District (Geologist, Smithers Off Confidential: 89.02.29
ASSESSMENT	r REPORT 17124 MINING DIVISION: Atlin
PROPERTY:	Tatshensini River
LOCATION:	LAT 59 54 47 LONG 136 45 26 UTM 08 6642825 401732 NTS 114P15E 114P15W
CLAIM(S):	Marilyn 1,Monroe 1,Mansfield 1-2,Jane 1,Jean 1,Harlow 1,Diane 1 Dors 1
OPERATOR (S	S): NDU Res.
AUTHOR(S):	McConnell, D.L.
REPORT YEA	AR: 1988, 96 Pages
GEOLOGICAI	
SUMMARY:	The property hosts a series of Lower Triassic ultramafic sills that intrude a suspected island arc assemblage consisting of Permian- Triassic mafic volcanic and volcaniclastic rocks. The package generally grades upward into clastic sedimentary rocks and limestones. Exploration targets consist of either primary segregated nickel- copper-platinum-palladium sulphides associated with the ultramafic sills or hydrothermal remobilized nickel-copper-platinum-palladium mineralization occurring in veins.
WORK	
DONE:	Geophysical
	EMAB 529.0 km; HLEM $(-)$ 1.00.000
~	Map(s) - 4; Scale(s) - 1:20 000
	$\frac{1}{2} \frac{1}{2} \frac{1}$
MINFILE:	114P 031,114P 032

106 MG 3309	f'D.
ACTION	
	Report #1015
FILE NO:	
	New Section of the se

	Dute	Cereves.	icont
have .	Eren .	comments	rentes
{	. .		

DIGHEMIII SURVEY

FOR

ARCHER, CATHRO AND ASSOCIATES

TATSHENSHINI RIVER AREA, B.C.

10000

NTS 114P

DIGHEM SURVEYS & PROCESSING INC. MISSISSAUGA, ONTARIO February 10, 1988 D.L. McConnell Geophysicist

E-DLM-14

 $t \in \mathbb{R}$

DIGHEM III SURVEY FOR ARCHER, CATHRO & ASSOCIATES (1981) LIMITED TATSENSHINI RIVER AREA, B.C.

Geophysical survey for Archer, Cathro & Associates (1981) Limited for assessment purposes

Marilyn 1, Monroe 1, Mansfield 1-2, Jane 1, Jean 1, Harlow 1, Diane 1, Dors 1

Atlin Mining District

NTS 114P/15 59 55'; 136 40'

Owners: W6 Joint Venture Operator: NDU Resources Ltd. Consultant: Archer, Cathro & Associates (1981) Limited

> Authors: D.L. McConnel (Geophysicist) D.C. Davis (Geologist)

> > February 10, 1988 (original) November 15, 1988 (amended)

SUMMARY

A total of 529 line-km of survey was flown with a DIGHEMIII system in November, 1987, for Archer, Cathro and Associates (1981) Limited, over two survey blocks in the Tatshenshini River area, B.C.

The EM survey mapped numerous bedrock conductors. А few conductors appear to be magnetic, however most occur flanking magnetic anomalies. The EM 900 Hz data was used to produce resistivity maps which the conductive show properties of the survey areas. The total field and enhanced magnetic contour maps yield valuable information about the magnetic rock units and bedrock structures within An attempt has been made to identify the survey areas. EM responses due to cultural sources within the survey areas. However, caution is necessary in selecting targets for further investigation near known cultural features.

The survey areas exhibit potential as hosts for both conductive massive sulphide deposits and weakly conductive zones of disseminated mineralization. Some features appear to warrant further investigation using surface exploration techniques. A comparison of the various geophysical parameters, compiled with geological and geochemical information, should be useful in selecting targets for follow-up work.

The use of Dighem's imaging workstation may provide additional useful information from the survey. Current processing techniques can yield structural details which may be important in further defining the geologic setting.

CONTENTS

	Section
INTRODUCTION	1- 1
SURVEY RESULTS	2- 1
SURVEY PRODUCTS	2- 1
GENERAL DISCUSSION	2- 1
CONDUCTOR DESCRIPTIONS Area A Area B	2- 8 2- 8 2-13
SURVEY EQUIPMENT	3- 1
DATA PROCESSING PROCEDURES Base Map Electromagnetic Anomalies Resistivity EM Magnetite Total Field Magnetics Enhanced Magnetics Magnetic Derivatives Digital Profiles Contour, Colour and Shadow Map Displays	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
BACKGROUND INFORMATION	5- 1
ELECTROMAGNETICS	5-1 5-2 5-10 5-11 5-12 5-16 5-18 5-19 5-21 5-24
APPENDIX	5-24
A. List of Personnel	

- B. Statement of QualificationsC. Statement of CostD. EM Anomaly List

1

-

FIGURE 1

THE SURVEY AREA

INTRODUCTION

A DIGHEMIII electromagnetic/resistivity/magnetic survey was flown for Archer, Cathro and Associates (1981) Limited, from November 18 to 24, 1987, over two survey blocks in the Tatshenshini River area, B.C. (Figure 1). These blocks are located on NTS sheet 114P.

Survey coverage consisted of approximately 529 line-km over the blocks. Flight lines were flown with a line separation of 200 metres in an azimuthal direction of 048°/228° over Area A and 044°/224° over Area B. Tie lines were flown perpendicular to the survey line direction.

The survey employed the DIGHEMIII electromagnetic system. Ancillary equipment consisted of a magnetometer, radio altimeter, sequence camera and analog and digital recorders.

This report is divided into sections for convenience. Section 2 describes the geophysical results. Section 3 provides details on the equipment used in the survey and lists the recorded data and computed parameters. Section 4 reviews the data processing procedures, with further information on the various parameters provided in Section 5.

Į.

Not all of our products have been purchased as part of the survey contract. However, they can be acquired. Our review of these products in Sections 4 and 5 may help you determine if they should be purchased. Our suggestions in this regard are summarized in Table 2-1.

į

÷

PROPERTY HISTORY

The Mansfield property consists of sixteen claims (205 units) staked along the eastern margin of the Tatshenshini River Valley. The property was staked in 1987 by Archer, Cathro & Associates (1981) Limited on behalf of W6 Joint Venture. The current operator is NDU Resources Ltd. The area was previously staked in 1962 by W.M. Erwin to cover three nickel-copper occurrences found in shear zones within quartz-carbonate altered ultrabasic rocks found in a cut bank on the south side of Stanley Creek. Assays of up to 4.6% nickel and 4% copper across 1.2 m were reported from trenches. A 1500 m long by 450 m wide geochemical anomaly, thought to be caused largely by zinc, was outlined to the southeast. A specimen of float found on the creek bank below the trenches assayed 600 ppb platinum and 750 ppb palladium. A specimen of similar material found in creek float about 500 m downstream returned 660 ppb platinum, 430 ppb palladium, 1.1% nickel and 0.23% cobalt.

PHYSIOGRAPHY AND ACCESS

Topography is subdued ranging from 850 to 1050 m above sea level. Vegetation consists of scattered scrub spruce and aspen groves along creek valleys, giving way to patches of buckbrush at lower elevations. Marsh areas prevail in proximity to the Tatshenshini River drainage system. The property is easily accessible by vehicle from the all-season Haines Highway system which links Haines Junction, Y.T. with Haines, Alaska.

- 1-3 -

ECONOMIC ASSESSMENT

The property hosts a series of Lower Triassic ultramafic sills that intrude a suspected island arc assemblage consisting of Permian to Triassic basic volcanic and volcanoclastic rocks. The package generally grades upward into clastic sedimentary rocks and limestones. The rocks are located within the eastern margin of a fault-bounded segment of the Wrangellia Terrane, a similar setting to that at the Wellgreen deposit, located 220 km to the northwest. The ultramafic sills are narrow, probably no wider than 50 m, and exhibit quartz-carbonate alteration along their margins, probably due to shearing. A 500 m wide zone of intense quartz- carbonate altered rocks occurs along Stanley Creek and this alteration is probably localized by a regional fault which cross cuts the trend of the ultrabasic rocks. Exploration targets consist of either primary segregated nickel/copper/platinum/palladium sulphides associated with the ultrabasic sills or hydrothermal remobilized nickel/copper/platinum/palladium mineralization occurring in veins.

~___

- 1-4 -

SURVEY RESULTS

SURVEY PRODUCT'S

Table 2-1 lists the products which can be obtained from your survey. Those which are part of the contract are indicated in this table by showing the presentation scale. These total 8 maps. Note particularly those products which are recommended for your survey area. The recommendations are based on the information content of products which would contribute to either reducing the cost of follow-up and/or increasing the likelihood of exploration success.

GENERAL DISCUSSION

The survey results are shown on two separate map sheets for each parameter. Tables 2-2 and 2-3 summarize the EM responses on the electromagnetic anomaly maps with respect to conductance grade and interpretation.

Due to the mountainous terrain and snow cover, some problems were encountered with flight path recovery. While ascending and descending steep slopes the attitude of the helicopter may cause the camera to point several hundred metres behind or ahead of the EM system. The position of the EM anomalies should therefore be verified by ground methods before drilling.

Plots Available from your Survey Table 2-1

				• · · ·		
	NO. OF	ANOMALY	PROFILES	CON	FOURS	SHADOW
MAP	SHEETS	MAP	ON MAP	INK	COLOR	MAP
Electromagnetic Anomalies	2	20,000	N/A	N/A	N/A	N/A
Probable Bedrock Conductors	_	*	N/A	N/A	N/A	N/A
Resistivity (900 Hz)	2	N/A	-	20,000	-	-
Resistivity (7,200 Hz)	<u> </u>	N/A	_	-	-	-
EM Magnetite	-	N/A	-	*	-	-
Total Field Magnetics	2	N/A	-	20,000	**	*
Enhanced Magnetics	2	N/A	-	20,000	*	*
Vertical Gradient Magnetics		N/A		*	*	*
2nd Vertical Derivative Magn	etics-	N/A	-	-	-	-
Magnetic Susceptibility	_	N/A	-	-	-	-
Apparent Depth (900 Hz)	······································	N/A	-	-	-	-
Apparent Depth (7,200 Hz)	-	N/A	-	-	-	-
Overburden Thickness	-	N/A		-	-	-
Digital Profiles		Worksheet profiles			10,000	
		Interp	reted pro	files		-
N/A Not available		<u>+</u>				-+~

Highly recommended due to its overall information content Recommended ***

**

Qualified recommendation, as it may be useful in local areas * Not recommended -

10,000 Scale of delivered map, i.e,, 1:10,000

1.

.

i.

- |

TABLE 2-2

EM ANOMALY STATISTICS FOR THE TATSHENSHINI RIVER, AREA A

CONDUCTOR	CONDUCTANCE RANGE	NUMBER OF
GRADE	SEIMENS (MHOS)	RESPONSES
6	> 100	0
5	50 - 100	0
4	20 - 50	16
3	10 - 20	44
2	5 - 10	89
1	< 5	334
х	INDETERMINATE	93
TOTAL		576

CONDUCTOR MODEL	MOST LIKELY SOURCE	NUMBER OF RESPONSES
D	DISCRETE BEDROCK CONDUCTOR	31
В	DISCRETE BEDROCK CONDUCTOR	118
S	CONDUCTIVE COVER	226
Н	KOCK UNIT OR THICK COVER	101
Ε	EDGE OF WIDE CONDUCTOR	26
L	CULTURE	74
TOTAL		576

(SEE EM MAP LEGEND FOR EXPLANATIONS)

TABLE 2-3

EM ANOMALY STATISTICS FOR THE TATSHENSHINI RIVER, AREA B

CONDUCTOR	CONDUCTANCE RANGE	NUMBER OF
GRADE	SEIMENS (MHOS)	RESPONSES
6	> 100	0
5	50 - 100	0
4	20 - 50	5
3	10 - 20	12
2	5 - 10	66
1	< 5	73
х	INDETERMINATE	61
TOTAL		217

.....

1

ſ

i

CONDUCTOR MODEL	MOST LIKELY SOURCE	NUMBER OF RESPONSES
D	DISCRETE BEDROCK CONDUCTOR	64
В	DISCRETE BEDROCK CONDUCTOR	101
S	CONDUCTIVE COVER	45
Н	ROCK UNIT OR THICK COVER	4
E	EDGE OF WIDE CONDUCTOR	3
TOTAL		217

(SEE EM MAP LEGEND FOR EXPLANATIONS)

- 2-4 -

Severe stresses are placed on the EM bird during sudden elevation changes. This results in higher than normal noise levels, particularly on the inphase EM of the noise related responses were channels. Most eliminated from the EM anomaly maps. However, in some cases distorted the resistivity contours. noise may have Furthermore, lines 20170 to 20250 were not flown as the pilot judged this area to be too hazardous for survey flying.

į

electromagnetic anomaly maps show the anomaly The the interpreted conductor type, dip, locations with conductance and depth being indicated by symbols. Direct magnetic correlation is also shown if it exists. Bedrock conductors are indicated by the interpretive symbols "D" (for thin dikes) or "B" (for other conductor geometries). Surficial conductors are identified by the interpretive symbol "S". The symbol "H" is used to represent a buried Such a response could result from half-space response. conductive overburden beneath a resistive frozen layer, or a flat-lying, conductive, bedrock unit beneath a relatively Responses denoted by the symbol "E" resistive cover. reflect the edge of a wide conductor.

EM "anomalies" by definition should reflect discrete conductors. Wide bedrock conductors or flat-lying conductive units, whether from surficial or bedrock sources, give rise to broad anomalous responses on the EM profiles. These may not appear on the electromagnetic anomaly maps if they have a regional character rather than a locally anomalous character. These broad conductors, which more closely approximate a half space model, are maximum coupled to the horizontal (coplanar) coil-pair and are clearly evident on the resistivity parameter.

Apparent resistivity maps were prepared from the 900 Hz coplanar data. The map for Area A shows a broad conductive unit, apparently at depth, which corresponds to anomalies 10200A to 10410A. Resistivities for this unit range from 25 ohm-m to 100 ohm-m. Bedrock conductors produce linear low resistivity trends from anomaly 10300E to 10130A and 10710D to 10800I.

Several zones, which consist of resistivites below 100 ohm-m, appear to correspond to bedrock conductors on the resistivity contour map for Area B.

Magnetic maps were produced, and provide interesting information. Some of the possible bedrock conductors

correlate with, or occur on the flanks of, magnetic units.

There is ample evidence on the magnetic maps which suggests the areas have been subjected to moderate deformation and/or alteration. These structural complexities are evident on the contour maps as variations in magnetic intensity, irregular patterns, and as offsets or changes in strike direction.

If a specific magnetic intensity can be assigned to the is type which believed to host the rock target mineralization, it may be possible to select areas of higher priority on the basis of the total field magnetic maps. This is based on the assumption that the magnetite content of the host rocks will give rise to a limited range of contour values which will permit differentiation of various lithological units. The magnetic results, in conjunction with the other geophysical parameters, should provide valuable information which can be used to effectively map the geology and structure in the survey area. Coloured maps of the total magnetic field should be very helpful in defining the lithology of the property.

Conductor Descriptions

Area A

Conductor 10030A-10060xA

This weak, narrow, possible bedrock conductor flanks a northwest/southeast trending magnetic high. It may be due to non-magnetic material associated with a contact.

Conductors 10040B, 10040C-10060A

These conductors appear to be associated with the same northwest/southeast trending magnetic high flanked by conductor 10030A-10060xA. Conductors 10040B and 10040C-10060A are weakly conductive, narrow, and may dip to the southwest.

Conductors 10030D, 10030E-10090B, 10040D-10050B, 10050D-10170C, 10060B, 10070C-10130B, 10082xA-10090A

This appears to be a group of thin, non-magnetic, closely-spaced conductors. They may be associated with a contact between a magnetically active unit to the southwest of these conductors and a magnetically quiet unit to the northeast. The conductors correlate with a linear low resistivity trend of about 40 ohm-m. This low is on strike with a low resistivity trend which correlates with anomalies 10180B-10410A.

Conductor 10180B-10410A

These anomalies are attributed to а buried half-space. They may be the result of a flat-lying unit of conductive bedrock overlain by relatively resistive cover, or thick overburden covered by a frozen layer. The conductive unit appears to be at a depth of about 25 m, and correlates with a low resistivity trend of about 25 ohm-m to 100 ohm-m. Much of the central part of the survey area, from line 10100 to line 10470, appears to be underlain by a conductive unit at depths between 5 and 25 metres. These depths are calculated using a conductive earth model and are profiled as the depth channel on the 1:10,000 scale profiles.

Conductors 10140xB-10391xB, 10440I-10490E, 10510G-10551J

These anomalies are weakly conductive. Some appear surficial on the profiles. Others resemble bedrock anomalies or appear to be the result of the

- 2-9 -

edge of a wide conductor. These anomalies may be the result of conductive material, such as clay, graphite or sulphides, associated with a contact or fault. The magnetic contours parallel these conductors and appear to reflect a fault or contact.

Conductors 10391C-10410C, 10470C-10480C, 10530D

These appear to be weakly conductive, narrow, non-magnetic conductors. They parallel a linear, northwest/southeast trending magnetic high, but occur within a relatively non-magnetic rock unit.

Conductors 10391B-10480B, 10420C-10460B, 10470xA-10480xA, 10500B-10510C, 10500C, 10500D, 10510D-10571C, 10540C, 10660D-10700C, 10730D-10750C

These weak, narrow conductors flank a northwest/ southeast trending magnetic high. They may be indicative of conductive material associated with a contact. Conductor 10540D is an isolated, discrete bedrock conductor. Conductors 10410xA-10480E, 10520F-10530F

These conductors appear to be indicative of narrow, non-magnetic, bedrock sources. They strike northwest/southeast and parallel the magnetic contours in this area. These conductors however, are adjacent to a buried pipeline and the responses may in part be due to cultural sources.

