LOG NO: 0325	RD.
ACTION:	
FILE NO:	

REPORT ON THE

COUL, ICEY, KNIP, BOU,

and IRV CLAIMS

SULPHURETS CREEK AREA,

BRITISH COLUMBIA

FILMED

NTS 104 B/8,9,10

Longitude 130° 20' W Latitude 56° 35' N

FOR GEOLOGICAL BRANCH BAYRIDGE MINERALS CORPORATION 1730-999 West Hastings Street N T REPORT Vancouver, B.C. V6C 2W2 ΒY David A. Lyman, Geological Engineer HI-TEC RESOURCE MANAGEMENT LTD. 1500 - 609 Granville Street SUB-RECORDER Vancouver, B.C. RECEIVED V7Y 1G5 MAR 2.2 1983 M.R. 🖗 _____ \$ _____ VANCOUVER, B.C. FEBRUARY 26, 1988

TABLE OF CONTENTS

F

.

.

.

.

		Page No.
SUMM	IARY	1
1.0	INTRODUCTION	3
1.1 1.2 1.3	Location and Access Physiography Property and Ownership	3 4 4
2.0	HISTORY AND PREVIOUS WORK	5
3.0	GEOLOGY	8
3.1 3.2 3.3	Regional Geology and Mineralization Property Geology - COUL Claims Property Geology - BOU Claims	8 12 13
4.0	GEOCHEMISTRY	14
4.1 4.2 4.3 4.4	The 1987 Program Analytical Methods COUL Claims Soil Geochemistry R & J Grids COUL Claims Soil and Stream Geochemistry: R/L, W-2, S and 31A Traverses BOU Claims Bock and Soil Geochemistry	14 15 16 17 19
5.0	PROPERTY GEOPHYSICS	19
6.0	CONCLUSIONS	20
7.0	RECOMMENDATIONS	21

LIST OF APPENDICES

APPENDIX I	References	
APPENDIX I	I Statement of	f Qualifications
APPENDIX I	II Rock Sample	Descriptions
APPENDIX I	V Geochemical	Data for Samples
APPENDIX V	Statistical	Analyses R & J Grid Soil Samples
APPENDIX V	I Statement of	f Costs

.

LIST OF ILLUSTRATIONS

<u>After Page</u>

Figure	1.	General Location Map	3
Figure	2.	Claim Map	4
Figure	3.	Regional Geology Map	8
Figure	4.	COUL Claims Geology and Rock Geochemistry	in pocket
Figure	5.	BOU Claims Geology	in pocket
Figure	6.	COUL Claims R & J Grid Au-Ag-As Soil Geochemistry	in pocket
Figure	6a.	COUL Claims R & J Grid Cu-Pb-Zn-Sb Soil Geochemistry	in pocket
Figure	7.	COUL Claims R/L, W-2, S and 31-A Traverses Soil and Stream Geochemistry Au-Ag-As	in pocket
Figure	7a.	COUL Claims R/L, W-2, S and 31-A Traverses Soil and Stream Geochemistry Cu-Pb-Zn-Sb	in pocket
Figure	8.	BOU Claims Rock and Soil Geochemistry Au-Ag-As	in pocket
Figure	8a.	BOU Claims Rock and Soil Geochemistry Cu-Pb-Zn-Sb	in pocket
Figure	9.	COUL Claims Airborne Geophysics	in pocket

SUMMARY

The COUL, IRV, ICEY, KNIP and BOU mineral claims comprise 6 discrete claim blocks located in the Skeena Mining Division of British Columbia. Bayridge Minerals Corporation of Vancouver, B.C. holds a 50% interest in all of these claims. The balance of ownership is held by Cove Energy Corporation (25%), and Springer Resources Ltd. (25%).

The COUL claims are located to the north and west of Sulphurets Creek while the IRV, ICEY, KNIP and BOU claims are situated to south of Sulphurets Creek. The latter claims the are immediately south of the Lacana/Newhawk gold-silver deposits collectively known as the Sulphurets property. The COUL claims lie 12 km northwest of the Lacana/Newhawk property and 30 km southeast of the Skyline Explorations gold property on the Iskut River.

The Lacana/Newhawk Sulphurets gold deposits, in the Brucejack Lake area only, had drill indicated and inferred reserves of 1.4 million tonnes grading 11.656 g/t Au and 785 g/t Ag at the end of 1986. Other areas of the property, like the Snowfields zone, have the potential to host much larger quantities (6.3 Mt) of lower grade mineralization (2.85 g/t). The Gossan Hill Zone has possible reserves of 250,000 tonnes grading 66.5 g/t Au and 120.3 g/t Ag.

The Lacana/Newhawk deposits are associated with two parallel lineaments which run roughly north-south. The southern extension of the lineaments cross Bayridge Minerals Corporation's ICEY claim group, which lies only 2.5 kilometers from the Brucejack gold and silver deposit area.

The IRV claim lies about 2.5 kilometers southeast of Brucejack Lake and is along strike with several fault splays branching off of the Brucejack lineament.

An anomalous Ag zone, which lies west of the baseline of the R grid on the COUL claims, is coincident with geophysical conductors. This zone parallels the north-northeast trending faults of the property.

A soil sampling traverse completed on the BOU 3 claim yielded values of up to 480 ppb Au, 343 ppm As, 215 ppm Cu and 421 ppm Zn.

1.0 INTRODUCTION

Pursuant to a request by the Directors of Bayridge Minerals Corporation an exploration program involving prospecting, geological mapping, stream, rock and soil geochemistry was conducted on the COUL, IRV, ICEY, KNIP and BOU mineral claims by Hi-Tec Resource Management Ltd. in September, 1987 under the supervision of D. Lyman.

The main purpose of the program was to evaluate the precious metal and/or the base metal potential of the property, which is in a similar geological setting to the Brucejack Lake and Iskut River gold deposits.

This report is also based on a thorough review of published government reports, assessment reports and academic papers on the area, as well as the results of an airborne geophysical study of the COUL claims.

1.1 Location and Access

The Bayridge Minerals Corporation claims are located in the Skeena Mining Division, approximately 65 kilometers north of Stewart, British Columbia (Figure 1). The property lies on NTS Map Sheets 104B/8, 104B/9 and 104B/10 and is approximately centered at latitude 56035'North and longitude 130020'West.

Access to the area is gained by helicopter. A road from Stewart, B.C. runs north past the Premier Silbak Mine to Tide Lake airstrip just north of the Scottie Gold Mine, approximately 40 kilometers from Stewart. Helicopter time to the property is about 15 to 20 minutes (roughly 20 miles). An alternate staging point is Highway 37 which is about the same distance east of the property. A winter road from Highway 37 to the Lacana/Newhawk joint venture

camp at Brucejack Lake was constructed in early 1987. Brucejack Lake is located between Bayridge Minerals Corporation's COUL claims and the southern blocks.

1.2 Physiography

The COUL claim group is situated in a mountainous, heavily glaciated terrain near the junction of the Unuk River with Sulphurets Creek. Relief ranges from 308 m (1,000 feet) to 2100 m (6,800 feet) above sea level. Hanging valleys, with abrupt cliffs, have been formed by glacial action in places. Tree line is at approximately 1200 m above sea level. Dense vegetation below this is predominantly coniferous with an undergrowth of devil's club.

In contrast, the ICEY, KNIP, BOU and IRV claims lie in areas above 1680 m (5500 ft) with over 80% glacial cover. Outcrops are confined to steep-sloped nunataks with elevations on the claims up to 2440 m (8000 ft).

Snow cover is a limiting factor on the field season. The period of least snow cover occurs between July and mid-September.

1.3 Property and Ownership

The mineral claims lie within the Skeena Mining Division, The property consists of 12 claims, British Columbia. totalling 179 units, which occur in 6 individual claim blocks (Figure 2). A 50% interest in all of these claims is held by Bayridge Minerals Corporation. The balance of ownership is held by Cove Energy Corporation (25%) and Springer Resources Ltd. (25%). The property is recorded at the Ministry British Columbia of Energy, Mines and Petroleum Resources as follows:

<u>Claim Name</u>	No. of <u>Units</u>	Record No.	Date of Expiry <u>& Grouping</u>
COUL 1	20	5211	Feb. 28, 1988*
COUL 2	20	5212	40 units, 1 group
COUL 3	20	5213	Feb. 28, 1988*
COUL 4	20	5214	40 units, 1 group
BOU 1	6	5217	Feb. 28, 1988*
BOU 2	15	5218	41 units, 1 group
BOU 3	20	5219	
KNIP 1	16	5220	Feb. 28, 1988*
KNIP 2	20	5221	36 units, 1 group
IRV	5	5222	Feb. 28, 1988*
			5 units, 1 group
ICEY 1	8	5223	Feb. 28, 1988*
ICEY 2	9	5224	17 units, 1 group

*Prior to filing 1988 assessment credits

2.0 HISTORY AND PREVIOUS WORK

Exploration for precious metals in the Sulphurets Creek area dates back to the late 1800's when placer gold was located in the upper reaches of the Unuk River. By 1898, several prospectors had entered the area including F.E. Gingras, H.W. Ketchum and C.W. Mitchell, who had erected a cabin and were working the gravels at the mouth of Mitchell Creek. The area of these workings is about 2.5 kilometers southwest of the Unuk claims.

In 1989, the first mineral claims in the area, the Cumberland and Globe groups, were staked by H.W. Ketchum

and L. Brant. These claims proved to be attractive and by 1901, the Unuk River Mining and Dredging Company had purchased them and established a stamp mill on the Globe group. A road between Burroughs Bay and Sulphurets Creek was also begun by this company but was never completed.

In 1905, Dr. Frederick Eugene Wright of the United States Geological Survey explored the drainage of the Unuk River. He concluded "that the area east of the granitic Batholiths warranted careful examination which might reward careful prospecting ventures".

Interest in the region died down until the 1930's when several prospectors ventured into the area. Extensive gossans in the upper reaches of the Sulphurets Creek attracted Bruce and Jack Johnson to stake claims in this area in 1935. Hence, the name "Brucejack Lake".

The region was quiet again until 1960 when the search for porphyry copper deposits led Newmont Mines to conduct a helicopter borne magnetic survey in the Sulphurets area. Claims were staked on behalf of Granduc Mines Ltd. at the Sulphurets Creek headwaters, and between 1961 and 1967, Granduc Mines Ltd. and Newmont Mining Corporation conducted geological and geophysical work on this ground. More claims were acquired by Granduc and their exploration effort continued until 1970.

R.V. Kirkham completed an M.Sc. thesis on the geology and mineral deposits of the region in 1963 and E.W. Grove compiled a regional geological study of the Stewart area in 1968.

The jump in precious metal prices renewed activity, and in the period 1975 to 1977, Texasgulf Inc. and Granduc Mines both conducted exploration programs in the Sulphurets area.

б

In 1979, Granduc Mines optioned their claims to Esso Resources Canada Ltd., who spent in excess of \$2 million over 5 years in exploration for precious metals.

The Esso-optioned claims reverted back to Granduc and were subsequently optioned under joint venture to Lacana Mining Corporation and Newhawk Gold Mines Ltd.

In 1985, these companies drilled 13,066 feet in the Brucejack Lake area. This effort along with the 26,068 feet previously drilled has outlined mineral reserves of 1,011,543 tonnes grading 0.826 ounces gold equivalent per tonne (silver:gold ratio 50:1).

In addition to these mineral reserves, the 1985 Lacana/Newhawk project located the Snowfields Zone 3.5 miles northwest of Brucejack Lake (Figure 2). Company reports state that limited drilling (5 holes) on this bulk tonnage target has indicated reserves of up to 6,300,000 tonnes grading 2.85 grams of gold per tonne.

In 1985, Kerrisdale Resources Ltd. conducted a 2,041 ft. diamond drill program which outlined a coincident goldsilver-lead anomaly on their Kay, Tok and Gnc mineral claim group, near Eskay Creek, which is about 4 kilometers from the COUL 1 claim. Gold values of up to 0.40 ounces per tonne and silver values of up to 38.37 oz/t were recorded (Kuran, 1985).

During 1986, Lacana/Newhawk completed 1,500 feet of underground development drifting and crosscutting on their West Zone to obtain a bulk sample. Several high-grade pockets were intersected in addition to an average grad of 0.225 oz Au/t over 52.2 feet for the remainder of the development. Drill indicated and inferred reserves were 1.4 million tonnes grading 11.66 g/t Au and 785 g/t Ag at the end of

1986. As a result of these values, \$5.1 million was spent, in 1987, on increasing the proven reserves and on the construction of a winter road and barge link to the Brucejack Lake property. A total of 10,668 m of diamond drilling, 157 m of decline advancement, and 59 m of underground development was completed by Newhawk/Lacana during 1987. New reserve figures are to be announced in early 1988.

During 1987, Teuton Resources Corporation discovered a gold-bearing skarn on their Treaty Creek property within the Konkin Gold Zone, approximately 10 kilometers north of the IRV claim. A similar distance due south, Western Canadian Mining Corporation located a gold-copper porphyry deposit on the Kerr property. Diamond drilling resulted in an intersection of 86.7 meters averaging 0.34 g/t Au and 0.95% Cu.

