ON THE
RAINBOW GROUP, MIDWAY, B.C.
GREENWOOD MINING DIVISION
82E/2W

Latitude $49^{\circ} 02^{\prime} \mathrm{N}$, Longitude $1,18^{\circ} 40^{\prime} \mathrm{W}$

Owned by:
Dentonia Resources Ltd., Kettle River Resources Ltd. and D. Moore

PUGED
Operated by:
BP Resources Canada Limited

BPVR 87-13

/

R.H. Wong S.J. Hoffman February, 1988

MINISTRY OF ENERGY, MINES AND PETROLEUM RESOURCES Rec'd MAR 11 ?as
SUBJELI
FILE
Page No.

1. SUMMARY 1
2. INTRODUCTION 3
A) Location and Access 3
B) Land Status 3
C) Topography, Climate and Vegetation 4
D) Previous Work 4
3. REGIONAL GEOLOGY 7
4. PROPERTY GEOLOGY 8
A) Introduction 8
B) Lithologies 8
i) Serpentinite 8
ii) Dacite Porphyry 10
iii) Kettle River Formation 11
iv) Marron Formation 12
C) Structure 12
D) Alteration and Mineralization 13
5. GEOCHEMISTRY 16
A) Rock Sampling 16
B) Soil Survey 19
i) Introduction 19
ii) Sample Collection and Analysis 20
iii) Method of Data Evaluation 21
iv) Description of Results 21
v) Discussion of Results 28
vi) Conclusions 29
6. DIAMOND DRILLING 31
A) Introduction 31
B) Drill Hole MDH 87-1 31
i) Geology 31
ii) Geochemistry 34
C) Drill Hole MDH 87-2 36
i) Geology 36
ii) Geochemistry 37
7. DISCUSSION, CONCLUSION AND RECOMMENDATIONS 40
BIBLIOGRAPHY 45

LIST OF FIGURES

Figures No.
Location Map - Midway Project,
Southcentral B.C.
2. Claim Map - RAINBOW Group
3. Tertiary Grabens in Southern B.C. and Northern Washington State
4. Regional Geology - a portion of the Greenwood Map-Area
5. Property Geology and Rock Sample Locations RAINBOW Group Claims
in pocket
6A. Soil Sample Location Map - A-Horizon 20
6B. Soil Sample Location Map - B-Horizon 20
7A. Histograms for Results of A-Horizon Soil Samples in pocket
7B. Histograms for Results of B-Horizon Soil Samples in pocket
8A-Z. Au, As, $\mathrm{Sb}, \mathrm{Ag}, \mathrm{Bi}, \mathrm{Mo}, \mathrm{Cu}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Fe}, \mathrm{Mn}, \mathrm{Co}$,
Ni, Cr, V, Ba, Sr, Ca, Mg, K, Al, Ti, P, W, F,
La-in-A-Horizon Soil Samples in Appendix IV
9A-Z. Au, As, Sb, Ag, Bi, Mo, $\mathrm{Cu}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Fe}, \mathrm{Mn}, \mathrm{Co}$,
Ni, Cr, V, Ba, Sr, Ca, Mg, K, Al, Ti, P, W, F, La-in-A-Horizon Soil Samples in Appendix V
10. Cross-Section - Drill Hole MDH 87-1 32
11. Geochemical Profile - Drill Hole MDH 87-1 in pocket
12. Cross-Section - Drill Hole MDH 87-2 32
13. Geochemical Profile - Drill Hole MDH 87-2 in pocket

LIST OF TABLES

Table No.
I Table of Formations - Greenwood Map-Area
Following Page 7

II Comparative Rock Geochemistry
II Comparative Rock Geochemistry Page 17

III Soil Geochemical Characteristics
III Soil Geochemical Characteristics Page 30

IV Comparison of Tertiary Quartz-Adularia
Precious Metal Deposits 40

LIST OF APPENDICES

Appendix No.

I Analytical Procedures
II Listing of Analytical Results for Rock Sampling
III Method of Histogram Interpretation
IV A-Horizon Soil Sample Result Plots (Figures 8A-Z)

V B-Horizon Soil Sample Results Plots (Figures 9A-Z)

VI Listing of Analytical Results for Soil Sampling
VII Drill Hole Logs
VIII Listing of Analytical Results for Drill Core
IX Statement of Costs
X Statement of Qualifications

1. SUMMARY

The RAINBOW claim group, owned by Dentonia Resources Ltd., Kettle River Resources Ltd. and prospector Dave Moore, is located 5 km northwest of Midway, B.C., and covers a portion of the western edge of the Tertiary Toroda Graben. Several chalcedonic, epithermal, silica veins with anomalous values in gold, silver, arsenic and antimony occur within the claims and are hosted in steeply-dipping, north-northeast-trending and shallowly, northeast to east-dipping structures within rocks of Jurassic to Eocene age. The occurrence of epithermal silicification in an area of structural intersection suggests the potential for both bulk-tonnage and lode-type precious metal mineralization to occur.

Preliminary fieldwork completed by BP Resources Canada Limited from June 20 to November 13,1987 consisted of geological examination and rock chip sampling, an orientation soil geochemical survey, and 159.4 m of diamond drilling in two drill holes. Geological investigations confirmed and expanded the zone of gold-silver-bearing veins which had been delineated by Kerr-Addison Mines Limited in 1984. The soil survey indicated that the $B M$ horizon represents the optimal sample medium and is overlain by a thick (40 cm) AH horizon. Consistent sampling of the BM horizon at 25 m intervals is
considered to be an appropriate exploration procedure on the property. Diamond drilling tested a shallowly dipping zone of silicification known locally as the Picture Rock Quarry and a vertical vein located 300 m to the south. Although neither drill hole returned economic grades of mineralization, in both holes anomalous levels of gold, silver and arsenic occur in silicified zones within broader struc-turally-controlled envelopes of alteration.

Results of the programme indicate that the claim area has considerable potential to contain bonanza-type or possible bulk-tonnage precious metal mineralization. A systematic programme of geologic mapping, geochemical sampling, and geophysical surveying (IP/VLF) is warranted on the property in order to delineate the best targets for further drill testing.

A total of $\$ 25,000$ has been applied as assessment on the RAINBOW Group and upon acceptance will maintain claims to their due dates until at least 1990.
3.
2. INTRODUCTION
A) Location and Access

The property is centred at $49^{\circ} 02^{\prime}$ North Latitude and $118^{\circ} 40^{\prime}$ West Longitude on the south-facing slope of the Kettle River valley. The town of Midway is 5 km to the southeast (Figure 1).

Access is via a network of two and four-wheel drive ranch roads which lead northerly from Highway 3 up Murray Gulch.
B) Land Status

The RAINBOW claim group, comprising six mineral claims and one fractional claim totalling 80 units, is held as follows:

CLAIM NAME	UNITS	RECORD NO.	RECORDING DA	ATE	OWNER	
ANNEX	20	3402	Jan 14	Dentonia	50\%/Kettle	River 50\%
GRAHAM CAMP	18	3403	"	"	/	"
RAINBOW	20	3404	"	"	/	"
DOWNHILL	8	3405	"	"	/	"
MIDWAY	9	472	Aug 10		D. Moore	
M.F.	4	769	"		"	
MIDWAY FR.	1	3401	Jan 14		"	

BP RESOURCES CANADA LIMITED MINING DIVISION

MIDWAY PROJECT

LOCATION MAP
SOUTHCENTRAL B.C.

| SCALE 1:50 000 | DRAWN BY: R.W. | FIG. 1 |
| :--- | :---: | :--- | :--- |
| DATE MarCh 1988 | DRAFTED BY: H.R.Z. | | N.T.S. 82E/2W PRON. $10136 \mid$ BPVR 87-13

Within the MIDWAY claim, a three acre area covering what is locally known as the Picture Rock Quarry, is held under lease from D. Moore by J. Carlton. The quarried rock is utilized for lapidary purposes.
C) Topography, Climate and Vegetation

The claim area lies on the gently-rolling to moderately steep south-facing slope of the Kettle River valley at elevations between $600-1200 \mathrm{~m}$ a.s.l. The southwesterly and south-flowing drainages of Ingram Creek and Murray Gulch traverse the western and eastern portions of the property. respectively.

The Midway-Greenwood area is characterized by dry, hot summers and dry, cold winters. Precipitation generally averages 40-50 cm annually.

Vegetation on the property is largely grassland, consisting mainly of ponderosa pine, bitter brush, bunchgrass and sagebrush. Apart from intermittent small-scale mining, the land is used mainly for grazing.
D) Previous Work

Tertiary grabens extending northward from Washington State into the Midway-Grand Forks area of B.C. include the Toroda

Graben and the Republic Graben (Figure 3). The Republic Graben which hosts the Republic mining camp (2.4 m oz Au/ $13.6 \mathrm{~m} \mathrm{oz} \mathrm{Ag} \mathrm{produced} \mathrm{from} \mathrm{epithermal} \mathrm{bonanza} \mathrm{deposits)} \mathrm{and}$ the recent Echo Bay discovery (3.2 m tonnes @ $4.3 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ open-pittable plus . 43 m tonnes @ $8.5 \mathrm{~g} / \mathrm{t}$ Au underground) terminates near the 49th parallel. The Toroda Graben, which is a subparallel, en echelon structure extends as far north as the town of Greenwood.

Two occurrences of epithermal Tertiary silicification are known in the B.C. portion of the Toroda graben. They are the TAM O'SHANTER prospect near the northern margin of the graben, and the RAINBOW prospect near the western margin of the graben. The TAM O'SHANTER was drilled by Bulkley Silver in 1984 and examined by the writer in 1986. The RAINBOW area was the object of considerable early (pre 1950's) prospecting evidenced by numerous shallow pits and diggings. During the late 1960's and early l970's, D. Moore of Greenwood conducted intermittent mining operations at the MIDWAY MINE, a gold, silver and base-metal mineralized shear on the MIDWAY claim. A total of 19 tonnes were shipped with recovered grades of $14 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 1506 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$, $15 \% \mathrm{~Pb}$ and $16 \% \mathrm{Zn}$. In 1983, a joint venture between Dentonia Resources and Kettle River Resources completed a

programme of geologic mapping, a limited ground magnetic survey, and minor rock geochemical sampling.

Kerr-Addison conducted the most recent exploration on the RAINBOW property in 1984. Their work included geologic mapping and rock geochemical sampling over an area $600 \mathrm{~m} x$ 1000 m . In addition, a programme of close-spaced soil sampling was conducted over an area 300 m x 200 m centred on the Picture Rock Quarry. Results of this work indicated at least two stages of chalcedonic silicification, with most of the veining localized at serpentinite contacts. As well, arsenic and antimony in soils were shown to be useful pathfinder elements for gold and silver mineralization. No driling was conducted by Kerr-Addison.
3. REGIONAL GEOLOGY

The southwestern portion of the Greenwood map-area, within which the RAINBOW property occurs, is underlain predominantly by Middle Eocene sedimentary and volcanic rocks which have been preserved in a series of small north-northeast trending grabens (Figure 4). Limestone, sharpstone conglomerate and minor chert, sandstone and argillite of the Middle Triassic Brooklyn Formation, and chert and greenstone of the Permian Knob Hill Group bound and locally occur within the grabens. Several small bodies of serpentinized ultramafic rock comprise a crude east-west-trending belt and are considered to be of Jurassic age. A number of high-level porphyritic diorite to quartz diorite intrusions, the largest of which lies partially within the RAINBOW claims, form a subparallel feature to the serpentinites and are of Late Cretaceous to Early Tertiary age. Feldspathic and lithic tuffaceous sándstone, and locally, shale and conglomerate of the Kettle River Formation comprise the basal member of the Eocene succession, while sodic trachyte, andesite, trachyandesite, minor phonolite and tuff of the Marron Formation constitute the volcanic to subvolcanic upper member. These units are intruded by plutonic rocks (Coryell Intrusions) ranging from syenite to quartz monzonite in composition. The youngest rocks of the Middle Eocene succession are epiclastic breccias or olistostromes of the Klondike Mountain Formation. A Table of Formations is shown in Table I.

