Off Confidential: 89.02.03 District Geologist, Victoria MINING DIVISION: Victoria ASSESSMENT REPORT 17105 PROPERTY: Jasper 48 51 00 LONG 124 34 47 LOCATION: LAT 10 5411765 384106 UTM NTS 092C15E CLAIM(S): Jasper 1 OPERATOR(S): Asamera Min. AUTHOR(S): Dupre, D. 1987, 36 Pages REPORT YEAR: COMMODITIES SEARCHED FOR: Copper,Zinc,Gold GEOLOGICAL The Jasper property is underlain by the complexly deformed SUMMARY: Bonanza Group of mafic to felsic extrusive rocks and very minor volcaniclastics. Several small, widely scattered, low-grade copper/zinc mineral occurrences were delineated within lengthy, narrow, fracture/alteration zones. WORK DONE: Geological, Geochemical 225.0 ha GEOL Map(s) - 1; Scale(s) - 1:250025.0 km LINE ROCK 31 sample(s) ;CU,PB,ZN,AG,AU,MN,BA 154 sample(s) ;CU,PB,ZN,AG,AU,MN,BA SOIL Map(s) = 1; Scale(s) = 1:2500RELATED 12260,13916 **REPORTS:** 092C 080,092C 081 MINFILE:

LOG 10: 0303	RD.
ACTION	
FILE NO:	

Asamera Minerals Inc.

Jasper Project

Expenditure Statement

May 1 to December 31, 1987

Salaries (including supervision)	\$ 9,782.81
Assays and Related Costs	3,430.60
Drafting, Report Writing and Related Costs	2,298.80
Camp Equipment, Supplies and Consumables	2,005.82
Transportation: Commercial Flights	356.00
Vehicle	1,483.91
Fuel	190.25
Accommodations	842.40
Expediting and Warehousing	36.80
Total Expenditures	\$20,427.39

January 11, 1988 Dat

12 U 1

David Hassell Project Geologist - Asamera Minerals Inc. .

GEOLOGICAL AND GEOCHEMICAL REPORT on the JASPER PROPERTY Victoria Mining District N.T.S. 92-C/15 Latitude 48°51' North Longitude 124°35' West British Columbia

September 21, 1987

File and

on behalf of LOGICAL BRANCH ASAMERA, INC. TSTATENT BEPORT

Calgary, Alberta

D. G. DuPré, B.Sc., P.Geol., F.GAC

TAIGA CONSULTANTS LTD. #100, 1300 - 8th Street S.W. Calgary, Alberta T2R 1B2

TABLE OF CONTENTS

Loc	DUCT pert atio	y S n a	tat nd	us				•	•	•				•	•		•	·	·	•	•		•	•	•	•	•	•	•	•	1
PREVI	OUS	WOR	К.						•			•		•						•	•								•		5
1987	EXPI	ORA	TIC)N	PR	00	RA	M					•	•	•					•	•			•							6
REGIO	NAL	GEO	LOG	SΥ							•		•		•								•			•			-		8
PROPE	RTY	GEO	LOC	GΥ		•			•	•	•	•	•										•								11
STRUC	TURF	ε		•	•		•		•	•	•			•	•													•	•		15
ALTER	ATIC)N .																													16
MINER	ALIZ	ZATI	ON																												17
CONCL	USIC.	ONS.		•	•		•																								19
RECOM	MENE	ATI	ONS	5.										•																	20
CERTI	FICA	ATE.		•		•			•																						21
REFER	ENCE	ES.														•		•								•		•	•		22

APPENDIX: Rock Sample Descriptions

FIGURES

1	Index Map	•	•	•	•	 •	•	•	•	•		•	3
2	Claim Location Map			•		 •	•	•	•				4
3	Geological Map of Vancouver Island.											•	9

TABLES

1	Table of	Formations	•	•	•	•	•	•	•	•	•	•	•	•		•	•	٠		•	٠	٠	·	•	•	·	٠	10)
---	----------	------------	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	--	---	---	---	---	---	---	---	---	----	---

MAPS (in pocket)

1	Detailed Geologica	l Map	of	the Jasper Property	1:2,500
2	Soil Geochemistry	(Cu,	Zn,	Au plotted)	1:2,500

Jasper Property

INTRODUCTION

Taiga Consultants Ltd. was commissioned by Asamera Inc. to carry out an exploration program over the Jasper Property, located 100 km northwest of Victoria, British Columbia. A two-man crew spent 12 days on the property carrying out detailed geological mapping and geochemical soil sampling.

Several small, widely scattered, low-grade Cu/Zn mineralized occurrences were delineated which are localized within lengthy, narrow, fracture/alteration zones. The current work, together with a re-interpretation of previously obtained data, suggests that the property does not display significant potential for hosting volcanogenic polymetallic massive sulphide deposits. A lengthy gold soil geochemical anomaly was delineated which is coincident with a northeast trending fracture/alteration/quartz stockwork zone. This feature may have potential as an epithermal gold occurrence and warrants further evaluation.

Property Status

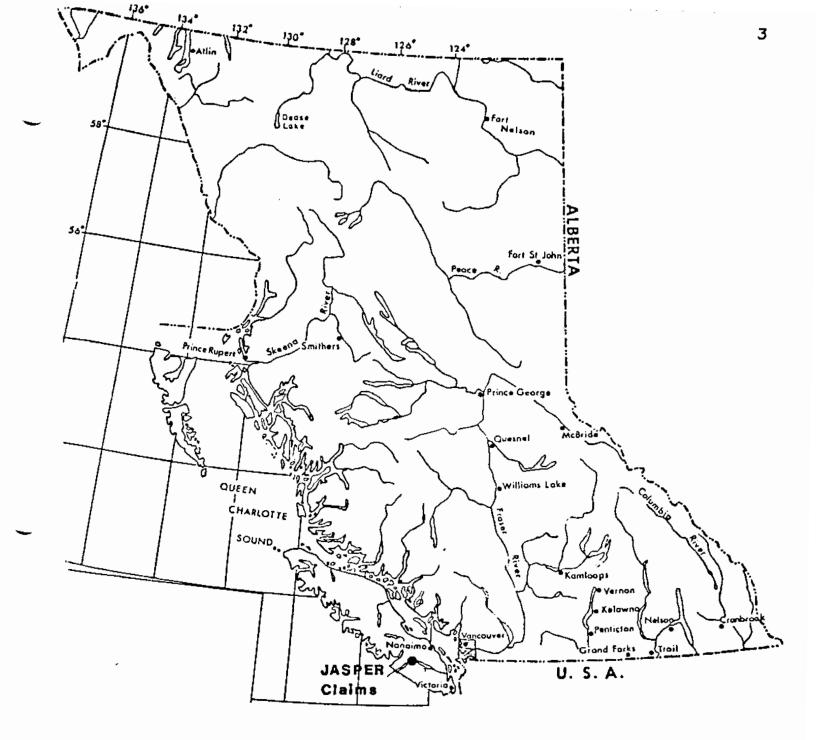
The Jasper property consists of four modified-grid located claims (40 units), registered in the names of Mr. R. Bilquist and Mr. L. Allen of P. O. Box 81, Gabriola Island, B.C. The property is subject to an agreement. between the owners and Asamera Inc. Relevant claim data are tabulated below:

<u>Claim N</u>	ame	Reco	ord No.	<u>Expin</u>	<u>cy I</u>	<u>)ate</u>
Jasper	#1	9	915	May	З,	1988
Jasper	#2	13	63	Sep.	5,	1988
Jasper	#3	13	364	Sep.	5,	1988
Jasper	#4	13	165	Sep.	5,	1988

