

900-625 Howe Street Vancouver, B.C., Canada V6C 2T6 Telephone (604) 684-5887

LOG NO:	0321	RD.
ACTION:		
62	γ.	
FILE NO:	•	
	62	ACTION:

1987 COMPILATION REPORT ON

GEOLOGY, GEOCHEMISTRY AND GEOPHYSICS

EII MED

	FI	MED
	SURVEYS ON THE	
	ATHABASCA PROPERTY	
Including:	Reverted Crown Grants Long Tom (L.386) Goodenough (L.392), Good Hope (L.2812), Ruby Fr. (L.1573) Algoma (L.1570), Triangle Fr. (L.1574) Athabasca (L.1569), Alberta (L.1571) Manitoba (L.1572), Hanky Panky (L.4808)	Record # 4532 4533 4534 4535 4536
	Located Claims Ant Fr. Mill Fr. Old Hat .Fr	AL 4545 ANCH NT 4546 PORT
	Nelson Mining Division, B.C. Latitude: 490 27' 30" Longitude: 1170 18' 30" N.T.S. 82F/6W	
OWNERS:	Mr Mike Hudock Nelson B C	• • • • • • • • • • • • • • • • • • •

OWNERS:

Mr. Mike Hudock, Nelson, B. C.; Mr. Tony Nijhuis, Castlegar, B. C.

UNDER OPTION-TO:

SUB-RECORDER RECEIVED

AUTHORS:

CONSULTANT:

MAR 15 1988

M.R. # \$

VANCOUVER, B.C.

Cassidy Resources Inc.

Beaty Geological Ltd.

Gordon A. Addie, B. Sc. (Geol), Douglas G. Leighton, B. Sc., F.G.A.C.

2 Feb - 7 Mar, 28 Sept - 14 Oct, 1987

DATE OF REPORT:

DATE OF WORK

March 15, 1988

TABLE OF CONTENTS

				PAGE
1.	SUMMA	ARY, C	ONCLUSIONS AND RECOMMENDATIONS	1 /
2.	INTRO	DUCTI	ON	1/2
3.	PROPE	ERTY		3/
	3.1	Locat	ion & Access	3/
			ography & Vegetation	5 /
	3.3	Claim	s	5/
	3.4	Local	Resources	6 /
4.	HISTO			8 /
		Minin		8 /
	4.2	Milli	ng	8 /
5.	GEOLO)GY		9 /
•			nal Geology	9/
,			rty Geology	11/
	5.3			12/
		5.3.1	Condition of Workings	12/
			Subsurface Geology	14/
6.	GEOPI	HYSICS		17/
	6.1	Elect	romagnetic Survey	17/
	•	6.1.1	Procedure	17/
		6.1.2	Results and Interpretation	17/
	6.2		tometer Survey	18/
			Procedure	18/
		6.2.2	Results and Interpretation	. 18/
7.		HEMIST		18/
	7.1	Rocks		19/
			Sampling Procedure	19/
			Sampling Results	19/
	_	7.1.3	-	22/
	7.2	Soils		22 /
		7.2.1		22 /
		7.2.2	· · · · · · · · · · · · · · · · · · ·	22 /
		7.2.3	Interpretation	22 /
8.	RECON	1MENDA	TIONS FOR FURTHER WORK	23 /
9.	COST	STATE	MENT	24 /
10	REFER	RENCES		26 /

ILLUSTRATIONS

		PAGE
Figure 1	Location Map	4 /
Figure 2	Property Map	7/
Figure 3	Regional Geology	10/
Figure 4	Mine Plan	13/
Figure 5A	Mine Geology	15/
Figure 5B	Mine Sections	16/
Figure 6	Assay Plan	21 /
Figure 7	Property Geology and Access	in pocket /
Figure 8	Fraser Filtered VLF-EM Data - Seattle Station	in pocket /
Figure 9	Soil Geochemistry Gold (p.p.b.)	in pocket /

TABLES

		·		/
Ta	ble I	Claim Data		5 /
Ta	ble II	Assay Results		20 /

APPENDICES

Appendix A	Statements of Qualification \checkmark
Appendix B	Geochemical Results and Assay Certificates /
Appendix C	Raw Geophysical Data $\sqrt{}$

1. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

The Athabasca property is a past gold producer located at Nelson in the West Kootenay region of British Columbia.

It consists of thirteen claims, underlain by granitic rocks of the Jurassic Nelson Batholith and basic volcanics assigned to the lower Jurassic Rossland Group. The volcanics are confined to a graben structure.

Work undertaken on the property in February, 1987 as an initial assessment included: grid controlled magnetic and VLF-EM surveys; examination and sampling of accessible underground workings; and research into pertinent archival and published data.

Subsequent work included: upgrading of the access road; assessment of the conditions of underground workings; placement of a new grid; and soil geochemical and VLF-EM surveys on the new grid.

Existing mine workings follow a flat lying section of the gold rich Athabasca quartz vein. This vein cuts both the granitic and volcanic rocks, with better grade ore shoots occurring in the vicinity of the contact.

There are two exploration possibilities on the Athabasca property: one involves developing ore down-dip in known shoots on the existing vein; the other is looking for additional veins or mineralized shears.

Three lines of evidence point to further potential on the Athabasca vein. These include:

- historical records which indicate an average grade of 31.2 g per tonne gold (0.91 oz. per ton) over the mine life (1897 1943) and show that in 1900, 4595 tonnes (5065 tons) of ore were mined which yielded 253,151 g (8139 oz.) of gold this translates to an average grade of 54.86 g per tonne (1.60 oz. per ton) at a time when recovery ranged between 77 and 81 percent;
 - (b) mine plans which show, at the lowest level mined, an ore shoot of 49 m (160 foot) strike length, averaging 30.5 cm (12 inches) thick, and containing 45.6 g per tonne gold (1.33 oz. per ton);
 - (c) our own work which confirms both the structural continuity of the vein described in old reports, and the grades documented in historical records.

There is no evidence that ore grades diminish with depth. The bulk

of proposed future work would be carried out in structurally coherent rock near the granite-volcanic contact. This area of the mine is most amenable to mining as the vein dip is relatively steep (35 - 55 degrees).

Evidence for additional vein/shear potential on the Athabasca property includes:

- (a) the adjacent California mine located on an east-west trending quartz vein which, by projection, not only crosses the Athabasca property but intersects the Athabasca vein;
- (b) faults parallel to the Athabasca vein were encountered in the No. 4 mine level;
- (c) Nelson camp volcanics contain several auriferous shear zones; the Starlight shear (reported at 5.14 g/tonne over 45 m or 0.15 oz./ton over 148 foot width) is one of many shears presently being examined by Lectus Development Ltd.; the main Lectus property adjoins the Athabasca to the south.

Factors which favour economic development of the Athabasca mine include ready availability of essential services such as water, power, mine labour, and rail transport. Metallurgy is simple, usable mine workings are in place, and the Trail smelter and various mills are situated nearby. There are no onerous property royalties. Two negative factors are the narrow average width of the vein (30 cm) and the fact that it is not vertical.

Potential may exist for extracting gold from the old dumps. It is conceivable that up to 124,414 g (4000 oz.) of gold could be recovered from this material.

A two stage exploration program is recommended on the Athabasca property. The first task is to gain safe access to the #2 Level for sampling. If original mine-plan assays can be verified, then drifting in from the #4 Portal to the vein would be warranted. This drifting would be augmented by a 1000 metre underground drill program. Costs of the two stages are estimated at \$100,000 and \$400,000, respectively.

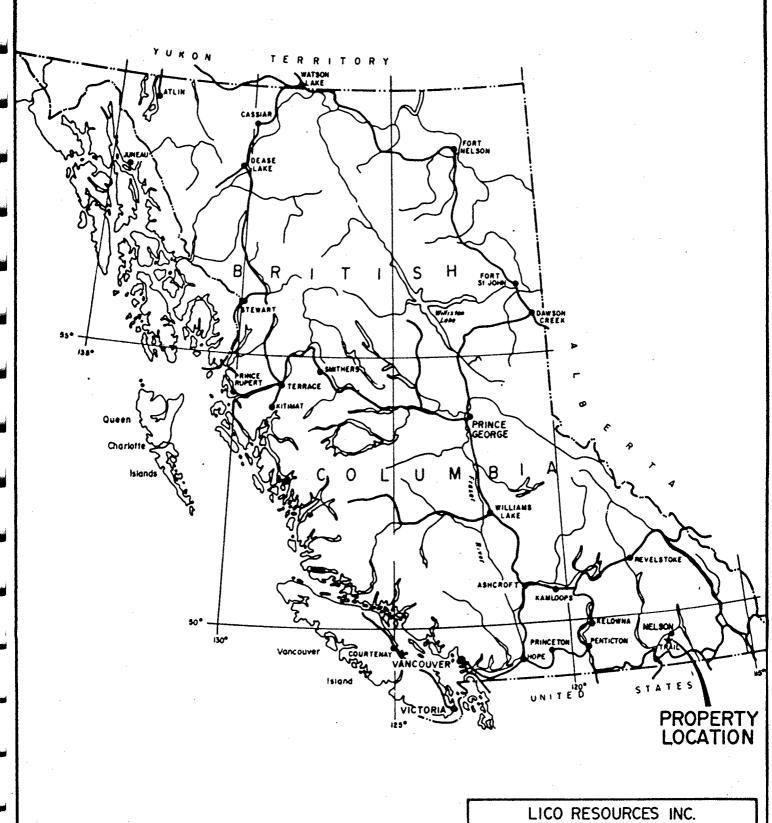
2. INTRODUCTION

The Athabasca property is a past producing gold mine located three kilometres southwest of Nelson, British Columbia. Mine history records production of over 622,069 g (20,000 oz.) from about 19,958 tonnes (22,000 tons) of ore. The mine property now consists of thirteen claims (reverted crown grants and located claims) owned by Mike Hudock and Anton Nijhuis, both West Kootenay residents.

In late February, 1987, the writers visited the claims and carried out a property examination which included: grid controlled orientation VLF-EM and magnetic surveys; preliminary examination and sampling of accessible underground workings; and a review of locally available archival and modern published literature. As a consequence of this work the claims were immediately optioned by Lico Resources Inc., now Cassidy Resources Inc., a Vancouver based resource company.

Following the option agreement between Lico and the owners, an exhaustive search was completed of all pertinent data. This necessitated visits to provincial archives and related repositories of historical mine data

In October, 1987, the access road was upgraded and a new grid was emplaced, upon which soil geochemistry and geophysics (VLF-EM) surveys were carried out.


In December, 1987, a second assessment of the underground workings was undertaken. This included checking the condition of the lower levels, and minor rock sampling.

This report summarizes the results of work completed to date and includes recommendations for further work.

3. PROPERTY

3.1 <u>Location and Access</u> (see figure 1)

The Athabasca property is located three kilometres southwest of Nelson in the West Kootenay district of British Columbia. Situated on the northwest slope of Morning (Toad) Mountain, the property is conveniently reached via the Giveout Creek forestry road. Giveout Creek road branches west from the Nelson-Salmo highway seven kilometres south of Nelson City limits. This

ATHABASCA MINE
LOCATION MAP

BEATT GEOLOGICAL LID.			
SCALE.	As shown	DATE. MARCH 10,1988	
DRAWN.	J.W.	FIG. No. L	

forestry access road crosses the northern (topographically lower) portion of the claim group. Total driving time from Nelson is about 20 minutes (10 road miles or 14 kilometres). Spring break-up is normally over by mid-April and the Toad Mountain region is generally snowed in by November. This results in a practical field season of six to seven months.

The #2 and #4 Portals can be reached using the upgraded mine access road, which branches up from the Giveout Creek Forestry Haulage Road. A four-wheel drive vehicle is recommended.

3.2 Physiography and Vegetation

Elevations on the Athabasca property vary between 960 and 1600 metres above sea level. Since the ground slopes to the west, snow usually remains until April. Forest cover is extensive, consisting of mixed second-growth conifers. Undergrowth is moderate except in the deeper gullies where dense "buckbrush" and devils-club grow. Crestbrook Forest Products own local timber rights and maintain the main haulage roads.

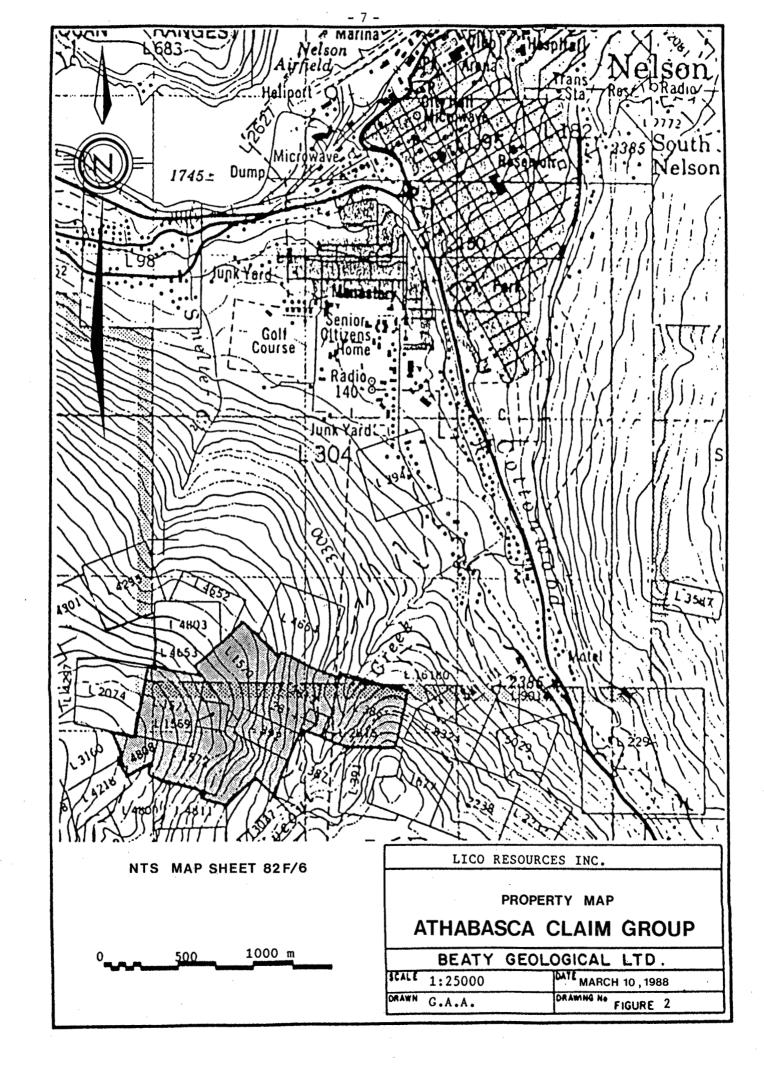
3.3 Claims (see figure 2)

The Athabasca claim group consists of ten reverted crown grants, and three located claims, all contiguous. Claims are in the Nelson Mining Division.

