LOG NO: 0316	RD.
ACTION:	
FILE NO:	

FILMED	
Construction of the second	•

GEOLOGICAL AND DRILLING REPORT ON THE ARCHER I & 11 AND TATTERS II MINERAL CLAIMS

VICTORIA MINING DIVISION

N.T.S. : 92 C/15 AND 92 C/16

48° 52' NORTH, 124° 30' WEST

OWNER & OPERATOR : NUSPAR RESOURCES LTD.

FILMED

AUTHOR : PETER FISCHL, B. Sc.

FEBRUARY 1988

GEOLOGICAL BRANCH ASSESSMENT REPORT

CHE CHENRY

TABLE OF CONTENTS

<u>Page(s)</u>

Introduction.4Claim Status.4Location.4Access.4Previous Work5Physiography & Drainage5,6Regional Geology.6Claim Geology7-15Structural Geology.15,16Alteration and Secondary Mineralization16,17Drilling Summary.17-19Assaying & Geochemistry of Drill Core20,21Conclusions & Recommendations22References.23Statement of Author's Qualifications.24Cost Statement - Archer Claim Group27					
Appendix 1 : Drill Core Logs Appendix 2 : Assay Certificates of Drill Core and Cuttings					
Figures :					
<pre>Figure 1 : General Location Map Figure 2 : Claim Location Map Figure 3 : Generalized Drill Core Logs Figure 4 : Core Log Correlated with</pre>					
Gold Assays - DDH-87-3 Figure 6 : Core Log Correlated with					
Gold Assays - DDH-87-5 Figure 7 : Core Log Correlated with Silver Assays - DDH-87-1					
Figure 8 : Map of Road Reclamation Figure 9 : 1:5000 Scale Map of Trench Locations on the ARCHER I and II Claims					
Figure 10: 1:5000 Scale Geological Map - Granite Creek (In pocket at back)					
Figure 11: 1:5000 Scale Geological Map - Raymond Creek (In pocket at back)					
Figures 12 East & 12 West: 1:1000 Scale Maps of Trench Locations on the ARCHER I claim (In pocket at back)					

2

TABLE OF CONTENTS (cont.)

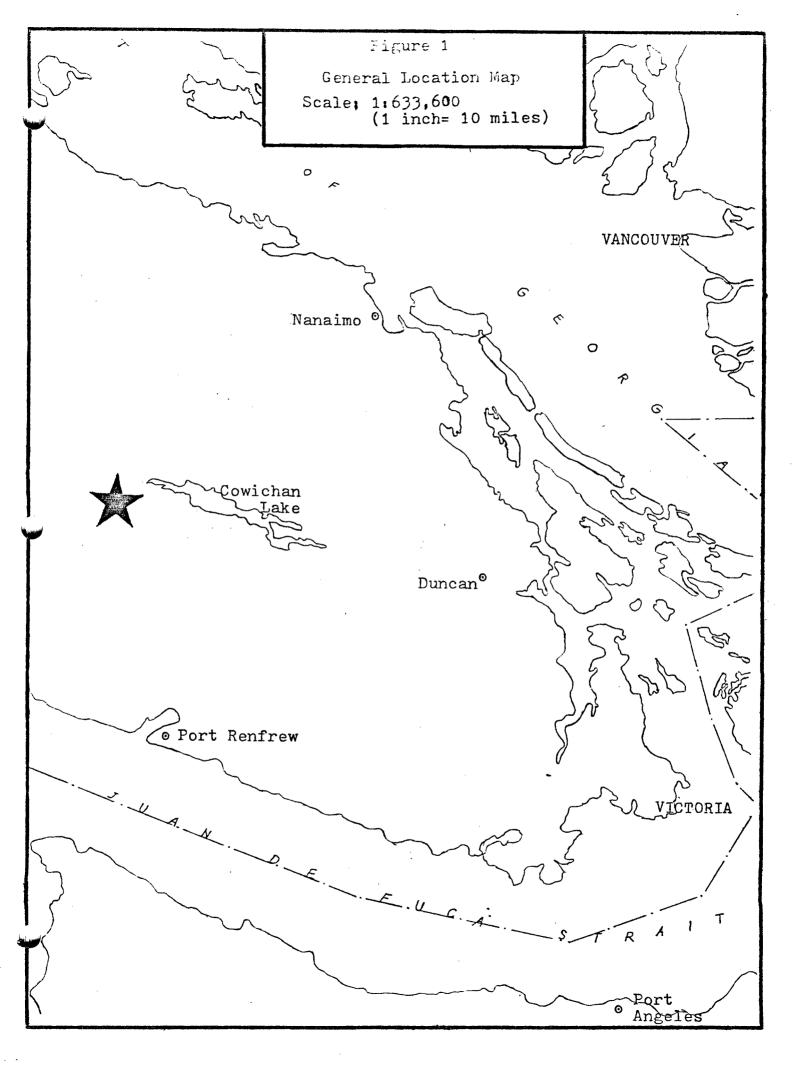
Tables;

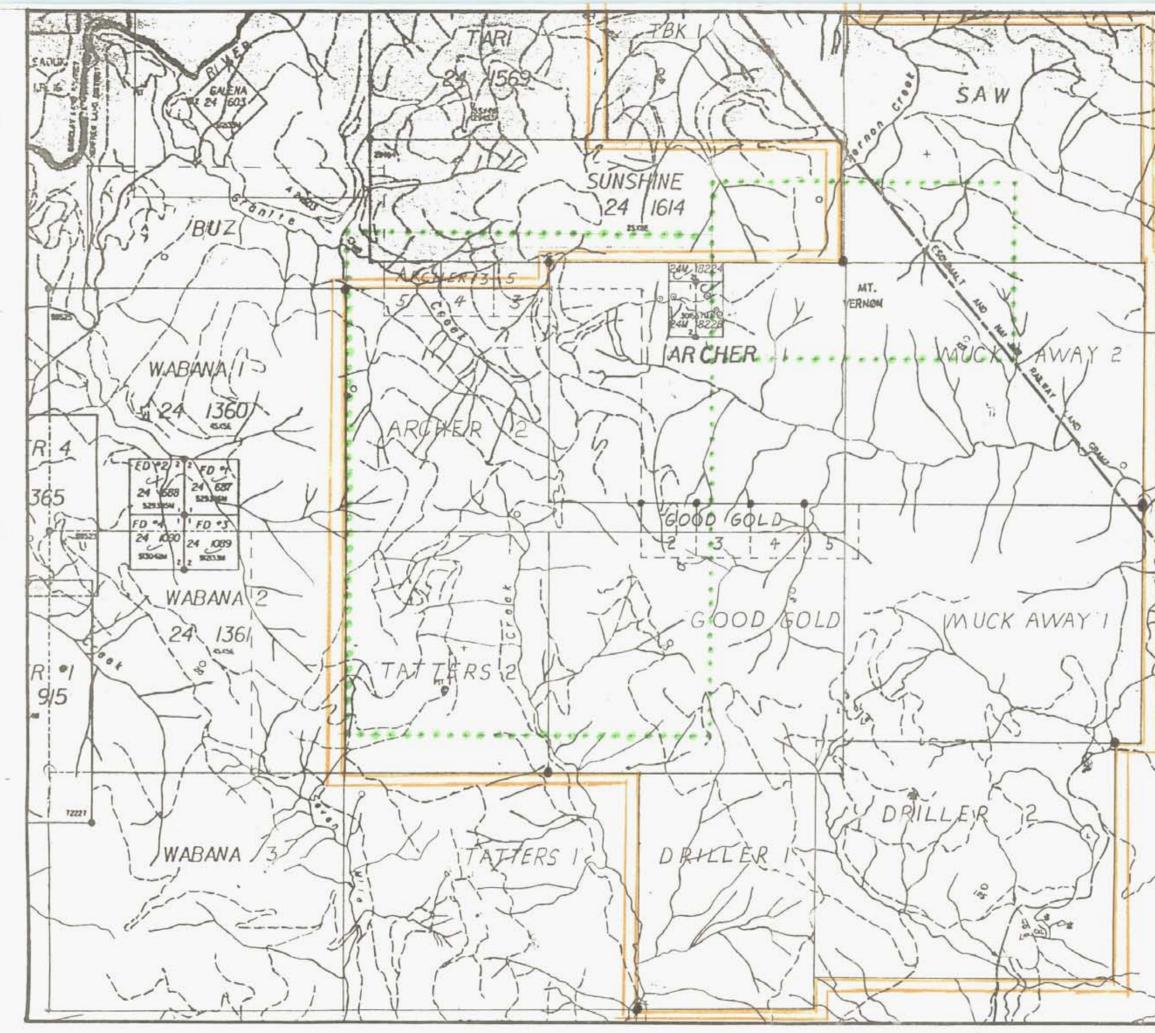
Table 1 : Drill Core & Cuttings Sample Intervals Table 2 : Summary of Assays for Trace Elements & Precious Metals for Diamond Drill Core and Drill Cuttings From Holes 87-1, 2, 3, 4 and 5. З

INTRODUCTION

During winter, spring and fall of 1987 geological mapping, trenching and diamond drilling was carried out by Nuspar Resources Ltd. of Victoria, B.C. on the ARCHER I and II and TATTERS II mineral claims (all 20 units each) in the region between Nitinat and Cowichan Lakes on southern Vancouver Island. 1:5000 scale geological mapping was conducted along logging roads. About 10.7 sq km were mapped. In addition, five shallow angled EX sized drill holes were drilled on the ARCHER I claim for a total of 113 metres (372 feet). The assayed drill core showed anomalous gold and silver values.

CLAIM STATUS


The ARCHER I and II, TATTERS II and the adjoining unmapped claims to the east, north and south have been arranged into two claim groups; the Archer claim group and the Good Gold claim group. The Archer claim group consists of 5 twenty unit claims (ARCHER I, MUCKAWAY I & II, SAW and T.B.K.) for a total of 100 units. The Good Gold claim group is made up of 4 twenty unit claims (ARCHER II, TATTERS II, GOOD GOLD and DRILLER II), 1 twelve unit claim (DRILLER I) and 4 two post claims (GOOD GOLD II,III,IV and V) for a total of 96 units. All claims comprising these two groups are held fully and in good standing by Nuspar Resources Ltd.


LOCATION

The two claim groups are located between the Nitinat and Caycuse Rivers, 7.5 kilometres southwest of the west end of Cowichan Lake. The two groups of claims are centered at a latitude of 48 52' North and a longitude of 124 30' West (N.T.S.: 92C/15 and 92C/16)

ACCESS

These mineral claims can be accessed by Highway 18, through the communities of Duncan, Lake Cowichan and Youbou, and then by the MacMillan Bloedel main haul road along the Nitinat River or by the B.C. Forest Product's main haul road up Nixon Creek and along the Caycuse River. Well maintained logging roads branch off these haul roads and extend to all parts of the property.

€

10

6

-

and the second · ... 31 4 Figure 2: Claim Location Map Legend: Property boundary. 0 Drill site. Haul roads. ~~~ Area covered on 1:5000 scale map. (Fig. 10 & 11) N Scale: 1:31680 Co Youbou VER MT VERNON Loxi 172 TOWNSCITUMIN Honey Ba Scale; 1:300,000

PREVIOUS WORK

The area between Nitinat and Cowichan Lakes has been examined in the past for skarn and porphyry copper deposits. Exploration was largely carried out during the 1960's and 1970's, when higher copper and molybdenum prices prevailed.

In 1964 Avallin Mines Ltd. conducted a program of geological mapping (at 1:6000 scale), soil sampling, trenching and drilling on what are now the WABANA I & II, BUZ and ARCHER II, III, IV and V mineral claims. Six zones of magnetite - chalcopyrite skarn mineralization were defined, 3 of which lie on the ARCHER II claim.

In 1969 Quintana Minerals Corporation conducted regional geological mapping and soil sampling of a reconnaissance nature between the Nitinat and Caycuse Rivers. The soil samples were analyzed for copper and molybdenum. The area studied included most of the Archer and Good Gold claim groups. The same skarn zones were examined again, plus some pyritized rocks on the northern part of the ARCHER II claim, in addition to a few other mineral deposits on the two claim groups.

In 1976, Fox Geological Consultants mapped and sampled some old pits on a skarn zone on the east side of Tenas Creek, just west of the ARCHER II mineral claim. Again in 1983 G.A. Noel and Associates examined this same skarn zone and confirmed the presence of extensive copper mineralization.

PHYSIOGRAPHY & DRAINAGE

The Archer and Good Gold claim groups lie in mountainous, forested terrain characteristic of the Vancouver Island Ranges. Elevations vary from 1000 metres above seal level on Mount Vernon, down to 200 metres in the Nitinat-Cowichan Valley on the T.B.K. claim. Elevations of the major stream valleys on the claims range from 250 to 500 metres. Mountain tops and ridge crests vary from 800 to 1000 metres in elevation. The topography is generally rounded with moderately to steeply dipping slopes. slopes are dissected by numerous creeks. The steeper The physiography is characteristic of an ancient rugged glacial terrain, as exhibited for example by an old cirque on the northwest side of Mount Vernon, whose mountain peaks and ridge crests have been rounded and whose slopes have been incised as a result of the intense precipitation that characterizes todays west coast climate. This once heavily forested terrain has now been Logging operations are currently being logged. extensively conducted in the area by MacMillan Bloedel Ltd. and B.C. Forest Rock exposures are largely limited to road cuts Products Ltd. and a few of the steeper slopes and creeks.

PHYSIOGRAPHY & DRAINAGE (cont.)

Seven major creeks provide drainage for the area. The northern and northwestern part of the area is drained by Granite flow and Vernon Creeks. which northwestward into the southwestward flowing Nitinat River. The southern claims are drained by Wilson and Camp Creeks, which flow south into the westward flowing Cayacuse River. To the east, Nixon Creek flows to the northeast into Cowichan Lake and drains the eastern claims by way of its east flowing tributaries, Lacey and Raymond Creeks.

REGIONAL GEOLOGY

The area between Nitinat and Cowichan Lakes in underlain by formations of the Vancouver Group (upper Triassic) and Bonanza Group (lower Jurassic). Thick ocean floor basalts and andesites of the Karmutsen Formation make up most of the Vancouver Group. These volcanics are overlain by the Quatsino Limestone, which is in turn overlain by upper Triassic black argillites of the Parsons Bay Formation. The Bonanza Group in this area is made up of an undifferentiated group of formations that contain argillites, cherts, cherty tuffs, breccias (volcanic and sedimentary), sandstones and basaltic to rhyolitic flows. This sequence is characteristic of an island arc type setting.

These formations have been broadly to tightly folded by a phase of middle to late Mesozoic deformation. Fold axes generally trend northwest-southeast. These rocks have also undergone extensive faulting. They have been intruded by granodioritic dykes originating from the Island Intrusions (middle Jurassic) to the north and by andesitic Tertiary aged dykes.

CLAIM GEOLOGY

The claim geology is based on mapping of roadcuts on the ARCHER I and II, and TATTERS II mineral claims. Mapping was conducted at a scale of 1:5000, as shown on Figures 10 and 11. A number of different formations of the Vancouver Group and Bonanza Group were mapped on the three claims. The mapped formations are described as follows:

KARMUTSEN FORMATION (UPPER TRIASSIC)

This unit consists largely of andesitic to basaltic flows that erupted during an episode of ocean floor rifting. Andesite is the dominant lithology here. On a fresh surface it is dark grey to dark greenish grey to dark brown in colour. It is almost always amygdaloidal. The amygdals vary in size from one to five millimetres in diameter. They usually consist of some sort of black chloritic infilling. Sparry calcite amygdals occur less This unit is commonly feldspar porphyritic. frequently. The feldspars are typically elongate prisms that vary from 0.5 to one millimetre wide and two to four millimetres long. These phenocrysts are frequently clumped together (glomeroporphyritic) into either irregular masses or as radiating groups displaying "starburst porphyry" patterns.

Contained within the mafic volcanics are thin beds of silicious tuff. This cherty rock is medium to light grey to greenish grey, weathering to white. Tiny black mafic phenocrysts are sometimes visible. In a few instances it shows weak bedding. These silicious beds frequently outcrop in the vicinity of overlying units. They are commonly found outcropping near Quatsino Limestone and Parsons Bay Formation.

The mafic flows and silicious beds outcrop only on the ARCHER II claim along roadcuts on Granite Creek 3 and 5.

QUATSINO LIMESTONE (UPPER TRIASSIC)

The Quatsino Limestone was deposited on a shallow marine platform consisting of Karmutsen volcanics. The Quatsino Limestone is made up of light to medium grey to bluish -grey micritic limestone. The only fossils observed in this unit consist of some thin bivalve (?) shells found in a shallow dipping, 1 to 1.5 metre thick limestone bed that is overlain and underlain by Karmutsen flows. This is exposed in a roadside pit on Granite Creek Main, 110 metres northwest of the conjunction with Granite Creek 3.

QUATSINO LIMESTONE (UPPER TRIASSIC) (cont.)

The fact that this limestone is interbedded with Karmutsen lavas indicates that vulcanism must have continued during the deposition of the limestone. Limestone beds interbedded with Karmutsen volcanics were also observed previously towards the west in the vicinity of Tenas Creek on the WABANA I mineral claim. Limestone outcrops were observed only on the ARCHER 2 claim along Granite Creek Main, G.C. 3, G.C. 5, 5C and 5F. The outcrops encountered along G.C.3, 5C and 5F were quite unexpected. Faulting and folding must play a significant role in the distribution of these outcrops.

PARSONS BAY FORMATION (UPPER TRIASSIC)

Outcrops of Parson Bay Formation were found to frequently occur near Quatsino Limestone, yet Parsons Bay Formation was never observed to directly overlie and contact the Quatsino As with the Quatsino Limestone, outcrops of Parsons Limestone. Bay Formation were found in roadcut outcrops along Granite Creek Main, G.C. 3 and G.C. 5C and 5F on the ARCHER II claim. Faulting and folding must also play an important role in the distribution of these outcrops. Parsons Bay Formation consists dominantly of calcareous to non-calcareous black to dark grey well bedded argillites. These are frequently pyritic. In a few instances these argillites are interbedded with some dark grey to black. slightly bedded, micritic limestone. These rocks are sometimes sheared up and frequently folded in outcrops. Despite this, almost all outcrops were found to show on bedded surfaces fossil casts of <u>Halobia</u>, a late Triassic bivalve.

BONANZA GROUP (LOWER JURASSIC)

The Bonanza Group consists of a complex group of undifferentiated formations characteristic of an island arc setting. A number of different lithologies have been mapped in this sequence of rocks. These include tuffs, breccias, dacitic to basaltic flows, cherts, siltstone, argillite and sandstone. Fossils were found in the sedimentary units. Dr. Paul Smith of the University of British Columbia assisted in their identification.

Two basic assemblages have been recognized in the Bonanza Group. On the north side of Raymond and Granite Creeks on the ARCHER I and II claims, the area is underlain by a simple sequence of dacite/silicious andesite, chert, sandstone siltstone, argillite and basalt.

BONANZA GROUP (LOWER JURASSIC) (cont.)

To the south of Granite Creek and west of Wilson Creek on the ARCHER II and TATTERS II claims, the Bonanza Group consists of a complex series of interbedded cherty tuffs, hematitic tuff, other mafic to intermediate tuffs, volcanic breccias, sandstone, siltstone, mudstone/argillite and basaltic to andesitic flows. The only rocks that may correlate between these to sequences are the clastic sediments.

The lithologies that make up these assemblages are described in detail as follows:

BASALTIC FLOWS:

Basaltic flows occur quite infrequently in the Bonanza Group. A few aphanitic dark brown to brownish green flows were observed along Granite Creek 5 and 5F on the ARCHER II claim. These are sometimes vesicular/amygdaloidal. One massive, slightly feldspar porphyritic, dark green basaltic flow was observed to overlie gently dipping sediments on the northeast corner of ARCHER I on Granite Creek 14C.

ANDESITIC FLOWS:

These rocks are quite ubiquitous on the ARCHER II and TATTERS II claims. They are characterized by numerous tiny feldspar phenocrysts no more than a millimetre long and a few hornblende phenocrysts up to four millimetres long in a dark greenish-grey aphanitic matrix. These flows are sometimes vesicular.

DACITE/SILICIOUS ANDESITE:

This felsic unit is found exclusively to the north of Raymond and Granite Creeks on the ARCHER I and II. Outcrops of this unit are found along most roads in this area, including Granite Creek Main, G.C. 9, G.C. 14 and 14A. The silicious up of numerous hornblende phenocrysts, made andesite is frequently up to three millimetres long and milky white feldspar phenocrysts up to one millimetre long in a light grey to white silicious aphanitic matrix. In places the hornblende phenocrysts leaving only the silicious matrix and the feldspar are lacking, phenocrysts. The rock would be referred to as a dacite in this These rocks are extensively pyritized, with pyrite case. disseminated throughout the rock and along fractures.

BASAL BRECCIA UNIT & OTHER BRECCIAS:

Volcanic breccias are quite common in the Bonanza Group on the ARCHER II and TATTERS II claims. Most breccia outcrops could be assigned to the Basal Breccia unit. This unit outcrops along Granite Creek Main, G.C. 3, G.C. 5, 5C AND 5F on the ARCHER II claim. basal breccia unit is a pyroclastic unit that The overlies Vancouver Group formations. Only in a few instances it is observed in contact, directly overlying Parsons Bay Formation and Quatsino Limestone, yet it frequently outcrops in this vicinity of these two formations and also Karmutsen Formation. This unit must therefore form the base of the Bonanza Group in this area, hence the term "Basal Breccia". The lithology of this unit consists of angular medium to dark green and dark grey to black mafic rock clasts, angular to rounded light to dark grey micritic limestone clasts plus some pale green, angular cherty clasts, rare black argillite clasts and rare light grey to white, angular dacitic clasts floating in a dark green to dark greenish grey mafic tuffaceous matrix. The clasts vary in size from 0.5 centimetres to 20 centimetres in diameter. Since most clasts are less than 64 millimetres in diameter the proper term for this lithology is lapilli tuff. Within this unit are a few beds varying from less than a metre thick up to several metres thick that are extremely rich in limestone clasts. Dissolution of limestone clasts on older exposed surfaces gives the rock a superficial vuggy to vesicular appearance. The mafic lithic and the mafic tuffaceous matrix are likely reworked clasts Karmutsen Formation. The pale green cherty fragments may be the silicious tuff also of Karmutsen Formation. The limestone clasts are obviously Quatsino Limestone. The black argillite clasts are probably Parsons Bay Formation and the dacitic clasts are likely Bonanza Group.

Other breccias were observed higher up in the Bonanza Group stratigraphy. Most were isolated occurrences. However, one unit was found to outcrop along Granite Creek 5, 5F and 5G on the boundary between the ARCHER II and TATTERS II claims that varied from a hematitic tuff to a lapilli tuff with the hematitic tuff as a matrix. The clasts consisted of brownish-red and medium grey aphanitic volcanics plus some dark green to dark greenish grey feldspar-hornblende porphyritic andesite. The hematitic matrix commonly shows numerous tiny feldspar phenocrysts less than a millimetre in diameter. The clasts range in size from a centimetre to 10 centimetres in diameter. Small isolated outcrops of other breccias were also mapped, including one outcrop near the end of Granite Creek 5E that consisted of numerous angular light grey felsic clasts from a few millimetres to six centimetres in diameter in a dark grey silicious matrix.

10

TUFFS:

Numerous tuff beds were mapped on the ARCHER II and TATTERS II claims. Three basic types of tuff are recognized.

The first is hematitic tuff. Two beds of hematitic tuff were mapped. One of these grades into a lapilli tuff in places, and was described earlier under breccias. This hematitic tuff is characterized by numerous tiny feldspar phenocrysts. To the south of this bed a second hematitic unit was mapped along a series of switchbacks on Granite Creek 5 on the TATTERS II claim. This rock consisted of massive dark grey to dark purplish-grey hematitic tuff.

Cherty tuffs are another distinct type of tuff. These are found throughout the local stratigraphy of the Bonanza Group. They are found overlying Parsons Bay Formation on Granite Creek 5F on the ARCHER II claim. These tuffs are pale green on a fresh surface and bleach white on weathering. They are sometimes feldspar porphyritic. Good bedding is usually displayed in these tuff beds. They are tightly folded in places. The only cherty tuff bed that could be traced for a reasonable distance outcrops near the end of Granite Creek 5G and can be traced down the hill side for 250 metres, where it outcrops at the end of Granite Creek 5F. This bed strikes almost north-south and dips steeply to the east.

Besides hematitic and cherty tuffs, many other tuff beds were mapped. These consisted of intermediate to mafic medium grey to dark green to dark brown tuffs that showed bedding in a few instances. These are designated as "Other Tuffs" on the geologic maps. Their intermediate to mafic compositions are likely a result of reworked material from Karmutsen basalts and andesites. Mafic brown weathering tuff is frequently found with the basal breccia unit. This rock is soft, yet brittle, resulting in angular, fractured surfaces in outcrop.

CHERTY SILTITE:

This lithology was observed to outcrop in only one locality on the ARCHER II claim. It outcrops on Granite Creek Main near the western boundary of ARCHER II. It was previously observed occurring in the base of Bonanza Group rocks just west of Tenas Creek on the WABANA I mineral claim. On the ARCHER II claim it outcrops in the vicinity of Quatsino Limestone and Parsons Bay its position in the Formation, confirming basal local This cherty siltite is made stratigraphy of the Bonanza Group. up of interlaminated light to medium green, yellowish-tan and to black laminae. The brown to black laminae are dark brown usually lenticular, and don't get up to more than a few The green and yellow-tan laminae range in thick. millimetres thickness from several millimetres to a centimetre.

CHERTY SILTITE: (cont.)

This rock likely occurs elsewhere on Vancouver Island in the Bonanza Group. G.E. Eastwood of The B.C. Ministry of Energy, Mines & Petroleum Resources observed "Thin beds of chert like siltite and silty argillite..." in the base of the Bonanza Group in the vicinity of Campbell River, as noted in Paper 1984-3: "Geology of the Quinsam Lake area, Vancouver Island."

CHERT:

Massive to well bedded cherts were observed outcropping along roadcuts on the northern parts of the ARCHER I and II claims, on the ARCHER III and IV two-post claims and on the SUNSHINE claim. These outcrops were mapped along the following roads: Granite Creek Main, G.C. 4, G.C. 9, and G.C. 14. They consist of white to pale green weathering, medium grey to black and medium to dark green to greenish grey chert that frequently contains disseminated pyrite. This chert is quite well fractured resulting in rough, angular outcrops. The chert is frequently intruded by Tertiary andesitic dykes along Granite Creek 14 on the ARCHER I claim.

ARGILLITE/MUDSTONE, SILTSTONE & SANDSTONE:

These lithologies are found in two main sediment beds. One of these outcrops just west of Mt. Vernon on the northeast corner of the ARCHER I claim along G.C. 14, 14B and 14C, while the second outcrops along several switchbacks of Granite Creek 5 on the TATTERS II claim. These two sediment beds are likely the same unit.

The Mt. Vernon occurrence consists of a massive to faintly bedded greywacke sandstone outcropping along Granite Creek 14 for 140 metres in fault contact to the northeast and southwest with thinly bedded sandstone, siltstone and argillite that outcrop The greywacke is typically a fine to along G.C. 14B and 14C. medium grained, well sorted sandstone, yet is commonly contains some rounded to angular rock clasts one centimetre to 10 This sandstone is dark grey to dark centimetres in diameter. greenish grey on a fresh surface and weathers to a buff to light greenish orangey creamy white colour. One well sorted medium grained greywacke bed contains numerous bivalve fossils. Casts of broken shell debris of Trigonid bivalves are common. These appear to be of the Myophorella genera (Pliensbachian to Late In addition, a few fragments of thick coarsely Cretaceous). radially ribbed to fine radially ribbed bivalves of unknown affinities are preserved. Bivalve fragments vary from one to four centimetres in diameter.