Conductors 10520C-10530B, 10590B, 10590C-10601C

These conductors appear to be directly associated with a northwest/southeast trending magnetic feature. Anomalies 10590B and 10590C-10601C have well-defined profile shapes. These conductors may be indicative of narrow, magnetic bedrock sources. Their conductivities may be understated as magnetite has suppressed the inphase component of the EM responses.

Conductor 10601A-10630A

This may reflect a weak, narrow, non-magnetic bedrock conductor. It parallels the magnetic strikes in the area and terminates near an isolated magnetic high, centered on fiducial 1053 on line 10640. Conductors 10610B, 10610C

These appear to be due to isolated, narrow bedrock sources. Conductor 10610C occurs on the flanks of an isolated magnetite response. The magnetic contours may be indicative of a northeast/southwest trending structural break in this area.

Conductors 10710D-10800I, 10790E-10800G, 10790F-10800H, 10680xB

Conductor 10710D-10800I suggests a thin, magnetic bedrock source. Conductance values and resistivities may not be accurate due to the direct correlation of this conductor to a magnetite response. Northwest of line 10700 the source of conductor 10710D-10800I is not detected. The magnetic response weakens, but continues towards the northwest. Conductor 10680xB may be indicative of a change in composition in this magnetic trend, and it correlates with an increase in the magnetic response.

Conductors 10790E-10800G and 10790F-10800H reflect narrow, non-magnetic conductors which flank the magnetic high associated with conductor 10710D-10800I. These conductors may continue southeast of the survey boundary.

Conductors 10730A-10800A, 10780A-10790xA, 10800B

These conductors are indicative of narrow, weakly-conductive, non-magnetic bedrock sources. Conductor 10730A-10800A appears to dip to the northeast. It may continue southeast of the survey area.

There are numerous weak, questionable bedrock responses which may warrant further attention. These include 10010B, 10020B, 10030C, 19020A, 19020XA, 10170XA-10180XA, 10170B-10180XB, 10200F, 10431E, 10440G, 10440H, 10450XB, 10450H, 10450XC, 10580XA, 10620XB, 10630XD, 10750A and 10760I. Appendix D, the anomaly list, should be used to ensure that no bedrock anomalies are overlooked. Some of the "S", "S?", "E" and "H" anomalies may be upgraded based on geological evidence.

Area B

Conductors 20010A-20020A, 20010xA, 20010B-20030B, 20010C-20020C, 29020A, 29020B, 29020C, 20020xA,

20030A, 20040A-20050A, 20040B-20050B, 20060xA-20080A, 20070A, 20070B, 20070xB

These conductors are indicative of narrow, non-magnetic bedrock sources. They occur in a relatively non-magnetic unit between two southeast/northwest trending magnetic highs. The conductors on lines 20010 to 20030 correlate with a resistivity low of about 60 ohm-m.

Conductor 20010D-20030C

i ...

This appears to reflect a narrow, southwestdipping, magnetic bedrock source.

Conductors 20050C-20060xB, 20050xA-20160A, 20160B, 29020D-20150B, 20150C

These appear to be non-magnetic conductors which flank a strongly magnetic northwest/southeast trending unit. Conductor 29020D-20150B correlates with a low resistivity trend of about 40 ohm-m.

Conductors 20120C-20160C, 20120D, 20120xB, 20140xA-20150F

These conductors may be indicative of weak

conductivity associated with magnetite.

Conductors 20260A-20270C, 20270B-20360A, 20260xB, 20260B-20340B, 20260C-20270xE, 20270xC, 20270xD, 20330xA-20340xB, 20380A

These conductors are loosely associated with a strong, arcuate shaped, magnetic feature. Conductor 20260B-20340B generally flanks, but in places directly correlates with a magnetite-rich source. It appears to dip to the southwest in the vicinity of anomaly 20290B. Conductors 20260C-20270E and 20380A appear to be associated with magnetite. Conductors 20260A to 20360A and 20330xA-20340xB are due to a non-magnetic bedrock source on the flank of the strong magnetic feature.

Conductors 20270xA-20300B, 20300A

2

1-

These conductors may be indicative of weak conductivity loosely associated with a magnetic high.

Conductors 20391A-20420A, 20391B-20440A, 20440B, 20440C, 20490A-20530A

These conductors parallel a northwest/southeast trending magnetic high located near the southwest

- 2-15 -

boundary of the survey area. These features may continue southeast of the survey area. Dips in the vicinity of anomalies 20410B and 20500A appear to be northeast.

Conductors 20410C-20530D, 20420E-20440E, 20430E-20490xA, 20430F-20460C, 20440xA-20450C, 20440H, 20450xA-20530F, 20480E-20530E, 20500C-20530C

This group of conductors reflects multiple, closely-spaced, thin, non-magnetic bedrock sources. They generally strike northwest/southeast and parallel the magnetic features in the area.

Due to the fact that the conductors are closely spaced, dip determinations are unreliable. Dips appear to be southwest in the vicinity of anomalies 20530F, 20520E, 20520D and 20480D. However, dips appear to be northeast for anomalies 20450A, 20460A, 20490B and 20510D.

These conductors correlate with a resistivity low in the range of 40 ohm-m to 150 ohm-m.

- 2-17 -

Conductor 20450E

This is indicative of a narrow, isolated bedrock source located in a magnetic low.

Conductor 20490xB-20500G

This conductor suggests a zone of weak conductivity associated with magnetite.

Conductor 20490E

:

ί.

This is apparently a moderately strong, bedrock conductor which flanks a strong isolated magnetic peak.

Conductor 20520G-20530H

This conductor may be indicative of weak conductivity associated with a magnetic high.

Several other weak, questionable bedrock responses were identified in this area. They include 20040xA, 20110xB, 20270xB, 20270A, 20470G, 20480xA and 20530B. The anomaly lists in appendix D should be consulted to ensure that no bedrock anomalies are overlooked. Some of the "S?" and S anomalies such as 20340A, 20350xB and 20360B may warrant further investigation depending on their geological settings.

ί.

ļ

SURVEY EQUIPMENT AND FLIGHT RECORDS

The geophysical instruments and aircraft employed in the survey were as follows:

Electromagnetic System

Type: DIGHEMIII System

- Coil orientations/frequencies: coaxial / 900 Hz coplanar/ 900 Hz coplanar/ 7,200 Hz
- Channels recorded: 3 inphase channels 3 quadrature channels
- Sensitivity:
 0.2 ppm at
 900 Hz

 0.4 ppm at
 7,200 Hz

Sample rate: 10 per second

The electromagnetic system utilizes a multi-coil coaxial/coplanar technique to energize conductors in different directions. The coaxial transmitter coil is vertical with its axis in the flight direction. The coplanar coils are horizontal. The secondary fields are sensed simultaneously by means of receiver coils which are maximum coupled to their respective transmitter coils. The system yields an inphase and a quadrature channel from each transmitter-receiver coil-pair. The transmitter-receiver coil separation is 8 metres. The electromagnetic sensors are housed in a bird which is towed 30 m below the helicopter. Terraine clearance is 60 metres.

Excellent resolution and discrimination of conductors is ensured by the fast sample rate. When a common frequency is used on two orthogonal coil-pairs (coaxial and coplanar), inphase and quadrature "difference channel" parameters are obtained. These parameters are useful in discriminating between bedrock and surficial conductors, even though such conductors may exhibit similar conductance values.

Magnetometer

; :

Type: Geometrics G803, Proton Sensitivity: 1.0 nT Sample rate: 1 per second

The magnetometer sensor was towed in a bird 15 m below the helicopter.

Magnetic Base Station

Type: Geometrics 826A digital recording proton precession Sensitivity: 0.50 nT Sample rate: once per 5 seconds

The base station magnetometer records the diurnal variations of the earth's magnetic field. The clock of the base station is synchronized with that of the airborne system to permit subsequent removal of diurnal drift.

Radar Altimeter

Type: Sperry AA 220 Sensitivity: 1 ft

Analog Recorder

Type: RMS GR33 dot-matrix graphics recorder

The analog profiles were recorded on chart paper in the aircraft during the survey. Table 3-1 lists the geophysical data channels.

Digital Data Acquisition

Type: Scintrex CD16

Tape Deck: RMS TCR12, 6400 bpi, tape cartridge recorder

The digital data were used to generate a number of computed parameters. Both measured and computed parameters were plotted as "digital profiles" during data processing, as shown in Table 3-2.

In Table 3-2, the log resistivity scale of 0.06 decade/mm means that the resistivity changes by an order of magnitude in 16.5 mm. The resistivities at 0, 33 and 67 mm up from the bottom of the digital profile are respectively 1, 100 and 10,000 ohm-m.

Tracking Camera

1

Type: Geocam 75SF, 35 mm film

The camera was operated in frame mode and fiducial numbers were imprinted on the margin of each frame. This procedure ensures accurate correlation of analog and digital data with respect to visible features on the ground.
Table	3-1.	The	Analog	Profiles

Channel	Parameter	Sensitivity	Designation on
Number		per mm	digital profile
CXI CXQ CP1I CP1Q CP2I CP2Q ALT PMGC PMGF	coaxial inphase (900 Hz) coaxial quad (900 Hz) coplanar inphase (900 Hz) coplanar quad (900 Hz) coplanar quad (7200 Hz) coplanar quad (7200 Hz) altimeter magnetics, coarse magnetics, fine	2.5 ppm 2.5 ppm 2.5 ppm 2.5 ppm 5 ppm 3 m 10 nT 2 nT	CXI (900 Hz) CXQ (900 Hz) CPI (900 Hz) CPQ (900 Hz) CPI (7200 Hz) CPQ (7200 Hz) ALT MAG

Table 3-2	2. The	Digital	Profiles

Channel Name (Freq)	Observed parameters	Scale units/mm
MAG	magnetics	10 nT
ALT	bird height	6 m
CXI (900 Hz)	vertical coaxial coil-pair inphase	2 ppm
CXQ (900 Hz)	vertical coaxial coil-pair quadrature	2 ppm
CPI (900 Hz)	horizontal coplanar coil-pair inphase	2 ppm
CPQ (900 Hz)	horizontal coplanar coil-pair quadrature	2 ppm
CPI (7200 Hz)	horizontal coplanar coil-pair inphase	4 ppm
CPQ (7200 Hz)	horizontal coplanar coil-pair quadrature	4 ppm
DIFI (900 Hz)	difference function inphase from CXI and CPI	2 ppm
DIFQ (900 Hz)	difference function quadrature from CXQ and CPQ	2 ppm
CDT	conductance	1 grade
RES (900 Hz)	log resistivity	.06 decade
RES (7200 Hz)	log resistivity	.06 decade
DP (900 Hz)	apparent depth	6 m
DP (7200 Hz)	apparent depth	6 m

Recognizable topographic or cultural features are used to plot fiducials on the base maps to locate the track of the aircraft. Unusual speed changes are detected during computer processing. Such speed changes may be indicative of errors in flight path recovery. The resulting flight path locations therefore reflect a more stringent checking than is normally provided by manual flight path recovery techniques.

Aircraft

i

Company:	Frontier	Helicopters	Limited
----------	----------	-------------	---------

Type: Aerospatial AS350B

Registration C-GOLV

The helicopter flew at an average airspeed of 110 km/h at a height of 60 m.

DATA PROCESSING PROCEDURES

The following products are available from your survey data. Those which are not part of the survey contract may be acquired later. Refer to Table 2-1 for a summary of these products.

Base Map

The base map of the survey area was prepared from a 1:50,000 topographic map. The base map supplemented by a photo mosaic, was used during the course of the survey for visual reference and for subsequent flight path recovery. The geophysical data are presented on duplicate copies of the same topographic base map.

Electromagnetic Anomalies

Anomalous electromagnetic responses are selected and analysed by computer to provide a preliminary electromagnetic anomaly map. This preliminary EM map is used, by the geophysicist, in conjunction with the digital profiles (described below), to produce the final EM anomaly map showing interpreted conductors. These include bedrock, surficial and cultural conductors. A map containing only bedrock conductors can be generated, if desired.

Resistivity

The apparent resistivity in ohm-m may be generated from the inphase and quadrature EM components for any of the frequencies, using a pseudo-layer halfspace model. A resistivity map portrays all the EM information for that frequency over the entire survey area. This contrasts with the electromagnetic anomaly map which provides information only over interpreted conductors. The large dynamic range makes the resistivity parameter an excellent mapping tool.

EM Magnetite

The apparent percent magnetite by weight is computed wherever magnetite produces a negative inphase EM response.

Total Field Magnetics

The aeromagnetic data are corrected for diurnal variation using the magnetic base station data. The regional IGRF field is removed from the data if required under the terms of the contract.

Enhanced Magnetics

The total field magnetic data are subjected to a processing algorithm. This algorithm enhances the response of magnetic bodies in the upper 500 m and attenuates the response of deeper bodies. The resulting enhanced magnetic map provides a better definition and resolution of near-surface magnetic units. It also identifies weak magnetic features which may not be evident on the total field magnetic map. However, regional magnetic variations, and magnetic lows caused by remanence, are better defined on the total field magnetic map. The technique is described in more detail in Section 5.

Magnetic Derivatives

ż

The total field magnetic data may be subjected to a variety of filtering techniques to yield:

vertical gradient second vertical derivative magnetic susceptibility with reduction to the pole upward/downward continuations

All these filtering techniques improve the recognition of near-surface magnetic bodies with the exception of upward continuation. Any of the above parameters can be produced at your request. Dighem's proprietary enhanced magnetic technique (described immediately above) is designed to provide you with a general "all-purpose" map, combining the more useful features of the above parameters.

Digital Profiles

Distance-based profiles of the digitally recorded geophysical data are generated and plotted by computer. These profiles also contain the calculated parameters which are used in the interpretation process. These can be produced both as a worksheet prior to interpretation, and also in the final corrected form after interpretation. The corrected profiles display electromagnetic anomalies with their respective interpretive symbols. The differences between the worksheets and the final corrected form occur only with respect to the calculated parameters. The measured geophysical data are the same for both the worksheet and corrected profiles.

Contour, Colour and Shadow Map Displays

The geophysical data are interpolated onto a regular grid at a 2.5 mm interval using a cubic spline technique. The resulting grid is suitable for generating a contour map of excellent quality.

Solid color maps are produced by interpolating the grid down to the pixel size. The parameter is then color coded based on amplitude to provide a solid color "contour" map. Dighem software provides several shadowing techniques. Both monochromatic (commonly green) or polychromatic (full ∞ lor) maps may be produced. Monochromatic shadow maps are often preferred over polychromatic maps for reasons of clarity.

Spot Sun

The spot sun technique tends to mimic nature. The sun occupies a spot in the sky at a defined azimuth and inclination. The surface of the data grid casts shadows. This is the standard technique used by industry to produce monochromatic shadow maps.

A characteristic of the spot sun technique is that shadows are cast in proportion to how well the sunlight intersects the feature. Features which are almost parallel to the sun's azimuth may cast no shadow at all. To avoid this problem, Dighem's hemispheric sun technique may be employed.

Hemispheric Sun

The hemispheric sun technique was developed by Dighem. The method involves lighting up a hemisphere. If, for example, a north hemispheric sun is selected, features of all strikes will have their north side in sun and their south side in shadow. The hemispheric sun lights up all features, without a bias caused by strike. The method yields sharply defined monochromatic shadows.

The hemispheric sun technique always improves shadow casting, particularly where folding and cross-cutting structures occur. Nevertheless, it is important to center the hemisphere perpendicular to the regional strike. Features which strike parallel to the center of the hemisphere result in ambiguity. This is because the two sides of the feature may yield alternating patterns of sun and shadow. If this proves to be a problem in your survey area, Dighem's omni sun technique may be employed.

Qmni Sun

The omni sun technique was also developed by Dighem. The survey area is centered within a ring of sunlight. This lights up all features without any strike bias. The result is brightly defined monochromatic features with diffuse shadows.

Multi Sun

Two or three spot suns, with different azimuths, may be combined in a single presentation. The shadows are displayed on one map by the use of different colors, e.g., by using a green sun and a red sun. Some users find the interplay of colors reduces the clarity of the shadowed product.

Polychromatic Maps

Any of the above monochromatic shadow maps can be combined with the standard contour-type solid color map. The result is a polychromatic shadow map. Such maps are esthetically pleasing, and are preferred by some users. A disadvantage is that ambiguity exists between changes in amplitude and changes in shadow.

Monochromatic shadow maps are generated by employing an artificial sun to cast shadows on a surface defined by the geophysical grid. There are many variations in the shadowing technique, as shown in Figure 4-1. The various shadow techniques may be applied to total field or enhanced magnetic data, magnetic derivatives, VLF, resistivity, etc. Of the various magnetic products, the shadow of the enhanced magnetic parameter is particularly suited for defining geological structures with crisper images and improved resolution.

BACKGROUND INFORMATION

This section provides background information on parameters which are available from your survey data. Those which are not obtained as part of the survey contract may be generated later from raw data which is available on your digital archive tape.

ELECTROMAGNETICS

DIGHEM electromagnetic responses fall into two general classes, discrete and broad. The discrete class consists of sharp, well-defined anomalies from discrete conductors such as sulfide lenses and steeply dipping sheets of graphite and sulfides. The broad class consists of wide anomalies from conductors having a large horizontal surface such as flatly dipping graphite or sulfide sheets, saline water-saturated sedimentary formations, conductive overburden and rock, and geothermal zones. A vertical conductive slab with a width of 200 m would straddle these two classes.