Jasper Property

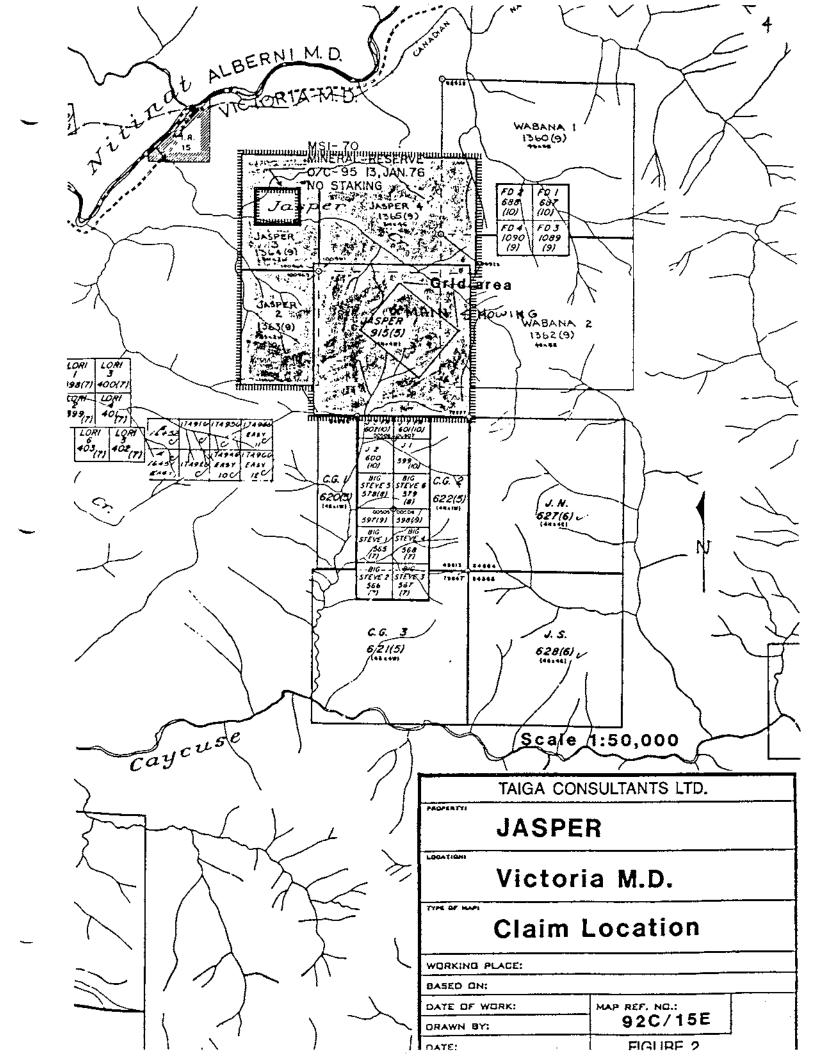
Location and Access

The Jasper property is situated in the southwestern part of Vancouver Island, approximately 100 km northwest of Victoria (Figure 1). The claims are located within the Victoria Mining Division, between Caycuse Creek and Jasper Creek, 7 km northeast of the north end of Nitinat Lake (Figure 2). They are centered about 48°51' North latitude and 124°35' West longitude, within N.T.S. map-area 92-C/15.


The property is easily reached by public access roads from Cowichan Lake to the east or from Port Alberni to the northwest. A subsidiary logging road system provides excellent access within the property. The claims are within the British Columbia Forest Products' Macquina Tree Farm License.

<u>Physiography</u>

The area is characterized by moderately steep terrain with elevations of 200 m ASL along Jasper Creek in the north to 850 m ASL in the southwestern part of the property. Almost all of the Jasper #1 claim has been clear cut within the past several years. This logging activity and associated road building have provided abundant rock exposures and excellent access.


INDEX MAP

BRITISH COLUMBIA

150 0 150 300 450 Km.

SCALE 1: 7.500.000

FIGURE 1

PREVIOUS WORK

The Jasper property was previously staked by Hudson Bay Exploration under the claim names TAM and EASY. Between 1971 and 1975, they carried out a lithogeochemical sampling program over the road network established at that time. Several areas of high copper values were delineated. It is not known if any follow-up work was done on these anomalies.

The present Jasper #1 claim was staked in 1983 by Les Allen and Ron Bilquist to cover a Cu/Zn showing found by prospecting along the network of newly developed logging roads.

Falconbridge Ltd. optioned the claims in 1984 and carried out an exploration program in 1985. Their work consisted of grid establishment; soil sampling; detailed geological mapping; and magnetometer, VLF-EM-16, and "Genie" EM surveying. Several Cu/Zn soil geochemical anomalies were delineated but the geophysical surveys did not produce any encouraging results.

A four-hole (total 188.37 m) "Winkie" drill program tested the continuity of the Main Showing. Low assay values were encountered and poor continuity of surface mineralization was indicated. The best intersection assayed 1.67% Cu and 11 g/t Ag over 1.62 m drilled length. Falconbridge terminated their option agreement in 1986.

1987 EXPLORATION PROGRAM

During July 1987, a two-man crew spent 12 days on the Jasper property carrying out detailed soil geochemical sampling and geological mapping. A previously established grid (100 m line spacing with 25 m station intervals) was used for control in the central part of the property.

Geological Mapping

The writer carried out 20 line km of detailed geological mapping on the Jasper #1 claim. The grid and a topographic map (scale 1:5000) were used for control. All of the roads were traversed, as excellent exposures are present in the cuts. The results are plotted on Map 1 at a scale of 1:2500.

<u>Lithogeochemistry</u>

Thirty-one grab samples were collected and analyzed for Cu, Pb, Zn, Ag, Mm, Au, and Ba. The analytical techniques utilized, sample descriptions, and the results are tabulated in the Appendix.

Only two of the samples returned significant results. Sample R2 07/16 E (0.6% Cu and 1.33% Zn) was collected from a small (<1 m²) mineralized zone characterized by altered mafic flows with 5% to 10% pyrite and trace to 1% sphalerite and chalcopyrite occuring along fractures. This showing is too limited to be of any significance. Sample R2 07/21 N (0.9% Cu and 25.6% Zn) is from the Main Showing. The sample comprised massive, weakly banded, coarse-grained sulphides (60% pyrite, 35% sphalerite, 5% chalcopyrite). Unfortunately, the massive sulphides are very irregularly distributed in this showing.

Jasper Property

Soil Geochemistry

A limited soil geochemical sampling program was carried out in the central part of the Jasper #1 claim. B-horizon soil samples were collected at 25 m intervals along 100 m spaced lines. These 154 samples were analyzed for Cu, Pb, Zn, Ag, Mn, Au, and Ba. The analytical techniques and results are presented in the Appendix. The Cu, Zn, and Au results are plotted on Map 2.

Most of the elements are irregularly distributed with no distinct anomalies evident. However, a 300+ m long gold anomaly was delineated in the northwestern part of the grid. This anomaly is open at both ends, and is approximately 50 m wide. It is characterized by values greater than 10 ppb Au with a maximum value of 150 ppb Au. The anomaly is coincident with an elongate northeast-trending zone of fracturing, alteration, and quartz stockwork development.

Jasper Property

REGIONAL GEOLOGY

The Jasper property lies on the southern flank of the Horne Lake -Cowichan uplift, one of a series of major geanticlines that make up the structural fabric of southern Vancouver Island (Figure 3). The oldest rocks in the area belong to the Paleozoic Sicker Group and occupy the core of the uplift. This group comprises volcanic and sedimentary units ranging from Late Silurian to Early Permian in age. The Sicker Group rocks have been metamorphosed and subjected to polyphase deformation resulting in major low-angle thrusts and isoclinal, overturned folds.

The Sicker Group is overlain unconformably by the Vancouver Group of Late to Middle Triassic age. The Vancouver Group comprises the basaltic volcanic rocks of the Karmutsen Formation overlain by limestones belonging to the Quatsino Formation and the calcareous sediments of the Parson Bay Formation.

The Vancouver Group is overlain conformably to disconformably by marine sediments and marine to sub-aerial volcanics of the Early to Middle Jurassic Bonanza Group. The volcanics range in composition from basalt to rhyolite. Interbedded with these flows are maroon and green flow breccias, tuff breccias, and several clastic units. Regional metamorphism has reached the zeolite facies.

All of the sequences have been intruded by granodiorite to quartz diorite stocks of the Middle Jurassic Island Intrusive suite.

Table 1 summarizes the formations present on Vancouver Island.