3.0 GEOLOGY

3.1 Regional Geology and Mineralization

The Bayridge Minerals Corporation's property is located on the western edge of the Bowser Basin, approximately 10 miles east of the main Coast Mountains plutonic complex. This area is underlain by andesitic volcanic rocks of the lower Jurassic Unuk River and Salmon River Formations. These are in turn overlain by Jurassic siltstones, greywacke, conglomerates, volcanics and minor limestone of the Jurassic Bowser Group (Figure 3).

The sedimentary and volcanic rocks are cut by the Mitchell Intrusions of possible Jurassic age. Kirkham (1963) reports these to include dikes and sills in association with stocks of variable composition including plagioclasehornblende porphyry, syenite, and quartz-syenite porphyry,

REGIONAL GEOLOGY LEGEND

SEDIMENTARY and VOLCANIC ROCKS

MIDDLE JURASSIC

16 Siltstone, greywacke, sandstone, some calcarenite, minor limestone, argillite, conglomerate, littoral deposits.

13 Green, red, purple, and black volcanic breccia, conglomerate, sandstone, and siltstone a) crystal and lithic tuff b) siltstone c) minor chert and limestone (includes some lava)

LOWER JURASSIC

12 Green, red, and purple volcanic breccia, conglomerate, sandstone, and siltstone a) crystal and lithic tuff b)siltstone c) conglomerate d) limestone e) chert f) minor coal

11 Pillow lava a) volcanic flows

UPPER TRIASSIC

10 Siltstone, sandstone, conglomerate a) volcanic siltstone, sandstone, conglomerate b) and some breccia

PLUTONIC ROCKS

EOCENE (STOCKS, ETC) AND OLDER 8 Quartz diorite b) monzonite d) augite diorite

MIDDLE JURASSIC AND YOUNGER

6 Granodiorite a) diorite b) syenodiorite c) monzonite d) alaskite

- LOWER JURASSIC AND YOUNGER 5 Diorite a) syenogabbro
- UPPER TRIASSIC AND YOUNGER? 4 Diorite a) quartz diorite b) granodiorite

METAMORPHIC ROCKS

JURASSIC 2 Hornfels b) gneiss

orthoclase porphyry and granite. Some of these may be the sub-volcanic equivalent of the upper volcanics.

The wallrocks peripheral to most of the intrusive bodies are reported to be intensely bleached and altered to pyrite-quartz-sericite schists. The degree of alteration generally decreases away from the intrusive bodies, however, the extent of alteration is hard to determine visibly. Kirkham's (1963) petrographic studies demonstrated that extensive alteration occurs in even the freshest appearing rocks adjacent to some intrusives. This more subtle alteration adjacent to dikes and especially sills may well be missed in less than detailed mapping.

Regionally, the intrusive phase of deformation and the associated wallrock alteration is believed to have played an integral part in metal enrichment that has resulted in the numerous mineral deposits that characterize this area.

At both the Silbak Premier mine near Stewart and the Bronson Creek development by Delaware/Cominco, 40 kilometers west of Sulphurets, a direct spatial relationship exists between orthoclase porphyry and precious metal mineralization.

An examination of the geology and mineralization of the Brucejack Lake area, just north of the ICEY 1, 2 and IRV claims, by Schroeter (1983) showed that alkali-feldspar syenites, hornblende syenites, and country rocks are cut by numerous north to northwesterly trending faults. Intensely altered zones with sericite, k-feldspar, silica, carbonate and chlorite accompany these faults. Five separate sulfide zones occur along a 7 kilometer belt with mineralization occurring in several styles, including low grade disseminations, epithermal stockworks and veins. Found within these zones are pyrite, chalcopyrite, molybdenite, ruby silver,

galena, stephanite, ceragyrite, electrum, native gold, tetrahedrite, freibergite, argentite, sphalerite and bornite.

Within this area, two principal zones were identified. By the time Schroeter visited the property in 1983, the Peninsula Zone (or shore zone) had been traced for 265 meters on surface, to a depth of 140 meters by intersections in 22 drill holes and was still open. By October of 1987, mineral reserves from this zone were reported to be 489,670 tonnes grading 9.0 g/t Au and 933.0 g/t Ag.

The West Zone, located about 700 meters southwest of the Peninsula Zone, had been tested by 21 drill holes at the time of Schroeter's visit. It measured 310 meters on surface, extended to a depth of 60 meters and was also still open. Schroeter reported ruby silver, freibergite, electrum, native gold, stephanite, galena, pyrite and sphalerite occurring in a stockwork of quartz veinlets in sericitic andesitic tuff. Mineral reserves to the end of October 1987 for the West Zone were 513,250 tonnes grading 11.0 g/t Au, and 722.0 g/t Ag (proven) and 436,320 tonnes grading 11.4 g/t Au, and 722.0 g/t Ag (possible).

During 1986, Newhawk completed 1,500 feet of underground development in the course of a bulk sampling program. Assay values of 0.234 oz Au/t and 6.2 oz Ag/t over a true width of 50 feet, and 0.216 oz Au/t with 14.25 oz Ag/t over a true width of 17 feet, were reported (Stockwatch, November 13, 1986). A second bulk sample averaged 0.225 oz Au/t and 16.60 oz Ag/t over a true width of 52.5 feet (Stockwatch, December 2, 1986). Grab samples from this zone, not used in the above calculations, have been assayed at up to 5.786 oz Au/t with 890.45 oz Ag/t.

> AESOUACE MANAGEMENT

LIMITED

Drilling has implied that this zone extends at least 308 meters (1,000 feet) down dip and is 208 meters (1,000 feet) long. High grade pockets and veins within the mineralized zone are reported to run up to 3 or 4 oz/t Au and hundreds of ounces of silver. The mineralization is confined to a north-northwest trending stockwork and several similarly oriented mineralized zones strike towards the ICEY claims to the south.

There are at least 10 more mineralized showings in the Sulphurets Creek area listed on Newhawk company maps. Details of these are not known but their presence indicates that mineralizing systems were numerous in the region.

At least 4 different styles of gold and silver mineralization are known to occur on the Kay and Tok claims which are owned by Consolidated Stikine Silver (Kuran, 1985). These claims are only about 4 kilometers from the COUL 1 claim.

The first type consists of stockworks of sulfide veinlets mineralized by pyrite, tetrahedrite, galena and sphalerite which are associated with silver and gold values. These stockworks occur in rhyolite, banded rhyolite, rhyolite breccias and volcanic fragmentals which attend to the northeast and dip fairly steeply to the west. The second type of mineralization consists of gold values associated with disseminated pyrite and fault gouge in north-south striking shear zones. This type of mineralization was outlined in 1985 drilling program. The third type of mineralization occurs as massive sulfides, with refractory gold, Extremely high grade gold values are in cross fractures. associated with these sulfides. The fourth type of mineralization occurs as north-northeast trending zones of massive sulfides consisting of layered pyrite, galena and sphalerite located on the flanks of volcanic domes.

Property Geology - COUL Claims 3.2

The COUL claim group lies in Unuk River Formation sediments in the steep dipping west limb of a northerly-trending regional syncline (Figure 4). This regional structure is in turn on the western flank of a northwesterly-trending domal structure with its axis passing through Brucejack Lake (Grove, 1986). Upper Triassic Takla Group sediments are unconformably overlain by Lower Jurassic Unuk River sediments across a northerly-trending contact immediately west of COUL 1 claim along Harry Mel Creek. Grove (1986, p. 98) feels that Unuk River Formation in the locale between Unuk River and Harry Mel Creek (covering COUL 1 and 2 claims) are right side up. This view is complicated locally by folding and faulting. Within five km of the northern claim boundary, Grove's mapping has noted a sharply folded north-northeasterly trending synclinorium. On the COUL 1 and 2 claims, field observations and aerial photos have disclosed a series of steep north-northeasterly faults. The same stresses that produced recognizable steep folding just to the north of COUL 1 and 2 claims may be resolved locally as a series of steep faults on fold axes and along bedding planes.

Rock exposures on the western COUL claims are generally being closely covered by moss and vegetation. poor, However, the R Grid on the COUL 1 claim appears to lie on a northerly-trending contact between predominantly volcanic sediments to the west and argillite to the east. The contact is probably along faulting but this was not proven The entire W-2 traverse (Figures 7, 7a) along in outcrop. argillitic Coulter Creek was in small stream to а sediments. A higher zinc geochemical result averaging over 400 ppm was noted on the W-2 traverse. The volcanics mapped on the R Grid include rhyolite to andesite flows and and purple, green and grey lithic tuffs. breccias,

Mineralization appears to be confined to the northnorthwesterly trending fault zones and cross faulting. Some barren thin quartz veinlets were noted on resistant outcrops, but rusty areas, pyritized float and white quartz vein fragments were confined to low lying probable fault zones best exposed in eroded high areas on the northern grid.

Few exposures were noted on the lower-lying areas of the COUL 2 and 3 claims, and work was confined to soil and stream sampling on the S-traverse (Figures 7, 7a).

The area along the COUL 3 and 4 claim boundary lies on the contact zone between argillites, volcanic sediments, siltstones and quartzites of the Unuk River Formation and the Twin John Peaks Stock, a dioritic intrusive. The sediments dip steeply (65° to vertical) to the west along the stock margins and are dominated structurally by at least two parallel, near vertical fault zones running northerly along the western flank of the stock. White quartz veining associated with folding and fault brecciation, and rusty pyritic zones in argillite were found in the stream valleys following the fault zones. East from the streams, increasing hornfelsing, with and without pyritic alteration, and silicification were encountered approaching the intrusive contact.

3.3 Property Geology - BOU Claims

Grove (1986) mapped the region of the BOU claims as lying in a north-northwesterly trending synclinal trough with Middle Jurassic Salmon River Formation volcanic-derived sediments unconformably overlying Unuk River Formation sediments (Figure 3). Underlying the western portion of the BOU 1 and 2 claims is a belt of quartz plagioclase sericite schist with accessory pyrite, magnetite and car-

bonate (Figure 5). Grove has mapped this schist extending from northwest of Brucejack Lake to south of Stewart. Within the schist belt are included the Silbak Premier, Big Missouri. Scottie Gold and Sulphurets mines. Grove concluded that the schists represent shear zones along predominantly Jurassic which Lower rocks have been brecciated, altered and mineralized. Because of time and weather restrictions, rusty schist outcrops on the western margins of the BOU 1 and 2 claims were not inspected.

On BOU 3 claim a mountain face of rusty argillite, quartzite and rhyolitic flows (?) was soil sampled near the base, and rock samples of guartz veining, and silicified and pyritized areas were collected. The rocks above were mapped as Salmon River Formation by Grove (1986), and are cut by diorite to granodiorite dikes along northerly and northwesterly oriented faulting. A local syncline plunges steeply southwesterly down the face of the mountain leaving rocks dipping 600 or more to the southwest on a 350 to 400 Thin, northwesterly-striking guartz veins slope. and associated silicified and pyritic margins dip steeply to the northeast. Near vertical northerly to northeasterly veining is less common. Fine to medium-grained pyrite is found in vein openings and as disseminations in silicified vein selvages 1 to 30 cm wide. Lesser amounts of finegrained arsenopyrite and chalcopyrite are confined to the veins.

4.0 GEOCHEMISTRY

4.1 The 1987 Program

The object of the 1987 program was to identify areas of interest on the property on which to focus future exploration efforts. Due to poor exposure on the low-lying areas of the COUL 2 and 3 claims, only soil and stream

sampling was conducted during the 1987 exploration program. Personnel from Newhawk Mines Ltd. and Hi-Tec Resource Management Ltd. established the R & J grids on the COUL 1 and 4 claims respectively, to facilitate geochemical sampling.

A total of 1051 soil samples were dug with mattocks or soil augers, and collected in Kraft paper bags. Except for rocky terrain, a minimum sampling depth of 20 cm was maintained, collecting "B" horizon soil. A total of 35 stream samples were taken from active stream sediments and drv stream beds both along arid lines and while prospecting. The 58 rock samples collected were graded as channel, rock chip and grab samples according to decreasing reliability of representations. These classifications are indicated as a suffix to rock sample numbers as "C", "R" and "G" respectively. Rock sample descriptions are given in Appendix III.

4.2 Analytical Methods

A total of 1094 samples, collected by Newhawk personnel, were sent to Acme Laboratories Ltd., 852 East Hastings Street, Vancouver, B.C. for analysis. The samples were subjected to a 31 element ICP analysis. An additional 50 samples, collected during follow-up work by Hi-Tec Resource Management Ltd. personnel, were sent to Min-En Laboratories Ltd., 705 West 15th Street, North Vancouver, B.C. for analysis. These samples were subjected to a 12 element ICP analysis. All samples were analysed for Au using atomic absorption methods for soil and stream samples, and geochemical methods with fire assay preconcentration for rock samples.

Soil and stream samples were dried at 95° C, then sieved to separate the minus 80 mesh fraction. A 1 gm portion of

this fraction was placed in a test tube, 1:1 equimolar (50%) aqua regia added and digested for 6 hours. After cooling, samples were diluted to a standard volume, and the solution analysed using a Jarell Ash model 900ICP Inductively-Coupled Plasma Analyser.

Rock samples were crushed and split to a 300g pulp. For ICP analysis the pulp is pulverized by ceramic plate pulverizer to minus 80 mesh and processed the same as soils. For geochemical analysis for gold, a 300 g split is pulverized to minus 150 mesh, and a 15 g sample weight is fire assay preconcentrated. The sample is then digested with Aqua Regia and taken up with 25% HCl. The gold is extracted with methyl iso-butyl ketone, and analysed by atomic absorption to a detection limit of 1 ppb against a standard gold solution.