The vertical sheet (half plane) is the most common model used for the analysis of discrete conductors. All anomalies plotted on the electromagnetic map are analyzed according to this model. The following section entitled Discrete Conductor Analysis describes this model in detail, including the effect of using it on anomalies caused by broad conductors such as conductive overburden.

The conductive earth (half space) model is suitable for broad conductors. Resistivity contour maps result from the use of this model. A later section entitled <u>Resistivity</u> <u>Mapping</u> describes the method further, including the effect of using it on anomalies caused by discrete conductors such as sulfide bodies.

Geometric interpretation

The geophysical interpreter attempts to determine the geometric shape and dip of the conductor. Figure 5-1 shows typical DIGHEM anomaly shapes which are used to guide the geometric interpretation.

Discrete conductor analysis

The EM anomalies appearing on the electromagnetic map are analyzed by computer to give the conductance (i.e., conductivity-thickness product) in mhos of a vertical sheet model. This is done regardless of the interpreted geometric shape of the conductor. This is not an unreasonable

- 5-2 -

· · · · · · ·

Fig. 5-1 Typical DIGHEM anomaly shapes

ן סו ו procedure, because the computed conductance increases as the electrical quality of the conductor increases, regardless of its true shape. DIGHEM anomalies are divided into six grades of conductance, as shown in Table 5-1 below. The conductance in mhos is the reciprocal of resistance in ohms.

Anomaly Grade	<u>Mho Range</u>
6	> 99
5	50 - 99
4	20 - 49
3	10 - 19
2	5 - 9
1	< 5

Table 5-1. EM Anomaly Grades

The conductance value is a geological parameter because it is a characteristic of the conductor alone. It generally is independent of frequency, flying height or depth of burial, apart from the averaging over a greater portion of the conductor as height increases.¹ Small anomalies from deeply buried strong conductors are not confused with small anomalies from shallow weak conductors because the former will have larger conductance values.

Conductive overburden generally produces broad EM responses which may not be shown as anomalies on the EM

: ••••

¹ This statement is an approximation. DIGHEM, with its short coil separation, tends to yield larger and more accurate conductance values than airborne systems having a larger coil separation.

maps. However, patchy conductive overburden in otherwise resistive areas can yield discrete anomalies with a conductance grade (cf. Table 5-1) of 1, or even of 2 for conducting clays which have resistivities as low as 50 ohm-m. In areas where ground resistivities can be below 10 ohm-m, anomalies caused by weathering variations and similar causes can have any conductance grade. The anomaly shapes from the multiple coils often allow such conductors to be recognized, and these are indicated by the letters S, H, and sometimes E on the map (see legend on the EM map).

For bedrock conductors, the higher anomaly grades indicate increasingly higher conductances. Examples: DIGHEM's New Insco copper discovery (Noranda, Canada) yielded a grade 4 anomaly, as did the neighbouring copper-zinc Magusi River ore body; Mattabi (copper-zinc, Sturgeon Lake, Canada) anđ Whistle (nickel, Sudbury, Canada) gave grade 5; and DIGHEM's Montcalm nickel-copper discovery (Timmins, Canada) yielded a grade 6 anomaly. Graphite and sulfides can span all grades but, in any the particular survey area, field work may show that different grades indicate different types of conductors.

Strong conductors (i.e., grades 5 and 6) are characteristic of massive sulfides or graphite. Moderate conductors

- 5-5 -

(grades 3 and 4) typically reflect graphite or sulfides of a less massive character, while weak bedrock conductors (grades 1 and 2) can signify poorly connected graphite or heavily disseminated sulfides. Grade 1 conductors may not respond to ground EM equipment using frequencies less than 2000 Hz.

The presence of sphalerite or gangue can result in ore deposits having weak to moderate conductances. As an example, the three million ton lead-zinc deposit of Restigouche Mining Corporation near Bathurst, Canada, yielded a well defined grade 1 conductor. The 10 percent by volume of sphalerite occurs as a coating around the fine grained massive pyrite, thereby inhibiting electrical conduction.

Faults, fractures and shear zones may produce anomalies which typically have low conductances (e.g., grades 1 and 2). Conductive rock formations can yield anomalies of any conductance grade. The conductive materials in such rock formations can be salt water, weathered products such as clays, original depositional clays, and carbonaceous material.

On the interpreted electromagnetic map, a letter identifier and an interpretive symbol are plotted beside the

- 5-6 -

EM grade symbol. The horizontal rows of dots, under the interpretive symbol, indicate the anomaly amplitude on the flight record. The vertical column of dots, under the anomaly letter, gives the estimated depth. In areas where anomalies are crowded, the letter identifiers, interpretive symbols and dots may be obliterated. The EM grade symbols, however, will always be discernible, and the obliterated information can be obtained from the anomaly listing appended to this report.

The purpose of indicating the anomaly amplitude by dots is to provide an estimate of the reliability of the conductance calculation. Thus, a conductance value obtained from a large ppm anomaly (3 or 4 dots) will tend to be accurate whereas one obtained from a small ppm anomaly (no dots) could be quite inaccurate. The absence of amplitude dots indicates that the anomaly from the coaxial coil-pair is 5 ppm or less on both the inphase and quadrature channels. Such small anomalies could reflect a weak conductor at the surface or a stronger conductor at depth. The conductance grade and depth estimate illustrates which of these possibilities fits the recorded data best.

Flight line deviations occasionally yield cases where two anomalies, having similar conductance values but

- 5-7 -

dramatically different depth estimates, occur close together on the same conductor. Such examples illustrate the reliability of the conductance measurement while showing that the depth estimate can be unreliable. There are a number of factors which can produce an error in the depth estimate, including the averaging of topographic variations by the altimeter, overlying conductive overburden, and the location and attitude of the conductor relative to the flight line. Conductor location and attitude can provide an erroneous depth estimate because the stronger part of the conductor may be deeper or to one side of the flight line, or because it has a shallow dip. A heavy tree cover can also produce errors in depth estimates. This is because the depth estimate is computed as the distance of bird from conductor, minus the altimeter reading. The altimeter can lock onto the top of a dense forest canopy. This situation yields an erroneously large depth estimate but does not affect the conductance estimate.

Dip symbols are used to indicate the direction of dip of conductors. These symbols are used only when the anomaly shapes are unambiguous, which usually requires a fairly resistive environment.

A further interpretation is presented on the EM map by means of the line-to-line correlation of anomalies, which is

- 5-8 -

based on a comparison of anomaly shapes on adjacent lines. This provides conductor axes which may define the geological structure over portions of the survey area. The absence of conductor axes in an area implies that anomalies could not be correlated from line to line with reasonable confidence.

DIGHEM electromagnetic maps are designed to provide a correct impression of conductor quality by means of the The symbols can stand alone conductance grade symbols. with geology when planning a follow-up program. The actual conductance values are printed in the attached anomaly list for those who wish quantitative data. The anomaly ppm and depth are indicated by inconspicuous dots which should not distract from the conductor patterns, while being helpful to those who wish this information. The map provides an interpretation of conductors in terms of length, strike and dip, geometric shape, conductance, depth, and thickness (see The accuracy is comparable to an interpretation below). from a high quality ground EM survey having the same line spacing.

The attached EM anomaly list provides a tabulation of anomalies in ppm, conductance, and depth for the vertical sheet model. The EM anomaly list also shows the conductance and depth for a thin horizontal sheet (whole plane) model,

-

- 5-9 -

but only the vertical sheet parameters appear on the EM map. The horizontal sheet model is suitable for a flatly dipping thin bedrock conductor such as a sulfide sheet having a thickness less than 10 m. The list also shows the resistivity and depth for a conductive earth (half space) model, which is suitable for thicker slabs such as thick conductive overburden. In the EM anomaly list, a depth value of zero for the conductive earth model, in an area of thick cover, warns that the anomaly may be caused by conductive overburden.

Since discrete bodies normally are the targets of EM surveys, local base (or zero) levels are used to compute local anomaly amplitudes. This contrasts with the use of true zero levels which are used to compute true EM amplitudes. Local anomaly amplitudes are shown in the EM anomaly list and these are used to compute the vertical sheet parameters of conductance and depth. Not shown in the EM anomaly list are the true amplitudes which are used to compute the horizontal sheet and conductive earth parameters.

X-type electromagnetic responses

н. Н с

DIGHEM maps contain x-type EM responses in addition to EM anomalies. An x-type response is below the noise threshold of 3 ppm, and reflects one of the following: а weak conductor near the surface, a strong conductor at depth (e.g., 100 to 120 m below surface) or to one side of the flight line, or aerodynamic noise. Those responses that have the appearance of valid bedrock anomalies on the flight profiles are indicated by appropriate interpretive symbols (see EM map legend). The others probably do not warrant further investigation unless their locations are of considerable geological interest.

The thickness parameter

DIGHEM can provide an indication of the thickness of a steeply dipping conductor. The amplitude of the coplanar anomaly (e.g., CPI channel on the digital profile) increases relative to the coaxial anomaly (e.g., CXI) as the apparent thickness increases, i.e., the thickness in the horizontal plane. (The thickness is equal to the conductor width if the conductor dips at 90 degrees and strikes at right angles to the flight line.) This report refers to a conductor as <u>thin</u> when the thickness is likely to be less than 3 m, and <u>thick</u> when in excess of 10 m. Thick conductors are indicated on the EM map by (crescents). For base metal exploration in steeply dipping geology, thick conductors can be high priority targets because many massive sulfide ore bodies are thick, whereas non-economic bedrock conductors are often thin. The system cannot sense the thickness when the strike of the conductor is subparallel to the flight line, when the conductor has a shallow dip, when the anomaly amplitudes are small, or when the resistivity of the environment is below 100 ohm-m.

Resistivity mapping

Areas of widespread conductivity are commonly encountered during surveys. In such areas, anomalies can be generated by decreases of only 5 m in survey altitude as well as by increases in conductivity. The typical flight record in conductive areas is characterized by inphase and quadrature channels which are continuously active. Local EM peaks reflect either increases in conductivity of the earth or decreases in survey altitude. For such conductive areas, apparent resistivity profiles and contour maps are necessary for the correct interpretation of the airborne advantage of the resistivity parameter is data. The that anomalies caused by altitude changes are virtually eliminated, so the resistivity data reflect only those anomalies caused by conductivity changes. The resistivity analysis also helps the interpreter to differentiate between conductive trends in the bedrock and those patterns typical

- 5-12 -

of conductive overburden. For example, discrete conductors will generally appear as narrow lows on the contour map and broad conductors (e.g., overburden) will appear as wide lows.

The resistivity profile (see table in Appendix A) and the resistivity contour map present the apparent resistivity using the so-called pseudo-layer (or buried) half space model defined by Fraser (1978)². This model consists of a resistive layer overlying a conductive half space. The depth channel (see Appendix A) gives the apparent depth below surface of the conductive material. The apparent depth is simply the apparent thickness of the overlying The apparent depth (or thickness) resistive layer. parameter will be positive when the upper layer is more resistive than the underlying material, in which case the apparent depth may be quite close to the true depth.

The apparent depth will be negative when the upper layer is more conductive than the underlying material, and will be zero when a homogeneous half space exists. The apparent depth parameter must be interpreted cautiously

² Resistivity mapping with an airborne multicoil electromagnetic system: Geophysics, v. 43, p. 144-172.

because it will contain any errors which may exist in the measured altitude of the EM bird (e.g., as caused by a dense tree cover). The inputs to the resistivity algorithm are inphase and quadrature components of the coplanar the coil-pair. The outputs are the apparent resistivity of the conductive half space (the source) and the sensor-source The flying height is not an input variable, distance. and the output resistivity and sensor-source distance are independent of the flying height. The apparent depth, discussed above, is simply the sensor-source distance minus the measured altitude or flying height. Consequently, errors in the measured altitude will affect the apparent depth parameter but not the apparent resistivity parameter.

The apparent depth parameter is a useful indicator of simple layering in areas lacking a heavy tree cover. The DIGHEM system has been flown for purposes of permafrost mapping, where positive apparent depths were used as a measure of permafrost thickness. However, little quantitative use has been made of negative apparent depths because the absolute value of the negative depth is not a measure of the thickness of the conductive upper layer and, therefore, is not meaningful physically. Qualitatively, a negative apparent depth estimate usually shows that the EM anomaly is caused by conductive overburden. Consequently, the apparent depth channel can be of significant help in distinguishing between overburden and bedrock conductors.

The resistivity map often yields more useful information on conductivity distributions than the EM map. In comparing the EM and resistivity maps, keep in mind the following:

- (a) The resistivity map portrays the absolute value of the earth's resistivity, where resistivity = 1/conductivity.
- (b) The EM map portrays anomalies in the earth's resistivity. An anomaly by definition is a change from the norm and so the EM map displays anomalies, (i) over narrow, conductive bodies and (ii) over the boundary zone between two wide formations of differing conductivity.

The resistivity map might be likened to a total field map and the EM map to a horizontal gradient in the direction of flight³. Because gradient maps are usually

³ The gradient analogy is only valid with regard to the identification of anomalous locations.

more sensitive than total field maps, the EM map therefore is to be preferred in resistive areas. However, in conductive areas, the absolute character of the resistivity map usually causes it to be more useful than the EM map.

Interpretation in conductive environments

Environments having background resistivities below 30 ohm-m cause all airborne EM systems to yield very large responses from the conductive ground. This usually prohibits the recognition of discrete bedrock conductors. processing of DIGHEM data, however, produces six The channels which contribute significantly to the recognition of bedrock conductors. These are the inphase and quadrature difference channels (DIFI and DIFQ), and the resistivity and depth channels (RES and DP) for each coplanar frequency; see table in Appendix A.

The EM difference channels (DIFI and DIFQ) eliminate up to 99% of the response of conductive ground, leaving responses from bedrock conductors, cultural features (e.g., telephone lines, fences, etc.) and edge effects. An edge effect arises when the conductivity of the ground suddenly changes, and this is a source of geologic noise. While edge effects yield anomalies on the EM difference channels, they do not produce resistivity anomalies. Consequently, the resistivity channel aids in eliminating anomalies due to edge effects. On the other hand, resistivity anomalies will coincide with the most highly conductive sections of conductive ground, and this is another source of geologic noise. The recognition of a bedrock conductor in a conductive environment therefore is based on the anomalous responses of the two difference channels (DIFI and DIFQ) and the two resistivity channels (RES). The most favourable situation is where anomalies coincide on all four channels.

The DP channels, which give the apparent depth to the conductive material, also help to determine whether a conductive response arises from surficial material or from a conductive zone in the bedrock. When these channels ride above the zero level on the digital profiles (i.e., depth is negative), it implies that the EM and resistivity profiles are responding primarily to a conductive upper layer, i.e., conductive overburden. If both DP channels are below the zero level, it indicates that a resistive upper layer exists, and this usually implies the existence of a bedrock conductor. If the low frequency DP channel is below the zero level and the high frequency DP is above, this suggests that a bedrock conductor occurs beneath conductive cover.

conductance channel CDT identifies discrete The conductors which have been selected by computer for appraisal by the geophysicist. Some of these automatically selected anomalies on channel CDT are discarded by the geophysicist. The automatic selection algorithm is intentionally oversensitive to assure that no meaningful responses are missed. The interpreter then classifies the anomalies according to their source and eliminates those that are not substantiated by the data, such as those arising from geologic or aerodynamic noise.

Reduction of geologic noise

unwanted Geologic noise refers to geophysical responses. For purposes of airborne EM surveying, geologic noise refers to EM responses caused by conductive overburden and magnetic permeability. It was mentioned above that the EM difference channels (i.e., channel DIFI for inphase and DIFQ for quadrature) tend to eliminate the response of This marked a unique development conductive overburden. in airborne EM technology, as DIGHEM is the only EM system which yields channels having an exceptionally high degree of immunity to conductive overburden.

Magnetite produces a form of geological noise on the inphase channels of all EM systems. Rocks containing less

than 1% magnetite can yield negative inphase anomalies caused by magnetic permeability. When magnetite is widely distributed throughout a survey area, the inphase EM channels may continuously rise and fall reflecting variations in the magnetite percentage, flying height, and overburden thickness. This can lead to difficulties in recognizing deeply buried bedrock conductors, particularly if conductive overburden also exists. However, the response of broadly distributed magnetite generally vanishes on the inphase difference channel DIFI. This feature can be a significant aid in the recognition of conductors which occur in rocks containing accessory magnetite.

EM magnetite mapping

The information content of DIGHEM data consists of a combination of conductive eddy current response and magnetic permeability response. The secondary field resulting from conductive eddy current flow is frequency-dependent and consists of both inphase and quadrature components, which are positive in sign. On the other hand, the secondary field resulting from magnetic permeability is independent of frequency and consists of only an inphase component which is negative in sign. When magnetic permeability manifests itself by decreasing the measured amount of positive inphase, its presence may be difficult to recognize. However, when it manifests itself by yielding a negative inphase anomaly (e.g., in the absence of eddy current flow), its presence is assured. In this latter case, the negative component can be used to estimate the percent magnetite content.

A magnetite mapping technique was developed for the coplanar coil-pair of DIGHEM. The technique yields a channel (designated FEO) which displays apparent weight percent magnetite according to a homogeneous half space model.⁴ The method can be complementary to magnetometer mapping in certain cases. Compared to magnetometry, it is far less sensitive but is more able to resolve closely spaced magnetite zones, as well as providing an estimate of the amount of magnetite in the rock. The method is sensitive to 1/4% magnetite by weight when the EM sensor is at a height of 30 m above a magnetitic half space. It can individually resolve steeply dipping narrow magnetite-rich bands which are separated by 60 m. Unlike magnetometry, the EM magnetite method is unaffected by remanent magnetism or magnetic latitude.

⁴ Refer to Fraser, 1981, Magnetite mapping with a multicoil airborne electromagnetic system: Geophysics, v. 46, p. 1579-1594.