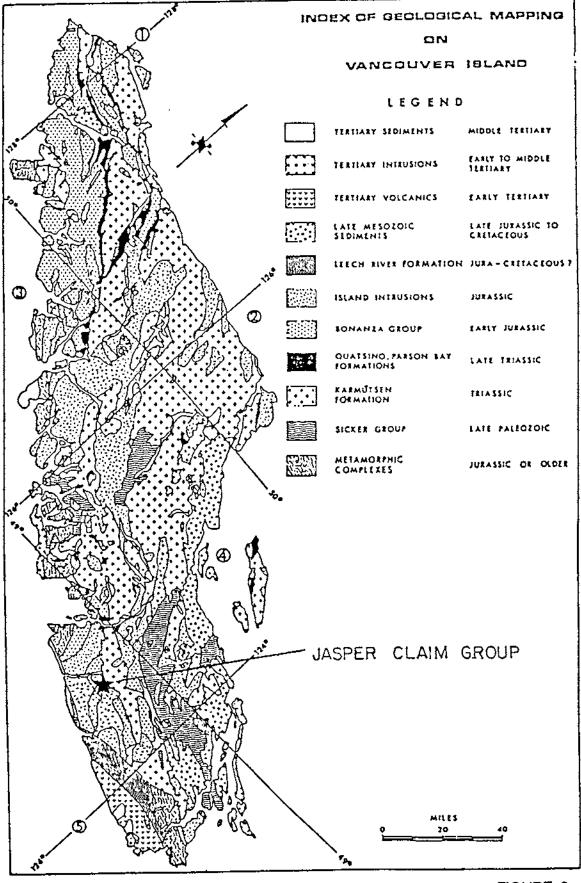


FIGURE 3

Γ			TA	BLE I:				TIONS OF VANCO	OUVER ISLA	ND			
								AYERED ROCKS	CRYSTALLINE ROCKS			ES O	F POORLY DEFINED AGE
	PERJ	œ	STAGE	GROUP	FORMATION	SYM-	Ĥĸ.	LITHOLOGY	NAME	SYM-	isozoni Ръ/U	k/Ar	LITHOLOGY
J	_			ļ	ate Tert.volcs of Part McNeil	Tv⊾							
oic				f	SOOKE BAY	a i Iqm		conglamerate, sandstone, shale					
0			EOCENE 10	[CARMANAH	eoTc	1,200	sandstone, siltstone, coglomerate					quartzdiorite.trpndhjemite. ogmatite.porphyry
EN			OLIGOCENE	Ī	ESCALANTE	eľt	300	conglomerate, sandstone	SOOKE INTRUSIONS basic	Tg Tgb			agmotite, porphyry gobbro,anarthasite,agmotite
5			early EOCENE		METCHOSIN	eĭ⊭	3,000	basaltic lave, pillow lave, breccio, tuff	METCHOSIN SCHIST, GNEISS	TMn	ļ	47	chlorite schist, gneissic amphibalite
			MAESTRICHTIA	,	GABRIOLA	uKG▲	350	sandstone, conglomerate	LEECH RIVER FM.	JKI		36-41	phyllite.mica.schist.greywocke. argithte.chert
				• •	SPRAY	uKs	200	shale, siltstane	1				
			j		GEOFFREY	υKG	150	conglomerate, sandstone	l i				
	ļ				NORTHUMBERLAND	ųΚĸ	250	silistone, shale, sandstane					
i :	1	<u> </u>	CAMPANIAN	NANAIMO	DE COURCY	u K øc	350	conglomerate, sandstone					
		4			CEDAR DISTRICT	uKco	00£	shale, siltstone, sandstone	1				
ļ	1	-			EXTENSION - PROTECTION	uKer	300	conglomerote.condstone.shale.coal	[i				
U					HASLAM	uКн	200	shele, siltstone, sondstone				:	
5		1	SANTONIAN		COMOX	uKC	350	sondstone, conglomerate, shale, coaf	i				
Ы			CENOMANA	OUEEN	Conglomerate Unit	IXoc	900	conglomerate, greywacke					
0	1	Ŀ	ALBIAN APTIAN?		Siltstone Shale Unit	IKop	50	siltstone, shale	i i				
S		1×	ALANGINAN		LONGARM	IK.	250	greywacke.conglomerate, siltstone		·			
Σ	Y	i eu	BARREMIAN	Į	Upper Jurossic	<u>د ل</u> ر	500	sifistone.orgittite, conglamerate	PACIFIC RIM COMPLEX	JK+			greywocke.orgillite.chert.basic Valtanics.limestone
	18		TITHONIAN CALLOVIAN		Sediment Unit	ļ			ISLAND INTRUSIONS			143-183	granadiorite, quartz diorite, granite, quartz monzanile
1			HOWCHARL		Volcanics	11	1.500	basaltic to chyolitic lava, tuff, breccia, minor argillite, greywocke	WESTCOAST silicie	Phlns	264		ovartz-feldspargneiss, melaquartzire, marble
1	a	2	SINEMURIAN		HARBLEDOWN	H II H	4	orgillite, greywacke, tuff colonreous sitistone, prevwacke, sitista	COMPLEX bosic	PMnb		/ -	hornbleade-plogioclase gneiss quartz diarite, aginalite, anphi- bolite
1	1			1	PARSON BAY	1.1	450	colcareous sitistone, greywacke, sitiy – limestone, minor conglomerate, breckia					bolite
	15	כוי	KARNIAN	VANCOUVER	QUATSINO	ປາເອ	400	limestone					
			<u> </u>	-	KARMUTSEN	mulix	4.500	basolic lava, pillow lava, breccia, luff	diobase sills	PIL			
	1	<u>- 3</u>	LADINIAN	· · ·	Sediment-Sill Unit	Tdi	750	metosilisione, diabase, limestone	metavolcanic rocks	PMmv			metavolçanic rocks, minor meta sediments, limestone, marble
S		5			BUTTLE LAKE	CP	300	limestone, chert			1		
12	PENN. and			SICKER	Sediments	CPSS	600	metagreywocke, argillite, schist, marble					
LEOZ	1			<u> </u>	Volconics	CPS	2,000	basoltic to rhyolitic metavolcanic liows, jull, agglamerate			1	1	metaamaadiotita metaovartzak
17							1	I TO A PLATE OBDITION AND A	COLQUITZ GNEISS	Po	> 390 > 390		metagranodiorite metaguartzdik nte,metaguartz potphyty guartz felcispar, gneiss
A	۲ ۵	ľ.				1			WARK DIORITE GNEISS		>200	63-18	hornblende-plogipçlase gneiss guartz diorite, amphibolite

PROPERTY GEOLOGY

The Jasper claim group is underlain by the Bonanza Group which is composed of mafic to felsic volcanic rocks and very minor volcaniclastics. Neither the order of stratigraphic succession nor the "way-up" were determined during the current program. In general, the central part of the property is characterized by a belt of north-south trending intermediate volcanic rocks which is flanked by mafic volcanics. A wedge-shaped body of felsic flows is present in the southwestern part of the Jasper #1 claim. Felsite dykes intrude mafic and intermediate rocks and are likely feeders to the felsic flows. This suggests that the felsic volcanics are younger than the more mafic units.

Mafic Volcanic Rocks (Map Unit 1)

This unit comprises thick, massive flows and minor flow breccias. The flows are dark grey-green or grey-black on weathered surface, and medium green-grey on fresh surface. Hematitic varieties exhibit a dark maroon colouration. Massive, fine-grained, equigranular flows are the most common lithotype but feldspar-phyrric varieties containing up to 20% plagioclase phenocrysts (0.5 to 2.0 mm long) are relatively abundant. Some of the massive, fine-grained mafic rocks may be intrusive rather than extrusive in origin. Epidote, calcite, or quartz are commonly present within this rock type and occur as vesicle fillings, small patches, or stringers.

Mafic autobreccias are irregularly distributed within the outcrop area of Unit 1. This rock-type comprises poorly sorted, sub-angular to subrounded mafic extrusive fragments floating in a fine-grained, slightly darker mafic volcanic matrix. The fragments range in size from 1 cm to 50 cm in diameter and can constitute up to 60% of an outcrop area. The fragments are commonly heterolithic with varicoloured feldspar-phyrric or amygdaloidal varieties being the most abundant. Locally, the fragments are Jasper Property

epidotized while the matrix is unaltered. They appear to be remnants of lithified flows which have been brecciated and re-incorporated within subsequent extrusive units.

There is a lack of lithologic continuity between outcrops, and distinctive marker units are absent. The absence of flow banding, pillows, or intraflow sediments, together with abundant hematite alteration, suggests that the mafic flows were deposited in a sub-aerial environment.

Intermediate Volcanic Rocks (Map Unit 2)

This unit comprises mainly flows, but flow breccias are relatively common. These rocks display a light to medium green-grey weathered surface and a medium green-grey fresh surface. The flows are predominantly finegrained, equigranular, and massive, but feldspar-phyrric varieties are common in the central part of the property. A crude flow banding was observed in several localities but the majority of the outcrops are thick, featureless flows. Stringers of epidote and calcite were observed in only a few areas.

Intermediate flow breccias (autobreccia) are relatively common and form a distinctive map-unit (2b) in the southern part of the property. This lithotype comprises 20-40%, sub-angular to sub-rounded intermediate volcanic fragments in a fine-grained, slightly darker extrusive matrix. The fragments are heterolithic and range in size from 2 cm to 20 cm.

Felsic Volcanic Rocks (Map Unit 3)

A wedge-shaped body of felsic flows crops out in the southeastern part of the Jasper #1 claim. Geological mapping indicates that this body is a thrust-bounded slice. This unit displays a conspicuous chalky white to light cream-green weathering surface and a pale grey-apple green fresh surface. These flows are extremely fine-grained and dense, and produce a

Jasper Property

subconcoidal break. Most outcrops exhibit a delicate, millimetre-scale, planar flow banding. The banding is caused by alternating dark and light coloured layers. Feldspar-phyrric varieties are locally present. Scoriaceous zones and fiammé were observed in several localities.

The felsic flow banding shows abrupt and radical changes in orientation This may be related to deposition on an irregular over short distances. surface or to construction of "spires", but also may be related to later deformation (i.e., nappe structures).

<u>Hematitic Breccia</u> (Map Unit 4)

This unit consists of rounded to sub-rounded, chaotic, porphyritic, mafic to intermediate extrusive clasts in a friable, hematitic, tuffaceous mudstone matrix. The heterolithic clasts range from 5 cm to 3 m in diameter and are poorly sorted. This rock type is interpreted to be a lahar.

Chloritic Breccia (Map Unit 5)

Several outcrops of this very distinctive, 3-10 m thick unit are present in the central part of the property where it is interbedded within the felsic volcanic unit. The breccia consists of feldspar-phyrric intermediate and felsic volcanic fragments embedded in a fine-grained, felsic to intermediate tuffaceous matrix. The angular to sub-rounded fragments range in size from 1 cm to 50 cm and comprise up to 50% of any outcrop. Distinctive, ovoid to amoeboid chloritic patches and disks up to 5 cm in diameter comprise up to 10% of most specimens. The tuffaceous matrix commonly contains 1-3% disseminated, fine-grained pyrite. The origin of this unit is obscure but it is probably an altered pyroclastic rock.