The analytical data for the samples are given in Appendix IV.

4.3 COUL Claim Soil Geochemistry: R & J Grids

Contouring of soil Ag >1.0 ppm in Figure 6 indicates two zones of interest. The first zone lies west of the baseline extending from Line 5+00N south to at least Line 1+00S. This zone appears open to the south and west. Paralleling the north-northeast trending structure of faults and benches are eight areas with silver values greater than or equal to 1.0 ppm. Within these areas, values up to 17.3 ppm Ag were recorded, and 34 samples exceeded 2.0 ppm Aq. Arsenic and antimony (Figure 6a) values up to 131 ppm and 107 ppm respectively are asso-Scattered values of Cu to 155 ppm ciated with the zones. and Zn to 239 ppm fall within contoured bounds. No association with gold or lead values is apparent. This is in keeping with mineralization in similar rocks noted by Kuran

(1985 and personal communication) near Tom MacKay Lake 10 km north. On the TOK, KAY and GNC claims, Kuran found in trenching and drill results that silver values up to 120 oz/t were associated with tetrahedrite and pyrargyrite while the best gold values were noted in galena-sphalerite-pyrite intersections.

A second weaker zone east of the baseline between Lines 5+00N and 9+00N, may be associated with a northnortheasterly series of faults where some quartz-carbonate veining was noted.

The J-Grid lies in the northeast corner of COUL 4 claim and is on a probable hornfelsed contact zone near the Twin John Peaks diorite stock. Soil values of up to 123 ppm Au, 164 ppm As, 159 ppm Cu and 243 ppm Zn were recorded. Weaker gold and arsenic values are scattered throughout the grid, and only 9 samples had less than 100 ppm zinc. Contouring of copper values indicates two areas of copper greater than 100 ppm.

The results of a statistical analysis of the soil samples from the R & J grid are shown in Appendix V.

4.4 COUL Claims Soil and Stream Geochemistry: R/L, W-2, S and 31A Traverses

The R/L, W-2, S and 31A traverses (Figures 7 and 7a) examined large areas of the claim group with soil, stream and occasional rock sampling.

The R/L soil sampling traverse skirted the west margin of Charlotte Lake on COUL 1 claim starting at the helicopter landing site at the north tip of the lake. Soil values up to 20 ppb Au, 7.1 ppm Ag, 278 ppm As, 138 ppm Zn and 20 ppb Sb were noted in the first 200 meters of the traverse. The

balance of the traverse found soil values of 2 ppb Au, 1.8 ppm Ag, 17 ppm As, 73 ppm Zn and 13 ppm Sb or lower. A southerly extension of anomalous zones noted on the J-Grid is not ruled out by results from the R/L traverse, because sampling occurred parallel to a north-northeasterly trend-ing fault zone marked by the west shore of Charlotte Lake.

The "W-2" traverse ran along an easterly-flowing stream cutting a steep-dipping, predominantly argillite section at right angles to strike. Soil values up to 6 ppb Au, 3.4 ppm Ag, 30 ppm As, 324 ppm Zn were obtained. Stream values up to 4 ppb Au, 2.4 ppm Ag, 60 ppm As, 163 ppm Cu, 1545 ppm Zn and 12 ppm Sb were noted. All stream sediment values except for 4 samples ran over 400 ppm Zn, and the highest values for all of the above elements except Au were found near the mount of the creek.

The "S" Traverse skirted a lake on the flood plain of the Unuk River. Soil samples obtained values of up to 6 ppb Au, 10.3 ppm Ag, 179 ppm As, 106 ppm Cu, 52 ppm Pb, 343 ppm Zn and 11 ppm Sb.

The "31A" Traverse ran primarily along a bluff on the left bank of a northerly-flowing stream marking a large shear zone in argillite and quartzite of the Unuk River Formation. Soil samples contained values up to 7 ppb Au, 4.8 ppm Ag, 79 ppm As, 354 ppm Zn and 7 ppm Sb. Stream sediments near the start of the traverse and had values of up to 8 ppb Au, 1.4 ppm Ag, 46 ppm As, 106 ppm Cu, 1173 ppm Zn and 5 ppm Sb. The 31A traverse is very similar to the W-2 traverse in geochemical results. According to Groves (1986) the argillite sediments in each area come from different parts of the Formation section.

4.5 BOU Claims Rock and Soil Geochemistry:

A soil and rock sampling traverse was also completed on the BOU 3 claim (Figures 8,8a). This yielded soil values of up to 480 ppb Au, 343 ppm As, 215 ppm Cu, and 421 ppm Zn. The associated quartz-veined and pyritized argillite rock samples yielded values of up to 22 ppb Au, 2.4 ppm Ag, 47 ppm Cu, and 331 ppm Zn.

5.0 PROPERTY GEOPHYSICS

During November, 1986, airborne Magnetometer and VLF-EM surveys were conducted over the COUL claims as well as the Unuk claims which lie immediately to the east (Figure 9). For the sake of comparison with known mineralization, several test lines were flown over the Brucejack Lake deposit. The test lines showed that the Lacana/Newhawk mineralization is associated with a sharp magnetic low with local conductivity highs.

The ICEY, KNIP, BOU and IRV claims lie in a mountainous area to the south of Brucejack Lake. The IRV claim lies about 2.5 kilometers southeast of Brucejack Lake and is along strike with several fault splays branching off the Brucejack lineament. The ICEY 1 and 2 claims lie directly on the trend of both the Brucejack and the Sulphurets lineaments.

The COUL claims were found to contain numerous north-south VLF anomalies (Figure 9). The COUL 1 claim is along strike from showings on the Kay, Tok and GNC claims owned by Stikine Silver Ltd. The COUL 1 claim was also seen to contain an elliptical shaped magnetic high, which was interpreted as a small intrusive body. Two northnorthwesterly-trending conductors were outlined inter-

secting the 0+00N line west of the baseline, apparently associated with an area of low silver values in soils.

The other magnetic highs were observed on the northern and southern portions of the COUL 4 claim. Both of these features are related to the large northeast/southwesterly trending magnetic high which crosses the westernmost Unuk claims. This has been interpreted as representing fault induced deformation of the larger northwesterly oriented fault trend (Pezzot, 1987).

6.0 CONCLUSIONS

The subject property is underlain by volcanic and sedimentary rocks and contains favorable anomalous mineralized zones. Part of the claim area (roughly 40%) is covered by ice and could not be explored on the ground.

There appears to be some structural control on mineralization, as it is commonly localized within both north-northeasterly trending fault zones and cross faults.

The COUL claims were found to contain numerous north-south VLF anomalies. The COUL 1 claim is along strike from showings on the Kay, Tok and GNC claims owned by Stikine Silver Ltd.

An anomalous Ag zone which lies west of the baseline of the R grid on the COUL claims is coincident with one of the geophysical conductors. This zone parallels the northnortheast trending faults of the property.

The ICEY, KNIP, BOU and IRV claims lie in a mountainous area to the south of Brucejack Lake. The IRV claim lies about 2.5 kilometers southeast of Brucejack Lake and is along strike with several fault splays branching off of the

Brucejack lineament. The ICEY 1 and 2 claims lie directly on the trend of both the Brucejack and the Sulphurets lineaments.

A soil sampling traverse completed on the BOU 3 claim yielded values of up to 480 ppb Au, 343 ppm As, 215 ppm Cu and 421 ppm Zn.

The writer concludes that the COUL, ICEY, IRV, KNIP and BOU claims which are the subject of this report definitely have the potential to host precious metal mineralization similar to that found in nearby areas such as the Lacana/Newhawk property and the Kay and Tok claims.

7.0 RECOMMENDATIONS

In order to further evaluate the subject property, a twophased exploration program is recommended with the second phase being contingent upon favorable results from Phase I. An extensive trenching and ground geophysical survey program should be conducted on the anomalous zones outlined by the 1987 exploration program. This stage of the program should also involve follow-up geochemistry on the remainder of the mineral claims.

Helicopter supported evaluations of the claim groups south of Brucejack Lake, which are part of the subject property should also be carried out.

The Phase II program would involve follow-up geochemistry and preliminary diamond drilling of targets generated in Phase I.

Respectfully submitted,

HI-TEC RESOURCE MANAGEMENT LTD.

Davi Geological En þ:

February 26, 1988

APPENDIX I

References

REFERENCES

- ALLDRICK, D.J., 1984. Geologic Setting of the Precious Metal Deposits in the Stewart Area BCDM. Geol. Field work 1983 paper 1984-1, pp.149-163
- GROVE, E.W., 1971. Geology and Mineral Deposits of the Stewart area, Northwestern B.C., BCDM Bulletin 58
- GROVE, E.W., 1986. Geology of the Unuk River-Salmon River-Anyox Map Area, BCDM miscellaneous map series. Bulletin 63.
- KIRKHAM, R.V., 1963. Geology and Mineral Deposits in the vicinity of the Mitchell and Sulphurets Glaciers, Northwest B.C. Unpubl. M.Sc. Thesis, Univ. of B.C.
- KURAN, V., 1985. Assessment Report on the Unuk River Property, Kay Tok, and Gnu claims, Skeena M.D.
- McLEOD, D.A., 1985. Newhawk Gold Mines Ltd. Press Release (December 10, 1985).
- PEZZOT, E.T., 1987. Airborne VLF-EM and Magnetometer Survey, Sulphurets Project, Unuk 1-19, 21-25 and COUL 1-4 claims, Skeena M.D.
- SCHROETER, T.G., 1983. Brucejack Lake (Sulphurets Project), BCDM Fieldwork, 1983-1. pp.171-174.

APPENDIX II

Statement of Qualifications

STATEMENT OF QUALIFICATIONS

- I, DAVID A. LYMAN, of Vancouver, British Columbia, certify that:
- 1. I am employed as a geologist by Hi-Tec Resource Management Ltd., 1500 - 609 Granville Street, Vancouver, British Columbia.
- 2. I graduated in 1969 from The Colorado School of Mines with the degree of Geological Engineer.
- 3. I have 18 years of experience as a geologist in mineral exploration in Alaska, Canada, the Western United States and Mexico.
- 4. I have neither received nor expect to receive any financial interest, direct or indirect, in the property examined in this report or any property within a 10 km radius.
- 5. This report is based on personal examinations conducted during September 1987, and geological reports and maps from government, consultant and contract sources.

ical Engineer David February 26, 1988

APPENDIX III

Rock Sample Descriptions

ROCK SAMPLE DESCRIPTIONS

.

,

,

,

<u>Sample No.</u>	Sample <u>Type*</u>	Width <u>(cm)</u>	Rock Description
31-A 0+00	G	~	Quartz veining in argillite.
31-A 4+50	G	float	Pyritic, silicified argillite.
31-A 19+50	G	float	Quartz veining in tuff (?) host rock.
31-A 25+60	G	float	Pyritic, silicified argillite.
J 16+70N 0+50W	G	float	Oxidized, pyritic argillite.
J 13+00N 2+00W	G	float	Pyritic quartz breccia.
R 21+85N 3+00E	G		Buff-weathering siliceous pyritic tuff (?).
R 21+30N 2+25E	G	float	Bleached, pyritic tuff (?).
R 21+00N 0+50E	G		Highly silicified tuff or flow (?) outcrop.
R 21+00N 0+66E	G	float	Silicified, pyritic tuff or flow (?) rubble.
R 21+00N 0+93E	G	float	Quartz veinlets in altered tuff (?).
R 21+00N 1+35E	G	float	Stockwork quartz veinlets in tuff (?) talus.
R 21+00N 2+05E	G	float	Stockwork quartz veinlets in tuff or flow talus.
R 21+00N 2+06E	G	float	Quartz breccia talus.
R 21+00N 2+11E	G	float	Stockwork quartz veinlets.
R 0+72N 7+00W	G		Silicified, pyritic tuff or flow (?) outcrop.
R 0+00N 2+12W	G		Quartz-carbonate altered tuff or flow (?) outcrop, some pyrite.
R 0+00N 6+60W	G		Bleached tuff or flow (?) out- crop.

<u>Sample No.</u>	Sample <u>Type*</u>	Width <u>(cm)</u>	Rock Description
RBL 19+30N	G		Quartz veining in tuff or flow (?) outcrop.
RBL 6+74N	G		6-8 cm quartz vein in tuff or flow (?) outcrop.
RBL fl+66N	G	float	Brick-red, soft altered or weathered tuff or flow (?).
S 2+84N	G		Pyritic tuff or flow (?) out- crop.
W-2 1+62	G		Pyritic tuff or flow (?) out- crop.
W-2 6+10	G		Quartz veining in argillite outcrop.
BOU 51	G	float	Quartz veining in talus.
BOU 52	G		Quartz veins on diorite dyke margin.
BOU 53	G	float	Silicified, pyritic tuff or quartzite.
BOU 54	G	float	Silicified tuff or quartzite with dark quartz veinlets.
BOU 55	G	float	Pyritic argillite talus.
BOU 56	G	float	Quartz-pyrite altered tuff or quartzite.
BOU 57	G	float	Silicified, pyritic tuff or quartzite.
BOU 58	G	float	Silicified, pyritic tuff or quartzite, partly oxidized.
L-703	G	100	Lightly pyritic grey lithic tuff.
L-717	G	float	Quartz-carbonate veining in argillite, some pyrite and arsenopyrite, rusty weathered surface.
L-719	G	2-5	Quartz veinlets with minor pyrite in dacite (?) flow.