ARGILLITE/MUDSTONE, SILTSTONE & SANDSTONE (cont.)

One intact two centimetre diameter concentrically ribbed bivalve shell was found preserved as a carbon impression. The carbon was likely derived from an organic overgrowth that covered In addition to bivalve shells, some of the shell. the surface small burrows were also noticed in this sandstone bed. They They are round in cross appear to lie in the bedding plane. Most vary from one to two millimetres in diameter. One section. got up to five millimetres in diameter.

The well bedded sediments in fault contact on either side of the greywacke consist of thinly interbedded light to medium grey, fine to coarse grained sandstone and dark grey to dark brown siltstone and argillite. The argillite is pyritic in places. Individual beds vary from 10 centimetres to several metres in The sandstone beds tend to be thicker than the thickness. siltstone and argillite beds. These sediments are overlain by a massive basaltic flow exposed along Granite Creek 14C that is at least 10 metres thick. The only fossils found in these sediments were a few carbonized plant fragments (twigs and branches) in a well bedded fine to medium grained sandstone outcropping on G.C. 14B, 15 metres east of the conjunction with G.C. 14.

The second major sedimentary outcrop was found along several switchbacks of Granite Creek 5 on the TATTERS II claim. Lithologies vary here from a dark grey to dark greenish, massive faintly laminated sandstone, light green well laminated to siltstone and massive dark brown fine grained argillaceous Several thin beds of pebble conglomerate sandstone to mudstone. are also present. Bivalve fossils were found throughout this Some beds of the argillaceous sandstone/mudstone were unit. found to be quite rich in shells, which are preserved as casts in Most of these are small, intact Trigonid bivalve the sediments. shells, which vary in size from five to 15 millimetres in They display coarse concentric ribbing. These do not diameter. appear to be of the Myophorella genera. Also, one six centimetre diameter coarsely ribbed bivalve shell of unknown affinity was found among the small trigonids. A few burrows up to two millimetres in diameter, similar to those by Mt. Vernon were also noticed.

A few other outcrops of mudstone and argillite were observed A roadcut along a spur of Granite Creek 5 that in roadcuts. follows the north-south trending ridge crest on TATTERS II exposed a highly indurated, hard, massive medium to dark brown ammonite bearing mudstone just 30 metres northeast of where the fossiliferous sedimentary unit previously described major This occurs as a 0.5 metre thick pod of mudstone outcrops. and overlain by volcanic breccia. This mudstone underlain ammonites up to two centimetres in contains casts of small They could not be easily identified because of their diameter. small size.

ARGILLITE/MUDSTONE, SILTSTONE & SANDSTONE: (cont.)

However, they were tentatively identified as <u>Paltechioceras</u> genera (Upper Sinemurian) of the Echioceratid Ammonite Group. Thin beds of dark green to dark grey argillite interbedded with light green slightly calcareous cherty tuff were also noted outcropping along G.C. 3 on the western boundary of the ARCHER II claim. In addition, some dark brown to dark green poorly bedded argillites were mapped along G.C. Main on the northwest corner of ARCHER II. These are believed to be associated with the cherty siltite at the base of the Bonanza Group.

IGNEOUS INTRUSIVES

Two types of intrusives are found on the ARCHER I and II, and TATTERS II claims. The first consists of granitic to granodioritic dykes that are derived from the middle Jurrasic Island Intrusions to the north. These dykes are found throughout the three claims but are quite infrequent in their occurrences.

The second type of intrusive consists of Tertiary aged andesitic dykes and stocks. The andesitic dykes are quite numerous, especially on the ARCHER I claim. They consist of feldspar phenocrysts one to three millimetres long with or without hornblende phenocrysts up to three millimetres long in a medium to dark greenish grey aphanitic matrix. They are occasionally tectonically brecciated, where angular porphyritic andesite clasts are contained in a light grey silicious matrix. Their Tertiary age is suggested by the fact that feldspar porphyritic andesitic dykes are found intruding Late Cretaceous Comox Formation conglomerate west of Tenas Creek on the WABANA I claim.

These dykes may be derived from several andesitic stocks. Extensive outcrops o feldspar porphyritic to feldspar-hornblende porphyritic to aphanitic medium to dark greenish andesite were found on the northern part of ARCHER II along G.C. 4 and 9, and in the southwestern corner of ARCHER 1 along G.C. 7 and 10. This suggests an elongate northwest trending stock 600 metres wide and at least 2800 metres long.

A second stock consisting of feldspar porphyritic dark greenish grey andesite was mapped along G.C. 14 and 14D into the southeastern part of the SUNSHINE claim and southwestern part of the SAW claim, just off the northeastern corner of the ARCHER I claim.

Both stocks contain zones of numerous xenoliths. The stock just mentioned displayed angular to rounded xenoliths up to 20 centimetres in diameter. Xenoliths of the hornblende porphyritic silicious andesite, and feldspar porphyritic dacite were common in this stock.

IGNEOUS INTRUSIVES (cont.)

The earlier described stock on the ARCHER I and II claims displays numerous xenolith zones along G.C. 7 on the ARCHER I claim. These xenoliths consist almost entirely of angular light to medium grey to green hornblende porphyritic to hornblendefeldspar porphyritic xenoliths up to 20 centimetres in diameter. Most are less than 10 centimetres in diameter. Their hornblende and feldspar phenocrysts get up to two millimetres long. A few of these phenocrysts appear vesicular.

STRUCTURAL GEOLOGY

The structural geology appears quite complex in places as a result of extensive faulting and folding. The frequent occurrence of bedded rocks has helped shed some light on the structural geology of the The area covered by the three area. claims can be divided into two regions that differ in structural complexity. The first region covers the northern parts of ARCHER I and II. north of Raymond and Granite Creeks. The second region covers the southern part of the ARCHER II claim and the TATTERS II claim. south of Granite Creek and west of Wilson Creek. The two regions are separated by the Tertiary andesitic stock running along Granite Creek and between Raymond and Wilson Creeks on the ARCHER I and II claims.

Rocks in the northern region don't show much in the way of complex folding. The stratigraphy appears to be gently dipping east to southeast, according to bedding measurements from the bedded cherts and from the thinly bedded sediments adjacent to Mt. Vernon. The chert beds dip east to southeast with dips varying from 13 to 39 degrees. The thinly bedded clastic sediments just west of Mt. Vernon dip to the southeast with dips varying from 16 to 39 degrees.

The structural geology of the southern region is much more Bedding attitudes in this area were taken from various complex. including cherty tuffs. other tuffs. bedded rocks Parsons Bay Formation) and argillites(Bonanza Group and Orientations were also derived from contacts between sandstone. differing adjacent rock types, for example where an andesitic flow contacts a tuff bed. The bedded cherty tuffs and argillites frequently displayed tight folding in this area. Dips and strikes varied wildly over short distances. Dips ranged from The strikes covered most directions of the 11 to 90 degrees. example, the sediment bed and the underlying compass. For bed on the TATTERS II claim strike 056° to 077°, hematitic tuff with dips ranging from 32° to 68°, while 1000 metres to the north a cherty tuff bed that could be traced for 250 metres between two logging roads (G.C. 5F and 5G) was found to strike almost northsouth, with dips ranging from 69° to 83° .

STRUCTURAL GEOLOGY (cont.)

A more complex sequence of tight folding and faulting would be required to explain the wide range in bed attitudes encountered in this area. Mapping in creek outcrops and other off-road outcrops in this region may lead to a better understanding of the structural geology of this area.

ALTERATION AND SECONDARY MINERALIZATION

In addition to being faulted and folded, these rocks have also been altered and mineralized. The Tertiary aged andesitic dykes and stocks commonly show feldspar phenocrysts that have been replaced by epidote. Less frequently, feldspar phenocrysts are altered to clay. Hornblende phenocrysts are almost always replaced by chlorite in this andesite.

Thin veins of quartz, calcite and epidote are frequently found permeating rocks throughout the three claims. Epidote veins are especially common in the andesitic dykes and stocks. Hematitic staining on fractures occurs frequently in the more mafic rock units such as Karmutsen Formation, the basal breccia unit of the Bonanza Group and the andesitic dykes and stocks.

The only secondary sulphide mineral observed in outcrop is pyrite occurring in a major pyritic zone that was found to extend across the northern part of the ARCHER I claim, on to the ARCHER III and IV two-post claims and the adjoining SUNSHINE claim. This pyritic zone is exposed along the following roads: Granite Creek 14 and 14A, G.C. Main and G.C. 9. The pyrite occurs as fine disseminations to coarse blebs up to several millimetres in diameter in the dacite/silicious andesite and chert. Also, several massive sulphide pods up to a metre thick enclosed in The pods contained bedded chert are exposed along G.C. 14. These rocks have also been mostly pyrite with some magnetite. permeated with numerous pyrite stringers throughout this pyritic Pyrite is sometimes also found in calcite and epidote zone. The Tertiary andesitic dykes that intrude these rocks veins. remain largely unpyritized. This pyritic zone is covered by from holes orangey-red soils rich in iron oxide. Drill core drilled into this pyritic zone along Granite Creek 14 and 14A contained anomalous gold values ranging from 1.74 to 2.80 grams per tonne.

In addition to this major pyritic zone, a few pyritic shear zones were mapped on the northeast corner of the ARCHER II claim and on the ARCHER V two-post claim along G.C. 4 and 9. These shear zones are developed in aphanitic to feldspar porphyritic to feldspar-hornblende porphyritic Tertiary andesite. These zones are steeply dipping and vary in width from several metres to 20 metres. Calcite and epidote stringers are frequent in these zones.

ALTERATION AND SECONDARY MINERALIZATION (cont.)

The pyrite commonly occurs along fractures. It is rarely found disseminated in the rock. Throughout the rest of the ARCHER II and TATTERS II claims only a few pyritic fractures and shear zones up to a metre wide were observed.

DRILLING SUMMARY

Five shallow, angled diamond drill holes were drilled during the months of February and March 1987 on the twenty unit Archer 1 mineral claim. Drilling was carried out with a light, portable Boyles Brother X-Ray drill, capable of producing EX sized drill core (22.2 mm diameter). 113 metres (372 feet) were drilled in total. The drill core was eventually split and assayed.

The drill sites are located to the north of Raymond Creek, along a haul road (Granite Creek 14) that approaches Mt. Vernon from the west. Drill holes 87-1, 87-2 and 87-3 are located on this road, while holes 87-4 and 87-5 are located on a spur (Granite Creek 14A)that branches off this road towards the southeast. The site for drill hole 87-1 is 30 metres west of the point where this spur branches off. Hole 87-2 is 300 metres to the east of 87-1 and hole 87-3 is 145 metres to the west of 87-1. Hole 87-5 is 360 metres to the southeast of 87-1 and hole 87-4 is 32 metres to the southeast of 87-5. These distances were measured off a 1:5000 scale topographic map supplied by MacMillan Several factors were taken into account when Bloedel Ltd. selecting specific sites for drilling. The determination of drill site locations was based on the proximity of streams of sufficient size to supply the water required for drilling and on the presence of well exposed, mineralized (essentially pyritized) road cut outcrop that did not appear to be heavily fractured.

As mentioned previously, these holes were drilled to shallow depths. The total distance drilled for the five holes is 113 metres (372 feet), which works out to an average depth of 22.7 metres (74.4 feet) per drill hole. Depths attained by the various drill holes are the following; 87-1 : 44.8m (147 feet), 87-2 : 15.2m (50 feet), 87-3 : 32.0m (105 feet), 87-4 : 9.1m (30 feet), 87-5 : 12.2m (40 feet). The depths achieved are quite shallow for several reasons. One is the fact that the drill on this occasion was limited to a total depth of 45.7 metres (150 feet). However, only hole 87-1 achieved this depth. The other holes had to be discontinued because of poor core recovery caused by extensive fracturing and grinding up of the drill core.

Also mentioned previously, all holes are angled. Dips are set at 60 degrees or 45 degrees, depending on the particular drill hole.

DRILLING SUMMARY (cont.)

The five drill holes are characterized by the following dips and bearings; $87-1 : 60^{\circ} -->000^{\circ}, 87-2 : 45^{\circ} -->286^{\circ}, 87-3 : 45^{\circ} -->015^{\circ}, 87-4 : 45^{\circ} -->045^{\circ}, 87-5 : 45^{\circ} -->045^{\circ}$

Drill core from the five drill holes displayed lithologies similar to those exposed in the outcrop in the vicinity of the drill sites. Drill core from holes 87-1, 87-2 and 87-3 were logged unsplit. Core from holes 87-4 and 87-5 was logged after being split. Basic lithologies were noted. Any secondary mineralization, alteration and deformation that may have been present was also recorded.

Three basic lithologies were displayed in the drill core. The most common rock type is the dacite/silicious andesite, which occurs in all five drill holes. This rock commonly shows hornblende phenocrysts, with or without feldspar phenocrysts, floating in a light grey silicious (dacitic) aphanitic matrix. Hornblende phenocrysts range in size from less than a millimetre to up to four millimetres in length. They are usually around three millimetres long. Feldspar phenocrysts commonly get up to a millimetre in length. Hornblende phenocrysts are almost always more abundant than the feldspars. In a few instances hornblende phenocrysts are lacking, leaving only a dacitic matrix with or without feldspar phenocrysts.

The second most common lithology is that of the andesitic dykes, which was found in drill holes 87-1 and 87-3. Andesitic dyke rock consists of feldspar phenocrysts with or without phenocrysts in a dark to medium greenish grey hornblende aphanitic matrix. The feldspar phenocrysts are usually around three millimetres long. The hornblende phenocrysts range in size up to two millimetres, but are commonly less than a millimetre in Feldspar phenocrysts tend to be more common than length. hornblende phenocrysts, with the exception being a small zone encountered in hole 87-3, where hornblende is the dominant phenocryst.

The third most common rock type, which was noted in the drill core from holes 87-1 and 87-3, is some sort of aphanitic greenish grey dyke rock or volcanic. In some instances a few hornblende phenocrysts are visible.

Tectonic deformation of these rocks consists largely of brecciation, fracturing and veining. The upper dyke intersection in hole 87-1 is brecciated entirely into angular to subangular fragments ranging in size from a few millimetres to over ten fine grained grey quartz. The matrix consists of millimetres. Further down this drill hole a second zone of brecciation occurs. In this case the breccia consists of fragments of the greenish grey aphanitic dyke rock or volcanic in a light grey silicious matrix. A third brecciation zone occurs in the upper part of where dacitic volcanics have been brecciated. hole 87-3,

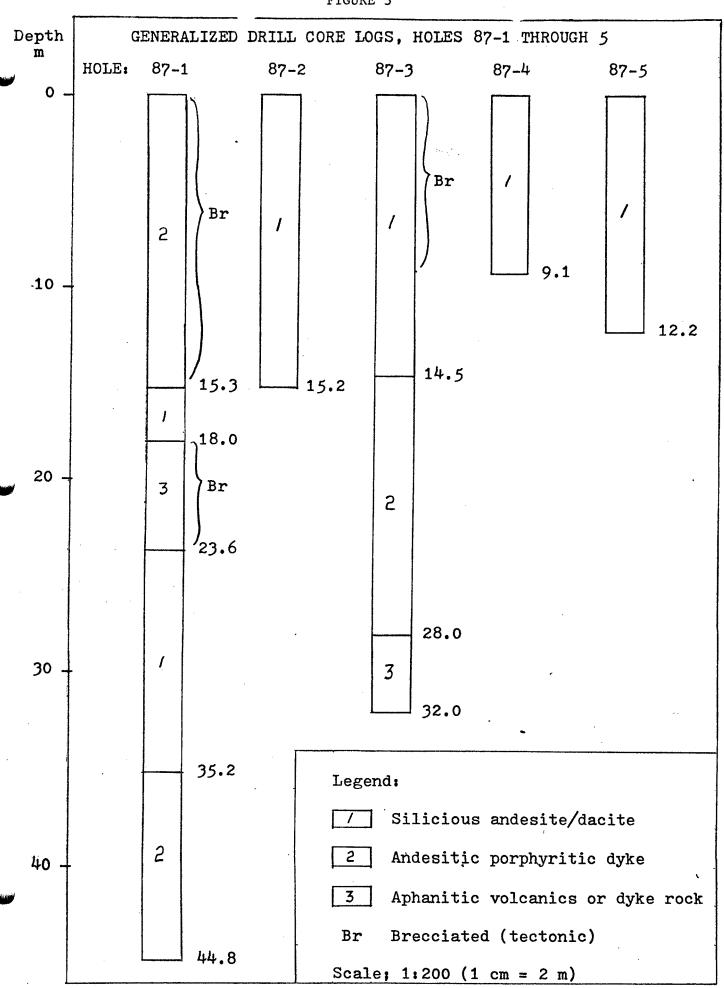


FIGURE 3

DRILLING SUMMARY (cont.)

Here, medium grey fragments float in the same light grey silicious matrix. Thin veins occur frequently in all five drill holes. Milky white quartz stringers are quite common. Epidote veins are prevalent in the dyke rock and occur to a lesser extent in other lithologies. A few calcite veins were also noted. Pyrite stringers commonly occur in the volcanics, which sustained more fracturing than the andesitic dykes. Some veins contain pyrite together with calcite. Other veins show pyrite occurring with quartz.

These rocks were not only subjected to brecciation and veining but also to secondary mineralization and alteration. This basically involves the alteration of hornblende and feldspar, and the emplacement of disseminated pyrite. Hornblende phenocrysts are commonly changed to chlorite. Also, drill core lower part of hole 87-3 showed some hornblende from the phenocrysts that were partially enclosed in rims of epidote. Feldspar phenocrysts are frequently replaced by epidote. This is especially evident in the andesitic dyke rock. In a few instances feldspar phenocrysts have been altered to clay. Pyrite occurs quite commonly in the volcanics, mostly as fine disseminations and less commonly as blebs up to a few millimeters in diameter. Pyrite is less evident in the dyke rock. The brecciated dyke rock encountered in the upper part of hole 87-1 showed some disseminated pyrite. Most of the pyrite in the dyke rock occurs in the form of veins. In the brecciated dyke of hole 87-1 there appeared to be some association between pyrite and epidote. In addition, in holes 87-4 and 87-5 there was some sort of association between hornblende and pyrite. In this case blebs pyrite seem to be intergrown with, or partially replacing of hornblende phenocrysts.

ASSAYING AND GEOCHEMISTRY OF DRILL CORE

The drill core recovered from the five holes was assayed after being split and logged. Drill cuttings from most of holes 87-4 and 87-5, and parts of holes 87-2 and 87-3 were sampled and assayed because of the poor core recovery experienced in these holes. Table 1 indicates the hole and the interval from which the drill core and drill cuttings were derived from.

Samples were sent to four different assay laboratories for assaying. Some of the samples were analyzed by more than one lab. The drill core and cuttings were analyzed by the following labs:

Becquerel Labs Inc. : Samples 1-1 to 1-9, 2-10, 2-11, 3-12 to 3-16, 4-17, 5-18 and 5-19.

Chemex Labs Ltd. : 1-1, 1-5, 1-8, 1-13, 1-14

Quanta Trace Laboratories Inc. : A1 to A3, B1 to B4, C1, D1 to D4, E1 to E5, F1 to F4, G1 to G5, H1, H2 and I1 to I4.

Sando Industries Ltd. (now Nesmont Precious Metals Corp.) : 1-1 to 1-7

A number of different analytical techniques were used by the The methods used depended on what the samples were various labs. being analyzed for. Fire assays were performed by Sando Quanta also carried out fire assays for Industries for gold. gold and platinum group elements. In addition to precious metals the drill core and cuttings were examined for a number of major and trace elements. Neutron activation analysis (NAA) and plasma emission spectroscopy (ICP) were used for these elements. Becquerel Labs used NAA for 43 major and trace elements, Chemex used NAA and ICP to including precious metals. assay for gold. silver and 38 other major and trace elements. Ouanta relied on ICP to determine the contents of 13 major elements (as oxides) and 41 trace elements, excluding precious metals.

Sixty nine elements were assayed for in total. Assay results for sixty one of these elements (excluding K, Na, Ca, P, Si. Al and Fe) are summarized in Table 2, where the elements are listed alphabetically, with the range of abundances obtained by for element. In addition to the assay lab shown each each (A.A.'s) results, the average abundances for each particular element are also presented so that they can be compared with the Any element occurring at anomalous levels can assay results. The average abundances for the therefore be readily discerned. various elements were obtained from standard reference tables that show average abundances for the earth's crust and some basic rock types such as basalt, granite and shale. These tables are found in most geology and geochemistry textbooks. In Table 2 the A.A. for the earth's crust is shown for each element.

ASSAYING AND GEOCHEMISTRY OF DRILL CORE (cont.)

Where there is a significant difference between the A.A. for the earth's crust and the A.A. for a specific rock type, the A.A. for that rock type is also noted.

After examining the assay results for the various elements that most elements show no unusual abundances. The it appears elements occurring at anomalous levels were ytterbium, only tungsten, silver and gold. The ytterbium was anomalous only in sample Sand B2.(Hole 87-3, 80 - 90 feet), with a value of 317 Other samples contained between 1.6 and 3.0 PPM. Since PPM. in one sample it does not appear ytterbium was anomalous only significant quantities to be of any that ytterbium occurs in interest. Tungsten was anomalous only in the drill cuttings (sand) with values varying from 265 to 1230 PPM. Assays of the drill core indicated tungsten values of between 1.4 and 12.2 PPM. This suggests that tungsten does not occur at anomalous levels and that the drill cuttings were contaminated with tungsten from other sources.

Contamination may also explain the high ytterbium content of Anomalous levels of silver were found to occur in Sand B2. Sample 1-1 (Hole 87-1, 0-25 ft.) assayed 11.5 several samples. PPM (Chemex), while sample 1-5 (Hole 87-1, 70-80 ft.) assayed 1.0 PPM Anomalous but low grade gold values were also (Chemex). Sample 1-1 assayed 2.010 PPM (Chemex) and 1.93 PPM obtained. (Sando), and sample 1-5 contained 2.140 PPM (Chemex) and 2.55 PPM (Sando). In addition, sample 1-3 (Hole 87-1, 30-35 ft.) assayed 1.740 PPM (Becquerel, April 30) and 1.824 PPM (Becquerel, May Sample 1-6 (Hole 87-1, 80-90 ft.) assayed 1.68 PPM (Sando), 12). sample G3 (Hole 87-1, 75-90 ft.) contained 1.12 PPM (Quanta) and sample I2 (Hole 87-5, 0-25 ft.) assayed 2.80 PPM (Quanta). It is not definitely known if these gold bearing zones are continuous, but there is the possibility that the intersection at 70-90 feet hole 87-1 (Samples 1-5 and 1-6) may correlate with the in intersection at 75-90 feet in hole 87-3 (Sample G3).

With regards to correlating assay results with the drill core logs, only assays of gold and silver have been correlated with the logs, as shown in Figures 3,4,5 and 6. The various other elements do not occur in significant abundances and therefore are not correlated with any of the drill core logs. Only those logs from holes intersecting anomalous gold and silver values have been correlated with the assays. Therefore, silver correlated only with hole 87-1 (Figure 7), and gold assays are assays are correlated with holes 87-1, 87-3 and 87-5 (Figure 4,5 Based on the correlations, it appears that the gold and and 6). silver bearing intervals occur in both the dacite/silicious andesite and in the andesitic dykes, where disseminated pyrite is frequent, although there are pyritized zones in both lithologies that contain no gold or silver.

...

Sample Number:	Hole: Sample Interval:		
Sampre Ramber.		feet metres	
A1 A2 A3 B1 B2 B3 B4 C1 D1 D2	-2 87-3 -3 -3 -3	35-50 10.67-15.24 20-35 6.10-10.67 55-70 16.76-21.34 70-80 21.34-24.38 80-90 24.38-27.43 90-100 27.43-30.48 100-105 30.48-32.00 20-35 6.10-10.67 0<-10 0.00-3.05 10-20 3.05-6.10	
D3 D4	-5 -5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Diamond Drill Core (DDC)		
E1 E2 E3 E56 F1 F234 F56 F1F234 F57 F541234 F57 F541234 F567 F57 F51234 F51234 F51234 F51234 F51234 F51234 F51234 F51234 F5678 F577 F51234 F5678 F5777 F51234 F56777 F51234 F56777777777777777777777777777777777777	$ \begin{array}{r} 87-1 \\ -1 \\ -1 \\ $	70-80 $21.34-24.38$ $70-80$ $24.38-27.43$ $80-90$ $24.38-27.43$ $80-90$ $24.38-27.43$ $125-135$ $38.10-41.15$ $125-135$ $38.10-41.15$ $125-135$ $38.10-41.15$ $10-35$ $3.05-10.67$ $10-35$ $3.05-10.67$ $35-50$ $10.67-15.24$ $35-50$ $10.67-15.24$ $60-75$ $18.29-22.86$ $60-75$ $18.29-22.86$ $75-90$ $22.86-27.43$ $90-105$ $27.43-32.00$ 0 -30 $0.00-9.14$ 0 -30 $0.00-9.14$ 0 -25 $0.00-7.62$ $25-40$ $7.62-12.19$ $25-40$ $7.62-12.19$ $25-40$ $7.62-9.14$ $30-35$ $9.14-10.67$ $60-70$ $18.29-21.34$ $70-80$ $21.34-24.38$ $80-90$ $24.38-27.43$ $90-105$ $27.43-32.00$ $125-135$ $38.10-41.15$ $135-147$ $41.15-44.81$ 0 -35 $0.00-10.67$ $35-50$ $10.67-15.24$ 0 -30 $0.00-9.14$ $30-60$ $9.14-18.29$ $60-75$ $18.29-22.86$ $75-90$ $22.86-27.43$	

Sample Number:	Hole:	Sample] feet	Interval: metres
3-16	87-3	90-105	27.43-32.00
4-17	87-4	0 -30	0.00- 9.14
5-18	87-5	0 -25	0.00- 7.62
5-19	-5	25-40	7.62-12.19
1-13	87-1	105-114	32.00-34.75
1-14	-1	114-125	34.75-38.10

•

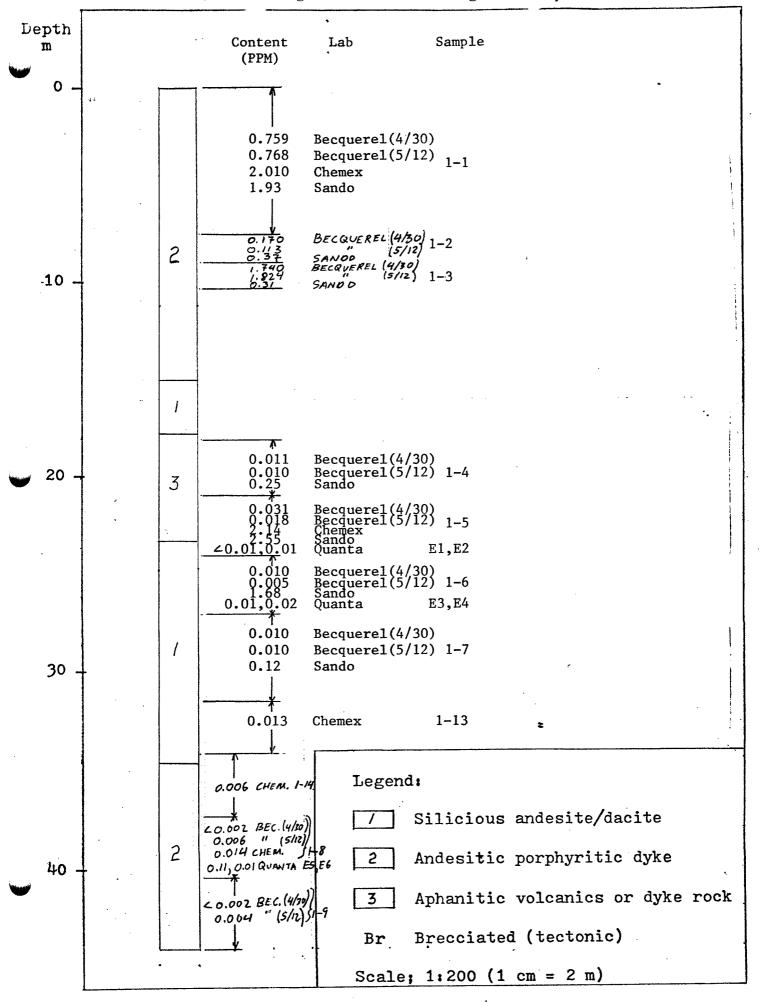
•

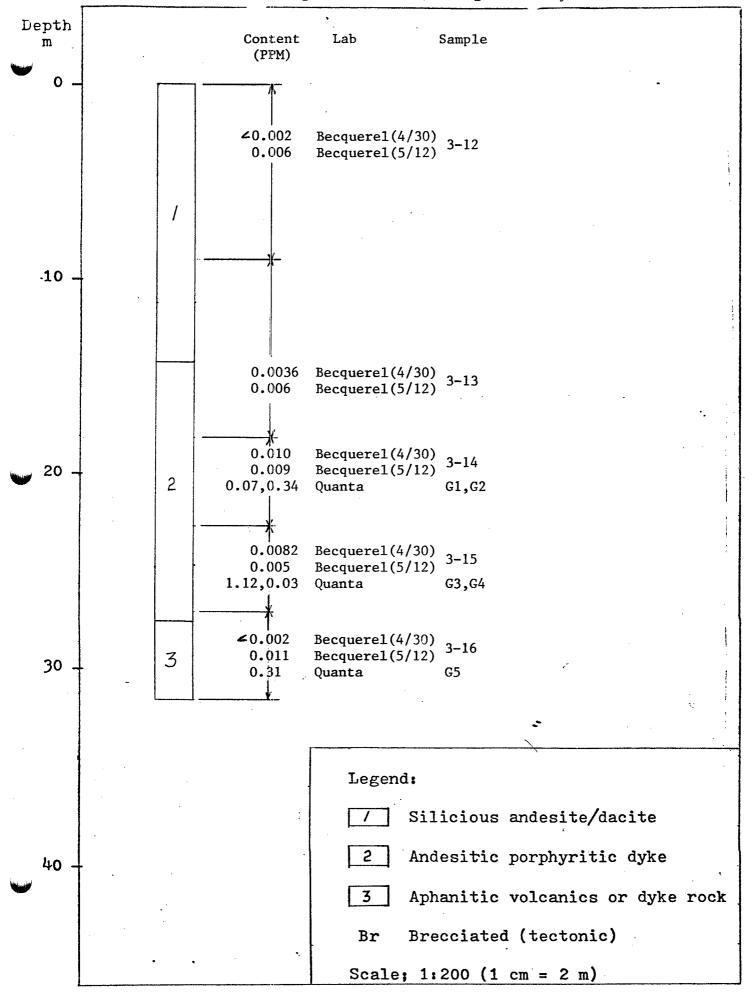
.