Tuffaceous Siltstone (Map Unit 6)

Two road-cut exposures of this unit were observed in the central part of the Jasper #1 claim. The unit is approximately 3 m thick and is adjacent to It ranges in colour from dark chocolate brown to the chloritic breccia. grey, and range from a siltstone to a sandstone. Delicate planar laminations related to grain size variations give rise to the bedding. Most of the clasts are sub-rounded and lithic; but rounded, sand-size, glassy quartz grains are locally present. At 47+90N/53+00E, a one-metre thick unit of tuffaceous chert occurs between the siltstone and the chloritic breccia. This rock type exhibits millimetre-scale bedding defined by alternating chert-rich and felsic tuff-rich layers. This excellent road-cut exposure also displays soft-sediment folding and brecciation.

STRUCTURE

Most outcrops on the property show varying degrees of fracturing, jointing, or faulting. The strongest and most common fault/fracture system is oriented at 130°-150°. This system likely controls the distribution of major map-units in the area. This is particularly true of the felsic volcanics (unit 3) which occur as a slice bounded by low-angle fault zones (thrusts?). The eastern fault zone is well exposed in a road cut where it is approximately 1 m thick, dips to the northeast at 35°, and almost parallels the topography. Near the intersection of the two major fault zones, banding in the felsic flows swings around to where it is perpendicular to the fault orientation. It is possible that this is a nappe structure.

Two elongate fracture systems have been mapped which display intense fracturing, alteration, pyritization, and quartz-stockwork development. These zones are oriented north-south and at 050°. The Main Showing is located at the intersection of these two systems. They are terminated by the major fault (thrust) systems.

ALTERATION

Epidotization and hematitization of the mafic and, to a lesser extent, the intermediate volcanics, is common throughout the map-area. Chloritization is relatively uncommon except within the chlorite breccia unit.

The 100 m wide, elongate fracture zones have been moderately kaolinitized and silicified. A north-south trending zone occurs along the base line in the southern part of the property, and a northeast-southwest trending zone was mapped in the central part. The core of these systems is characterized by intense fracturing and kaolinitization, pervasive silicification, and a quartz vein stockwork system. The stockwork varies from hairline stringers to 30 cm thick veins, which are dominantly parallel to the major fracture zones. The marginal part of these systems displays less intense alteration and quartz vein development but more intense pyritization.

MINERALIZATION

Six base metals occurrences were located on the property. With the exception of one showing, all of these occurrences are localized within the elongate fracture/alteration/quartz stockwork zones. The following three related styles of mineralization were observed.

Massive Sulphides: A series of wedge- and tabular-shaped zones of massive to semi-massive sulphides is present at the Main Showing. The mineralization is exposed over a distance of 30 m in a road cut and is composed of individual zones up to 2 m long and 50 cm wide. The massive sulphides exhibit sharp, fracture or fault controlled contacts with bleached, weakly silicified, pyritic, and quartz veined intermediate to mafic feldspar-The mineralization consists of 80-90% pyrite, 5-20% sphaphyrric flows. lerite, 1-5% chalcopyrite, and trace amounts of galena. These sulphides are medium- to coarse-grained and commonly display a crude, indistinct, swirled banding imparted by compositional and textural variations. In places, this banding is brecciated and cut by the quartz stockwork. These massive sulphides appear to have filled narrow, irregularly-shaped dilatory fractures which were subsequently faulted. Falconbridge chip sampled eight massive sulphide sections and obtained Cu values as high as 2.2% over 0.25 m, and Zn values as high as 2.4% over 0.20 m. The best Falconbridge drill intersection was 1.34 m grading 1.65% Cu, 3.52% Zn, and 6.0 g/t Ag. A grab sample collected by the writer from the main zone returned 0.9% Cu and 25.6% Zn.

<u>Fracture-Filling Sulphides</u>: The large fracture zones contain several widely scattered, small (<5 m²) patches of fracture related sulphides. Mediumgrained pyrite, sphalerite, and chalcopyrite occur within fractures up to 2 cm wide and 10 cm long. Locally, the fractures form a network up to 1 m². One grab sample of this material (R2 07/16 E) assayed 0.61% Cu and 1.3% Zn.

<u>Disseminated Sulphides</u>: Disseminated sulphides occur at many localities on the property. Pyrite is particularly common and is concentrated in the elongate fracture zones. Most of the disseminated, fine-grained chalcopyrite and sphalerite is spatially related to the massive or fracturefilling sulphides.

. .

TAIGA CONSULTANTS LTD.

.

CONCLUSIONS

The Jasper property is underlain by the complexly deformed Bonanza Formation comprising mafic to felsic flows and minor pyroclastics. The distribution of map-units is primarily controlled by low-angle thrust faults.

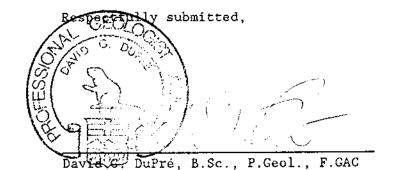
Several small, widely scattered, low-grade mineralized showings occur on the property. The mineralization consists of pyrite, sphalerite, chalcopyrite, and minor galena which occur as massive sulphides, disseminations, and fracture fillings. The Main Showing comprises several small, fracturecontrolled wedges of massive sulphides separated by weakly mineralized, silicified, and kaolinitized mafic volcanic rocks. Falconbridge carried out extensive chip sampling and drilled four holes to test this area. The best Falconbridge intersection was 1.34 m grading 1.65% Cu, 3.52% Zn, and 6.0 g/t Ag from DDH #1.

It is concluded that the patchy and low-grade mineralization observed to date is hydrothermal in nature and is spatially related to the elongate fracture zones characterized by silicification, kaolinitization, and abundant disseminated pyrite. The potential for locating significant volcanogenic, polymetallic massive sulphide deposits is remote.

The 300+ m long northeast-trending gold-in-soil geochemical anomaly is significant and is likely related to elevated gold values within the altered, pyritic, and quartz veined fracture zone. This zone could represent an epithermal gold occurrence and warrants further investigation.

RECOMMENDATIONS

It is recommended that the gold-in-soil geochemical anomaly in the northwestern part of the grid area be evaluated by additional lithogeochemical sampling. At least 50 m of channel sampling should be done in order to obtain two sections across the prospective fracture/alteration/pyritic zone. It will be necessary to sample a number of outcrops in order to obtain a complete composite section. A portable diamond saw will be the most effective tool for this program.



CERTIFICATE

I, David George DuPré, of 13116 Bonaventure Drive S.E. in the City of Calgary in the Province of Alberta, do hereby certify that:

- 1. I am a graduate of the University of Calgary, B.Sc. Geology (1969), and have practised my profession continuously since graduation.
- 2. I am a member in good standing of the Association of Professional Engineers, Geologists and Geophysicists of Alberta; and I am a Fellow of the Geological Association of Canada.
- 3. I am a Consulting Geologist associated with the firm of Taiga Consultants Ltd. with offices at Suite 100, 1300 - 8th Street S.W., Calgary, Alberta.
- I am the author of the report entitled "Geological and Geochemical Report on the JASPER PROPERTY, Victoria Mining District, N.T.S. 92-C/15, British Columbia", dated September 21, 1987.
- 5. I personally supervised the field work on the property.
- I do not own or expect to receive any interest (direct, indirect, or contingent) in the property described herein nor in the securities of ASAMERA INC., in respect of services rendered in the preparation of this report.

DATED at Calgary, Alberta, this 21st day of September, A.D. 1987.

REFERENCES

Hudson, K.; Lear, S. (1985): Falconbridge Limited Summary Report on the Jasper Claim Group Lear, S. (1986): Summary Report on the Jasper Claim Group, Vancouver Island, B.C., 1985 Field Program; Falconbridge Limited report Muller, J.E.; Northcote, K.E.; Carlisle, D. (1974): Geology and Mineral Deposits of Albert - Cape Scott Map-Area, Vancouver Island, B.C.; Geol.Surv.Cda., Paper 74-8 Muller, J.E. (1979): Geology of Vancouver Island; Geol.Surv.Cda., Open File 463 ----- (1980): The Paleozoic Sicker Group of Vancouver Island, B.C.; Geol.Surv.Cda., Paper 79-30 ····· (1981): Insular and Pacific Belts; Field Guides to Geology and Mineral deposits; in Calgary 81 GAC/MAC/CGU; ed. R.K. Thompson, D.G. Cook; pp.316-334