The EM magnetite mapping technique provides estimates of magnetite content which are usually correct within a factor of 2 when the magnetite is fairly uniformly distributed. EM magnetite maps can be generated when magnetic permeability is evident as indicated by anomalies in the magnetite channel FEO.

Like magnetometry, the EM magnetite method maps only bedrock features, provided that the overburden is characterized by a general lack of magnetite. This contrasts with resistivity mapping which portrays the combined effect of bedrock and overburden.

Recognition of culture

Cultural responses include all EM anomalies caused by man-made metallic objects. Such anomalies may be caused by inductive coupling or current gathering. The concern of the interpreter is to recognize when an EM response is due to culture. Points of consideration used by the interpreter, when coaxial and coplanar coil-pairs are operated at a common frequency, are as follows:

Channels CXS and CPS (see Appendix A) measure 50 and
60 Hz radiation. An anomaly on these channels shows

that the conductor is radiating cultural power. Such an indication is normally a guarantee that the conductor is cultural. However, care must be taken to ensure that the conductor is not a geologic body which strikes across a power line, carrying leakage currents.

- 2. A flight which crosses a "line" (e.g., fence, telephone line, etc.) yields a center-peaked coaxial anomaly and an m-shaped coplanar anomaly.⁵ When the flight crosses the cultural line at a high angle of intersection, the amplitude ratio of coaxial/coplanar (e.g., CXI/CPI) is 4. Such an EM anomaly can only be caused by a line. The geologic body which yields anomalies most closely resembling a line is the vertically dipping thin dike. Such a body, however, yields an amplitude ratio of 2 rather than 4. Consequently, an m-shaped coplanar anomaly with a CXI/CPI amplitude ratio of 4 is virtually a guarantee that the source is a cultural line.
- 3. A flight which crosses a sphere or horizontal disk yields center-peaked coaxial and coplanar anomalies

⁵ See Figure 5-1 presented earlier.

- 5-22 -

with a CXI/CPI amplitude ratio (i.e., coaxial/coplanar) of 1/4. In the absence of geologic bodies of this geometry, the most likely conductor is a metal roof or small fenced yard.⁶ Anomalies of this type are virtually certain to be cultural if they occur in an area of culture.

- 4. A flight which crosses a horizontal rectangular body or wide ribbon yields an m-shaped coaxial anomaly and a center-peaked coplanar anomaly. In the absence of geologic bodies of this geometry, the most likely conductor is a large fenced area.⁶ Anomalies of this type are virtually certain to be cultural if they occur in an area of culture.
- 5. EM anomalies which coincide with culture, as seen on the camera film, are usually caused by culture. However, care is taken with such coincidences because a geologic conductor could occur beneath a fence, for example. In this example, the fence would be expected to yield an m-shaped coplanar anomaly as in case #2

⁶ It is a characteristic of EM that geometrically similar anomalies are obtained from: (1) a planar conductor, and (2) a wire which forms a loop having dimensions identical to the perimeter of the equivalent planar conductor.

above. If, instead, a center-peaked coplanar anomaly occurred, there would be concern that a thick geologic conductor coincided with the cultural line.

The above description of anomaly shapes is valid 6. when the culture is not conductively coupled to the In this case, the anomalies arise from environment. inductive coupling to the EM transmitter. However, when the environment is quite conductive (e.g., less than 100 ohm-m at 900 Hz), the cultural conductor may be conductively coupled to the environment. In this latter case, the anomaly shapes tend to be governed by current gathering. Current gathering can completely distort the anomaly shapes, thereby complicating the identification of cultural anomalies. In such circumstances, the interpreter can only rely on the radiation channels CXS and CPS, and on the camera film.

MAGNETICS

The existence of a magnetic correlation with an EM anomaly is indicated directly on the EM map. In some geological environments, an EM anomaly with magnetic correlation has a greater likelihood of being produced by sulfides than one that is non-magnetic. However, sulfide ore bodies may be non-magnetic (e.g., the Kidd Creek deposit near Timmins, Canada) as well as magnetic (e.g., the Mattabi deposit near Sturgeon Lake, Canada).

5

are digitally recorded The magnetometer data in the aircraft to an accuracy of one nT (i.e., one gamma) for proton magnetometers, and 0.01 nT for cesium magnetometers. The digital tape is processed by computer to yield a total field magnetic contour map. When warranted, the magnetic data also may be treated mathematically to enhance the the near-surface geology, and magnetic response of an enhanced magnetic contour is then produced. map The response of the enhancement operator in the frequency domain is illustrated in Figure 5-2. This figure shows that the passband components of the airborne data are amplified 20 times by the enhancement operator. This means, for example, that a 100 nT anomaly on the enhanced map reflects a 5 nT anomaly for the passband components of the airborne data.

The enhanced map, which bears a resemblance to a downward continuation map, is produced by the digital bandpass filtering of the total field data. The enhancement is equivalent to continuing the field downward to a level

- Fig. 5-2
- Frequency response of magnetic enhancement operator for a sample interval of 50 m.

AMPLITUDE

(above the source) which is 1/20th of the actual sensor-source distance.

Because the enhanced magnetic map bears a resemblance to a ground magnetic map, it simplifies the recognition of trends in the rock strata and the interpretation of geological structure. It defines the near-surface local geology while de-emphasizing deep-seated regional features. It primarily has application when the magnetic rock units are steeply dipping and the earth's field dips in excess of 60 degrees.

Any of a number of filter operators may be applied to the magnetic data, to yield vertical derivatives, continuations, magnetic susceptibility, etc. These may be displayed in contour, color or shadow.

> Respectfully submitted, DIGHEM SURVEYS & PROCESSING INC.

Dany Milonnell

D.L. McConnell Geophysicist

APPENDIX A

LIST OF PERSONNEL

The following personnel were involved in the acquisition, processing, interpretation and presentation of data, relating to a DIGHEMIII airborne geophysical survey carried out for Archer, Cathro and Associates (1981), Limited, over a property in the Tatshenshini River area, B.C.

Bill Cooke	Survey Operations Supervisor
Maurie Bergstrom	Senior Geophysical Operator
G. Pourier	Pilot (Frontier Helicopters Ltd.)
Dave Pritchard	Computer Processor
Paul A. Smith	Interpretation Supervisor
Douglas McConnell	Geophysicist
Gary Hohs	Draftsman
Angela Secker	Word Processing Operator

The survey consisted of 529 km of coverage, flown from November 18 to November 24, 1987. Geophysical data were compiled utilizing a VAX 11-780 computer.

All personnel are employees of Dighem Surveys & Processing Inc., except for the pilot who is an employee of Frontier Helicopters Ltd.

DIGHEM SURVEYS & PROCESSING INC.

Dary M'lonnell

D. L. McConnell Geophysicist

Ref: Report #1015

E-DLM-14
APPENDIX B

STATEMENT OF QUALIFICATIONS

I, Douglas L. McConnell of the City of Toronto, Province of Ontario, do hereby certify that:

- 1. I am a geophysicist, residing at 740 Winderemere Avenue, Toronto, Ontario M6S 3M3.
- 2. I am a graduate of Queens University, Kingston, Ontario, with a B.Sc. Engineering, Geophysics (1984).
- 3. I have been actively engaged in geophysical exploration since 1986.
- 4. I was personally responsible for the interpretation of the geophysical data described in this report.

Dong M'Connell

D.L. McConnell Geophysicist

E-DLM-14

1

. . .

APPENDIX C

STATEMENT OF COST

Date: February 10, 1988

IN ACCOUNT WITH DIGHEM SURVEYS & PROCESSING INC.

Dighem flying of Agreement dated October 1, 1987, pertaining to an To: Airborne Geophysical Survey in the Tatshenshini River area, B.C.

Survey Charges

\$68,241.00 529 km of flying @ \$129.00/line km

Allocation of Costs

-	Data	Acquisition	(60%)
	Data	Processing	(20%)

- Data Processing
- Interpretation, Report and Maps (20%)

DIGHEM SURVEYS & PROCESSING INC.

Day Manuel

D.L. McConnell Geophysicist

E-DLM-14

٤.

ł

APPENDIX D

[

1

ł

EM ANOMALY LIST

÷

1

		CO) او	AXIAL 00 HZ	COPI 90	LANAR DO HZ	COPI 72(LANAR)0 HZ	VER	FICAL . IKE	. HORI: . SHI	ZONTAL. SET	CONDUC EAR	CTIVE TH
AN FID	OMALY/ /INTERI	REAL PPM	QUAD PPM	REAL PPM	QUAD PPM	REAL PPM	QUAD PPM	COND MHOS	DEPIH* M	COND MHOS	dep'ih M	RESIS OHM-M	DEPTH M
LIN A B C D	E 10010 175 S 163 B 125 H 107 L	0 (1 0 2 0 7 10	FLIGHI 3 9 15 15	r 1) 3 4 7 15) 17 30 37	22 19 91 58	32 79 4 5	. 1 . 1 . 3	14 9 0 4	. 1 . 1 . 1	85 50 32 32	85 418 65 500	47 10 4 0
LIN A B C D E	E 1002(214 S 223 B 254 H 264 S 268 L	0 (1 0 2 0 5 2 0 13	FLIGHI 3 7 10 11 20	r 1) 3 7 9 7 11) 15 46 26 14	16 41 121 45 42	20 29 128 58 18	1 2 2 1	0 5 0 3	1 1 1	82 59 32 28 10	107 90 48 158 526	41 24 8 0 0
LIN A C D F G H	E 10030 385 S 370 S 362 E 353 B 351 B 326 H 305 L 302 E) (1 0 3 ? 5 9 6 0 0 0	FLIGHI 2 5 6 3 15 10 7 5	r 1) 5 8 19 19 15 13 6) 10 12 35 35 24 17 9	19 42 39 99 36 38 34	38 52 26 81 81 34 35 41	1 4 9 4 2 9	0 24 16 17 8 0 7	1 1 2 2 2 2 3 3 5	43 48 60 48 49 48 112 170	76 135 35 37 31 28 19 10	24 12 32 23 25 24 83 144
LIN A B C D E F G H	E 1004(408 B 415 B 416 B 430 B 430 B 437 D 459 H 468 L 473 E	- (1 2 2 2 1 8 18 2 30 5	FLIGH 7 11 14 12 42 15 14 11	2 1) 2 8 8 8 18 33 12 14 6) 10 21 21 3 81 28 21 25	16 114 114 14 257 60 67 70	72 50 50 69 177 100 91 32	1 2 12 5 2 21 3	8 2 26 0 7 12 7	1 1 2 2 2 1	42 49 60 26 44 40 39	264 93 134 35 29 38 89 177	6 11 14 33 7 20 9 5
LIN A B C D E F	E 10050 580 B 562 B 554 D 554 D 554 D 518 L 510 E	0 (1 0 19 19 33 0	FLIGH 14 16 35 35 15 12	r 1 4 12 33 33 19 3) 21 36 76 76 10 26	99 103 238 238 39 85	62 47 159 159 32 40	1 1 6 6 32 1	0 0 3 1 17 0	1 1 2 1	20 26 28 25 36 11	276 161 44 37 147 437	0 0 7 4 4 0
LINE 10060 (FLIGHT 1) A 659 D 5 18 0 25 100 80 1 0 1 8 429 * ESTIMATED DEPTH MAY BE UNRELIABLE BECAUSE THE STRONGER PART . OF THE CONDUCTOR MAY BE DEEPER OR TO ONE SIDE OF THE FLIGHT . LINE, OR BECAUSE OF A SHALLOW DIP OR OVERBURDEN EFFECTS.									0				

÷

·

		00) 91	AXIAL 00 HZ	COPI 90	LANAR DO HZ	COPI 720	LANAR DO HZ	VER	FICAL IKE	. HORI: . SHI	ZONTAL EET	CONDUC EAR	CTIVE TH
AN FIL	iomaly/)/interi	REAL PPM	QUAD PPM	REAL PPM	QUAD PPM	REAL PPM	QUAD PPM	COND MHOS	DEPTH* M	. COND . MHOS	DEPIH M	RESIS OHMM	depth M
LIN	IE 10060 680 D	-) (1 10	FLIGHI 6	r 1 26) 40	92	67	. 10	17	•	30	104	2
D E F	683 B 705 H 712 L 718 S	24 6 31 3	38 16 17 10	30 6 16 0	69 34 19 22	204 45 65 42	185 102 18 40	2 21 1	0 4 0	• 1 • 1 • 1	23 33 20 8	40 70 213 433	6 0 0
LIN	E 10070	-) (1	FLIGHI	2 1))			•		•			
A B C D E F	800 D 798 D 795 D 764 H 752 L 741 S	6 16 11 10 30 0	13 17 5 10 18 11	18 22 22 9 17 1	39 19 16 22 25 25	88 67 65 51 73 60	48 38 57 54 76 65	4 12 20 6 17	5 13 21 11 8 1	1 2 1 1 1	44 38 37 43 28 15	67 46 54 67 172 491	15 13 10 14 0 0
LIN	E 10082	- 2 (1 16	FLIGHI	· 1) 7	121	20		Q	•	38	55	10
A B C	1056 B 1076 H 1088 L	- 10 - 6 - 38	20 24	20 8 19	51 23	120 69	238 90	2 19	1 7	1 1	30 31	87 137	5 0
LIN A B C D E F	IE 10090 1222 D 1220 D 1217 D 1204 H 1196 H 1182 L) (1 7 18 14 0 3 21	FLIGHI 18 10 25 6 13 18	21 21 15 15 8 5 11) 54 15 47 13 27 15	162 57 135 40 47 35	116 113 113 84 114 78	4 16 5 2 2	0 19 7 14 2 16	1 2 1 1 1	37 36 36 44 42 50	66 46 60 76 61 112	9 11 15 15 16
LIN A B C D	IE 10100 1287 S 1299 S 1309 S 1346 L) (1 ? 2 ? 2 4 20	FLIGHI 3 1 9 8	1 0 0 3 6) 4 16 4	3 1 25 14	24 17 62 18	2 5 2 28	37 70 13 26	. 1 . 1 . 1	130 142 40 47	1035 1035 375 217	0 0 3 8
LIN	IE 10110	-) (]	FLIGHI	: 1)	a	27		29	• •	52	358	7
A B C D E	1424 S 1415 B 1388 S 1379 L 1371 S	4 9 4 13 4	9 13 5 7	23 6 5 3	10 28 4 16	10 74 12 26	13 35 17 79	17 2 25 3	22 8 27 19	2 1 1	44 50 73 22	41 86 155 506	19 20 29 0
LIN A	€ 10120 362 B	-) (1 8	FLIGHI 6	r 2 12) 23	19	51	. 7	21	. 2	46	48	20
	.* ES . Of . L1	STIMA THE	TED DE CONDU OR BEC	EPTH JCTOR LAUSE	MAY BI MAY I OF A	e unri Be dei Shali	ELIABLI EPER OI LOW DII	e becai r to oi p or of	USE THE NE SIDE VERBURDI	STRON OF THI EN EFFI	GER PAI E FLIG ECIS.	RT . HT .	

			002 90	AXIAL)O HZ	COPI 9(LANAR DO HZ	COPI 720	LANAR DO HZ	VER	FICAL . IKE .	HORI: SHI	ZONTAL EET	CONDUC EAR	CTIVE FH
AN FID	omal' /INTI	Y/ J ERP	REAL PPM	QUAD PPM	REAL PPM	QUAD PPM	REAL PPM	QUAD PPM	COND MHOS	DEPTH* M	COND MHOS	DEPIH M	RESIS OHM-M	DEPTH M
LIN B C D E	E 10 360 347 334 326	120 B S H L	(1 7 1 0 16	FLIGHT 10 13 2 10	2 2) 12 4 4 12) 19 29 18 7	21 72 47 23	43 159 19 50	6 1 1 18	11 0 6 24	2 1 1	39 29 43 59	35 115 111 207	14 1 9 17
LIN A B C D E	E 10 455 456 476 484 493	130 D H L E	(1 7 10 4 22 1	FLIGHT 11 10 8 14 3	2 2) 21 21 21 5 11	18 19 25 17 6	41 48 48 41 14	28 57 114 71 30	9 11 3 15	14 17 10 13 0	2 2 1 1	41 42 37 49 61	41 29 106 158 768	15 19 7 12 0
LIN A B	E 10 584 569	140 S L	(H 1 9	TLIGHT 13 4	2) 2 9	25 8	49 11	153 42	1 18	0 . 24 .	1 1	34 62	105 122	5 23
LIN A B C D	E 10 689 712 727 731	150 S? H L S	(H 0 2 17 4	LIGHT 4 7 11 10	2) 2 3 5 2	9 17 4 15	11 45 17 54	58 84 29 44	1 1 15 2	10 . 0 . 19 . 5 .	1 1 1	53 40 50 33	365 77 148 226	9 10 12 0
LIN A B C D E	E 10 [°] 799 795 782 766 761	160 H B H L B?	(E 4 14 2 17 6	YLIGHT 7 14 17 7 15	2) 1 19 5 6 2	13 33 38 4 25	51 76 86 14 59	15 70 227 68 134	2 8 1 28 28	13 . 17 . 0 . 23 . 4 .	1 2 1 1	39 39 33 63 39	101 41 83 134 229	9 15 7 23 4
LIN A B C D E F	E 10 ⁻ 849 867 886 890 913 918	170 B? B? H L E	(F 20 0 8 2 17 2	LIGHT 25 10 7 15 8 6	2) 57 3 15 14 4 2	26 20 18 44 4 13	33 28 44 38 14 36	181 . 95 . 16 . 41 . 32 . 67 .	19 1 9 2 21	6 . 0 . 22 . 6 . 21 . 3 .	2 1 2 1 1	28 25 42 35 55 31	37 563 47 41 168 255	5 0 16 12 14 0
LIN A B C	E 10 ⁻ 991 982 969 •	180 E H S EST	(F 8 10 2 FIMAJ	TLIGHT 1 40 14 TED DE	2) 8 32 4 PTH M	31 89 29 1AY BE	80 236 76	76 362 150	6 4 1 BECAU	17 . 1 . 0 . JSE THE	1 2 1 STRONG	46 29 37 ER PAF	122 33 82 T	11 9 9
. OF THE CONDUCTOR MAY BE DEEPER OR TO ONE SIDE OF THE FLIGHT . LINE, OR BECAUSE OF A SHALLOW DIP OR OVERBURDEN EFFECTS.														