Sample No.	Sample <u>Type*</u>	Width <u>(cm)</u>	Rock Description
L-722	G	25	Quartz veinlets along fault in dacite (?) flow unit.
L-724	G	20	Quartz veinlets parallel main NNE-trending fault, in dacite flow (?).
L-727	G	2-5	As L-724, trace pyrite, not sheared.
L-728	G	50	Partly silicified grey-green andesite (?).
L-730	G	30	Grey rhyolite with <1% pyrite in thin fractures and blebs.
L-731	G	25	Similar as L-730.
L-732	G	2	White quartz vein with silici- fied selvages in andesite (?).
L-773	G	float	Light to dark grey lithic tuff, <1% pyrite in very fine green matrix.
L-774	G	50	Grey argillite in fault zone, contorted with fine quartz veinlets.
L-775	R	100	Similar to L-773, some zones with pyrite to 5-10% replacing matrix.
L-776	R	100	Welded lithic tuff, <1% fine grained disseminated pyrite.
L-777	R	200	Medium grey lithic tuff, 3-5% pyrite along laminae and replacing small fragments, rusty weathered surface.
L-778	R	100	Black hornfelsed argillite with 1-3% disseminated pyrite.
L-779	R	50	As L-779, but finely sheared and contorted.
L-780	R	80	As L-779.

Sample No.	Sample Tvpe*	Width (cm)	Rock Description
L-781	R	30	Pyritic, partly silicified rhyolite (?) dyke, 1-2% fine grained disseminated pyrite.
L-801	G	3-6	Quartz veining on margin of diorite dike, minor sulphides.
L-802	R	15	Pyritic vein margin of 1-2 cm quartz vein, in very fine grained diorite.
L-803	R	15	Quartz-carbonate vein, minor pyrite, manganese oxide stain- ing.
L-804	R	250	Pyritic fracture zone in argillite, 1-2% pyrite.
L-805	R	30	Upper part of massive quartz vein.
L-806	R	10-20	Quartz vein on footwall side of L-805, highly broken, breccia fragments with pyrite dissemi- nated and on fractures.
L-807	R	30	Pyritic footwall of tuff or quartzite, partly silicified.

* Sample Type - C = channel sample R = rock chip sample G = grab sample

APPENDIX IV

.

•

Geochemical Results

ì

GEOCHEMICAL ICP ANALYSIS

.500 GAAM GAMPLE IS DIGEBTED WITH JNL 3-1-2 MCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. This leach is partial for MN FE ca P La CR NG BA TI B W AND LIMITED FOR NA AND K. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPEI P1 TO P19-SOIL P20-SILT P21-ROCK AU1 ANALYSIG BY AA FROM 10 GRAM SAMPLE.

DATE RECEIVED: AUG 19 1987 DATE REPORT MAILED: AUG 26/87 ASSAYER. A. C. M. DEAN TOYE, CERTIFIED B.C. ASSAYER

MINCORD EXPLORATION FROJECT-EASTFIELD File # 87-3431 Fage 1

	SAMPLE	M0 PPN	CU PPH	PB PPN	ZN PPM	AG Ppn	N E PPM	CO PPM	NN PPN	FE 1	AS PPM	U Rqq	AU FPN	TH PPN	SR PPR	CD Pfr	SB PPM	91 PPR	V PPN	CA Z	P I	LA PPN	CR PPN	н6 Х	BA PPN	TI I	B PPK	AL I	NA 1	K 1	N PPN	AU s PPB
	L&N 0+25E	2	12	20	39	.9	7	4	184	5.42	2	5	NÛ	3	21	ĩ	2	2	97	.20	.065	и	20	. 37	28	. 57	9	1.91	.11	.07	1	3
	16N 0+50E	2	18	18	50	1.2	12	7	229	6.47	3	6	ND	4	28	1	5	2	109	. 33	.083	15	23	.72	32	.83	2	4.53	.12	.08	1	2
	16N 0+75E	2	16	24	46	.6	18	4	216	8.05	5	5	ND	2	B	1	2	2	81	.06	.062	10	St	. 37	44	. 24	- 4	2.86	02	, et	1	2
	16H 1+00E	2	12	20	39	1.3	B	Ę	155	5.70	5	5	NÛ	3	20	1	2	2	90	, 21	.065	10	25	.42	31	. 61	- 11	2.70	.09	.05	L	L
	16N 1+25E	2	п	26	49	.5	н	8	654	5.68	2	5	NÛ	L	31	1	2	2	104	, 29	.096	6	22	.53	41	. 52	2	1.58	.14	.0B	1	2
	16N 1+50E	2	15	17	48	.5	10	9	323	5.64	7	6	ND	3	21	1	2	2	87	. 24	. 061	н	20	.47	27	. 62	2	4.03	. 10	.05	1	1
	16N 1+75E	2	12	16	41	.7	9	6	193	5,39	2	5	ND	2	29	1	2	2	95	. 10	.048	10	21	.56	29	. 66	3	3,30	.13	.06	1	3
	16N 2+00E	2	10	26	36	. 4	8	3	112	4,73	2	5	ND.	2	12	L	2	3	99	.09	.045	8	25	.27	49	.41	3	3,05	.05	.04	L	1
	16H 2+25E	4	17	20	69	.1	12	10	758	5.48	1	5	ND	2	54	1	2	2	91	.55	.073	10	26	.78	48	. 49	2	2,90	, 25	.12	1	l
	16M 2+50E	4	15	22	51	1.0	8	5	320	6.21	5	6	HD	3	22	L	2	2	66	. 21	.063	15	24	.35	29	. 39	2	3,78	.11	.07	1	1
	16N 2+75E	3	12	22	48	1.0	8	6	215	5.70	2	5	ND	3	28	1	2	2	89	.27	.057	11	22	.45	27	.59	2	2.96	.13	.06	i	1
R GRID	16M 3+00E	5	17	25	70	1.0	14	12	1146	6.77	7	5	НÛ	3	11	1	2	2	83	.10	.073	15	39	.35	35	-+41	5	4,30	.05	.06	1	2
n anib	16N 3+25E	ŝ	15	17	42	.7	10	6	222	6.28	6	5	ND	2	15	1	4	2	100	.15	.vov	4	21	.39	31	.51	2	1.78	.04	.03	1	•
	16N 3+50E	3	12	21	48	1.7	8	5	237	6.15	3	5	ND	3	15	1	2	2	76	-14	.051	13	25	- 55	28	. 19	12	3.31	.06	.03		3
	16N 3+75E	2	16	15	45	.6	22	2	204	4,04	6	5	NU	1	25	1	2	2	49	,21	,080	Ŷ	42	.49	16	112	2	2.10	, 00	.05	1	1
	16N 4+00E	2	19	19	79	.8	28	7	544	4.48	4	5	NÐ	2	32	I	Z	2	74	.31	.082	11	38	.77	58	.29	9	3.31	,12	.07	l	3
	16N 4+25E	1	25	16	39	.9	19	6	292	3.81	8	5	ND	1	25	1	2	2	92	.21	.067	1	39	.54	- 47	- 28	2	1.92	-11	.05	L	1
	16N 4+50E	3	13	19	42	1.6	9	4	156	6.05	6	5	ND	3	14		2	2	91	.15	.066	11	25	.40	21	.61	1	3.04	,07	.06	ļ	I
	16N 4+75E	3	12	22	42	1.1	8	5	225	6.71	6	5	ND	3	19	1	2	2	93	-17	.059	12	33	.35	24	. 22	2	Z.35	.10	.03	1	2
	19N 2+00F	1	11	34	33	1.5	6	2	129	9.21	8	3	ND	2	10	L	\$	2	75	.04	.098	17	29	.15	42	• 29	٥	5.72	.03	.04	2	1
	15+75N 5+00E	3	7	19	25	2.6	5	4	137	2,48	2	5	ND	1	25	1	2	2	61	.24	.062	12	17	.35	29	.51	2	1.27	.13	.05	1	L
	15+50N 5+00E	2	16	18	66	.8	10	7	186	4.92	4	5	NÐ	4	29	L	2	2	131	.33	.114	9	23	. 66	33	1.03	4	4.22	.15	.09	1	t
	15N 0+009L	4	17	24	32	.9	9	5	156	5.96	5	5	ND	3	25	1	2	2	99	.21	.069	15	32	.33	46	,50	4	2.74	.11	.96	ł	3
	15N 0+25E	4	17	24	41	. 8	5	4	147	6.86	4	5	ND	3	22	i	2	2	- 74	.20	.056	16	20	. 28	30	.44	3	3.88	.10	.05	1	(7)
	15M 0+50E	3	13	24	44	.8	26	9	214	7.18	2	5	NÐ	3	12	I	3	2	126	.18	.034	13	65	.75	24	.80	2	2.44	.05	.04	1	1
	15K 0+75E	1	13	15	35	.3	9	5	236	4.28	2	5	NÐ	2	18	1	2	2	62	.19	.050	9	22	.46	24	, 39	6	2.39	. 08	.05	ŀ	L
	15M 1+00E	6	43	26	33	.4	6	2	139	8.32	6	5	ND	- 4	8	1	2	2	124	,04	.031	15	37	. 16	27	.45	3	2.53	.03	.03	E I	2
	158 1+25E	7	22	30	99	1.1	7	8	1934	19.61	16	5	ND	10	4	1	2	2	27	,05	.081	23	13	.16	20	.22	2	4.54	, 10	.09	1	1
	15M 1+50E	- 4	24	20	54	.6	18	5	540	5.61	11	5	ND	2	12	1	2	2	23	.10	.063	16	51	.35	40	.20	2	3.69	.05	.04	1	1
	15H 1+75E	5	15	22	59	.8	10	9	5e1	7.61	Ð	5	NÖ	5	39	1	2	2	73	,40	.051	23	26	.50	32	.50	2	3.64	.22	,09	1	2
	15N 2+00E	1	14	23	44	.7	7	6	178	6.95	6	5	ND	4	25	Т	2	2	129	.19	.045	11	27	. 32	84	.86	2	3.58	.09	.04	1	1
	15N 2+25E	2	9	15	30	.7	17	4	129	5.50	9	5	ND	2	20	ł	2	2	93	.14	.047	8	39	, 37	41	.26	3	2.22	.06	.03	L	1
	15N 2+50E	5	11	26	33	.4	9	4	243	6.03	5	5	NÐ	3	14	1	2	2	108	-13	.049	15	38	. 23	25	.61	2	2.19	.05	.04	1	1
	15N 2+75E	2	21	10	50	1.3	13	9	343	6.36	8	5	NÛ	3	30	1	è	2	115	. 41	.089	14	41	.73	34	.73	2	5.29	-15	.07	2	3
	15N 3+00E	3	. 19	18	56	.0	26	6	214	6.74	8	5	N9	4	13	1	2	2	110	.11	,044	12	56	.62	61	.42	5	3.95	.06	01	ł	L
	14N 0+25E	5	24	18	121	. 6	15	20	5634	5,84	4	5	MÐ	3	32	1	2	2	94	.36	. 191	12	26	. 68	94	. 40	4	3.75	.12	.09	1	2
	S10 C7A0-S	19	57	41	132	7.0	67	27	1030	5,94	4Z	14	8	36	40	18	17	19	55	.40	.087	36	56	.87	т	.08	29	1.81	.99	.14	В	53