MAP UNITS

QUTERNARY
10 Unconsoldated sedments
EOCENE
(9)

LONDE MCUNTAN FORMATION: OLSTOSTROME
CORYEL NTRUSIONS: SYENTIE TO QUARTZ MONZONTE
7 MARRON FORMATION: TRACHYTE TO ANDESTTE AND NTRUSIVE EQUIVALENTS
KETLLE RNER FORMATON: FEDSSPATHIL AND LTHIC TUFFACEOUS SANDSTONE
AND SIITSTONE, MNOR SHALE AND CONLOMERATE CRETACEOUS OR TERTIARYQUARTZ FEDSPAR PORPHYRY: DIORITE TO DACTE
JURASSIC
NELSON NTRUSIONS: DIRRTE TO GRANODORTIE
3
itpentinized ultramafics
TRIASSIC
BROOKLYN FORMATION: LMMESTONE, SHARPSTONE CONGLOMERATE
MMOR CHERT, SANOSTONE
PALEOZOICCHERT, GREENSTONE, AMPHIBOLITE

——— faukt (defned, assumed)
 - tertary epthermal occurrences

BP Resources Canada Limited mining division

REGIONAL GEOLOGY - A PORTION OF THE GREENWOOD MAP - AREA

TABLE I Table of Formations -
Greenwood Map-Area (from Little, 1983)

4. PROPERTY GEOLOGY

A) Introduction Work by BP geologists in 1987 consisted mainly of confirming previous geological mapping by Kettle River/Dentonia Resources (Fyles, 1983 and Reid and Neilsen, 1984) and Kerr-Addison (1985), resampling known veins, and prospecting for additional veins.

The following section on Property Geology is taken largely from previously-mentioned work supplemented by BP findings.

The main areas of exploration interest are centred on a rusty-weathering zone of siliceous iron carbonate, quartz, and chalcedonic quartz veins known locally as the Picture Rock Quarry, and a nearby gold-silver-base-metal occurrence known as the MIDWAY MINE. The rusty zone is hosted mainly within an irregular body of altered serpentinite which trends west-northwest across the ANNEX, MIDWAY and MF claims. The geology is complicated by at least two periods of intrusion, northeasterly-trending faulting, and multiple episodes of silịcification.
B) Lithologies
i) Serpentinite

Serpentinite commonly forms resistant knobs and ledges
with distinctive orange-brown weathered surfaces due to common alteration to iron and magnesium carbonate and silica. In localities where serpentinite is not altered, the rock displays the characteristic light to dark green serpentine colours and generally forms more recessive, shaly outcrop. Both altered and unaltered versions are moderately to strongly foliated with general dips at low angles to the north and northeast.

Unaltered serpentinite is a magnetite-rich (5-10\% fine-grained disseminated magnetite), talcose rock with no evidence of primary mafic minerals.

Altered serpentinite shows partial to total replacement of serpentine by carbonate (ankerite and siderite) with thin silica veins prominent in the most strongly altered zones. In drill core, alteration appears to be localized primarily by foliation planes and is spatially-associated with dacite porphyry contacts. Magnetic susceptibility readings of core show uniformly decreasing magnetism, due to destruction of magnetite, toward contacts with the porphyry.

Silica veins associated with intense carbonate alteration range from 1 mm to 2 mm in width, can be
highly irregular in form, and consist of white, sucrosic to crystalline quartz, locally containing carbonate-altered serpentinite fragments. These veins are considered by the writer to represent late-stage precipitation of silica from fluids derived during carbonate alteration and desilicification of serpentine. Contact metamorphism associated with dacite porphyry appears to be the probable alteration cause.

ii) Dacite Porphyry

A sub-circular body of quartz-feldspar porphyry, approximately 3 km in diameter, is shown on the regional geologic map to underlie the southern portion of the MIDWAY claim. The porphyry is light to medium green in colour and contains $40-60 \%$ white, lath-like, commonly-aligned, plagioclase phenocrysts averaging 2-3 mm in length within a fine-grained to aphanitic matrix of hornblende, plagioclase and quartz. Round to square quartz eyes $2-3 \mathrm{~mm}$ in diameter locally comprise up to 8% of the rock. In the area of the MIDWAY MINE, a relatively large body of quartzfeldspar porphyry has been mapped (Read and Neilsen,
1984). The relationship between quartz-rich quartz-feldspar porphyritic and quartz-poor feldsparporphyritic rock is not seen in outcrop, however, in drill core contacts appear to be gradational. Overall composition of the porphyry would appear to lie in the diorite to quartz diorite range. The variability of quartz content may indicate compositional zoning within the porphyry, however, too little data is available as yet to support this.

Field relationships and drill core indicate the porphyry to be intrusive into the serpentinite but contacts between porphyry and Eocene sediments are nowhere exposed.

iii) Kettle River Formation

Pale buff coloured arkose and grey siltstone of the Eocene Kettle River Formation form a number of discontinuous remnants preserved along north-northeast-trending normal faults. Units are generally recessive but available bedding measurements indicate $010-030^{\circ}$ strikes and $30-60^{\circ}$ southeast dips. The sediments probably unconformably overlie the serpentinite. Faulting appears to have progressively down-dropped these units toward the northwest.

iv) Marron Formation

Volcanic and subvolcanic alkalic rocks of the Marron Formation occur mainly to the north of the serpentinite in the claim area. Amygdular dark grey, feldspar porphyry trachyandesite occurs near the tops of the higher ridges in the southeast portion of the RAINBOW claim and the northwest portion of the ANNEX claim. These flows presumably conformably overlie sediments of the Kettle River Formation.

Elsewhere, Marron rocks are represented by many small plug and dyke-like bodies of biotite monzonite and syenite. Biotite monzonite in the area of the MIDWAY MINE comprises a north-northeast trending body and is distinguished by its equigranular, medium-grained nature, biotite content (15-20\%), and relatively strong magnetism.

C) Structure

The claim area represents the apparent intersection of two regional structures. The younger and perhaps more obvious feature is the western margin of the Toroda Graben. On the RAINBOW property, this margin is marked by a series of north-northeast-trending normal faults which have down-
13.
dropped units progressively toward the west. The other structure of interest, trending in a general east-west manner, is represented by the serpentinite. Serpentinites in the map-area are considered to have been emplaced tectonically, occurring along faults as young as Eocene age. North to northeast-dipping foliation in the serpentinite on the RAINBOW property may reflect its emplacement along a low-angle, east-west structure (thrust?). Mapping of outcrop along the northern and northeastern lower contact of serpentinite with dacite porphyry suggests that the porphyry intruded an originally shallow-dipping serpentinite body.

Late northwesterly-trending, high-angle faults, such as the one cutting post-mineral biotite monzonite at the MIDWAY MINE, show right-lateral displacements of $30-60 \mathrm{~m}$. Lowangle faults of varying orientations also appear to dislocate mineralized shears and veins in the mine workings.
D) Alteration and Mineralization

Locally intense carbonate-silica alteration of serpentinite is considered by the writer to be of metamorphic origin, probably related to the earliest phase of intrusion (i.e.
dacite porphyry, particularly the quartz-rich variety). Quartz veins associated with this alteration are unmineralized.

The MIDWAY MINE, as described by Reid and Neilsen (1984), consists of sulphide-bearing fissure-fillings within a near-vertical, southeast-striking shear structure hosted by kaolinized, silicified, pyritized quartz-feldspar porphyry. Mineralized lenses averaging .5 m wide contain silver and gold-bearing tellurides, galena, sphalerite and pyrite within a gangue of fine-grained quartz and carbonate. Although this type of mineralization does not appear epithermal in nature, multi-element analysis shows highly anomalous contents commonly associated with high-level systems such as mercury, arsenic, and antimony (see Section 5.A). Mineralization is truncated locally by biotite monzonite, by northwest-trending vertical faults, and by shallow angle faults of varying orientations.

Banded to massive, epithermal, chalcedonic veins and breccia veins containing anomalous gold and silver values occur in two fashions on the property. At the Picture Rock Quarry, white to blue-green, locally well-banded, chalcedonic silica occurs as low-angle, generally northeast
15.
to east-dipping veins up to .5 m in width hosted mainly within altered serpentinite. Veins generally subparallel but locally crosscut the foliation. Occurrence of light grey chalcedonic quartz fragments locally within veins suggests at least two episodes of chalcedonic silicification. Clots and bands of white, waxy talc are common in the vein material. North-northeast-trending, white to clear, massive chalcedonic breccia veins from . 2 to . 6 m wide are seen at two locales where they form relatively distinct resistant spines. In both cases, the veins are hosted in dacite porphyry and contain clasts of altered porphyry.

Because similar chalcedonic silicification at the TAM O'SHANTER prospect, located 7 km to the northeast is hosted within Kettle River Formation sediment's, the maximum age of the epithermal mineralization on the RAINBOW claims is assumed to be Eocene.

5. GEOCHEMISTRY

A) Rock Sampling

Table II summarizes significant results of all rock sampling by Kerr-Addison in 1985 and by BP in 1987. Complete multi-element analytical results for BP sampling is provided in Appendix II. Sample locations are included on Figure 4.

From Table II - Section A, it is evident from both Kerr-Addison and BP sampling that chalcedonic veins exposed at the Picture Rock Quarry are anomalous in gold, silver, arsenic and antimony but not enriched in fluorine or mercury. Higher average values from the Kerr-Addison sampling are considered to reflect a combination of the larger number of samples taken and the sporadic nature of mineralization within the veins.

Results from two mineralized samples from the MIDWAY MINE (Table II - Section B), show a strong lead, zinc, silver, arsenic, antimony, mercury and gold enrichment. The significance of the base-metal association with silver, arsenic, antimony, mercury and gold is unknown at this time but the possibility of an epithermal overprint upon an older base-metal dominated episode of mineralization should not be overlooked.
A) Picture Rock Quarry Zone (chalcedonic veins):
i) Kerr-Addison sampling - 31 samples

Element*	$\mathrm{Au}(\mathrm{ppb})$	Ag (ppm)	As (ppm)	Sb (ppm)
Range	5-7300	.1-31.0	15-450	. 2 -105
Average	428	2.1	230	36

(- Hg analysis for selected samples averaged $\leq 40 \mathrm{ppb}$
(- average $\mathrm{Ag} / \mathrm{Au}=4.9$
(* fire-assay preconcentation with AA finish, other elements via various chemical digestions with AA finish
ii) BP sampling - 8 samples

Element*	Au(ppb)	Ag (ppm)	As(ppm)	$\underline{S b}$ (ppm)	F (ppm)
Range	39-840	. 4-2.9	2-417	2-37	50-230
Average	240	1.6	98	10	86

(- Hg for selected samples averaged $\leq 70 \mathrm{ppb}$
(- average $\mathrm{Ag} / \mathrm{Au}=6.7$
(* aqua regia digestion with AA finish, Hg analysis by flameless) AA, F analysis by specific ion electrode, others by ICP
B) Midway Mine:

BP Sample No.	$\frac{\mathrm{Pb}}{(\mathrm{ppm})}$	$\frac{\mathrm{zn}}{(\mathrm{ppm})}$	$\frac{\mathrm{Ag}}{(\overline{\mathrm{ppm}})}$	$\frac{\text { As }}{(\text { ppm })}$	$\frac{\mathrm{Sb}}{(\mathrm{ppm})}$	$\frac{\mathrm{Hg}}{(\mathrm{ppb})}$	$\frac{\mathrm{Au}}{(\mathrm{ppb})}$
100356	1164	3454	125	2576	83	920	1981
100357	4518	8780	394	3609	317	1900	3778

C) Silica Spines Within Dacite Porphyry:

BP Sample No.	$\frac{\mathrm{Au}}{(\mathrm{ppb})}$	$\frac{\mathrm{Ag}}{(\mathrm{ppm})}$	$\frac{\mathrm{As}}{(\overline{\mathrm{ppm}})}$	$\frac{\mathrm{Sb}}{(\mathrm{ppm})}$	$\frac{\mathrm{F}}{\mathrm{p} p \mathrm{~m})}$	$\frac{\mathrm{Hg}}{(\mathrm{ppb})}$
100601	11	. 1	25	2	50	70
(100605	2	. 2	14	2	110	10
(100607**	3240	3.2	34	3	85	10

(* two samples from same vein)
(** average of original analysis and reanalysis of pulp)
18.

