<br>calcite parallel<br>Disseminations 6                                                                                                                       | ic with heavy magnetite.<br>green-grey highly siliceous<br>icid vol.?) with lenses of<br>to foliation planes.<br>patches of fine grained pyrite.                                             |
| Z-87-R-126 Outcrop. Feldsp<br>veins up to 3 cm                                                                                                                                                                                             | olite dykes.<br>Dar porphyry. Several quartz<br>n wide pyritic.                                                                                                                              |
| Flop - 1 Stream sediment<br>Flop - 2 Stream sediment<br>Flop - 3 Stream sediment                                                                                                                                                           | sample<br>sample                                                                                                                                                                             |
| L L                                                                                                                                                                                                                                        |                                                                                                                                                                                              |
| GEOCHEMICAL RESU<br>A total of three stream sediment sa                                                                                                                                                                                    | mples using the -80 mesh fraction                                                                                                                                                            |
| and twenty rock samples using the -150 m<br>Bondar-Clegg and Company. Analysis for<br>fire assay/atomic absorption methods and<br>As, Sb and Tl by D.C. Plasma/Atomic Emis:<br>HCl extraction.                                             | sion Spectroscopy following HNO <sub>3</sub> -                                                                                                                                               |
| Sample ID   Cu   Pb   Zn   Mo   Ag     PLOP1   20   17   54   19   -0.5     FLOP2   26   17   54   19   -0.5                                                                                                                               | Co B1 As Sb T1 Au<br>ppm ppm ppm ppm ppm ppb<br>5 -2 9 -5 1 -5                                                                                                                               |
| FLOP3   34   55   108   36   -0.5     Z-87-R-107   13   9   14   20   -0.5     Z-87-R-108   19   7   52   10   -0.5     Z-87-R-108   19   7   52   10   -0.5     Z-87-R-109   30   37   19   5   0.9     Z-87-R-110   204   13   245   0.9 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                         |
| Z-87-R-111 234 14 70 116 -0.5   Z-87-R-112 300 19 59 2351 -0.5   Z-87-R-113 167 9 71 429 -0.5   Z-87-R-114 68 5 92 58 -0.5   Z-87-R-115 62 9 20 14 -0.5                                                                                    | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                         |
| Z-87-R-116   56   9   43   7   -0.5     Z-87-R-117   49   17   63   51   -0.5     Z-87-R-118   5   17   20   15   1.5     Z-87-R-118   5   17   20   15   1.5     Z-87-R-119   4   28   25   29   0.6                                      | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                       | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                         |
| Z-87-R-126 17 416 91 54 20.2<br>A * - * symbol for any geochem value refers                                                                                                                                                                | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                         |
|                                                                                                                                                                                                                                            | Ctroom codiment cample                                                                                                                                                                       |
|                                                                                                                                                                                                                                            |                                                                                                                                                                                              |
|                                                                                                                                                                                                                                            |                                                                                                                                                                                              |
|                                                                                                                                                                                                                                            |                                                                                                                                                                                              |
|                                                                                                                                                                                                                                            |                                                                                                                                                                                              |
|                                                                                                                                                                                                                                            |                                                                                                                                                                                              |
|                                                                                                                                                                                                                                            |                                                                                                                                                                                              |
| 2 200                                                                                                                                                                                                                                      |                                                                                                                                                                                              |
|                                                                                                                                                                                                                                            | NAME OF ANY ANY ANY ANY ANY ANY                                                                                                                                                              |
|                                                                                                                                                                                                                                            | GEOLOGICAL BRANCH<br>ASSESSMENT REPORT                                                                                                                                                       |
|                                                                                                                                                                                                                                            | 17 005                                                                                                                                                                                       |
|                                                                                                                                                                                                                                            | 11,092                                                                                                                                                                                       |
|                                                                                                                                                                                                                                            |                                                                                                                                                                                              |
|                                                                                                                                                                                                                                            | DISCOVERY Consultants                                                                                                                                                                        |
|                                                                                                                                                                                                                                            | CHEVRON MINERALS LTD                                                                                                                                                                         |
|                                                                                                                                                                                                                                            |                                                                                                                                                                                              |
| 0 500                                                                                                                                                                                                                                      | FLOP PROPERTY                                                                                                                                                                                |
| Metres                                                                                                                                                                                                                                     | SAMPLE LOCATION MAP                                                                                                                                                                          |
|                                                                                                                                                                                                                                            | Date November 24 1987 Scale : 1:5.000                                                                                                                                                        |
|                                                                                                                                                                                                                                            | DateNovember24, 1987Scale :1:5,000Project278NTS82L/4WFigure2Mining Division :Nicola                                                                                                          |

TECHNICAL DATA

Sample No. Description