Jasper Group

APPENDIX

Rock Sample Descriptions Certificates of Analysis

Jasper Group

Rock Sample Descriptions

		Analy	tical Re	<u>sults</u>
<u>Sample</u>	Description	<u>Cu ppm</u>	<u>Zn ppm</u>	<u>Au ppb</u>
R2 07/15 CC	silicified intermediate flow, minor quartz stockwork, 1% Py	235	240	5
R2 07/15 G	silicified mafic flow, minor quartz stockwork, tr diss Py	73	235	<5
R2 07/15 I	silicified intermediate flow, mod. quartz stockwork, tr Py	23	117	<5
R2 07/15 II	silicified intermediate flow, quartz stockwork, tr Py	23	54	15
R2 07/15 LL	silicified intermediate flow, highly fractured, 1-5% diss Py	39	120	<5
R2 07/15 M	weakly silicified mafic flow, locally brecciated, minor serícite	21	106	<5
R2 07/15 Q	weakly silicified, kaolinitized mafic flows, 1% Py	23	210	<5
R2 07/16 AA	weakly silicified, kaolinitized intermediate flows, sampled 1 cm wide quartz vein	22	21	<5
R2 07/16 CC	kaolínitized mafic flow, mínor quartz stockwork, l% díss f.g. Py	49	265	<5
R2 07/16 E	silicified, kaolinitized mafic flows, 5-10% Py along fractures, trace to 1% Sph, Cpy	6,100	13,000	15
R2 07/16 EE	silicified intermediate lapilli tuff, l% diss Py, tr malachite	370	375	15
R2 07/16 G	intermediate flow, 1% Py on fractures	77	305	<5
R2 07/16 L	kaolinitized mafic or intermediate flow, 3% Py on fractures	425	170	<5
R2 07/16 S	intermediate vesicular flow, 2% Py	150	153	<5
R2 07/17 D	feldspar-phyrric intermediate flow,	180	235	<5

TAIGA CONSULTANTS LTD.

A-2

Jasper Property

A-3

		Analy	tica <u>i k</u> e	sures
<u>Sample</u>	Description	<u>Cu ppm</u>	<u>Zn ppm</u>	<u>Au ppb</u>
R2 07/17 H	intensely kaolinitized and silicified intermediate flow breccia, minor quartz stockwork, minor jasperoid silica veinim	13 g	80	<5
R2 07/18 DD	tuffaceous mudstone and siltstone, tr diss Py	36	6	<5
R2 07/18 EE	lahar, chlorite disks in mafic matrix, l% Py	16	193	<5
R2 07/18 M	felsic flow and breccia	34	42	<5
R2 07/19 CC	feldspar-phyrric intermediate flow, minor epidote	24	62	<5
R2 07/19 0	feldspar-phyrric intermediate flow, trace Py	71	108	<5
R2 07/19 S	feldspar-phyrric intermediate flow	12	139	<5
R2 07/19 W	silicified intermediate flow, 30% quartz stockwork, 1% Py	16	23	65
R2 07/19 X	feldspar-phyrric intermediate flow, 3% quartz stockwork, 1-3% diss Py	11	365	20
R2 07/19 Y	intensely silicified intermediate flows, abundant quartz stockwork zones up to 20 cm thick	33	87	20
R2 07/20 CC	lahar, abundant chlorite in matrix	4	120	5
R2 07/20/P	silicified and kaolinitized inter- mediate flow, mod. quartz stockwork	65	102	<5
R2 07/21 B	moderately silicified intermediate flows, mod. quartz stockwork	92	84	<5
R2 07/21 F	lahar, abundant chlorite in matrix	35	197	<5
R2 07/21 N	"Main Showing", massive sulphides (Sph, Py) with 1% Cpy	9,000	25.6	\$ 300
R2 07/21 V	weakly kaolinitized and silicified intermediate flows, minor quartz stockwork, trace malachite	67	900	<5

Bondar-Ciegg & Company Lid. 130 Pemberton Ave. North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-0681 Telex. 04-352667

Geochemical Lab Report

and serve all

REPORT: 127-5626 (COMPLETE)			R	EFERENCE ENFO:	<u> </u>
CLIENT: 14164 CONSU	LTANTS LTD.				JEMITICO BY: DU	57 %E
PROJECT: X-6C-8				Di	AFF PRINTED: 7	-AUG 87
		NUMBER OF	LOUCH			
ORDER ELE	nent	ANALYSES	DETECTION LIMIT	EXTRACTION	h i:180	0
1 Cu	Copper	185	1 PPM	UNG 3 - HOL MOT	EXTR Atoni	c tacongtion
2 Pb	Lead	185	2 ይይህ	HN03-HCL HOT	EXIR Acomi	c Abserption
3 Zn	Zinc	185	1 PPM	HNO3-HCL HOT	EXTR Atomi	c Absorption
4 Ag	Silver	185	0.1 PP n	HN03 HCL HOT	EXTR Atomi	c Absorption
5 Ma	Manganese	185	1 PPB	HN03-HCL HO1	EX18 Atomi	c Absorption
	Gold - Fire Assay	185	5 PP8	FIRE -ASSAY	Fire	Assay AA
	Sample weight/grams	184	0.1 6			
8 Au/wt	-20 Au Sample Weight	8	0.1 G		······································	
	Barium	185	20 PP#		X -RAY	Fluorescence
SAMPLE TYPES	NUMBER	STZE F	RAC ! I ONS	NUMBER	SOUCH E DREDOR	ATIONS NUMBER
	HURCEN					
S SOILS	154 ROCK 31	1 -80 2 -11		154 31	DRY, SEIVE -8 CRUSH, PULVERI	
R ROCK OR BED	RUCK 31	2 -1	30	27	Chuon, rucvent	26 - 130 31
NU123: 5 INDI	cates SEE OBS REMARKS	·				
PEHARKO B	a - INTERFERENCE NOTE	D DHE TO H	ГСН 7 ₀			
	AY OF HIGH Zn TO FOLL					
					•	
<u>p:popr.copteg</u> _	<u>rò: ∗⊨, ò.c. Subse</u>				F TO: MQ, D.S	ດູແລລະ
	MR. G.Z. MOSHER					
	· · · · · · · · · · · · · · · · · · ·					
	·					
			······			
د • •						
	·					
· 						· · · · · · · · · · · · · · · · · · ·

- TP - X ' 1.1

Restor Ching & Company Ltd. 130 Productor Ave. North Vancouver, B.C. Canada V7P 285 Phone: (604) 945-05[] Teles: 06-332667

1____

Geochemical Lab Report

3

30 -

·	309201: 127-2626			 							
			ेप श्रिम्	්5 - 만급	200 1905 9	· · · ·			···-·		
	ST 4300N 47645		744	 £1	142		·····		· · ·	· · · · ·	
	S1:4309N -47200		11 B	14	•		1	15		· · · · ·	
	51E 41PIN 7775E		166	• ;	<i>1</i> 2	•	1.1	•.	C 1.	· · · • ·	
	St 43004 18205		2.5	* (<u>†</u>	127			- 5	· . Ľ		
	01 - 799N 4859E		26	\$1 	• • • •		-*5		1.11	· · · · · · · · · · · · · · · · · · ·	
	SI 人北的	<u>.</u>				· • • •	151				
	01 ;3000 49%的		77(I)	· · ·	365	21.2	1. AL	1	10 - 11 11 - 11	1.891	
	ALC: NORTH AND AND		67 -	0	.•1	·· •	11,14 	-05	18.0	800.0 1700	
	ないを開始 Super		148	• •		• .	165	•	1917		
	51. (BED) (BSDE	·····	73	11		· · · ·	(65	• :]			
<u> </u>	S1 4200N 5125E		1) 17	5	3)		/3	<5	10 - 14 	11.12.2 	
	S1 4309M 53583		46	12	11 9		575	55	.0.2	168	
	G1 4300N 517°E		6	* - 	jk	0.7	199	• 1	00.0	1941 1941	
	St. 4309V 3239E		10	1	1.7		1.30 1	<i></i> ,	10 ju-	5.45	
	51 4400N 4700F		22 22	<u>}</u>		9.2 	198 	~5 	1979 A	: <u>;</u> ;;	
	S1 44000 - 725E		58	12	97	λ.t	203	35	10 D	Q40)	
	St. 4400N 4750E		82	14	161	$c_{1,1}$	-85	造	19.0	264	
-	St 4400N 4775E		21	211	411	3.1	27.6	-5	10.0	108	
	\$1 4400N 4809E		. ¹⁵	10	15	9.1	260	25	10.0	360	
	01 4490N 4825E		ر 		24	<1.1	46	<5	. 10.0	229	
	\$1 4-00N 4850E		41	1.2	48	9.1	189	<5	19.8	131)	
	01 4400N 4875E		6	5	63	• 0.2	112	<5	5.8	<20	
	S1 4400N 4900E		51	.16	69	6.8	250	<5	18.9	138	
	51 4400R 4925E		147	46	147	1.1	465	18	19.0	220	
	S1 4400N 4950	 	177	17	235	8.2	295	<5	10.9	328+	· · ·
	S1 4400N 4975E		31	14	32	-01.1	200	<5	19.0	190	
	S1 4480N 5809E		4	5	54	<0.1	* (18 	<5	8.0	<28	
	\$1 4400N 20758		200	20	155	29.4	, 25	5	19.0	340	
	S1 4400N 5150E		9	4	41	<0.1	1.12	<5	10.0	<28	
	S1 4400N 52508		22	5	66	<3.1	200	<5	10.0		
	S1 4400N 5300E		157	10	166	<0.1	505	< <u>,</u>	10.0	200	·
	S1 4400N 53756		18	8	41	<9.1	178	<u>رې</u>	10.0	178	
	S1 4500N 4700E		111	10	73	<0.1	610	<5	t0.8	<20	
	\$1 4589N 47253		72	22	131	0.2	355	<5	19.9	229	
	S1 4580N 4750E			1 1 _1	147	খে.:	1150 	් 	t0.8	30U	
	01 45009 47756		18	12	<u>94</u>	<1.1	441	4	18.9	÷ 415*	
	ST 4500N 48006		26	10	225	<0.1	1158	<5	10.U	230	
	GE 4509N 4825E		17	11	45	it. 1	148	<5	10.9	: 71)	
·	\$1 45R0N 4850E		76	1	37	0.2	985	否 (5	10.9	293 1 29	
	ST 4502N 487SE		23	1.0	56	0.2	144		7.0		