Results from samples of silica spines within the dacite porphyry (Table II - Section C) again show the sporadic nature of the mineralization. In particular, samples 100605 and 100607 , which comprise similar samples from the same vein, display extremely dissimilar values in gold and silver. Arsenic shows weak enrichment in the vein samples, while antimony, fluorine and mercury show no enrichment.
5. B) Soil Survey
i) Introduction

The MIDWAY property soil orientation was undertaken to confirm the $A u-A s-S b$ association reported in soils in proximity to silificied zones in serpentinite. Previous workers had described the sampling of B and C horizon materials at many sample sites. In view of the differing concentration of elements in the two horizons at several sites and an absence of multielement data, the present study was undertaken for orientation purposes.

The study area is a gently rolling upland with bedrock well exposed in the hills and locally along the valley bottoms. The region is semi arid. As a consequence, much of the landscape supports only grass which serves as feed for range cattle. Trees comprising Ponderosa pine grow widely separated in forested areas.

Bedrock is exposed over 2% to 5% of the landscape. Surrounding obvious outcrops are areas of rubble crop and other locally derived residuum. Within the valleys, overburden cover is thicker and consists of
20.
wash derived from the hills during flash floods. Thicknesses are unknown but could be substantial. Soil profile development is relatively constant. At surface is a thick AH horizon averaging about 30 cm thick, although in places it is thin at 5 cm , whereas in other areas it exceeds 50 cm in thickness. It is recognized by its dark colour produced by decaying organic matter accumulations. Underlying the AH is the BM horizon. The BM is a medium brown colour characterizing weak Fe enrichment.

Previous workers reported sampling the B and C horizons. From the above descriptions, it is likely they sampled the $A(A H)$ and $B(B M)$ horizons.

ii) Sample Collection and Analysis

Soil samples were taken at a 12.5 m intervals along two perpendicular lines centering on the southermost pit of the Picture Rock Quarry which is known to contain some Au. Two samples were taken at each site. The AH zone was sampled within 10 cm of surface (Fig. 6A). The BM horizon was sampled at an average 40 cm depth (Fig. 6B). A total of 50 sites were examined.

Sample locations along the east-west line recover the previously existing grid. The north-south line was topofilled and crosscuts the existing grid. All station locations are marked by an aluminum tag which was left on site.

Samples were hand delivered to Acme Analytical at the completion of the programme. They were dried and analyzed for $A u$ following an aqua regia digestion, for F following a peroxide fusion and for a suite of 30 elements following a separate aqua regia disgestion. Analytical procedures are reported in Appendix VI.
iii) Method of Data Evaluation

AH soil samples were given sample type code 51 in the listing of data (Appendix V) whereas $B M$ samples were coded as sample type 50. Histograms were drawn for each sample type (Fig. 7A and 7B), respectively. These were then interpreted following procedures outlined in Appendix III.
iv) Description of Results

Geochemical data for the A (Fig. 8A-Z) and B (Fig. 9 A-Z) soil horizons will be described for each element
22.
in turn. Figures $8 A-2$ and $9 A-2$ can be found in Appendices IV and V, respectively.

Au (Fig. 8A, 9A)
Most Au values report at less than 3 ppb . The central pit area is not reflected by a significant Au feature. The only anomaly of the survey is a two point feature in B soil 15 m south of $\mathrm{MDH}-2$, in an area of residual soils.

As (Fig. 8B, 9B)
Both As distributions are comparable. Anomaly dimensions are about 50 m associated with the central pit. A second two point anomaly (i.e. diameter of $12.5 \mathrm{~m})$ lies adjacent to a second pit 50 m to the north.

Sb (Fig. 8C, 9C)
Any detectable value of Sb (i.e. $>2 \mathrm{ppm}$) has been defined as anomalous. A similar pattern is seen in both sets of data. The anomaly is slightly smaller than the As feature. Downslope movement of Sb in the AH relative to the $B M$ is noted.

Ag (Fig. 8D, 9D)
A two point Ag anomaly lies downslope of the southermost pit. Values of 0.7 to 0.9 ppm in the B horizon are slightly higher that those in the AH.

Bi (Fig. 8E, 9E)
All values are at detection limits.

Mo (Fig. 8F, 9F)
All values are at detection limits.

Cu (Fig. 8G, 9G)
The pit is associated with a Cu anomaly 25 m across in both horizon. In the south, a similarly-sized Cu anomaly is noted, but the zone is a little stronger in the $B M$ and can be seen to disperse eastward along a gully draining the quartz vein target of MDH-2.

Pb (Fig. 8H, 9H)
Backgrounds are a little higher for Pb in the BM . Both horizons define a similar anomaly around the pit 50 m across. Two weak zones of Pb enhancement in base of slope environments in the BM data are not apparent amongst AH data.

Zn (Fig. 8I, 9I)
Zn anomaly around the pit is high contrast in both surveys, with the BM horizon values slightly higher. The southern quartz vein is also reflected by a weak Zn anomaly. The anomaly is slightly stronger and much larger in $B M$ horizon data compared to $A H$ data.

Fe (Fig. 8J, 9J)
Fe backgrounds in the $B M$ horizon are slightly higher than in the AH. The pit is represented by a 25 m wide anomalous zone in both surveys. A second anomaly is seen 50 m to the east along the southern contact of serpentinite with dacite porphyry. A weak feature also lies 50 m to the north. However, only the BM horizon exhibits Fe enhancement associated with the southern quartz vein.

Mn (Fig. 8K, 9K)
A high contrast $M n$ anomaly coincides with the pit. The southern quartz vein is associated with elevated Mn values. The anomaly is slightly larger in the AH horizon.

Co (Fig. 8L, 9L)
Co does not follow Mn. High values for both surveys lie along the serpentinite margin.

Ni (Fig. 8M, 9M)
The Ni distribution clearly differentiates mapped geology, and data from both horizons present the same picture. Downslope dispersion off the area of greater than 300 ppm values over the serpentinite is 20 m .

Cr (Fig. 8N, 9N)
Cr values are higher in the $A H$ than in the $B M$. The Cr distribution highlights only a portion of the serpentinite unit and may be useful in subdividing this unit if necessary.
$\underline{V}(F i g, 8 \emptyset, 9 \varnothing)$
V contents do not vary greatly. They vary regularly but do not exhibit much contrast.

Ba (Fig. 8P, 9P)
Contrast amongst Ba contents is weaker in the AH than in the BM where average values are higher. Both the Picture Rock Quarry area and the southern quartz vein area are zones of Ba accumulation. Ba is also elevated in a break of slope region some 200 m downslope of the southermost pit.

Sr (Fig. 8Q, 9Q)
The Sr distribution is somewhat noisy. Anomaly contrast and size is slightly larger in $B M$ horizon soils.

Ca (Fig. 8R, 9R)
The Ca distribution is more homogeneous in AH samples, but both surveys give the same anomalous conditions downslope of the pit and around the southern quartz vein.

Mg (Fig. 8S, 9S)
Mg is similar to Ni in defining the ultramafic rock as Mg-rich. Values are higher in the BM and the geochemical pattern is a little more homogeneous.

K (Fig. 8T, 9T)
Both distributions are similar and define a 100 m long portion of the north-south line to be enhanced, coinciding with a seepage area.

Al (Fig. 8U, 9U)
Al contents are higher in the $B M$ horizon and distribution patterns are more homogeneous. Al is
enriched in association with the north-south line at both pits and in the midst of the seepage area.

Ti (Fig. 8V, 9V)
Ti contents are slightly higher in the BM which does not distinguish any portion of the study. By contrast, Ti content of the AH is more or less restricted to the serpentinite unit.

P (Fig. 8W, 9W)
P contents are higher in the BM zone. A high contrast anomaly for both surveys lies along the road to MDH-1. A 12.5 m anomaly is also noted downslope of the pit.

W (Fig. 8x, 9X)
All W values are at detection limits.

F (Fig. 8Y, 9Y)
F backgrounds are higher in the BM. BM horizon data are restricted to the serpentinite unit whereas AH data reflects an area around the southern quartz vein.

La (Fig. 8Z, 9Z)
La levels are higher in the $B M$ than in the $A H$ zone. One anomaly is defined adjacent to a road in the AH zone, but there is not much variation amongst $B M$ data to warrant defining anomalies.
v) Discussion of Results

Differences between distribution patterns for $A H$ and BM horizons are not significant, although selection of the BM zone increases anomaly size for several base and/or pathfinder elements. Anomaly contrast is also a little bit better, perhaps due to dilution by surface wash in grassland areas. For Au, the only anomaly apparent in the data set was found in the BM horizon survey.

Two areas of mineralization serve as focal points for describing geochemical dispersion. Anomalous patterns for each are summarized in Table III. It is likely that to find these types of occurrences, the sample interval can be no larger than 25 m .

The position of the ultramafic unit appears well defined based on the Ni distribution. The
29.
serpentinite is reflected by elevated values of Co, Ni, Cr, Mg and F. Subdivision of this unit may be possible, as suggested by level changes for these and other elements. Downslope dispersion is estimated at 25 m . Considerably greater dispersion is likely along gullies where overburden comprises a wash alluvium. The study is not sufficient in extent to document dispersion in the wash environment.

Proper sampling does not appear to be a problem. Variability will be minimized if only one horizon is sampled.

vi) Conclusions

Sampling the BM horizon is suggested for routine work and a sample interval of 25 m is optimum to search for similar or larger-sized prospects. Geochemical surveying appears to be an effective tool for this property.

TABLE III

Geochemical characteristics of elements associated with the Picture Rock Quarry and southern quartz vein prospects.

PICTURE ROCK PIT		Concentration	SOUTHERN QUARTZ VEIN		
Element	Size		Element	Size	Concentration
As	50 m	35-100 ppm			
Sb	50 m	2- 6 ppm			
Ag	125 m	0.8 ppm			
Cu	30 m	35- 50 ppm	Cu	50 m	35- 50 ppm
Pb	50 m	20-60 ppm			
Zn	25 m	70-200 ppm	Zn	50 m	70-100 ppm
Fe	25 m	3.2-3.5\%	Fe	25 m	3.5-3.8\%
Mn	25 m	1200-1800 ppm	Mn	30 m	1000-2200 ppm
Ba	25 m	250-350 ppm	Ba	25 m	250-300 ppm
Sr	25 m	90-110 ppm			
Ca	25 m	0.7-0.85\%	Ca	30 m	0.7-1.3\%
Al	12.5 m	2.6-2.8\%			
P	12.5 m	0.1-0.12\%			

6. DIAMOND DRILLING

A) Introduction

From November 6-1l, 1987, Min-Ex Drilling of New Denver, B.C., completed $159.4 \mathrm{~m}(523$ feet) of $N Q$ drilling from two sites on the MIDWAY claim. A D-8 caterpillar, contracted from J.C. Olsen of Midway, was utilized to prepare the drill-sites, move the Longyear 38 diamond drill, and complete site reclamation.

Drill core was logged, split and stored near Greenwood on the property of Kettle River Resources president, George Stewart. Core logs conmpleted by the writer are contained in Appendix VII.
B) Drill Hole MDH 87-1
i) Geology

Drill hole MDH $87-1$, oriented 265° azimuth $/-45^{\circ}$ dip, was located on the road beneath the powerline approximately 175 m east and downslope of the Picture Rock Quarry (Figure 5). The drill hole was intended to test the down-dip potential of chalcedonic veining exposed in the quarry.