~**.**..

,

[

ł

....

	007 90	AXIAL DO HZ	COPL 90	ANAR 0 HZ	COPI 720	lanar Do Hz	. VERI	FICAL . IKE .	HORIS	ZONTAL SET	CONDUC EAR	CTIVE TH
ANOMALY/ H FID/INTERP	REAL PPM	QUAD PPM	REAL PPM	QUAD PPM	REAL PPM	QUAD PPM	COND MHOS	DEPTH*. M	COND MHOS	DEPTH M	RESIS OHM-M	depih M
LINE 10180 D 956 L E 946 B?	(1 30 4	FLIGHT 15 8	2) 14 2	13 11	30 16	58 55	. 24 . 3	20 14	1	72 43	99 310	35 3
LINE 10190 A 1062 E B 1074 S? C 1081 H D 1091 H E 1103 L	(1 4 5 8 1 15	FLIGHT 8 14 23 10 4	2) 4 10 25 5 4	14 28 42 19 5	33 56 140 50 15	95 182 140 103 19	3 3 5 1 32	14 12 5 3 20	1 1 2 1 1	63 33 37 48 92	243 90 28 66 148	19 7 15 19 44
LINE 10200 A 1259 H B 1249 H C 1240 H D 1235 H E 1229 L F 1225 B? G 1218 E	(1 3 5 2 19 5 4	FLIGHT 7 6 14 24 12 5 5	2) 9 7 12 10 11 4 2	23 18 46 52 12 7 12	47 44 134 125 31 7 32	108 65 191 238 54 46 37	2 3 3 1 16 6 3	8 13 5 0 18 37 7	1 1 1 1 1 1	37 43 33 33 58 48 54	66 52 60 71 108 356 155	11 15 8 22 7 14
LINE 10210 A 1322 H B 1338 H C 1347 L D 1358 S?	(1 2 8 13 2	FLIGHT 4 19 18 6	2) 17 17 7 2	40 41 12 10	99 147 29 26	187 87 38 58	• • 4 • 4 • 6 • 2	9 . 0 . 7 . 11 .	2 1 1 1	50 27 51 51	29 47 102 237	26 3 16 10
LINE 10220 A 1419 H B 1398 H C 1392 L D 1381 S?	(1 8 13 13 5	FLIGHT 4 43 18 5	2) 26 28 13 2	41 103 17 18	4 301 47 28	24 412 30 93	9 3 7 3	21 - 0 - 9 - 22 -	2 2 1 1	46 26 54 42	28 40 71 218	23 6 22 7
LINE 10231 A 1561 H B 1541 H C 1539 H D 1534 L E 1522 S?	(1 12 11 6 8 1	FLIGHT 6 35 20 12 9	2) 9 21 1 14 7	13 70 15 9 20	34 113 53 29 32	35 221 77 78 102	. 13 . 4 . 2 . 8 . 2	21 . 4 . 1 . 22 . 3 .	2 1 2 1 1	48 29 33 50 42	24 43 38 70 226	25 8 10 20 5
LINE 10240 A 1592 H B 1614 H	(1 13 6	FLIGHT 12 9	2) 8 5	25 18	29 11	33 6	• • 7 • 4	14 5	2 2	49 36	25 39	26 11
.* ES: . OF . LIN	PIMA: 'THE NE, (TED DE CONDU DR BEC	PTH M CTOR AUSE	ay Be May B Of A	E UNRI BE DEI SHALI	eliabi Eper o Low di	e becau R TO CA P OR ON	JSE THE VE SIDE VERBURDE	STRON OF THI N EFFI	GER PAI 2 FLIGI ECTS.	RT . HT .	

ţ÷

ł

Ì

	COAXIAI 900 HZ	2 COPLANAF 900 HZ	COPLANAR 7200 HZ	. VER	FICAL . IKE .	HORIZ SHE	ZONTAL EET	CONDUC EAR	CTIVE FH
ANOMALY/ I FID/INTERP	REAL QUAD PPM PPN	REAL QUAL) REAL QUAD I PPM PPM	. COND . MHOS	DEPTH* M	COND MHOS	depth M	RESIS OHM-M	DEPTH M
LINE 10240 C 1618 L D 1632 S?	(FLIGE 7 3 2 8	TT 2) 1 13 23 3 3 16	34 21 37 64	. 8 . 1	8. 0.	1 1	36 37	80 227	4 0
LINE 10250 A 1697 H B 1683 H C 1673 H D 1654 S? E 1646 S	(FLIGH 11 11 2 2 9 15 0 4 0 4	TT 2) 20 24 2 3 23 5 13 60 4 2 16 4 3 7	44 32 80 120 95 98 44 22 20 35	· 9 · 2 · 3 · 1 · 2	11 . 11 . 4 . 0 . 3 .	3 1 2 1 1	45 32 37 40 57	18 94 34 263 498	24 4 15 2 0
LINE 10260 A 1761 H B 1775 H C 1784 H D 1786 L E 1806 S?	(FLIGH 10 3 6 4 5 3 9 8 0 6	TT 2) 3 23 27 4 6 49 3 6 17 5 6 25 5 2 11	64 69 116 97 46 47 77 88 36 49	. 15 . 3 . 5 . 5 . 1	25 . 9 . 24 . 13 . 0 .	3 1 2 1 1	47 26 62 40 44	20 87 32 59 261	26 1 36 13 2
LINE 10271 A 1927 H B 1913 H C 1901 H D 1900 L E 1880 E	(FLIGH 7 11 1 2 9 15 9 15 0 8	TT 2) 22 65 2 1 18 5 9 31 5 1 31 5 7 14	79 83 81 40 83 118 83 118 83 118 34 64	· 4 · 1 · 4 · 3 · 4	5 . 5 . 17 . 13 . 14 .	3 1 2 1 1	38 36 66 50 45	20 102 39 87 336	18 6 39 20 2
LINE 10280 A 1950 H B 1962 S C 1980 H D 1996 S?	(FLIGH 11 2 3 7 4 3 2 6	TT 2) 2 26 36 7 54 3 4 6 5 0 10	8 57 140 198 22 25 38 36	. 13 . 2 . 7 . 1	19 . 8 . 33 . 0 .	3 1 1 1	39 27 42 33	21 101 178 710	19 3 4 0
LINE 10290 A 2066 H B 2050 H? C 2041 H D 2019 S?	(FLIGH 9 11 1 10 7 4 0 9	NT 2) 18 24 4 5 1 9 9 9 2 14	7 42 78 122 28 32 42 82	. 7 . 1 . 12 . 2	15 . 8 . 37 . 4 .	2 1 2 1	38 40 73 28	25 99 36 623	17 10 45 0
LINE 10300 A 267 H B 259 H? C 246 L D 227 E .* EST . OF	(FLIGH 7 8 3 16 6 15 5 10 FIMATED E THE CONE	T 4) 17 16 4 33 5 10 7 5 17 5 17 5 17 5 17 5 17 5 17 5 17 5 17 5 17	37 55 48 138 16 62 36 102 E UNRELIAB BE DEEPER	9 1 5 3 LE BECAI	25 . 9 . 19 . 16 . USE THE :	2 1 1 STRONG OF THE	53 35 59 33 ER PAR	25 111 55 451 T	30 10 29 0
. LII	NE, OR BE	CAUSE OF A	SHALLOW D	Th OK O/	VERBURDE	N FELS	-CIS.	•	

-

		002 90	AXIAL DO HZ	COPI 90	LANAR DO HZ	COP! 720	LANAR 00 HZ	• VER	FICAL . IKE .	HORI:	ZONTAL EET	CONDUC EAR	CTIVE PH
ANOMAI FID/IN	LY/ FERP	REAL PPM	QUAD PPM	REAL PPM	QUAD PPM	REAL PPM	QUAD PPM	COND MHOS	DEPTH* M	COND MHOS	DEPIH M	RESIS OHM-M	depih M
LINE 10 A 35' B 37' C 39' D 404	0311 7 H 9 L 3 S 4 S	(1 9 12 0 0	FLIGHI 6 11 7 7	21 6 3 2) 14 15 13 6	7 37 41 25	13 36 58 39	. 18 . 7 . 1	35 19 3 0	2 2 1	55 59 30 25	23 49 269 501	33 30 0 0
LINE 14 A 464 B 453 C 449 D 429	0320 4 H 3 H 5 L 5 S	() 5 3 30 0	FLIGHI 4 2 23 5	* 4) 7 4 13 3) 19 6 20 13	22 19 51 38	42 17 46 53	. 5 . 7 . 14 . 1	22 . 46 . 18 . 0 .	2 1 2 1	50 68 59 20	37 70 45 410	24 34 32 0
LINE 10 A 490 B 499 C 510	0330) H 9 L) L	(1 8 15 21	FLIGHI 15 7 14	2 4) 13 52 13) 33 21 16	86 61 38	146 19 19	• • 4 • 37 • 15	12 17 15	2 4 2	43 61 57	43 11 48	19 41 28
LINE 10 A 59 B 579 C 57 D 558	0340 7 H 9 L 3 S 8 S	(1 5 42 11 4	FLIGHI 8 36 5 9	2 4) 9 25 0 3	23 46 5 23	41 128 14 60	39 116 23 28	• 4 • 13 • 13 • 2	15 12 34 7	2 1 1 1	53 43 28 24	40 54 612 339	27 17 0 0
LINE 10 A 672 B 689 C 712	0350 2 H 9 L 3 S	(1 4 16 5	FLIGHT 2 8 8	2 4) 9 13 3	29 11 14	93 39 39	83 19 82	. 4 . 19 . 3	16 10 10	2 1 1	50 43 22	38 75 339	25 11 0
LINE 10 A 776 B 760 C 730	0360 5 H 0 L 6 S	(1 10 36 3	FLIGHI 7 28 12	2 4) 13 23 8) 33 25	98 118 65	144 86 117	. 18 . 15 . 2	37 13 12	2	43 34 36	43 94 159	18 7 6
LINE 10 A 839 B 852 C 866 D 877 E 889	0370 5 H 2 L 1 S 7 S 5 S	() 5 14 0 0 2	FLIGHI 5 9 7 4 10	2 4) 11 6 1 4 4) 9 14 12 23	40 26 28 24 65	48 38 77 75 100	· 9 · 13 · 1 · 1 · 1	28 5 4 8 0	2 1 1 1	54 41 26 40 21	36 262 461 300 301	28 0 0 5 0
LINE 10 A 95	0380 1 H * ES OF LI	() 11 TIMA TIMA NE, (FLIGHI 13 TED DE CONDU OR BEC	25 25 EPTH N ICTOR CAUSE) 46 MAY BH MAY H OF A	25 E UNRI BE DEI SHALI	71 ELIABL EPER C LOW DI	E BECAN R TO OR P OR O	14 USE THE NE SIDE VERBURDE	2 STRON OF THI N EFF	44 GER PAI E FLIGH ECTS.	32 RT . HT .	21

[

i

	CO) 91	AXIAL 00 HZ	COPI 90	ANAR)0 HZ	COP! 720	LANAR . DO HZ .	VER. D	FICAL . IKE .	HORI: SHI	ZONTAL. EET	CONDUC EAR	CTIVE FH
ANOMALY/ FID/INTERI	REAL P PPM	QUAD PPM	REAL PPM	QUAD PPM	REAL PPM	QUAD PPM	COND MHOS	DEPTH* M	COND MHOS	DEPIH M	RESIS OHM-M	depth M
LINE 1038 B 934 L C 929 S D 907 S	- () 21 0 1	FLIGHI 19 8 11	: 4) 17 5 5) 23 13 21	72 24 54	82 78 92	11 3	5 14 0	1 1 1	46 40 24	107 267 269	12 3 0
LINE 1039 A 1031 H B 1037 S C 1041 B D 1049 L E 1057 S	1 (1 13 ? 4 ? 3 22 0	FLIGHI 11 13 10 15 8	2 4) 15 3 3 10 2	31 26 15 15 13	62 87 35 51 34	105 110 34 20 80	8 2 2 14	17 . 1 . 8 . 1 . 0 .	2 1 1 1 1 1	44 31 40 33 25	43 103 195 234 550	19 3 6 0 0
LINE 10400 A 1138 H B 1133 ST C 1122 L D 1115 S E 1107 S F 1102 S	- (1 10 ? 5 7 0 4 6	FLIGHI 10 9 8 7 9 3	* 4) 15 4 7 3 5 8	17 16 7 8 18 17	42 51 22 22 28 32	44 - 67 - 7 - 45 - 71 - 90 -	9 3 7 1 3 6	19 14 0 0 10 28	2 1 1 1 1 1 1 1 1 1	43 36 66 27 34 28	43 122 66 484 251 290	17 6 29 0 0
LINE 10410 A 1206 H B 1211 ST C 1218 BT D 1223 L E 1233 ST F 1246 S	-) (1 8 2 2 2 6 17 7 7 7	FLIGHT 11 5 10 11 7 14	4) 16 5 6 13 4 7	27 10 20 18 15 31	71 31 68 62 44 81	40 • 38 • 45 • 63 • 76 • 98 •	6 3 13 5 3	6 15 9 10 20 7	2 1 1 1 1	37 39 32 59 29 26	45 130 184 120 270 181	11 5 0 21 0 0
LINE 10420 A 1306 H B 1303 S C 1298 B D 1291 L E 1290 B F 1281 S G 1265 S	- (1 ? 7 ? 7 ? 6 16 16 4 6	FLIGHT 11 17 13 9 9 7 9	4) 7 7 6 8 8 0 6	21 33 20 5 5 16 20	70 113 77 29 29 36 34	98 . 142 . 116 . 38 . 11 . 32 . 50 .	4 3 21 1 2 4	18 6 14 26 0 6	1 1 1 1 1	35 31 28 76 38 18 26	128 147 384 73 99 435 241	5 2 0 41 20 0 0
LINE 1043 A 1369 S B 1374 S C 1378 S D 1386 H	- 1 (1 ? 7 4 6 ? 6 STIMA F THE	FLIGHI 14 8 13 14 TED DE CONDU	4) 7 6 9 4 2PTH M	59 16 22 23 MAY BI MAY I	64 49 87 77 5 UNR BE DEI	275 . 76 . 83 . 69 . ELIABLE EPER OF	2 3 4 3 3 3 5 8 5 6 7 0 0	0 4 6 6 USE THE NE SIDE	1 1 1 STRONG OF TH	36 36 37 33 ER PAI	71 93 126 162 • • •	10 5 2
• L	INE, (OR BEC	AUSE	OF A	SHALI	LOW DIF	OR OT	VERBURDE	an effi	ECTS.	•	

.

.