Table I

Claim Data

Reverted Crown Grants	Lot #	Record #	Expiry Date
Long Tom	L.386	4532	Dec. 16, 1987
Good Enough	L.392	4533	Dec. 16, 1987
Good Hope	L.2812	4533	Dec. 16, 1987
Ruby Fr.	L.1573	4533	Dec. 16, 1987
Algoma	L.1570	4534	Dec. 16, 1987
Triangle Fr.	L.1574	4534	Dec. 16, 1987
Athabasca	L.1569	4535	Dec. 16, 1987
Alberta	L.1571	4535	Dec. 16, 1987
Manitoba	L.1572	4536	Dec. 16, 1987
Hanky Panky	L.4808	4536	Dec. 16, 1987


Located Claims

Ant Fr.	L.2815	4545	Feb. 23, 1988
Mill Fr.	L.2814	4546	Feb. 23, 1988
Old Hat Fr.		4431	Sept. 17, 1987

3.4 Local Resources

The Nelson area is well serviced. Electrical power, lumber, heavy equipment, and earth moving equipment are readily available. There are two railways within a few kilometres of the Athabasca property and there are local trucking services. The West Kootenay region has an excellent pool of skilled mine labour, including miners with applicable narrow-vein underground experience.

Local mining facilities exist for custom metallurgical work and if necessary the Trail smelter is 81 kilometres (50 road miles) from Nelson. Giveout Creek is a ready source of any water necessary for drilling and mining purposes.

4. HISTORY

4.1 Mining

A gold bearing quartz vein located on the slopes of Toad Mountain (to become known as the Athabasca vein) was discovered in 1896. At that time British capital was readily available and the Athabasca Gold Mining Co. Ltd. raised \$1,000,000 to develop this discovery. Ore was being shipped in 1897 and by 1901 the mine had produced over 435,449 g (14,000 oz.) of gold from only 9,979 tonnes (11,000 tons) of ore.

Inability to dewater lower levels prevented mining down-dip ore extension in 1902. The company was not able to raise further capital, since by this time British capital was required to support the war in South Africa, and alternate sources of funding were not available. In 1904 production was resumed and the No. 2 Level was driven through to surface. Once this level was exhausted it was decided to move operations and develop the newly discovered Venus vein, not located within the present claim group.

The Athabasca mine was leased intermittently to various contractors between 1904 and 1934. During this interval operators removed some of the remnant pillars and expanded a number of the old stopes.

In 1933 the Athabasca mine, as well as several nearby properties, was acquired by Noble Five Mines Ltd. Noble attempted to develop a new level 169 feet (51 metres) below the original workings. The workers were unsuccessful in this effort but did manage to obtain some gold from old pillars and by reworking old dump material.

There is no evidence of any mining or development work having been carried out on the Athabasca property after 1943.

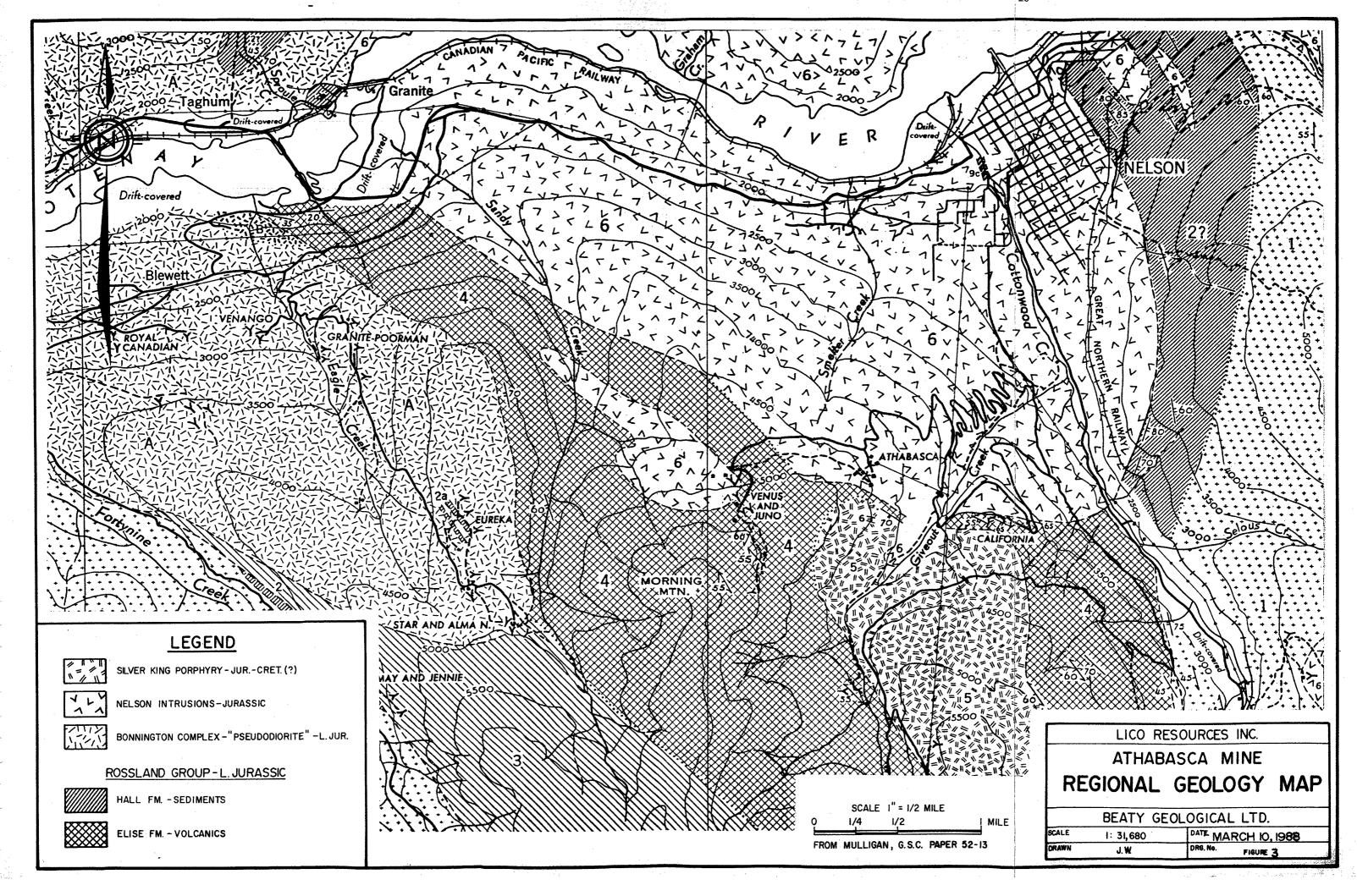
4.2 Milling

Athabasca ore consisted of gold in a quartz vein gangue. Eighty percent of the gold is in a free form with the balance contained in associated sphalerite.

The ore has been subjected to various milling circuits. In 1897 it was transferred via tram line to the Silver King smelter located in Nelson. By 1898, the Athabasca Gold Mining Co. had constructed its own mill on Giveout Creek. This was a stamp mill with gold extracted by means of amalgam plates. Recovery was poor, averaging less than 80 percent. Tailings were impounded pending the addition of a cyanide circuit; however, there is no evidence that the cyanide tailings were ever remilled. If not, up to 18,144 tonnes (20,000 tons) of 8.579 g per tonne (0.25 oz per ton) material may exist at the old mill-site, which remains on the existing property.

The mill system employed by Noble Five Mines Ltd. between 1933 and 1934 involved an amalgamation - cyanidation system capable of running 23 tonnes per day (25 tons per day) of ore. It is not known if the original mill facilities were used.

5. GEOLOGY


5.1 Regional Geology (see figure 3)

The oldest rocks in the vicinity of the Athabasca property are referred to as the Rossland Group. Lithologies of this group include Elise Formation basal andesitic and basaltic volcanics, which are overlain by sedimentary rocks of the Hall Formation. The Elise Formation is thought to range between about 1000 and 2750 metres (3280 and 9022 feet) in thickness while the Hall sediments vary from 300 to 600 metres (984 to 1968 feet). According to Little (1985) the Rossland Group is lower Jurassic in age.

Rossland Group rocks are "intruded" by a poorly understood rock referred to as a pseudo-diorite. This unit occurs west of Toad Mountain in contact with Elise Fm. volcanics. Recent gold discoveries by U.S. Borax are located in these rocks which are now thought to be of metamorphic origin. Age is uncertain.

Much of the Toad Mountain region is underlain by intrusive rocks of the Jurassic Nelson Batholith. The bulk of the intrusive body consists of granite with distinctive orthoclase phenocrysts. Monzonite, granodiorite, quartz diorite and diorite phases have also been identified.

The youngest rock type of significance in the vicinity of the Athabasca property is the so-called "Silver King Porphyry". This is a major dyke which consists of porphyritic hornblende quartz diorite. Age is unknown but a Jurassic or Cretaceous age

is likely. Its significance lies in the fact that the "Silver King Porphyry" is proximal to several important gold and silver occurrences, including the Athabasca and the adjacent gold showings of Lectus Developments Ltd.

There are a number of important structural elements associated with the geology and ore controls in the Toad Mountain area. Locally, the Rossland Group is confined to a graben which is readily apparent on large scale geologic maps. Of more importance, from an economic viewpoint, is the structural control of gold and silver mineralization in the area.

Ore found to date in the Toad Mountain area is contained within a number of sub-parallel shear zones. The dominant trend is north by northwest. Gold and silver occur both as disseminations within these shears, and in quartz veins which are contained within the shear zones. The Athabasca and California Mines are examples of the latter. Lectus Developments Ltd. are currently drilling low-grade bulk tonnage mineralization in shear zones adjacent to the Athabasca property.

5.2 Property Geology

The Athabasca mine workings are concentrated on a shallow-dipping quartz vein where it crosses a granodiorite-andesite fault contact. This contact is the north side of an east-west trending graben. The south wall of the graben is bounded by a separate intrusion, the Silver King Porphyry. Pervasive shearing and faulting within the downfaulted volcanics have offset and displaced portions of the vein. The vein strikes north 45 degrees east and dips at shallow angles to the northwest. Vein dip varies from 35-55 degrees in the granodiorite to 3-15 degrees in the volcanics.

Vein mineralization consists of gold, pyrite, galena and sphalerite in a quartz gangue. Vein width varies between a few centimetres to more than 1.5 m (5 ft.), with an average of slightly over 30 cm (one ft.). On the No. 2 West Level, ore was reported to average 45.6 g per tonne (1.33 oz. per ton) over a 49 metre (160 ft.) strike length; vein width averaged 30 cm (one ft.). The best ore was encountered where the vein crosses the lithologic contact.

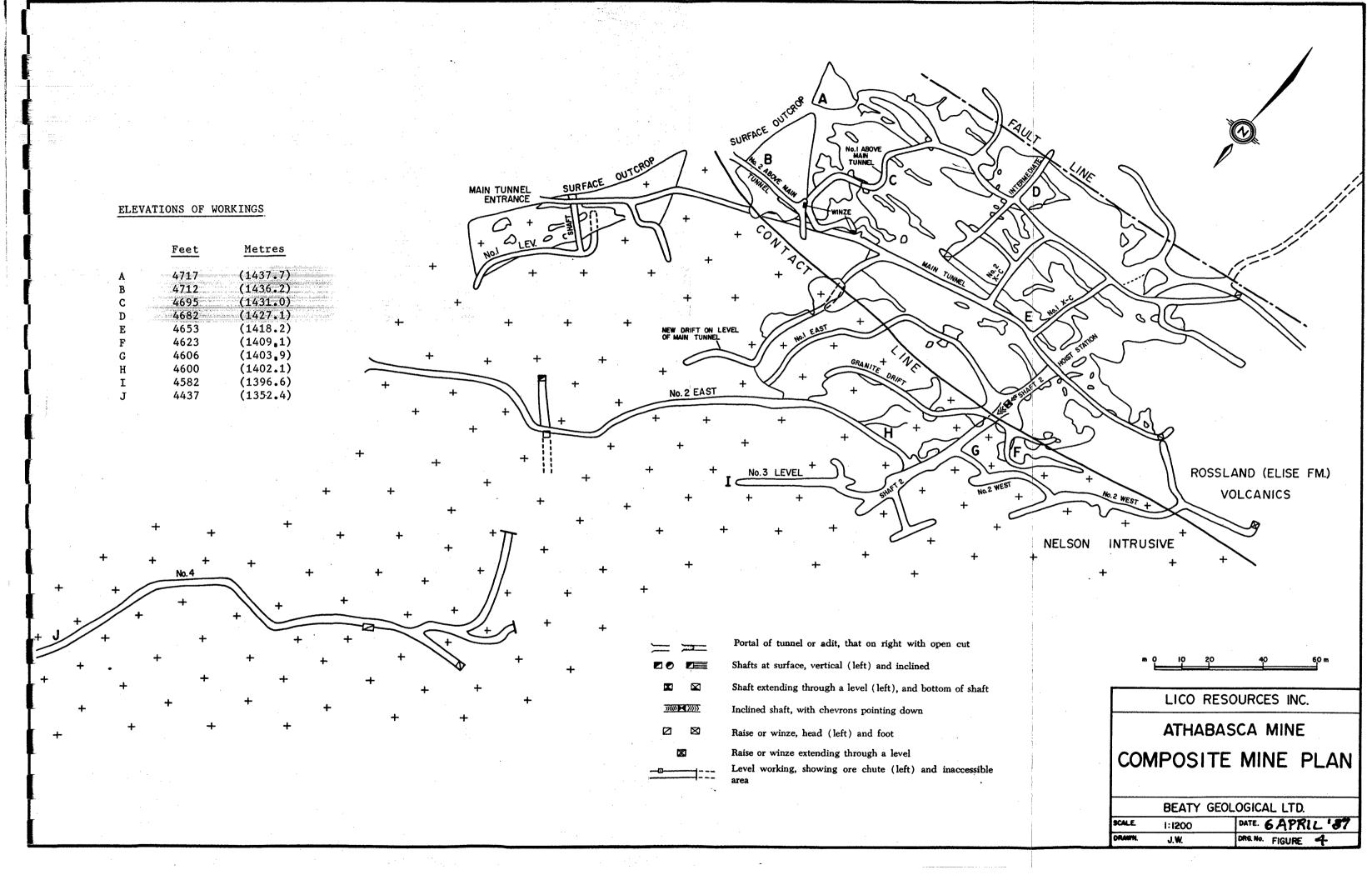
Scheelite is also present in the vein, near the lithologic contact. This may be an important mineral for indicating the location of the "contact" ore shoot. Scheelite has not been

previously reported at this mine.