SOIL SAMPLES

	SAMPLE#	0M PPH	CU PPM	PB PPM	ZN PPM	AG PPN	NI PPM	CO PPM	IIN PPR	FE X	AS FFM	U PPN	AU Pph	TH PPM	SR PPM	CD PPM	99 PPM	B1 PPM	V РРя	CA I	P 1	LA PPR	CR PPM	196 1	BA PPM	TI L	9 PPM	AL I	NA Y	K Z	W PPn	AUS Ppb	
	14N 0+50E	5	16	20	68	.9	9	5	479	7.29	7	5	ND	i	23	1	2	2	94	. 22	.090	14	75	. 30	66	.40	2	2.34	.07	. VS	1	1	
	14N 0+75E	2	15	20	76	.3	12	16	1600)6.24	3	5	ND	1	70	1	2	2	114	. 55	.095	8	16	. /4	65	.12	4	1.91	. 23	- 10	1	1	
	14H 3+00E	7	- 14	25	70	.3	10	7	20a	8,98	3	13	ND	3	16	I	2	3	168	.10	,060	10	24 54	- 4 I A T	58	1.23	Ŕ	2.93	.11	.05	i	1	
	14M 1+25E	5	18	18	65	.6	12	9	424	7.61	2	2	N9 ND	2	215 12	1	1	2	123	18	179	14	14	.53	70	.22	.,	3.37	.05	.10	t	1	
	14N 1+50E	4	25	24	150	- 4	24	ΙĂ.	1822	10.00	8	Ĵ	RU	1	11	•	5	2	00		••••	•••								*0			
	14N 1+75E	4	15	22	78	3.3	11	7	305	6.16	3	5	ND	2	35	1	2	2	103	.34	.085	12	23	.51 45	41 90	.67 17	9	2.87	.18 .03	.08 .05	l I	1	
	14N 2+00E	3	19	21	63	. 3	37	5	215	7.88	41	6	ND.	j n	10	1	3 7	2 7	11	10	046	10	42	. 34	53	.59	2	2.99	.05	,05	2	L	
	14N 2+25E	- 4	15	22	74	- 4	15	5	229	7.53	Ċ 7	ר א	עא אח	4	12	1	2	2	93	.10	.053	20	38	29	28	. 62	2	3.20	.07	. 07	1	1	
	14N 2+50E	6	16	28	50	-0	12		476	6, 39	Ŕ	5	ND	5	14	i	2	2	BB	.11	.099	11	27	.29	31	.63	2	3.15	.06	.05	1	1	
	14N 2475E	2	15	10	1	.,	14	•	470	9100	·	•		-							• .				-		-			11	,	1	
	34N 3+005	3	7	24	54	.4	8	6	176	2,96	2	8	NÐ	L	30	1	2	2	68	.28	.070	10	16	.45 17	30 70	۲۵. ۲۱	5	1.49 7.49	.04	.05	1	1	
	14N 3+25E	3	13	25	71	.5	20	2	232	3.97	6	5	MD	1	18	1	4	2	e2 101	.19	.10.	10	20		51	.57	19	2.93	.08	.06	2	1	
	14N 3+50E	4	16	23	75	1.2	10	S	295	6.52	Ó	5	N9 MD	4	17	1	- र	2 5	107	19	069	 В	35	.38	64	40	9	2.63	.08	.06	1	1	
	14N 3+75E	2	13	16	55	1.0	12	ه	482	5.74	11	ل ج	ND.	1	28	1	2	2	89	.20	.070	9	50	.65	86	.19	11	2.21	.10	.07	L	1	
	14N 4+00E	2	29	18	81	.,	28	0	312	2.10	14			•		•	•	-											۰.	• 4			
	14N 4+75F	3	2B	29	78	1.8	12	6	812	7.79	9	5	NÐ	2	22	1	2	2	100	.19	,066	8	31	.35	119	.26	ò	5.51	.06	.10	1	1	
	14N 4+50E	4	24	23	97	.6	21	6	423	6.65	12	5	κĐ	2	25	1	2	2	114	,18	.226	8	47	-54	(160	, 20 ED	7	2,77	. 17	-1-5	1		
R GRID	14N 4+75E	2	14	20	47	.4	9	4	133	5,78	7	5	NÐ	2	14	1	2	2	112	. 19	.058	10	30	.27	20 75	10,	2	2,30	04	04	2	1	
	14N 5+00E	3	13	18	49	.4	9	4	142	6.24	8	5	ND	2	16	1	Z	2	112	- 17	,060	19	24 77	- 20	3-3 70	.00	10	3.03	.07	03	2	ī	
	13+75N BL	5	12	23	55	.4	9	4	149	6.11	9	5	ND	4	14	1	2	2	117	. 10	,030	11	U U	• • • •		***		•••••		• • •	-		
	****				77	1.0	10	6	274	7.44	3	9	ND	4	23	1	2	2	116	.24	.066	13	20	.53	33	.90	- 4	2.70	. 09	.06	1	1	
	134/34 4430E	τ τ	15	1 20	72	1.9	9	11	963	6.90	4	5	NÐ	3	33	1	2	2	118	.32	.076	11	24	.52	32	.91	2	3,CB	.17	+0B	I	4	
	13+25N BI	2	11	15	53	.3	ė	,	254	5.56	5	5	ND	2	31	1	4	2	140	. 30	.057	7	19	.54	45	1.12	2	1.11	.15	,06	1	1	
	13+25N 4+50E	5	10	24	61	.9	9	4	302	5.33	10	- 5	ND	2	19	1	2	2	94	- 11	.107	13	2	.27	39	.68	3	1.84	108	. 07	1	1	
	13N 2+75W	2	1	5 15	72	.4	13	12	418	5.93	5	5	NÐ	2	73	t	2	2	105	.78	.079	11	14	1.06	45	•14	H	2.63	.40	.15	1	L	
		_						F	107	7 40	a	5	NŰ	7	11	1	,	2	174	. 07	.037	11	55	.40	55	.48	₿	2.78	.05	.84	1	1	
	13N 2+50N	3	14	5 20		2	17) 5	103	7.47	11	Š	μĤ.	3	9	1	2	2	129	.06	.033	12	51	.36	50	. 46	6	2.60	.04	.04	1	1	
	13N 2425W	1	1.	/ Zi	. 37 54	• 4	. LO 10	5	141	7.45	17	5	NÖ	3	5	1	2	2	136	.02	.032	13	55	.31	50	. 42	6	2.79	.02	.03	1	1	
	13N 2700W	0	1.	1 X.C A 11	. J. 	• • •	21	5	167	6.11	6	5	ND	2	18	t	2	2	17	.14	.049	6	41	.44	88	.34	- 4	2.45	.05	.05	1	1	
	130 17030	1	1	7 19 7 19	, UN 1 50			4	182	6.08	11	5	ND	2	22	1	2	2	70	. 16	.086	11	20	.28	67	.35	Ź	1.41	.06	.03	1	1	
	130 1-300	,	1														-	_							hin		,	2.75	17	۸Ø		ı	
	13N 1+25W	3	5	6 29	112	2.7	r 14	12	596	5,75	- 14	5	ND	2	37	1	2	2	64	. 54	143	12	14	10. 44	(140	5 11 (1 1 1 2	10	1 25	. 69	.07	1	i	
	13N 1+00W	3	2	0 24	1 8/	1.5	i 16	, 8	838	5,57	8	5	ND	3	20	1	2	2	82	.17	+083	16		.97	16	,40 74	C	1.71	.19	_00	1	i	
	13N 0+75W	3	1	0 19	7 61	ι	5 12	! 8	418	4,89	4	5	ND	2	39	1	2	2	94	. 37	.055	11	11	/د. در	94	در. ۵۵	3	3.17	.10	.07	1	i	r
	13N 0+50N	3	i	4 19	3 60	, (7 11	. 8	405	5 7.00	2	ą	ND	4	22	1	2	2	109	.27	· .0/0	4		.0/ 70	71 71	.73 20	- L	7 99	04	.04	,	i	
	13N 0+25W	2	2	7 1e	5 43	. 1	L {) 6	157	7 7.59	6	5	ND	1	16	i	2	2	183	.12	.,V46	2	13	• 24	10	. 20	a a	1.00	141	100	•	•	
	170 41967			~ ^1	5 LO) A	601	7.25	9	5	ND	3	34	L	2	2	100	. 32	2 ,077	11	18	.44	46	.67	2	2.76	.16	.09	2	1	
	JUN UTIDE	۹ ۲ ۱	1	4 I. 7 I	וס נ 1111 ו	7 7.1	4 1 4	27	1033	3 3.93	39	lé	1	37	48	10	14	14	56	. 46	3 .089	36	56	.97	173	.09	32	1.79	.08	.13	12	47	
	210 C/HU-2	10		/ 1																													

SOIL SAMPLES

Page 🤉

¢

(

C

C

C

(

€

¢.

(

€

ť

€

L

SOIL SAMPLES

SP	AAPLEO	MD PPM	CU PPM	Р8 Ррм	ZN PPH	AG PPM	NI Pph	CŪ PPM	MN Pph	FE 1	AS PPM	U FPM	AU FP#	TH PPM	SR PPM	CD PPR	SB PPM	81 PPM	V PPN	CA t	P I	LA PPM	CR PPN	#6 2	BA PPM	11 2	B PPM	AL ۲	NA I	K Z	N PPN	AU : PP2	
1'	3N 0+50E	2	19	16	67	1.7	11	,	235	8.05	5	5	ND	4	24	1	2	2	123	. 32	,083	10	22	. 69	26	. 91	2	3.50	.11	.05	1	ł	
17	3N 0+75E	3	18	22	80	2.2	14	15	1154	6.05	8	5	NÐ	2	57	1	2	:	96	, 60	.078	14	21	.80	47	.51	2	3.31	. 30	.12	2	I.	
1	3N 1+00E	i	9	11	30	1,0	8	3	81	4.41	- 4	5	мÐ	1	17	1	2	ž	96	.16	.072	7	20	.18	23	.61	2	1.82	.06	.04	1	1	
1	3N 1+25E	4	15	22	ь2	2.6	10	6	247	4.33	8	5	ND	J	25	1	2	2	72	. 26	.082	23	24	, 45	41	.48	2	3.11	.14	.08	1	I	
1	3N 1+50E	2	12	15	70	1.2	11	6	217	5.81	7	8	NŬ	2	24	l	2	2	68	25	.065	н	24	. 49	32	.57	7	2.55	.10	,06	1	ł	
Ľ	3N 1+75E	I	28	25	72	.8	39	7	292	5.82	11	5	ND	2	22	1	4	2	50	.15	.062	10	45	. 69	72	.11	2	3.67	.05	.05	1	2	
1	3N 2+00F	2	23	11	65	1.3	14	11	594	8.21	7	5	ND	5	32	ł	2	2	133	.39	.107	10	25	. 118	- 34	1.12	2	4.59	.16	.0B	1	1	
	3N 2425E	2	16	15	59	1.5	12	B	257	7.41	7	5	ND	4	30	1	2	2	117	.31	094	10	26	.72	54	- 95	á.	4.24	.12	. Ú\$	1	1	
1	3N 2450E	ī	7	23	49	.6	6	4	120	3.82	2	5	NO	2	18	t	2	2	91	14	.002	8	20	.27	38	.62	2	1.56	.08	,07	1	1	
1 1	3N 2+75E	5	15	21	73	1.1	25	4	138	7.36	11	5	NÛ	3	11	i	2	2	108	.09	,037	12	39	. 40	41	.52	2	2.28	.05	,04	1	1	
1	THE THERE	र	12	20	55	1.4	7	3	95	5.43	7	6	HD	5	12	1	2	Z	98	.11	.049	12	29	.27	32	.66	2	2.65	.04	,03	L	1	
1.	TH 14756	2		13	55	. 9	7	5	154	6.17	7	5	NÐ	2	25	1	2	2	124	.24	.056	7	14	.40	33	.87	4	1.53	.11	.08	1	1	
1.	13N 37436	7	14	15	17	2 2	10	ž	198	4.75	7	5	ND	2	32	1	2	2	102	.30	.075	12	15	.53	38	.17	9	2.0t	.16	.08	1	1	
1.	3M 37 30E	2	10	10	50	1.0	6	, 1	00	4 59		ŝ	ND	2	14	1	2	3	137	.18	.135		16	.21	29	. 86	2	1.77	.05	.03	1	1	
1	174 7412F	4	12	10	24	2.4		5	770	4 44	/ 55	š	NB	•	47	÷	,	,	90	47	078	12	14	.74	58	.46	2	2.70	. 22	.11	1	1	
1.	ISN 4+00E	6	16	28	/4	2.	11	7	23T	4.40	(33	J	NU	•		•	-	-	74					••••	54		-						
1	L3N 4+25E	2	17	15	62	1.6	9	6	189	7.48	7	7	ND	4	20	1	2	2	112	.17	.076	12	24	.3B	38	.81	9	4.43	.05	.04 05	1	1	
ODIO I	E3N 4+50E	- 4	15	26	62	1.3	11	6	205	8.02	7	5	ND	3	15	1	2	2	154	.11	+044	11	45	.44	32	.81	-	2.48		.0.		,	
GRID I	L3N 4+75E	4	6	22	43	6.	5	3	105	4.24	5	5	ND	3	15	Ĺ	2	2	177	.11	.034	10	21	.14	52	1,10	2	1.09	.06	.04		3	
1	13N 5+00E	8	9	28	46	.5	- 4	3	149	10.81	2	8	ND	- 4	11	1	2	3	189	,05	.036	13	29	.10	46	.94	2	1.75	.04	,04	2	•	
1	2+75N 2+50W	4	15	25	56	.7	15	B	305	7.00	7	5	ND	3	21	1	2	2	135	,16	.053	12	31	.50	70	. 64	2	2.10	.09	.07	ł	1	
t	12+75N BL	2	17	23	60	.8	16	6	219	4.63	10	5	NÐ	5	15	1	2	2	103	.41	.086	25	59	.56	28	.76	2	3.53	.11	. <i></i> 07	i	i	
1	12+50N 2+50N	1	13	15	72	.8	17	15	424	4.65	4	5	ND	2	89	1	2	2	91	.B9	079	8	17	1.25	87	.67	2	1.84	.40	.19	1	1	
1	12+251 2+501	;	15	20	19	4	12	8	76B	5.22	7	5	ND	3	32	1	2	2	99	.35	.076	- 11	2B	.57	42	.67	2	2.49	.14	.09	1	3	
1	171758 DI	• 1	14	21	79		19	30	749	1 91	Ŕ	5	ND	4	63	1	2	2	67	.72	.091	24	16	.94	49	,50	2	3.13	.38	. 16	1	1	
4	1242JN DL	-	10	22	15	1 7		7	255	1 17	7	5	¥7	5	27	1	2	2	138	. 22	071	14	20	. 36	64	1.13	2	2.05	.11	.07	1	L	
1	IZN ZYDUN	•	12	11	63	1.3	7	1	200	0.0/	,	9			21		•	•	144			• •			•		_				-		
ł	L2N 2+25N	3	16	21	64	1.6	11	8	315	8.16	5	5	NĎ	5	22	1	2	2	146	.22	.089	16	23	- 57	47	1.20	5	2.91	•11	.07	2	1	
1	12N 2+00W	3	12	20	61	1.0	9	7	258	5,92	3	5	ND	3	31	1	2	2	122	. 27	.068	13	22	. 15	57	.95	2	1.99	.14	,0B	1	1	
ī	12N 1+75m	2	- ii	16	60	1.1	11	7	251	6.44	5	5	ND	3	28	1	2	2	111	. 29	.051	10	25	. 59	52	.89	2	2.72	.11	.05	1	2	
•	174 14508	,	i.	15	90	8	15	10	580	4.31	6	11	ND	2	/12f	1	2	2	70	1.59	.087	16	18	. 88	(191	5.67	5	3.26	.12	.05	1	L	
	17N 1195W	7	77	24	79	1 0	27		1111	A 70	14	ŝ	MA	2	17	1	2	3	96	. 14	108	10	35	.56	ेम्म	.33	3	3.17	.04	,08	1	1	
1	128 17238	د	31	29	73	1.0	41	Þ	1110	Q. /V	14	-		•	••	•	•	v					•••				•	•••					
1	12N 1+00W	7	18	19	73	2.5	9	5	231	5.64	13	5	ND	2	18	1	2	2	165	.16	.063	10	28	,38	49	.6l	2	2.57	, 0B	.06	1	1	
1	12N 0+75W	2	20	20	82	.8	19	14	1057	1.03	4	j	NŬ		23	1	<u>ن</u>	2	117		.093	12	32	, 70	τ¢	.00	•	7.43	+ 1 T	. 10	1	1	
1	12N 0+50W	2	15	25	70	1.3	13	7	413	6.28	9	5	ND	3	20	1	3	1	104	.18	.0/5	11	28	15	20	-02	4	4.72	.VD	.VO	د •		`
1	12N 0+25W	1	8	17	33	.3	7	3	_ !!	2,78	2	5	ND	2	19	1	2	3	76	.13	.025	13	27	.71	84	.28	2	1.8/	,Ų4	.05			
1	12N 0+25E	3	26	26	117	1.0	24	19	(79)7	6.53	10	5	ND	1	30	1	2	2	105	.30	.111	10	44	.52	47	.28	2	3.34	, 0¥	,04	1	I	
1	12N 0+50E	4	12	25	88	1.9	8	6	576	7.18	7	5	ND	4	35	1	2	2	102	. 31	.077	11	16	.44	47	.63	2	2.75	. 16	.09	1	L	
/																																	-