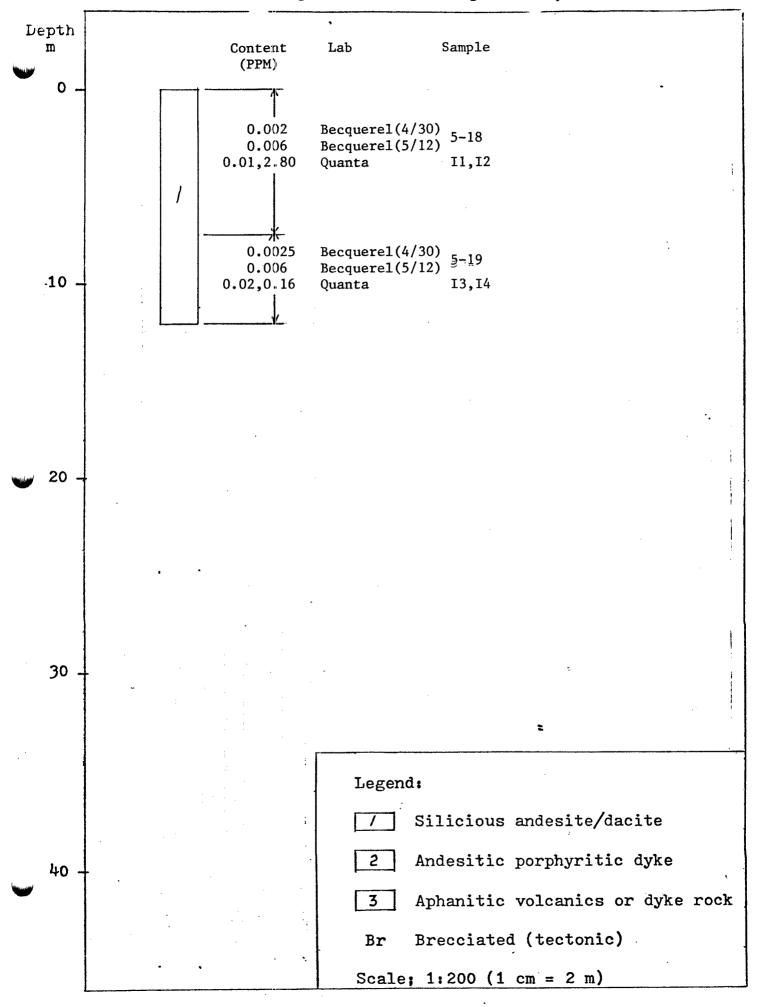
.

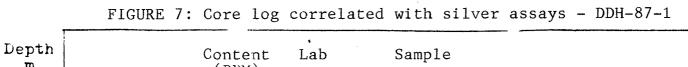
•

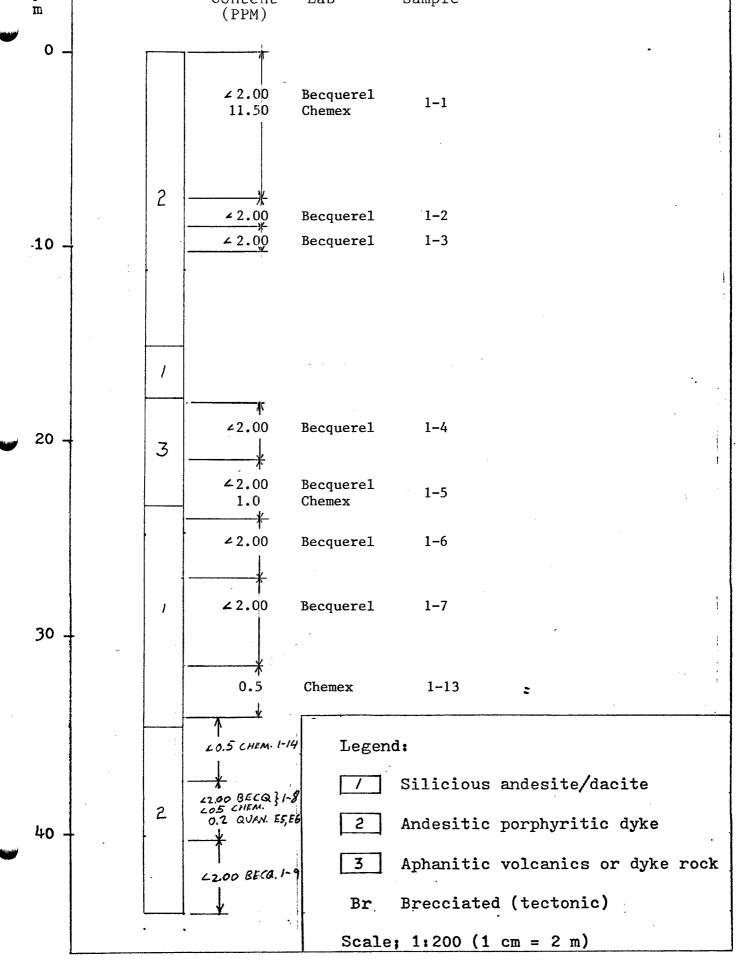
Table 2: Summary of Assays for Trace Elements and Precious Metals for Diamond Drill Core (DDC) & Drill Cuttings (Sand) From Holes 87-1,2,3,4 & 5 Note: All quantities in parts per million (this is equivalent to grams per tonne) Antimoney (Sb) Becquerel: Range from 0.130 to 1.000 PPM Chemex: Range from 0.1 to 0.6 PPM Quanta: Range from 0.1 to 0.7 PPM Average Abundance (Earth's Crust): 0.2 PPM Arsenic (As) Becquere1: 3.100 to 22.000 (Sample 1-3) Chemex: 1 to 6 (Sample 1-1) Quanta: All samples <30 A.A. (Crust): 1.8 Barium (Ba) Becquerel: 180.0 to 1300.0 Chemex: 260 to 1230 (1-14). Most ≤360. Quanta: 134 to 1164 (E5,E6). Most 4500. A.A. (Crust): 425 Beryllium (Be) Chemex: 0.7 to 0.8 Quanta: 0.1 to 0.5 A.A. (Crust): 2.8 Bismuth (Bi) Chemex: 0.1 to 0.2 Quanta: All ∠20 A.A. (Crust): 0.17 Boron (B) Chemex: 8 to 20 Quanta: 1 to 10 A.A. (Crust): 10 Bromine: (Br) Becquere1: All <2.00 A.A. (Crust): 2.5 Cadmium (Cd) Becquerel: All 5.00 Chemex: All 0.1 Quanta: 0.1 to 0.5 A.A. (Crust): 0.2 Cerium (Ce) Becquerel: 18 to 51 Chemex: 20 to 29 Quanta: 19.4 to 54.7 A.A (Crust): 60


```
Cesium (Cs)
     Becquerel: 0.5 to 0.94
     Chemex: All ∠1
     A.A. (Crust): 3
Chromium (Cr)
     Chemex: 79 to 99
     Quanta: 77 to 277
     A.A. (Crust): 100, A.A. (Basalt): 200
Cobalt (Co)
     Becquere1: 15 to 47
     Chemex: 15 to 23
     Quanta: 12 to 41 (A2)
     A.A. (Crust): 25
Copper (Cu)
     Chemex: 13 to 99
     Quanta: 7 to 171 (A2)
     A.A. (Crust): 55, A.A. (Basalt): 100
Dysorosium (Dy)
     Quanta: 2.0 to 3.1
     A.A. (Crust): 3
Erbium (Er)
     Quanta: 1.0 to 1.9
     A.A. (Crust): 2.8
Europium (Eu)
     Becquerel: All <1.00
     Chemex: 0.6 to 0.9
     Quanta: 0.7 to 1.3
     A.A. (Crust): 1.2
Gadolinium (Gd)
     Quanta: 1.6 to 2.3
     A.A. (Crust): 5.4
Gallium (Ga)
     Becquerel: All ∠20
     Chemex: 10 to 12
     Quanta: 7 to 12
     A.A. (Crust): 15
Germanium (Ge)
     Becquerel: All <200
     Chemex: All 10
     Quanta: All 1
    A.A. (Crust): 1.5
```


Gold (Au) Becquerel (April 30): Most range from 0.002 to 0.759. Anomalous values: 1.740 (1-3). Becquerel: (May 12): Most range from 0.004 to 0.768. Anomalous values: 1.824 (1-3). Chemex: Most range from 0.006 to 0.014. Anomalous values: 2.010 (1-1) and 2.140 (1 -5). Quanta: Most range from 0.01 to 0.49. Anomalous values: 1.12 (G3) and 2.80 (I2). Sando Industries: Most range from 0.12 to 0.37. Anomalous values: 1.93 (1-1), 2.5 (1-5) and 1.68 (1-6). A.A. (Crust): 0.004 Holmium (Ho) Quanta: Range from 0. 5 to 0.8 A.A. (Crust): 1.2 Indium (In) Becquerel: All <0.200 A.A. (Crust): 0.1 Iridium (Ir) Becquerel (April 30): All 40.05 Becquerel (May 12): <0.0002 to 0.001 A.A. (Crust): 0.0004 Lanthanum (La) Becquerel: 7.90 to 22.00 Chemex: 9 to 13 Quanta: 8.0 to 27.6 A.A. (Crust): 30 Lead (Pb) Quanta: 5 to 15 A.A. (Crust): 12.5 Lithium (Li) Chemex: 4 to 5 A.A. (Crust): 20 Lutetium (Lu) Becquerel: All <1.00 Chemex: A11 ∠1.0 Quanta: 0.3 to 0.5 A.A. (Crust): 0.50 Manganese (Mn) Quanta: 256 to 1239 (E5) A.A. (Crust); 950 Mercury (Hg) Quanta: 0.1 to 6.7. Most at 0.1 or 0.2 A.A. (Crust): 0.08 Molybdenum (Mo) Becquere1: ∠1.00 to 2.80 Quanta: $\angle 3$ to 13 (B2). Most ≤ 6 . A.A. (Crust): 1.5


Neodynium (Nd) Quanta: 12.4 to 27.6 A.A. (Crust): 28 Nickel (Ni) Becquere1: ∠10.00 to 22.00 Quanta: 7 to 75 A.A. (Crust): 75 Niobium (Nb) Becquerel: All ∠3000 Chemex: A11 420 Quanta: 3.1 to 12.6 A.A. (Crust): 20 Osmium (Os) Becquere1: A11 ∠0.002 A.A. (Crust): 0.0004 Palladium (Pd) Becquerel: ∠0.005 to 0.030 Quanta: All ∠0.01, except for 0.16 (F1) and 0.09 (F3). A.A. (Crust): 0.004, A.A. (Basalt): 0.02 Platinum (Pt) Becquerel: <0.005 to 0.088 Quanta: All ≤0.02, except for 0.03 (A3). A.A. (Crust): 0.002, A.A. (Basalt): 0.02 Praseodynium (Pr) Quanta: 0.4 to 3.8 A.A. (Crust): 8.2 Rhenium (Re) Becquerel (April 27): All 41.00 Becquerel (May 12): All ∠0.001 A.A. (Crust): 0.0004 Rhodium (Rh) Becquerel: All <0.001 Quanta: All 40.03 A.A. (Crust): 0.0004 Rubidium (Rb) Becquerel: 11 to 34 Chemex: 14 to 16 A.A. (Crust): 90 Ruthenium (Ru) Becquere1: <0.005 to 0.017 A.A. (Crust): 0.0004 Samarium (Sm) Becquerel: 2.7 to 4.7 Quanta: 2.8 to 4.9 A.A. (Crust): 6


```
Scandium (Sc)
     Becquere1: 18.00 to 31.00
     Chemex: 16.3 to 21.3
     A.A. (Crust): 16, A.A. (Basalt): 38
Selenium (Se)
     Becquerel: <5.00 to 7.40
     Chemex: All 0.20
     Quanta: Al1 ∠10
     A.A. (Crust): 0.05
Silver (Ag)
     Becquerel: All <2.00
     Chemex: Most <0.5. Anomalous values of 1.0 (1-5) and 11.5 (1-1).
     Quanta: 0.2 to 0.80 (B1, D3, E4)
     A.A. (Crust): 0.07, A.A. (Basalt): 0.1
Stontium (Sr)
     Becquerel: 180 to 640 (1-3)
     Chemex: 315 to 440
     Quanta: 118 to 406
     A.A. (Crust): 375, A.A. (Basalt): 465
Tantalum (Ta)
     Becquere1: <0.500 to 0.580
     Chemex: All 1
     Quanta: 0.5 to 1.4
     A.A. (Crust): 2
Tellurium (Te)
     Becquerel: All ∠10.00
     Chemex: ∠0.05 to 0.55
     Quanta: 0.1 to 0.3
     A.A. (Crust): 0.001
Terbium (Tb)
     Becquere1: 0.50 to 0.83
     Chemex: All <1
     Quanta: 0.2 to 0.4
     A.A. (Crust): 0.9
Thallium (T1)
     Chemex: All 0.1
     A.A. (Crust): 0.45, A.A. (Basalt): 0.1
Thorium (Th)
     Becquerel: 0.85 to 4.60
     Chemex: 1.9 to 3.3
     Quanta: 0.4 to 2.3
     A.A. (Crust): 10
Thullium (Tm)
     Quanta: All 0.2 or 0.3
     A.A. (Crust): 0.48
```


Tin (Sn) Becquerel: All <100.0 Chemex All 1 Quanta: 0.3 to 32.6 (I3) A.A. (Crust): 2 Titanium (Ti) Becquere1: 3280 to 5440 Chemex: 4080 to 4490 Quanta: 3357 to 6595 A.A. (Crust): 5700, A.A. (Basalt): 9000 Tungsten (W) Becquerel: <1.000 to 2.200 Chemex: All 1 Quanta: 1.4 to 1230 (Sand A2). Lowest Sand value is 265 (Sand D1), highest DDC value is 12.2 (DDC E2) A.A. (Crust): 1.5 Uranium (U) Becquerel: 0.280 to 1.500 Quanta: <0.1 to 0.3 A.A. (Crust): 2.7 Vanadium (V) Becquerel: 156 to 334 Chemex: 126 to 177 Quanta: 119 to 284 A.A. (Crust): 135, A.A. (Basalt): 250 Ytterbium (Yb) Becquerel: <2.00 to 3.00 Chemex: 1.6 to 2.4 Quanta: Most range from 1.9 to 3.0, except for Sand B2 with 317. This is definitely anomalous. A.A. (Crust): 3 Yttrium (Y) Chemex: 18 to 59 Quanta: 16.8 to 29.7 A.A. (Crust): 30 Zinc (Zn) Becquere1: ∠100.00 to 130.00 Chemex: 18 to 59 Quanta: 12 to 263 A.A. (Crust): 70 Zirconium (Zr) Becquerel: 200.0 to 280.0 Chemex: 65 to 115 Quanta: 47.4 to 118 A.A. (Crust): 165

Conclusions and Recommendations

Low grade gold and silver values were encountered in three shallow EX sized diamond drill holes on the ARCHER I mineral claim. The gold and silver bearing intervals are contained in pyritized felsic volcanics of the Bonanza Group and Tertiary aged andesitic dykes. Geological mapping indicates that this zone of pyritization is limited to the ARCHER I mineral claim on the north side of Raymond and Granite Creeks. Drill core assays for a number of other major and trace elements indicates no unusual abundances of any other elements.

Geological mapping at 1:5000 scale should continue on to the other claims of the Archer and Good Gold claim groups to outline other pyritized zones that may contain anomalous precious metal values. In addition, sampling should be conducted along road cuts on the ARCHER I claim to outline gold and silver bearing zones at the surface.

Drilling should continue if this program of sampling encounters anomalous precious metal values. If and when drilling resumes, at least BQ sized drill core (36.5 mm diameter) should be taken to counteract the poor core recovery and the extensive fracturing of drill core that was experienced with the EX sized drill core.

Any future assaying of drill core and surface samples should be conducted for only gold and silver. It is deemed unnecessary to continue to assay for nickel and platinum group elements because of the lack of ultramafic rocks in this area. It is also considered unnecessary to continue assaying for the various other major and trace elements because previous assays have shown no unusual abundances of these elements.

References

- Fischl, P.S. <u>Geologic & Drilling Report on the Wabana Claim Group</u> Nuspar Resources Ltd., 1987.
- G.A. Noel & Associates Incorporated Assessment Report 11196., 1983.

Malcolm, D.C.

<u>Assessment Report 642.</u> Avallin Mines Ltd., 1964.

Malcolm, D.C.

<u>Assessment Report 2163.</u> Quintana Minerals Corp., 1969.

Massey, N.W.D. & Friday, S.J.

<u>Geology of the Cowichan Lake Area, Vancouver Island (92</u> <u>C/16).</u> B.C. Ministry of Energy, Mines and Petroleum Resources, in Geological Field Work 1986, Paper 1987-1, Pages 223-229, 1987.

Muller, J.E.

<u>Geology of the Nitinat Lake Map Area, B.C.</u> Geological Survey of Canada, Open File 821, 1982.

Sutherland Brown, A., Yorath, C.J.; Anderson R.G. & Dom, K. <u>Geological Maps of Southern Vancouver Island, Lithoprobe 1.</u> Geological Survey of Canada, Open File 1272, 1986.

STATEMENT OF QUALIFICATIONS

I, Peter S. Fischl, do hereby certify that:

- I am a graduate of the University of British Columbia (1986), with a Bachelor of Science Degree in Geological Sciences.
- 2. I am a member in good standing of the Geological Association of Canada (Cordilleran Section), the Canadian Society of Petroleum Geologists (Coal Division) and the American Association of Petroleum Geologists.
- 3. I have held several summer field positions in the past. From June 1 to August 31, 1984 I was employed as a mapping assistant with the exploration department of Westmin Resources Ltd. From July 2 to September 6, 1985, I was employed by the Geological Branch of the British Columbia Ministry of Energy, Mines & Petroleum Resources as a geological field assistant.
- 4. I have been employed as a geologist with Nuspar Resources Ltd. since February, 1987.

Peter Fischl

Peter Fischl, B.Sc.

<u>COST STATEMENT - ARCHER CLAIM GROUP</u> (ARCHER I, MUCKAWAY I & II, SAW and T.B.K.)

Physical:

Trenching in rock (See Figures 9 & 12 for trench locations) 1-1W to 1-53W: 1m x 1m x 1m each x 53 = 53 c.m. 1-1E to 1-125E: 1m x 1m x 1m each x 125 = 125 c.m. 1-130E to 1-156E: 1m x 1m x 1m each x 27= 27 c.m. 209 c.m. ===== Total Trenching = 209 c.m. @ \$60/c.m. = \$12,540.00

Drilling:

Coring: 372' of EX core @ \$18/ft Core logging: 1.5 days @ \$200/day	\$ 6,696.00 300.00
Assaying of drill core and cuttings:	
Becquerel Labs (NAA) \$ 2,679.00 Chemex Labs (ICP & NAA) 581.00 Quanta Trace Laboratories	
(ICP & Fire Assay) 4,620.00 Sando Industries	
(Fire Assay) 175.00	
Total Assaying 8,055.00	8,055.00
Total Drilling	\$ 15,051.00

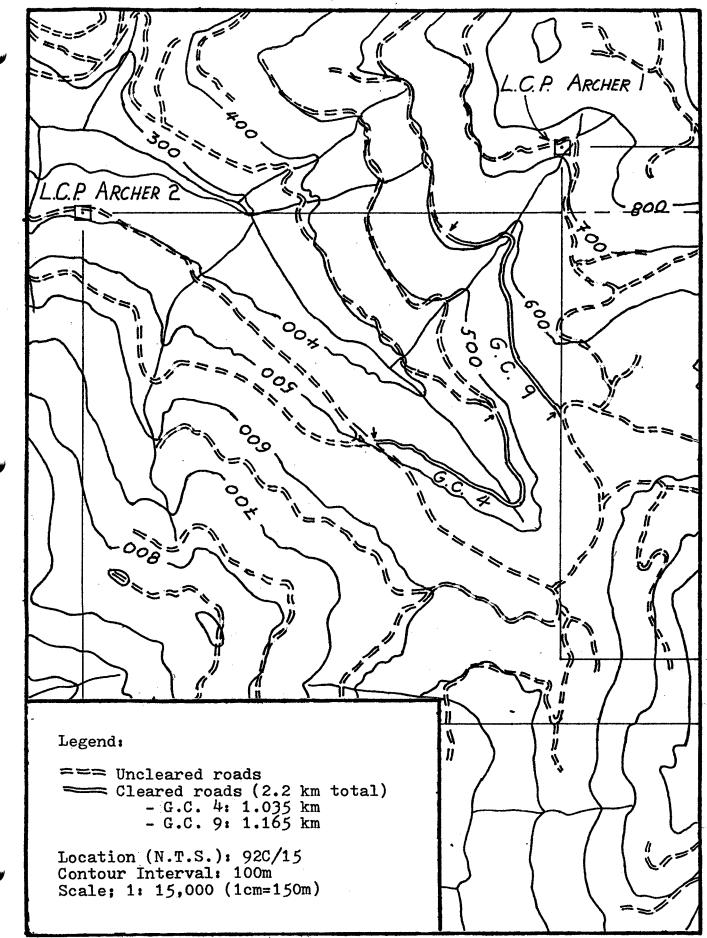
Geological Surveying:

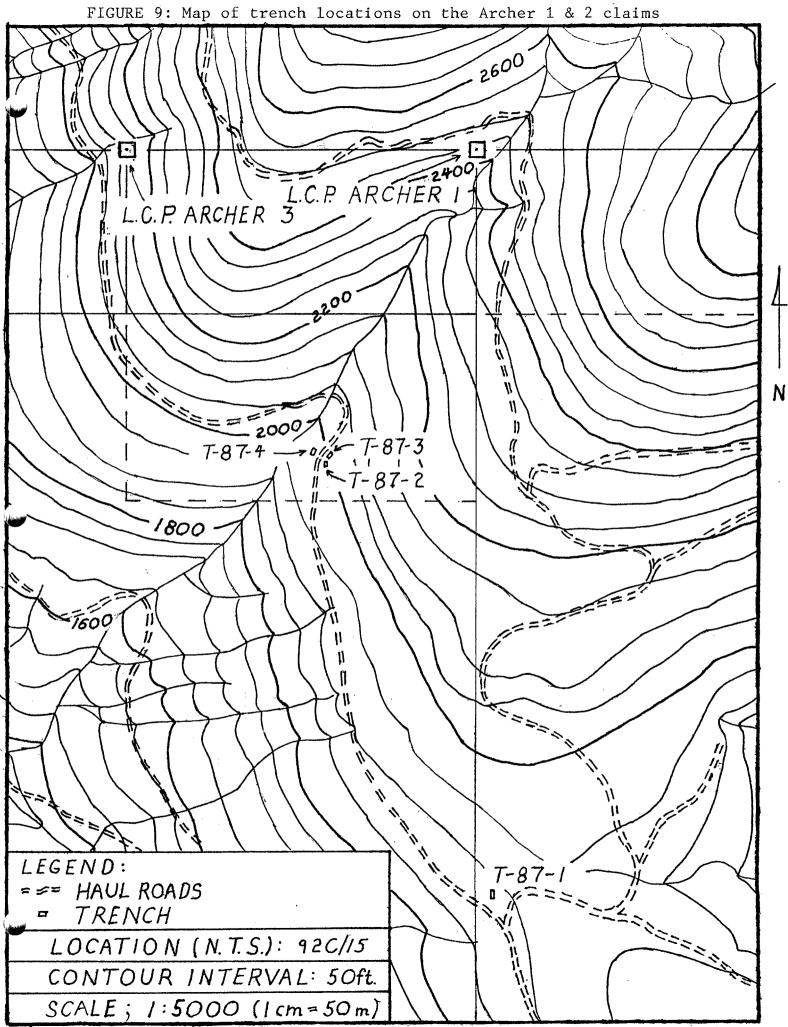
Geological Mapping:		\$ 1,700.00
Supply costs (Field		202 50
: Transportation (4x4	8.5 days @ \$45/day	382.50
	8.5 days $@$ \$40/day	340.00
		······

\$ 2,422.00

Total Physical, Drilling & Geological Surveying \$ 30,013.00

\$30,000 is to be applied to the Archer Claim Group (100 units) for three years.