There are at least two important exploration targets on the Athabasca property apart from the main vein. One involves finding veins parallel to the Athabasca Mine. The other is the likelihood of finding cross-cutting mineralized structures. It is unlikely that either possibility was seriously tested during the course of initial work on the mine. The writers found evidence of both exploration targets in the vicinity of the Athabasca vein.

The California Mine, located to the east, is on a mineralized vein which is projected to run through the Athabasca property. Minor quartz veins possibly related to the "California vein structure" were noted and sampled by the writers in two places. These grab samples assayed 114.86 and 144.69 g per tonne gold (3.35 and 4.22 oz. per ton). It should be noted that the "California structure" trends parallel to the graben faults and is not generally complicated by offsetting.

The writers, while examining underground workings, noted evidence for shear structures running parallel to the Athabasca vein proper. These could well contain significant mineralization either as ore shoots in quartz veins or in shear zones analogous to those being examined by Lectus.


5.3 Mine

5.3.1. Condition of Workings (see figure 4)

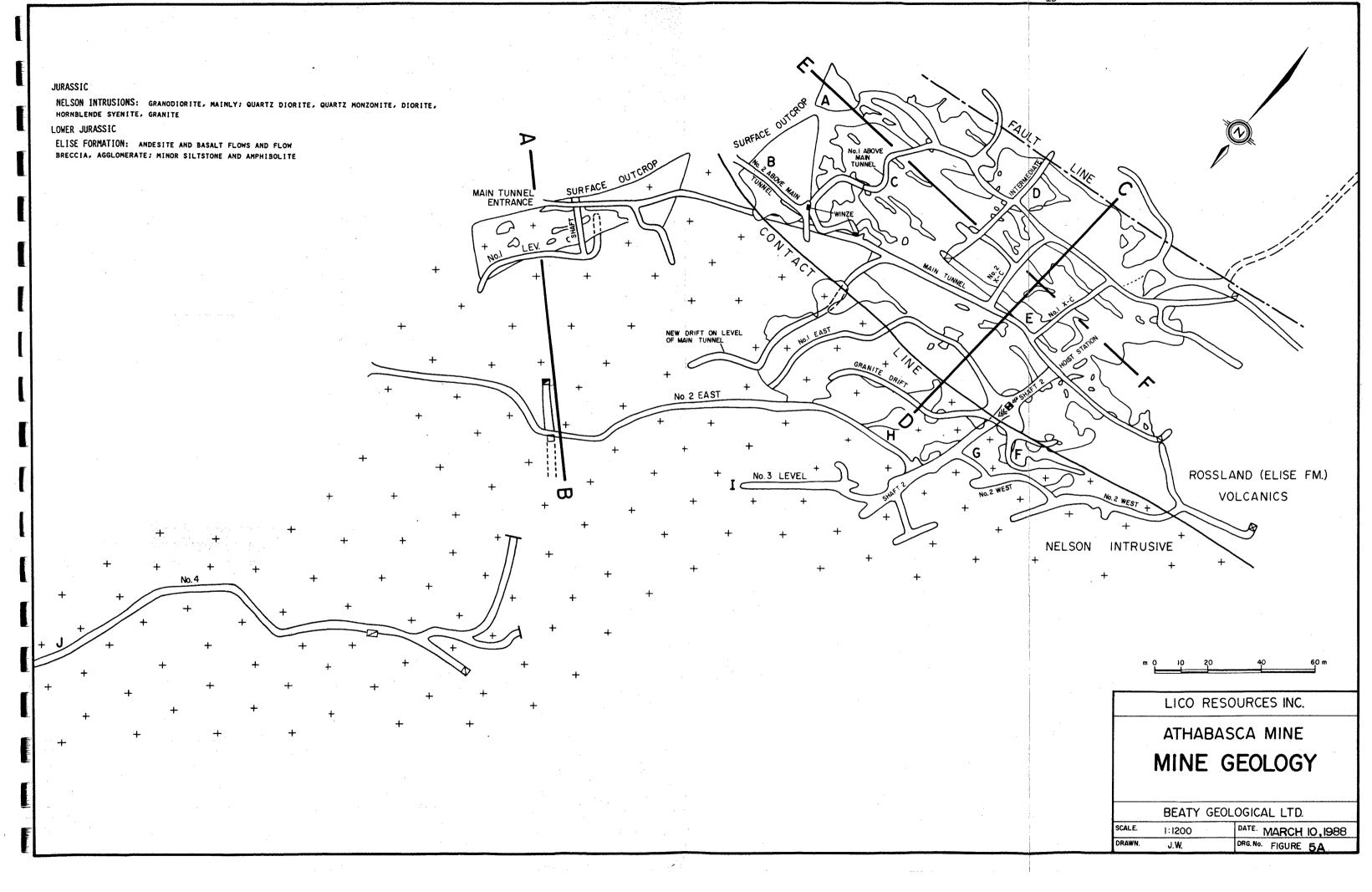
Entry to the Athabasca mine workings is via an upper level stope that was broken through to surface. In some parts of the mine the roof height is less than one metre (3 feet), which makes mapping and sampling awkward. At present, natural ventilation is good at all levels. The lowest level can be accessed without additional ventilation, The mine is, for the most part, dry. There are three main developed levels, as follows:

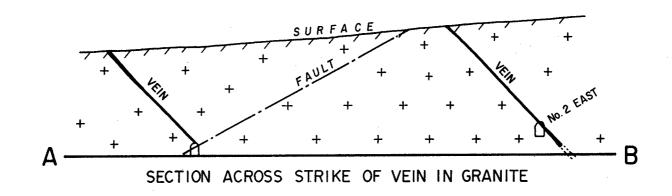
- a) No. 1 (main tunnel) Level is collared at 4653 feet (1418 metres); Portal is collapsed. Internal drifts are open. Some scaling and/or timbering is required at the old hoist station between No. 1 and No. 2 Levels.
- b) No. 2 Level is collapsed at 4600 feet (1402 metres); Blocked 64 m (210 ft.) from portal by a collapsed raise. Old data reports extensive stoping on this level which has destroyed No. 2 East Drift. Entry is possible via an

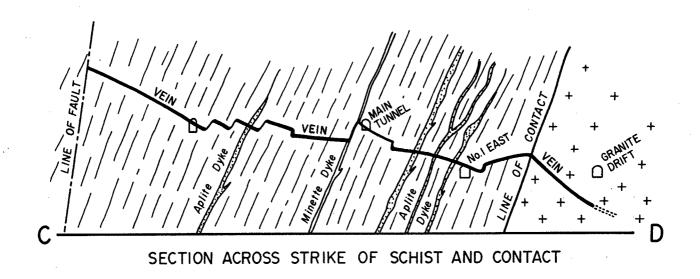
internal decline (-12 degrees) from No. 1. Access to No. 2 Level is critical, being the lowest level actually mined and a source of important control data on the ore zone located there. The No. 2 West Drift is open and in good condition. The No. 2 East Drift is collapsed but provides good ventilation.

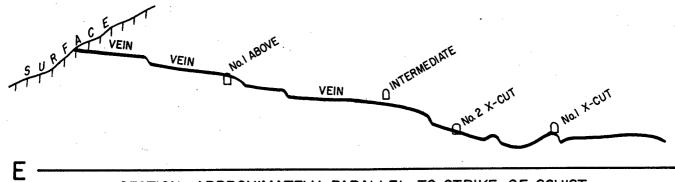
c) No. 4 Level is collapsed at 4437 feet (1352 metres): As this level is usable it is ideally located for mining 51.5 metres (169 ft.) of dip on the remaining Athabasca vein. Cleaning and retimbering the portal, and mucking out material from one raise are required prior to drilling from this level.

5.3.2. Subsurface Geology (see figures 5A and 5B)


Levels 1, 2, and 4 are collared in Nelson batholith granite. The Athabasca vein, which surfaces at the No. 1 Portal, strikes 045 degrees and dips 35-55 degrees to the northwest. About 90 metres (300 feet) in from the No. 1 Portal a granite-volcanic contact is encountered; beyond this the vein is continuously in volcanic rock. The relationship between the vein and the lithologic contact is shown on figures 5A and 5B. It was assumed by the original mine operators that a fault shifted the vein laterally in the region between Levels 1 and 2. The fault projection is shown on figure 5A.


Workings above the No. 1 Level are collared in sheared Rossland Group andesitic and basaltic volcanics. The lithologic contact here is the south side of an east-west trending graben. Volcanics are down-thrown relative to granite. The fault-contact is steep, dipping about 70 degrees to the south. Pervasive shearing within the volcanics also strikes at 090 degrees and dips 70 degrees south. These shears tend to down -throw to the south. A second set of fractures trends north-south and down-throws to the west.


Approximately 90 metres (300 feet) south of the intrusive contact an east-west shear has cut off the vein, and the vein has yet to be encountered south of this fault.


There is an ore shoot in the volcanics at the vein and graben wall intercept. This ore shoot continues with no decrease in tenor to the lowest mine levels. The vein dip flattens to 3-15 degrees upon crossing from intrusive to volcanic rocks.

In general the vein grade and thickness vary more in the volcanics than in the granite. While grades are somewhat higher in the volcanics this is probably compensated by better rock competency in the intrusives.

SECTION APPROXIMATELY PARALLEL TO STRIKE OF SCHIST

See Figure 5 A For Location of Sections

LICO RESOURCES INC.

ATHABASCA MINE
GEOLOGICAL
CROSS-SECTIONS

BEATY GEOLOGICAL LTD.

SCALE VARIOUS	DATE. MARCH 10,1988		
DRAWN. J. W.	DRG.No. FIGURE 5B		

6. GEOPHYSICS

6.1 Electromagnetic Survey

6.1.1 Procedure

In February-March 1987, a grid controlled VLF-EM survey was carried out over a portion of the Athabasca property. The objective was to test the applicability of this geophysical technique in identifying and tracing potentially mineralized structures. Readings were taken at 10 m (33 ft.) intervals, on lines spaced 50 m (164 ft.) apart. Grid lines were oriented perpendicular to the strike of the vein (vein strike 045°). A Sabre VLF-EM unit was used, and the station used was Seattle, Washington. Both dip angle and maximum field strength were recorded at each station. Data was plotted on stacked profiles.

In October, 1987, a new grid with gridlines 50 m apart and trending N-S was placed and VLF-EM was again run over the area. The instrument and procedures used were the same as above. Data was contoured after being Fraser Filtered.

6.1.2 Results and Interpretation (Figure 7)

In both VLF-EM surveys maximum field strength failed to outline any recognizable structures. Dip angles (raw data) in the initial survey increase to the northwest. The vein may be outlined on the line shown in Appendix C (Dip angle, raw data). In the follow-up survey, the Fraser Filtered dip angle clearly outlines the northwest portion of the graben wall. This is important as it is the location of the "contact" ore shoot.

6.2 Magnetometer Survey

6.2.1 Procedure

A Geotronics M-636 proton magnetometer (with 1 gamma precision) was used in the initial survey. Readings were taken at 10 m intervals and plotted on stacked profiles.

Stations were checked hourly to determine diurnal variations. As the diurnal variations were <20 gammas, diurnal corrections were not made for the preliminary survey. Values and profiles are shown in Appendix C.

6.2.2 Results and Interpretation

The stacked profiles indicate structures oblique to the grid that are parallel to the graben, probably outlining shears within the graben. In this gold camp, stacked profiles can identify shears which show up as narrow, strong magnetic lows, displaying distinct signatures that vary from shear to shear. Contouring masks the signature and makes it almost impossible to delineate oblique shears.

7. GEOCHEMISTRY

A total of 59 rock samples and 533 soil samples were taken on the Athabasca property. All samples were sent to Acme Analytical Labs in Vancouver for preparation and analysis by a number of methods.

Soils were prepared by drying and sieving to -80 mesh. Rocks were crushed and were sieved to -80 mesh or were split into -100 and +100 mesh fractions.

All rocks and some soils were analyzed by 30 - element ICP after digestion of 0.500 g of the sample with 3 ml of 3-1-2 HCL-HNO $_3$ -H $_2$ O at 95 $^{\circ}$ C for one hour and dilution to 10 ml with water. A few samples were analyzed for Hg by flameless AAS, or for Au, Pt and Pd by mass spectrometer after fire assay pre-concentration. A number of samples were assayed for a combination of Pb, Cu, Ag, Au, Ga, Ge, In and/or

Hg. Both fractions of those samples that had been split to +100 and -100 mesh were fire assayed to determine the proportion of native gold.