R

MINCORD EXPLORATION PROJECT-EASTFIELD FILE # 87-3431

.

Page 3

ς.

	SAMPLER	MO PPM	СИ Ррк	рв Ргя	IN PPR	AG PPM	N] PPM	CO PPN	MN PPN	FE I	AS Pfm	U ₽₽Ħ	AU PPM	TH PPN	SR PPM	CD PPR	59 PP%	BT PPM	V PPK	CA 1	P Z	LA PPM	CR PPM	MG Z	bà PPP	11 X	8 PP#	AL X	NA X	K Z	N PPN	аце Ррв	
	12N 0+75E 12N 1+00E 12N 1+25E 12N 1+50E 11+75N BL	2 2 7 2 2	12 20 11 15 10	15 19 20 7 11	65 63 64 62 67	.3 .8 .3 .1	13 6 4 9 10	10 3 6 6	291 169 182 198 222	5.25 4.90 7.14 6.79 5.77	6 3 11 4 2	5 5 5 5 5	ND ND HD ND	1 5 5 2 2	45 12 12 18 30	1 1 1 1	2 4 3 2 2	2 2 2 2 2 2	102 61 44 114 105	. 44 . 14 . 12 . 17 . 32	.072 .079 .046 .036 .079	8 26 28 10 14	13 28 20 23 21	.00 .22 .19 .45 .50	31 23 19 33 30	.71 .47 .32 .88 .78	3 10 7 2 6	1.61 3.47 2.45 2.17 3.74	.22 .11 .10 .07 .15	.13 .07 .05 .04 .05	t 1 1	1 2 1 1	
	11N 0+25E 11N 0+50E 11N 0+75E 11N 1+00E 11N 1+25E	1 1 2 1 2	11 10 15 6 34	14 13 7 12 21	76 71 51 47 72	.1 .1 .3 .3	13 7 10 5 10	18 6 8 3 6	1603 171 225 92 198	4.63 3.76 7.15 2.21 5.6B	4 3 2 7	5 5 10 5 5	ND ND ND ND	L 1 4 1 2	102 38 34 30 34	1 L L 1	2 2 6 2 2	2 2 2 2 2	85 80 120 76 114	1.07 .36 .33 .24 .29	.084 .074 .067 .062 .059	11 7 11 4 9	8 15 19 8 25	1.17 .40 .59 .16 .44	(138-) 62 39 34 54	47 58 1.07 .74 .71	7 2 4 2 2	2.22 1.55 4.38 .72 2.20	.48 .13 .15 .07 .13	.19 .06 .05 .03 .07	1 1 L	2 2 1 1 2	
	11N 1+50E 11N 1+75E 11N 2+00E 11N 2+25E 11N 2+50E	4 2 2 1 2	14 15 10 7 15	16 16 20 11 18	70 54 61 70 69	.1 .3 .1 .1	14 11 7 7 10	4 1 5 6 8	235 109 62 230 249	0.07 4.65 6.36 2.61 5.65	2 7 18 2 2	5 5 5 5 5	ND ND ND ND ND	3 1 2 1 2	10 17 12 32 35	1 5 1 1	2 2 6 3 2	2 2 2 2 2 2	75 92 70 55 107	.09 .13 .11 .30 .34	.053 .047 .070 .052 .054	27 9 24 11 13	27 33 21 9 24	.29 .29 .15 .40 .62	20 61 29 51 44	39 .19 .35 .25 .61	2 2 2 3 2	3.15 2.66 2.61 1.22 2.79	.06 .04 .07 .12 .17	.03 .03 .04 .07 .08	1 1 1	L 2 1 2 1	
R GRID	11N 2+75E 11N 3+00E 11N 3+25E 11N 3+50E 10+75N 3+25E	4 3 5 8 4	22 18 14 204 14	22 20 19 203 15	81 76 66 99 57	.7 .7 .3 3.4 .1	20 12 11 16 10	8 9 5 6 6	380 804 281 250 235	5.49 6.26 7.54 2.85 6.81	21. 10 9 47 8	5 5 5 5 5	ND ND ND ND ND	2 2 5 1 4	31 16 18 24 19	1 1 1 1	4 4 24 6	2 2 2 2 2 2	89 84 102 65 130	. 33 .14 .21 .22 .27	.071 .091 .049 .051 .060	13 14 21 11 17	42 36 33 24 36	.64 .44 .45 .31 .59	57 30 23 <u>167</u> 24	.38 .35 .80 .16 1.04	3 3 13 2 3	3.52 2.97 3.74 1.75 3.20	.13 .08 .10 .05 .10	.05 .07 .04 .06 .03	1 1 1 3	(24))
	10+SON 3+25E 10+25N 3+25E 10N 3+00N 10N 3+75N 10N 3+50W	2 ! 2 4 5	13 19 15 22 14	15 7 9 19 21	64 71 61 70 63	.1 .1 .1 .4 .7	10 9 15 17 11	В 6 5 4	246 194 236 194 254	5.05 5.60 6.22 9.12 10.39	4 5 7 2	5 15 5 5 5	N0 N0 N0 N0 N0	2 6 4 5	49 29 20 10 17	1 1 1 1	2 5 2 4 2	2 2 2 2 2 2	112 132 132 194 137	.51 .34 .24 .09 .16	.064 .100 .049 .033 .061	13 18 15 18 13	25 24 32 55 52	.69 .59 .67 .35 .26	48 37 30 31 46	.71 1.41 1.01 .41 .65	2 3 7 2 12	2.04 4.67 2.35 2.85 2.98	.22 .13 .10 .04 .06	.09 .05 .05 .05 .02	1 2 1 1 1	1 1 2 1	
	10N 3+25W 10N 2+00W 10N 2+75W 10N 2+50W 10N 2+25W	2 4 4 1	18 27 20 17 36	13 19 17 16 13	83 85 48 57 90	1.7 .6 .4 .7	16 44 13 9 9	5 6 3 6	253 349 180 258 236	4.85 7.72 7.10 6.06 6.58	4 10 17 9 5	5 5 5 5 5	ND ND ND ND	3 1 2 4 1	16 9 9 14 8	1 1 1 1 1	5 7 3 5 4	2 2 2 2 2	82 89 108 72 66	.16 .04 .05 .17 .04	.091 .050 .083 .063 .093	21 9 15 24 11	27 92 35 29 15	, 46 , 03 , 21 , 34 , 18	32 56 38 21 110	.45 .10 .28 .44 .01	2 4 2 2 2	4.30 3.62 1.90 4.41 2.49	.07 .02 .02 .08 .08	.05 .04 .02 .04 .08	t 2 2 2 1	3 2 2 1	
	10N 1+00W 10N 1+75W 10N 1+50W 10N 0+25W 10N 0+25E	2 5 2 3 4	17 16 16 20 12	5 17 11 29 17	73 71 65 70 100	1.6 1.9 .7 .8 1.3	14 10 14 11	8 9 8 12 19	305 729 253 682 3223	6.19 8.18 7.21 6.56 6.59	8 2 11 2 7	5 5 5 5 5	ND ND ND ND	2 5 4 3	17 19 22 22 33	L 1 1 1	2 3 2 2 2	2 2 2 2 2	113 113 121 115 97	.24 .17 .23 .25 .37	.059 .058 .057 .040 .094	15 14 12 14 20	43 32 33 24 23	.48 .44 .58 .61 .43	39 25 34 30 83	,70 .91 .64 .84 .42	2 6 2 5 3	4.90 2.95 3.71 3.60 2.31	.07 .10 .09 .11 .14	.02 .06 .04 .06 .10	1 1 1 1 2	1 1 1 2 1	N
	10N 0+50E STD C/AU-S	18 3	16 57	19 43	114 133	.3 7.0	13 68	16 27	(7148) 1039	`; 5. 94 3. 84	5 36	5 21	ND 7	2 38	23 50	1 17	2 16	2 20	60 56	.25 .47	.176 .006	16 37	26 58	.36 .84	135 178	.13 .09	2 33	2.53 1.80	.07 .08	.07 .13	۱ 14	1 52	