<u>COST STATEMENT - GOOD GOLD CLAIM GROUP</u> (ARCHER II, GOOD GOLD, TATTERS II, DRILLER I and II, GOOD GOLD 2 - 5)


Physical:

Trenching in rock (see Figure 9 for trench locations): $T-87-2: 1m \times 3m \times 4m$ = 12 c.m. $T-87-3: 1.5m \times 3m \times 4m$ 18 c.m. === $T-87-4: 1.5m \times 3m \times 4m =$ 18 c.m. Total Volume -----48 c.m. \$2,880.00 Total Trenching: 48 c.m. @ \$60/c.m. = _____ Road Clearing (see Figure 8 for roads cleared) Road length cleared: 2.2 km Road width cleared: 10 m \$ 1,600.00 4 men @ \$100/day for 4 days _ 174.00 2 chain saws @ \$21.75/day _ \$ 1,774.00 Total Road Reclamation _____ \$ 4.654.00 Total Physical ______ Geological Surveying: Geological Mapping: 13.5 days @ \$200/day = \$ 2,700,00 Supply costs (Field Conditions) : 13.5 days @ \$45/day -607.00 Transportation (4x4 pick up) 540.00 : 13.5 days @ \$40/day = \$ 3.847.00 ____ PAC Withdrawal: \$1,098.50 (28.55% of \$3,847.00) Total physical, geological surveying & PAC withdrawal \$ 9,600.00 ______

\$9,600 is to be applied to the Good Gold Claim Group (96) units for one year.

FIGURE 8: Map of road reclammation



Province of British Columbia

Ministry of Energy, Mines and Petroleum Resources MINERAL RESOURCES BRANCH-TITLES DIVISION

MINERAL ACT

FORM I

1 GOLD COMMISSIONER

NOTICE TO GROUP

Mining Division VICTORIA.

Name of group ... ARCHER ... G.R.O.Y.P. We, the undersigned owners^{*} of the following adjoining claims, desire to group them according to the provisions of the Mineral Act :-

NAME OF CLAIM	No. of Units	Record No.	Month of Record	SIGNATURE OF OWNER*	Free Miner Certificate No.
Archer I	20	17.93	12/86	<u> </u>	279492
MUCKAWAY I MUCKAWAY 2	20	1819 1820	01/87 01/87		<i></i>
Saw TBK.	50 20	1880	04/87 05/87	()-)- (z. Jun we to-	279493 279493 + 279509
		•••••••••		•••••••••••••••••••••••••••••••••••••••	
•••••••••••••••••••••••••••••••••••••••				· · · · · · · · · · · · · · · · · · ·	•••••
• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • •		· · · · · · · · · · · · · · · · · · ·	· · · · · <i>· · · · · · · ·</i>
••••••					
· • • • • • • • • • • • • • • • • • • •				•••••••••••••••••••••••	
•••••••••••••••••••••••••••••••••••••••		••••••••••			• • • • • • • • • • • • • •
•••••••••••••••••••••••••••••••••••••••			• • • • • •	· · · · · · · · · · · · · · · · · · ·	
				•••••••	
					4.
• • • • • • • • • • • • • • • • • • • •					
•••••••••••••••••••••••••••••••••••••••				•••••••	
•••••••••••••••••••••••••••••••••••••••		•••••••••••••••••••••••••••••••••••••••		••••••••••••••••••••••••	
•••••••••••••••••••••••••••••••••••••••					
•••••					••••
		• • • • • • • • • •			• • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • •					
•••••••••••••••••••••••••••••••••••••••	• • • • • •	•••••	••••		
		• • • • • • • • • • • • •			
				•	

Province of British Columbia

Ministry of Energy, Mines and Petroleum Resources MINERAL RESOURCES BRANCH-TITLES DIVISION

MINERAL ACT

RECEIVED and RECORDED DEC -9 1987 M.R. #0955375 \$2040.00 VICTORIA, B.C.

GOLD COMMISSIONER

FORM I

NOTICE TO GROUP

Mining Division VICTORIA LOCATION LOCATION COWICHAN LAKE

the Mineral Act:-

NAME OF CLAIM	No. of Units	Record No.	Month of Record	SIGNATURE OF OWNER*	Free Miner Certificate No.
Archer 2	20	.17.94	12/86	l	279.492
GOOD GOLD	20	.1815	01/87	[, <u>7</u>])	<i>II</i>
TATTERS 2	20	.18.17	01/87		<i>II</i>
PRILLER 1		.1.941	06/87		
DRILLER 2	20	1942	0.6/87	1 Dre .	279493
* GOOD GOLD 2		1884	04/87	L. r. 19-	4
* GOOD GOLD 3		1885	04/87	$(\mathcal{V},\mathcal{P}_{k},\mathcal{F}_{k})$	279492
* GOOD GOLD 4	1.	1886	04/87	LV F	4
* GOOD GOLD 5	1	1887	04/87		<i>)</i> / ·
				and good	52 -
* CLAIM RECENTLY 1	RANSFER	ED	USPAR	FROM L.E. SAWYER	(FMC: 279493)
••••••					•
•••••••••••••••••••••••••••••••••••••••					
					· · · · · · · · · · · · · · · · ·
				•	
••••••••••••••••••••••••					
				•	
. 					
•••••					
•••••	· · · · · · · · · · · ·				
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

STATE		MINERA XPLORAT			SIONER
	E. SAWYER	yarên dir.		210 DEA-A-1	387
4252 Interu	rban Road, R.R. 3		# 205, 493 B	M.R. # 07333	BAC.
Victoria, B	C		VICTORIA , B.C.	(Address)	
V8X 3X1 (Postal Code)			V&T 2X3 (Postal Code)	등 활동한 동물한	86-6362 (Telephone Num
Valid subsisting F.M	I.C. No. 1279493	·····	Valid subsisting F.M.C. No.	279492	
STATE THAT 1. I have done, or c T. B. K	aused to be done, work on th	B ARCHER /	, MUCKAWAY I,		
Record No(s).	793, 1819, 1820), 1880, 1931	2		Claim
Situate at CO	WICHAN LAKE		e VICTORIA		Mining Divici
to the value of at	least \$30 000 00		dollars. Work was d		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
of reprua.	rk was done in the 12 months	$19 \frac{87}{19} \frac{1}{19} \frac{1}{100}$ to the $\frac{1}{100}$	irst day of December		19 87
of reprua	rk was done in the 12 months	19 87 to the f	irst day of December	OWING]	1 . · · · · ·
of Peblua	rk was done in the 12 months [COMPLETE APP (Trenches, open cuts, ac (Give details as required b	19 87 to the f s in which such work is r PROPRIATE SECT dits, pits, shafts, reclam by section 13 of regulati	irst day of December equired to be done: ION(S) A, B, C, D, FOLL ation, and construction of roads	OWING]	19 87
of Peblua	rk was done in the 12 months [COMPLETE APP (Trenches, open cuts, ac	19 87 to the f s in which such work is r PROPRIATE SECT dits, pits, shafts, reclam by section 13 of regulati	irst day of December equired to be done: ION(S) A, B, C, D, FOLL ation, and construction of roads	OWING] s and trails.)	19 87
of Teblua 2. The following wor A. PHYSICAL Trenching:	rk was done in the 12 months [COMPLETE APP (Trenches, open cuts, ac (Give details as required b 207 Trucc	19 87 to the f s in which such work is r PROPRIATE SECT dits, pits, shafts, reclam by section 13 of regulati	irst day of December equired to be done: ION(S) A, B, C, D, FOLL ation, and construction of roads	OWING] s and trails.)	19 87
of Treblua 2. The following wor A. PHYSICAL Trenching:	rk was done in the 12 months [COMPLETE APP (Trenches, open cuts, ac (Give details as required b 207 Trucc	19 87 to the f s in which such work is r PROPRIATE SECT dits, pits, shafts, reclam by section 13 of regulati	irst day of December equired to be done: ION(S) A, B, C, D, FOLL ation, and construction of roads	OWING] s and trails.)	19 87
of Teblua 2. The following wor A. PHYSICAL Trenching:	rk was done in the 12 months [COMPLETE APP (Trenches, open cuts, ac (Give details as required b 207 Trucc	19 87 to the f s in which such work is r PROPRIATE SECT dits, pits, shafts, reclam by section 13 of regulati	irst day of December equired to be done: ION(S) A, B, C, D, FOLL ation, and construction of roads	OWING] s and trails.)	19 87
of Teblua 2. The following wor A. PHYSICAL Trenching:	rk was done in the 12 months [COMPLETE APP (Trenches, open cuts, ac (Give details as required b 207 Trucc	19 87 to the f s in which such work is r PROPRIATE SECT dits, pits, shafts, reclam by section 13 of regulati	irst day of December equired to be done: ION(S) A, B, C, D, FOLL ation, and construction of roads	OWING] s and trails.)	19 87
of Teblua 2. The following wor A. PHYSICAL Trenching:	rk was done in the 12 months [COMPLETE APP (Trenches, open cuts, ac (Give details as required b 207 Trucc	19 87 to the f s in which such work is r PROPRIATE SECT dits, pits, shafts, reclam by section 13 of regulati	irst day of December equired to be done: ION(S) A, B, C, D, FOLL ation, and construction of roads	OWING] s and trails.)	19 87
of Teblua 2. The following wor A. PHYSICAL Trenching:	rk was done in the 12 months [COMPLETE APP (Trenches, open cuts, ac (Give details as required b 207 Trucc	19 87 to the f s in which such work is r PROPRIATE SECT dits, pits, shafts, reclam by section 13 of regulati	irst day of December equired to be done: ION(S) A, B, C, D, FOLL ation, and construction of roads ons.) Mater R	OWING] s and trails.) COS \$12,540.00	19 87
of Trebind. 2. The following work A. PHYSICAL Trenching: 7 (5 10 07) 1 wish to apply \$	rk was done in the 12 months [COMPLETE APP (Trenches, open cuts, ac (Give details as required to 2 a 7 Trun c m No ck 2, 5 y 0, of	19 87 to the f s in which such work is r PROPRIATE SECT dits, pits, shafts, reclam by section 13 of regulati the c?	irst day of December equired to be done: ION(S) A, B, C, D, FOLL ation, and construction of roads ons.) / Material TOTAL PHYSICAL aims listed below.	OWING] s and trails.) \$12,540.00 \$12,540.00 \$12,540.00	19 87
of Trebind. 2. The following work A. PHYSICAL Trenching: 7 (5 10 07) 1 wish to apply \$	rk was done in the 12 months [COMPLETE APP (Trenches, open cuts, ac (Give details as required to 2 a 7 Trun c m No ck 7, 5 y 0, of	19 87 to the f s in which such work is r PROPRIATE SECT dits, pits, shafts, reclam by section 13 of regulati the c?	irst day of December equired to be done: ION(S) A, B, C, D, FOLL ation, and construction of roads ons.) Marte 3	OWING] s and trails.) \$12,540.00 \$12,540.00 \$12,540.00	19 87

C. DRILLING	(Details in report su	ubmitted as per section 8 of regula	ations.)	COST	
	(The itemized cost	statement must be part of the rep	Nort.) •	\$15,051.00	
· · · · ·				Y 1 J 9 V J 1 V V	
. GEOLOGIC	AL, GEOPHYSICAL,				e jen. Se transference
	(Details in report su (The itemized cost (State type of work	ubmitted as per section 5, 6, or 7 statement must be part of the reg in space below)	of regulations.) yort.)		
	Geological mapp:	ing:		\$ 2422.50	بر این از ای در منهبر میروند میروند این از این ا
		· · · · · · · · · · · · · · · · · · ·			
			TOTAL OF C AND D	\$17,473.50	
т. Т.					2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -
shall co	the above statement requi omplete both copies of the in the assessment reports	ires a technical report as per section e ASSESSMENT REPORT (TITLE 3.	on C of the Mineral Act Regulatic E PAGE AND SUMMARY form	ons, the author of the repo and include the complete	ed
·······		Nuspar Re	sources Ltd.		
Who was the operate the financing)?	or (provided	Name #205, 493	Burnside Road E.,	Victoria: B.C.	
		Address "2003, 403 V8T 2X3	Dumbruu menu ii,		
• •		401 445J	$\label{eq:alpha} \begin{array}{l} \frac{2}{2} & $		
1. 					
Portable Assess	sment Credits (PAC)	Withdrawal Request		AMOUNT	
Amount to be withdr	rawn from owner(s) or ope	erator(s) account(s)			la por la suma Na porto - a Sur porto - a
an Aan Maasa		(D = D = -			
		Name of Owner Open	rator		
(May be no more the		r			anger en an Constrainget on Station Constraint anger
of value of the a submitted as ass					
in C and (or) D.)		a de la companya de la companya de la comp de la companya de la c			·····
			TOTAL WITHDRAWAL		
					265
		TOTAL OF C AND (OR) D P	LUS PAC WITHDRAWAL	\$30,01 330	
, ,		of this work to the cl	inima listad halow		en lageta Alta Arta
	\$ 30,000.00		8		••
		d to each claim, its month of reco		二方に ないたけれ	19 A 1
Archer 1 ((Record #: 1793)), Dec., 3 years, Mu	ick Away 1 (Record	#:1819), Jan.,	3 year
Muck Away	2 (Record #: 18	320), Jan., 3 years,	Saw (Record #: 18	80), April, 3	years,
÷	1	May, 3 years.			
ter de p	·				, , , ,
Value of work [May only	to be credited to portable be credited from the appr	assessment credit (PAC) accoun roved value of C and (or D) not a	t(s). pplied to claims.]		
		Name		AMOUN	et j
					2

いい石戸

	(L&J)	Province of Britis	h Colùmbla Ministr	y of Energy, Mines a sion — TITLES BRANCI	ind Petroleum Re	sources
		MINE	MINERA		}	
	STATEM	ENT OF E		ION AND	DEVELO	COMMISSIONER
				5.21	n d DE	C -9 1987
I.	L.E. SAWYER	(Name)				LTD 375375 8230
	4252 Interv	urban Road, R.R	. 3,	#205 , 493	Burnside MdGd	TORIA, B.C.
	Victoria,	B.C.	5 	Victoria,	B.C.	
	V8X 3X1 (Postal Code)		479-4339 (Telephone Nymber	V8T 2X3 (Postal Code)	· · · · ·	386-6362 (Telephone Number)
	Valid subsisting F.M.C	C. No. 279493	• • • • • • • • • • • • • • • • • • • •	Valid subsisting F.M.C	279492	· · · · · · · · · · · · · · · · · · ·
ST	ATE THAT					·
017		used to be done, work on	the Archer 2	, Good Gold, Ta	tters 2, Dril	ler 1, Driller 2
	Good Gold	2, Good Gold 3	3, Good Gold 4,			Claim(s)
	Record No(s).	1794, 1815, 1	1817, 1941, 194	2, 1884, 1885,	1886, 1887	• ••••••••••••••••••••••••••••••••••••
	Situate at Co	wichan Lake H	in i	the Victoria		General Mining Division,
	to the value of at lo	east \$2600 7	8501.50 2		k was done from the	first day
	of Septemb	er	19 87 to the	first day of Dece	ember	19 87
	2. The following worl	k was done in the 12 mor	ths in which such work is	s required to be done:		
ý				TION(S) A, B, C, D,	FOLLOWING]	
Α.	PHYSICAL	-		amation, and construction		
		Give details as requir	red by section 13 of regul	lations.)		COST
	Trenching:	Themedica 2	× 13 ³ 1	and ix	/? ³ /î \$2880	.00
	Road recla	,	days for	y men D	\$1774	.00
4	100 5' pres	- day,	1	2.1.75		• • • • • • • • • • • • • • • • • • • •
	Two cha	in pars	fr. y day	, al 12-1. 15 1	aon.	
	Jen Th &	1 road	6.7- KP	X TU NI		
		a second and a second as	ana ana ana ang sa			
						· · ·
			······	TOTAL PHY	SICAL \$4654	
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>.</u>			
	I wish to apply \$	4654	of physical work to th	e claims listed below.	Jee Levers	æ.
	(State numb	per of years to be applied	I to each claim, its month	of record, and identify ea	ch claim by name and	record number.)
	v . 11					
.,	······································	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
				م المعام والمعالية المراجع المراجع الم	المحاج المحتجية الرار	

		: • .				
DRILLI			submitted as per section 8 of regulations.)			r
	(ine m	emized cost statement mu	si be part of the rep			
GEOL		HYSICAL, GEOCHE	MICAL			
. GEOL	(Details (The ite	s in report submitted as pe emized cost statement mu type of work in space belo	er section 5, 6, or 7 of st be part of the rep			
Geolo	gical mappin				\$3847.50	
	in the second			n an tha an ann an A	· · · · · · · · · · · · · · · · · ·	
****	· · · ·				1	
		a	• •	TOTAL OF C AND D	\$3847.50	•
			· j		- <b>-</b>	
		copies of the ASSESSME		n C of the Mineral Act Regulate PAGE AND SUMMARY form		
L.,			Nuenon Dogo			
/ho was the the financin	operator (provided	Name	Nuspar Resc	· · ·		
	97	Address		urnside Road E.,	Victoria, B.C	•
			V8T 2X3			
		an al a a l'anna an				
Portable A	ssessment Crea	lits (PAC) Withdrawal	Request		AMOU	NT
mount to be	withdrawn from owr	ner(s) or operator(s) accou	int(s)			
		Na	me of Owner Opera	910r		
May be no m	hore than 30 per cen	I 1. Nus	par Resource	es Ltd.	\$1098.50	
of value of	the approved work as assessment work	(	•			
in C and (o		3				
				1		
	· •			TOTAL WITHDRAWAL	\$1098.50	
		TOTAL O	F C AND (OR) D PL	US PAC WITHDRAWAL	\$9600.00	010
		TOTAL OF	A, C + D	N .		
I wish to	apply \$ 9600.0	.0	this work to the cla	ims listed below.	:	
(Sta	te number of years t	o be applied to each claim	, its month of record	l, and identify each claim by n	ame and record numb	er.)
				od Gold (Record #: iller 1 (Record #		
*********************			· ·····	ood Gold 2 (Record		
		فيتبع فالمتر الالتينية فالمراج المراجع المتعين	•••••••••••••••••	, Good Gold 4 (Rec		
**********		(Record #: 188	••••••	***************************************	1 2	£4.
Value of	work to be credited	to portable assessment croom the approved value of (	edit (PAC) account( C and (or D) not app	s).		
1	, .,	,,	Name	· ·	AMO	JNT

I

ί

-----

. ,	Name	AMOUNT
Name of owner/operator	1	
	2.	1

## APPENDIX 1

DRILL CORE LOGS

#### DIAMOND DRILL GEOLOGICAL LOG

Property: Nitinat-Cowichan Lake Claim: Archer I 92C/15 N.T.S.:

Date Logged: Feb. 10,1987 Logged By: Peter S. Fischl, B.Sc.

Core: EX (22.2mm) Elevation: 726m (2,415ft) Hole: DDH-87-1

Bearing (Azimuth): 000 Dip(Inclination): 60 Total Length: 44.8m

The drill core from this hole and from holes 2, 3, 4 Note: and 5 is stored at the residence of L.E.Sawyer (President of Nuspar Resources Ltd.) at 4252 Interurban Road, Victoria, B.C. V8X 3X1

From m	To m	Length m	Rock Description
0.0	1.50	1.50	No core.
1.50	9.30	7.80	Brecciated andesitic porphyritic dyke. Rock consists of angular to subangular dark greenish grey feldspar porphyritic clasts in a light grey quartz matrix. Clasts range in size from a few mm's to over 10cm's. Feldspar phenocrysts are up to 3 mm's in length. They are commonly altered to epidote. Pyrite disseminated throughout the rock. Appears to be a weak association between this pyrite and the epidote. Pyrite occurs less commonly as thin veins dipping steeply in core. Also a few stringers of quartz, epidote and calcite dipping steeply (20-30 ) to core. Core tends to break frequently along these stringers.

Feldspar porphyritic dacite (?). 9.30 9.90 0.60 Some disseminated pyrite.

feldspar Brecciated andesitic 10.55 0.65 9.90 porphyritic dyke rock.

feldspar hornblende 2.95 Andesitic 10.55 13.50 porphyritic dyke rock. Hornblende

			phenocrysts frequently altered to chlorite. Disseminated pyrite throughout rock. Brecciated in places.
13.50	15.25	1.75	No core.
15.25	17.95	2.70	Silicious porphyritic andesite. Consists of hornblende phenocrysts in a silicious light grey aphanitic matrix. Some hornblende phenocrysts altered to chlorite. Some disseminated pyrite.
17.95	23.60	5.65	Brecciated greenish grey aphanitic volcanics or dyke rock. Consists of angular clasts in a light grey silicious matrix. Pyrite occurs as fine disseminations and coarse "blebs".
23.60	24.25	0.65	Andesitic porphyritic dyke. Rock is made up of feldspar and hornblende phenocrysts in a greenish grey aphanitic matrix. Hornblende phenocrysts are sparse and tend to be chloritized. Pyrite occurs as fine disseminations to coarser "blebs".
24.25	25.00	0.75	Silicious porphyritic andesite.Rock shows densely distributed hornblende phenocrysts in a light grey silicious aphanitic matrix. Hornblende phenocrysts are up to 1mm long.They are commonly chloritized. Intensively pyritized over a 10cm zone. This pyritization is associated with quartz stringers.
25.00	25.60	0.60	Silicious porphyritic andesite.Consists of loosely scattered hornblende phenocrysts in a light grey silicious matrix.Hornblende phenocrysts are up to 5mm's in length.They are often chloritized.There is also some fine to coarsely disseminated pyrite.
25.60	26.20	0.60	Andesitic porphyritic dyke.Made up of feldspar and hornblende phenocrysts in a light greenish grey aphanitic matrix.The

			hornblende phenocrysts are not as common as the feldspar phenocrysts.The hornblende phenocrysts are commonly chloritized.Some finely disseminated pyrite.Veined with grey quartz and yellow-green epidote.
26.20	28.15	1.95	Silicious porphyritic andesite. Characterized by hornblende phenocrysts, up to 5mm's in length, floating in a light grey silicious

and the second sec

----

- floating in a light grey silicious aphanitic matrix.Hornblende phenocrysts are frequently chloritized.Fine to coarse disseminations of pyrite.A few pyrite stringers.
- 28.15 28.35 0.20 Silicious porphyritic andesite.This rock is densely porphyritic with numerous small (up to 1mm long) hornblende phenocrysts in a light grey silicious matrix.
- 28.35 28.90 0.55 Silicious zone consisting almost entirely of grey quartz.
- porphyritic 28.90 35.15 6.25 Silicious andesite.Shows loosely scattered to densely grouped hornblende phenocrysts in a silicious grey aphanitic matrix.Hornblende to a few mm's in phenocrysts up length.They are commonly chloritized.Some stringers of guartz and calcite dipping steeply to core.Pyrite occurs as stringers fine to and as coarse disseminations.

9.65 Andesitic porphyritic 35.15 44.80 dyke.Characterized by feldspar and hornblende phenocrysts in a dark to medium greenish grey aphanitic matrix.Feldspar phenocrysts around 3mm's long.Hornblende phenocrysts up to 1mm long. Feldspar phenocrysts more common than the hornblende phenocrysts. Some feldspar phenocrysts have been altered to epidote.Contact between this dyke and the overlaying silicious porphyritic andesite dips

at about 30 to the drill core. At 39.20 metres a dioritic xenolith 10cm's in diameter was noted. It consisted of a few feldspar and hornblende phenocrysts up to 3mm's long, floating in a fine grained matrix of lath like feldspar and hornblende (?) crystals less than 1mm long.

#### DIAMOND DRILL GEOLOGICAL LOG

Property: Nitinat-Cowichan Lake Claim: Archer I N.T.S.: 92C/15

Logged By: Peter S. Fischl, B.Sc.Date Logged: Feb. 10,1987Hole: DDH-87-2Core: EX (22.2mm)Elevation: 786m (2,580ft)

Dip(Inclination): 45 Bearing (Azimuth): 286 Total Length: 15.24m

Note: Hole discontinued due to poor core recovery (less than 50%), associated with extensive fracturing and grinding up of drill core.

From m	To m	Length m	Rock Description
0.0	3.05	3.05	No core.
3.05	6.70	3.65	Silicious porphyritic andesite.Rock shows black hornblende phenocrysts and milky white feldspar phenocrysts in a silicious grey aphanitic matrix.Hornblende phenocrysts up to 1mm long and are commonly altered to chlorite.Feldspar phenocrysts are up to 0.5mm long.They are less common than the hornblende phenocrysts.Pyrite disseminated throughout.Pyrite occurs rarely as blebs up to several mm's in diameter.Some pyrite also along fractures.
6.70	8.05	1.35	Brecciated silicious porphyritic andesite.Quartz and calcite veins common.Pyrite disseminated throughout and along fractures (associated with calcite veins).
8.05	11.60	3.55	Silicious porphyritic andesite,with disseminated pyrite (rarely as blebs).Between 9.15 and 9.25m: intense pyritization associated with calcite veins.
11.60	13.10	1.50	Brecciated silicious porphyritic andesite.Rock shows hornblende

phenocrysts up to 1mm long.Some disseminated pyrite.Also some pyrite along fractures.Extensively veined with calcite stringers.

13.10 15.24 2.14

Silicious porphyritic andesite.Rock made up of hornblende is phenocrysts in a silicious grey aphanitic matrix.Hornblende phenocrysts up to 0.5mm in length.Some hornblende phenocrysts have been chloritized.Disseminated pyrite common.Some pyrite and calcite occurring as fracture infillings.

#### DIAMOND DRILL GEOLOGICAL LOG

Property: Nitinat-Cowichan Lake Claim: Archer I N.T.S.: 92C/15

Logged By: Peter S. Fischl, B.Sc. Date Logged: April 27,1987

Hole: DDH-87-3 Core: EX (22.2mm) Elevation: 732m (2,400ft)

Dip(Inclination): 45 Bearing (Azimuth): 015 Total Length: 32.0m

Hole discontinued due to poor core recovery caused by Note: extensive fracturing and grinding up of drill core.

From m	To m	Length m	Rock Description
0.0	1.50	1.50	No core.
1.50	6.10	4.60	Brecciated silicious porphyritic andesite/dacite.For the first few metres the rock is medium grey and largely aphanitic with a few hornblende and feldspar phenocrysts in places.These phenocrysts are less than 0.5mm in length.With increasing depth the rock becomes increasingly feldspar porphyritic, with feldspar phenocrysts becoming

colour, with

fractures and

grey to

matrix.

feldspar

pyrite

white

slightly larger (up to a mm). The aphanitic matrix takes on a darker

increasing depth. Appears brecciated

greenish grey aphanitic to feldspar porphyritic clasts floating in a

quartz veins up to 0.5cm thick dipping steeply to core.Epidote

some

disseminated throughout the rock

silicious

depth.Several

places, with dark

Brecciation decreases with

along

qrey

phenocrysts.Some

and along fractures.

6.10	7.60	1.50	No core.	
7.60	9.15	1.55	Feldspar porphyritic	andesite (?).
			Rock shows feldspar	phenocrysts up

greenish

in

liaht

increasing

appears

replaces

to 1mm long in a greenish grey aphanitic matrix with a few veins of pyrite and epidote.

- 9.15 13.70 4.55 Feldspar porphyritic dacite.Rock consists of feldspar phenocrysts up to 1mm long in a silicious grey matrix.Also some tiny black mafic phenocrysts.Appears brecciated in places.Pyrite disseminated throughout the rock.Veins of pyrite and quartz dipping steeply to core.
- 13.70 14.50 0.80 Aphanitic to feldspar porphyritic dark grey volcanic (?). Pyrite along fractures plus also some pyrite disseminated throughout the rock.
  - 20.55 6.05 Andesitic porphyritic dyke.Rock feldspar phenocrysts shows grey and black mafic phenocrysts in a dark grey to dark greenish grey aphanitic matrix.Feldspar phenocrysts up to 3mm's in length.Mafic phenocrysts up to 1mm in length.Some of the mafics are magnetic, indicating they are most likely magnetite. The rest are probably hornblende. The feldspars are more common than the mafics. epidote Yellow-green veins calcite veins and quartz veins dip steeply in core. Feldspar phenocrysts are commonly bleached white near the veins. Feldspar phenocrysts are altered to epidote in places. Pyrite occurs as thin is also veins. There some disseminated pyrite.