The drill hole was collared in variably-altered
serpentinite and to 71.9 m consists of serpentinite enclosing a relatively wide (approximately 35 m) body of dacite porphyry (Figure 10). Alignment of phenocrysts in the porphyry form similar core axis angles as foliation in the serpentinite suggesting that the porphyry is a sill-like intrusion conformable within the serpentinite. This would be compatible with observed field relations. Quartz eyes are not evident in the porphyry and it displays a relatively uniform texture and grain size. From approximately $25-50 \mathrm{~m}$, the dacite porphyry displays moderate to strong clay alteration accompanied by 2-4\% fine-grained disseminated pyrite. At the approximate centre of this altered and oxidized zone is a 40 cm wide, massive, pale green to white chalcedonic vein containing fragments of oxidized porphyry and clots of white talc. The vein interval corresponds to a loss of circulation of drill water and a noticeable decrease in recovery of wall-rock. From 50.7-56.0 m are three additional zones of chalcedonic veining totalling approximately 1 m in width. It is possible that these latter veins represent the down-dip, digitated extension of the quarry zone hosted here in dacite porphyry and

33.
serpentinite immediately adjacent to their mutual contact. Of the three veins, one closely resembles quarry material (50.7-50.8 m) but one other (55.455.6 m) is very similar in appearance to silica breccia intersected in drill hole 87-2.

From 71.9-88.0 m is a greenish, fine-grained andesite-dacite unlike any rock type seen at surface. Locally, it contains what appear to be serpentinite inclusions, thus it is probably similar in age to the dacite porphyry.

The drill hole ends in a strongly altered finegrained, equigranular to subporphyritic andesitedacite. Pervasive quartz-sericite-pyrite alteration is cut by prominent carbonate fracturefillings. .. Hematite staining of altered feldspar crystals gives these grains a pinkish tinge resembling K -feldspar. This rock looks to be a more strong altered variety of andesite-dacite present from 71.9-88.0 m.

Lithologies intersected in MDH 87-1 suggest that in this area the serpentinite is a relatively thin unit
which has been injected by abundant dacite porphyry. True orientations of chalcedonic silica veins in drill core are not possible to determine from available data, however, it is probable that both near-vertical and shallowly east-dipping (quarry zone) attitudes are present. The vein at 33.85 m occurs within an envelope of clay-altered and oxidized porphyry similar to the steeply-dipping vein cut by MDH 87-2 (see below). Thus, silicification may have been localized by a high-angle 'feeder' structure and then spread laterally along low-angle subsidiary structures.

The apparent increase in alteration downhole within the fine-grained andesite-dacite suggests that deepening of this hole may have been advisable.

ii) Geochemistry

Examination of the geochemical profile for MDH 87-1 (Figure 11, in pocket), shows two distinct zones of enhanced values. The uppermost zone is approximately 10 m long, centred on the chalcedonic vein at 33.85 m, and displays anomalous values in gold (up to 149 ppb), silver (up to . 8 ppm) and arsenic (up to 128
35.
ppm). Barium (up to 620 ppm) appears to comprise a corresponding but longer (over 20 m) zone of enrichment. Other elements of interest are copper, which appears to show an antipathetic relationship, and fluorine, which appears to constitute a high background throughout the porphyry.

The lowermost zone is centred on two narrow inliers (?) of serpentinite which appear to mark the approximate contact between weakly and strongly altered fine-grained andesite-dacite at about 90 m . Serpentinite from 90.2-90.8 m contains strong stockwork chalcedonic veining. Enhanced levels of gold (up to 210 ppb), silver (up to . 8 ppm), arsenic (up to 296 ppm), antimony (up to 13 ppm), zinc (up to 98 ppm), lead (up to 112 ppm), molybdenum (up to 15 ppm), iron (up to 4.0\%), strontium (up to 374 ppm), and alumina (up to 2.89\%) comprise a zone from 10-12 m in length. High values in cobalt, nickel, chrome and magnesium are associated with the serpentinite. High fluorine (up to 1340 ppm) throughout the finegrained andesite-dacite supports a genetic association with the coarser dacite porphyry.
C) Drill Hole MDH 87-1
i) Geology

Drill hole MDH $87-2$, oriented 270° azimuth $/-45^{\circ}$ dip, was located 35 m east of a near-vertical chalcedonic breccia vein from which a surface chip sample yielded $3.2 \mathrm{~g} / \mathrm{t}$ gold and $3.1 \mathrm{~g} / \mathrm{t}$ silver over 60 cm . The purpose of the drill hole was to test the vein 35-40 m below surface and to investigate any hydrothermal alteration of the wall-rock.

For its entire length of 60.65 m , the drill hole was entirely within dacite porphyry, however, several varieties based on textural and grain size differences were recognized (Figure 12). These include:

- medium-grained, feldspar porphyritic dacite
- medium-grained quartz-feldspar porphyritic dacite (5\% quartz eyes, quartz-rich groundmass)
- medium-grained, crowded, feldspar porphyritic dacite with aligned phenocrysts
- fine-grained, crowded, feldspar porphyritic dacite with quartz-rich groundmass.

Contacts between varieties appear to be gradational. The medium-grained, crowded, feldspar porphyry with

moderate alignment of phenocrysts, which occurs from 57.0 m to the end of the hole, is megascopically very similar to porphyry in the upper portion of MDH 87-1. Fine-grained, crowded, feldpsar porphyry appears spatially associated with quartz-feldspar porphyry and may represent a transitional phase of this rock type with less siliceous medium-grained feldspar porphyry.

Alteration and chalcedonic veining appear to be associated with sheared and fractured zones which are marked by pervasive rusty oxidation. A short interval from $12-16 \mathrm{~m}$ shows moderate to strong clay alteration accompanied by 2-3\% fine-grained disseminated pyrite. Three 5 cm wide gouge zones are present from $11.0-16.6 \mathrm{~m}$.

From $30-47 \mathrm{~m}$ is a major zone of oxidized, clayaltered and pyritized porphyry associated with numerous gouge zones. Core recovery is poor through this interval, averaging approximately 54\%. Near the centre of this zone, chalcedonic breccia vein material occurs from approximately $38.1-40.2 \mathrm{~m}$. This vein material is similar in appearance to the
38.
outcropping vein and is hosted in similar quartzfeldspar porphyry. However, the drill hole intersection is not situated directly below the vein outcrop, suggesting that either the vein is not uniformly vertical or that some fault offset is evident. Assuming no fault offset, the vein displays an effective dip of approximately 75° east.

From 57 m to the end of the hole, alteration and oxidation diminish and chalcedonic veins are rare.

ii) Geochemistry

The upper zone of alteration from $12-16 \mathrm{~m}$ shows no anomalous enhancements of elements on the geochemical drill hole profile (Figure 13). Sample interval $18-20 \mathrm{~m}$, which includes 10 cm of chalcedonic veining containing talc clots, yielded the highest arsenic value in the drill hole (183 ppm).

The lower zone of alteration from $30-47 \mathrm{~m}$ shows weak enhancement in gold (up to 72 ppb), silver (up to 1.4 ppm), arsenic (up to 77 ppm), copper (up to 61 ppm), and tungsten (up to 8 ppm) centred on the chalcedonic breccia vein. Corresponding depletions in barium,
39.
strontium, calcium, alumina, potassium and phosphorous are evident.

Actual vein material sampled from 38-40 m yielded a rather disappointing 64 ppb gold and 1.4 ppm silver. Low values relative to surface sampling may be attributed to smaller sample size and a nugget effect with respect to mineralization.

In general, arsenic and antimony appear to be much less significant in this drill hole.

Increase in fluorine to values greater than 1000 ppm corresponds exactly with the contact at 57 m of medium-grained, aligned feldspar porphyry. This supports a possible correlation between this unit at the bottom of MDH 87-2 and the similar appearing unit in the upper portion of MDH 87-1.
7. DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS The RAINBOW claim group covers an area displaying several features which suggest that a significant system of precious metal mineralization may exist. Tertiary, epithermal, chalcedonic veins and breccias containing anomalous gold, silver, and locally arsenic and antimony, appear to be localized along high-angle, altered, graben-bounding faults comprising the western margin of the Toroda Graben. Epithermal mineralization may be continuous along this structure from the southern portion of the claim group to the TAM O'SHANTER prospect located approximately 7 km to the northeast. A subsidiary east-west structure, represented by the trend of serpentinite, may be important locally as a control to mineralization.

Exploration targets on the property include high-grade bonanza veins, similar to the Knob Hill deposit at Republic, and bulk-tonnage stockwork or replacement-type mineralization similar to the Cannon Mine at Wenatchee. The most favourable host for the latter type may be within permeable sediments of the Kettle River Formation, particularly where they abut graben-bounding faults. Both of these deposits are quartzadularia systems hosted within Tertiary grabens. Table IV shows the pertinent features of four Tertiary quartz-adularia systems, Knob Hill, Curlew, Wenatchee and Hishikari.

COMPARISON OF TERTIARY quartz-aduIARIA PRECIOUS
 METAL DEPOSITS

TONNAGE + GRADE
.60 opt $A u, 2.5$ opt
Ag fram 4.5 m tons

Ag/Am Ratio
Host Bock
Bonanza veins
principally within
intermediate, calc-
alkaline to alkaline
Sanpoil volcanic
tuffs and flows.

Alteration Minerals	Ore Minerals
Quartz, adularia, fluorite, carbonate kaolinite.	Electrum, sulfosalts, selenidenides and (naumannite), pyrite, chalcopyrite, sphalerite.

Ancmalous Elements

As ($100-200 \mathrm{ppm}$) Sb ($10-70 \mathrm{ppm}$), Se ($1-10 \mathrm{pprm}$) Te (1-4 ppm), Mo ($20-40 \mathrm{ppm}$). F (?) HG (up to 1000 ppb (locally)
yrite, pyrrhotite,
No information magnetite, arsenopyrite
in mantos. No information
on vein mineralogy.

Free gold, electrum pyrargyrite, pyrite chalcopyrite
naumannite.
tockwork veins
within pervasively
ith horiz
fluvial and
lacustrine sediments.
Bonanza veins
localized at and
below unconformity
between younger
intermediate
volcanics and
basement Cretaceous
shale-siltstone.

Quartz, adularia,
montmorillonite sericite, chlorite, carbonate, chodocrosite, kaolinite.

Electrum, pyrargyrite, miargyrite, naumannite, aquilarite, stibnite,
pyrite, marcasite, chalcopyrite, galena sphalerite.

While adularia has not been identified in the small number of vein samples from the claim area stained for K-feldspar, current thinking at Wenatchee is that adularia is precipitated within the boiling zone and its distribution closely follows that of gold. Thus, for deposits of this type presence of adularia should indicate close proximity to ore. Apparent lack of adularia on the claims should not be construed as a negative feature as yet.

Ag/Au ratios for the four deposits shown in Table IV range from . 6 to 4.1. The average Ag/Au ratio for 31 samples from the claim area taken by Kerr-Addison in 1985 is 4.9.

The Hishikari deposit consists of very high grade bonanza lodes situated at or just below the unconformity between Pleistocene and Cretaceous rocks. The surface expression of the system is a single small, disconnected vein within the Pleistocene rocks approximately 100 m above the unconformity. The unconformity, for one or more possible reasons, appears to have been the main control on localization of economic mineralization. The Eocene unconformity within the RAINBOW claim area should not be overlooked.

Little (1983) suggests that dacite porphyry on the RAINBOW claims may correlate with Scatter Creek rhyodacite in the Republic area. Scatter Creek rhyodacite is Eocene in age and cuts O'Brien Creek Formation sediments, a unit correlative with the Kettle River Formation in the Midway area. In the Republic mining camp, dykes of Scatter Creek rhyodacite show a definite spatial, albeit unknown genetic, relationship to gold-silver-bearing veins. Work to date on the RAINBOW claims suggests however that dacite porphyry may be older than the Kettle River Formation and is definitely older than chalcedonic veining. Compositionally, the RAINBOW dacite porphyry appears to contain much less K-feldspar than reported in the Scatter Creek rhyodacite.