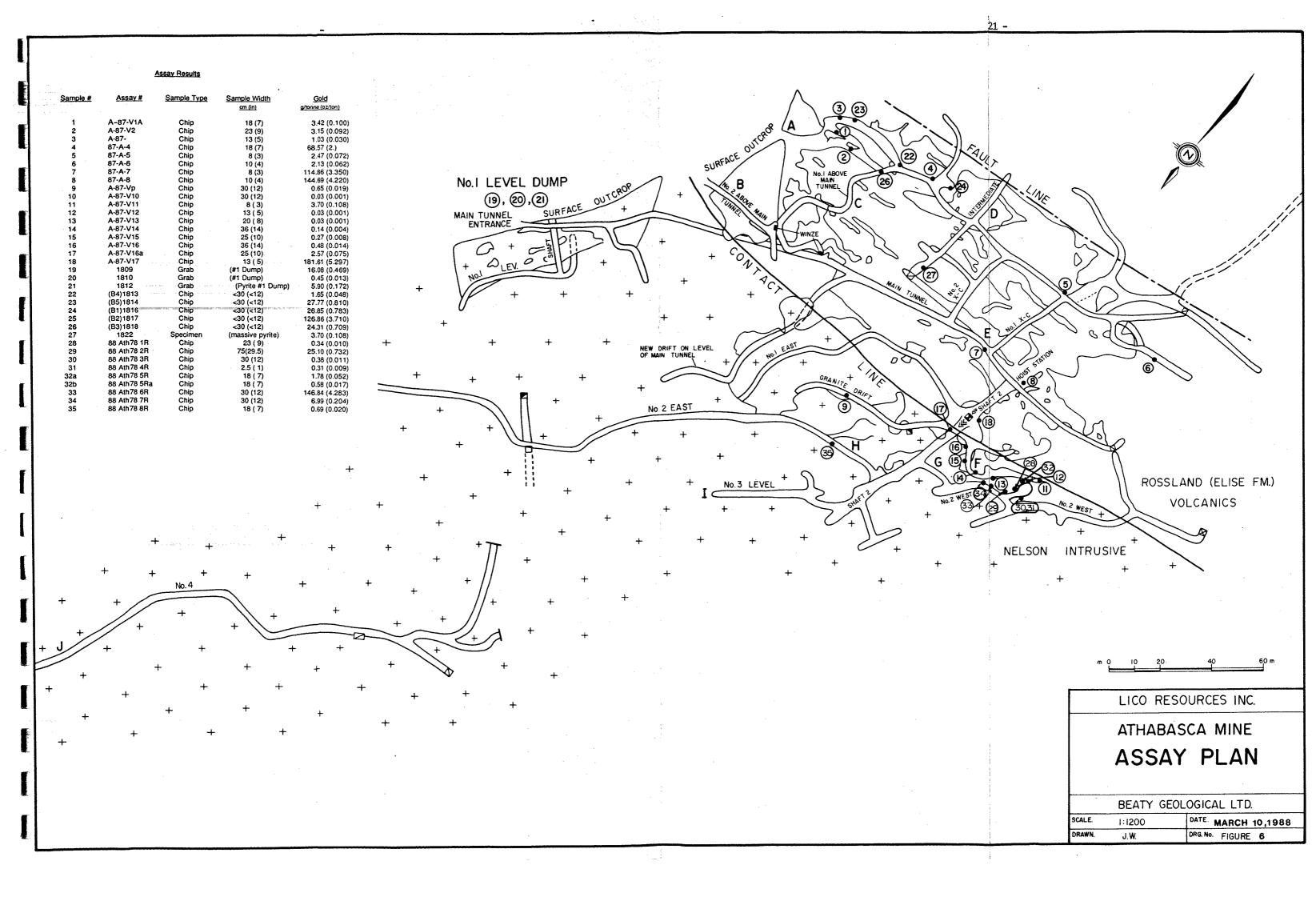
All soils were analyzed by AAS from a 10 gm sample. A number of samples were re-run as a check.

7.1 Rocks

7.1.1 Sampling Procedure

Initially, nine samples were obtained from the Athabasca dumps and underground workings by Mr. Mike Hudock. These are considered to be selected grab samples. Eighteen chip samples were then collected by geologists from various underground workings. It was assumed that all samples were from one vein (the Athabasca vein). The chip samples weighed from one-half to two kilograms each, and were taken to verify values reported in historical records, and to determine possible gold-sulphide correlations.

Subsequent sampling in the mine was carried out after ventilation was improved. Geologists twice entered the #2 Level to sample a reported ore shoot. A total of 35 chip samples were collected at this time.


7.1.2 Sampling Results (See Figure 6)

Chip sample results for the vein (as shown in Table II) vary from trace to 181.6 g/tonne (5.297 oz./ton) gold. An average of 27 samples yielded a weighted vein average of 22.29 g/tonne (0.65 oz./ton) gold. This not to say that this is a valid average grade, as detailed, systematic sampling and mapping has yet to be carried out. Results show an erratic range of values within ore-shoots, and assays are complicated by up to 41% coarse gold in individual samples. One set of underground assays are not displayed, as the sample collecting was not carried out by trained personnel. Subsequent check assays are included on the assay plan.

<u>Table II</u>

Assay Results

Sample #	Assay #	Sample Type	Sample Width	Gold
•			cm (in)	g/tonne (oz/ton)
1	A-87-V1A	Chip	18 (7)	3.42 (0.100)
2	A-87-V2	Chip	23 (9)	3.15 (0.092)
3	A-87-	Chip .	13 (5)	1.03 (0.030)
4	87-A-4	Chip	18 (7)	68.57 (2.)
5	87-A-5	Chip	8 (3)	2.47 (0.072)
6	87-A-6	Chip	10 (4)	2.13 (0.062)
7	87-A-7	Chip	8 (3)	114.86 (3.350)
8	87-A-8	Chip	10 (4)	144.69 (4.220)
9	A-87-Vp	Chip	30 (12)	0.65 (0.019)
10	A-87-V10	Chip	30 (12)	0.03 (0.001)
11	A-87-V11	Chip	8 (3)	3.70 (0.108)
12	A-87-V12	Chip	13 (5)	0.03 (0.001)
13	A-87-V13	Chip	20 (8)	0.03 (0.001)
14	A-87-V14	Chip	36 (14)	0.14 (0.004)
15	A-87-V15	Chip	25 (10)	0.27 (0.008)
16	A-87-V16	Chip	36 (14)	0.48 (0.014)
17	A-87-V16a	Chip	25 (10)	2.57 (0.075)
18	A-87-V17	Chip	13 (5)	181.61 (5.297)
19	1809	Grab	(#1 Dump)	16.08 (0.469)
20	1810	Grab	(#1 Dump)	0.45 (0.013)
21	1812	Grab	(Pyrite #1 Dump)	5.90 (0.172)
22	(B4)1813	Chip	<30 (<12)	1.65 (0.048)
23	(B5)1814	Chip	<30 (<12)	27.77 (0.810)
24	(B1)1816	Chip	<30 (<12)	26.85 (0.783)
25	(B2)1817	Chip	<30 (<12)	126.86 (3.710)
26	(B3)1818	Chip	<30 (<12)	24.31 (0.709)
27	1822	Specimen	(massive pyrite)	3.70 (0.108)
28	88 Ath78 1R	Chip	23 (9)	0.34 (0.010)
29	88 Ath78 2R	Chip	75(29.5)	25.10 (0.732)
30	88 Ath 78 3R	Chip	30 (12)	0.38 (0.011)
31	88 Ath78 4R	Chip	2.5 (1)	0.31 (0.009)
32a	88 Ath78 5R	Chip	18 (7)	1.78 (0.052)
32b	88 Ath78 5Ra	Chip	18 (7)	0.58 (0.017)
33	88 Ath 78 6R	Chip	30 (12)	146.84 (4.283)
34	88 Ath 78 7R	Chip	30 (12)	6.99 (0.204)
35	88 Ath78 8R	Chip	18 (7)	0.69 (0.020)

7.1.3 Interpretation

Sampling to date confirms anomalous gold values down to the lowest working levels, but is insufficient to calculate grade, or to confirm or deny the grade reported for the "contact" ore shoot.

7.2 Soils

7.2.1 Sampling Procedure

Samples were collected at 20 m intervals on lines spaced 50 m apart. The "B" soil horizon was collected by digging a 15-25 cm deep hole with a mattock. Roots and rock fragments were removed and the soil was bagged in kraft paper soil bags. Samples were dried at room temperature.

7.2.2 Sampling Results

Sample values vary from trace to 8705 ppb gold. Anomalous values are displayed on figure 9. Contour intervals were chosen arbitrarily and do not represent statistically significant contour intervals.

7.2.3 Interpretation (See Figure 9)

As expected, the strongest anomaly (#1) outlines the mine workings. An East-West trending anomaly (#2) immediately south of the mine is thought to be contamination from the original tramline.

Anomaly #3 is important in that it outlines interesting gold values within the graben. This target should be examined in more detail during the spring of 1988.

BEATY GEOLOGICAL LTD.

Anomaly #4a is interesting because it occurs within the Silver King Porphyry and is coincident with a VLF-EM anomaly. Anomaly #4b also occurs within the Silver King Porphyry. Smaller gold anomalies are found throughout the grid area, in each of three host lithologies.

8. RECOMMENDATIONS FOR FURTHER WORK

- 1a) Gaining safe access to the #2 Level (which is important for mapping and future mine development) will require scaling and retimbering of internal workings, and building one proper portal for access.
- 1b) Detailed and systematic sampling and mapping are required prior to recommending a drilling program. Underground sampling every 3 metres and mapping at a scale of 1:200 or 1:100 are suggested.
- 1c) Analysis of the rocks should be for gold, silver, copper, lead, zinc, and tungsten. Future assays should be run for gold and any of these elements which are found useful in delineating ore zones.
- 1d) An ancillary surface program of prospecting geochemical and geophysical surveys and minor trenching should be carried out at this stage.
- Pending successful results from the above program, an exploration drift on the #4 Level should be extended along the vein, to develop 51.5 m (169 ft.) of dip on potential ore shoots. Drill stations set periodically along the drift would systematically test the vein between the #2 and #4 Levels. Any ore delineated would then be accessible for production.

Estimated costs for steps (1a) to (1d) are \$100,000; and for step (2) are \$400,000.

As trained personnel and equipment are presently available, many of these recommendations can commence at any time, pending government approval.

9. COST STATEMENT

<u>Labour</u>			
D. Leighton	33 days @ \$250/day	8,250.00	
G. Addie	(Feb 2 - Mar 7) 49 days @ \$136/day (Feb 2 - Mar 7,	6,664.00	
T. Taal	Sept 28 - Oct 13) 8 days @ \$155/day	1,240.00	
J. Knox	(Sept 28 - Oct 7) 15 days @ \$130/day (Feb 12 - 27)	1,950.00	
J. Denny	6 days @ \$130/day (Feb 12 - 27)	780.00	
L. Addie	10.5 days @ \$130/day (Feb 12 - 27)	1,365.00	
			20,249.00
Plus 25% bene	fits (W.C.P., C.P.P., U.I.C., et	.c)	5,062.25
	Total Lab	oour	25,311.25
Contractors			
T. Cherry - 1 G. Stein - 1	Assessment of workings Road building and portal cleanin Surveying portals and roads Property supervision	1,200.00 1,000.00 2,500.00 500.00	
	Total Contract	ors	5,200.00
Room and Board	d (various dates, as above)		1,425.90
Truck rental	8 days at \$20/day 1 month at \$1,500/mo. Gas, etc.		160.00 1,500.00 165.75
Helicopter (O	kanagan Helicopters 206B) 0.8 hrs. at \$505/hr. plus fue	1	450.60
Field supplies	s, maps, publications, etc.		608.92
Sabre VLF-EM (Jnit rental (5 weeks, Feb 2-16th Sept 28 - Oct 20)		568.00

250.00

Magnetometer Unit rental (2 weeks, Feb 2 - 16th)

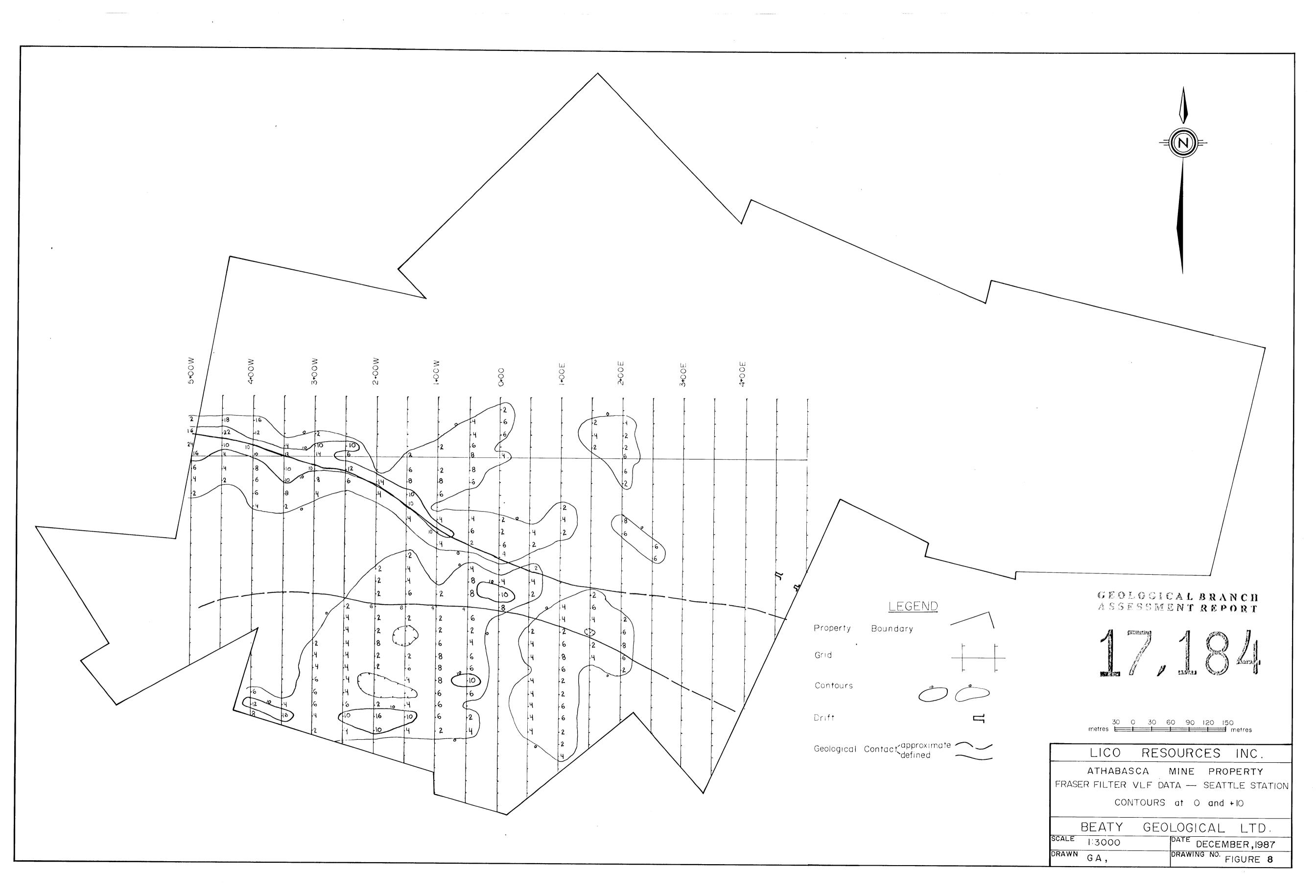
BEATY GEOLOGICAL LTD.