At 20.55 metres starts grading into a more aphanitic to hornblende porphyritic dark greenish grey Feldspar dyke rock. phenocrysts become less evident. Most hornblende phenocrysts up to 0.5mm length. Some up to 2mm's in in length. Most feldspar phenocrysts up to 1mm long. Some are up to 2mm's long. Some of the larger hornblende phenocrysts are partially enclosed in epidote rims. Pyrite disseminated throughout the

20.55

14.50

28.00

7.45

rock and along fractures.

28.00 32.00 4.00 Aphanitic dyke rock or volcanic. Medium greenish grey colour. Some disseminated pyrite.

#### DIAMOND DRILL GEOLOGICAL LOG

Property: Nitinat-Cowichan Lake Claim: Archer I N.T.S.: 92C/16

Logged By: Peter S. Fischl, B.Sc. Date Logged: April 27,1987

Hole: DDH-87-4 Core: EX (22.2mm) Elevation: 716m (2,350ft)

Dip(Inclination): 45 Bearing (Azimuth): 045 Total Length: 9.15m

Note: Hole discontinued due to poor core recovery associated with severe fracturing and grinding up of drill core.

From To m m		Length m	Rock Description		
			errent and a state of the state		
0.0	9.15	9.15	Silicious	porphy	

writic andesite/dacite. This rock consists of black hornblende phenocrysts and milky white feldspar phenocrysts in a silicious medium to light grey aphanitic matrix. Hornblende phenocrysts up to 3mm's long. Most around 1 to 2 mm's long. Feldspar phenocrysts up to 4 mm's long. Most are less than 1mm long. Feldspar phenocrysts more common than phenocrysts. hornblende Yellowgreen epidote replaces some of the smaller feldspar phenocrysts. Pyrite disseminated throughout the rock. This disseminated pyrite gets "clumpy" in places, forming blebs up to 1mm in diameter. These pyrite blebs are commonly associated with hornblende phenocrysts.

#### DIAMOND DRILL GEOLOGICAL LOG

Property: Nitinat-Cowichan Lake Claim: Archer I N.T.S.: 92C/16

Logged By: Peter S. Fischl, B.Sc. Date Logged: April 27,1987

Hole: DDH-87-5 Core: EX (22.2mm) Elevation: 716m (2,350ft)

Dip(Inclination): 45 Bearing (Azimuth): 045 Total Length: 12.2m

Note: Hole discontinued due to poor core recovery associated with severe fracturing and grinding up of drill core.

From	To	Length	Rock Description
m	m	m	
0.0	12.2	12.2	Silicious porphyritic andesite/dacite. Rock contains black hornblende phenocrysts and milky white feldspar phenocrysts floating in a silicious medium to light grey aphanitic matrix. Hornblende phenocrysts are up to 2mm's long and occur sporadically. Feldspar phenocrysts less than 1mm long. They are more common than the hornblende phenocrysts. Pyrite occurs throughout the rock as fine disseminations and as blebs up to several mm's in diameter. Seems to be some association between this pyrite and hornblende phenocrysts. Some pyrite also along fractures.

38

## APPENDIX 2

## ASSAY CERTIFICATES OF DRILL CORE & CUTTINGS

ŗ,

BECQUEREL LABORATORIES INC.

NEUTRON ACTIVATION ANALYSIS

C5-12-1987 11:30:07

BATCH # NUSPAR

SAMPLES 811 - 829 PLATINUM GROUP ELEMENT ANALYSIS

ALL RESULTS IN PPB. MINUS SIGNS INDICATE 'LESS-THAN' VALUES. RESULT OF 'O' INDICATES ELEMENT NOT DETERMINED.

# 8111-1 AU= 768 IR=-.2 OS=-2 PD=-5 PT=-30 RH=-1 RU=-10 Re -1 # 8121-2 IR=-.2 OS=-2 PD=-5 AU= 113 RU=-5 PT=-15 RH = -1Re -1 # B13 1-3 AU= 1824 IR=-.2 OS=-2 PD=-5 FT=-90 RH=-1RU=-10 Re -1 # 8141-4 IR=-.2 05=-2 PD=-5 * AU= 10 PT=-5 RH=-1 RU=-5 Re -1# 815 1-5 AU= 18 IR=-.2 OS=-2 PD=-5 . RU=-5 Re -1 ▼PT= 14 RH=-1 # 816 1-6 AU= 5 IR=-.2 0S=-2 PD=-5

B (127 1-7			
AUM 10	IR2	09:	[-] D==
PT=-5	RH=-1	RU=-5	Re -1
			anna anna anna anna anna anna anna ann
# B1B 1-8			
AU= 6	IR=2	0S=-2	PD=-5
PT=-5	RH=-1	RU=-5	Re -1
·····		an 1995 yang dan 1997 Mar seka ang pang bang bang san 1996 ng bang san 1	
# B19 1-9			
AU= 4	IR=2	08=-2	PD=-5
PT=-5	RH=-1.	尺U=-5	Re -1
AND ANT AND SHE			and alpha mana data. Salah anna data' adar atau data data data anta atau atau atau atau atau
# 820 <b>2-10</b>			
· AU= 11	IR=2	, 0S=-2 ;	PD = -5
PT=-5	RH=-1	RU=-5	Re -1
ander blade minde blade fanne forer, blitte organ gelle britt blad men gane, blitt mind anne			100 000 000 000 000 000 000 000 000 000
# 821 <b>2-11</b>			
# 821 <b>2-1 </b> AU= 17	IR= 1	0S=-2 [*]	PD= 30
		0S=-2 [*] RU= 17	PD= 30 Re -1
AU= 17	IR= 1		
AU= 17 PT= 88	IR= 1		
AU= 17 PT= BB # 822 <b>3-12</b>	IR= 1 RH= 5	RU= 17	Re -1
AU= 17 PT= BB # 822 <b>3-12</b> AU= 6	IR= 1 RH= 5 	RU= 17 	Re -1 PD=-5
AU= 17 FT= BB # 822 <b>3-12</b>	IR= 1 RH= 5	RU= 17	Re -1
AU= 17 FT= BB # 822 <b>3-12</b> AU= 6	IR= 1 RH= 5 	RU= 17 	Re -1 PD=-5
AU= 17 PT= 88 # 822 <b>3-12</b> AU= 6 PT=-5	IR= 1 RH= 5 	RU= 17 	Re -1 PD=-5
AU= 17 FT= BB # 822 <b>3-12</b> AU= 6 FT=-5 # 823 <b>3-13</b>	IR= 1 RH= 5 IR=2 RH=-1	RU= 17 	Re -1 PD=-5 Re -1
AU= 17 FT= BB # $B22 3-12$ AU= 6 FT=-5 # $B23 3-13$ AU= 6	IR= 1	RU= 17 OS=-2 RU=-5 OS=-2	Re -1 PD=-5 Re -1 PD=-5
AU= 17 PT= BB # 822 <b>3-12</b> AU= 6 PT=-5 # 823 <b>3-13</b>	IR= 1 RH= 5 IR=2 RH=-1	RU= 17 	Re -1 PD=-5 Re -1
AU= 17 FT= BB # $B22 3-12$ AU= 6 FT=-5 # $B23 3-13$ AU= 6	IR= 1	RU= 17 OS=-2 RU=-5 OS=-2	Re -1 PD=-5 Re -1 PD=-5
AU= 17 PT= BB # $822 \ 3-12$ AU= 6 PT=-5 # $823 \ 3-13$ AU= 6 PT=-5	IR= 1	RU= 17 OS=-2 RU=-5 OS=-2	Re -1 PD=-5 Re -1 PD=-5
AU= 17 PT= BB # 822 3-12 AU= 6 PT=-5 # 823 3-13 AU= 6 PT=-5 # 824 3-14	IR= 1 RH= 5 IR=2 RH=-1 IR=2 RH=-1	RU= 17 OS=-2 RU=-5 OS=-2	Re -1 PD=-5 Re -1 FD=-5 Re -1
AU= 17 PT= BB # $822 \ 3-12$ AU= 6 PT=-5 # $823 \ 3-13$ AU= 6 PT=-5	IR= 1	RU= 17 OS=-2 RU=-5 OS=-2 RU=-5	Re -1 PD=-5 Re -1 PD=-5

. .. ...

····· · · · · ·

# 825 <b>3-15</b> AU= 5	IR=2	0S=-2	PD=-5
PT=-5	RH=-1	RU=-5	Re = 7. ppb
# 826 <b>3-16</b>		در است میں است	
# 828 J V A U = 11	IR=2	08=-2	₽ [.] D=−5
FT=-5	RH=-1	RU=-5	Re = 5.
	11 (1)15 (1)17 (1)22 (1)22 (2)22 (2)22 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)23 (2)		
# 827 <b>4-17</b> AU≝ 4	• IR=2	05=-2	PD=-5
PT=-5	요니=-1	RU=-5	Re = 5.
# 828 <b>5-18</b>			
AU= 6	IR=2	09=-2	PD=-5
PT=-5	RH=-1	RU=-5	Re = 4.
	11 ANN 7611 7617 2016 1028 5007 2017 3016 3019 1001 7018 2018 6017 0		. NANG MANYA M
# 829 <b>5-19</b> AU= 6	IR=2	08=-2	PD=-5
PT=-5	RH=-1	RU=-5	Re = 6.

41.725

## BECQUEREL LABORATORIES INC.

ELEMENT	<b>♯/-1</b> ( 8.717 G)	# /-2 ( 9.302 G)	# /-3 ( 9.076 G)	# /-4 ( 6.552 G)	# /~5 ( 8.868 G)	#/-( ( 8.327 G
ANTIMONY	. 330	.280	1.000	. 300	.160	. 14(
ARSENIC	9.100	5.600	22.000	15.000	8.300	7.800
BARIUM	350.0	310.0	330.0	360.0	210.0	310.0
BROMINE	-2.00	-2.00	-2.00	-2.00	-2.00	-2.00
CADMIUM	-5.00	-5.00	-5.00	-5.00	-5.00	-5.0
CERIUM	24.00	23.00	21.00	31.00	37.00	23.00
CESIUM	.94	.74	.83	.89	.81	5
CHROMIUM	84.0	79.0	57.0	130.0	81.0	87.0
COBALT	24.00	23.00	21.00	21.00	25.00	22.0
EUROPIUM	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00
GLD, PPB	759.00	170.00	1740.00	11.00	31.00	10.00
AFNIUM	1.70	1.70	2.20	2.10	1.60	1.90
RIDIUM, PPB	-50.0	-50.0	-50.0	-50.0	-50.0	-50.
N, %	4.800	5.800	6.500	5.500	5.700	6.200
JANTHANUM	10.00	11.00	11.00	13.00	17.00	12.0
LUTETIUM	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00
OLYBDENUM	-1.00	1.10	2.40	-1.00	-1.00	-1.00
NICKEL	-10.00	-10.00	22.00	-10.00	-10.00	15.00
RUBIDIUM	19.00	14.00	15.00	17.00	17.00	25.00
SAMARIUM	2.900	3.100	3.000	3.400	4.000	3.000
SCANDIUM	18.00	21.50 -5.00	22.50	21.70	24.40	23.30 -5.00
SELENIUM SILVER	-5.00 -2.00	-2.00	-5.00 -2.00	-5.00 -2.00	-5.00 -2.00	-2.00
GODIUM, %	2.360	3.000	2.960	3.020	3.880	3.310
FANTALUM	500	500	500	500	500	500
TELLURIUM	-10.00	-10.00	-10.00	-10.00	-10.00	-10.00
FERBIUM	.62	50	.69	50	.57	50
THORIUM	2.10	2.20	1.80	1.90	2.00	1.90
rin	-100.00	-100.00	-100.00	-100.00	-100.00	-100.00
UNGSTEN	-1.000	-1.000	1.100	2.200	1.100	-1.000
JRANIUM	.830	.640	.620	.880	.810	.880
TTERBIUM	-2.00	2.10	-2.00	2.20	-2.00	2.20
SINC	-100.0	-100.0	-100.0	-100.0	-100.0	-100.0
	-200.0	-200.0	200.0	-200.0	-200.0	-200.0

			•			
ANTIMONY	.180	.430	.400	.360	.250	.380
ARSENIC	4.700	3.300	3.100	4.300	3.600	8.200
EARIUM	250.0	1200.0	1300.0	250.0	270.0	340.0
BROMINE	-2.00	-2.00	-2.00	-2.00	-2.00	-2.00
~ ADMIUM	-5.00	-5.00	-5.00	-5.00	-5.00	-5.00
<b>WERIUM</b>	22.00	31.00	38.00	18.00	23.00	37.00
CESIUM	50	50	50	50	·50	50
CHROMIUM	100.0	160.0	150.0	130.0	58.0	99.0
COBALT	28.00	16.00	15.00	47.00	29.00	27.00
EUROPIUM	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00
GOLD, PPB	10.00	-2.00	-2.00	9.20	10.00	-2.00
HAFNÍUM	2.00	4.00	3.60	1.70	1.60	2.10
IRIDIUM, PPB	-50.0	-50.0	-50.0	-50.0	-50.0	-50.0
IRON, %	6.800	5.100	4.600	8.800	7.500	5.000
LANTHANUM	12.00	16.00	15.00	7.30	11.00	15.00
LUTETIUM	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00
MOLYBDENUM	-1.00	-1.00	-1.00	2.40	-1.00	-1.00
NICKEL	-10.00	-10.00	10.00	14.00	-10.00	-10.00
RUBIDIUM	19.00	23.00	19.00	11.00	14.00	26.00
SAMARIUM	3.100	4.100	4.000	2.700	3.700	3.600
SCANDIUM	22.80	19.00	18.00	23.50	31.00	24.50
SELENIUM	-5.00	-5.00	-5.00	5.30	-5.00	-5.00
SILVER	-2.00	-2.00	-2.00	-2.00	-2.00	-2.00
SODIUM, %	3.490	2.520	2.410	3.100	3.550	3.550
TANTALUM	500	.580	.540	500	500	500
TELLURIUM	-10.00	-10.00	-10.00	-10.00	-10.00	-10.00
TERBIUM	.78	.83	.69	. 55	.83	.62
THORIUM	1.90	3.70	3.50	. 88	. 85	2.00
TIN	-100.00	-100.00	-100.00	-100.00	-100.00	-100.00
TUNGSTEN	1.300	1.400	-1.000	-1.000	-1.000	-1.000
ANIUM	.730	1.400	1.400	.280	.370	.680
YTTERBIUM	-2.00	2.20	3.00	-2.00	2.60	-2.00
ZINC	-100.0	-100.0	-100.0	-100.0	130.0	-100.0
ZIRCONIUM	-200.0	-200.0	-200.0	-200.0	280.0	-200.0

NOTE : - A NEGATIVE SIGN INDICATES "LESS THAN". - RESULTS ARE IN PARTS PER MILLION (PPM) UNLESS OTHERWISE INDICATED.

BATCH # 667-0033 1-19

ELEMENT	# 13 ( 9.749 G) (	# 14 8.012 G) (	# 15 9.614 G) (	# 16 8.040 G) (	# 17 8.356 G).(	# 18 8.524 G)
			99999999999999999999999999999999999999	, <u>, , , , , , , , , , , , , , , , , , </u>		nyya ayyyy y nyin anany ganay ayaa sa na naan admin
LANTHANUM ANTIMONY	15.00 .290	13.00 .260	12.00 .370	22.00 .270	11.00 .270	.130
ARSENIC	7.900	8.700	8,600	6.500	5.700	4.200
BARIUM	460.0	180.0	240.0	220.0	450.0	360.0
BROMINE	-2.00	-2.00	-2.00	-2.00	-2.00	-2.00
CADMIUM	-5.00	-5,00	5.00	-5.00	-5.00	-5.00
CERIUM	38.00	26.00	28.00	26.00	51.00	25.00
SIUM	50	.76	.69	50	.62	.65
CHROMIUM	85.0	150.0	140.0	140.0	100.0	190.0
COBALT	24.00	21.00	24.00	15.00	15.00	24.00
EUROPIUM	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00
GOLD, PPB	3.60	10.00	8.20	-2.00	5.60	-2.00
HAFNIUM	2.10	2.50	3.10	2.50	4.00	1.70
IRIDIUM, PPB	-50.0	-50.0	-50.0	-50.0	-50.0	-50.0
IRON, %	5.700	7.700	6.200 .	5.100	4.900	8.000

.

TION I DDENOLI	4.00	1.00	т.ап	-1.00	1.3U	1.40
NICKEL	-10.00	-10.00	21.00	-10.00	-10.00	16.00
RUBIDIUM	19.00	34.00	17.00	18.00	15.00	18.00
SAMARIUM	3.700	3.200	3.700	3.300	4.700	3.300
SCANDIUM	23.60	20.60	26.10	22.60	18.00	23.30
SELENIUM	-5.00	-5.00	-5.00	-5.00	-5.00	7.40
SILVER	-2.00	-2.00	-2.00	-2.00	-2.00	-2.00
DIUM, %	2.890	1.800	2.670	2.850	3.270	2.550
TANTALUM	500	-,500	500	500	500	500
TELLURIUM	-10:00	-10.00	-10.00	-10.00	-10.00	-10.00
TERBIUM	. 54	50	.58	.66	.80	.92
THORIUM	2.50	2.10	2.70	2.10	4.60	1.80
TIN	-100.00	-100.00	-100.00	-100.00	-100.00	-100.00
TUNGSTEN	-1.000	1.500	-1.000	-1.000	-1.000	-1.000
URANIUM	1.100	.800	.770	.710	1.500	.800
YTTERBIUM	-2.00	-2.00	-2.00	2.10	2.40	-2.00
ZINC	-100.0	-100.0	-100.0	-100.0	-100.0	-100.0
ZIRCONIUM	-200.0	-200.0	-200.0	-200.0	-200.0	-200.0
LUTETIUM	-1.00	+1.00	-1.00	-1.00	-1.00	-1.00
l ;						
NOTE : - A M	NEGATIVE SIGN I	NDICATES "I	LESS THAN".			
_ DTC	CITTO ADD TH DA	DTA DED MIL		INT ROC ONT	FOUTOR INDIC	A MITSTN

- RESULTS ARE IN PARTS PER MILLION (PPM) UNLESS OTHERWISE INDICATED.

BATCH # 667-0033 1-19

-2.00

YTTERBLUM

ELEMENT	#5-19		#*************************************	*****	
۱.	( 9.108 G)				
······································	·				
					·
ANTIMONY	.150				
ARSENIC	5.900				
BARIUM	290.0				
BROMINE	-2.00				
CADMIUM	-5.00				
CERIUM	27.00				
CESIUM	. 51				
CHROMIUM	110.0				
COBALT	26.00	,			
EUROPIUM	-1.00				
GOLD, PPB	2.50				
HAFNIUM	1.60				
IRIDIUM, PPB	-50.0				
IRON, %	6.200				
LANTHANUM	7.90				
LUTETIUM	-1.00				
MOLYBDENUM	2.50				
NICKEL	-10.00				
RUBIDIUM	13.00				
SAMARIUM	2.800				
SCANDIUM	22.80				
SELENIUM	-5.00				
SILVER	-2.00				
SODIUM, %	2.530				
NTALUM	500				
TELLURIUM	-10.00				
TERBIUM	. 69				
THORIUM	1.90				
TIN	-100.00				
TUNGSTEN	-1.000				
URANIUM	. 640				
Vanneon					

 ZINC
 -100.0

 ZIRCONIUM
 -200.0

NOTE	:		A NEGATIVE	SIGN INDI	CATES	"LESS	THAN".			
		-	RESULTS ARE	E IN PARTS	PER M	ILLION	(PPM)	UNLESS	OTHERWISE	INDICATED.

NUSPAR RESOURCES LTD.

REFERENCE :

## NEUTRON ACTIVATION ANALYSIS REPORT

19 DRILL CORE SAMPLES

27-APR-87

.

. . : : : : ; .

### BECQUEREL LABS INC.

1

6620 KITIMAT ROAD, UNIT 4 MISSISSAUGA, ONTARIO, CANADA. LSN 288.

Phone: (416) 826-3080

Telex : 06-218215

NEUTRON AC	TIVATION ANALYS			27-APR-87			
SAMPLE :	1-1		MOISTURE CON	rent =	0.0 %		
ELEMENT	CONTENT	RSD,%	ELEMENT	CONTENT	RSD,%		
GALLIUM GERMANIUM INDIUM NIOBIUM	< 20.0 < 200. < 0.200 < 2.600E+03		RHENIUM STRONTIUM TITANIUM (%) VANADIUM	< 1.00 460. 0.476 199.	19.3 9.1 5.4		

NOTES : - RESULTS IN MICROGRAMS PER GRAM DRY WEIGHT (EXCEPT AS NOTED). - RSD = RELATIVE STANDARD DEVIATION (1 SIGMA), IN PER CENT. - EXTRA SIGNIFICANT FIGURES ARE QUOTED. ROUND RESULTS IN ACCORDANCE WITH OUR ESTIMATE OF THE INDIVIDUAL RSD. - N.D. = "NOT DETERMINED" IN THIS SAMPLE.

001

1. 37- 6

مىيىنى مەربى

002

6620 KITIMAT ROAD, UNIT 4 MISSISSAUGA, ONTARIO, CANADA. L5N 288. Phone : (416) 826-3080

Telex : 06-218215

	NEUTRON ACTIVATION ANALYSIS REPORT			27	-APR-87
SAMPLE :	1-2	_3 _10.	MOISTURE CONT	ENT =	0.0 %
ELEMENT	CONTENT	RSD,%	ELEMENT	CONTENT	RSD,%
GALLIUM GERMANIUM INDIUM NIOBIUM	< 20.0 < 200. < 0.200 < 2.500E+03		RHENIUM STRONTIUM TITANIUM (%) VANADIUM	< 1.00 300. 0.451 180.	27.7 9.1 5.5

NOTES : - RESULTS IN MICROGRAMS PER GRAM DRY WEIGHT (EXCEPT AS NOTED). - RSD = RELATIVE STANDARD DEVIATION (1 SIGMA), IN PER CENT. - EXTRA SIGNIFICANT FIGURES ARE QUOTED. ROUND RESULTS IN ACCORDANCE WITH OUR ESTIMATE OF THE INDIVIDUAL RSD.

- N.D. = "NOT DETERMINED" IN THIS SAMPLE.

1.24

6620 KITIMAT ROAD, UNIT 4 MISSISSAUGA, ONTARIO, CANADA. L5N 288.

Phone: (416) 826-3080

Telex : 06-218215

NEUTRON ACTIVATION ANALYSIS REPORT 27-APR-87 FOR : NUSPAR RESOURCES LTD. SAMPLE : 1-3 MOISTURE CONTENT = 0.0 % CONTENT RSD, 7 ELEMENT CONTENT RSD, 7 ELEMENT GALLIUM< 20.0</th>GERMANIUM< 200.</th>INDIUM< 0.200</th> RHENIUM < 1.00 STRONTIUM 640. 13.5 0.350 TITANIUM (%) 11.4 NIOBIUM < 3.000£+03 VANADIUM 201. 5.2

NOTES : - RESULTS IN MICROGRAMS PER GRAM DRY WEIGHT (EXCEPT AS NOTED). - RSD = RELATIVE STANDARD DEVIATION (1 SIGMA), IN PER CENT. - EXTRA SIGNIFICANT FIGURES ARE QUOTED. ROUND RESULTS IN ACCORDANCE WITH OUR ESTIMATE OF THE INDIVIDUAL RSD. - N.D. = "NOT DETERMINED" IN THIS SAMPLE.

12.

BECQUEREL	LABS	INC.	
With Some Carl State and a state of the state	inter and an		1.12

6620 KITIMAT ROAD, UNIT 4 MISSISSAUGA, ONTARIO, CANADA. L5N 288.

....

Phone : (416) 826-3080

Telex : 06-218215

004

NEUTRON AC FOR : SAMPLE :	TIVATION ANALYSIS REPORT NUSPAR RESOURCES LTD. 1-4	MOISTURE CONTE		0.0 %
ELEMENT	CONTENT RSD,%	ELEMENT	CONTENT	RSD,%
GALL'IUM GERMANIUM INDIUM NIOBIUM	< 20.0 < 200. < 0.200 < 2.600E+03	RHENIUM STRONTIUM TITANIUM (%) VANADIUM	< 1.00 < 190. 0.447 195.	9.2 5.2

- RESULTS IN MICROGRAMS PER GRAM DRY WEIGHT (EXCEPT AS NOTED). NOTES : - RSD = RELATIVE STANDARD DEVIATION (1 SIGMA), IN PER CENT. - EXTRA SIGNIFICANT FIGURES ARE QUOTED. ROUND RESULTS IN

ACCORDANCE WITH OUR ESTIMATE OF THE INDIVIDUAL RSD. - N.D. = "NOT DETERMINED" IN THIS SAMPLE.

17.

BECQUEREL LABS INC.	-
---------------------	---

6620 KITIMAT ROAD, UNIT 4 MISSISSAUGA, ONTARIO, CANADA. L5N 288. Phone : (416) 826-3080

Telex : 06-218215

005

NEUTRON AC	TIVATION ANALYS NUSPAR RESOURCE		27-APR-87	
SAMPLE :	1-5	-5 CID.	MOISTURE CONTENT = 0.(	
ELEMENT	CONTENT	RSD,%	ELEMENT	CONTENT RSD,%
GALLIUM GERMANIUM INDIUM NIOBIUM	< 20.0 < 200. < 0.200 < 2.500E+03		RHENIUM STRONTIUM TITANIUM (%) VANADIUM	< 1.00 320. 26.6 0.393 9.8 216. 4.8

<u>NOTES</u>: - RESULTS IN MICROGRAMS PER GRAM DRY WEIGHT (EXCEPT AS NOTED). - RSD = RELATIVE STANDARD DEVIATION (1 SIGMA), IN PER CENT. - EXTRA SIGNIFICANT FIGURES ARE QUOTED. ROUND RESULTS IN ACCORDANCE WITH OUR ESTIMATE OF THE INDIVIDUAL RSD.

> معيم م

- N.D. = "NOT DETERMINED" IN THIS SAMPLE.

1.20

	BECQUEREL LABS	INC.	004
6620 KITIMAT ROAD, UNIT	4	Phon	e : (416) 826-308
MISSISSAUGA, ONTARIO, CANADA. L5N 288.			Telex : 06-218215
	1		
	•		
NEUTRON ACTIVATION ANAL			27-APR-8
NEUTRON ACTIVATION ANAL FOR : NUSPAR RESOU SAMPLE : 1-6	RCES LTD.	MOISTURE CONT	27-APR-8
FOR : NUSPAR RESOU SAMPLE : 1-6	RCES LTD.		ENT = 0.0
FOR : NUSPAR RESOU	RCES LTD. RSD,%	ELEMENT RHENIUM	ENT = 0.0 CONTENT RSD,

1. 191

.....

- EXTRA SIGNIFICANT FIGURES ARE QUOTED. ROUND RESULTS IN ACCORDANCE WITH OUR ESTIMATE OF THE INDIVIDUAL RSD. - N.D. = "NOT DETERMINED" IN THIS SAMPLE.

N. Cak

i,

81

6620 KITIMAT ROAD, UNIT 4 MISSISSAUGA, ONTARIO, CANADA. L5N 288: Phone : (416) 826-3080

Telex : 06-218215

007

Ste.

NEUTRON ACTIVATION ANALYSIS REPORT FOR : NUSPAR RESOURCES LTD.			27	-APR-87	
	1-7	265 LID.	MOISTURE CONT	ENT =	0.0 %
ELEMENT	CONTENT	RSD,%	ELEMENT	CONTENT	RSD,%
GALLIUM	< 20.0		RHENIUM	< 1.00	
.GERMANIUM	< 200.		STRONTIUM	350.	26.1
INDIUM	< 0.200		TITANIUM (%)	0.351	7.7
NIOBIUM	< 1.700E+0	3	VANADIUM	192.	3.9

 NOTES: - RESULTS IN MICROGRAMS PER GRAM DRY WEIGHT (EXCEPT AS NOTED).
 RSD = RELATIVE STANDARD DEVIATION (1 SIGMA), IN PER CENT.
 EXTRA SIGNIFICANT FIGURES ARE QUOTED. ROUND RESULTS IN ACCORDANCE WITH OUR ESTIMATE OF THE INDIVIDUAL RSD.
 N.D. = "NOT DETERMINED" IN THIS SAMPLE.