A proposed sequence of geologic events for the Midway area based on available data is as follows:
1). Intrusion of ultramafic bodies in the Jurassic, followed by their tectonic emplacement and serpentinization in pre-Cretaceous time along low-angle, north-dipping structures (thrusts?).
2) Intrusion of high-level dacite porphyry stocks and dykes in Late Cretaceous-Early Tertiary time. Their emplacement may have been controlled by the same east-west
43.
trending structural zone that the serpentinites were localized along. Juxtaposition of porphyries with serpentinites resulted in locally intense carbonatesilica alteration of serpentinite predominantly along the tectonically-induced foliation. Volume reduction accompanying alteration resulted in development of open spaces parallel to foliation. Differentiation within individual dacite porphyry stocks resulted in quartz-rich phases with associated base and precious metal, quartz vein-type mineralization (e.g. MIDWAY MINE).
3) Graben (i.e. rhombochasm) development in the early Eocene resulting from regional strike-slip faulting.
4) Deposition of basal fluvial and lacustrine sediments of the Kettle River Formation in the grabens.
5) Widespread extrusion of Marron Formation alkalic lavas and emplacement of associated dykes and plugs.
6) Epithermal gold-silver-bearing silicification occurred and was controlled primarily by north-northeast-trending, graben-bounding normal faults. Secondary controls included low-angle, conformable channels in altered
serpentinite, and reactivated pre-existing mineralized structures possible represented by the MIDWAY MINE structure. Silicification is definitely younger than the Kettle River Formation (evidenced by silicified sediments at the TAM O'SHANTER), however, it is not known if the Marron Formation pre- or post-dates the mineralization.

The RAINBOW claim group warrants additional work to test for a buried epithermal precious metal deposit. Graben-bounding faults appear to be the most likely features to have acted as primary conduits for mineralizing solutions. Bonanza lodes may exist along these structures. In addition, permeable Kettle River Formation sediments abutting these structures may have been amenable to large-scale replacement to form bulk-tonnage targets.

Because the faults are recessive, mapping and geochemical sampling may prove to be of limited value. Geophysical surveying (IP/VLF) should be utilized to define the structures and any alteration or pyritization associated with them. Trenching may be feasible to follow-up geophysical anomalies, however, diamond drilling will probably prove to be the most effective technique.

Any diamond drilling should endeavour to penetrate beyond the Eocene unconformity, following the Hishikari example.
45.

BIBLIOGRAPHY

Little, H.W. (1983): Geology of the Greenwood Map-Area, British Columbia; Geol. Survey of Can., Paper 79-29.
Fyles, J.T. (1983) : Assessment Report on Geology of Part of the RAINBOW Group.
Reid, R.E. and Nielsen, P.P. (1983): Assessment Report - Geology and Ground Magnetometer Survey of Midway Mine Area.
Chow, F. (1985) : Geology and Geochemistry Report on the RAINBOW Group; Internal Report by KerrAddison for the Dentonia Resources/Kettle River Resources Joint Venture.

APPENDIX I

Analytical Procedures

G!our 1 - Geachealatiz by apecilic extraction and ingteynental fecliniques

Lleseat	Hethad	Refiction	2195
B.alua		10 ppo	13.58
			.
Casbon	Lecoltotal as cos dozi	.011	9.19
caidonisulfut	aoth by teco ;	.018	6.15
\{citafitus	hel leach betora isco.	.011	1.25
Chioalue		3 ppn	1.15
Plusilins	leadyedsolutionalla adons.	10 ppn	1.23
sulphus	Leco itatal as el	.811	5.28
sulpryt	Leco falter st hel leschl	.011	1.25
1 in	ang analysed by Hodine absorption.	1 ppa	J. 25
Tungaten		1 ppm	3.25

```
groye 1- Legchelsil Ueble ushale
```


Gseye 14- Cescheglest Thele Beck Assay

 Pifcet 11.15 theat netal 11.00 each additional 19.00 foz all.
Grgue 11- face elegenti

$\begin{aligned} & \text { flegent } \\ & \text { ce:rb; in, in, is } \end{aligned}$	$\left\{\begin{array}{l} \text { R tectlon } \\ 0 \end{array}\right.$	$\begin{gathered} \text { Alyols } \\ \text { lab } \end{gathered}$	- o
CB, Ab	10 ppo	M	11:30 dach.

ciene ic - analraia by lcellis.

$L u, H t, t a, V, t h ; U$

APPENDIX II

Listing of Analytical Results for Rock Sampling

APPENDIX III

Method of Histogram Intrepretation

RULES FOR CHOICE OF SIZE CUDING OR CONTOURING INTERVALS

(1) Examine both arithmetic and logarithmic histograms for each geochemical survey. Choose the histogram which most closely approximates a normal (or lognormal) distribution. If several populations are present on the histogram, subjectively divide the data into a series of (overlapping ?) normal or lognormal distributions. Aiways avoid interpreting histograms which are strongly skewed. portions of arithmetic or logarithmic histograms may be chosen over specific metal concentration intervals, if this allows for the best portrayal of the data in graphitical form.
(2) Choose, as two of the coding intervals, points which represent between 90% and 95% and 95% and 97.5% of the data: two different numbers. These choices highlight from 1 in 10 to 1 in 20 samples which are considered siightly anomalous and definately anomalousis respectively. These limits are optimistic in that the two categories are defined to be anomalous regardiess of the distribution of values on the remainder of the histogram. A tigorous statistical approach would suggest that only values above the 97.5 percentile should be considered anomalous. Choice of any of the above percentiles is entirely subjective and meant to highlight the highest values of the survey.
(3) Divide the remaining portion of the histogram into recognizable populations. The dividing point of each of these populations is chosen as a coding interval. Artifacts introduced as a consequence of detection limit considerations are ignored. These artificial breaks in the histogram can be recognized by referring to the laboratory reports and scanning data results.
(4) For each population, choose one or two numbers which correspond to the 90% and 95% cumulative trequencies for that population (1 in 10 and 1 in 20 samples for that population). These will also be used to represent anomalous conditions for each population. Coding intervals can be no closer than 2 X the detection limit for each element being considered.
(5) A maximum of six numbers can be chosen to plot symbol maps. This number is dictated by the ability to present data in graphical form with sufficiently different symbol sizes for them to be easily distinguishable, particularly if maps are to be reduced. The seven aefined concentration classes are normally sufficient to represent geochemical data on a map. More intervals can be chosen if data are to be contoured. Avoid choosing arithmetic intervals without considering rules (1) and (4).
(6) Maps plotted using the preceeding instructions might result in two areas being distinguished from each other by a relatively uniform density of symbol sizes, yet only poor contrast anomalies are indicated. Difference between the two areas, A and B, might be due to underlying geology, overburden character, soils etc. Whatever the cause, the data are not well displayed. If the underlying conirol distinguishing A and B can be recognized, the data can be divided and re-interpreted following steps (I) to (5). Two sets of maps can be drawn, or both sets of interpreted data can be plotted on a single map. For such superimposed geochemical maps, symbol sizes lose their absolute meaning but assume a more important stance, that of reflecting anomalous conditions regasdless of the underlying control. To illustrate, consider the case where A and B are areas underlain by very different geology. Anomalous conditions for low background rock types might be concentrations which are much lower than average values for the high background rock types. Nevertheless, anomalies defined in each area are considered significant. Reliance on absolute concentrations can be misleading in such cases.

APPENDIX IV

A-Horizon Soil Sample Result Plots

 (Figures 8A-Z)

$\left.\begin{array}{ccc|}\hline \stackrel{10}{0} & 1250 & 1500 \\ \hdashline & + & +\end{array}\right]$

$\underset{\sim}{\sim}$	1250	1500
+		

ભ	1250	1500
$\rightarrow-1$	+	

$\stackrel{\leftrightarrow}{\hookrightarrow}$	1250	1500
$\rightarrow \rightarrow$	+	+1

5	1250	1500
\rightarrow	+	\dagger

APPENDIX V

B-Horizon Soil Sample Result Plots
 (Figures 9A-Z)

(

$\stackrel{\text { ® }}{ }$	1250	1500
\square	+	+

$\stackrel{1}{4}$	1250	1500
\rightarrow	+	+

$\stackrel{0}{\mathrm{~N}}$	1250	1500
$\rightarrow-1$	+	+

APPENDIX VI

Listing of Analytical Results for
 Soil Sampling

SELCO - A DIVISION OF BP FF:DJECT-573 File \# 87-5644 Fage 1
SAMPLE

5087573955201 5087573955202 508757? 955203 5087573955204 5097573955205

5087573955206 5087573 95520? STD C
5097573955209 5087573 95520?

509753 ? 95210 5087573 955211 5087573955212 5087573955213 5097573955214

5087573955215 508753955216 RE 508757395230 508757395517 5087533 :95218

5087573955219 508757395522 508753 955221 507753955222 5087573955223

5097573955224 5087573 ? 55225 5087573 955226 5097573955227 3087573955228

5087573995229 5087573955230 5087573955931 5087573955232 5087573955233

5087573955234 5097573955235 5087573955236 510 C/All-S

 $\begin{array}{lll}31 & .58 & .07 ? \\ 38 & .49 & .085 \\ 27 & .70 & .091 \\ 31 & .58 & .078 \\ 42 & .54 & .056\end{array}$ 63
45
29
35
99 .85
.55
.43
.41
.93 $\begin{array}{ll}35! \\ 227 \\ 214 & \\ 300 & \\ 250 & .\end{array}$.06
.08
.05
.09
.08

8	2.32	.03	.16
4	2.50	.03	.21
7	1.66	.04	.20
5	2.89	.04	.16
4	2.65	.04	.13

5	2	28	.76	.054	22	149	1.03	176	.06	8	1.65	.04	.19	2	1	420
2	32	52	.075	29	199	1.05	199	.06	8	2.07	03	18	2	1	399	