Geochemical/Assay Costs

Ro	C	k	S

Preparation	99 at \$ 3.00	297.00
100 mesh split	22 at \$ 4.50	99.00
30 element ICP	89 at \$ 6.00	534.00
ICP + Geochem. Whole rock	k	
(ICP-MS)	3 at \$26.00	78.00
Assays - 67 Au, 3 Zn	70 at \$ 6.75	472.50
In	3 at \$ 8.50	25.50
Zn-Au-Cu/Ag	3 at \$12.75	38.25
Zn-Au-Ng	2 at \$17.25	34.50
Au-Aq	4 at \$ 9.75	39.00
Ga + Ge	36 at \$15.00	540.00
Pb-Zn	2 at \$ 9.75	19.50
Pb-Zn-Ag	27 at \$ 9.00	243.00
Fire Assay - Au	53 at \$ 8.25	437.25
Fire Assay-MS - Au-Pt-Pd	3 at \$25.00	75.00
Geochem Au	2 at \$ 4.25	8.50
Geochem Hg	20 at \$ 2.25	45.00
Geochem ICP-MS - In	14 at \$ 4.00	56.00
Soils		
Preparation	538 at \$ 0.75	403.50
Geochem Au	533 at \$ 4.25	2,265.25
ICP & Geochem Hg	5 at \$ 8.00	40.00
	Total Geochemical Costs	
Report Preparation		-

	Total Geochemical Costs	5,750.75
Report Preparation		556.45
	SUB TOTAL	41,947.62
10% overhead		4,194.76
	TOTAL	46,142.38


10. REFERENCES

- Athabasca Gold Mines Ltd. Company File, at B.C. Archives (Victoria Colonist newspaper clippings, circa. 1898, 1899).
- B.C. Dept. of Mines, Annual Reports. 1896-87; 1897-531; 1898-1158,1188; 1899-597,815; 1900-832,843; 1902-154; 1903-143; 1904-135; 1909-119; 1910-104,243; 1911-158; 1913-130; 1914-326; 1916-203; 1917-194,448; 1918-197; 1920-148; 1921-143; 1933-218; 1934-A36,E3,2; 1935-A27; 1937-A38,E27,45; 1938-A35,E3,36; 1939-38; 1940-25,65; 1941-26,64; 1945-96; 1946-139.
- B.C. Dept. of Mines (1984). Athabasca Minfile. No. 082FSW 168.
- Cockfield, W.E. (1936). Lode-gold deposits of Ymir-Nelson Area. Geological Survey of Canada, Memoir 191.
- Fell, E.N. (1900). Notes on Gold Milling Practice at the Athabasca Mine, Nelson, B.C. in Canadian Mining Institute, Vol. III, pp. 83-90.
- Fell, E.N. (1902). Notes to Accompany One Plan and Three Vertical Sections of the Athabasca Mine, on Toad Mountain, near Nelson, British Columbia in Canadian Mining Institute, Vol. V, pp. 15-20.
- Gale, R.E. (1980). Assessment Report 8614, Aberdeen Group, Nelson Mining Division.
- Leroy, O.E. (1911). Geology of Nelson Map Area. Geological Survey of Canada, Summary Report, pp. 148-151.
- Little, H.W. (1960). Nelson West Half. Geological Survey of Canada, Summary Report pp. 148-151.
- Little, H.W. (1985). Nelson West Half. Geological Survey of Canada, Open File 1195.
- Mathews, W.H. (1948). Lode-gold Deposits Southeastern B.C., B.C. Dep't. of Mines, Bulletin No. 20, Part II.
- Mulligan, R. (1952). Bonnington Map Area. Geological Survey of Canada, Paper 52-13.
- Nelson Daily Miner (1902). At B.C. Provincial Archives (Microfilm).
- Nelson Daily News (1902). At B.C. Provincial Archives (Microfilm).

BEATY GEOLOGICAL LTD.

Noble Five Mines Ltd. - Company File, at B.C. and Yukon Chamber of Mines. (Vancouver Sun and Province newspaper clippings, circa. 1933, 1934).

Maps, Plans and Sections	<u>Date</u>	Scale
Aeromagnetic Map - Dep't. of Energy and Resources, Ottawa. Map #8480G, Sheet 82F6.	1971	1:63,360
Claim Map - 82F6W, Nelson Mining Division	1987	1:50,000
Crown Grant Survey Map - Athabasca Group	1898	1:3,600
- Good Hope Claim (by Crestwood Forest Products)	1986	1:2,000
Forest cover and access - B. C. Forest Service Map 82F6W	1986	1:20,000
Geology Maps -Nelson & Vicinity; Leroy, O. E.	1911	1:63,360
and Drysdale, R. (above)Nelson West Half, Map 1091A; Little, H. W. (above)	1960	1:253,440
-Nelson West Half, Open File 1195; Little, H. W. (above).	1985	1:125,000
-Bonnington Map Area, Paper 52-12; Mulligan, R. (above).	1952	1:31,680
Plans - Plan and Three Vertical Sections Athabasca Mine; Fell, E. (above).	1902	1:1,200
- Plan of a portion of the Athabasca Mine; Leroy, O.E. (above).	1911	1:1,200
- Plan of Athabasca (circa 1898) with #4 Level Added by B. T. O'Grady.	1934	1:1,200
Topographic Map - N. T. S. 82F6W	1981	1:50,000

APPENDIX A

STATEMENTS OF QUALIFICATIONS

STATEMENT OF QUALIFICATIONS

- I, Douglas G. Leighton, do hereby certify that:
- 1. I am a professional geologist with offices at 900-625 Howe Street, Vancouver, B.C.
- 2. I am a graduate geologist and geophysicist of the University of British Columbia, B.Sc. (1968).
- 3. I am a fellow member of the Geological Association of Canada.
- 4. I have practised my profession as a geologist and geophysicist since 1968, mostly in British Columbia.
- 5. I personally examined the Athabasca property of Cassidy Resources Inc. and supervised work carried out there.
- 6. I have not received, nor do I expect to receive any interest, direct or indirect, in the Athabasca property or in the securities of Cassidy Resources Inc.
- 7. I hereby consent to the publication of this report for purposes of a prospectus or a statement of material facts.

DATED at Vancouver, British Columbia, this 15th day of March, 1988.

G. LEIGHTO

Douglas G. Leighton

STATEMENT OF QUALIFICATIONS

- I, Gordon A. Addie, do hereby state that:
- 1. I am a geologist with offices at D-806 1600 Beach Ave., Vancouver, B.C.
- 2. I have received a B.Sc. (Geology) from the University of British Columbia (1986).
- I am an associate member of the Geological Association of Canada.
- 4. I have practised my profession seasonally since 1979, and continuously since 1986.
- 5. I personally examined the Athabasca property, located in the Nelson Mining Division and supervised and carried out work there.
- 6. I have not received, nor do I expect to receive any interest, direct or indirect, in the Athabasca property or in the securities of Cassidy Resources Inc.

*DATED at Vancouver, British Columbia, this 15th day of March, 1988.

Gordon A. Addie

APPENDIX B

GEOCHEMICAL RESULTS AND ASSAY CERTIFICATES

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH: (604)253-3158 COMPUTER LINE:251-1011

DATE RECEIVED FEB 25 1987

DATE REPORTS MAILED MAY 11/87

ASSAY CERTIFICATE

SAMPLE TYPE: ROCK - CRUSHED AND PULVERIZED TO -100 MESH. AU BY FIRE ASSAY

ND = NUNE DETECTED

ASSAYER.

ALL DEAN TOYE . CERTIFIED B.C. ASSAYER

BEATY GEOLOGICAL FILE# 87-0538

PAGE# 1

SAMPLE	Samble	Au-100	Native	Average
•	wt. am	oz/t	Au mg	oz/t
8/-A-4B	250	2.120	.59	2.188
87-A-5B	570	. 071	.01	.072
B7-A-6B	530	.060	.04	.062
87-A-7B	400	3.320	.41	3.350
87-A-8B	340	4.012	2.42	4.220
		•	90.0	
A-87-V1A	360	.090	.12	.100
A-87-V2	520	.092	ND	.092
A-87-V3	550	.029	.02	.030
A-87-V9	510	.014	.09	.019
A-87-V10	510	.001	ND	.001
~ A-87-V11	600	.104	.08	.108
A-87-V12	400	.001	ND	.001
A-87-V13	420	.001	ND	.001
A-87-V14	400	.004	ND	.004
A-87-V15	370	.008	ND	.008
A-87-V16	360	.014	ND	.014
A-87-V16A	480	.075	ND	.075
A-87-V17	560	4.730	10.90	5.297
P76-BRD-1R	560	.011	ND	.011
BIRD OR CONTACT	580	.001	ND	.001

ACME ANALYTICAL LABORATORIES LTD.

852 E.HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE 253-3158

DATA LINE 251-1011

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MM.FE.CA.P.CR.MG.BA.TI.B.AL.NA.K.M.SI.ZR.CE.SN.Y.NB AND TA. AU DETECTION LIMIT BY ICP IS 3 PPM.

- SAMPLE TYPE: ROCK CHIPS HG ANALYSIS BY FLAMLESS AA.

DATE RECEIVED: FEB 25 1987 DATE REPORT MAILED:

ASSAYER. DEAN TOYE. CERTIFIED B.C. ASSAYER.

														PAG	E 1																	
SAMPLE#	Mo PPM	Cu PPN	Pb PPM	Zn PPM	Ag PPM	Ni PPM	Co PPM	Mn PPM	Fe	As PPH	U PPN	Au PPM	Th PPM	Sr PPM	Cd PPM	Sb PPM	Bi PPM	V PPN	Ca Z	P	La PPM	Cr PPN	Mg 1	Ba PPM	Ti 1	B PPH	Al Z	Na I	K	N PPN	Họ PPB	
87-A-4B	1	24	699	454	22.3	7	10	486	8.04	43	5	85	2	15	5	2	4	71	.24	. 056	2	16	.78	17	.10	2	1.38	.02	.07	1	80	
87-A-59	1	19	146	259	1.4	5	13	805	10.45	84	6	ND	2	50	16	2	4	7	3.27	.011	2	1	. 14	7	.01	3	.20	.01	. 05	199	. 90	
87-A-6B	1	17	91	28	1.8	7	16	204	20.83	110	5	2	2	4	2	2	17	20	.07	.023	2	1	.20	5	.04	4	.33	.01	.16	7	30	
87-A-7B	10	22	18630	5951	61.5	17	14	613	10.97	99	7	103	13	6	152	2	56	31	.05	.020	2	40	.67	5	.01	4	.61	.01	.05	76	5600	
87-A-89	1	9	1319	324	24.1	28	5	197	5.34	28	5	119	1	4	5	2	4	18	.13	.006	. 2	73	.47	4	.02	2	.33	.01	.02	1	160	
A-87-V1A	1	29	510	861	2.9	10	13	2338	4.74	20	5	3	4	89	30	2	8	38	2.75	.093	3	7	1.05	24	.01	2	1.44	.01	.26	5	1200	
A-87-V2	2	14	2718	1672	3.3	13	23	2477	6.46	36	5	4	4	10	21	2	2	78	.35	.089	2	20	1.47	17	.13	6	1.56	.01	. 24	51	200	
A-87-V3	1	11	29	17	.9	19	10	351	7.34	43	6	2	1	4	2	2	2	50	.09	.015	2	28	.36	13	.02	5	.30	.01	.02	4	150	
A-87-V9	6	13	14712	4640	46.6	2	10	135	20.37	184	5	ND	10	13	165	10	102	8	.10	.002	2	. 1	.05	2	.01	9	.01	.01	.02	95	90	
A-87-V10	12	19	4793	819	14.7	4	3	447	2.28	11	5	ND	5	16	21	2	31	6	.62	.035	3	2	.13	19	.02	4	.57	.01	.16	233	50	
A-87-V11	3	9			4.5	5	4	530	3.52	23	5	2	2	38	36	2	6	4	1.29	.024	3	3	.13	10	.02	7	.36	.01	.11	921	70	
A-87-V12	474	38	3543	1139	14.6	2	3	538	2.46	15	5	ND	4	43	15	2	32	27	.70	.023	3	3	.22	12	.04	2	.63	.01	.09	31	90	
A-87-V13	9	17	960	1557	2.8	. 3	2	208	1.71	14	5	ND	1	9	8	2	12	78	.14	.013	2	5	.09	9	.02	2	.31	.01	.03	12	30	
A-87-V14	16	17	564	663	2.9	5	3	377	2.31	17	5	ND	4	9	5	2	5	14	.15	.040	6	5	.13	32	.02	2	.57	.01	.22	2	110	
A-87-V15	4	12	354	149	.7	2	2	231	3.74	16	5	ND	2	9	2	2	3	2	.07	.031	5	1	.08	23	.01	2	.38	.01	.17	13	120	
A-87-V16	21	58	5184	2699	50.1	1	4	196		48	5	2	4	5	15	2	107	22	.07	.018	2	4	.12	16	.01	4	.35	.01	.09	1	250	
A-87-V16A	11	28	9197	6109	9.5	6	4	230	1.40	20	5	3	5	6	15	2	16	35	.08	.018	2	12	.16	3	.02	2	. 18	.01	.03	i	20	
A-87-V17	5	14	8532	4459	32.6	6	2	141	.95	7	5	154	5	2	172	2	5	3	.02	.001	. 2	11	. 05	1	.01	2	.04	.01	.01	1	10	
P76-BRD-1R	1	52	56	56	.2	8	8	906	6.41	7	5	ND	6	52	1	2	2	25	8.53	.020	6	- 11	1.11	88	.01	4	1.02	.01	.01	1	30	
BIRD CR CONTACT	35	7	8	19	.1	. 6	5	236	2.58	2	5	ND	2	19	1	2	2	15	.26	.014	. 6	7	.25	32	.01	5	.36	. 05	.09	1	10	
STD C	20	59	35	134	6.8	66	28	1002	3.97	40	15	7	33	48	17	15	21	60	.50	.103	36	58	.92	179	.08	37	1.72	.07	.13	14	1300	

<

ŧ."