يتعبين

6620 KITIMAT ROAD, UNIT 4 MISSISSAUGA, ONTARIO, CANADA. L5N 288.

Phone : (416) 826-3080

Telex : 06-218215

	TIVATION ANALYS		•	27	-AFR-87
FOR : SAMPLE :	NUSPAR RÉSOURC 1-8	ES LID.	MOISTURE CONT	ENT =	0.0 %
ELEMENT	CONTENT	RSD,%	ELEMENT	CONTENT	RSD,%
GALLIUM GERMANIUM INDIUM NIOBIUM	< 20.0 < 200. < 0.200 < 1.900E+03	3	RHENIUM STRONTIUM TITANIUM (%) VANADIUM	< 1.00 < 220. 0.332 162.	8.9 4.3

بعبين ا

NOTES : - RESULTS IN MICROGRAMS PER GRAM DRY WEIGHT (EXCEPT AS NOTED). - RSD = RELATIVE STANDARD DEVIATION (1 SIGMA), IN PER CENT.

- EXTRA SIGNIFICANT FIGURES ARE QUOTED. ROUND RESULTS IN ACCORDANCE WITH OUR ESTIMATE OF THE INDIVIDUAL RSD. - N.D. = "NOT DETERMINED" IN THIS SAMPLE.

008

17.

6620 KITIMAT ROAD, UNIT 4 MISSISSAUGA, ONTARID, CANADA. L5N 288.

Phone : (416) 826-3080

Telex : 06-218215

NEUTRON ACTIVATION ANALYSIS REPORT			27	7-APR-87
SAMPLE : 1-9		MOISTURE CONT	ENT =	0.0 %
ELEMENT	CONTENT RSD,%	ELEMENT	CONTENT	RSD,%
GALLIUM GERMANIUM INDIUM	< 20.0 < 200. < 0.200	RHENIUM STRONTIUM TITANIUM (%)	< 1.00 550. 0.328	19.1 9.0
NIOBIUM	< 1.900E+03	VANADIUM	156.	4.3

- RESULTS IN MICROGRAMS PER GRAM DRY WEIGHT (EXCEPT AS NOTED). NOTES : - RSD = RELATIVE STANDARD DEVIATION (1 SIGMA), IN PER CENT. - EXTRA SIGNIFICANT FIGURES ARE QUOTED. ROUND RESULTS IN ACCORDANCE WITH OUR ESTIMATE OF THE INDIVIDUAL RSD. - N.D. = "NOT DETERMINED" IN THIS SAMPLE.

6620 KITIMAT ROAD, UNIT 4 MISSISSAUGA, ONTARIO, CANADA. L5N 288. Phone : (416) 826-3080

Telex : 06-218215

010

NEUTRON AC	TIVATION ANALYSIS REPORT NUSPAR RESOURCES LTD.		27	-APR-87
	2-10	MOISTURE CONT	ENT =	0.0 %
ELEMENT	CONTENT RSD,%	ELEMENT	CONTENT	RSD,%
GALLIUM GERMANIUM INDIUM NIOBIUM	< 20.0 < 200. < 0.200 < 1.800E+03	RHENIUM STRONTIUM TITANIUM (%) VANADIUM	<pre>&lt; 1.00</pre>	25.5 6.5 3.6

<u>NOTES</u>: - RESULTS IN MICROGRAMS PER GRAM DRY WEIGHT (EXCEPT AS NOTED). - RSD = RELATIVE STANDARD DEVIATION (1 SIGMA), IN PER CENT. - EXTRA SIGNIFICANT FIGURES ARE QUOTED. ROUND RESULTS IN ACCORDANCE WITH OUR ESTIMATE OF THE INDIVIDUAL RSD.

- N.D. = "NOT DETERMINED" IN THIS SAMPLE.

......

## ۲

6620 KITIMAT ROAD, UNIT 4 MISSISSAUGA, ONTARIO, CANADA. L5N 288.

1 . .

. . . . . .

.....

Phone : (416) 826-3080

Telex : 06-218215

011

114.

NEUTRON ACT	TIVATION ANALYSIS REPORT NUSPAR RESOURCES LTD.	RT 27-APR-1		-APR-87
SAMPLE :	2-11	MOISTURE CONT	ENT =	0.0 %
ELEMENT	CONTENT RSD,%	ELEMENT	CONTENT	RSD,%
GALLIUM GERMANIUM INDIUM NIOBIUM	< 20.0 < 200. < 0.200 < 2.100E+03	RHENIUM STRONTIUM TITANIUM (%) VANADIUM	< 1.00 280. 0.544 334.	39.3 6.3 3.5

 NOTES : - RESULTS IN MICROGRAMS PER GRAM DRY WEIGHT (EXCEPT AS NOTED).
 - RSD = RELATIVE STANDARD DEVIATION (1 SIGMA), IN PER CENT.
 - EXTRA SIGNIFICANT FIGURES ARE QUOTED. ROUND RESULTS IN ACCORDANCE WITH OUR ESTIMATE OF THE INDIVIDUAL RSD.
 - N.D. = "NOT DETERMINED" IN THIS SAMPLE.

6620 KITIMAT RDAD, UNIT 4 MISSISSAUGA, ONTARIO, CANADA. L5N 288.

· · · ·

Phone : (416) 826-3080

Telex : 06-218215

012

1.2.

NEUTRON ACTIVATION ANALYSIS REPORT FOR : NUSPAR RESOURCES LTD.			27	'-AFR-87
SAMPLE :		MOISTURE CON	ENT =	0.0 %
ELEMENT ·	CONTENT RSD,%	ELEMENT	CONTENT	RSD,%
GALLIUM GERMANIUM INDIUM NIOBIUM	< 20.0 < 200. < 0.200 < 1.700E+03	RHENIUM STRONTIUM TITANIUM (%) VANADIUM	< 1.00 < 180. 0.402 210.	6.6 3.7

<u>NOTES</u>: - RESULTS IN MICROGRAMS PER GRAM DRY WEIGHT (EXCEPT AS NOTED). - RSD = RELATIVE STANDARD DEVIATION (1 SIGMA), IN PER CENT. - EXTRA SIGNIFICANT FIGURES ARE QUOTED. ROUND RESULTS IN ACCORDANCE WITH OUR ESTIMATE OF THE INDIVIDUAL RSD. - N.D. = "NOT DETERMINED" IN THIS SAMPLE:

6620 KITIMAT ROAD, UNIT 4 MISSISSAUGA, ONTARIO, CANADA. L5N 288: Phone : (416) 826-3080

Telex : 06-218215

NEUTRON ACT	TIVATION ANALYSIS REPORT NUSPAR RESOURCES LTD.		27	-APR-87
SAMPLE :	3-13	MOISTURE CONTE	NT =	0.0 %
ELEMENT	CONTENT RSD,%	ELEMENT	CONTENT	RSD,%
GALLIUM GERMANIUM	< 20.0 < 200.	RHEN1UM STRONTIUM	< 1.00 < 190.	ï
INDIUM NIOBIUM	< 0.200 < 1.700E+03	TITANIUM (%) YANADIUM	0.415 221.	6.8 3.7

<u>NOTES</u>: - RESULTS IN MICROGRAMS PER GRAM DRY WEIGHT (EXCEPT AS NOTED). - RSD = RELATIVE STANDARD DEVIATION (1 SIGMA), IN PER CENT. - EXTRA SIGNIFICANT FIGURES ARE QUOTED. ROUND RESULTS IN ACCORDANCE WITH OUR ESTIMATE OF THE INDIVIDUAL RSD. - N.D. = "NOT DETERMINED" IN THIS SAMPLE.

013

64.

1.1

014

. !

6620 KITIMAT	ROAD, UNIT 4	Phone : (416) 826-3080
MISSISSAUGA,	ONTARIO,	
CANADA. L5N	288.	Telex : 06-218215

NEÙTRON AC FOR :	TIVATION ANALYS			27	-AFR-87
SAMPLE :		EB LID.	MOISTURE CON	TENT =	0.0 %
ELEMENT	CONTENT	RSD,%	ELEMENT	CONTENT	RSD,%
GALLIUM GERMANIUM INDIUM NIOBIUM	< 20.0 < 200. < 0.200 < 1.700E+03		RHENIUM STRONTIUM TITANIUM (%) VANADIUM	<pre> 1.00  &lt; 200.     0.393     206.</pre>	7.4 3.9

NOTES : - RESULTS IN MICROGRAMS PER GRAM DRY WEIGHT (EXCEPT AS NOTED). - RSD = RELATIVE STANDARD DEVIATION (1 SIGMA), IN FER CENT. - EXTRA SIGNIFICANT FIGURES ARE QUOTED. ROUND RESULTS IN

ACCORDANCE WITH OUR ESTIMATE OF THE INDIVIDUAL RSD. - N.D. = "NOT DETERMINED" IN THIS SAMPLE.

44

.*

6620 KITIMAT ROAD, UNIT 4 MISSISSAUGA, ONTARIO, CANADA. L5N 288. Phone : (416) 826-3080

Telex : 06-218215

NEUTRON A	CTIVATION ANALYSIS REPORT NUSPAR RESOURCES LTD.	2	7-APR-87
SAMPLE :		MOISTURE CONTENT =	0.0 %
ELEMENT	CONTENT RSD,%	ELEMENT CONTENT	RSD,%
GALLIUM GERMANIUM INDIUM	< 20.0 < 200. < 0.200	RHENIUM < 1.00 STRONTIUM 370. TITANIUM (%) 0.452	26.3
NIOBIUM	< 1.900E+03	TITANIUM (%) 0.452 VANADIUM 220.	3.9

NOTES :	- RESULTS IN MICROGRAMS PER GRAM DRY WEIGHT (EXCEPT AS NOTED).
	- RSD = RELATIVE STANDARD DEVIATION (1 SIGMA), IN PER CENT.
	- EXTRA SIGNIFICANT FIGURES ARE QUOTED. ROUND RESULTS IN
	ACCORDANCE WITH OUR ESTIMATE OF THE INDIVIDUAL RSD.
	- N.D. = "NOT DETERMINED" IN THIS SAMPLE.

43.

016

6620 KITIMAT ROAD, UNIT 4 MISSISSAUGA, ONTARIO, CANADA. L5N 288. Phone : (416) 826-3080

Telex : 06-218215

 NEUTRON ACTIVATION ANALYSIS REPORT
 27-APR-87

 FOR:
 NUSPAR RESOURCES LTD.

 SAMPLE:
 3-16

 MOISTURE CONTENT
 =

 EMENT
 CONTENT

 GALLIUM
 < 20.0</td>

 GERMANIUM
 < 200.</td>

 INDIUM
 < 0.200</td>

 NIOBIUM
 < 1.800E+03</td>

 <u>NOTES</u>: - RESULTS IN MICROGRAMS PER GRAM DRY WEIGHT (EXCEPT AS NOTED).
 - RSD = RELATIVE STANDARD DEVIATION (1 SIGMA), IN PER CENT.
 - EXTRA SIGNIFICANT FIGURES ARE QUOTED. ROUND RESULTS IN ACCORDANCE WITH OUR ESTIMATE OF THE INDIVIDUAL RSD.
 - N.D. = "NOT DETERMINED" IN THIS SAMPLE.

6620 KITIMAT ROAD, UNIT 4 MISSISSAUGA, ONTARIO, CANADA. L5N 288.

Phone: (416) 826-3080

Telex : 06-218215

NEUTRON ACTIVATION ANALYSIS REPORT 27-APR-87 FOR : NUSPAR RESOURCES LTD. MOISTURE CONTENT SAMPLE : 4-17 = 0.0 % ELEMENT CONTENT RSD,% ELEMENT CONTENT RSD,% RHENIUM < 1.00 STRONTIUM 340. 25.2 TITANIUM (%) VANADIUM 0.386 7.3 NIDBIUM < 1.800E+03 157. 4.3

NOTES : - RESULTS IN MICROGRAMS PER GRAM DRY WEIGHT (EXCEPT AS NOTED). - RSD = RELATIVE STANDARD DEVIATION (1 SIGMA), IN PER CENT. - EXTRA SIGNIFICANT FIGURES ARE QUOTED. ROUND RESULTS IN ACCORDANCE WITH OUR ESTIMATE OF THE INDIVIDUAL RSD. - N.D. = "NOT DETERMINED" IN THIS SAMPLE.

017

6620 KITIMAT ROAD, UNIT 4 MISSISSAUGA, ONTARIO, CANADA. LSN 288.

Phone : (416) 826-3080

Telex : 06-218215

018

	IVATION ANALY			27	-APR-87
	NUSPAR RESOUR 5-18	LES LID.	MOISTURE CONT	ENT =	0.0 %
ELEMENT	CONTENT	RSD,%	ELEMENT	CONTENT	RSD,%
GALLIUM GERMANIUM INDIUM NIOBIUM	< 20.0 < 200. < 0.200 < 1.500E+0	3	RHENIUM STRONTIUM TITANIUM (%) VANADIUM	< 1.00 210. 0.357 208.	33.6 6.9 3.7

NOTES :	- RESULTS IN MICROGRAMS PER GRAM DRY WEIGHT (EXCEPT AS NOTED).
	- RSD = RELATIVE STANDARD DEVIATION (1 SIGMA), IN PER CENT.
	- EXTRA SIGNIFICANT FIGURES ARE QUOTED. ROUND RESULTS IN
	ACCORDANCE WITH OUR ESTIMATE OF THE INDIVIDUAL RSD.
	- N D = "NOT DETERMINED" IN THIS SAMPLE.

م **م**یر:

6620 KITIMAT ROAD, UNIT 4 MISSISSAUGA, ONTARIO, CANADA. L5N 288.

1

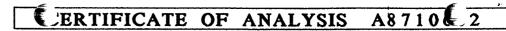
114 6 8.4

Phone : (416) 826-3080

.

Telex : 06-218215

	TIVATION ANALYS				27	'-APR-87
FOR : SAMPLE :	NUSPAR RESOURCI 5-19			MOISTURE CONT	ENT =	0.0 %
ELEMENT	CONTENT	RSD,%	*	ELEMENT	CONTENT	RSD,%
GALLIUM GERMANIUM INDIUM NIOBIUM	< 20.0 < 200. < 0.200 < 1.600E+03			RHENIUM STRONTIUM TITANIUM (%) VANADIUM	< 1.00 290. 0.437 230.	25.5 6.2 3.7


NOTES :	- RESULTS IN MICROGRAMS PER GRAM DRY WEIGHT (EXCEPT AS NOTED).
	- RSD = RELATIVE STANDARD DEVIATION (1 SIGMA), IN PER CENT.
	- EXTRA SIGNIFICANT FIGURES ARE QUOTED. ROUND RESULTS IN
	ACCORDANCE WITH OUR ESTIMATE OF THE INDIVIDUAL RSD.
	- N D = "NOT DETERMINED" IN THIS SAMPLE.





212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984-0221



To : NUSPAR RESOURCES LTD.

205 - 493 BURNSIDE RD. E. VICTORIA, BC V8T 2X3

*Page No. :1-A Tot. Pages: 1 :23-MAR-87 Date Invoice # : I-8710682 P.O. # : NONE

Project :

Comments: ATTN: L. E. SAWYER

SAMPLE PRI DESCRIPTION CON		Sb AS ppm pp				B ppm	Br NAA ppm	Cd ppm			Ce NAA ppm	Cs NAA ppm		Coppm (ICP)				F ppm
CMI -1         /-/         214           CMI -5         /-5         214           CMI -8         /-5         214           CMI -13         /-73         205           CMI -14         /-74         205	9.07	0.6 0.2 0.1	6 360 4 310 4 320 2 260 1 1230	0.7 0.8 0.7	0.1		< 0.5 < 0.5 < 0.5	0.1 0.1 0.1	2.44 2.30 2.16 2.32 4.41	0.18 0.15 0.17 0.30 0.15	21 21 20	<1.0 <1.0 <1.0	79 84 88	23 20 21 20 15	25	3 3 2 3 3		390 340 390
CMGS 9 205	1.21	0.2	55 70	0.1	0.2	9	< 0. 9	0.1	0.22	0.03	12				265		0.2	90
												BRTIFICA						



## Analytical Chemists * Geochemists * Registered Assayers

212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984-0221



To : NUSPAR RESOURCES LTD.

205 - 493 BURNSIDE RD. E. VICTORIA, BC V8T 2X3

*Page No. : 1-B Tot. Pages: 1 Date : 2 3-MAR-8 7 Invoice # : I-8710682 P.O. # :NONE

Project :

.

Comments: ATTN: L. E. SAWYER

SAMPLE DESCRIPTION	PR CO	Ga ppm	Ge ppm	Ац NAA ррb	Hf NAA ppm	Fe % ( ICP)	La NAA ppm	Pb ppm (ICP)		Lu NAA ppm	Mg % (ICP)	Mappm (ICP)				ĸ
OMI-1 /-/ OMI-5 /-5 OMI-8 /-8 OMI-13 /-/3 OMI-14 /-/4	214 214 205 205 205		1 1 2 1 1 1	0 2010 0 2140 0 14 0 15 0 16	0 1.7 1.6 1.6	7.24 6.72 6.39	10 11 9	10		$\begin{array}{rrrr} 4 & < 1.0 \\ 4 & < 1.0 \\ 5 & < 1.0 \\ 5 & < 1.0 \\ 5 & < 1.0 \\ 5 & < 1.0 \end{array}$	2.84 3.12 2.94	610 845 90				
CMGS 9	205	 (	5 1	0 10	> < 0.5	63.1	9	5	3	2 < 1.0	0.81	6 50				
					-											
						*							-			
														i i i		

۹



.

## Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE , NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221

•

**CERTIFICATE OF ANALYSIS A8710** 83

To : NUSPAR RESOURCES LTD.

205 - 493 BURNSIDE RD. E. VICTORIA, BC V8T 2X3 *Page No. : 1-A Tot. Pages: 1 Date : 23-FEB-87 Invoice #: 1-8710683 P.O. # : NONE

Inn

Project : Comments: ATTN: L. E. SAWYER

	PLE IPTION	PR. COI		Moppm (ICP)	Nd NAA ppm	Nippm (ICP)		P ppm (ICP)		Rb ppn	1	Sc NAA ppm		SiO2 % fusion	Ag ppm AAS		Srppm (ICP)		Ta NAA ppm	1	Tb NAA ppm
CM1-1 CM1-5 CM1-8 CM1-13 CM1-14	1-5 1-8 1-13	214 214 214 214 214 214	610 120 100 100 120	3	6	37 26 13 11 5	< 20 < 20 < 20 < 20 < 20 < 20	750 720	0.92 0.95 0.92 0.94 1.34	1 1 14 14	2.4	19.6 21.3 18.9	0.2 0.2 0.2	55.80 56.00 56.30	1.0 < 0.5 < 0.5	4.03 4.18 4.17	420 315 315	4.01 4.39	<pre>&lt; 1 &lt; 1</pre>	0.25 0.15 0.20	<   <   <   <
CMGS 9		214		< 1	< 5	6	< 20	300	0.04		0.8	4.9	0.2	14.10	< 0.5	0.05	20	5.55	< 1	0.10	< 1
					-2																

CERTIFICATION :



.

# Chemex Labs Ltd.

212 BROOKSBANK AVE., NORTH VANCOUVER. BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984-0221

ERTIFICATE OF ANALYSIS A8710 3

To : NUSPAR RESOURCES LTD.

205 - 493 BURNSIDE RD. E. VICTORIA, BC V8T 2X3 *Page No. : 1-B Tot. Pages: 1 Date : 23-FEB-87 Invoice # : 1-8710683 P.O. # : NONE

rehler

Project : Comments: ATTN: L. E. SAWYER

SAMPLE DESCRIPTION	PRE			Th NAA ppm	Sn ppm	Ti % (ICP)	w ppm	U fluor ppm	V ppm (ICP)	Yb NAA ppm	Y (XRF) ppm	Zn ppm (ICP)	Zr (XRF) ppm				
MI-8 1-8	214 214 214 214 214 214		0.1 0.1 0.1 0.1	1.9		0.449 0.449 0.483 0.442 0.408		0.6 0.2 0.6 1.0 0.8	177	1.8 1.6 1.7 1.6 2.4	20	32 18 59 24 40	65 70 93 67 115	 •		· · · ·	
CMCS 9	214	-	0.1	< 0. :	5	0.088		< 0.1		0.2	< 20	30					
	•				•												
																F	

CERTIFICATION :

#401-3700 Gilmore Way, Burnaby, B.C., Canada V5G 4M1 7el:(60

Tel: (604) 438-5226

#### ANALYSIS OF GEOLOGICAL SAMPLES

To:	Nusoar Resources Ltd	Workorder: 6943
	205 - 493 Burnside Road East	Received : 07-May-87
	Victoria, B. C.	Completed: 20-May-87
	VBT 2X3	•

Attn: Mr.L.E.Sawyer

Re: Chemical Analysis of Rock Samples

Samole type	l Sand	Sand i	Sand	Sand	Sand
Identification	I A1	I A2	I A3 I	E1	BB
Lab Reference #	1 6943-001	6943-002	6943-003	6943-004	6943-005
Analyzed by Plasma	Emission Spe	ctroscopy (10		). 	
Method used	l Total	Total	Total	Total	Total
Precious Metals by	Fire Assay		he was now only now one over over one over one of		-
Gold Au	0.04	0.01	0.30	Ø.38	0.05
Palladium Pd	0.01	0.01	0.01	Ø.Ø1	0.01
Platinum Pt	0.02	1 < 0.02	0.03	0.02	0.02
Rhodium Rh	1 ( 0.03	< 0.03	( 0.03	< 0.03	< 0.03
Results in	l oom	maa	maa	oom i	noc
Majors as Oxides		4a am wa wa am an	n ande anne ande anne ande anne anne ann		
Silicon % SiO2	55.8	51.9	52.7	56.5	53.e
Aluminum %Al203	1 15.7	17.0 1	13.7	13.9	14.7
Iron %Fe2O3	10.6	13.3	13.5	9.91	12.6
Calcium % CaO	4.98	4.62	5.17 /	5.35 (	4.83
Magnesium % MpO	3,41	3.78	3.44	4.10	4.13
Sodium % Na2O	4.05	5.01	2.46	2.35	3.17
Potassium 🛪 K2O	i Ø.95	1.01	1.76	1.95	1.31
Barium % BaO	0.026	0.029 !	0.029	0.024	0.027
Manganese % MnO	0.11	0.11	0.11	Ø.12	0.14
Phosphorus% P205	0.17	0.17	0.14 1	0.20 /	0.14
Strontium % SrO	0.027	0.033	0.027	0.024	0.026
Titanium 🕺 TiO2	0.94	1 1.10	0.77	0.70	0.80
Zirconium 🛪 ZrO2	( 0.001	0.005	0.009	0.007	0.01
Loss on Ignition	3.72	1 1.97 1	6.74	5.29 1	4 - 94
Total Oxides %	100.5	100.3	101.4	100.3	99.9
Total Carbon %C	2.63	0.55	Ø. 41	Ø. 55	Ø, 33
	6.68	7.34	7.31	3.81	3.44

quanta trace laboratories inc.#401-3700 Gilmore Way, Burnaby, B.C., Canada V56 4M1Tel:(604)438-5226 

#### To: Nusoar Resources Ltd

W/D: 6943 Page 2

Sample type Identification Lab Reference #		9 Sand A1 6943-001	Sand   A2   6943-002	Sand   A3     6943-003	Sand B1 6943-004	Sand B2 6943–005
Analyzed by Pla	sma i	Emission Spe	trascaav (I			
Method used			Total	Total i	Total	Total
Trace Elements-			nfer ann 1111 ann 1111 ann 1111 ann ann ann	for some were some some some some some some some som	** **** ***** **** **** **** **** **** ****	
Silver	Ap	0.2	0.2	0.2	2.8	0.4
Arsenic	As	i ( 3Ø	0 30	I ( 3Ø	< 30	( 30
Boron	B	l < 1.	3.	10. 1	8.	6.
Beryllium	Be	Ø.2	Ø.2	0.2	0.2	0.2
Bismuth	Bi	05 >	( 20	1 ( 2Ø )	(20)	< 2Ø
Cadmium	Cd	Ø.5	0.2	( Ø.1	0.2	0.1
Cobalt	Co	38.	41.	30. 1	20.	æ.
Chromium	Cr	77.	83. •	106.	102.	140.
Copper	Cu	156	171	57 !	87	147
Mercury	Нņ	5.0	6.7	2.2	3.5	3.9
Molybdenum	Mo	) < 3	< 3	5	4	13
Nickel	Ni	61	58	31	42	75
Lead	РЬ	9	8	7 1	10	9
Antimony	Sb	1 < 0.2	( 0.2	( 0.2	( 0.2	0.7
Selenium	Se	( 10	10	< 1Ø i	( 10 )	< 10
Thorium	Th	0.7	0.6	1.2	1.2	1.5
Uranium	U	0.2	i ( 🕅 1	0.2	Ø.3 i	0.3
Vanadium	V	276	259	187	171	187
Zinc	Zri	138	117	69	157 /	247
are Earth Elem	ents-	fo 1111 1411 1411 ann ann ann ann 1111 1111	afar 2019 sawa sawa sawa wana wana wana sawa sawa	(** **** **** **** **** **** **** ****		
Cerium	Ce	23.4	26.0	35.3	33.2	42.3
Dysorosium	Dy	2.2	2.8	2.9	2.2	Ξ.1
Erbium	Er	1.3	1.7	1.8	1.6 /	1.9
Europium	Eu	0.9	1.1	1.1	i.1 !	1.1
Gadolinium	Gd	1.7	1.9	1.8	1.9 1	2.2
Holmium	Ho	0.5	0.7	0.7	Ø.6	Ø.8
Lanthanum	La	11.3	12.2	17.5	16.0 1	20.6
Lutetium	Lu	0.3	21.4	0.4	Ø.4	Ø.4
Neodynium	Nd	14.8	17.9	21.0 !	19.9 )	24.2
Praseodynium	₽r	1.7	8.1	2.4	2.4	3.2
Samarium	Sm		3.3	3.5	4.0	4.4
Terbium	Тb	0.3	Ø.3	Ø.4 I	0.4	0.4
Thullium	Tm	Ø. 2	0.3	0.3 1	0.3	Ø.3
Yttrium	Y	22.8	22.7	22.0		21.5
Ytterbium	Yb	2.1	E.7 I	2.7 1	2.6	317.
isc. Trace Elem	ents-		f			
Gallium	Ga	12.	9. 1	7. 1	7. 1	8.
Germanium	Ge	1.	1	1. 1		1.
Niobium	Nb	4.3	4.2	5.8	12.6 (	7.4
Tin	Sri		Ë. 7	8.7	3.4	7.4
Tantalum	Ta		0.8	0.9	Ø.9	42 44 
Tellurium	Te		Ø.i	Ø.2 I	Ø.2	Ø. 1
Tunesten	W		1230.	281.	578.	723.
Results in		me a	i nac	oom i		nc o

quanta trace laboratories inc.