SELCD - A DIVISION OF EF FFOJECT-57S FILE \# E7-5644
Fage 2
SAMPLE MO
PPH

5067573955237	1	31	17	59	. 1	73	10	795	2.69	6	5	No	2	80	1	2	2	35	. 50	. 077	39	41	. 54	261	. 08	5	2.68	. 03	. 21	1	1	290
5087575955238	1	30	19	60	. 1	85	10	788	3.16	?	5	ND	3	66	1	2	2	40	. 52	. 079	42	$5!$. 64	245	. 07	4	2.78	. 02	. 23	1	2	280
5097573 955239	1	31	17	58	. 3	78	11	799	2.95	8	5	ND	3	67	1	2	2	38	. 50	. 080	38	46	. 60	259	. 08	6	2.70	. 03	. 23	1	1	310
STD E	19	59	41	132	7.5	70	2 B	1044	4.11	43	18	7	40	50	18	16	18	57	. 48	. 086	40	62	. 87	182	. 07	32	1.95	. 06	. 14	12	-	-
5087573955340	1	34	19	64	.1	68	10	932	2.78	9	5	ND	2	74	1	2	2	35	. 64	. 091	40	38	. 47	265	. 07	7	2.34	. 03	. 23	1	4	270
5087573955241	1	46	19	71	. 1	88	13	976	3.65	11	5	ND	3	$6!$	1	2	2	47	. 53	. 075	49	54	. 71	205	. 05	5	2.25	. 02	. 26	1	5	350
5087573 955242	1	33	17	69	. 1	72	10	908	2.88	7	5	ND	3	68	1	2	2	4,37	. 51	. 095	37	41	. 53	236	. 06	7	2.01	. 02	. 27	1	1	300
5087573955243	1	32	11	54	. 2	26	8	943	2.33	5	5	ND	2	73	1	2	2	26	. 59	. 064	24	17	. 33	297	. 07	6	2.65	. 04	. 20	1	7	290
5087573 ? 55244	1	36	18	77	. 1	21	17	2200	3.77	4	5	ND	1	63	1	2	2	32	1.31	. 127	16	19	. 36	217	. 03	6	2.37	. 02	. 13	1	23	240
5087573955245	1	36	20	83	. 1	21	14	1804	3.60	2	5	ND	2	85	1	2	2	34	1.02	. 097	18	21	. 44	339	. 03	5	2.34	. 02	. 23	1	19	220
5087573955246	1	34	16	60	. 1	24	9	1063	2.41	5	5	ND	1	105	1	2	2	23	. 84	. 057	19	17	. 36	267	. 05	8	2.11	. 04	. 20	1	4	290
5087573955247	1	43	18	79	. 2	24	11	1282	3.21	13	5	ND	1	88	1	2	2	27	. 76	. 071	22	16	. 40	310	. 04	5	2.27	. 02	. 21	1	5	300
RE 5187573 955259	1	23	15	53	. 2	385	27	198	3.15	16	5	ND	2	66	1	2	2	28	. 56	. 082	18	184	1.25	172	. 05	-	1.45	. 03	. 19	1	6	-
5087573 955248	2	77	17	92	1.1	18	12	1359	3.81	36	5	ND	1	27	1	2	2	21	. 65	. 083	21	10	. 21	269	. 01	4	1.60	. 01	. 19	1	2	370
5087573955249	1	39	12	75	. 1	11	9	1161	2.63	4	5	ND	1	101	1	2	2	20	1.16	. 084	15	9	. 28	220	. 03	10	1.78	. 03	. 22	1	4	260
5087573955250	1	26	17	74	. 3	12	9	863	3.64	9	5	N0	2	44	1	2	2	32	. 54	. 059	22	12	. 23	262	. 06	2	2.70	. 02	. 17	1	1	280
5187573955251	1	36	17	87	. 1	306	20	1567	3.18	30	5	N0	2	65	1	,	2	31	. 52	. 076	24	63	. 80	333	. 06	4	2.14	. 03	. 16	1	1	290
5187573955252	1	21	13	62	. 1	90	10	635	2.33	7	5	HD	4	69	1	2	2	33	. 44	. 074	35	43	. 47	194	. 07	5	1.91	. 03	. 21	1	1	280
5187573955253	1	23	9	63	. 1	48	7	552	1.79	3	5	ND	1	110	1	2	2	27	. 66	. 099	27	27	. 37	195	. 06	9	1.53	. 03	. 21	1	1	250
5187573955254	1	21	13	58	. 1	43	8	786	2.06	5	5	ND	1	57	1	2	2	27	. 57	. 070	24	27	. 31	243	. 07	5	2.16	. 03	. 14	1	2	240
5187573955255	1	37	34	72	.2	275	21	939	2.96	136	5	ND		64	1	2	2	38	. 60	. 061	27	114	1.02	224	. 07	5	2.15	. 03	. 15	1	1	300
5187573955256	1	23	18	48	. 2	442	27	712	2.72	48	5	HD	3	86	1	5	2	29	. 66	. 059	22	161	. 96	180	. 06	8	1.67	. 03	. 22	,	3	320
5187573955257	1	30	25	48	. 1	484	30	728	2.84	48	5	No	1	64	1	4	2	30	. 47	. 067	23	208	. 94	179	. 06	9	1.65	. 03	. 17	3	1	290
5187573955258	1	23	14	45	. 1	256	17	650	2.37	31	5	ND	2	64	1	2	2	29	. 45	. 066	27	114	. 65	191	. 06	8	1.85	. 03	. 16	2	4	280
5187573955259	t	23	11	52	. 1	386	27	198	3.08	12	5	ND	1	65	1	2	2	25	. 55	. 081	17	183	1.21	173	. 05	8	1.45	. 02	. 19	1	2	270
5187573955260	,	20	24	63	. 1	437	29	828	3.62	17	5	ND	2	56	,	2	2	33	. 42	. 085	19	229	1.26	186	. 07	6	1.90	. 03	. 17	1	1	290
5187573 955261	1	21	16	61	$\cdot .1$	562	39	870	4.05	13	5	ND	3	58	1	2	2	37	. 38	. 101	27	228	1.43	179	. 07	7	1.74	. 03	. 13	,	1	300
5187573955262	1	17	13	56	. 1	336	26	705	3.18	14	5	ND	2	67	1	2	2	35	. 42	. 108	29	158	. 93	166	. 06	8	1.40	. 03	. 14	,	1	310
5187573955263	1	21	15	55	. 2	104	10	545	2.28	14	5	ND	5	77		2	2	37	. 48	. 105	42	52	. 42	147	. 07	4	1.46	. 03	. 14	1	4	340
5187573955264	1	22	14	55	. 1	122	12	637	2.38	17	5	ND	3	74	1	2	2	35	. 48	. 090	38	53	. 45	188	. 07	3	1.66	. 02	. 16	1	1	320
5187573955265	,	26	15	50	.2	91	10	638	2.22	16	5	ND	3	66	1	2	2	30	. 48	. 082	30	42	. 38	210	. 06	d	1.62	. 03	. 18	2	1	360
5187573955266	1	27	7	51	. 2	89	10	648	2.42	17	5	ND	3	63	,	2	2	33	. 50	. 079	30	48	. 41	224	. 07	5	1.84	. 03	. 20	1	6	350
5187573955267	1	16	14	48	.1	116	11	55.4	2.01	16	5	ND	2	47	1	2	2	28	. 31	. 055	23	44	. 35	146.	. 07	5	1.71	. 03	. 14	2	1	230
5187573955288	1	20	11	43	. 1	326	18	647	2.29	20	5	MD	2	70		2	2	24	. 50	. 077	17	76	. 66	162	. 06	8	1.46	. 03	. 12	1	3	250
5187573955269	1	22	9	42	. 2	141	11	589	1.91	11.	5	ND	2	67	1	2	$?$	25	. 50	. 082	20	47	. 38	153	. 06	3	1.48	. 03	. 11	2	1	240
5187573955270	1	21	14	52	. 1	349	20	761	2.81	45	5	ND	3	69	1	2	2	32	. 49	. 072	27	82	. 56	218	. 07	6	2.11	. 03	. 16	1	5	260
5187573955271	1	22	20	59	. 1	354	21	759	3.28	16	5	ND	6	53	1	2	2	41	. 40	. 073	29	142	1.59	218	. 07	8	2.40	. 03	. 17	1	2	280
5187573955272	1	20	12	54	. 1	153	12	590	2.24	6	5	ND	2	81	1	2	2	32	. 49	.093	29	56	. 62	195	. 07	8	1.82	. 03	. 19	1	3	310
STD C/AU-S	19	58	36	132	7.4	67	29	1032	4.11	41	18	8	39	49	18	17	19	56	. 46	. 086	38	60	. 86	179	. 06	36	1.91	. 06	. 14	12	48	-

SELCO - A DIVISION OF EF FROJECT-573 FILE \# 87-5644
Fage 3

SAMPLE:	Mo	CO	PB	2 H	${ }^{\text {AG }}$	NI	CO	NH	FE	AS	v	All	TH	SR	CD	58	BI	V	CA	p	LA	CR	M5	BA	II	8	AL	NA	k	V	AUt	F
	PPM	1	PPM	1	2	PPH	PPM	7	PPM	2	PPM	1	1	7	PPH	PPB	PPM															
5187573 955273	1	21	9	48	. 1	173	13	614	2.45	6	5	N0	2	61	1	2	2	32	. 35	. 075	34	60	. 53	191	. 07	3	2.07	. 03	. 16	2	16	280
5187573955274	1	21	5	52	. 1	173	16	697.	2.48	5	5	HD	3	63	1	2	2	30	. 41	. 089	29	68	. 53	186	. 06	5	1.79	. 03	. 18	1	1	250
5187573955275	1	20	6	59	. 1	176	16	723	2.41	6	5	NO	1	59	1	2	2	29	. 47	. 102	18	76	. 47	142	. 06	4	1.48	. 03	. 11	1	1	135
5187573955276	1	21	1	59	. 2	176	15	634	1.96	8	5	ND	2	64	1	2	2	23	. 46	. 099	19	49	. 37	127	. 05	3	1.28	. 03	. 12	1	3	210
5187573955277	1	50	36	140	. 6	337	21	1614	3.03	69	5	ND	1	102	1	4	2	27	. 88	. 112	16	81	. 98	356	. 04	9	2.15	. 02	. 19	1	4	190
5187573955278	1	44	46	206	. 8	265	17	1370	3.00	90	5	M 1	2	85.	1	7	2	28	. 69	. 093	19	74	. 86	239	. 04	7	1.72	. 02	. 18	1	6	260
5187573955279	1	34	27	130	. 4	139	12	982	2.16	49	5	ND	2	79	1	6	2	24	. 61	. 097	18	43	. 48	223	. 04	7	1.46	. 03	. 15	1	1	240
5187573955280	1	26	8	58	. 1	71	9	687	2.28	4	5	HD	1	79	1	2	2	32	. 64	. 086	34	38	. 44	205	. 06	4	1.98	. 02	. 18	1	1	280
5187573955281	1	29	4	67	. 2	68	9	748	2.18	8	5	ND	1	87		2	2	30	. 64	. 100	31	35	. 44	197	. 05	7	1.65	. 02	. 20	,	1	250
5187573955282	1	25	10	63	. 1	61	8	727	2.07	7	5	ND	1	68	1	2	2	27	. 56	. 072	27	31	. 39	207	. 06	5	1.79	. 02	. 17	1	1	230
5187573955283	1	26	9	64	. 1	65	10	717	2.04	8	5	ND	1	71	,	2	2	27	. 49	. 072	28	35	. 41	191	. 05	5	1.60	. 02	. 18	1	1	280
5187573955284	1	31	4	61	. 1	69	10	759	2.35	8	5	ND	3	65	1	2	2	31	. 51	. 070	32	38	. 46	204	. 06	5	1.97	. 02	. 20	1	1	260
5187573955285	1	31	3	63	. 1	70	9	135	2.37	8	5	No	2	70	1	2	2	32	. 48	. 075	32	39	. 48	201	. 06	2	1.94	. 02	. 22	1	1	260
5187573955286	1	34	10	58	. 3	105	12	767	2.48	7	5	HD	1	63	1	2	2	32	. 49	. 072	32	50	. 55	198	. 06	5	1.96	. 02	. 21	1	1	240
5187573955287	1	27	11	60	. 1	59	9	715	2.11	4	5	ND	2	82	1	2	2	28	. 54	. 078	28	32	. 43	218	. 06	5	1.87	. 02	. 22	1	1	240
5187573955288	1	26	7	59	. 1	49	8	704	2.03	7	5	ND	1	79	1	2	2	26	. 61	. 082	26	29	. 36	233	. 06	5	1.96	. 02	. 19	I	1	230
5187573955289	1	27	7	60	. 1	53	8	733	2.23	7	5	ND	2	72	1	2	2	29	. 61	. 077	28	31	. 42	224	. 06	4	2.04	. 02	. 22	1	1	190
5187573955290	1	30	11	62	. 1	52	9	788	2.29	9	3	ND	2	71	1	2	2	31	. 55	. 078	30	32	. 40	216	. 06	5	1.83	. 02	. 21	2	2	240
5187573955291	1	36	10	59	. 2	67	11	864	2.72	7	5	ND	3	57	1	2	3	36	. 47	. 074	36	38	. 52	193	. 06	3	1.82	. 02	. 21	1	3	350
5187573955292	1	29	11	64	. 1	53	9	796	2.33	8	5	ND	3	65	1	2	2	31	. 48	. 085	28	33	. 42	201	. 05	6	1.55	. 02	. 24	2	1	320
5187573955293	1	26	2	58	. 2	27	7	893	1.92	2	5	ND	1	82	1	2	2	22	. 73	. 073	20	16	. 29	264	. 05	6	1.92	. 02	. 19	,	1	230
5187573 955294	1	26	7	55	. 1	12	10	1586	2.22	4	5	ND	1	45	1	2	2	23	. 71	. 089	10	10	. 22	164	. 03	4	1.33	. 02	. 11	1	1	250
5187573955295	1	23	7	67	. 1	11	9	1308	2.07	2	5	ND	1	58	1	2	2	23	. 81	. 094	9	12	. 25	193	. 02	1	1.07	. 02	. 12	1	5	190
RE 5187573955285	1	29	7	61	. 1	68	9	716	2.32	10	5	HD	3	69	1	3	2	32	. 47	. 074	32	40	. 47	196	. 06	3	1.90	. 02	. 21	1	1	-
5187573 955296	1	31	7	62	. 1	16	7	993	1.71	3	5	ND	1	106	1	2	2	18	. 89	. 075	13	12	. 26	233	. 04	5	1.33	. 02	. 16	,	1	200
5710	19	63	41	130	7.3	68	29	1022	4.03	37	17	8	41	50	-18	16	18	56	. 45	. 088	38	62	. 87	167	. 06	31	1.91	. 06	. 13	11	-	-
5187573955297	1	39	7	74	$\cdot .1$	17	8	1101	2.23	13	5	ND	1	76	1	3	2	21	. 75	. 077	14	11	. 26	246	. 03	5	1.30	. 02	. 17	2	2	330
5187573955298	2	58	4	80	. 7	17	10	1121	2.87	28	5	ND	2	29	1	2	2	21	. 48	. 068	14	9	. 19	213	. 02	2	1.10	. 02	. 19	2	28	490
5187573955299	1	37	8	76	. 1	,	7	1059	2.07	9	5	ND	1	90	1	2	2	17	. 90	. 083	12	6	. 22	202	. 03	7	1.34	. 02	. 18	1	5	290
5187573955300	1	26	11	58	.2	8	7	890	2.48	4	5	ND	2	39	1	2	2	24	. 51	. 058	14	8	. 16	181	. 04	2	1.55	. 02	. 15	1	1	290
STD C/AU-S	19	60	40	132	7.1	67	28	1040	4.10	41	18	8	39	52	17	15	20	58	. 47	. 085	39	61	. 89	179	. 06	34	1.97	.06	. 14	14	50	-