		007 90	XIAL)0 HZ	COPI 9(LANAR DO HZ	COPI 720	LANAR)0 HZ	. VER	FICAL . IKE .	HORI	ZONTAL EET	CONDUC	CTIVE FH
ANOMAI FID/INT	GY/ 3 TERP	real PPM	QUAD PPM	REAL PPM	QUAD PPM	REAL PPM	QUAD PPM	. COND MHOS	DEPTH*. M	COND MHOS	DEPIH M	RESIS OHMM	DEPIH M
LINE 10)431	(E	LIGHI	. 4)			•					
E 1391	L	11	4	6	4	14	53	. 27	16 .	1	68	97	28
F 1400) B?	8	6	5	7	26	48	• 9	33 .	. 1	62	167	22
LINE 10	0440	(1	LIGHI	: 4)			•	•				
A 1478	3 E	7	5	16	46	8	20	• 5	14 .	1	39	75	12
B 1470	Ε	7	4	11	42	139	49	- 4	19 .	. 1	34	125	6
C 1461	H	5	15	6	26	80	111	. 2	4.	1	43	106	12
D 1450	<u>ц</u> 7 рэ	14	6 6	8 0	4 7	19	40	• 20 1	29. 0	2	90 50	54 96	10 J 21
F 1454	1 5	8	20	11	38	88	232	. 3	8.	1	30	161	2
G 1444	1 B?	5	10	3	17	44	83	. 3	10.	1	37	221	2
н 1441	B?	4	20	8	35	108	166	. 2	Ο.	1	27	130	0
I 1434	1 B?	6	4	5	16	37	75	. 6	12 .	1	24	360	0
J 1433	3 S	6	13	5	16	37	75	• 3	8.	1	44	144	10
LINE 1)450	(1	NJ GHT	· 4`	}			•	•				
A 1499	Ε	7	20	9	38	94	56	. 3	9.	1	49	118	17
B 1506	δĒ	6	12	9	19	44	21	. 4	11.	1	37	122	6
C 1516	5 H	8	18	8	36	112	156	. 3	8.	1	35	118	7
D 1519	Ъ	26	8	7	26	83	117	. 18	13 .	1	71	136	30
E 1520) B	8	14	12	28	84	127	. 5	11.	1	63	105	27
F 1520	51	E A	10	5 2	10	28	85	• 1	12	1	43	197	5 17
H 1539	B?	11	28	17	55	169	271	. 4	3.	1	29	89	4
		• •						•	•	-			
LINE 10)460	(E	LIGHT	4))			• .	•				
A 1597	7 B?	4	9	7	11	36	46	• 4	23.	1	47	152	13
B 1592	2 82	0	6	2	14	31	97	. 1	4.	1	1/	48/	0
- C 1587 - D 1597	1 D	15	8	7	50	14	194	. 0 6	۰ ۲ <u>۲</u>	ו 1		65	44
E 1583	3 B	10	20	16	50	145	212	. 4	ŏ.	1	31	99	0
F 1576	ŝŜ	2	5	6	7	21	60	• 4	32 .	1	64	150	25
G 1567	7 S?	5	18	5	28	75	137	. 2	Ο.	1	36	153	4
н 1559) S	3	7	6	14	36	54	• 3	8.	1	40	164	3
I 1551	S	8		2	13	38	101	• 4 5	4.	1	13	504	0
J 1540		7	10	0	24	00	121	•		1	39	149	0
LINE 10)470	(F	LIGHT	4)			•					
A 1673	3 B	6	23	12	44	138	130	. 3	Ο.	1	30	143	0
B 1681	B	6	10	7	15	41	69	. 4	17.	1	50	160	13
C 1692	2 B	10	20	6	40	126	183	• 3	4.	1	31	167	1
•	יסק א	ጥተለልካ	יר בי	N HTG	NAV PR		T.TABI	E BECA	ISE THE	STROM	TER PAR	रा .	
• '	OF	THE		ICTOR	MAY	BE DEF	SPER O	RIOO	NE SIDE	OF THE	E FLIGH	fr .	
:	LI	NE, C	R BEC	AUSE	OF A	SHALI	LOW DI	PORO	VERBURDE	N EFFI	ECTS.	•	

·___

÷

i

			00) 90	AXIAL DO HZ	COPI 90	LANAR DO HZ	COPI 720	LANAR DO HZ	VER D	FICAL . LKE .	HORI? SHE	ZONTAL SET	CONDUC EARC	CTIVE FH
AN FID	omali / INTI	Y/ I ERP	REAL PPM	QUAD PPM	REAL. PPM	QUAD PPM	REAL PPM	QUAD . PPM .	COND MHOS	DEPIH*. M	COND MHOS	DEPTH M	RESIS OHMM	DEPTH M
LIN D E F G H	E 10/ 1695 1703 1707 1713 1724	470 L S S B	() 15 0 6 8 6	FLIGHI 6 9 6 17 15	4 6 6 9 1) 40 21 13 36 27	126 48 35 92 31	183 . 126 . 75 . 138 . 100 .	7 1 6 4 2	0 . 6 . 34 . 1 . 2 .	1 1 1 1	57 38 47 26 28	103 244 272 165 401	19 5 10 0 0
LIN A B C D E F G H I	E 10 ⁴ 1786 1779 1769 1767 1766 1761 1751 1742 1738	480 B? B L B D S? E B?	(1 8 5 12 25 11 6 1 4 3	FLIGHT 12 8 23 19 15 10 10 9 14	2 4) 9 3 14 22 22 10 5 5 1	31 13 38 13 19 23 18 14 20	114 30 75 40 75 64 52 37 51	65 . 69 . 143 . 143 . 65 . 106 . 72 . 79 . 117 .	4 3 4 19 9 4 1 3 1	0. 13. 12. 17. 8. 17. 0. 0. 0.	1 1 1 1 1 1 1 1	20 31 35 68 36 32 38 22 31	156 299 158 58 76 468 156 317 253	0 6 36 7 0 0 0
LIN A B C D E F	E 104 1810 1811 1829 1833 1846 1857	190 S? H? S L S S	(1 5 5 1 28 3 5	FLIGHT 18 18 5 15 9 6	4) 10 10 4 17 3 2	32 32 14 18 16 10	106 106 50 54 36 26	112 . 114 . 101 . 60 . 101 . 49 .	3 3 2 20 2 3	1 . 1 . 18 . 1 . 10 . 8 .	1 1 1 1 1	34 43 33 42 39 34	151 100 285 80 335 303	3 12 0 10 2 0
LIN A B C D E F	E 105 407 396 394 391 382 376	500 S? S? B? B? L S	(H 1 0 66 0	FLIGHI 22 5 6 5 79 6	5) 11 6 0 1 51 6	44 12 8 14 91 9	149 68 35 23 235 21	156 . 51 . 46 . 96 . 325 . 49 .	1 3 1 12 2	0 . 17 . 31 . 5 . 2 . 7 .	1 1 1 2 1	20 29 27 25 35 74	131 206 528 533 37 126	0 0 0 13 33
LIN A B C D E F G	E 109 434 436 445 451 458 463 486	510 S? S? B? S? L S? S?	(1 0 4 5 0 26 0 0	FLIGHT 30 12 14 4 17 10 5	5) 10 10 4 3 16 5 1	58 24 26 9 17 17 7	155 44 57 13 51 23 19	264 72 144 54 49 69 37	1 32 1 18 1 1	0 • 12 • 8 • 12 • 9 • 0 •	1 1 1 1 1 1	24 18 19 35 45 34 28	188 403 426 415 84 197 566	0 0 0 13 0 0
	.* •	EST OF LIN	TIMAT THE NE, (TED DE CONDU DR BEC	PIH N CTOR AUSE	1AY BE MAY B OF A	: UNRE SE DEF SHALI	ELIABLE EPER OR LOW DIP	BECAU TO ON OR ON	ISE THE IE SIDE VERBURDE	STRONO OF THE N EFFI	ER PAR FLIGH ECTS.	т. т.	

			002 90	AXIAL DO HZ	COPI 9(ANAR)0 HZ	COP) 720	LANAR 00 HZ	. VER	FICAL . IKE .	HORI: SHI	ZONTAL EET	CONDUC EAR	CTIVE CH
AN FID	omali / Inti	Y/ I SRP	REAL PPM	QUAD PPM	REAL PPM	QUAD PPM	REAL PPM	QUAD PPM	COND MHOS	DEPTH* M	COND MHOS	depin M	RESIS OHMM	DEPIH M
T.TN	E 10	520	0	FT.TGHT	з <u>Б</u>	\$			•	•				
A	543	E	7	29	6	, 60	134	300	2	ο.	1	20	301	0
В	540	S?	6	29	5	60	134	300	• 1	6.	1	12	290	0
С	534	B?	4	14	7	4	60	13	. 3	11 .	1	16	339	0
Ð	522	S?	2	21	19	34	95	167	. 3	6.	1	32	150	3
E F	521 520	L B?	44 44	18 25	18 18	47 47	144	193 193	. 19 . 16	16.	1	51 35	65 56	23 10
									•	•	•		50	
LIN.	E 10:	050	(1	*L1GH1 14	: 5,	21	72	100	•	• •	1	25	145	ŕ
B	578	п: 87	2	14	0 6	21	102	138	• • •	6	1	9 20	365) 0
č	583	s.	0	8	1	17	35	108	. 1	ŏ.	1	19	492	ŏ
Ď	589	B?	4	9	14	18	56	48	. 5	14 .	1	31	279	0
Е	591	Ŀ	24	14	16	24	77	71	. 16	9.	1	46	88	14
F	592	B?	24	14	16	24	77	71	. 15	15.	1	47	61	19
G	597	S	2	9	2	17	47	44	. 1	1.	1	24	506	0
H	604	S	1	7	0	13	14	99	• 2	24 .	1	46	694	1
LIN	E 105	540	(1	LIGHI	5)			•					
А	675	В	3	15	12	59	146	289	. 2	Ο.	1	19	235	0
В	673	н	2	16	13	59	147	289	. 2	1.	1	36	100	8
С	668	D	6	7	6	8	16	37	. 8	15 .	1	28	531	0
D	657	S	4	11	3	20	52	117	. 2	6.	1	17	425	0
E	651	S	5	69	21	134	336	748	• •	U.	1	18	9/	0
r	649	ц с	14	27	21	123	323	- 110 - 68	• 4	U. 7	1	95	99	24 55
ម អ	635	S	2	12	2	20	31	142	. 2	16	1	45	417	9
I	632	B	2	20	5	31	36	185	. 1	Ŭ.	1	17	459	ó
 T T N T			(1	र मर्टन्द्रश	יהי	L			•	•				
А	5 10: 757	S?	0	7 7	4	9	4	58	•	24	1	53	584	З
в	761	S?	4	8	12	6	127	16	. 7	13.	i	50	273	5
ĉ	763	S	Ū	18	12	56	128	239	. 1	Ο.	1	30	123	4
D	766	S	0	13	5	22	59	125	. 1	Ο.	1	32	199	0
Ε	774	S?	2	13	3	19	6	96	• 1	6.	1	28	461	0
F	782	B?	0	31	6	52	133	301	. 1	7.	1	26	233	2
G	787	52	9	13	14	32	117	78	. 5 5	0.	1	22	65 110	10
H T	788	ыř С	9	21	14	32 15	51	40 ·	• 5	0. 0	ו 1	4/	224	10
т Л	814	ອ S	0	8	1	12	1	33	. 1	0.	1	33	626	0
									•					
LIN	E 10	560	(I	LIGHI	6		~~	4 -	•	•				~
A	328	S	2	1	1	9	35	47	• 3	14	1	44	132	9
	•	EST	ימאדי	יים - אין	א איוס:	AV P		TTARL	E BECAI	ISE THE	STRON	TER PAT	• ः	
	•	OF	THE	CONDU	ICTOR	MAY	BE DE	EPER O	R TO ON	E SIDE	OF THE	E FLIG	fr.	
	Ĩ	LIN	NE, (DR BEC	AUSE	OFA	SHAL	LOW DI	PORO	/ERBURDE	N EFFE	ECTS.		

Γ

ļ

			CO2 91	AXIAL DO HZ	COP) 90	LANAR DO HZ	COP. 72	LANAR 00 HZ	. VER . D	TICAL . IKE .	HORI: SHI	ZONTAL EET	CONDUC EAR	CTIVE FH
AN FID	OMALI /INTI	Y/I ERP	REAL PPM	QUAD PPM	REAL PPM	QUAD PPM	REAL PPM	QUAD PPM	. COND . MHOS	DEPTH*. M	COND MHOS	DEPIH M	RESIS OHM-M	DEPTH M
LIN	E 10'	560	(1	PLTGHI	r 6)			•	•	•			
В	329	S	4	6	7	, 15	33	57	. 4	17	1	39	177	4
С	340	S	3	8	1	13	34	70	. 2	9.	. 1	30	608	0
Ð	350	S?	- 5	38	9	76	226	374	. 1	Ο.	. 1	16	171	0
Ε	353	S?	11	19	13	34	115	134	. 5	4.	. 1	11	365	0
F	355	L?	12	15	13	34	115	134 24	• 6 2	2.	.]	46	175	8
<u> </u>				5		Ŭ		27	•	•	J	<i></i>	0,0	v
LIN	E 103	571	(1	FLIGHI	2 6)	25	0.0	•	. •		50	170	
A	459	S	0	12	5 10	14	35	120	• i 7	U. 7	1	20	178	11
р С	40.5	3 3	-ч Л	52	17	120	283	503	• 3 - 1	о О.	1	16	97	 0
b	489	S	18	26	18	34	105	185	. 7	0.	. 1	24	70	ů
Ē	490	L?	18	26	18	34	105	185	. 7	ŏ.	1	36	108	4
F	499	S	3	9	4	14	35	107	. 2	11 .	1	36	279	Û
LTN	E 10 ²	580	(1	गा सम	י ה')			•	•				
A	577	S	9	10	3	11	36	62	. 6	24 .	1	32	354	0
B	574	S	9	10	9	18	42	102	. 6	17.	1	32	162	0
С	551	Ε	7	17	11	78	86	398	. 2	Ο.	1	7	359	0
D	548	S	15	42	17	125	290	666	. 3	4.	1	19	117	0
E	546	Ĺ	15	25	17	125	290	666	. 3	υ.	1	40	153	/
LIN	E 10	590	(1	FLIGHI	1 6))			•	•				
А	589	S	0	12	3	23	49	129	• 1	4.	1	28	354	0
В	605	D	3	22	2	25	49	156	. 1	5.	1	26	502	0
C	605	D	3	22	2	25	49	156	• 2 1	5.	1	11	365 100	0
D F	61/	5:	U 0		13	10	233	549	• • •	2	1	20	518	0
			v	10	ر.	10	74	21	• •		1	1.1	510	Ŭ
LIN	E 106	501	(F	LIGH	c 6])			•	•				
А	7 7 5	S?	4	5	5	21	40	117	• 3	19.	1	34	387	0
B	768	Ê	8	8	4	15	18	64	• 5	23.	1	16	466	0
C	760	D	07	22	1	ا ک	41	1/4	• 1	1.	1	24	484	0
D E	727	s S	1	ເບ 8	4	25 8	26	99 40	· 3	0.	1	24 57	799	0
				•	·	-			•	•				-
LIN	E 100	510	(1	FLIGHI	c 6))			•	•				
Α	801	S	5	14	5	19	45	82	. 2	2.	1	47	141	12
B	811	D	11	15	6 0	25	82	1/3	• 4	15 .	1	35	214	3
C	824	B	24	15	U 4 A	121	10	182	. 4. 5	2/ •	ן ז	59	20	10
U	029	пι	24	57	44	ا د ا	407	500	• J	υ.	4	2.)		J
	:*	EST	rimat	red de	EPIH I	MAY BE	UNR	ELIABU	E BECA	USE THE	STRON	ER PA	RT .	
	•	OF	THE	CONDL	ICIOR	MAY	BE DEI	EPER O	r to O	NE SIDE	OF THE	E FLIG	π.	
	•	LI	NE, (OR BEX	CAUSE	OF A	SHAL	LOW DI	PORO	VERBURDE	N EFFI	ECTS.	•	

•

1

Ì

.

L

.

	002 90	AXIAL 00 HZ	COPI 90	LANAR)0 HZ	COPI 720	LANAR DO HZ	. VER	FICAL . IKE .	HORI: SHI	ZONTAL EET	CONDUC EAR	CTIVE CH
ANOMALY/ FID/INTERP	REAL PPM	Quad PPM	REAL PPM	QUAD PPM	REAL PPM	QUAD PPM	COND MHOS	DEPTH*	COND MHOS	DEPIH M	RESIS OHMM	DEPIH M
LINE 10610 E 843 S F 855 S	() 7 1	FLIGHI 7 3	6) 3 1) 13 5	40 16	32 34	• • • 5 • 1	12 10	1	30 61	580 755	0 0
LINE 10620 A 912 B B 908 S C 899 S D 884 H? E 881 L F 874 S	(1 4 12 0 29 11 6	FLIGHT 13 22 7 94 7 6	(* 6) 6 14 4 56 52 1	17 48 12 204 156 12	46 137 47 607 469 34	86 170 45 419 359 46	2 4 1 5 6 3	9 4 0 0 0	1 1 1 1 1	32 34 44 21 114 38	223 97 208 40 1035 790	0 6 3 0 0
LINE 10630 A 943 B B 946 S C 956 S? D 971 H E 974 L F 985 S G 995 S	(1 8 5 15 46 0 0	FLIGHI 11 24 13 46 28 9 3	6) 9 13 5 53 57 0 0	11 54 19 100 19 19 4	35 161 16 310 72 21 10	62 207 88 294 216 148 30	2 3 3 6 36 2 1	0 4 7 2 0 11	1 1 1 1 1 1	42 30 33 22 28 30 42	122 106 240 101 70 584 317	6 4 0 0 0 17
LINE 10640 A 1058 S B 1046 S C 1026 H? D 1024 L E 1016 S F 1009 S?	(1 2 0 12 31 4 4	FLIGHI 5 6 34 31 6 13	5 6) 0 7 37 37 2 3	11 12 73 73 13 20	32 40 240 240 17 32	20 34 149 149 49 79	1 2 5 10 3 2	3 0 0 0 11	1 1 1 1 1 1	46 49 25 44 25 34	749 135 72 78 698 614	0 10 0 13 0 0
LINE 10650 A 1158 H? B 1160 L C 1172 S	(1 12 32 6	FLIGHT 35 29 9	2 6) 4 26 0	79 79 21	235 235 48	192 192 106	. 2 . 9 . 2	0 0 12	. 1 1	25 22 18	106 140 465	1 0 0
LINE 10660 A 1238 S B 1228 S C 1225 S D 1220 S E 1206 S? F 1205 L G 1197 S	(1 1 8 12 2 11 6 4	FLIGHT 4 16 4 9 8 8 8 9	2 6) 0 7 5 3 11 11 2) 36 12 13 46 46 10	18 88 39 46 151 151 49	27 188 55 62 100 100 49	1 3 14 2 5 3 2	5 7 15 6 9 0	1 1 1 1 1 1	39 20 29 30 28 27 11	749 196 203 382 122 359 496	0 0 0 0 0 0
* ES OF	TIMA THE NE, (TED DE CONDU OR BEC	EPTH N ICTOR CAUSE	May Bi May I Of A	e unri Be dei Shali	eliabli Eper o Low di	e becau R 10 Or P OR O	USE THE NE SIDE VERBURDE	STRON OF THI N EFFI	GER PAN E FLIGN ECTS.	er. Er.	