Bondar-Ciegg & Comparty Ltd. 130 Pemberton Ave. North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-0681 Telex: 04-352667

-

Geochemical

Lab	Report

	RCPORT: 127-5626]			P	PROJECT: K-8C-8			Page 2	
		ELEBENT	Cu	Po	 	Ag	 10	 Au	Au/wt	Au/яt		
	NUTHER	UNETS	PPM	epn	חיוי	מיוין	PP#	843	G	G	ê Pî	
	ST 4500N 4900	· · · · · · · · · · · · · · · · · · ·	7	1 }	64	Q.1	465	<5	3.0	7.0	48	······································
	-\$1-4500N-49258	-	13	9	32	<0.1	345	<5	10.0		41)	
	S1 4500N 49508	E	92	53	145	<0.1	475	<s< td=""><td>10.9</td><td></td><td>270</td><td></td></s<>	10.9		270	
	S1 4500N 49758	-	27	13	46	0.2	20%	<5	10.0		2413	
	S1 4580N SUDUE		42	15	41	<0.1	195	<5	10.0		370	
	S1 4500N 5025E		19	tO	59	0.1	370	<5	10.9		130	
	SI 4500N 50508		22	23	63	9.1	196	<5	10.0		198	
	-S1 4500N 50755		62	49	99	<0.1	44 <u>1</u> j	<5	10.0		200	
	S1 4500N 5100E	-	5	2	29	<0.1	18	25	6.0		<20	
	S1 4500N 5125E		3	4.	54	<9.1	540	20	10.0		260	
	S1 4500N 52008		31	7	65	0.2	265	<5	10.0		180	·
	S1 4500N 52756		15	8	55	<0.1	1160	<5	19.0		300	
	S1 4500N 5300B	E	16	8	52	0.1	355	<5	10.0		270	
	S1 4500N 53258		6	7	51	<0.1	43	<5	5.0		190	
	S1 4600N 4700E	E	13	6	52	<0.1	161	<5	5.0		<20	
	S1 4600N 4725E		21	13	71	0.3	260	<5	10.0		270	-
	S1 4600N 4750	<u>.</u>	56	27	275	0.4	3750	<5	10.0		200	
_	\$1 4600N 47758		6	6	39	<0.1	59	<5	3.0	7.0	40	
	S1 4600N 46008	-	28	10	45	<0.1	158	<5	10.0		100	
	S1 4600N 4825E	E	19	11	40	` <0.1	215	<5	. 10.0		220	
	S1 4600N 4975	:	130	5	32	0.4	23	<5	· · · · · · · · ·	10.0	<20	
	S1 4600N 50008	-	78	73	61	·0.6	178	10	10.0		200	
	S1 4600N 50250	-	11	9	44	0.3	178	10	10.0		100	
	\$1 4600N 50508	-	11	8	55	<0.i	230	<5	. 10.0		100	
	S1 4600N 50758		30	5	70	<0.1	735	<5	10.0		160	
	S1 4600N 5100E		17	7	60	<0.1	795	(Š	10.0		250	
	S1 4600N 51258		22	5	60	<0.1	240	<5	10.0		140	
	S1 4600N 51758		18	8	87	0.2	345	<5	10.0		160	
	S1 4600N 52008	2	10	7	42	0.2	154	<5	10.0		100	
	S1 4600N 52258		32	7	67	<0.1	355	<5	10.0		240	
	\$1 4600N 52758		22	9	50	<0.1	365	<5	10. 0		240	
	S1 4680N 53008		22	9	58	<0.1	300	۲5	10.0		270	
	S1 4600N 53508		18	12	47	0.3	445	۲5	10.0		260	
	S1 4700N 47008	-	34	56	96	0.1	230	<5	10.0		150	
	S1 4700N 47258	<u> </u>	64	77	112	0.1	23)	<5 	10.0		180	<u>_</u>
	S1 4700N 4750E		20	19	85	0.2	125	25	10.0		170	
	S1 4700N 47756		36	44	66	0.3	186	10	10,0		1 50	
	S1 4700N 48000		12	9	61	0.3	23	<\$	10.0		81)	
.	S1 4700N 48258		62	21	245	0.3	285	5	10.0		290	
	S1 4700N 48506		95	19	141	0.6	250	10	18.0		210	

Bondar-Clegg & Company Ltd.

REPORT: 127-5626

51 4700N 4875E

\$1.4700N 4900E

S1 4780N 4925E

S1 4700N. 4950E

S1 47EON SOCOL

S1 4703N 5025E

130 Peniberton Ave. North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-0681 Telex: 04-352667

SAMPLE

NUMBER

Ξ

Geochemical Lab Report

PROJECT: X-BC-8 PACE 3 Au/Wt ELENINI Сu $P\mathbf{b}$ **7**9 **f**in อ้า Aŋ∕wt ßa Αg <u>een</u> UNLIS 228 264 ាហ $OP_{\rm eff}$ POR C G £2.51 42 21 117 1.0 190 99 18.0 3:11 22 5 4 43 <0.1 580 3.0 7.6<29 7 87 31 16 <0.1 10 6.0 76 :45 17 11 30 <0.1 <5 10.0 280 82 16 73 6.7 23010 19.9 519 43 13 52 0.3 300 10.0 328 <5 20 155 B.2 440 15 10.0 480 76

	GE 47900€ 0920€	4)	1. J.	75	U.J	500	N.J	30.0		1711	
	ST 4700N 5050E	76	20	155	0.2	440	15	10.0		480	
	S1 4783N SD75E	27	16	91	< 9.1	255	<5	19.0		560	
	\$1 4700N 5100E	3	6	31	<0.1	23	<5	9.Ð		<20	
	ST 4700N 5125E	20	6	46	<0.1	285	<5	10.9		150	
									••••••••		
	S1 4700N 5150E	26	7	36	<0.1	166	<5	19.9		119	
	S1 4790N 5175E	19	8	37	<0.1	151	<5	19.0		1.20	
	51 4700N 5200E	13	6	35	<0.1	157	<5	19,0		250	
	S1 4700N 5225E	17	11	61	<0.1	265	<5	10.0		270	
	S1 4700N 5275E	7	6	26	<0.1	72	Ś	10.0		150	
						·					·
	S1 4700N 5325E	18	5	31	<0.1	145	<u>د</u>	10.0		90	
_	S1 4700N 5350E	18	6	30	<0.1	154	۲5	10.0		110	
	S1 4800N 4700E	9	6	24	<0.1	97	<5	10.0		150	
	S1 4800N 4725E	57	10	69	<0.1	219	<5	10.0		811	
	S1 4800N 4750E	. 9	7	77	<0.1	179	<5	. 7.0		<21)	
		· · · · · · · · · · · · · · · · · · ·									
	S1 4800N 4775E	4	5	65	0.2	47	<5	10,0		<20	· · · · · · · · · · · · · · · · · · ·
	S1 4800N 4825E	13	60	40	<0.1	345	15	10.0		<28	
	S1 4800N 4850E	35	29	73	0.1	260	15	10.0		228	
	S1 4800N 4975E	23	23	115	0.8	255	<5	8.0		<20	
	S1 4800N 5000E	79	29	300	0.2	5450	<5	10.0		341)	
•••••	S1 4800N 5025F	19	25	71	0.2	250	<5	10.0		70	
	G1 4800N 5075E	54	13	97	0.6	258	<5	8.0		50	
	S1 4800N 5100E	£	3	74	0.1	81	<5	4.0	6.9	<21	
	S1 4800N 5150E	8	6	33	<0.1	136	<5	10.0		180	
	S1 4800N 5175E	30	8	65	<0.1	210	<5	10.0		210	
						<u> </u>			·		
	S1 4800N 5200E	14	11	30	<0.1	131	<5	10.0		330	
	S1 4800N 5225E	23	9	77	0.2	545	<5	10.6		244	
	S1 4800N 5250E	26	8	74	0.2	550	< <u>S</u>	10.0		230	
	S1 4800N 5275E	24	7	73	0.1	585	<s< td=""><td>10.0</td><td></td><td>260</td><td></td></s<>	10.0		260	
	S1 4800N 5325E	23	7	47	0.4	335	<5	10.0		110	
		· · · · · · · · · · · · · · · · · · ·							···-, ·· ····		
	S1 4800N S350E	18	7	43	<0.1	360	<5	10.0	· ··	130	
	S1 4800N 5375F	25	7	71	<0.1	580	<\$	10.0		250	
	S1 4900N 4700E	33	9	93	<0.1	245	<5	10.0		210	
•	S1 4900N 4725E	9	13	62	0.2	485	<5	5.0		41)	
		12	4	S2	0.1		<\$	10.0		<20	

Bondar-Cirgg & Company Ltd.