#401-3700 Gilmore Way, Burnaby, B.C., Canada V5G 4M1 Tel:(604)438-5226 

W/D: 6943 Page 3

#### To: Nuspar Resources Ltd

Sample type Identification Lab Reference #	Sand   B3   6943-006	i Sand I I B4 I I 6943-007 I	Sand C1 6943-008	Sand D1 6943-009	Sand D2 6943-010
Analyzed by Plasma					for 1999, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019,
Method used	l Total	I Total	Total	Total	l Total
Precious Metals	,	fer sam nan ann an air ain ann ann ann an aif 1 an Ar 1770 - 1	به مده درم بیده می بیده محمد می است است است است است ا در این از این	- ۲۰۰۰ ۲۰۰۰ - ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰	
Gold Au Palladium Pd		0.49     0.01	Ø.34 Ø.01	0.32	0.03
Platinum Pt	0.01	0.01     0.02		Ø.01 Ø.02	0.01 0.02
Rhodium Rh	1 ( 0.03		( 0.03	( 0.03	0.02
Results in			DDM	00.03 DDM	ממכי אייי
Majors as Oxides		د در در در در می	: به سمر منبد سند منبد برداد الما حسر مند مداد منبر منب م		۲۰۰۱ (۲۰۰۰ ۲۰۰۱ میلو محمد محمد محمد محمد محمد محمد محمد محمد
Silicon × SiO2	53.4	1 52.4 1	55.6	54.5	54.9
Aluminum %Al203	16.0	16.0 .1		15.6	16.4
Iron %Fe2O3	1 11.5	13.9 1	10.9	10.7	11.0
Calcium % CaO	4.47	5.03 1	1.56	2.66	2.86
Mapnesium % MpO	3.73	3.65 /	2.79	3.59	3.19
Sodium 🛪 Na20	3.23	3.48 1	4.90	2.96	2.86
Potassium % K2O	1.30	1.29	0.94	1.10	1.64
Barium % BaO	0.025	I 0.022 I	0.034	0.030	0.048
Manganese % MnO	0.12	0.12 )	0.033	0.039	0.046
Phosohorus% P205	) Ø.14	i Ø.17 i	0.12	0.17	0.12
Strontium 🛠 SrO	0.035	0.033	0.031	0.030	0.029
Titanium % TiD2	0.72	0.71	0.68	0.65	0.67
Zirconium % ZrO2	0.008		0.009	0.006	0.007
Loss on Ignition	5.14	3.68	6.59	7.65	6.93
Total Oxides %	99.6	99.4	99.7	99.9	100.7
Total Carbon %C	1 0.32	0.45	0.03	0.08	/ Ø.11
Total Sulfur %S	3.52	I 3.07 I	7.05	6,29	6.79

quanta trace laboratories inc.

Tel:(604)438-5226

W/D: 6943

#401-3700 Gilmore Way, Burnaby, B.C., Canada V56 4M1 

Pape 4

#### To: Nuspar Resources Ltd

Samole type Identification Lab Reference #	:	Sand B3 6943-006	Sand B4 6943–007	l Sand C1 6943–008	l Sand D1 6943–009	Sand   D2   6943–010
Analyzed by Pla	sma l	Emission Spec	rtrascaav (1)		fer 1444, 1444, 1444, 1444, 1444, 1444, 1444, 1444, 1444, 1444, 1444, 1444, 1444, 1444, 1444, 1444, 1444, 1444	fer same anen soner anne soner anne same same same soner anne anne anne anne anne anne anne a
Method used		Total			Total	Total
Trace Elements-		•• •••• •••• •••• •••• •••• •••• •••• ••••	fo and ann and ann ann ann ann ann ann ann	fa		• •• • •• •• •• ••
Silver	Ap	0.2	0.6	0.6	0.4	0.4
Arsenic	As		( 30	( 30	1 ( 30	30
Boron	B	4.	6.	1.	5.	3.
Beryllium	Be	0.3	. 0.2	0.3	0.3	0.3
Bismuth	Bi	(20)	< 20	< 20	( 20	1 < 20
Cadmium	Cd	( Ø. 1	( 21.1	( 0.1	( Ø. 1	1 ( 0.1
Cobalt	Co	21.	24.	27.	22.	29.
Chromium	Cr		159.	125.	85.	151
Copper	Cu		127 ·	63	55	111
Mercury	Ho	3.6	4.0	3.6	1.6	4.7
Molybdenum	Mo	7	11	4	4	4
Nickel	Ni	62	68	37	38	59
Lead	Pb	15	15	5	5	11
Antimony	Sb	1 21.4	0.5	0.1	0.1	0.2
Selenium	Se	< 10	(10)	( 12)	( 10	10
Thorium	Th	1.3	1.2	1.0	0.8	0.9
Uranium	U .	0.2	0.3	0.2	0.1	Ø.1
Vanadium	V	177	170	165	192	178
Zinc	Zri	263	145	39	34	84
Rare Earth Elem	ents-	fo		for same stars with state only save some must been again same of		fre anno 2018 some como como como como ante como ante com
Cerium	Ce	34.4	35.2	32.1	28.4	27.3
Dysprosium	Dy	2.7	2.5	2.0	2.4	2.5
Erbium	Er	1.5	1.4	1.2	1.5	1.5
Europium	Eu	1.1	1.0	1.0	1.0	0.9
Gadolinium	Gd	1.9	1.8	1.8	1.7	1.7
Holmium	Ho	0.6	0.6	0.5	0.6	0.6
Lanthanum	La	16.9	17.3	16.8	14.6	13.5
Lutetium	Lu	Ø.4	0.3	0.4	0.4	0.4
Neodynium	Nd	20.3	20.0	16.9	16.5	15.8
Praseodynium	Pr	2.4	2.5	2.2	2.1	2.0
Samarium	Sm	3.6	3.5	2.8	2.8	3.2
Terbium	ТЬ	0.3	Ø.3	0.3	Ø.3	0.3
Thullium	Tm	0.3 1	0.2	0.2	0.2	0.3
Yttrium	Y	19.7	17.6	17.5	18.7	19.3
Ytterbium	Yb I	2.5	2.2	2.6 1	2.3	2.2
Misc.Trace Elem	ents-					
Gallium	Ga		э.	8.	10.	9.
Germanium	Ge	<u>.</u>	1.	1. 1	1.	1.
Niobium	Nb	4.i	3.9	5.6	4.0	4.5
Tin	Sn	3.6	3.2	2.2	2.1	2.Ø
📕 Tantalum	Tal	1.0	Ø.9 I	1.3 1	1.Ø i	0.7
Tellurium	Te	Ø.1	2.1	2.1	Ø. 1	0.1
Tungsten	W	711.	698.	533. 1	265. I	784.
Results in		mea	moo	l nom	oom	000

15. ...

quanta trace laboratories inc. #401-3700 Gilmore Way, Burnaby, B.C., Canada V5G 4Mi Tel:(60

Tel:(604)438-5226

#### To: Nuspar Resources Ltd

W/D: 6943 Page 5

Samole type Identification Lab Reference #	Sand   D3   6943-011	l Sand D4 6943-012	DD Core E1 6943-013	DD Core E2 6943-014	DD Core E3 6943-015
Analyzed by Plasma Method used	Total	ctroscopy (I(   Total	CAP)   Total	Total	Total
Precious Metals Gold Au Palladium Pd Platinum Pt Rhodium Rh Results in Majors as Dxides	) 0.01 ) ( 0.01 ) ( 0.02 ) ( 0.03 ) com	0.01 ( 0.01 ( 0.02 ( 0.03 ) 0.03	< 0.01 0.01 0.02 < 0.03 00m	0.01 < 0.01 < 0.02 < 0.03 	0.01 ( 0.01 ( 0.02 ( 0.03 DDM
Silicon % SiO2 Aluminum %Al2O3 Iron %Fe2O3 Calcium % CaO Mapnesium % MpO Sodium % Na2O Potassium % K2O Barium % BaO Manganese % MnO	<pre> 2 54.6 1 17.2 1 0.1 2 3.22 3.16 3.29 1 3.29 1 0.039 0.044 0.12 0.12 0.033 0.070 0.007</pre>	53.1 16.4 11.7 3.58 3.02 3.11 1.28 0.039 0.049 0.12 0.030 0.12 0.030 0.67 0.006 6.66	0.069 0.19 0.038 0.67	56.0 15.6 8.87 2.57 4.43 4.24 0.81 0.018 0.090 0.17 0.036 0.65 0.010 5.32	50.9 14.7 14.9 2.01 3.58 3.84 0.63 0.016 0.051 0.17 0.031 0.57 0.006 8.36
Total Oxides %	100.1	99.8	100.6	98.8	99.6
Total Carbon %C Total Sulfur %S	0.21 6.10	0.23 7.13	0.19 5.00	Ø.22 4.72	0.16 10.9

quanta trace laboratories inc. #401-3700 Gilmore Way, Burnaby, B.C., Canada V5G 4M1 Tel:(604)438-5226

W/D: 6943 Pape 6

#### , To: Nusoar Resources Ltd

Sample type Identification		l Sand D3	I Sand I D4 I	DD Core E1	I DD Core E2	DD Core E3
_ab Reference #		6943-011	6943-012	6943-013		6943-015
Analyzed by Pla	sma I		etroseopy (I			fu ann ann ann ann ann ann ann ann ann an
Method used		l Total	I Total	Total	l Total	! Total
Trace Elements-		••••••••••••••••••••••••••••••••••••••	\$1	fu ann ann nan ann <mark>ann ann</mark> ann ann ann ann ann ann a	+	
Silver	Ag		0.6	0.6	0.4	0.6
Arsenic	As	) < 30	2 < 30	30	1 ( 30 .	1 < 30
Boron	B	9.	1 1.	2.	i 1.	6.
Beryllium	Be	Ø.4	0.2	0.2	1 2.1	1 0.2
Bismuth	Bi	1 ( 20	20	4 20	1 < 20	K 20
Cadmium	Cd	1 0.2	2.4	/ 0.1	) ( Ø. 1	1 ( 21.1
Cobalt	Co	26.	32.	22.	18.	19.
Chromium	Cr	105.	107.	77.	96.	; 144
Copper	Cu	96	120 .	19	11	10
Mercury	He	4.1	6.6	0.2	0.2	0.2
Molybdenum	Mo	4	1 5 1	4	3	3
Nickel	Ni	53	· 59	17	18	11
Lead	Pb	i 10	1 9 1	11	6	1 7
Antimony	Sb	i Ø.1	0.1	0.1	0.1	, 1 0.1
Selenium	Se		( 10	< 10 I		
Thorium	Th	0.9	2.7	0.7	2.8	! Q.7
Uranium	U	Ø.1	i Qi. 1			
				0.1	0.1	0.1
Vanadium	V	152	131	124	i 134	119
Zinc	Zri		1 88 I	17	24	1 14
Rare Earth El <mark>e</mark> m Cerium			4		ا سند بنده مند ماند ماند ماند ماند ماند ماند ماند	,
	Ce		25.8	31.7	53.6	25.6
Dysprosium	Dy		! 2.e	2.3	2.7	2.1
Erbium	Er		1.3	1.4	1.5	1.3
Europium	Eu		0.9	1.1	1.3	0.7
Gadolinium	Gd	1.7	1.8	1.7	2.3	1.4
Holmium	Ha		0.5	0.6	0.7	0.5
Lanthanum	La		12.6	15.9	27.5	13.3
Lutetium	Lu	0.3	0.3	0.4	0.4	0.3
Neodynium	Nd		1 15.9	16.8	27.6	14.2
Praseodynium	P٣		1.9	2.2	3.8	1.9
Samarium	Sm		2.9	3.3		2.6
Terbium	ТЬ		0.3	0.3	0.4	0.3
Thullium	Τm		0.2	0.2	0.3	0.2
Yttrium	Y	19.7	17.9	19.9	1 22.9	17.6
Ytterbium	ΥЬ	2.3	2.1	2.2	2.4	1.9
isc.Trace Elem	ents-		for every second se		fo and som one care and and the sam and and a	fer ann ann ann ann ann ann ann ann ann an
Gallium	Gal	10.	9.	8.	10.	9.
Germanium	Ge	1.	1 1 1	4 } 	1.	1.
Nicbium	NB I		3.7	3.8	4.2	5.8
Tin	Sn		1.9	1.6		2.0
Tantalum	Tal		0.7	0.7	2.7	0.8
Tellurium	Te		0.1	Ø. 1	0.1	Ø. 1
Tungsten	W	707.	1030.	8.5	12.2	3.1
Results in		, vor.		0.0		90M
URPATER 74		) (11) (11) (11) (11) (11) (11) (11) (1	الالبالية فبيا	، 1885 سنا سنا	ووافساسيا ب	111

quanta trace laboratories inc.

#401-3700 Gilmore Way, Burnaby, B.C., Canada V5G 4M1 Tel:(604)438-5226

Tel: (604) 438-5226

#### To: Nuspar Resources Ltd

W/D: 6943 Pape 7

Sample type Identification Lab Reference #	DD Core   E4   6943-016	DD Core E5 6943-017	DD Core E6   6943-018	DD Core F1 6943-019	DD Core   F2   6943-020
Analyzed by Plasma Method used Precious Metals	I Total	ctroscopy (I[   Total	CAP)	Total	F+ Total
Gold Au Palladium Pd Platinum Pt	) Ø.05   ( 0.01   Ø.02   ( 0.03   pom	0.11 0.01 0.02 0.03 0.03	0.01 0.01 0.02 0.02 0.03 0.03	0.04 0.16 ( 0.02 ( 0.03 55m	0.02 ( 0.01 ) ( 0.02 ) ( 0.03 ) Dom )
Silicon % SiO2 Aluminum %Al2O3 Iron %Fe2O3 Calcium % CaD Magnesium % MgO Sodium % Na2O Potassium % K2O Barium % BaO Manganese % MnO Phosphorus% P2O5	53.7         14.0         14.3         1.96         3.15         0.71         0.015         0.054         0.020         0.56         0.007	59.6         15.9         7.54         5.64         2.31         2.58         1.88         0.13         0.16         0.235         0.62         0.016         3.17	62.4 15.5 5.99 2.15 2.55 1.83 0.13 0.14 0.12 0.25 0.56 0.01 2.06	54.5 15.8 7.59 7.69 2.98 3.57 1.10 0.037 0.099 0.19 0.28 0.82 0.82 0.004 4.42	0.11 / 0.21 / 0.041 / 0.92 /
Total Oxides % Total Carbon %C	100.5	99.6	99.1	98.9	99.1     0.45
Total Sulfur XS	10.4	0.13	0.18     0.18	4.30	5.45

quanta trace laboratories inc.

#401-3700 Gilmore Way, Burnaby, B.C., Canada V56 4Mi Tel:(604)438-5226

#### ""To: Nuspar Resources Ltd

,

W/D: 6943 Page 8

······································		a ana ana ana ana ana ana ana ana ana a			DD Core	DD Core
Sample type		DD Core E4	DD Core	DD Core	F1	
Identification	3		E5			F2
Lab Reference #		6943-016	6943-017	6943-018	6943-019	6943-020
Analyzed by Plas	sma E	Emission Spec	troscopy (I	CAP)	\$* **** ****	fa uuu uuu uuu uuu aan aan aan aan aan aa
Method used	1	Total	Total	Total	Total	Total
Trace Elements-				fer were seen were were were enve and were seen were and and and	<b></b>	\$1
Silver	Ap	Ø.8	0.2	0.2	0.2	0.2
Arsenic	As	( 30	( 30	1 < 30	30	1 < 30
Boron	B	1.	5.	8.	I ( 1.	1 ( 1.
Beryllium	Be	0.2	· Ø. 4	0.5	0.2	0.1
Bismuth	Bi	< 2Ø	< 20	< 20	< 20	1 < 20
Cadmium	Cc	K Ø.1	( 0.1	i < Ø.1	0.1	i ( Q.i
Cobalt	Coll	18.	14.	· 14.	23.	29.
Chromium	Cr	127.	117,	154.	277.	151.
Copper	Cu	7	19	30	35	17
Mercury	Hg	0.1	0.1	0.1	1 21.1	0.1
Molybdenum	Mal	4	4	4	3	4
Nickel	Ni	14	9	7	8	17
Lead	Pb	10 1	9	7	6	7
Antimony	SЬ	0.1	0.1	0.2	0,1	0.1
Selenium	Se	< 1Ø	( 10	( 10	< 10	1 < 10
Thorium	Th	0.7	1.0	1.2	Ø.6	0.5
Uranium	UI	Ø. 1 I	0.2	0.3	Ø. 1	Ø. 1
Vanadium	V	140	176	138	240	264
Zinc	Zn	15	40	37	25	42
Rare Earth Eleme	ents			fa ann ann ann ach ann ann ann ann ann ann ann a	(** **** **** **** **** **** **** ****	fue sense anno anno anno anno anno anno anno ann
Cerium	Ce	28.5	34.8	35.3	19.4	23.3
Dysorosium	Dy	2.0	2.9	2.7	2.5	2.6
Erbium	Er I	1.2	1.6	1.6	1.5	1.5
Europium	Eu	0.8	1.1	1.0	0.9	1.0
Gadolinium	Gd I	1.6	2.0	1.9	1.6	2.1
Holmium	Ho	0.5	0.7	0.6	0.6	0.7
Lanthanum	La	14. i	17.8	18.7	8.7	10.3
Lutetium	Lu	0.3	0.4	0.5	0.4	0.4
Neodynium	Nd I	15.7	19.1	20.1	12.4	15.0
Praseodynium	Pr	2.0	2.7	2.4	1.5	1.8
Samarium	Sm I	2.9	3.4	3.3	3.i	3.5
Terbium	ть і	0.2	0.4	0.4	0.3	0.3
Thullium	Tm I	0.2	0.3	0.3	0.3	
Yttrium	Y	16.8	27.2	26.2		23.0
Ytterbium	Yb I		2.8	2.8	2.7	2.6
Misc. Trace Eleme	entst					
Gallium	Ga I		9. 1	9.	9.	10.
Germanium	Gel		1.	1.	1 #	1.
Niobium	NB I	5.5	7.8	5.1	5.1	4.0
Tin	Sri		1.6	1.4	6.1	2.5
Tantalum	Tal		ø. 9 i	Ø.9 )	0.7	0.5
Tellurium	Te	0.2	Ø. 1	Ø.1	0.1	2.1
Tunosten	W	3.4	2.8	3.4	1.6	2.9
Results in		Dom	nce	nco	aom	maa

.

quanta trace laboratories inc. #401-3700 Gilmore Way, Burnaby, B.C., Canada V5G 4M1 Tel:(604)438-5226

#### To: Nuspar Resources Ltd

W/D: 6943 Page 9

		ja maa ana ana ana maa maa maa maa ana an				
Samole type Identification	DD Core   F3   6943-021	DD Core   F4   6943-022	DD Core   61   6943-023	DD Core 62 6943-024	DD Core   63   6943-025	
Lab Reference #	1 6943-421	9943-022	6943-023	0943-024		
Analyzed by Plasma	Emission Spectroscopy (ICAP)tt					
Method used	Total	l Total		Total i	Total	
Precious Metals	a afa una am ana ana ara ara ara ara ara ara ara a	fer was now one one and and and and and and and and and	fr:		fe ann an	
Gold Au	1 Ø.Ø2	0.02	0.07	Ø.34	1.12 )	
Palladium Pd	0.09	0.01	0.01	0.01	I ( 0.01 I	
Platinum Pt	1 < 0.02	1 ( 0,02	( 0.02 )	Ø.02	0.02	
Rhodium Rh	< 0.03	1 < 0.03	1 < 0.03 1	< 0.03	1 < 0.03	
Results in	mea (	maa	מכם	i maa	l maa	
Majors as Oxides		\$** •=== •==* •==* ==** •=** •=** •=*** •=*** •		an diabar bindar billin, yanan senan nabin oranti tabari timur sahar iliman un	þe nur 💶 💶 um næ næ næ næ en næ nýr	
Silicon % SiO2	53.1	1 52.Ø 1	54.6	58.9	59.0	
Aluminum %Al2O3	16.4	15.6 • :	13.8	15.8	16.3	
Iron %Fe2O3	8.95	10.4	12.3	7.24	7.97	
Calcium % CaO	) 5.17	6,19	2.43	4.01	4.04	
Mapnesium % MpO	3.82	3,96	3.13	3.07	3.65	
Sodium 🕺 Na2O	4.02	3.20	1.98	2.48	2.80 1	
Potassium 🛪 K2O	0.91	0.84	1.97	1.97	1.30	
Barium % BaO	i 0.021	0.022	0.025	0.093	0.036	
Manganese % MnO	0.14	0.14	0.i0	0.14	0.11	
Phosohorus% P205	0.21	0.17	0.12	0.17	0.17	
Strontium 🗡 SrO	0.030	0.027	0.014 /	0.027	0.035	
Titanium % TiO2	0.97	0.89	0.61	0.63	0.72	
Zirconium % ZrO2	0.002	0.002	0.002	0.009	0.007	
Loss on Ignition	4.79	5.05	7.40	3.86	4.16	
Total Oxides %	1 98.5	98.5	98.5	98.4	100.3	
Total Carbon %C Total Sulfur %S	1 0.50 1 4.72	Ø.61 6.16	0.23 2.47	Ø.18 2.08	0.23   3.27	
	• • • • • • • • • • • • • • • • • • •	,	े के के का साथ के का	ا ــــــــــــــــــــــــــــــــــــ	r	

ouanta trace laboratoriesinc.#401-3700 Gilmore Way, Burnaby, B.C., Canada V56 4MiTel:(604)438-5226

To: Nuspar Resources Ltd

Sample type Identification Lab Reference #	i	DD Core F3	DD Core	DD Core	DD Core	i DD Core
Lab Reference #			F4	G1	tere dens	G3
		6943-021	6943-022	6943-023	6943-024	6943-020
Analyzed by Plas	sma E	Emission Spec	ctroscopy (I(	CAP)		fre war and
Method used	i	Total	Total	Total i	Total	l Total
Trace Elements					for most same same some over most week some over over ever e	f
Silver	Ap I	0.4	0.4	0.2	2.4	0.6
Arsenic	As	( 30	( 30	( 30	( 30	1 ( 30
Boron	B	1.	8.	7.	8.	З.
Beryllium	Be	0.2	. 0.2	0.3	0.3	0.2
Bismuth	Bi	( 20	( 20	( 20	< 20	( 20
Cadmium	Cd		0.1	( Ø. 1		. ( Ø. 1
Cobalt	Co		29.	23.	21.	23.
Chromium	Cr		87.	182.	138.	130.
Copper	Cu I	66	113	12	43	13
Mercury	Ho	0.1	Ø. 1	1.1		0.4
Molybdenum	Ma		м.на	8	, <u>.</u>	с. — т ;
Nickel	Ni	- 9	9	15		, <del>2</del> 5
Lead	Pb I	5	5	· · · · · · · · · · · · · · · · · · ·	5	5
Antimony	Sb	Ø.1	0.2	0.2	Z. 1	2.1
Selenium	Se	( 10	( 10	( 10		
Thorium	Th		0.4			
				1.1	1.2	1.4
Uranium	U I V I	0.1	Ø.2	0.3	2.1	0.1
Vanadium		279 36	271	188	152	212
Zinc Rever Fruth Floor	Zril		37	23	38	27
Rare Earth Eleme Cerium	Ce l		20.1	37.1	35.1	36.1
Dysprosium	Dy I		2.3	2.2	3.0	2.9
Erbium	Er l	1.5	1.5	1.3		
Europium	Eu	Ø.9	2.9	2.3	1.5 Ø.9	1.8
Gadolinium	Gd I	1.9	1.6	1.7	1.9	1.1
Holmium	Ho	0.7	Q.6		2.6	2.0
			9.3	<b>0.</b> 5		0.7
Lanthanum	Lal	10.4		19.1	15.9	18.0
Lutetium	Lu	0.4	0.4	0.3	0.4	0.5
Neodynium	Nd I		13.2	21.2	19.5	21.0
Praseodynium	Pr		1.6	2.5	2.4	2.7
Samarium	Sm I		2.9 1	3.5	3.2 1	3.5
Terbium	Tb	0.3	2.4	Ø.3	Ø.3	0.4
Thullium	Tm I	2.3 1	44- 2 444- A	0.2	0.3	Ø. 3
Yttrium	Y I	26.2	21.3	18.9	25.3	24.2
Ytterbium	Yb I	2.7 1	<b>2.</b> 4	1.9 1	2.7	2.8
Misc. Trace Eleme						
Gallium	Gal	12. 1	12.	7. 1	8. 1	8.
Germanium	Ge	1	1. 1	4		i.
Nicbium	Nb	15.8	4.3	5.8	8.7	6.6
Tin	Sn	4.1	Ø.3	1.7	4.6	1.9
🖉 Tantalum	Ta i	0.5	Ø.5 i	Ø.7	1.1	i.1
Tellurium	Tel	Ø.1	Ø. 1	0.3	Ø. 1	0.2
Tungsten	W I	5.1 /	1.8	3.2	3.1	3.9
Results in	ł	oom l	noom	oom l	mae	mac

W/D: 6943 Page 10

ouanta trace laboratories inc.

#401-3700 Gilmore Way, Burnaby, B.C., Canada V5G 4M1 Tel:(604)438-5226

To: Nuspar Resources Ltd

W/O: 6943 Page 11

Samole type Identification Lab Reference #	i DD Core   G4   6943-026	) DD Core     G5     6943-027	DD Core   H1   6943-028	DD Core H2 6943-029	DD Core I1 6943-030
Lao Reference #	+ 6543-026	4		0040-0000	0345-030
Analyzed by Plasma	Emission Soe	ctroscopy (IC	) (AP)		
Method used		! Total		Total 1	Total
Precious Metals by	Fire Assay	ngha anan anan anan anan anan anan anan			
Gold Au	0.03	0.31	0.02	0.01	( 0.01
Palladium Pd	1 < 0.01	0.01	0.01	( 0.01 )	0.01
Platinum Pt	0.02	1 ( 0.02 )	( 0.02 )	( 0.02	( 0.02
Rhodium Rh	1 ( 0.03	1 < 0.03 1	< 0.03	( 0.03	( 0.03
Results in	i oom	l maa l	oom i	l maa	MOO
Majors as Oxides		afu awa ana awa awa awa awa awa awa awa af			
Silicon 🕺 SiO2	56.6	62.3	62.2	63.0	56.2
Aluminum %Al2O3	16.3	15.2 . 1	16.3	16.8	15.9
Iron %Fe2O3	8.48	6.09	6.08	5.79	9.63
Calcium 🗡 CaO	3.66	1 2.73 1	2.99	3.38	2.90
Mapnesium % MpO	4.23	1 3.58 1	2.65	2.68	3.36
Sodium 🕺 Na2O	1 2.82	3.44	4.20	4.37	2.52
Potassium % K2O	1 1.68	1.10 1	1.12	0.98	1.79
Barium 😕 BaO	1 0.029	0.015	0.045	0.042	0.053
🖋 Manganese 🛠 🛛 MnO	0.12	0.069 1	0.057	0.063	0.047
Phosphorus% P205	0.18	0.18	0.16	0.16	0.12
Strontium % SrO	0.034	0.029 1	0.045	0.048	0.036
Titanium 🕺 TiO2	0.78	0.63 1	0.60	0.60	Ø.61
Zirconium % ZrO2	0.004	0.006	0.010	0.008	0.003
Loss on Ignition	4.82	3.72	3.69	3.39	6.33
Total Oxides %	100.0	1 99.0 1	120.	100.9	99.5
	Ø.18	1 0.20	0.02	0.02	0.16
Total Sulfur %S	3.46	1.64	3.44	2.52	6.55
	•	•			

quanta trace laboratories inc.