SOIL SAMPLES

Page 4

ł

1

(

(

C

C

٢

(

C

Ć

C

C

C

£

(

í

	SAMPLEO	MÛ Ppr	CU PPM	ря Ргл	ZN PPH	AG PPM	NI PPH	CO PPN	MN FE PPN 2	AS PPN	U PPM	AU PPN	TH PPN	SR PPN	CD PPM	50 ppm	81 PPM	V PPM	CA 2	P Z	LA PPM	CR PPM	MG Z	BA PPM	T L T	8 PPK	AL 1	HA Z	K Z	N PPH	AU1 FPF	
	10¥ 0+75E	2	13	70	100	.1	12	12 3	152 5.59	11	5	NÖ	I	44	1	2	2	B7	- 48	. 087	30	រន	.55	194	.46	2	2.08	.17	.09	l	1	
	10W 1+00F	2	10	13	55	1	11	I C I	6991.4.85	7	9	ND	3	66	1	2	2	91	.64	.091	12	15	.83	71	.53	2	1.97	.30	.12	2	1	
	10N 1+05E	î	10	22	64 64	· · ·		4	140 3.84	. q	5	ND	2	19	i	2	2	85	.17	. 053	20	21	.24	63	.33	2	2.77	.07	04	L	2	
	10N 1450E	2	18	11	74		15	8	294 6.72	10	16	NÛ	â	37	i	2	2	131	.55	.074	36	39	.79	51	1.17	2	4.74	.20	.10	1	4	
	ION 1+75E	ŝ	17	34	23	.5	9	5	251 8.2	i 5	5	ND.	-	24	1	2	2	100	.21	.050	19	34	. 30	59	.63	7	2.88	. 10	.05	1	1	
													,			-	-	145		6.E	•		E.0.				1 06	10	<u>م</u>			
	10N 2+00E	ذ	16	20	8.	. 0	10	12	/52 8.80		ů 7	NQ ND	3	37	1	4	- <u>-</u>	107	.30	,000 045	10	10	. 39	40	.15	2	3.75	.10	. 17		7	
	TON 2+25E	1	10	14	60	• [3	223 3.00			N U AUN	÷	21	1	4	4	41	.20	.043	4	18	- 34	44	,9J DA		2.43	. 97	.93	;		
	10N 2+50E		17	17	14	• •	16	/ e	200 0.77	10	3 L 5	<u>к</u> у ND	0	21		4	4	115	++/	050	10	20 40	./1	33 00	.7V 10	J 7	J.70 2.64	411	.05	Ť	ž	
	LUR 24732	-	71	10	10		11	1	100 5 44	10		10 10	;	2.3 7.4	,			117	117	05.4	10	49	50	57	74	ĩ	2 55	16	.íiA	1	1	
	ION 3+OUE	د ب	10	15	79	. 4	12	7	288 3.4.	1 1	J	κv	4	30	1	4	1	151		. 0.34	,	40	. JO			J	2,30		14.0		•	
	10N 3+25E	(15)	18	25	64	.3	6	3	400 13.4	5	5	ND	5	11	1	2	2	256	.10	.067	17	43	.10	25	, 87	2	2.02	.04	.03	1	1	
	LON 3+50E	1	13	1 l	62	.1	9	5	134 5.0	7	15	ND	2	32	1	2	2	119	.30	.074	11	24	, 45	45	1.03	2	3.25	.10	.05	1	1	
	9+75N 3+00W	2	19	9	50	.1	7	5	125 8.4	. 4	6	ND	4	12	1	2	2	209	.12	.036	8	28	. 31	27	,78	2	2.92	.05	.02	3	2	
	9+50N 3+00M	1	29	12	53	• 1	9	11	547 5.5	. 3	5	ND	1	26	1	2	2	151	.28	.071	5	19	.37	44	. 36	2	1.31	.09	.04	1	1	
	9+25N 3+00E	2	10	17	52	4	9	4	148 6.4	5 11	5	ND	3	8	l	2	2	133	.06	.037	16	42	.15	21	. 64	2	1.67	.03	,03	l	1	
	9N 3+50W	2	62	10	74	.1	5	B	294 6.04	9	5	ND	1	9	1	2	2	229	.09	.036	4	14	. 20	38	.09	2	2.82	,03	.06	1	1	
	9N 3+25W	1	24	14	58	.1	10	6	233 6.5	: 0	5	ND	3	20	1	2	2	125	.21	.061	12	27	.50	45	.66	2	3.19	.08	.05	1	1	
R GRID	9N 2+75N	1	19	9	63	.2	12	7	294 6.5	9	8	ND	6	23	1	2	2	112	.27	.075	14	28	. ò	39	. 66	- 4	4.82	.11	.05	1	1	
	9N 2+50W	2	16	12	60	.1	10	6	199 8.1) 5	9	ND	6	16	1	2	2	127	.15	.045	11	27	.49	28	.99	2	3.56	.07	.04	_ _	1	
	9N 2+25N	2	· 57	22	105	• 3	22	13 1	014 10.5	10	5	ND	Ż	21	1	2	2	127	. 19	.126	10	49	<i>،</i> ۵۹	148	.12	5	3.96	.07	.08	ţ	1	
	9N 2+00W	1	27	15	89	.6	13	15/1	676 , 6.2) 10	5	ND	2	32	1	2	2	115	.34	.089	14	26	.59	ę 2	.65	4	4.04	•13	.06	L	2	
	9N 1+75W	3	29	12	74	1.7	14	22 3	716 5.8	8	5	ND	5	19	1	3	3	95	. 19	.085	22	29	. 58	43	.56	2	4.10	.09	.08	i	1	
	9N L+50W	2	7	15	39	.2	3	3	139 4.1	1 5	5	# 0	2	16	1	2	2	101	.12	.032	8	15	.15	60	.71	2	1.35	.05	.04	2	3	
	9N 1+25W	2	10	11	62	.1	7	5	220 5.93	: 6	5	ND	3	16	1	2	2	110	.14	.040	14	23	. 33	47	.59	5	2.73	.07	.05	l	2	
	9N 1+00W	2	12	16	49	.1	6	4	140 6.0	5	5	ND	4	20	I	2	2	109	.13	.043	14	19	.23	48	.62	4	1.75	.05	.03	2	4 *	
	9N 0+75N	7	13	16	72	.1	14	4	279 9.7	13	5	ND	4	17	1	2	2	84	.15	.045	16	32	.34	32	.51	3	2.17	.08	.06	2	4	
	9N 0+50N	4	21	18	73	.6	11	11 1	115 6.8	13	5	ND	4	11	1	2	2	70	.13	,072	27	40	.29	44	.32	2	3.52	.07	.06	L	3	
	9N 0+25N	3	14	18	66	.3	7	5	187 7.3	- 4	5	ND	3	24	1	2	2	98	.18	.064	13	23	.31	50	.69	2	2.45	, 08	.04	1	1	
	9N 0+25E	3	11	- 14	53	1.1	12	4	205 4.9	6	5	ND	2	10	t	4	2	78	.07	.051	14	39	.29	45	. 39	9	2.06	.04	.05	L	7	
	9H 0+50E	2	12	20	70	.5	11	8	386 7.5) 4	5	ND	6	24	i	2	2	114	.28	.089	11	26	. 61	33	.85	2	2.43	.13	.08	1	4	
	9M 0+75E	8	10	19	62	.4	7	2	225 6.6	ເ 8	5	ND	2	15	1	2	2	113	.11	.052	16	23	.17	25	.73	2	1.45	.06	.04	L	4	
	9N 1+00E	2	16	16	77	1.2	23	6	258 7.0	i 18	5	ND	6	15	1	2	2	96	.13	.053	13	45	,53	43	.53	2	3.67	. 04	.04	1	1	
	9N 1+25E	3	17	18	96	.7	50	15 1	031 9.6	166 }	5	NÐ	4	24	1	8	2	61	.21	.106	12	40	.40	93	.08	5	2.71	.09	.08	3	2	٦
	9N 1+50E	2	30	17	93	1.3	47	- 17 (1	580 >6.4	1 1 64	5	NÐ	2	14	1	13	2	62	.17	. 143	7	36	.17	199	,05	4	1.25	.03	.09	2	4	
	9N 1+75E	2	15	14	67	2.2	13	9	296 7.1	1 2	5	ND	5	32	1	2	2	142	.39	.083	13	29	.85	49	1,16	2	3.71	-15	.08	L	7	
	9N 2+00E	1	44	9	73	t.	125	2B 1	315 10.3	5 11	5	ND	2	18	1	4	2	73	.12	,088	2	241	.57	164	. 02	Ħ	2.65	.05	,09	1	1	
	STD C/AU-S	18	58	39	132	6.9	67	27 1	043 3.9) 40	14	7	38	50	te	16	22	57	. 18	.087	30	61	.87	179	.09	33	1.81	BO.	.11	- 14	47	

SOIL SAMPLES

5

:

Page 5

ť

1

t

(

C

(

€

Ç

C

C

€

C

¢

(

	SAMPLET	NO PPH	CU PPM	P8 PPR	ZN Pph	А5 Ррн	nt Pf#	CO PPN	RN PPN	FE Z	AS PPM	U PPN	AU PPM	TH PPM	SR PPM	CD PP#	SB PPM	BI PPM	¥ PPN	CA Z	P Z	LA PPM	CR FPA	Ж6 Х	BA PPM	TL I	9 PPM	AL 1	NÅ T	K 1	N PPN	AU I Ppb	
	4N 2425E 9N 2450E 9N 2475E 9N 3400E 9N 3425E	9 2 2 2 2 2	18 37 15 21 24	18 24 21 14 17	86 129 91 72 67	.3 .7 1.3 1.5 .3	11 10 12 12 25	5 10 9 6 7	378 422 1203 210 291	9.84 4.43 6.65 3.96 6.11	10 28 - 8 9 14	5 5 5 5 5	ND ND ND ND	5 1 4 2 2	13 43 23 37 21	1 1 1 1 t	4 2 2 2 2 2	2 2 2 2 2	113 49 121 104 95	.11 .39 .22 .44 .17	.046 .102 .108 .084 .073	21 6 12 7 9	37 B 30 20 43	.29 .46 .42 .35 .47	24 B0 61 120 135 :	.64 .17 .71 .53 .19	2 3 9 4 5	2.53 1.25 2.59 1.13 2.28	.07 .13 .10 .11 .07	.05 .10 .08 .05 .06	1 1 1 1	1 8 1 2 1 1	
	9N 3+50E 9N 3+75E 9N 4+0UE 8+75N 3+50E 8+50N 3+50E	1 8 4 3	19 22 13 22 17	19 19 19 10 17	77 78 76 114 97	1,4 .2 .7 .8 .3	15 20 19 17 16	L4 6 24 7	-1531 330 234 ¹ 2399, 458	6.51 6.80 12.10 7.08 7.09	11 15 10 7 8	5 5 5 5 5	ND ND ND ND ND	3 2 3 5 4	30 17 14 22 24	l 1 1 1	2 2 2 2 2	2 2 2 2 2 2	107 94 96 102 88	.28 .15 .12 .24 .24	.061 .058 .049 .085 .055	15 17 14 25 21	31 30 40 32 25	.53 .41 .39 .56 .55	81 62 32 40 45	. 62 . 31 . 40 . 51 . 52	2 4 2 2 2	2.74 2.54 2.01 4.02 2.85	.13 .04 .05 .09 .12	.08 .05 .08 .08 .09	1 1 1 1	2 4 1 1	
	8+25N 3+50E BN 3+75M BN 3+50W BN 3+25W BN 3+25W	7 1 7 1 6	12 6 60 45 13	13 7 19 26 17	73 54 75 65 64	.2 .1 .4 .3	19 4 9 10 8	4 4 1L 9 4	264 126 356 318 220	7.82 5.06 8.11 5.96 7.05	10 11 12 19 8	5 5 5 10	ND ND ND ND ND	4 2 2 1 3	19 15 12 21 14	1 1 1 1	2 2 4 3 2	2 3 3 3 2	87 93 207 130 106	.16 .14 .07 .30 .12	.058 .027 .040 .177 .059	16 11 8 7 16	30 9 20 16 18	.42 .23 .20 .15 .23	28 51 55 113 22	.55 .13 .21 .23 .59	7 2 2 3 8	1.90 2.33 2.22 1.51 1.54	.07 .05 .03 .03 .05	.05 .05 .04 .07 .04	1 1 1 1	3 1 1 1 1	
R GRID	8N 2*75¥ S <u>ID</u> C/AU-S 8N 2*50¥ BN 2*25N BN 2*00¥	3 20 1 5 3	17 59 15 31 20	17 40 3 17 17	60 137 56 82 72	.7 7.5 .1 .1	13 72 14 32 40	5 29 9 5 5	245 1071 229 391 229	6.68 4.12 5.87 9.29 6.15	11 41 9 15 15	5 18 5 5 5	ND 7 ND ND ND	2 40 5 2 2	18 52 40 12 13	1 19 1 1 1	2 16 2 2 2	2 23 2 2 2 2	104 60 129 91 65	.23 .49 .48 .08 .08	.071 .090 .116 .045 .040	10 39 24 10 12	26 59 21 61 51	.37 .93 .90 .52 .67	44 174 46 59 57	.49 .09 1.09 .11 .22	2 39 7 8 3	2.95 1.92 5.90 2.57 2.56	.05 .07 .19 .03 .04	.04 .12 .09 .05 .04	1 13 . 1 . 1	2 47 3 4 1	
	BN 1*75N BN 1*50N BN 1*25M GN 1*00M BN 0*75M	3 5 4 2 4	18 10 15 15 12	17 20 17 11 14	77 62 66 71 70	.9 .1 .1 .1	23 6 19 16 15	5 3 6 9 8	401 167 297 293 371	6.30 7.46 4.71 6.09 6.15	9 7 15 12 12	5 5 5 5 5	HD Ng ND ND ND	3 3 4 5 3	16 13 14 29 34	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	76 110 75 129 96	.19 .09 .16 .41 .34	.070 .071 .053 .081 .044	11 13 24 15 14	48 14 35 25 23	.54 .16 .47 .98 .68	53 45 52 44 35	.30 .42 .51 1.31 .63	5 2 2 12 9	2,98 1,61 3,64 4,23 2,33	.05 .64 .07 .15 .19	,08 ,04 .05 .09 .09	1 2 1 1 1	3 2 4 1	
	8N 0+50N 8N 0+25N 8N 0+25E 8N 0+50E 8N 0+75E	5 2 3 8 2	12 18 12 13 11	18 2 19 25 15	57 54 58 51 79	.1 .1 .1 .1	11 11 12 7 9	5 9 6 3 12	177 270 161 121 1025	B.24 7.09 6.00 9.30 5.32	17 B 5 9 6	5 5 7 5	KD ND ND ND	4 6 6 2	18 44 21 8 44	 1 1 	2 2 2 2 2	2 2 2 2 2	110 127 112 93 72	.16 .49 .20 .05 .49	.029 .104 .039 .026 .073	10 12 11 12 15	28 21 35 35 12	.28 .88 .40 .14 .47	45 46 40 31 150	.42 1.16 .62 .54 .20	2 2 5 2 2	2.56 5.36 2.60 2.36 1.86	.06 .23 .09 .03 .13	.05 .11 .05 .04 .10	1 1 1 3	L 1 1 2	
	BN 1+00E BN 1+25E BN 1+50E BN 1+75E BN 2+00E	5 1 3 3 1	19 38 16 15 19	23 18 15 21 14	87 113 69 67 69	.8 2.1 .1 .1	16 30 12 8 12	5 12 7 4 6	489 594 299 203 193	8.67 5.62 6.25 5.83 6.06	17 13 8 10 7	5 5 5 7	NÐ Nð Nd Nd	2 3 2 3 4	30 38 27 17 25	1 1 1 1	2 4 2 2 2	3 2 2 2 2	104 84 110 83 119	.30 .61 .25 .18 .27	.072 .108 .105 .088 .074	12 86 9 19 15	34 40 17 31 24	.33 .92 .43 .25 .62	104 145 50 26 34	.28 .33 .45 .47 .95	6 3 3 2 0	2.47 4.92 2.29 4.08 3.47	.06 .15 .10 .10 .11	.06 .09 .05 .06 .07	1 1 1 2 1	1 1 1 2	N.
	8N 2+25E 8N 2+50E	6	14 13	17 28	65 67	.5 .5	7 12	4	249 201	6.41 8.71	12 17	5 5	ND ND	4	16 11	1 1	2 2	2 2	80 88	,13 .08	.047 .060	18 23	23 37	. 24 . 29	24 30	. 60 .30	2 2	2.05 2.13	.09 .05	.06 .07	1 1	i 1	