130 Pemberton Ave. Noth Vancouver, B.C. Canada V7P 2R3 Phone: (604) 985-0681 Telex: 04-352667

Geochemical Lab Report

Construction of the second second second second تاريخ حمد 1.5 . 1

3 3

ł

REPORT: 127-50				F	PROJECT: K	(-8C-8		Pach 4			
SAMPLE	ELENENT	Cu	Pb		ាំទ្ <u>ន</u> សហគ			Au/wt	Âu∕#t		
REGER	UNEIS	PPM	P[]#	PF M	DD4	Pvtt	- Bed	G	G	PPN	
St 4989N 4775		33	12	51	0.2	245	K 5	10.0	<u> </u>	100	
S1 4200N 48009	•	215	12	57	0.1	265	<5	10.0		711	
S1 4900N 4825	-	43	17	60	n.?	155	<5	10.0		180	
51 4900N 4850E	-	19	10	50	0.1	286	<5	10.0		50	
S1 4200X 42008		46	14	63	0.2	565	150	10 .0		2811	
S1 4900N 4925F		55	10	70	0.4	285	<5	10.0		150	
S1 4900N 49508	-	9 0	21	109	0.6	1150	<5	10.3		90	
S1 4900N 4975E		82	14	8 6	D.3	319	<5	10.0		220	
S1 4900N 50258	-	69	11	112	0.7	325	<5	10.0		23U	
S1 4980N 58500		22	11)	47	0.2	199	<5	10.0		501	
S1 4900N 50750		8	9	44	<0.1	270	<5	10.0		1090	
S1 4900N 5100F		9	6	25	<0.1	146	<5	10.0		228	
S1 4900N 51256	-	. 6	8	29	<0.1	125	<5	10.0		360	
SI 4900N 5150E	-	12	6	30	0.2	192	<5	18.0		190	
S1 4900N 5175		8	5	35	0.2	184	<5	10.0	·····	400	<u> </u>
S1 4900N 5200F		13	46	44	<0.1	152	<5	10.0		170	
- S1 4900N 52258		29	5	49	<0.1	215	<5	10.0		150	
\$1 4900N \$250	-	38	5	54	<0.1	305	<5	10.0		150	
S1 4900N 53001	-	7	8	38	0.1	87	<5	10.0		200	
S1 4900N 53258	· · · · · ·	` 4	</td <td>27</td> <td>0.1</td> <td>12</td> <td></td> <td>. 9.0</td> <td></td> <td><20</td> <td></td>	27	0.1	12		. 9.0		<20	
\$1 4900N 5350		15	7	39	0.2	183	<5	10.0		100	
S1 4900N 53756		67	43	82	<0.1	630	<5	10.0		320	
\$1.5000N 4725		75	9	345	<0.1	585	<5	10.0		260	
S1 5000N 47508		28	10	70	<0.1	350	<5	10.0		220	
S1 5000N 4775		20	9	55	<0.1	213	<5	10.0	. <u>.</u>	261)	
\$1 5000N 4825		32	12	76	0.6	420	20	8.0		2211	
S1 5000N 4875		46	4 <u>1</u>	55	0.6	103	5	3.0	7.9	100	
\$1 5000N 4900		68	10	112	0.1	275	<5	10.0		240	
S1 5000N 4925		6	12	60	<0.1	270	<5 (5	2.0	3.0	<28	
\$1 5000N 4950	: · · · · · · · · · ·	67	12	102	0.3	470	<5	10.0		190	
S1 5000N 4975		53	7	66	(0.1	320	40	10.0		210	
S1 5000N 5100		41	9	77	0.i	275	<5 75	10.0	0.0	330	
S1 5000N 5125		6	6	41]	0.1	9U	<5 (5	2.0	8.0	<28	
S1 S000N 5150	-	10	6	27	<0.1	142	S . c	10.D		170 7 JD0	
R2 07/15 CC		235	12	240	0.2	1400	- 5	10.0		7790	······································
R2 07/15 G		73	1	235	<0.1	1790	¢5	10.0		1500	
R2 07/15 I		23	4	117	0.1	605	<5 (5	10.9		741)	
R2 07/15 II		23	5	54	<0.1	515	15	10.0		710	
R2 07/15 LL		39	9	120	<0.1	745	<5	10.0		320	
R2 07/15 #		21	2	196	<0.1	860	<5	10.0		280	
		1		,			1				

}

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North V Incouver, B.C. Canada V7P 2R5 Phonc: (604) 985-0681 Teles. 04-332667