,

(

ζ,

ACME ANALYTICAL LABORATORIES LTD.

B52 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6
PHONE (604) 253-3158 FAX (604) 253-1716 DATE REPORT MAILED: Dec. 2.2/87

AESAY CERTIFICATE

- SAMPLE TYPE: Rock Chips AU - 10 BM RESULAR ASSAY.

ASSAYER: .. A. JUM DEAN TOYE, CERTIFIED B.C. ASSAYER

BEATY GEOLOGICAL PROJECT-87-178 File # 87-6243

SAMPLE#	AU
	oz/t
JK87-178-50	.054
JK87-178-51	.033
JK87-178-51	. 470
JK87-178-53	
JK87-178-54	.004
0601110	# 373774
JK87-178-55	.003
JK87-178-56	.001
JK87-178-57	.001
JK87-178-58	.019
JK87-178-59	.085
711277777 4 77775 7.75	275,295,295
JK97-178-60	,002
JK87-178-61	.470
JK87-179-62	.068
JK87-178-63	.076
JK87-178-64	.001
JK87-178-65	.001
JK87-178-65	.001
JK87-178-67	.017
JK87-178-68	.001
JK87-178-69	.001
JK87-178-70	.001
JK87-178-71	.012
JK87-178-72	.079
JK87-178-73	.294
JK87-178-74	"OQ4
UNG/-1/0-/4	" ()()(4
JK87-178-76	.002

ACME ANALYTICAL LABORATORIES LTD.

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL/ASSAY CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEC.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.
THIS LEACH IS PARTIAL FOR MN FE CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM.
- SAMPLE TYPE: PI ROCKS P2 PULP AUX BY FIRE ASSAY FROM 1/2 A.T.

DATE RE	CEIV	ED:	JA	N 04 1	788 1	DATE	RE	FOR	T MA	IĻED); (AN	8,1	988	•	ASSA	YER	<i>.</i> Y.Y	41.	f.r.	. DE	I NA	OYE	, CE	RTI	FIED	B.(C. A	SSA'	YER		
									BEAT	ry G	EOLC	OG I C	a L	F	i l e	# 8	8-0¢	/)23	i	Page	1											
SAMPLE#	MO	CU	PB		A S	NI	CO	MN		AS	U	AU	TH	SR	CĐ	SB	BI	٧	CA	P	LA	CR	M5	BA	TI	В	AL	NA ,	K	¥	AU##	
	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	I.	PFM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	7	7.	PPM	PPM	Z.	PPM	7.	PPM	ı	Z	7.	PPM	OZ/T	
88ATH78-1R	3	27	6588	11971	35.0	5	4	435	2.90	52	5	ND	2	21	387	2	72	20	.72	.020	2	ģ	.33	10	.04	3	. 49	.02	.10	1415	.010	
88ATH78-2R	1	21	13754	15379	76.0	19	20	619	19.22	226	6	21	2	11	486	2	141	17	.21	.015	2	21	.42	6	.01	2	.45	.02	.07	130	.732	
88ATH78-3R	2	17	2390	6249	15.8	5	5	713	2.18	17	5	ND	1	23	265	2	28	38	1.19	.024	2	5	.52	7	.06	2	.60	.02	.05	616	.011	٠
88ATH78-4R	1	122	325	875	1.5	8	20	1324	8.00	8	5	ND	2	81	20	3	2	179	3.07	.089	2	3	2.41	9	.17	2	3.44	.04	.05	3	.009	
88ATH78-5R	3	11	18746	13866	33.3	8	7	585	2.49	111	5	3	1	47	465	4	61	31	1.32	.026	2	17	.47	6	.06	2	.51	.02	.07	321	.052	
88ATH78-5RA	1	11	18093	7366	6.3	5	7	747	3.45	112	5	ND	1	64	302	2	10	37	1.82	.022	2	3	.60	5	.06	2	.58	.02	.05	272	.017	
88ATH78-5R	3	144	18435	26954	122.0	2	5	666	15.23	114	5	87	1	4	948	9	185	2	.15	.006	2	1	.04	12	.01	2	.21	.01	.04	103	4.293	
88ATH78~7R	1	8	3336	2296	12.6	3	6	354	6.58	65	5	4	1	57	91	3	26	3	.82	.011	2	2	.04	14	.01	2	.23	.02	.09	109	.204	
88ATH78-9R	6	9	17881	19040	16.6	2	2	409	1.58	101	5	ND	i	29	642	2	36	4	1.34	.009	2	6	.11	6	.02	2	.61	.02	.06	3	.020	
STD C/AU-R	18	56	42	132	7.0	67	27	1050	4.08	39	- 25	7	37	47	18	16	20	56	.48	.080	39	57	. 91	176	.07	32	1.94	.07	.13	11	-	

- ASSAY REQUIRED FOR CORRECT RESULT for Pb 710,000 PPM 2n > 20,000 PPM Pg 735 PPM W 7100 PPM

								BEA	TY 6	EOL	0610	CAL	F	LE	# 88	3-00	23										Page 2
SAMPLE#	MO PPM	CU PPM	PB PFM	ZN PPM		CO PPM		AS PPM	U PPM			SR PPM			BI PPM	V PPM	CA I	P %	CR PPM	BA PPM	11	-	AL	NA Z	K	₩ PPM	
JK87-178-52	ģ			10433	6	14			5		.1							.026			.06			.02			
JK87-178-61 JK87-178-73	20 8			2849 33233	3	2 7	5.25 3.24	27 75	5 5	27 12	3 2	22 21	102 875		22 190	8 4			9 10		.01			.02			

(

(

€,

· ·

(

DATE RECEIVED: JAN 08 1988 ACME ANALYTICAL LABORATORIES LTD. Jan 13/88 852 E. HASTINGS ST. VANCOUVER B.C. VAA 1RA PHONE (604) 253-3158 FAX (604) 253-1716 DATE REPORT MAILED:

ASSAY CERTIFICATE

- SAMPLE TYPE: REJECT

.. N. DEAN TOYE, CERTIFIED B.C. ASSAYER

BEATY GEOLOGICAL File # 88-0023R

SAMPLE#

SAMPLE AU-100 NATIVE AVG.

wt. gm oz/t Au mg

88ATH78-2R

500 .788 .18 .799

88ATH78-6R

470 2.880 19.30 4.077

JAN 18 19881

Alfabasca #178

DATE RECEIVED: NOV 6 1987 ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716 DATE REPORT MAILED:

GEOCHEMICAL ANALYSIS CERTIFICATE

- SAMPLE TYPE: P1-15 SOIL P16-ROCK AU* ANALYSIS BY AA FROM 10 GRAM SAMPLE.

4. DEAN TOYE, CERTIFIED B.C. ASSAYER

BEATY GEOLOGICAL File # 87-5566

SAMPLE	*	AU* ppb
L5+00W L5+00W L5+00W L5+00W L5+00W	0+80N 0+60N 0+40N	2 3 1 2 9
L4+50W L4+50W L4+50W L4+50W L4+50W	0+80N 0+60N 0+40N	2 1 2 2 1
L4+00W L4+00W L4+00W L4+00W L4+00W	0+80N	2 3 5 2 1
L3+50W L3+50W L3+50W L3+50W L3+50W	0+80N 0+60N 0+40N	1 17 2 1
L3+00W L3+00W L3+00W L3+00W L3+00W		1 3 1 1 350
L2+50W L2+50W L2+50W L2+50W L2+50W	0+80N 0+60N 0+40N	1 35 1 1
L2+00W L2+00W L2+00W L2+00W L2+00W	0+80N 0+60N 0+40N	1 1 1 2 1
L2+00W L2+00W	0+20S 0+40S	2 1

SAMPLE	‡	AU* ppb
L2+00W	0+608	3
L2+00W		3
L2+00W		1
L2+00W		7
L2+00W	1+408	1
Samuel Control Val	J. 1 "F15"	.1.
L2+00W	1+605	3
L2+00W	1+808	189
L2+00W		3
L2+00W	2+208	3
L2+00W	2+405	17
L2+00W		6
L2+00W	2+808	11
L2+00W	3+008	2
L2+00W	3+208	5
L2+00W	3+405	6
L2+00W	3+608	1
L2+00W	3+808	5
L2+00W	4+005	16
L2+00W	4+205	5
L2+00W	4+408	2
t managari	8.755	E:
L2+00W	4+608	5
	4+805	39
L2+00W	5+00S	3
L2+00W	BL	1
L1+50W	1+00N	13
L1+50W	0+80N	1
L1+50W	0+60N	2
L1+50W	0+40N	1
L1+50W	0+20N	1
L1+50W		1
		
L1+50W		22
L1+50W		2
L1+50W		2
L1+50W		1.1
L1+50W	1+008	6
L1+50W	1+208	2

SAMPLE	#	AU* ppb
L1+50W	1+408	10
		1
L1+50W L1+50W L1+50W	1.000	1
1 4 : 52741	1.4000	3
LITOUW	24005	
FITHOOM	2+205	2
L1+50W	OLANC	20
		19
L1+50W		
L1+50W		67
L1+50W		1.
L1+50W	3+205	4
L1+50W	71100	2
L1+50W		17
L1+50W		19
L1+50W		3
L1+50W	4+205	13
1 4 (677/31.1	4+408	2
L1+50W		
L1+50W		14
L1+50W		8
L1+50W		3
L1+00W	1+00N	2
L1+00W	O-CONI	2
L1+00W		5
L1+OOW		5
L1+00W		2
L1+00W	0+205	3
L1+00W	04.400	1
L1+00W	0.000	2
L1+00W		1
L1+OOW	1+008	1
L1+00W	1+205	1
L1+00W	1+408	2
L1+00W	1+605	1
		1
L1+00W	1+808	
L1+00W		1
L1+OOW	2+205	28
L1+00W	2+408	6
L1+00W		1
ann at a property.	The second of the second of	7

SAMPLE	#	AU*
		bbp
L.1+00W	2+808	1.
L1+00W		1
L1+00W	3+80S	29
L1+00W	4+005	1
L1+00W	4+208	3
L1+00W	4+40S	70
L1+00W	4+608	98
L1+00W	4+808	53
L1+00W	5+008	1
L1+00W	5+208	4
L1+00W	5+408	52
L1+00W	5+608	25
L1+00W	5+805	3
L1+00W		1
L0+50W	1+00N	6
L0+50W		14
L0+50W	0+60N	8705
L0+50W	0+40N	148
LO+50W	0+20N	1
LO+50W	BL	1
LO+50W		1880
LO+50W	0+408	140
L0+50W	0+608	1935
LO+50W	0+808	590
LO+50W		143
LO+50W	1+205	1
LO+50W	1+408	1
L0+50W	1+608	6
L0+50W	1+808	1
L0+50W	2+008	1
LO+5ÒW	2+208	13
LO+50W	2+408	1
L0+50W	2+608	43
L0+50W	2+808	1

SAMPLE	#	AU* ppb
	3+00S	14
	3+208	1
LO+50W		4
LO+50W	3+608	4
L0+50W	3+808	1
L0+50W	4+00S	1
LO+50W	4+00SA	41
	4+205	1
	4+20SA	
	4+405	1
L0+50W	5+005	1
L0+50W		1
LO+50W		
L0+50W		1
		14
L0+50W	6+00S	1
L0+00	BL.	660
	0+208	2585
	0+405	107
L0+00W		66
LO+OOW		107
LOTOOM	OTOUS	107
L0+00W	1+008	27
LO+OÓW	1+208	10
L0+00W	1+408	76
LO+OOW		1
LO+OOW		10
L0+00W		1.
F0+00M		4
LO+OOW	2+405	1
LO+OOW		3
LO+OOW	2+80S	8
LO+OOW		1
L0+50E	1+00N	3
L0+50E	0+80N	1
L0+50E	0+60N	1
L0+50E		1
L0+50E	0+808	1125

SAMPLE#	ŧ ·	AU*
		bbp
L0+50E	14000	1
L0+50E		1
L0+50E		3
L0+50E		1
		1
L0+50E	Trava	7
L0+50E	2+005	. 7
L0+50E	2+208	52
L0+50E	2+405	21
L0+50E	2+609	1.
L0+50E		1
L0+50E	3+005	1
L0+50E	3+20S	8
L0+50E	3+40S	1
L0+50E	3+609	9
L0+50E	3+805	1
L0+50E	4+005	20
L0+50E		4
L0+50E	4+405	- 8
L0+50E	4+605	15
L1+00E	1+00N	3
L1+00E	0+80N	i
L1+00E	0+60N	1 -
L1+00E		1
L1+00E		1
L1+00E		1
L1+00E	0+205	1
L1+00E		21
L1+00E		
L1+00E	0+808	10
L1+00E	1+008	1
L1+00E	1+205	8
L1+00E		80
L1+00E		36
L1+00E		1
L1+00E		1
L1+00E	2+208	5

SAMPLE	#	AU*
		ppb
L1+00E	2+408	23
	2+608	
	2+805	
	3+008	
	3+208	. 6
L1+00E	3+408	1
L1+00E	3+608	1.
	3+808	
	4+008	10
L1+00E	4+205	12
L1+50E		1
	0+80N	
	0+60N	1
	0+40N	
L1+50E	0+20N	2
L1+50E		1
	0+208	
	0+405	
	0+605	1
L1+50E	0+808	5790
	1+008	. 22
	1+208	
L1+50E		12
	1+608	
L1+50E	1+805	15
	2+008	
	2+205	
	2+405	
L1+50E		1
L1+50E	2+805	61
L1+50E		41
L1+50E		67
L1+50E		
L1+50E		76
L1+50E	3+80S	6
L2+00E	1+00N	1