í

~~

	COAX 900	IAL HZ	COPL 90	ANAR 0 HZ	COPI 720	ANAR . DO HZ .	VER D	FICAL . IKE .	HORI: SHI	zontal Set'	CONDUC EARI	CTIVE FH
ANOMALY/ I FID/INTERP	real Q PPM	uad i PPM	REAL PPM	QUAD PPM	REAL PPM	QUAD . PPM .	COND MHOS	DEPTH*	COND MHOS	DEPIH M	RESIS OHM-M	depth M
LINE 10660 H 1190 S	(FL 9	IGHT 10	6) 0	22	61	112	3	10	. 1	17	517	0
LINE 10670 A 1256 S B 1278 S? C 1279 L D 1295 S	(FL 8 13 13 6	1GHT 11 16 9 8	6) 6 1 0 1	20 33 33 16	62 103 103 37	86 143 143 41	4 4 3	10 12 6 10	1 1 1	33 14 18 19	199 416 564 572	0 0 0 0
LINE 10680 A 1352 S B 1345 S? C 1331 H? D 1316 S	(FL 8 3 9 5	1GHT 14 12 17 1	6) 8 6 4 5	30 16 27 19	89 43 80 30	137 - 74 - 119 - 15 -	4 2 4 5	3 0 20 0	1 1 1	27 35 28 14	174 238 468 232	0 0 1 0
LINE 10690 A 1381 H? B 1388 S? C 1406 S? D 1425 S	(FL 5 8 11 4	IGHT 15 16 10 8	6) 8 3 4 4	32 27 20 27	83 72 68 46	165 . 134 . 84 . 96 .	2 3 6 2	7 6 19 6	, 1 , 1 , 1	34 25 25 25	170 332 57 9 277	4 0 0 0
LINE 10700 A 1481 S B 1477 S? C 1471 H? D 1457 H E 1446 S F 1442 S	(FL 3 5 3 0 7 5	IGHT 3 7 12 10 19 21	6) 3 4 7 6 7 4	10 13 20 13 35 37	25 42 35 55 81 87	36 66 72 50 172 191	4 3 2 1 2 1	29 14 4 0 3 4	1 1 1 1	31 45 52 63 32 15	246 146 143 158 183 385	0 9 15 22 1 0
LINE 10710 A 1510 H B 1527 L C 1529 S? D 1531 B E 1545 S	(FL 7 0 2 2 9	IGHT 2 11 9 5 11	6) 7 0 3 3 5	23 8 8 8 20	70 59 59 59 46	82 37 37 36 115	6 1 2 4 4	23 10 14 27 22	1 1 1 1	35 61 29 31 32	141 783 577 691 233	3 0 0 0 1
LINE 10720 A 1605 S B 1602 S C 1592 S? D 1578 L E 1573 D	(FL 4 0 5 0 5	JIGHT 7 7 44 13 14	6) 1 4 9 1 7	14 15 109 14 13	36 36 247 50 36	82 90 597 65 62	2 1 1 3	7 2 1 0 10	1 1 1	37 49 20 55 57	576 235 138 809 215	0 10 0 15
* ES OF	TIMATE THE C NE, OR	D DEI DNDU 8 BECI	PTH M CTOR AUSE	NAY BE MAY B OF A	e unri Be dei Shali	ELIABLE EPER OF LOW DIE	BECAU R TO OR OR O	USE THE NE SIDE VERBURDI	STRON OF TH IN EFF	GER PAI E FLIG ECTS.	RT . HT .	

	007 90	AXIAL)0 HZ	COPI 90	ANAR)0 HZ	COPI 720	lanar Do hz	•	VER1 DI	FICAL IKE	HORI:	ZONTAL EET	CONDU(EAR	CTIVE FH
ANOMALY/ 1 FID/INTERP	REAL PPM	QUAD PPM	REAL PPM	QUAD PPM	REAL PPM	QUAD PPM	•	COND MHOS	DEPTH* M	. COND . MHOS	DEP1H M	RESIS OHM-M	DEPTH M
LINE 10720	()	LIGHI	. 6)			•			•			
F 1564 S G 1559 S	2 0	8 16	6 4	15 24	39 60	65 131	•	2 1	3 0	. 1 . 1	40 32	157 337	4 0
LINE 10730	(1	FLIGHT	. 6))			:			•			
A 1677 B?	Ó	3	4	8	8	19	•	1	12	. 1	63	218	19
В 1689 E С 1693 H	ধ ন	19	11 6	39 14	27	36	•	3 3	4 15	• 1 • 1	30 35	129	р 2
D 1694 B?	5	10	6	12	23	26	•	4	5	. 1	17	540	0
E 1706 L	0	19	0	12	34	94	٠	3	14	. 1	59	758	1
G 1711 B	3	10	6 6	16 16	38 38	109	•	43	26 12	. 1	47	425 178	11
LINE 10740	(1	LIGHI	: 6)	ļ			:			•			
A 1790 B?	<u>3</u>	5	0	10	6	52	•	2	16	. 1	48	747	0
B 1784 E	5	4	2	8	24	37	٠	5	21	• I 1	24	1035	0
D 1772 B	5	7	0	33	75	155	:	2	4	1	32	581	Õ
Е 1762 L	1	19	0	10	25	96	•	2	0	. 1	49	777	0
F 1759 S?	0	12	7	18	56 22	96 22	•	3 1	2.	• •	29	368	0
G 1757 В Н 1746 S	7	8	7	17	22	52 72	•	5	26	. 1	35	328	1
T THE 10750	11	יידניים	י הו	L			•			•			
A 1810 B?	0	5	. 0, 3	5	8	13	:	1	0	. 1	43	241	17
В 1819 Н	4	27	5	57	148	265	•	1	2	. 1	23	244	0
C 1825 B	3	7 c	3	12	38	36	٠	3	4	. 1	33	287	0
E 1841 D	27	18	6	14	45	35	:	4	7	. 1	13	512	0
F 1855 S	2	10	4	22	41	103	•	1	9	1	23	470	0
LINE 10760	(1	LIGHI	: 6)	ļ			:			•			
A 1919 S	ò	5	1	10	24	74	•	1	4	. 1	58	552	5
B 1911 D	3	6 14	07	10	5	42	٠	2	13	. 1	53	761	0
С 1896 Л D 1894 Н	⊃ 4	14	י ז	29	55	90 84	•	2	10	. 1	33	338	
E 1885 L	4	21	ž	8	45	67		4	0	. 1	46	706	0
F 1882 D	4	7	4	11	12	67	٠	4	0	. 1	25	746	0
G 1872 S	0	7	3	14	37	64	٠	1	0	. 1	27	324	0
H 1869 S I 1867 B	4 1	10 8	4 0	10	11	98	•	1	6	. 1	27	564	0
							•			•			
LINE 10770	(I 1	filioni 4	: 5, 4	, 5	18	24	•	1	0	. 1	20	244	0
، <i>سال معنی در</i> را در ۱	•	-	-	~			-	-	-		_,	•	Ť
.* ES	TIMA	DE DE	EPTH N	1AY BE		ELIABL	E	BECAU	SE THE	STRON	GER PAI	. TS	
	NE. (DR BEC	CIUR	OF A	SHALI	LOW DI	P	OR ON	/ERBURDI	EFFI	ECTS.	* <u>*</u>	

İ

1

	CO) 91	AXIAL 00 HZ	COPI 90	lanar Do Hz	COPI 720	LANAR DO HZ	. VEF	TICAL	HORI:	ZONTAL EET	CONDUC EAR	CTIVE FH
ANOMALY/ H FID/INTERP	REAL PPM	QUAD PPM	REAL PPM	QUAD PPM	REAL PPM	QUAD PPM	. CONE . MHOS	DEPTH*. M	COND MHOS	depih M	RESIS OHM-M	DEPTH M
LINE 10770 B 1943 H C 1948 H D 1958 L E 1961 S? F 1964 D G 1979 S	(1 5 0 18 5 5 6	FLIGHI 13 8 25 13 23 9	2 6 7 3 2 0 3 3) 44 15 13 22 25 14	123 20 52 52 37 43	130 63 123 123 85 62	• • 2 • 1 • 8 • 4 • 4	8 14 14 10 3 16	1 1 1 1	26 27 45 21 20 24	240 517 725 511 537 506	0 0 0 0 0
LINE 10780 A 2036 D B 2036 D C 2024 H D 2020 H E 2010 L F 2008 B G 1991 S?	(1 7 7 6 7 7 1 0	FLIGHI 14 14 1 8 12 23 9	5 4 9 5 4 2 0) 17 36 16 31 37 19	48 48 114 35 70 90 31	78 78 101 56 110 112 95	• 3 • 4 • 5 • 4 • 4 • 4 • 3	12 13 17 22 0 0	1 1 1 1	34 49 36 44 67 1 28	418 742 134 236 595 393 658	0 5 7 0 0
LINE 10790 A 2052 S B 2064 D C 2072 H D 2088 L E 2088 B? F 2091 D G 2093 D H 2109 S?	(1 0 8 10 17 17 5 1 5	FLIGHI 5 25 30 11 17 36 40 27	2 6) 3 11 18 0 3 4 4 3) 35 64 16 34 94 94 50	30 119 201 75 96 230 230 121	79 150 195 102 102 179 179 283	· 2 · 3 · 10 · 10 · 11	19 2 18 12 0 0 0	1 1 1 1 1 1	42 29 31 103 48 0 0 5	560 243 101 992 732 273 237 304	0 5 4 0 0 0 0
LINE 10800 A 2174 B B 2171 D C 2160 E D 2156 H E 2152 E F 2145 L G 2143 B H 2142 D I 2141 D J 2129 S? K 2113 S LINE 19010	(1 3 10 12 11 11 11 11 11 18 4 2 (1	FLIGHI 6 20 26 7 16 8 16 15 26 10 7 FLIGHI	: 6; 3 4 25 15 4 33 33 33 2 0) 28 61 28 2 23 23 66 66 21 12	4 83 176 85 113 55 151 151 151 41 25	25 130 113 122 41 126 126 62 61 67 73		26 6 0 24 0 12 0 12 0 0 2		40 19 24 35 35 130 30 32 26 11 22	674 502 90 94 141 1035 400 61 87 511 589	0 0 7 17 0 5 0 0 0
A 2343 S * EST • OF • LIN	0 TIMA THE NE, (12 TED DI CONDU OR BEX	0 EPTH I ICTOR LAUSE	24 May Bi May D Of A	45 E UNRI BE DEI SHALI	113 ELIABL EPER O LOW DI	• 1 E BEC <i>I</i> R TO (P OR (0 NE SIDE NE SIDE	. 1 STROM OF THE EN EFF	204 GER PA E FLIG ECTS.	1035 RT	0

:

			COA 90	AXIAL 00 HZ	COPI 9(LANAR)0 HZ	COPI 72(LANAR)0 HZ	•	VER D	PICAL IKE	•	HORI? SHE	ZONTAL EET	CONDUC EAR	CTIVE FH
a Fi	NOMAL D/INT	Y/ : ERP	REAL PPM	QUAD PPM	REAL • PPM	QUAD PPM	REAL PPM	QUAD PPM	•	COND MHOS	DEPTH* M	• • •	COND WHOS	DEPIH M	RESIS CHMM	DEPTH M
	JE 19	010	(1	TTGHT	· 6'	١			٠			•				
R	2330	S	0	8	. 0, 	′ 14	44	78	•	1	6	•	1	212	1035	0
č	2300	ŝ	ñ	4	n N	17	16	70	•	2	22	•	1	216	1035	ň
ō	2320	s	õ	6	ñ	10	17	48		3	23	•	1	211	1035	ົ້
Ē	2317	s?	õ	ě	ŏ	13	29	69		ĩ			1	213	1035	ŏ
F	2303	S	0	9	Ō	20	35	140		1	11		1	75	804	, 9
G	2286	S	0	4	0	8	10	41	•	3	18	•	1	203	1035	0
									•			٠				
LI	VE 19	011	(F	LIGHI	: 6))			٠			•				_
A	2525	H?	0	7	5	16	43	70	٠	1	0	•	1	33	133	3
В	2513	L	0	1	13	16	47	38	٠	8	23	•	1	24	697	0
C	2471	S?	0	5	0	9	23	54	٠	1	4	•	1	88	922	1
Ð	2448	S?	0	9	0	19	47	121	٠	1	0	•	1	42	729	0
E	2443	H?	0	14	0	31	73	185	٠	1	1	•	1	22	520	0
F	2436	H?	0	16	0	37	91	161	٠	1	6	•	1	22	514	0
т.ть	IE 19(20	(F	LIGHT	י 7				•			•				
Δ.	457	B	7	12	12	27	23	37		5	9		1	45	89	13
B	491	s?	1	5	2	10	24	44		1	Á		, 1	20	398	15
č	502	S?	10	13	11	31	79	145	:	5	15		1	28	83	ă
Đ	508	H	2	3	13	7	11	97		11	35	-	2	46	28	22
Ē	519	Н	3	3	8	22	61	76		3	22	•	1	41	52	15
F	552	H	7	19	17	37	66	55		4	9		1	35	46	12
G	572	H?	3	21	8	46	147	181		1	Ó		1	19	126	0

.* ESTIMATED DEPTH MAY BE UNRELIABLE BECAUSE THE STRONGER PART . . OF THE CONDUCTOR MAY BE DEEPER OR TO ONE SIDE OF THE FLIGHT . . LINE, OR BECAUSE OF A SHALLOW DIP OR OVERBURDEN EFFECTS.

	I	COF 90	AXIAL)0 HZ	COPI 90	LANAR)0 HZ	COPI 720	LANAR DO HZ	VER	FICAL . IKE .	HORI: SHI	ZONTAL EET	CONDUC	CTIVE CH
ANOMALY FID/INTE	/ RE RP P	al. PM	QUAD PPM	REAL PPM	QUAD PPM	REAL PPM	QUAD PPM	COND MHOS	DEPTH*. M	COND MHOS	DEPTH M	RESIS OHM-M	depih M
LINE 200 A 194 B 199 C 202 D 210	10 D D B? D	(E 8 9 0 2	FLIGHT 22 9 6 7	3) 11 11 11 11) 29 11 9	89 81 37 23	108 2 27 33	3 6 4 3	0 . 0 . 2 . 11 .	1 1 1 1	40 58 53 42	77 70 136 754	10 24 13 0
LINE 200 A 299 B 300 C 302 D 310	20 D D D B	(B 16 16 8 5	TLIGHT 22 15 6 5	: 3) 18 18 7 3	33 33 19 6	90 90 35 21	78 49 4 6	7 9 6 6	2 . 1 . 0 . 15 .	1 2 1 1	36 46 66 42	75 49 83 554	7 18 28 0
LINE 200 A 407 B 408 C 416	30 D D D	(E 19 19 2	PLIGHT 22 21 6	3) 19 19 2) 37 37 8	73 73 19	86 86 18	8 8 2	6 . 3 . 0 .	1 1 1	46 57 61	54 62 177	18 26 15
LINE 200 A 531 B 532	40 B? B	(E 13 14	LIGH1 42 42	3) 9 9	73 73	219 219	378 378	3	0.0	1 1	8 25	236 158	0 0
LINE 200 A 635 B 636 C 649	50 B B S?	(E 9 9 4	7LIGHT 9 10 4	3) 2 3 0	14 14 7	20 32 18	54 54 6	5 5 2	21 . 9 . 12 .	1 1 1	31 19 39	575 624 754	0 0 0
LINE 200 A 741	60 S?	(E 4	PLIGHI 5	3) 2) 10	38	34	3	13	1	28	704	0
LINE 200 A 2245 B 2250 C 2257	70 D B B?	(13 13 6 4	LIGHT 49 21 6	: 4) 11 15 2) 84 22 8	241 64 19	409 118 20	2 4 4	2 9 14	1 1 1	20 62 32	129 68 738	0 31 0
LINE 200 A 2365 B 2371 C 2376	80 B? B S?	(1 5 1 1	FLIGHI 11 3 3	4 4 5 4) 24 7 9	52 16 26	127 35 24	2	5 . 14 . 2 .	1 1 1	47 80 33	133 62 607	13 44 0
LINE 200 A 2458	90 S?	(H 4	FLIGHI 6	2 4) 7) 7	23	15	• • 5	0	. 1	71	76	32
LINE 201 A 2530	00 S?	(H 3	PLIGH1 6	· 4) 9	29	12	. 5	0	2	72	48	37
• • •	ESTI OF T LINE	MAX HE	TED DE CONDU DR BEX	EPTH I ICTOR CAUSE	May Bi May 1 Of A	e unri Be dei Shali	ELIABL EPER O LOW DI	e becai r to ci p or ci	USE THE NE SIDE VERBURDE	STRON OF THI N EFF	GER PAI E FLIG ECTS.	RT HT	

· _ . . .

.