APPENDIX VII

Drill Hole Logs
(MDH 87-1 and MDH 87-2)

PAGE 1
DRILL HOLE NO. $\mathrm{MOH} 82-1$

\qquad of 4

SSELCO $\underset{\substack{\text { EXPLORATION } \\ \text { WESTERN CNADA }}}{ }$						DRILL L		LロC			sample		data	
SAMPLE					CORE RECOVERY		VISUAL ESTIMATES (\% ORE MINERALS)	ASSAY RESULTS						
number	FROM	то	¢	Sp. 6 r	\%	amt. Lost		Au (ppb)	Ao(ppm)	As fom)	F(pon)			
51021	40	42	2	0	97			33	. 2	84	1100			
51022	42	44	2	\bigcirc	83			17	. 2	48	990			
51023	44	46	2	0	95			4	-2	26	940			
51024	46	48	2	0	89			20	. 1	34	1080			
51025	48	50	2	0	95			6	. 1	31	1300			
51026	50	52	2	0	90			19	. 3	56	1100			
51027	52	54	2	. 1	95			22	. 3	54	1200			
51028	54	56	2	.1	80			4	. 2	71	870			
	56	58	2	. 3	85									
	58	60	2	. 9	95									
51029	60	62	2	1.1	98			1	. 1	5	710			
	62	64	2	1.9	100									
	64	6	2	2.4	78									
5/030	66	68	2	1.2	98			2	.1	6	690			
	68	70	2	1.8	93									
51031	70	22	2	. 4	75°			3	. 1	19	150			
	72	74	2	0	90									
51032	24	76	2	. 1	75			2	. 1	2	720			
	76	78	2	. 2	100									
51033	78	80	2	.1	85			27	.1	10	1300			
51034	80	82	2.	0	73			39	. 2	21	1340			
51035	82	84	2	0	90			6	. 3	13	1050			
51036	84	86	2.	0	90			2	. 3	46	1300			
51037	86	88	2	0	80			181	. 7	138	1200			
51038	88	90	2	0	88			23	. 8	296	510			
51039	90	22	2	.1	97			210	. 5	152	980			

PAGE of 2

DRILL HOLE NO. PMAM 87-2

\qquad
\qquad

ELCO $\begin{gathered}\text { ExPLORATION } \\ \text { WESTRAN CNADA }\end{gathered}$						DRILL L		$\boldsymbol{\square}$		sample			data	
SAMPLE M.S.					Core recovery		VISUAL ESTIMATES (\% ORE MINERALS)	ASSAY RESULTS						
number	from	10		Spret	\%	AMT. Lost		Au (ppb)	Ag(ppm)	As (pm)	F(ppm)			
51062	54	56	2	0	97			5	.1	36	1280			
51063	56	58	2	0	90			1	. 2	34	1240			
57064	58	60.65	2.65	. 1	96			4	. 3	6	1090			
		EnS Hoce												
								,						
	2	2											87	7-2

APPENDIX VIII

Listing of Analytical Results for
Drill Core

ALME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. VGA IRG

 this leach is partial for nin fe cap la cr mg ba it a and linited for ma kang al. aud detection linit by icp is 3 pph. - SAhple typer Core aut Analysis by at froh 10 grah sample. f - Madh fusion - specific ion electrode analysis.
 SELCO - A DIVISION DF EP FROJECT-573 10113 File \# 87-E607 Fage 1

	SAMPLE:	no	ClJ	PB	2N	A6	NI	CO	HM	FE	AS	U	At	1H	5R	CD	58	81	V	CA	p	LA	CR	M5	8A	11	B	AL	NA	K	N	AUI	F
		PPM	PPM	PPM	PPM	PPM	PFM	PPM	PPM	2	PPM	PPM	PPH	PPM	PPM	PPH	PPM	PPM	PPY	1	$\%$	PPM	PPM	2	PPM	4	PPM	4	$\%$	1	PPM	PP8	PP\%
	858757351001	2	8	7	10	. 1	519	36	608	2.94	13	5	ND	2	52	1	2	2	4	1.03	. 004	2	163	12.41	18	. 01	2	. 12	. 01	. 01	1	1	960
	858757351002	2	6	2	13	. 1	716	37	501	2.42	17	5	ND	2	129	1	2	2	4	1.85	.003	2	119	10.60	20	. 01	2	. 09	. 01	. 01	1	17	750
	858757351003	2	4	2	10	.1	697	38	654	3.08	9	5	ND	2	57	1	2	2	4	. 67	. 003	2	208	13.84	14	. 01	4	. 08	. 01	. 01	1	36	760
	858757351004	1	2	2	10	.1	248	22	100	2.43	11	5	ND	2	126	1	2	2	3	2.24	. 002	2	281	7.39	27	. 01	2	. 09	. 01	. 01	1	2	170
	858757351005	1	74	13	91	. 1	25	12	839	3.30	4	5	ND	2	157	1	2	2	63	2.86	. 081	6	42	1.68	85	. 01	2	1.38	. 03	. 12	1	1	580
	858757351006	1	104	6	49	.1	22	11	1028	3.54	5	5	ND	2	185	1	2	- 2	62	3.76	. 080	6	37	1.79	142	. 01	2	1.17	. 02	. 11	1	5	660
	8587573 51007	1	81	3	49	.4	27	13	969	3.56	74	5	ND	2	96	1	3	2	42	2.87	. 082	6	33	1.45	142	. 01	2	. 96	. 01	. 12	1	65	1000
	858757351008	1	80	1	46	.1	22	13	782	3.20	27	5	ND	1	135	1	2	3	54	2.80	. 087	6	33	1.07	201	. 01	2	1.03	. 04	. 12	1	3	900
	858757351009	1	76	4	43	.1	14	11	881	3.30	35	5	ND	2	128	1	2	3	43	3.61	. 076	6	26	1.42	70	. 01	2	. 90	. 01	.12	1	8	1200
	858757351010	1	56	6	49	. 2	41	14	882	3.50	25	5	ND	2	132	1	2	2	60	4.16	. 080	8	38	1.14	209	. 01	2	1.20	. 02	. 09	2	1	970
	STD C	18	58	38	125	7.0	68	27	1072	3.89	39	17	8	37	48	17	16	23	62	. 47	. 084	36	56	. 80	161	. 06	38	1.78	. 06	.13	14	-	-
	858757351011	1	64	2	44	. 1	20	12	808	3.19	30	5	ND	2	140	1	2	2	54	3.19	. 078	6	36	1.13	102	. 01	2	1.30	. 02	. 08	,	2	720
	858757351012	1	33	1	47	.1	26	12	859	3.11	16	5	ND	,	166	1	2	2	54	3.96	. 079	6	36	1.22	379	. 01	2	1.26	. 02	. 10	1	.	910
	858757351013	1	35	3	50	. 1	31	12	933	3.41	21	5	ND	1	93	1	2	3	43	3.88	. 080	6	32	1.14	176	. 01	2	1.33	. 01	. 12	1	18	1100
	859757351014	1	$5!$	5	54	. 2	29	11	837	3.07	55	5	ND	2	93	1	2	2	36	3.66	. 073	7	30	1.11	135	. 01	2	1.21	. 01	. 12	1	8	1000
	858757351015	1	70	1	59	. 3	23	12	882	3.48	109	5	ND	2	74	1	2	3	28	2.55	. 083	6	28	1.14	139	. 01	2	1.14	. 01	. 11	1	69	1180
	8587573 51016	2	7	6	12	. 7	8	2	79	. 38	20	5	NI	1	14	,	2	2	3	. 16	. 006	2	7	. 08	173	. 01	2	. 27	. 01	. 03	,	28	270
	858757351017	1	38	4	46	. 5	28	10	893	2.93	110	5	ND	1	120	1	2	4	23	4.18	. 071	5	15	1.46	134	. 01	2	. 76	. 01	. 19	2	90	1500
-	858757351018	1	34	8	48	. 3	29	12	955	3.15	32	5	ND	2	149	1	2	3	32	4.05	. 069	6	25	1.87	620	. 01	2	. 96	. 01	. 14	1	17	870
$\stackrel{1}{5}$	858757351019	1	35	3	50	.1	17	12	833	3.11	2	5	ND	1	104	1	2	3	47	3.21	. 077	6	35	1.65	193	. 01	2	1.22	. 02	. 12	,	2	670
I	858757351020	1	97	9	49	. 8	19	13	756	3.64	128	5	ND	2	110	1	2	2	31	2.68	. 079	4	27	1.72	76	. 01	1	1.10	. 01	.13	1	149	790
\pm	858757351021	1	41	6	52	. 2	24	11	845	3.26	84	5	ND	2	99	1	2	2	27	2.97	. 073	5	22	1.56	72	. 01	2	1.03	. 01	.14	,	33	1100
Σ	RE 8587573 51004	1	1	2	11	. 1	253	22	404	2.42	11	5	ND	2	125	1	2	2	3	2.22	.001	2	287	7.41	26	. 01	2	. 09	. 01	. 01	1	1	-
	858757351022	1	32	2	40	. 2	46	9	860	2.56	48	5	Nid	1	108.	1	2	3	16	3.83	. 065	4	14	1.12	213	. 01	2	. 61	. 01	. 17	1	17	990
	858757351023	1	31	3	39	.2	22	10	821	2.62	26	5	ND	2	127	1	2	3.	18	4.68	. 068	5	10	1.48	181	. 01	2	. 52	. 01	. 19	1	4	940
	858757351024	1	10	6	48	. 1	23	11	851	3.08	34	5	ND	1	129	1	2	2	32	3.53	. 076	5	23	1.80	259	. 01	2	1.01	. 01	. 16	1	20	1080
	858757351025	1	10	6	43	.1	24	10	863	2.81	31	5	ND	1	117	1	2	2	23	4.01	. 069	5	16	1.51	151	. 01	4	. 80	. 01	. 18	1	6	1300
	858757351026	1	148	3	40	. 3	158	15	854	2.85	56	5	ND	1	219	1	2	2	29	4.93	. 052	4	33	2.76	84	. 01	2	1.02	. 01	. 13	1	19	1100
	858757351027	1	81	6	32	.3	173	14	858	2.51	54	5	ND	1	183	1	2	4	16	6.35	. 054	3	40	2.07	139	. 01	2	. 58	. 01	. 16	1	22	1200
	858757351028	1	42	2	32	. 2	316	17	806	2.61	71	5	$N D$	1	250	1	6	3	15	5.53	. 045	2	139	2.60	203	. 01	2	. 58	. 01	. 13	1	4	870
	858757351029	2	7	2	11	.1	482	27	581	2.82	5	5	ND	1	73	1	2	2	8	. 81	. 001	2			11	. 01	3	. 11	. 01	. 01	1	1	710
	858757351030	2	5	2	8	. 1	492	31	638	2.89	6	5	ND	1	96	1	2	2	3	1.30	. 001	2	201	11.57	85	. 01	2	. 08	. 01	. 01	1	2	690
	858757351031	1	2	2	14	.1	772	36	761	2.78	19	5	ND	2	426	1	2	2	6	5.24	. 004	2	223	10.54	20	. 01	2	. 19	. 01	. 02	1	3	150
	858757351032	1	6	8	59	.1	49	9	1271	2.89	2	5	ND	2	143	1	2	2	21	3.14	. 094	10	15	1.91	154	. 01	2	1.08	. 01	. 22	1	2	720
	858757351033	1	31	9	67	.1	28	8	1091	2.72	10	5	ND	2	134	1	2	3	10	2.80	. 078	6	4	1.62	92	. 01	2	. 64	. 01	. 25	1	27	1300
	888757351034	1	24	11	93	. 2	27	7	1218	2.78	21	5	HD	2	151	1	2	4	14	3.81	.078	5	4	1.78	104	. 01	3	. 59	. 01	. 21	1	39	1340
	858757351035	1	30	112	98	. 3	29	8	1220	2.77	13	3	ND	2	139	1	2	3	13	3.76	. 078	8	3	1.82	63	. 01	2	. 64	. 01	. 23	1	6	1050
	858757351036	1	12	8	55	. 3	25	8	1052	2.81	46	5	ND	2	152	1	1	4	11	2.95	. 080	6	3	1.47	49	. 01	2	. 63	. 01	. 23	1	2	1300
	STD C/AU-R	19	58	40	133	7.3	69	28	1129	4.10	39	15	8	38	50	18	18	22	56	. 45	. 086	38	60	. 85	182	. 06	31	1.90	. 06	. 14	13	495	-