BEATY	GEOLOG1	CAL	FILE	# 87	7-556	6	٠		Page	8
	SAMPLE#	;		dqc #UF						
	L2+00E L2+00E L2+00E	0+60N		1 1 1						
	L2+00E L2+00E	0+20N		2 1						
	L2+00E L2+00E L2+00E L2+00E L2+00E	0+60S 0+80S 1+00S		4 1 7 22 4						
	L2+00E L2+00E L2+00E L2+00E L2+00E	1+60S 1+80S 2+00S		42 65 22 14 13						
	L2+00E L2+00E L2+00E L2+00E L2+00E	2+60S 2+80S 3+00S		3 85 29 36 64				,		
	L2+00E L2+00E L2+00E L2+50E L2+50E	3+80S 4+00S 1+00N		3 9 7 4 1						
	L2+50E L2+50E L2+50E L2+50E L2+50E	0+40N 0+20N 0+00B	L_	7 3 1 35 8		2				
	L2+50E L2+50E L2+50E L2+50E L2+50E	0+60S 0+80S		3 4 1 108 9		•				
•	L2+50E	1+405		7						

BEATY	GEOLOGI	CAL	FILE	# 8	7-55	66		Page	⊋ 9
•	SAMPLE#	ŧ		*U£					
	L2+50E L2+50E L2+50E L2+50E L2+50E	1+80S 2+00S 2+20S		3 6 127 6 9		-			
	L2+50E L2+50E L2+50E L2+50E L2+50E	2+80S 3+00S 3+20S		9 8 3 20					
	L3+00E L3+00E L3+00E L3+00E L3+00E	0+80N 0+60N 0+40N		15 1 36 1					
	L3+00E L3+00E L3+00E L3+00E L3+00E	0+20S 0+40S 0+60S	•	3 1 1 3					
• .	L3+00E L3+00E L3+00E L3+00E L3+00E	1+20S 1+40S 1+60S		36 1 3 1					
	L3+00E L3+00E L3+00E L3+00E	2+20S 2+40S 2+60S		93 6 1 14 1	·				
	L3+00E L3+00E L3+00E L3+00E L3+00E	3+205 3+405 3+605		85 1 1 1 3					
	L3+50E	1+00N		1	-				

SAMPLE	ŧ	AU*
		ppb
L3+50E	0+80N	1
L3+50E		1
L3+50E		1
L3+50E		33
L3+50E		1
han and a said on han	Aut lan	
L3+50E	0+208	1
L3+50E	0+408	1
L3+50E	0+605	42
L3+50E	0+805	1
L3+50E	1+008	1
L3+50E	1+208	1
L3+50E	1+408	1
L3+50E	1+608	1
L3+50E		3
L3+50E		. 1
L3+50E	2+205	1
L3+50E	2+405	1
L3+50E	2+608	2
L3+50E	2+808	1
L3+50E	3+008	1
L3+50E	オエつひら	1
L3+50E		1
L3+50E		6 .
L3+50E		1
L3+50E		5
E Car Color	71200	u
L4+00E	1+00N	1
L4+00E	0+80N	i
L4+00E	0+60N	1
L4+00E	0+40N	1
L4+00E	0+20N	3
L4+00E	BL	1
L4+00E		6
L4+00E	1+005	16

SAMPLE#	;	AU*
	•	ppb
L4+00E	1+208	1
L4+00E	1+405	. 1
	1+605	205
L4+00E		12
L4+00E		1
!"" " " 	2.1000	
L4+00E	2+205	8
L4+00E	2+405	1
L4+00E	2+60S	6
L4+00E	2+805	4
L4+00E	3+008	8
L4+00E	スチクハウ	22
L4+00E		1
L4+00E		1
		1
L4+00E		56
L4+00E	4+005	. ପଠ
L4+00E	4+20S	1
L4+50E	1+00N	20
L4+50E	0+80N	3
L4+50E	0+60N	1
L4+50E	0+40N	1
L4+50E	0+20N	1
L4+50E		1
L4+50E		1
		1
L4+50E		45
L4+50E	U+6U5	40
L4+50E	0+805	1
L4+50E	1+005	1
L4+50E	1+205	5
L4+50E	1+405	48
L4+50E	1+605	21
L4+50E	1+805	· 1
L4+50E		1
L4+50E		1
L4+50E		230
L4+50E		62
m-1 - 7777		Year Alian
L4+50E	2+805	1

SAMPLE#	AU* ppb
L4+50E 3+00S	4
L4+50E 3+20S	2
T78ATH L4+50W 0+00S	26
T78ATH L4+50W 0+20S	1
T78ATH L4+50W 0+40S	2
T78ATH L4+50W 0+60S	5
T78ATH L4+50W 0+80S	3
T78ATH L4+50W 1+00S	2
T78ATH L4+50W 1+20S	1
T78ATH L4+50W 1+40S	2
T78ATH L4+50W 1+60S	12
T78ATH L4+50W 1+80S	1
T78ATH L4+50W 2+00S	2
T78ATH L4+50W 2+20S	7
T78ATH L4+50W 2+40S	8
T78ATH L4+50W 2+60S	9
T78ATH L4+00W 0+00S	2
T78ATH L4+00W 0+20S	1
T78ATH L4+00W 0+40S	4
T78ATH L4+00W 0+60S	3
T78ATH L4+00W 0+80S	1
T78ATH L4+00W 1+00S	11
T78ATH L4+00W 1+20S	1
T78ATH L4+00W 1+40S	7
T78ATH L4+00W 1+60S	1
T78ATH L4+00W 1+80S T78ATH L4+00W 2+00S T78ATH L4+00W 2+20S T78ATH L4+00W 2+40S T78ATH L4+00W 2+60S	14 1 1 1
T78ATH L4+00W 2+80S	16
T78ATH L4+00W 3+00S	1
T78ATH L4+00W 3+20S	1
T78ATH L4+00W 3+40S	1
T78ATH L4+00W 3+60S	2
T78ATH L4+00W 3+80S T78ATH L4+00W 4+00S	2

SAMPLE	‡		AU*
			ppb
T78ATH		4+205	. 1
T78ATH	L4+00W	4+408	1
T78ATH	L4+00W	4+605	1
T78ATH	L4+00W	4+805	15
T78ATH	L4+00W	5+008	22
T78ATH	L3+50W	0+00	1
T78ATH	L3+50W	0+208	1
T78ATH	L3+50W	0+405	1
T78ATH	L3+50W	0+608	2
T78ATH	L3+50W	0+808	1
17 0011111			-
T78ATH	L3+50W	1+005	1
T78ATH	L3+50W	1+205	17
T78ATH	L3+50W	1+405	フ
T78ATH	L3+50W	1+605	1
T78ATH	L3+50W	1+805	1
			_
T78ATH	L3+50W	2+008	, 2
T78ATH	L3+50W	2+205	1.
T78ATH	L3+50W	2+408	1
T78ATH	L3+50W	2+608	1
T78ATH	L3+50W	2+808	14
T78ATH	L3+50W	3+00S	69
T78ATH	L3+50W	3+208	1
T78ATH	L3+50W	3+408	1
T78ATH	L3+50W	3+608	1
T78ATH	L3+50W	3+80S	1
1 / 6/11/11			••
T78ATH	L3+50W	4+005	1
T78ATH	L3+50W	4+208	7
T78ATH	L3+50W	4+405	205
T78ATH	L3+50W	4+608	5
	L3+50W	4+805	37
	L3+50W	5+008	9
T78ATH	L3+00W	0+005	7
T78ATH	L3+00W	0+205	1
T78ATH	L3+00W	0+405	1
	L3+00W		1.
T78ATH	L3+00W	0+808	1
T78ATH	L3+00W	1+005	2

SAMPLE#	AU* ppb
T78ATH L3+00W 1+20S	2
T78ATH L3+00W 1+40S	2
T78ATH L3+00W 1+60S	6
T78ATH L3+00W 1+80S	4
T78ATH L3+00W 2+00S	5
T78ATH L3+00W 2+20S T78ATH L3+00W 2+40S T78ATH L3+00W 2+60S T78ATH L3+00W 2+80S T78ATH L3+00W 3+00S	1 64 1 1
T78ATH L3+00W 3+20S	3
T78ATH L3+00W 3+40S	2
T78ATH L3+00W 3+60S	2
T78ATH L3+00W 3+80S	4
T78ATH L3+00W 4+00S	2
T78ATH L3+00W 4+20S	79
T78ATH L3+00W 4+40S	11
T78ATH L3+00W 4+60S	86
T78ATH L3+00W 4+80S	10
T78ATH L3+00W 5+00S	44
T78ATH L2+50W 0+00S T78ATH L2+50W 0+20S T78ATH L2+50W 0+40S T78ATH L2+50W 0+60S T78ATH L2+50W 0+80S	2 1 2 1
T78ATH L2+50W 1+00S T78ATH L2+50W 1+20S T78ATH L2+50W 1+40S T78ATH L2+50W 1+60S T78ATH L2+50W 1+80S	1 4 1 1
T78ATH L2+50W 2+00S	2
T78ATH L2+50W 2+20S	1
T78ATH L2+50W 2+40S	2
T78ATH L2+50W 2+60S	1
T78ATH L2+50W 2+80S	3
T78ATH L2+50W 3+00W	. 7
T78ATH L2+50W 3+20S	2

SAMPLE#	AU*
	ppb
T78ATH L2+50W 3+408	9
T78ATH L2+50W 3+60S	1
T78ATH L2+50W 3+80S	18
T78ATH L2+50W 4+00S	1
T78ATH L2+50W 4+20S	1
T78ATH L2+50W 4+40S	1
T78ATH L2+50W 4+60S	13
T78ATH L2+50W 4+80S	16
T78ATH L2+50W 5+00S	36
T78ATH W 50.05	2
T78ATH W 50.2S	4
T78ATH W 50.4S	2
T78ATH W 50.6S	2
T78ATH W 50.85	1
T78ATH W 51.05	1.
T78ATH W 51.2S	1
T78ATH W 51.45	1
T78ATH W 51.68	1
T78ATH W 51.8S	1
T78ATH W 52.0S	2
·	
T78ATH W 52.2S	1
T78ATH W 52.45	1
T78ATH W 52.6S	1

BEATY GEOLOGICAL

FILE # 87-5566

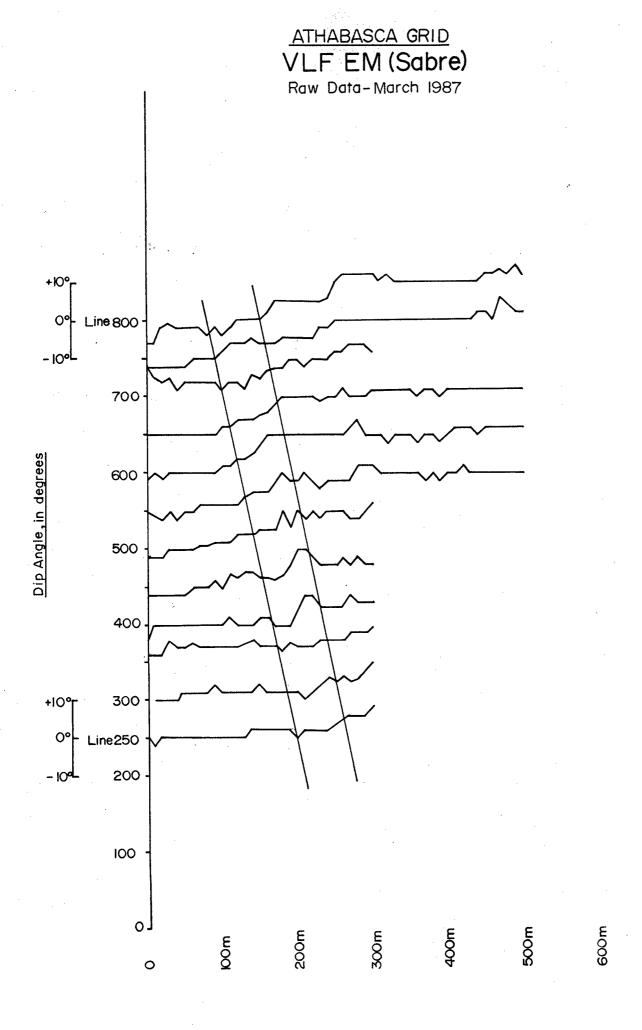
Page 16

SAMP'LE#

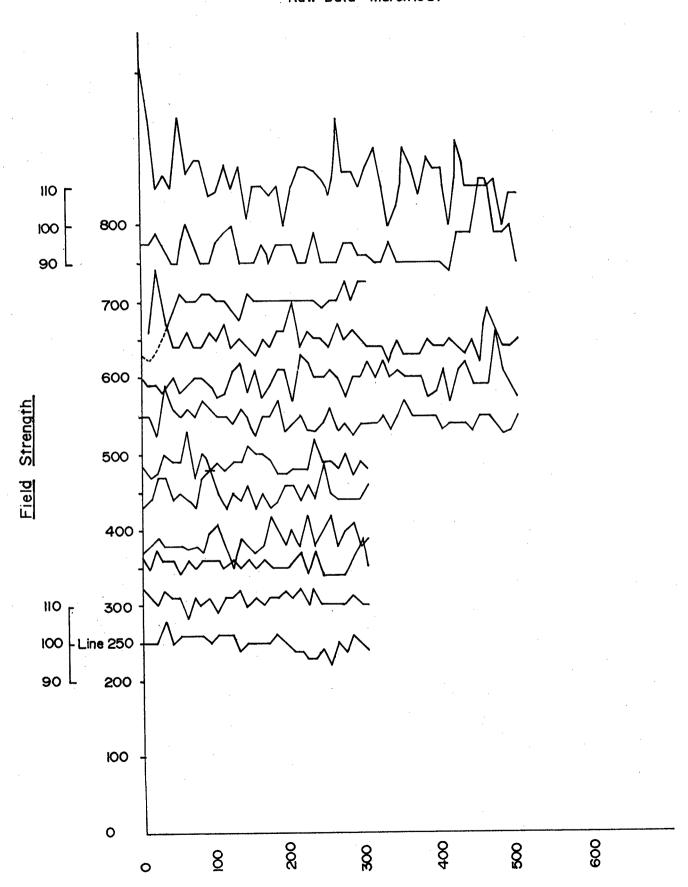
AU*

PPB

L1+50E 1+60S


9

GOOD ENOUGH #1


28

APPENDIX C

RAW GEOPHYSICAL DATA

ATHABASCA GRID
VLF-EM (Sabre)
Raw Data-March 1987

7+005 7+50S -2 -2 -2 -6 -2 -2 0... -2 Ω 200W . .8. 210W 220W 230W -- 9 240W 250W 260W 270W 14 280W 12 290W 300W 310W 320W 8-330W 340W 350W 10 360W 370W 380W 12-···10 ··· 390W 400W 410W 10-420W 430W 440W 450W 460W 470V 14 480W 490W