ſ

ł

Г

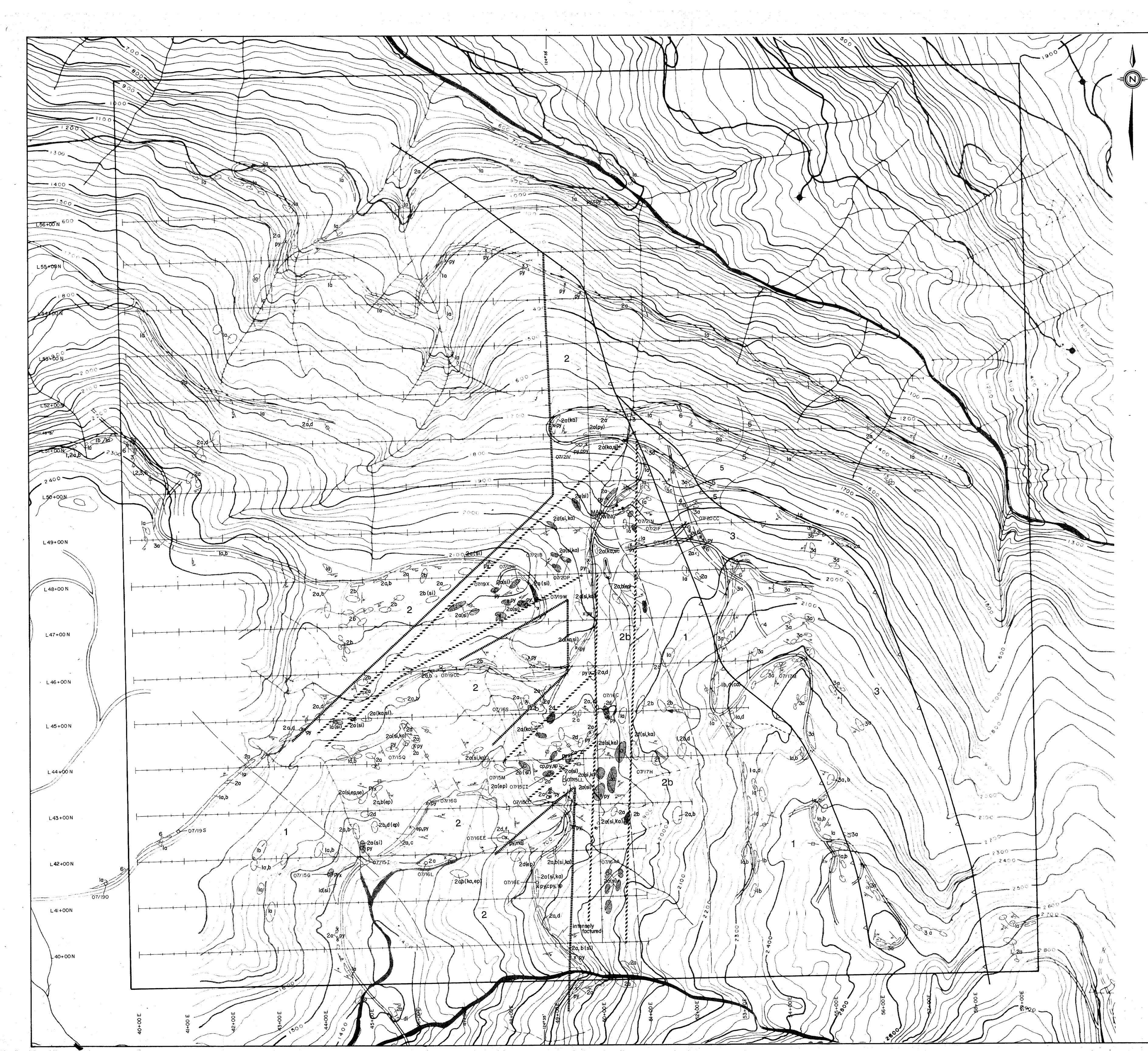
28.41

Geochemical Lab Report

Atomic matter to assert the work of the second of the seco

Sec.	R[POR": 127-5	625]			- Pi	80J9C1: K	- HC - 8		MCE S	
• • •	SAMPLE NET ST	ELEMENS UNITS	Cu Ptiñ	ብዓ በጣሽ	Zo PPM	Ag pp:m	Bn PPn	ລີບ (ກາງ	Au∕wt G	As/wt C	8a PPm		
	R2 07/15 Q		33	8	218	0.3	1566	<\$	10.0		369		
	R2 97716 AA		22	42	21	Ø.2	5	<5	15.0		201011		
	82 07/16 C		49	4	265	<0.1	1690	<5	16.0		840		
	N2 07/16 C		6190	157	10220	4.6	2400	15	19.9		1700		
	R2 87/16 EE		379	9	375	6.5	325	15	10.0		420		
	R2 07/16 G		77	3	365	0.1	3232	<\$	19.0		1700		
	R2 07/16 L		425	3	170	<0.1	1550	<5	10.0		4600		
	R2 07/16 S		150	11	153	<0.1	1250	<5	10.0		419		
	R2 07/17 D		180	4	235	<0.1	1759	<5	10.0		2400		
	R2 07717 H		13	3	81	44.1	650	<5	10.0		1600		
	R2 07/18 00		36	6	89	<0.1	820	<5	10.0		1950		· · · ·
	R2 07/18 FE		16	1	123	(9.1)	979	<\$	19.0		95ii		
	R2 07/18 M		24	3	4.2	<0.1	320	<5	10.0		95B		
	R2 07/19 CC		24	3	62	<0.1	1500	<5	30.0		1099		
	R2 07/19 0		71	6	108	<0.1	905	<5	19.0		1190	· · · · · · · · · · · · · · · · · · ·	
	R2 07/19 S		12	7	1 39	<0.1	850	<5	19.0	<i>a</i>	580		
	R2 07/19 ₩		16	59	23	<0.1	60	65	10.0		420		
	R2 07/19 X		11	19	365	0.6	1100	20	10.0		5500		
	R2 07/19 Y		33	900	87	3.1	107	20	10.0		3000		
	R2 07/20 CC		· 4	5	120	<0.1	770	5	. 10.0		468		
	R2 07/20 P		65	18	102	<0.1	270	<5	10.0		28()		
	R2 07/21 8		92	420	84	<0.1	675	<5	10.0		1100		
	R2 07/21 F		35	18	197	<0.1	815	<\$	10.0		658		
	R2 07/21 N		9000	559	>26600	15.0	130	300	10.0		1200		
	R2 07/21 V		67	7	900	0.2	1200	<5	10.0		1880		

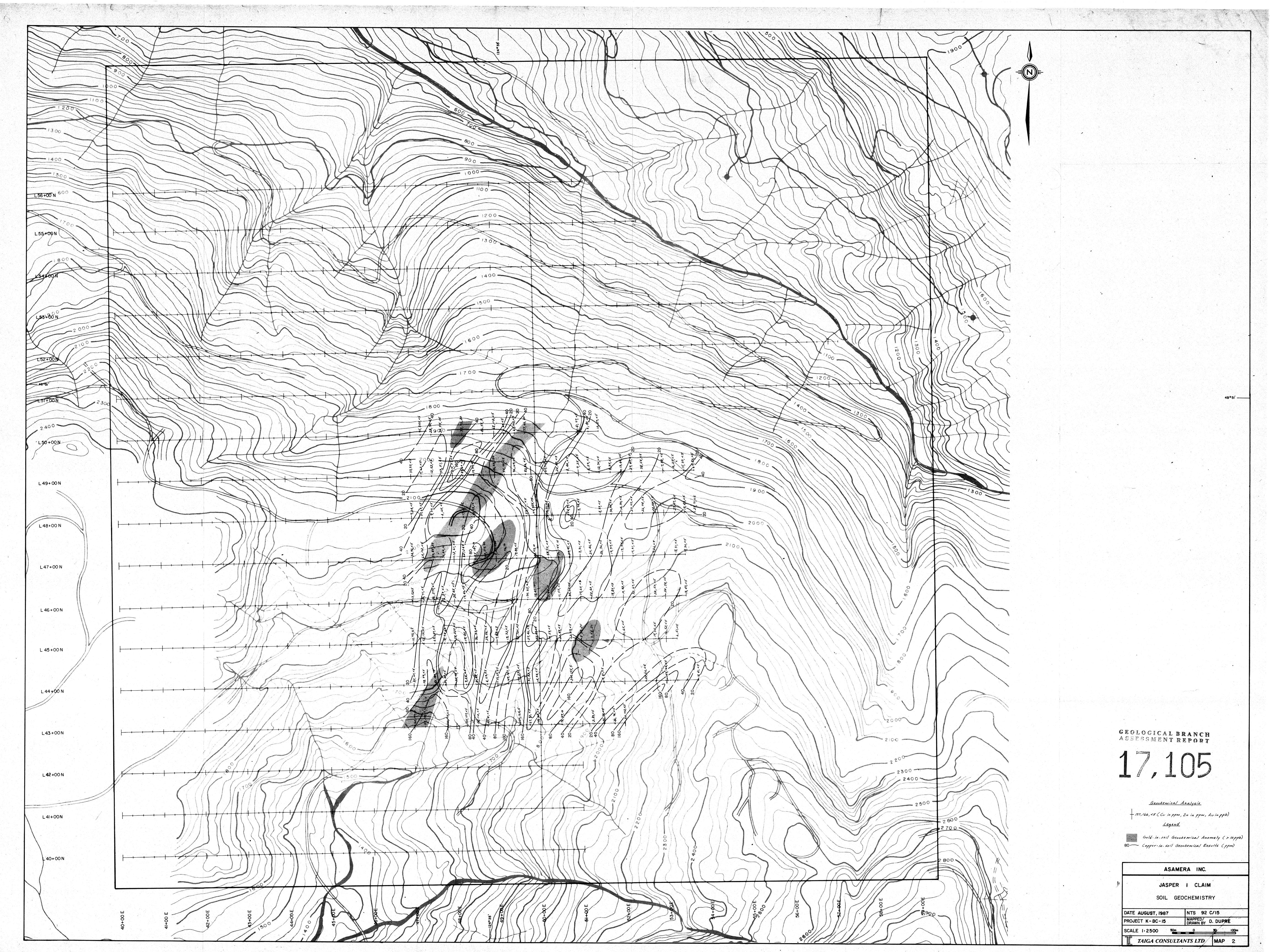
Bondar-Cleyg & Company Ltd. 130 Permberton Ave. North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985 0681 Telex: 04-352667


REPORT: 627-5626 (COMPLETE)]	REFERENCE INFO:	
CLIENT: TAIGA CONSULTANTS LTD. PROJECT: K-BC-8		SUBMITTED BY: DUPRE DATE PRINTED: 12-AUG-87	
ORDER ELEMENT 1 Zn Zinc	NUMBER OF LOWER ANALYSES DETECTION LIMIT E 1 0.01 PCT	EXTRACTION METHOD	
SAMPLE TYPES NUMBER		IMBER SAMPLE PREPARATIONS NU	MBER
R ROCK OR BED ROCK 1	2 -150	1 AS RECEIVED, NO SP	1
REPORT COPIES TO: MR. D.G. DUPRE		INVOICE JO: MR. D.G. DUPRE	
·			-
-			

Bondar-Ciegg & Company Lid. 130 Pemberto. Ave. North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985 0681 Telex: 04-352667		BOND	AR-CLEGG	Certificate of Analysis
REPORT: 627-56	526		PROJECT: K-BC-8	PAGE 1
SAMPL E	ELEMENT Zn	d 		
NUMBER	UNITS PCT			
	25.60			
NZ 07721 N	23,60			
				······
				<u></u>
~				
<u></u>				
	······································			
		·		
	· · · · · · · · · · · · · · · · · · ·			
<u> </u>				
				7
			Alta	5

Registered Assayer, Province of British Columbia

GEOLOGICAL LEGEND


7 FELSITE 6 AQUAGENE TUFF, TUFFACEOUS SILTSTONE 5 HEMATITIC BRECCIA 48°51' ------CHORITIC BRECCIA FELSIC VOLCANIC 2 INTERMEDIATE VOLCANIC b intermediate autobreccia 1 MAFIC VOLCANIC a flow b auto breccia c vesicular flow d porphyritic flow e tuff f lapilli tuff ka kaolinitic ch chloritic ep epidotic si siliceous ca calcitic se sericitic mal malachite **X**py pyrite cpy chalcopyrite sp sphalerite

SYMBOLS

QUARTZ STOCKWORK
OUTCROP
BEDDING OR FLOW BANDING
JOINTING
SHEARING
SHEAR ZONE (THRUST ZONE)
LIMIT OF PYRITIZATION
LIMIT OF QUARTZ STOCKWORK ZONE
LITHOGEOCHEMICAL SAMPLE
LITHOLOGICAL CONTACT

GEOLOGICAL BRANCH ASSESSMENT REPORT 105

2	
ASAME	RA INC.
JASPER	I CLAIM
GEOLO	GY MAP
DATE AUGUST, 1987	NTS 92 C/15
PROJECT K-BC-15	MAPPED/ DRAWN BY D. DUPRE
SCALE 1:2500 50m	0 50 100m
TAIGA CONSULTA	INTS LTD MAP