	CO2 90	AXIAL DO HZ	00PI 90	ANAR 10 HZ	COPI 720	LANAR DO HZ	VER	FICAL . IKE .	HORI: SHI	ZONTAL EET	CONDUC EAR	CTIVE CH
ANOMALY/ I FID/INTERP	real PPM	QUAD PPM	REAL PPM	QUAD PPM	REAL PPM	QUAD PPM	COND MHOS	DEPTH*. M	COND MHOS	DEPTH M	RESIS OHM-M	depih M
LINE 20110 A 2607 B	(I 4	FLIGHT 7	4) 11	9	29	10	6	б.	. 1	54	180	10
LINE 20120 A 2689 D B 2691 B C 2707 B? D 2716 B?	(1 4 2 0 0	FLIGHT 10 6 1 0	4) 15 15 0 0	15 15 9 8	43 43 0 0	30 30 54 44	5 5 3 4	4 . 0 . 41 . 57 .	2 2 1 1	86 89 154 166	41 28 1035 1035	53 57 0 0
LINE 20130 A 2799 D B 2801 B	(1 4 2	FLIGHT 7 6	4) 11 11	12 11	35 26	12 32	6 5	0 . 14 .	1	49 58	87 206	9 14
LINE 20140 A 2936 S B 2962 B?	(H 1 0	TLIGHT 9 2	4) 13 0	16 0	43 0	18 31	4 5	0. 74.	2 1	66 116	42 1014	35 13
LINE 20150 A 3079 S? B 3085 D C 3086 D D 3087 D E 3109 B? F 3117 B?	(F 0 11 11 11 0 0	7LICHT 3 16 16 16 1 1 1	4) 0 10 10 6 1 0	3 11 20 20 3 2	0 28 38 38 2 0	25 39 39 39 39 22 16	1 7 6 5 1	20 . 6 . 3 . 0 .	1 1 1 1 1 1	89 73 53 41 16 28	895 77 207 154 3559 4543	7 37 11 4 0 0
LINE 20160 A 3183 D B 3184 D C 3211 B?	(F 5 5 0	TLIGHT 7 5 2	4) 4 4 0	12 12 3	24 24 0	16 8 25	. 4 . 4	4 . 6 . 0 .	1 1 1	66 46 8	159 450 2680	22 0 0
LINE 20260 A 1213 B B 1218 B C 1221 B	(F 3 2 0	rLIGHT 8 10 8	10) 8 12 6	8 8 6	19 24 20	36 28 22	4 4 1	24 . 17 . 4 .	1 1 1	98 83 122	81 94 87	58 44 78
LINE 20270 A 1129 B B 1115 B C 1113 B D 1103 D	(F 5 6 6 15	TLIGHT 9 1 5 17	10) 2 3 1 10	11 11 20 11	22 34 62 15	41 37 77 51	3 7 3 9	18 42 10 18	1 1 1 1	58 53 51 57	283 146 194 777	15 17 11 0
LINE 20280 A 1011 B	(F 4	TLIGHT 9	10) 3	13	38	47	. 3	10 .	1	48	294	6
.* EST . OF . LIN	THE THE	TED DE CONDU DR BEC	PIH M CTOR AUSE	iay be May e Of a	: UNRE BE DEE SHALI	ELIABLE EPER OF LOW DIE	E BECAU R TO ON P OR ON	ISE THE VE SIDE VERBURDE	STRONG OF THE N EFFE	SER PAF FLIGE CTS.	er. Fr.	

TATSHENSHINI RIVER

	COA 90	XIAL 10 HZ	COPI 90	LANAR)0 HZ	COPI 720	ANAR)0 HZ	. VER	PICAL . IKE .	HORI! SHI	ZONTAL EET	CONDUC EAR	CTIVE FH
ANOMALY/ F FID/INTERP	real PPM	QUAD PPM	REAL PPM	QUAD PPM	REAL PPM	QUAD PPM	. COND MHOS	DEPTH* M	COND MHOS	DEPIH M	RESIS OHMM	DEPTH M
LINE 20280 B 1029 B C 1034 B	(F 3 20	rlight 6 12	10) 7 12	10 9	26 24	19 23	• • 4 • 19	9 14	1	68 51	60 792	34 0
LINE 20290 A 926 B? B 903 D	(F 4 0	LIGHT 6 19	10) 9 4	12 17	15 18	14 97	• • 5 • 5	18 16	1	64 45	88 717	28 0
LINE 20300 A 756 B? B 754 B C 740 D D 734 B?	(F 0 4 3 4	LIGHT 7 10 10 4	10) 4 6 6 0	14 13 11 6	47 29 21 6	58 29 34 37	. 1 . 3 . 2 . 3	3 0 2 33	1 1 1	72 36 70 83	445 175 111 895	17 0 30 0
LINE 20310 A 1569 B	(F 0	'LIGHT 5	9) 0	8	0	54	. 8	38	1	48	725	0
LINE 20330 A 1171 B B 1164 B	(F 8 5	LIGHT 2 19	9) 9 5	15 15	48 18	67 54	• • 11 • 2	43 15	. 1 1	77 78	98 175	41 36
LINE 20331 A 1339 S	(F 0	LIGHT 2	9) 0	11	26	32	•	10	. 1	32	707	0
LINE 20340 A 1061 S? B 1080 D	(F 5 28	LIGHT 4 15	9) 0 16	7 12	23 29	33 18	• • 4 • 25	35 17	1	36 51	687 765	0 0
LINE 20350 A 967 B	(F 13	'LIGHT 8	9) 9	9	15	1	. 14	10	1	56	259	9
LINE 20360 A 895 S? B 900 S?	(F 3 0	LIGHT 4 3	9) 1 0	5 2	6 2	12 17	• • 3 • 1	0.0	1	98 176	92 1035	51 0
LINE 20380 A 738 B?	(F 6	LIGHT 2	9) 0	4	2	32	• 1	0	. 1	47	4252	0
LINE 20391 A 657 D B 654 D	(F 9 8	LIGHT 6 12	9) 7 15	25 25	17 80	12 52	. 6 . 6	0.	2	44 50	25 59	19 20
LINE 20400 A 329 D	(F 22	LIGHT 28	9) 30) 56	144	101	. 8	0	2	28	38	4
• EST • OF • LIN	PIMAT THE NE, C	TED DE CONDU DR BEC	PTH N CTOR AUSE	1ay Bi May D Of A	e unri Be dei Shali	ELIABI SPER C LOW DI	e becai or to ci ip or c	USE THE NE SIDE VERBURDI	STRON OF THI N EFF	GER PAL E FLIGE ECTS.	RT . HT .	

;

-

[.

1

·--

	COA 90	XIAL 0 HZ	COPI 90	ANAR 10 HZ	COPI 720	LANAR . DO HZ .	VER: D	FICAL . IKE .	HORI: SHI	ZONTAL SET	CONDUC EAR	CTIVE FH
ANOMALY/ FID/INTERE	REAL;	QUAD : PPM :	REAL PPM	QUAD PPM	REAL PPM	QUAD . PPM .	COND MHOS	DEPTH*. M	COND MHOS	DEPIH M	RESIS OHMM	depih M
LINE 20400 B 327 D C 304 S D 294 S?) (F 16 1 5	LIGHT 1 3 6	9) 13 0 5	22 7 5	53 10 11	101 . 25 . 5 .	22 2 1	24 24 0	, 1 , 1	41 54 54	55 794 169	14 0 26
LINE 20410 A 633 B B 630 D C 614 B) (F 0 0 0	LIGHT 4 27 12	8) 5 35 9	32 57 17	33 85 41	134 . 135 . 59 .	3 3 1	10 0 0	, 1 , 1 , 1	13 34 81	413 100 80	0 7 44
LINE 20420 A 469 B7 B 472 D C 475 E D 491 B7 E 494 B7	(F) 0 4 2 0 0	LIGHT 17 6 16 8 9	8) 7 25 34 12 12	29 23 36 21 21	88 53 100 51 51	64 . 42 . 17 . 33 . 33 .	1 9 5 3 2	0 11 0 0	1 2 2 1 1	33 35 39 43 54	139 45 42 296 234	1 9 13 0 9
LINE 20430 A 1519 D B 1517 E C 1505 B D 1504 B E 1502 D F 1493 S?	(F) 12 10 10 10 7 3	LIGHT 15 26 15 8 19 3	7) 43 43 11 11 6 5	38 38 14 14 17 7	72 145 67 67 12 11	36 . 70 . 80 . 80 . 79 . 7 .	12 8 6 10 3 6	14 1 5 4 15 0	2 1 1 1 1	43 38 42 54 75 57	44 52 127 68 153 136	18 11 6 20 35 10
LINE 20440 A 1390 D B 1391 D C 1392 B D 1405 D E 1405 D F 1409 B7 G 1415 B7 H 1416 B7 I 1437 S	9 (F 24 41 3 26 26 26 9 6 14 9 14 0	LIGHT 6 62 35 29 29 9 9 9 9 9	7) 71 71 17 11 8 8 0 4 2	41 41 16 33 33 11 9 9	79 79 29 101 101 17 12 12 16	102 . 59 . 161 . 90 . 90 . 27 . 26 . 26 .	41 15 3 8 5 9 11	18 4 0 0 12 31 30 0	2 2 2 1 1 1 1 1	35 29 30 35 39 53 61 66 32	26 21 40 103 157 141 418 799 417	14 11 8 3 4 14 15 1 5
LINE 20450 A 1366 D B 1362 D C 1359 D D 1357 D E 1341 D	18 19 4 7 1 STIMAT	LIGHT 25 28 7 13 11 ED DE	7) 21 9 3 2 PTH M	33 31 5 12 7 IAY BE	98 102 17 39 24 E UNRI	80 . 115 . 31 . 27 . 46 .	8 5 7 3 2 BECAU	0 4 30 0 13 SE THE	1 1 1 1 5TRONG	29 34 79 63 77 SER PAR	170 131 151 179 800	0 3 36 19 1
. OF . LI	NE, O	CONDU R BEC	CTOR AUSE	MAY I OF A	se den Shall	OPER OR	10 01 07 07	VE SIDE /ERBURDE	OF THE N EFFI	E FLIGH ECTS.	fr.	

TATSHENSHINI RIVER

	COI 90	AXIAL)0 HZ	COPI 90	LANAR)0 HZ	COPI 720	LANAR 00 HZ .	VER	FICAL IKE	. HORI: . SHI	ZONTAL SET	CONDUC	CTIVE CH
ANOMALY/ F FID/INTERP	REAL PPM	QUAD PPM	REAL PPM	QUAD PPM	REAL PPM	QUAD PPM	COND MHOS	DEPTH* M	COND MHOS	depih M	RESIS OHM-M	DEPTH M
LINE 20450 F 1332 S	(I 0	FLIGHT 4	: 7) 0	9	22	57	. 1	12	. 1	43	735	0
LINE 20460 A 1281 D B 1285 D C 1291 D D 1306 S	(1 28 25 10 1	FLIGHI 34 22 6 5	24 24 12 9 4	36 9 2 30	89 50 47 57	114 26 6 141	10 14 21	5 12 33 7	. 1 . 1 . 1	39 52 68 30	78 66 103 319	10 21 31 0
LINE 20470 A 972 D B 973 D C 975 D D 976 D E 982 D F 1001 S G 1015 B?	(1 13 10 12 12 6 0	FLIGHT 9 14 14 9 20 10	7) 22 22 14 14 4 8 13	40 40 22 22 9 46 21	109 109 68 68 26 139 64	65 19 43 43 24 181 61	9 7 7 4 1 2	1 3 2 13 0	1 2 2 1 1 1	40 42 53 40 53 22 42	53 38 28 62 104 169 182	12 16 28 10 17 0 6
LINE 20480 A 1074 D B 1074 D C 1071 D D 1067 D E 1045 B?	(1 32 18 9 9 3	FLIGHI 33 42 12 11 4	43 43 43 33 7 7	66 66 21 11 14	107 107 60 28 3	75 49 72 29 63	11 7 13 7 4	0 14 10 11	2 2 1 1	37 40 48 51 25	37 26 97 238 259	13 18 15 8 0
LINE 20490 A 1103 H B 1119 D C 1126 D D 1130 B E 1149 B?	(1 5 7 4 3 19	FLIGHI 18 13 6 7 35	21 21 18 4 5 27	45 23 4 15 66	113 64 14 26 193	121 33 15 25 121	4 6 5 2 6	0 0 25 0 0	• 1 • 1 • 1 • 1	29 54 72 56 31	61 133 172 121 31	2 14 27 16 10
LINE 20500 A 1239 D B 1237 H C 1219 D D 1216 D E 1212 D F 1207 B G 1190 B?	(1 12 10 11 16 8 7 0	FLIGHI 24 18 13 15 14 13 4	21 21 23 23 8 8 0) 55 41 41 14 18 6	137 103 73 73 37 48 12	181 74 78 78 46 37 35	5 5 7 8 5 4	7 0 3 6 0 3	· • 1 • 1 • 1 • 1 • 1 • 1	31 37 36 43 46 38 65	148 66 92 60 257 129 853	2 8 4 14 4 1 0
LINE 20510 A 286 B .* EST . OF . LIN	() 16 TIMA THE NE, (FLIGHI 28 TED DF CONDU OR BEC	25 25 EPTH I JCTOR AUSE) 54 May Bi May I Of A	169 E UNR BE DE SHAL	158 ELIABLI EPER OI LOW DI	E BECAN R TO ON P OR O	0 USE THE NE SIDE VERBURD	. 1 STRON OF THI EN EFFI	20 GER PAI E FLIG ECTS.	140 RT . HT .	0

.-

· ____

1

ĺ

TATSHENSHINI RIVER

		CO7 90	AXIAL DO HZ	COPI 90	LANAR)0 HZ	COPI 720	LANAR)0 HZ	•	VERI Di	PICAL	HORI: SHI	ZONTAL EET	CONDUC EAR	CTIVE CH
ANK FID	OMALY/ /INTERP	REAL PPM	QUAD PPM	REAL PPM	QUAD PPM	REAL PPM	QUAD PPM	•	COND MHOS	DEPIH*. M	COND MHOS	DEPIH M	RESIS OHM-M	DEPTH M
LIN	E 20510	(H	LIGH	2 8))			:						
В	260 D	40	54	34	100	311	263	٠	8	0.	, 1	25	47	3
С	255 D	3	6	3	6	21	21	٠	3	16	. 1	65	81	29
D	251 D	15	22	12	25	75	49	•	6	4	. 1	41	131	7
Έ	232 B?	5	10	14	24	35	22	٠	4	0	. 1	36	65	7
	F 20520	. (s	ALTCHS	ר קיים	١			•			•			
Δ	ע 20020 מ 2017	13	14	10	29	96	77		6	0	. 1	23	174	0
В	305 D	13	18	10	29	96	77		5	0	. 1	20	159	0
c	325 B	3	10	17	16	38	63		5	18	. 1	32	648	0
Ď	328 D	51	36	80	76	205	105	•	22	0	. 2	32	26	12
Ε	332 B	19	24	20	33	99	61	•	8	0	. 1	41	76	10
F	339 H?	5	12	9	45	71	196	•	2	1	. 1	26	158	0
G	349 B	4	10	1	14	52	49	٠	2	8.	. 1	20	528	0
	 B 20520	. /1	הנדי <u>ר</u> די	n 0'				•			•			
TUTU V	6 20030 /15 p	19	13 13	53	120	374	180	•	6	n	. 1	23	63	Ω
B	411 B2	0		0	120	- , - 9	31		ĭ	ŏ	1	18	4348	ŏ
č	399 B	, S	ā	ĩ	10	18	25		2	18	. 1	66	799	1
ň	394 B	4	7	6	7	15	44		5	27	. 1	59	262	16
Ē	389 D	16	22	12	22	67	69		7	6	. 1	40	136	6
F	385 D	21	32	18	44	125	106		6	3.	. 1	35	114	5
G	378 H?	2	12	3	22	74	95		1	0	. 1	14	383	0
H	367 B	7	15	2	35	116	96	٠	2	1,	. 1	12	434	0
—— т тът		. /1	er Taler	n 11'	١			•			•			
ETIN P	5 29020 171 ¤	· (1	2010m	20	רד '	179	245		3	2	. 1	39	61	14
R	174 B	18	7	36	74	201	122		10	3	1	38	116	5
C	176 B	.5	18	36	75	209	98	÷	5	Ō.	. 2	22	44	Ō
D	196 B?	2	9	16	38	96	86	•	ŝ	Ő,	, ī	37	69	8

* ESTIMATED DEPIH MAY BE UNRELIABLE BECAUSE THE STRONGER PART . OF THE CONDUCTOR MAY BE DEEPER OR TO ONE SIDE OF THE FLIGHT . LINE, OR BECAUSE OF A SHALLOW DIP OR OVERBURDEN EFFECTS.

	er i
Ň	
River	
A	
	•
245'	
δ. ·	
OMALIES	
on profiles	
M legend) EM maps only)	
onductor 0 m	
n in nT (gammas)	
e divided into six grades of	
conductance.	
("model") nductor	17
drock conductor ("thin dike") cover ("horizontal thin sheet") uctive rock unit, deep	
weathering, thick conductive If space") ad conductor all space")	
power line, building, fence	
	8 - L
in ohm-m	
ivais per decade	-
4 dor	
N C M	
的现在	
a la	
CIATES	
ER	-
Hz)	
CESSING INC.	
DRAFTING BY: G.H. SHEET: A	
2 Km	
1 Mi	

FLIGHT LINES WITH EM ANOMALIES Flight direction ----- Flight line number Fiducials identified on profiles Dip direction EM anomaly (see EM legend) Conductor axis (on EM maps only) Arcs indicate the conductor has a thickness >10 m Magnetic correlation in nT (gammas)

DIGHEM anomalies are divided into six grades of conductivity-thickness product. This product in mhos is a measure of conductance. Interpretive symbol Conductor ("model") B. Bedrock conductor

D. Narrow bedrock conductor ("thin dike") S. Conductive cover ("horizontal thin sheet") Broad conductive rock unit, deep conductive weathering, thick conductive cover ("half space") Edge of broad conductor ("edge of half space") Culture, e.g. power line, building, fence

LEGEND Frequency response of magnetic operator 200nT100nT magnetic depression 10⁻³ Cycles/metre

ARCHER, CATHRO & ASSOCIATES (1981) LIMITED TATSHENSHINI RIVER ENHANCED MAGNETICS BY DIGHEM SURVEYS & PROCESSING INC. GEOPHYSICIST: D.M. DRAFTING BY: G.H. SHEET: A JOB: 1015 Scale 1:20,000 2 Km

Mi

GEOLOGICAL BRANCH ASSESSMENT REPORT

17,124

ARCHER, CATHRO & ASSOCIATES (1981) LIMITED

TATSHENSHINI RIVER

GEOPHYSICIST: D.M.

Scale 1:20,000

JOB: 1015

-

 \oplus

DIGHEM" SURVEY

DATE : FEB. 1988

.

ELECTROMAGNETIC ANOMALIES

BY DIGHEM SURVEYS & PROCESSING INC.

DRAFTING By: G.H.

2 Km

SHEET: 8

Mi