. 2. 2

ATHABASCA GROUP RAW VLF-EM DATA MARCH 1987	DIP ANGLES	a a Kamariyan,	 and the second	

-	-	ATHABASCA GROUP RAW VLF-EM DATA MARCH 1987	DIP ANGLES
	 	22500 22000	2250C A

	1	MARCH 1
;	<u> </u>	2+505
	(ow	27505
	10W	
1		
	20W	
	30W	
•	40W	
	50W	
	60W	
4.	70W	
,	80W	
	90W	
	100W	
	110W	
	120W	
٠.	130W	
	140W	*** , ,
	150W	
	,	
	160W	
	170W	
	180W	
	190W	
- 6-		

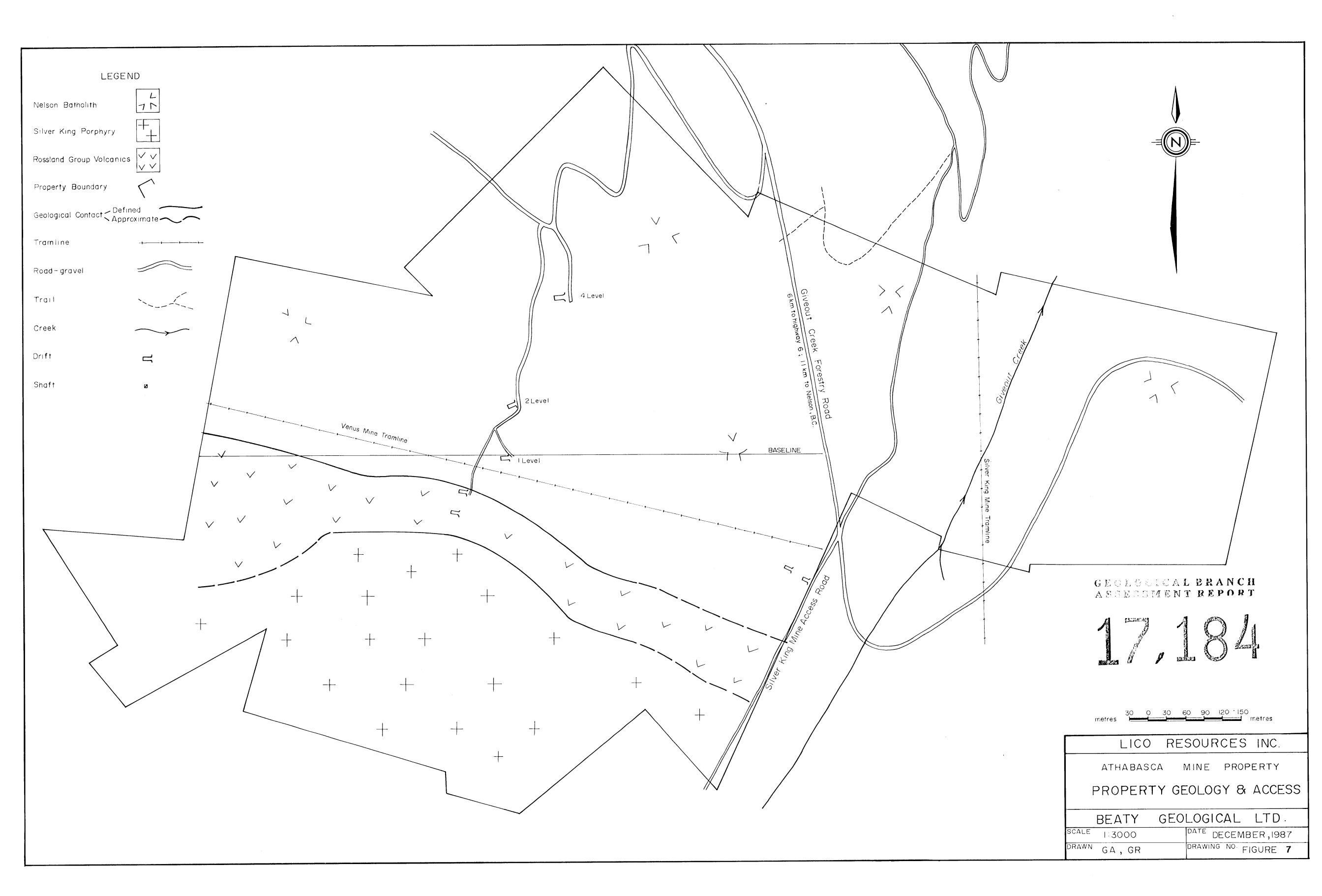
ATHABASCA CROUP RAW VLF-EM DATA FIELD STRENGTH MARCH 1987 3+00S 4+00S 4+50S 5+50S 6+00S 6+505 7+005 7+505 8+005 10W 20W 50 30W 50 48 46 50W 50 48 50 50 48 52 52 52 52 60W 50 52 52 50 70W 52 80W 90W 100W -55 110W 120W 50 52 46 52 130W 48 140W 150W 160W 170W 52 44 52 60 55 55 180W 190W 200W 54 210W 220W 230W 240W 250W 55 260W 270V 280W 52 290W 300W 54 50 52 310W 320W 50 330W 50 340W 350W 50 45 360W 370W 380W 50" 390W 52 50 400W 410W 58 54 420W 430W 440W 70 450W 460W 470W 48 45 60 480W 490W 500W

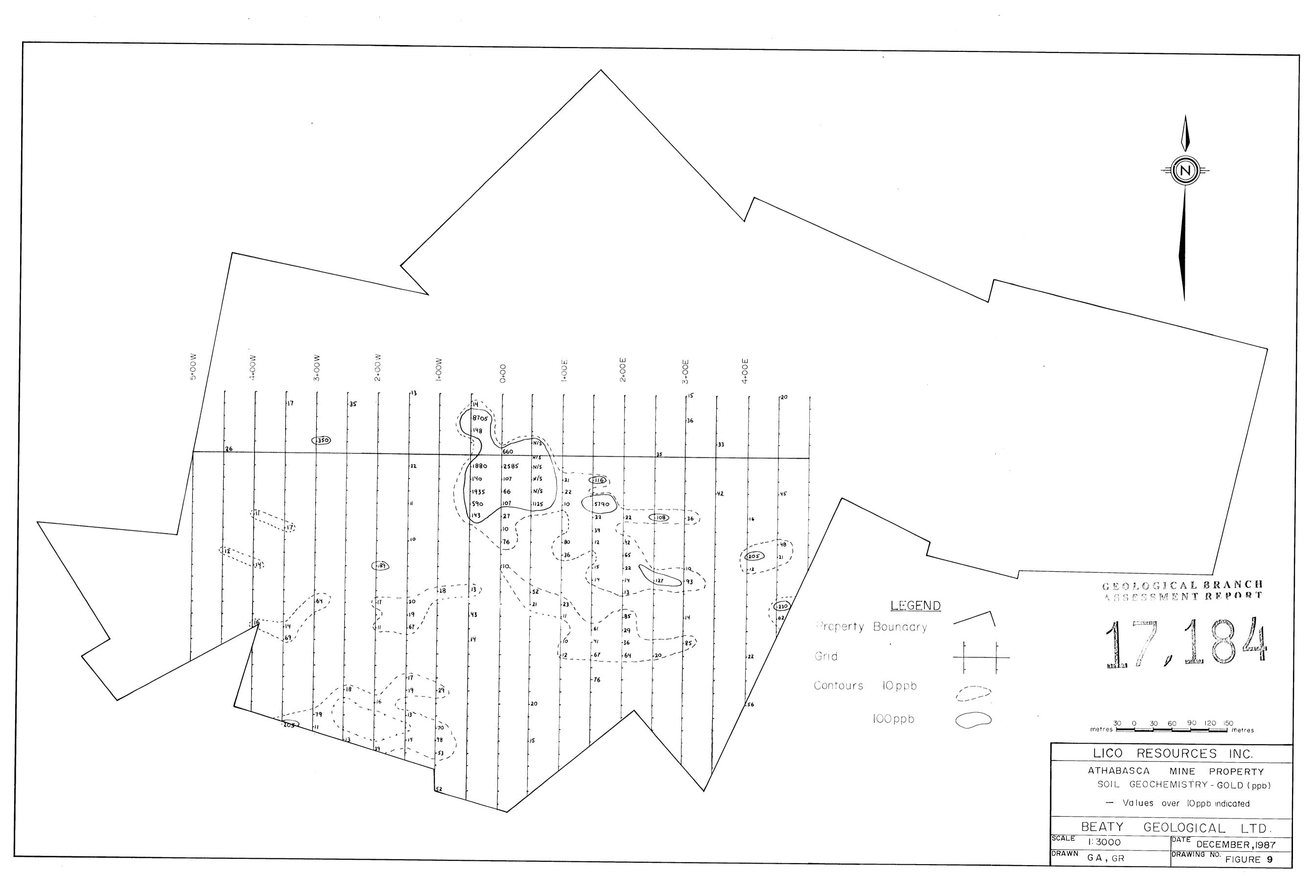
15 A

ATH	ABASCA	PROPER'	ry
RAW	MAGNET	COMETER	DATA

7

}


)


	RAW MAG	NETOME	rer data														- }
m. WEST	800S	750S	700S	650S	600s	550S	500s	450s	400S	350S	300s	275S	250S	2258			\neg
		56981	56990	57102	- 57132	57179		57252			-57258	57258-		-57247			
10	57039	56928	56987	57120	57147	57187	57190	57304	57290	57268	57245	57245	57277	57260			i
20	57063	56939	57024	57013	57146	57190	57201	57336	57239	57285	57272	57272	57265	57248			
30_	57035	-56823 -	57036	57127	57113		-57204	57390	57250	57246	57245	57244	57262	57 246			
40	57099	56950	57022	57180	57193	57195	57201	57317	57233	57248	57290	57289	57283	57267			•
50	57087	56846 56889	57035	57102	57076	57196	57208	57354	57259	57249	57315	57314	57315	57299			
60 ·· 70	57060	56804		57166 57150	56586 57221	57198 57198	57210	57330	-57247 57260	57268	57320 57316	57319 57314	57316 57307	57300 - 57292			
80	57043	56615	57047	57153	57159	57209	57219	57300	57260	57267	57294	57292	57307	57288			
90		56935	-57058-		- 57136 -		57216	57290 57290	57270	-57250	57285	57283		57290			
100	57021	56869	57072	57146	57167	57216	57220	57285	57320	57267	57271	57269	57326	57312			
110	57051	56931	57053	57173	57177	57230	57223	57296	57363	57270	57272	57269	57350	57336			1
120	56940-	- 56972	57059	57164		57242			-57390			57262		57330			1
130	56987	56993	57054	57165	57177	57214	57230	57274	57365	57271	57291	57288	57346	57332			f
. 140	57000	57004	57055	57175	57159	57216	57216	57284	57283	57256	57299	57295	57336	57323			- [
150		57013	57073	57196	-57201	57213	57219	57278	-57300	57271	57327	57223	57327	_57314			
160	56735	57031	57066	57179	57205	57213	57219	57290	57277	57263	57283	57279	57335	57322		•	ŧ
170	56825	57053	57072	57224	57192	57224	57218	57283	57291	57278	57292	57288	57308	57296			}
				-57192	57207		57207-				-57280-		57304	57292	and the second		· · · ·]
190	56941	57089	57084	57185	57206	57282	57149	57298	57277	57280	57270	57265	57308	57296			i
200 210	56977	57036 - 57036	57081 - 57093	57197 - 57194	57217 - 57251	57250 57391	57237	57266	57295	57266	57307	57302	57332	57320			•
	57091	57055	57090	57194	57175	57217	57201 57204	57248	-57293 -		-57300		57330				
220 230	57088	57055	57090	57190	57177	57152	57294 57324	57248 57257	57304 57303	57259 57248	57295 57300	57289 57294	57329 57334	57318 57323			1
240			- 57102			57229			57290				57324				
250	57067	57055	57112	57218	57218	57229	57229	57270	57287	57331	57308	57302	57332	57322			}
260	57002	57069	57106	57234	57203	57222	57230	57266	57286	57351	57306	57299	57339	57329			1
270		57074	-57094	57246			57234	-57266	-57287 -	57350	-57308	-57301	-57334 -	- 57324			
280	57037	57079	57131	57177	57203	57228	57244	57265	57299	57382	57311	57303	57337	57328			!
290	57056	57078	57110	57190	57207	57238	57282	57263	57292	57306	57344	57338	57325	57326			į
300	57063	- 57077	57111	57202	57205	-57240	57240	- 57279	-57294	57281	57338-	~ 57330	57343	57334			. !
310		57085		57210	57206	57240											;
320		57092		57219		57224											1
330	<u>57074</u> -				- 57203												
340	57077	57107		57223	57210	57244											1
350		57108		57219	57204	57242											1
360 370		-57109 57114		57231 57225	-57203 57218	57245											
380		57118		57230	57234	57245											1
390		57133			57238	57254											
400		57132		57239	57232	57256											1
410		57134		57246	57236	57258				•		7					- 1
	571-30			57247	57237	57256				<u></u>							
430	57126	57145		57239	57235	57265											1
440		57145		57243		57265											1
450	57 <u>1</u> 36				57232						····						
460		57154		57255													- 1
470	57151	57158		57287	57248	57273										*	1
480		-57156	and the first teacher and compare the teacher		57255						and the second second second second						
490	57155	57162 57166		57248				•									t
500	5/159	3/100		21435	57236	3/230											

and the second of the second o

3

into payment this parallel as with