SELCO - A DIVISION OF EF FRQJECT-573 10113 FILE \# 87-5607

Fage 2

858757351037	3	18	8	52	. 7	104	15	715	3.24	138	5	ND	3	289	1	5	3	23	3.46	. 092	37	48	2.62	71	. 01	2	. 68	. 01	. 15	1	181	1200
859757351038	15	33	42	91	. 8	6.8	36	89\%	4.03	296	5	WD	1	257	1	13	2	49	3.11	. 046	7	311	7.18	23	. 01	2	2.89	. 01	. 05	1	23	510
858757351039	2	47	10	44	. 5	332	29	897	3.85	152	5	ND	1	374	1	4	2	44	6.00	. 048	9	116	5.36	82	. 01	2	. 70	. 01	. 14	1	210	980
858757351040	2	56	15	49	. 4	211	22	889	3.89	80	5	ND	1	290	1	4	2	43	4.71	. 064	11	94	4.41	107	. 01	2	. 87	. 01	. 17	1	16	1250
858757351041	1	12	9	55	. 1	31	7	843	2.28	12	5	ND	1	167	1	2	2	10	3.59	. 050	6	3	2.15	56	. 01	2	. 54	. 01	. 22	1	6	820
RE 858757351054	1	13	7	25	1.5	12	4	323	1.29	63	5	ND	1	19	1	2	2	8	. 23	. 038	7	8	. 17	198	. 01	6	. 42	. 01	. 12	2	71	640
858757351042	1	17	10	62	. 1	32	10	851	2.70	13	5	ND	1	152	1	,	2	10	3.21	. 049	7	3	1.93	53	. 01	2	. 48	. 01	. 21	1	7	740
858757351043	1	13	9	56	.3	26	10	691	2.25	17	5	ND	1	136	1	2	2	11	2.76	. 050	6	2	1.54	41	. 01	2	. 57	. 02	. 21	1	1	640
8567573 51044	1	6	2	55	. 1	15	11	735	2.93	27	.	NO	1	97	1	2	2	38	3.42	. 045	7	38	1.45	98	. 01	2	1.73	. 03	. 10	1	1	440
858757351045	1	25	7	53	. 3	5	9	709	3.10	7	5	ND	\cdots	61	1	2	3	22	2.23	. 063	12	4	. 78	129	. 01	2	1.19	. 02	. 13	2	1	600
858757351046	1	1	7	40	. 1	6	8	726	2.64	38	5	ND	1	93	1	3	2	22	3.62	. 051	9	8	1.17	45	. 01	3	1.26	. 02	. 11	1	1	580
858757351047	1	9	6	52	. 1	8	8	759	3.06	183		HD	1	46	1	2	2	17	1.74	. 059	10	4	. 96	114	. 01	2	1.28	. 02	. 18	1	5	680
858757351048	1	27	7	64	. 2	28	11	1080	3.57	2	5	ND	1	142	1	2	2	42	4.54	. 088	8	35	1.41	91	. 01	3	. 95	. 03	. 14	1	1	550
858757351049	1	4	1	52	. 1	3	7	1141	2.72	2	5	ND	1	117	1	2	3	13	5.19	. 053	8	1	1.34	65	. 01	2	. 54	. 02	. 18	1	1	470
858757351050	1	11	4	49	. 1	6	9	978	2.92	19	5	ND	1	109	1	2	2	19	4.76	. 068	9	5	. 51	181	. 01	2	. 63	. 02	. 18	1	6	690
8587573 51051	1	59	8	46	. 2	9	10	969	3.10	5	5	Nid	1	133	1	2	2	16	5.92	. 088	3	7	1.15	232	. 01	4	. 49	. 02	. 21	2	1	740
858757351052	2	20	8	44	. 1	17	12	1050	3.03	48	5	ND	1	107	1	2	2	14	3.97	. 103	4	10	. 17	167	. 01	5	. 57	. 01	. 19	4	8	1100
858757351053	2	44	11	45	. 4	40	10	996	2.65	77	5	HD	1	62	1	3	2	15	1.69	. 087	4	12	. 13	114	. 01	3	. 52	. 01	. 22	8	30	990
858757351054	1	13	7	25	1.4	12	4	323	1.30	63	5	ND	1	19	1	2	2	8	. 22	. 036	7	7	. 17	193	. 01	2	. 42	. 01	. 12	2	64	620
858757351055	1	6	5	56	. 1	15	10	878	2.74	27	5	ND	1	57	,	2	2	20	2.69	. 045	5	20	. 89	214	. 01	2	1.07	. 02	. 14	1	3	520
S70 C	19	61	40	128	7.4	68	29	1040	4.00	42	18	1	37	52	18	16	18	58	. 46	. 089	40	59	. 85	173	. 07	32	1.91	. 06	. 14	12	-	-
858757351056	2	7	5	55	. 1	17	,	613	2.84	72	5	ND	1	26	,	2	2	17	. 66	. 060	10	6	. 78	109	. 01	2	1.28	. 02	. 14	2	6	800
858757351057	1	48	8	47	. 3	11	9	691	2.97	42	5	HD	1	34	1	2	2	19	. 92	. 057	10		. 77	117	. 01	3	1.36	. 01	. 15		72	820
858757351058	2	6	2	73	. 1	25	9	809	2.93	28	5	KD	1	44	,	4	2	16	1.53	. 057	11	4	. 77	117	. 01	2	1.34	. 01	. 15	1	4	730
858757351059	1	6	6	64	. 1	8	7	809	2.71	8	5	ND	1	105	1	2	2	18	1.15	. 057	11	3	. 85	115	. 01	3	1.38	. 01	. 18	1	3	620
${ }^{8587573} 51060$	1	6	0	61	. 1	10	7	770	2,89	25	5	N1	1	51	1	2	2	15	1.72	. 064	11	1	. 73	130	. 01	2	1.20	. 01	. 17	1	3	760
858757351061	2	14	10	55	:2	15	14	1251	3.00	22	5	WD	1	80	1	2	2	20	4.47	. 090	6	12	. 28	239	. 01	2	. 66	. 01	. 17	,	2	1000
858757351062	2	40	12	50	.1	14	11	1008	2.91	36	5	ND	1	86	1	2	2	23	3.78	. 099	6	14	. 18	170	. 01		. 57	. 01	. 20	2	5	1280
858757351063	1	28	6	49	. 2	12	11	888	2.51	34	5	ND	1	122	1	2	2	25	4.03	. 088	6	14	1.07	112	. 01	2	. 75	. 01	. 21	1	,	1240
858757351064	1	31	10	43	.3	15	12	750	2.61	6	5	ND	1	135	1	2	2	38	3.84	. 086		21	1.61	484	. 01	2	1.08	. 01	. 21	1		1090
858757351065	1	28	10	63	. 2	9	13	1080	3.74	2	5	Na	1	169	1	2	4	54	4.54	. 097	7	22	1.43	477	. 01	5	1.11	. 03	. 12	1	6	600
STD C/AU-8	20.	61	41	130	7.7	70	30	1091	4.18	45	22	7	39	53	19	18	19	61	. 46	. 093	40	63	. 88	181	. 07	35	1.94	. 07	. 14	12	515	

APPENDIX IX

Statement of Costs

STATEMENT OF COSTS

1) LABOUR
```
R. Wong, geologist: 15 days @ $200 $ 3,000
        (June 20; Sept. 13,17,18; Nov.. 3-13, 1987)
W. Bleaney, assistant geologist: l day @ $110 110
        (June 20, 1987)
Alan Inglis, assistant geologist: 3 days @ $100 300
        (Sept. 13,17,18, 1987)
W. Piotrowski, technician: 3 days @ $80 240
        (Nov. 7-8, 1987)
S. Hoffman, geochemist: 2 days @ $300
        (Nov. 7-8, 1987)
```

2) ACCOMMODATION
23 man-days @ $\$ 25^{`} \$ 575$
3) VEHICLE
Four-wheel drive: 15 days @ \$36 \$ 540
4) GEOCHEMICAL ANALYSIS

5) DIAMOND DRILLING
159.4 m NQ drilling
$\$ 13,160$
6) ROAD AND SITE PREPARATION COSTS
$\$ 2,500$
7) FUEL, SUPPLIES
$\$ 300$
8) DRAFTING/TYPING
$\$ \quad 350$
TOTAL \$24,421
=======

APPENDIX X

Statement of Qualifications

R.H. Wong

I, Russell H. Wong of $\# 700-890$ West Mender Street, in Vancouver, in the Province of British Columbia, do hereby state:

1. That I am a graduate of the University of British Columbia, Vancouver, B.C., where I obtained a B. Sc. in Geology in 1975.
2. That I have been active in mineral exploration since 1973.
3. That I am a member, in good standing, of the Geological Association of Canada and Association of Exploration Geochemists.
4. That I have practised my profession continuously as a staff geologist for BP Resources Canada Limited since 1979.
5. That I have no interest in the properties or securities of Dentonia Resources Ltd. or Kettle River Resources Ltd. nor do I expect to receive any.
6. That I supervised the programme of work described in this report.

Russell H. Wong Project Geologist

March, 1988
Vancouver, B.C.

STATEMENT OF QUALIFICATIONS

S.J. Hoffman

BSc 1969 - McGill University (Hons., Geology and Chemistry)
MSc 1972 - The University of British Columbia (Geochemistry)
PhD 1976 - The University of British Columbia (Geochemistry)
List of Publications (to December 1987)
2 - Theses (unpublished)
13 - Scientific papers in referred journals (3 in the last 3 years)

1 - Published Geochemical Manual (report writing)
1 - Unpublished Manual - Organization of a Geochemical Symposium

1 - Book (Reviews in Economic Geology - Volume 3)
3 - Scientific papers in unreferred journals (2 in press)
1 - Scientific paper in preparation

List of Memberships

1. Member Geological Association of Canada, since 1967; Fellow since 1986
2. Canadian Institute of Mining and Metallurgy, since 1973
3. Association of Exploration Geochemists, since 1973
4. American Society of Agronomy, since 1973
5. Geochemical Society, since 1983
6. International Association of Geochemistry and Cosmochemistry, since 1986

Other Organizations

1. Association of Exploration Geochemists council member of symposium committee chairman, 1980-1986, president (19871988)
2. Lecturer, B.C. Department of Mines Prospecting Course, (1977-1987), B.C. \& Yukon Chamber of Mines (1987), Northwest Mining Association (1979, 1985), Brokers Course (1984, 1985)
3. Chairman, GOLD-81 and GEOEXPO/86 Symposia