#### #401-3700 Gilmore Way, Burnaby, B.C., Canada V5G 4M1 Tel:(604)438-5226

To: Nuspar Resources Ltd

W/O: 6943 Pase 12

		L		J		{
Sample type		DD Core	1 DD Core	1 DD Core	DD Core	DD Core
Identification		I G4	65	H1	H2	
Lab Reference 🕈		6943-026	1 6943-027	6943-028 +		6943-03( +
Analyzed by Pla	sma B	' Emission Sre	' ctroscopy (I)	CAP)		
Method used				l Total	Total	l Total
Trace Elements-				\$ <i></i>		h
Silver	As	0+2	0+4	1 0.2	0.2	1 0.2
Arsenic	As	I < 30	1 < 30	< 30	< 30	1 < 30
Boron	В	1 6.	4.	L 5.	1 2.	1 2.
Bersllium	Be		1 0.2	1 0.4	0.3	0.2
Rismuth	Вi	1 < 20	1 < . 20	1 < 20	1 < 20	1 < 20
Cadmium	Cd		1 < 0.1	1 < 0.1	1 < 0.1	1 < 0.1
Cobalt	Сo		1 23.	14.	1 12.	1 29.
Chromium	Сr		198.	114.	108.	1 151.
Correr	Сu		19	1 12	1 19	1 23
Mercurs	Hs	0,7	0.2	0.1	0.1	1 0+1
Molybdenum	Мо		4	6	3	1 3
Nickel	Ni		1 15	1 13	1 9	21
Lead	Pb		1 7	5	1 5	1 8
Antimony	Sb	0.2	1 0.2	0.1	0.1	0.1
Selenium	10° 10-	1 < 10	< 10	1 < 10	< 10	1 < 10
Thorium	Th		1.3	1 2.3	2 * 1	I 0,7
Uranium	U	0.2	1 0.2	1 0.2	1 0.2	0.1
Vanadium	v	217	1 184	1 153	1 159	1 219
Zinc	Zn		1 19	12	14	1 30
Rare Earth Elem			·	i E' A "?	1 A (7) /	1 27+2
Cerium	Ce		1 29.6	1 54.7	48₊6   3₊0	1 2.6
Dysprosium	<u>D</u> y	• • • • • • • • • • • • • • • • • • • •	1 2.6	1 3.0		I ∡ I 1.6
Erbium	Er		1 1.4	1 1.8	1 1.8	
Europium	Eu	•	1 1.0	1.0	0.9	1 0.9
Gadolinium	Gd		1 1.9	1 2.4 1 0.8	) 2.0 ) 0.6	1 2+0 1 0+6
Holmium Lanthanum	Ho La	I 0.6 I 16.0	) 0.6   14.1	1 27.6	1 23.5	1 13.6
Lutetium	Lu		1 0.4	1 0.5	1 23+3	1 0.4
	Nd		1 16+9	1 26+5	1 23.1	1 15.4
Neodynium Fraseodynium	Fr		1 2.1	1 0.4	1 3.2	1 2.0
Samarium	Sm		1 3.3	1 4.8	3.6	1 2.9
Terbium	Tb		1 0.4	1 0.4	1 0.4	1 0.3
Thullium	Τm		1 0.3	1 0.3	1 0.3	1 0.3
Yttrium	Y		1 22.4	29.7	1 25.6	24.1
Ytterbium	ÝЪ		1 2.4	1 3.0	2.9	1 2.5
Misc.Trace Elem				• • • • • • • • • • • • • • • • • • •	,	• ••• ••• ••• ••• ••• ••• •••
Gallium	Ga		9.	. 8.	1 7.	1 9.
Germanium	Ge		1.	1 1.	1 1.	! <u>1</u>
Niobium	Nb		4.7	1 9.6	1 7.6	1 3.1
Tin	Sn		1 1.5	1.3	1.4	1.5
Tantalum	Ta		1 0+8	1 1.3	1 1.3	1 0.5
Tellurium	Te		0.1	1 0,1	0.1	1 0.1
₩ Tun⊴sten	i e <del>.</del>	1 2.5	) 2.0	1 2,2	1 1 + 8	1.9
- nunssten Results in		l PPM	l PPm	1 822m	)	1 - F- F- In

quanta trace laboratories inc.

#401-3700 Gilmore Way, Burnaby, B.C., Canada V5G 4M1

ne-

Tel: (604) 438-5226

#### To: Nuspar Resources Ltd

#### W/D: 6943 Page 13

/14 ...

Samole type Identification			i D	D Core	I	DD Core I4
Lab Reference #	1 6	12 943-031	1 1 C	I3 943-032	1 1 4	14 5943-033
	س ، سیسی		) ( {		,	
Analyzed by Plasma	Emis	sion Spe			CAP	)
Method used		Total	Ì	Total	ł	Total
Precious Metals by	Fire	14	f=			
Gold Au	1		1	0.02	Ì	0.16
	1 <		<	0.01	1 <	0.01
	(		<	0.02	<	
Rhadium Rh	5 <b>š</b>	0.03	<	0.03	1 <	0.03
Results in	I	maa	İ	pom	1	mee
Majors as Oxides			f		<b></b>	
Silicon 🕺 SiO2	1	54.3	1	55.5	1	55.6
Aluminum %Al2O3	1	16.4 .	ł	16.9	1	16 <b>.</b> 7
Iron %Fe2O3	1	10.7	1	8.60	1	8.59
Calcium % CaO	Ì	2.68	}	3,36	ļ	3.16
Magnesium % MgO	1	3.85	ļ	3.43	Ì	3.86
Sodium % Na2O	ł	2.65	i	3.80	ļ	3.36
Potassium % K2O	]	1.43	Į	1.10	1	1.21
Barium 🛪 BaO	ł	0.030	1	0.025	į	0.038
Manganese % MnO	ł	0.046	ļ	0.036	1	0.041
Phasohorus% P205	5	0.16	1	0.16	]	0.12
Strontium % SrO	1	0.032	i	Ø. Ø35	)	0.034
Titanium 🛪 TiO2	1	0.64	}	0.64	1	0.61
Zirconium % ZrO2	I	0.002	}	0.004	1	0.004
Loss on Ignition	1	7.07	1	5.20	ł	5.21
Total Oxides %		100.0	j	98.8		98.5
Total Carbon %C		0.09	∲	Ø.12	+	Ø.11
Total Sulfur %S	ł		ł	5.75	ł	5.43

ouanta trace laboratories inc.

#401-3700 Gilmore Way, Burnaby, B.C., Canada V5G 4M1 Tel:(604)438-5226 

#### To: Nuspar Resources Ltd

W/D: 6943 Page 14

amole type			DD Core	
dentification		I IS	I I 3 I	I 4
ab Reference #			6943-032	
nalyzed by Pla	sma (	•		
Method used				
race Elements-				
Silver	Ao	0.2	0.4	0.2
Arsenic	As	30	( 30	( 30
Boron	в		4,	2.
Beryllium			0.3	0.3
Bismuth				< 20
		0.1		( 21.1
		37.		21.
		157.	130.	116.
		28	9	9
		. <u> </u>	0.1	0.1
Malybdenum	Ma	6	4	6
Nickel	Ni	18	15	15
Lead		6	15	5
Antimony	Sb		i 0.1	0.1
Selenium			10	/ 10 / 10
Thorium	Th			0.6
Uranium	U		2.1	
Vanadium	U U		233	208
Zinc	V 7	12		
are Earth Elem				;
Cerium			27.1   2.1	27.9
~	Dy			
Erbium	Er		1.0	1.3
Europium	Eu		<b>2.</b> 9   1.7	0.9
Gadolinium	Gd		1.7 0.6	1.9
Holmium	Ha			0.6 13.7
	La			
Lutetium	Lu		0.3 15.5	0.4
<b>e</b> .	Nd			16.0
Praseodynium	Pr C		2.0	2.1
Samarium	Sm		2.9	2.9
Terbium	ТЬ		0.3	0.3
Thullium	Tm		0.2	Ø.2
Yttrium	Y VC		21.4	22.7
Ytterbium	Yb		2.3	2.2
isc. Trace Elem			for some ware ware some some some some some some some som	ۇن دەرىر يەن دەرى مەن مەن بەرى ئەن دەرى يەن بەرى يەن بەرى بەرى بەرى بەرى بەرى بەرى بەرى بەرى
Gallium	Ga		9.	9.
Germanium	Ge		1 1 m	1.
Nicbium	Nb		3.7 1	3.2
Tiri	Sn		32.6	1.2
Tantalum	Ta		0.6	0.5
Tellurium	Te		Ø.1	Ø. 1
Tungsten	W	2.0	2.3	1.4
			noo (	oom
Results in		i opm	د او دیو دید	·



Nuspar Resources Ltd.

205 - 493 Burnside Road East

Victoria, B.C.

V8T 2X3

## Certificate of Assay

### Control No. 10374

Date: January 21, 1987

Attention:

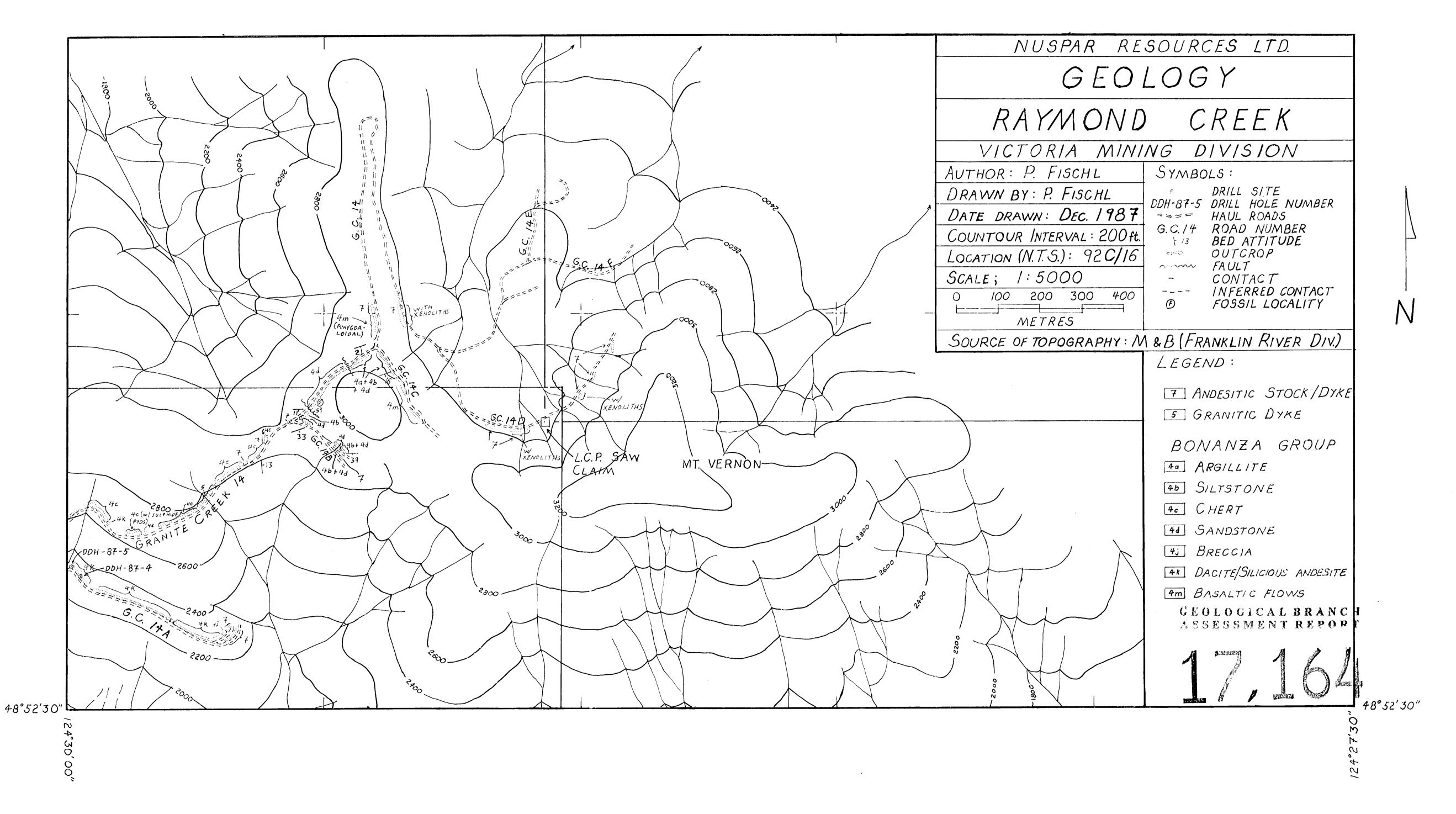
Ato:

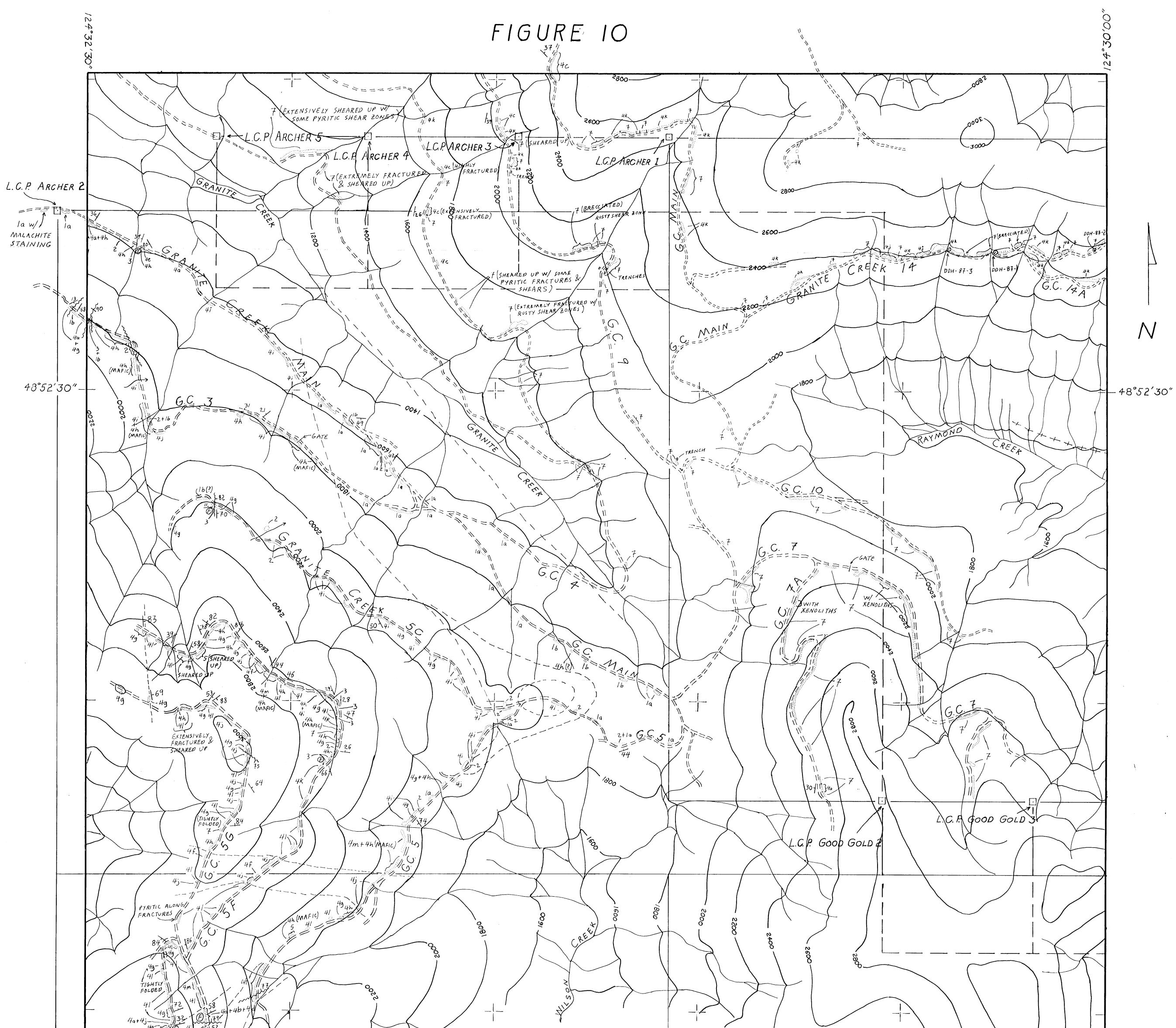


He Hereby Certify that the following are the results of assays made by us upon submitted _____ Diamond Drill Core

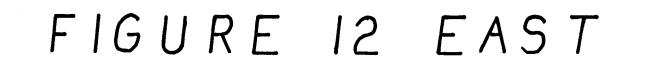
Sample Identification	GOLD					·			
Sample identification	Ounces Per Ton	Ounces Per Ton	Percent	Percent	Percent	Percent	Percent	Percent	
								3 -	
								۰. ۲	
			1. 1. 2						
# 1 /-/ # 2 /-2	0.062 0.012								
# 3 1-3	0.010								
# 4 /~4 # 5 /~5	0.008								
# 6 1-6	0.054		. ,						
# 7 1-7	0.004								
								:	
	-								
								:	

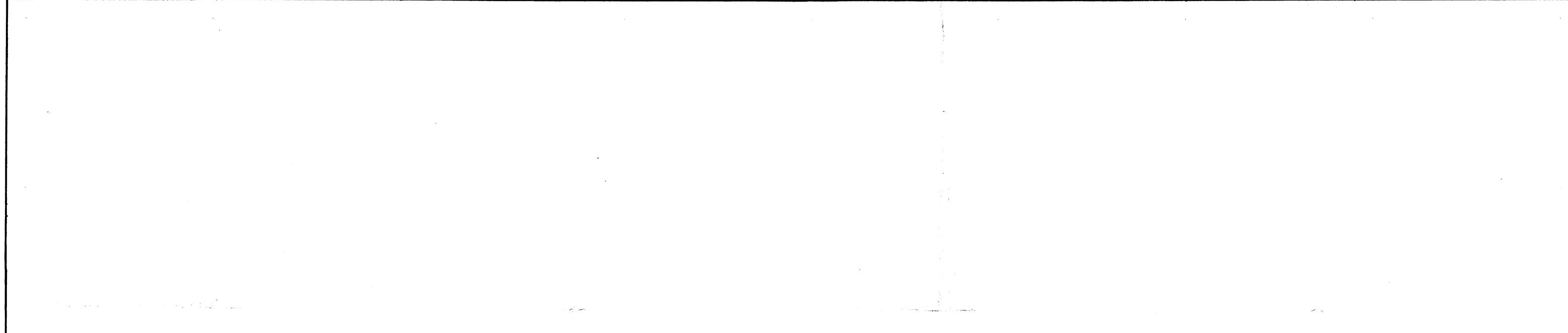
Note: Pulps retained three months.


Rejects retained two weeks.

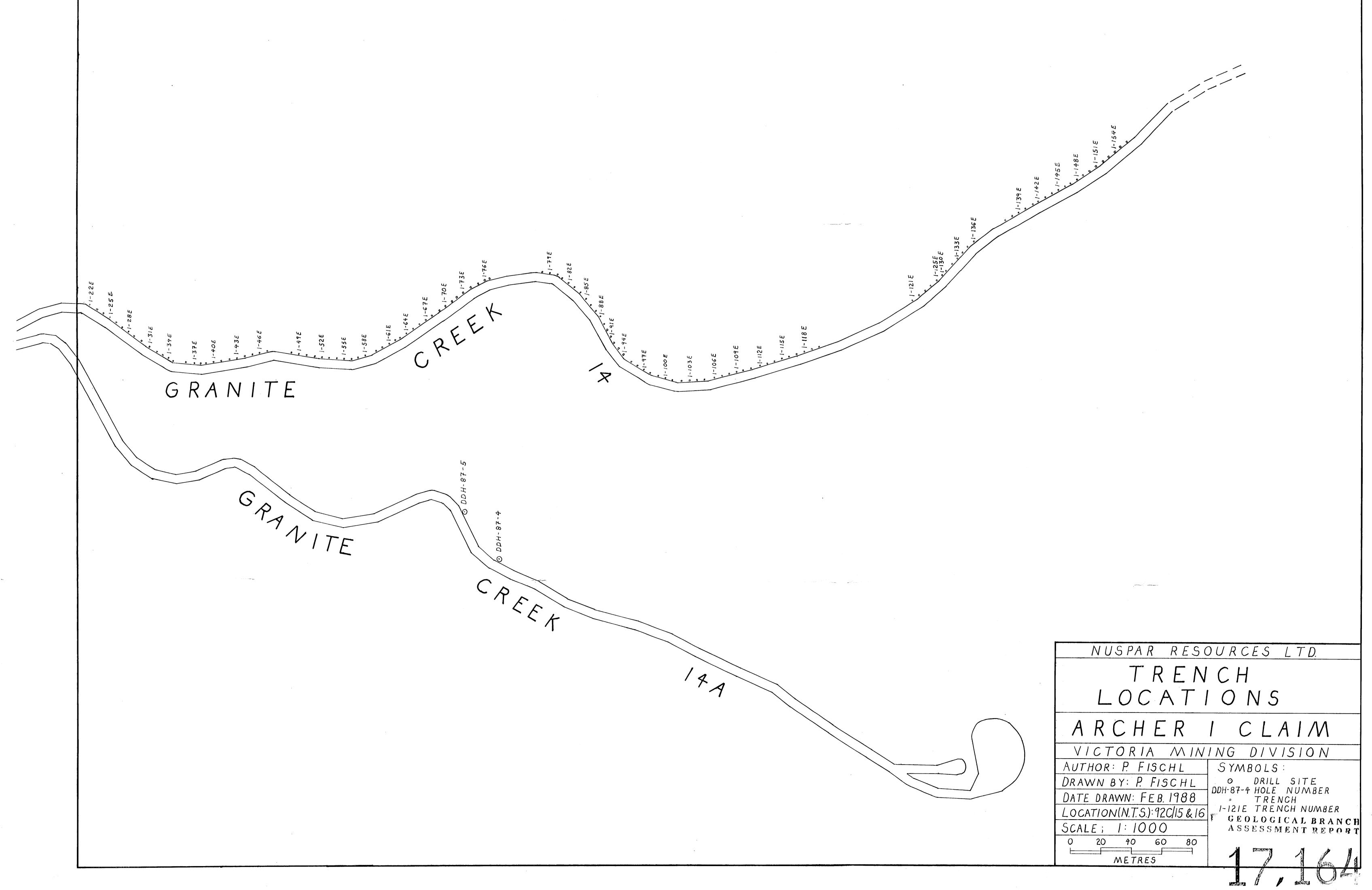

ALL REPORTS ARE THE CONFIDENTIAL PROPERTY OF CLIENTS. PUBLICATION OF STATEMENTS, CONCLUSIONS OR EXTRACTS FROM OR REGARDING OUR REPORTS IS NOT PERMITTED WITHOUT WRITTEN APPROVAL ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED. SANDO INDUSTRIES LTD.

The reals.


Certified Provincial Assayer


FIGURE II






$4_{a}+4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b}$ $4_{b$				
	LEGEND :	NUSPAR RES	OURCES LTD.	
41 - 4h 41 - 4h 41 - 4h 41 - 4h 41 - 4h	7 ANDESITIC STOCK/DYKE	GEOL	OGY	
41 = 41 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	5 GRANODIORITIC DYKE BONANZA GROUP	GRANITE	CREEK	
	4a ARGILLITE / MUDSTONE	VICTORIA MINI	VG DIVISION	-
41 11 49 (11/69	[46] SILTSTONE	AUTHOR : P. FISCHL	SYMBOLS:	
	40 CHERT	DRAWN BY: P. FISCHL	○ DRILL SITE DDH-87-3 DRILL HOLE NUMBER	
	[4] SANDSTONE	DATE DRAWN : FEB. 1988	TRENCH	
	4e CHERTY SILTITE	CONTOUR INTERVAL: 200ft.	OF THE MORE THE THE	
	4F HEMATITIC TUFF	LOCATION (N.T.S.): 92C/15	×35 BED ATTITUDE OUTCROP	
$\frac{41}{1}$	49 CHERTY TUFF	SCALE; 1:5000	FAULT - CONTACT	
470	4h OTHER TUFFS	0 /00 200 300 400	INFERRED CONTACT	
48°51′00″	+; BASAL BRECCIA	METRES	100012 20012111	- 48°51′00″
2200	45 OTHER VOLGANIC BRECCIAS	Source of topography : M		
	4k DACITE / SILICIOUS ANDESITE		GEOLOGICAL BRANCH ASSESSMENT REPORT	
-2000	[4] ANDESITIC FLOWS	[1] BASALTIC TO ANDESITIC FLOWS	in water in a si	
	4m BASALTIC FLOWS	15 SILICIOUS TUFF	17161	
1800	3 PARSONS BAY ARGILLITE			
1600	2 QUATSINO LIMESTONE	~		
7 7 4				
ν Ο			0 0	4



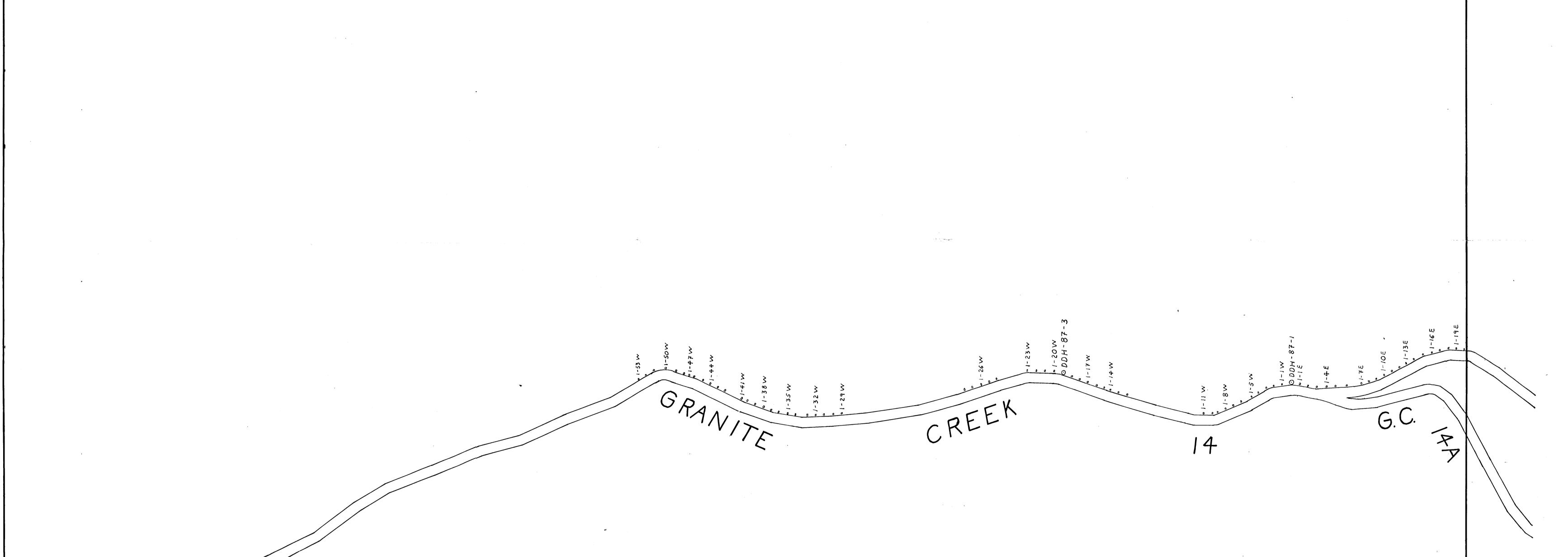


· · ·



.

. .


.

Ν

# FIGURE 12 WEST

. • • • .

•



TO G.C. MAIN		
and the second	a ser an anna an anna an anna an an anna an an	And and a second and
		NUSPAR RESOURCES LTD.
		TRENCH
		LOCATIONS
		ARCHER I CLAIM
		VICTORIA MINING DIVISION
		AUTHOR: P. FISCHL SYMBOLS:
		DRAWN BY: P. FISCHL DATE DRAWN: FEB. 1988 LOCATION (N.T.S.): 92/C15 SCALE; 1: 1000 DRILL SITE DDH-87-1 HOLE NUMBER TRENCH I-IIW GIBENGH NYMBERAN ASSESSMENT REPO
		DATE DRAWN: FEB. 1988 "TRENCH LOCATION(NTS): 92/CI5 1-11W GIBENGHNUMBER,
		SCALE; 1: 1000 ASSESSMENT REPO
		METRES

1

and the second 
-