SOIL SAMPLES

Fage 6

Ł,

(

C

(

(

(

(

(

(

€

C

<

SOIL SAMPLES

	SAMPLEN	MO PPM	CU PPM	P0 PPM	∑n PP#	AG PPN	N] PPM	C0 PPM	MN Pph	FE 2	AS Ppm	U PPN	au PPN	TH PPB	SR Ppm	CD PPM	58 PP#	81 PPM	V PPN	CA I	Р 1	LA PPM	CR PP#	н6 Т	BA PPM	TI X	8 PPR	AL 1	NA 7	K Z	м РРЯ	AUE PPB	
	Dal 7.750	,	19	15	7.4	1.5	10	,	194	7.05	,	5	ND	4	16	1	2	2	123	. 20	.064	11	35	.56	28	.84	2	3.37	.08	.04	I.	2	
	DN 34006	- :	 Я	12	52		10	3	142	6.71	15	5	ND	3	11	1	2	2	BØ	.09	.033	- 14	34	. 25	34	.31	?	1.62	.05	, Úħ	L	6	
	DN 31076	1	14	14	45	1.6	9	,	315	5.88	7	Š	ND	2	22	ł	2	2	108	.21	.063	8	19	.40	37	.76	2	2.35	.09	.06	1	7	
	ON TASAC	,	24	19	41	24	, 21	19	1681	6.39	12	5	ND	4	32	1	2	2	96	. 34	.076	20	\$7	.70	41	.59	2	2.89	- 16	.10	1	B	
	ON 3+75E	2	32	17	123	2.2	31	19	1724	6.10	18	5	ND	4	39	1	4	2	80	.41	.094	16	38	.81	59	.37	3	3.19	.10	.12	t	10	
	7+75N 3+75N	ó	23	18	57	.4	7	6	174	6.78	17	5	ND	3	15	i	2	2	176	.12	.048	12	25	. 20	53	.42	2	1.87	, 05	.05	ł	: 9	
	7+50N 3+75W	10	49	19	187	3.0.	46	5	135	5.35	- (12)	5	КD	2	10	1	11	2	120	.06	.149	4	42	.13	34	. 35	2	1, 12	.03	.04		3	
	7+25N 3+75H	1	15	18	75	.3	28	13	358	7.07	8	5	ND	5	39	1	2	2	139	.74	.082	72	48	1.34	32	1.19	3	3.76	. 22	.08	1	2	
	7N 4+00M	4	9	17	57	. 2	5	3	230	5.00	8	5	ND	1	11	1	5	3	105	.09	.037	12	13	.08	- 41	.85	2	1.12	.05	,03	1	•	
	7H 3+75W	4	15	17	71	.1	10	۵	243	5.80	9	5	ND	4	21	1	2	2	114	.27	.031	15	50	.49	26	.81	2	2.23	. 12	,06	1	3	
	7N 3+50M	3	15	17	78	2.5	11	9	749	6.99	15	5	ND	4	25	L	2	2	110	.23	.067	17	34	.48	33	.85	5	2.52	09	,07	1	7 '	
	7H 3+25H	2	14	12	67	. 2	19	5	158	4.91	12	5	ND	1	23	1	2	2	85	.18	.013	9	29	. 35	11	.30	2	1.82	,06	.05	1	4	
	7N 3+00W	4	8	21	61	.1	7	3	107	5.67	6	5	ND	2	13	1	2	2	123	.10	.036	12	25	.16	58	.79	2	1.37	.05	.04	L.	5	
	7N 2+75W	3	18	17	76	.6	37	14	415	7.34	7	5	ND	4	20	ł	2	2	139	.70	,055	17	7	1.35	20	1.11	2	3.24	.13	.04	1		
	7N 2+50W	ł	4	L4	42	. 2	6	6	137	2.60	2	5	ND	2	29	1	2	2	101	,30	.035	7	12	.36	25	. 69	6	.07	.12	.05	1	1	
	7N 2+25N	2	20	18	70	.2	11	8	204	6.16	13	5	N0	4	20	i	2	2	124	.29	.062	15	30	.75	20	1.07	5	3,45	.11	.05	i	i n	
	7N 2+00M	2	12	10	44	.1	8	6	173	6.28	10	5	NÐ	5	13	1	2	2	114	-14	.041	11	24	,45	31	.75	2	2.50	.07	,04	1	4	
CPID	7H 1+75H	4	19	17	73	1.0	10	11	626	6.65	14	5	ND	- 4	19	1	2	2	88	26	.069	19	31	, 51	34	. 63	2	4.31	.11	.08	3	1	
Grub	7N 1+50W	2	18	16	69	.7	13	18	2667	6.35	12	5	ND	3	25	1	2	2	102	. 29	.092	26	24	.53	64	.68	2	3.26	.10	,08	•	3	
	7N 1+25W	3	13	21	99	.3	18	14	665	7.37	₿	5	ND	5	41	1	2	2	90	. 43	.055	16	29	.6B	74	. 60	2	2.92	. 20	11	1	1	
	7N 1+00W	2	9	18	46	.4	5	4	331	3.47	8	5	ND	1	15	1	2	2	56	.19	.063	10	15	.24	45	.20	10	1.50	.04	.06	1	2	
	7N 0+75W	1	5	4	45	.3	1	3	237	1.11	4	5	ND	1	12	1	2	2	17	. 31	.083	11	5	-14	104	.01	2	1.08	.02	.10	1	3	
	7N 0+25E	3	18	16	68	.9	9	6	254	6.89	13	5	ND	3	12	1	2	2	94	.16	.081	13	36	, 39	21	- 61	2	2.64	.07	.07	1	1	
	7N 0+50E	5	17	24	69	1.4	6	4	226	8.27	9	5	NÔ	4	10	1	2	2	88	.09	.065	20	25	.20	28	. 53	2	2.95	.07	.05	L.	1	
	7N 0+75E	5	16	21	68	1.2	7	4	174	8.66	11	5	NÐ	5	13	L	2	2	102	.13	.059	16	31	.24	30	.71	3	3.48	.07	.05	1	1	
	7N 1+00E	2	14	17	72	. 5	-41	6	236	6.63	11	5	ND	3	28	1	2	2	81	.22	.076	7	59	.67	99	.25	2	2.26	.06	.05	2	t	
	7N 1+25E	3	12	15	57	.7	11	6	174	5.78	8	5	ND	4	20	1	2	2	117	.22	.085	13	25	.57	27	,84	3	2.24	.10	,06	1	1	
	7N 1+50E	2	16	14	40		12	8	220	6.28	12	5	ND	5	24	L	2	2	114	- 34	,084	14	27	.75	32	.96	2	4.00	.13	.07	1	6	
	7N 1+75E	3	22	14	66	2.8	7	5	162	5.55	15	5	NØ	3	13	1	2	2	87	.13	.049	12	27	.36	24	.49	2	2,70	.07	.05	t	3	
	7N 2+00E	3	18	20	73	.3	13	8	199	8.57	6	5	ND	4	26	1	2	2	148	.26	.040	7	28	.47	52	. 82	2	2.61	.09	.05	1	3	
	7N 2+75F		· 58	27	107	.6	14	7	598	6.39	18	5	ND	2	9	t	2	2	66	.08	.086	13	39	.23	72	.05	2	2.67	.03	.11	1	6	
	STD CIAN-S	19	58	3.0	135	7.1	68	28	1080	3.99	40	17	8	38	49	18	17	20	58	.48	.090	38	58	.87	170	.09	36	1.79	.08	.12	13	49	
	7N 94505		19	יים דר	70	1.4			234	8.78	11	5	ND	5	8	i.	2	2	88	.09	,060	21	34	.22	17	. 61	2	2.44	.05	.06	1	5 ·	
	74 2*3VL 78 2+755		26	20	44	.9	13	,	204	6.12	. ü	5	NO	6	20	1	2	2	110	.31	.097	21	40	, 62	27	.82	2	4,25	.12	.08	í	5	
	78 2*/JE 78 7400E	-	2V 70	44 33	74	1 1	11	, 5	715	5.64		5	ND	3	17	1	2	2	113	.13	.058	10	28	.26	70	. 42	2	1.70	.06	.04	1	2	
	(N 3700E	3	20	11	.0					0101		-		-		•	-	-					-	n /	11	11	^	n 74	a7	65		4	
	7N 3+25E	4	14	21	64	1.0	10	5	382	5.66	13	5	₩D ₩D	3	12	1	2	2	95 74	.07 .04	.054	- 17 - 13	27	.76 .84	27 59	, 68 , 30	2	2.50	.07	. v. 80,	1	8	
	/N 3+50E	5	20	42	87	. 3	47	9	403	1.70	11	1	R.C	-		•	•	-	.,	444							•						

R

MINCORD EXPLORATION PROJECT-EASTFIELD FILE # 87-3431

.

Fage 7

.

1

í

1

(

ſ

ł

	SAMPLEN	NO PFN	CU PPH	PB PPM	ZN PPM	AG PPH	N] PPH	CO PPN	NN PPN	FE	AS PPN	U PP N	AU PPM	TH PPM	SR PPM	00 FPM	SB Ppn	BT PPM	V PPM	CÅ Z	P I	LA PPM	CR PPM	NG 7	BA PPh	T I X	B PP#	AL I	KA 2	X X	N PPK	AUT PPb	
	7N 3+75E 6+75N 3+00E 6+50N 3+00E 6+25H 3+00E 6N 0+25E	2 1 1 2 1	19 17 14 14 10	8 14 13 11 7	72 65 51 66 48	.5 .8 .4 1.1 .3	14 13 25 9 12	9 7 5 6	319 294 143 354 196	7.20 6.65 5.73 7.44 4.28	8 8 11 5 9	5 5 5 5	HD ND ND NO	7 4 3 1 2	25 18 15 19	1 1 1 1	3222	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	136 121 106 142 74	.48 .22 .10 .13 .20	.088 .062 .052 .047 .067	27 11 9 13 10	45 34 62 33 28	.72 .61 .52 .34 .36	36 34 60 23 37	1,02 .72 .34 1.00 .40	2 2 2 2 2	4.12 3.48 2.99 2.45 1.99	.14 .08 .05 .08 .08	. UB . 06 . 04 . 04 . 04	2 1 1 1	1 1 3 1	
	6N 0+50E 6N 0+75E 6N 1+00E 6N 1+25E 6N 1+50E	1 3 2 2 2	36 12 17 10 30	17 20 9 10 20	85 57 73 63 82	.1 .2 1.1 1.3 1.2	50 34 12 13 11	7 4 8 8 8	259 177 294 234 273	5.81 10.49 6.70 6.29 5.90	21 7 4 8 10	5 5 5 5	NŬ ND ND ND	2 3 4 3	10 9 25 29 18	i 1 1	6 2 2 2 2 2	2 2 2 2 2	63 108 115 106 78	.05 .05 .31 .34 .18	.042 .069 .077 .084 .077	14 11 15 20 12	77 66 27 28 25	.74 .52 .70 .75 .48	98 40 25 28 48	.06 .34 .83 .79 .52	2 2 2 10	4,03 2,99 4,49 4.01 4,82	02 03 12 14 08	04 .03 .05 .07 .06	2 1 1 1 1	4 1 3 3	
	6N 1+75E 6N 2+00E 6N 2+25E 6N 2+50E 6N 2+75E	5 2 2 5 5	15 25 17 13 15	23 22 8 21 24	78 61 128 58 63	.7 1 3.4 2.1 1.3	7 34 18 10 22	6 17 4	236 190 728 168 324	10.70 13.04 6.63 7.65 8.86	2 12 6 4 19	5 5 5 5 5	ND ND ND ND ND	5 3 4 4	19 10 35 13 10	1 1 1	2 3 2 2 2	2 2 2 2 2 2	126 127 111 103 101	.14 .04 .43 .08 .07	.047 .056 .074 .063 .069	12 8 22 16 13	25 110 24 37 55	.19 .54 .67 .26 .39	39 59 64 44 35	.86 .20 .78 .59 .38	2 7 13 (18) 2	2.22 3.08 4.63 2.38 3.30	.96 .02 .12 .06 .04	.03 .03 .07 .03 .03	1 1 2 1 3	1 2 1 2 t	
R GRID	6N 3+00E 6N 3+25E 6N 3+50E 5N 5+00N 5N 4+75N	2 3 2 7 5	18 14 17 14 22	13 15 8 18 9	68 47 51 76 78	1.0 .1 .2 1.5 .8	23 15 19 12 12	7 4 8 6 4	272 104 166 213 162	7.39 4.97 7.69 9.85 3.58	6 [7 5 8 8	5 5 5 7	ND ND ND ND	2 2 3 4 2	20 11 13 19 53	1 1 1 1 1	2 2 2 2 2 2	2 3 3 2 2	92 169 166 131 61	.19 .07 .13 .17 .76	.062 .039 .069 .059 .138	12 14 6 13 19	44 62 36 28 20	.52 .28 .23 .34 .26	47 53 45 27 163	.41 .22 .85 .80 .44	2 9 2 2 5	2.69 2.25 2.50 2.85 2.71	.07 .03 .05 .07 .09	.06 .03 .04 .03 .03	1 2 1 1 1	3 1 1 1 2	
	5N 4+50N 5N 4+25N 5N 4+00H 5N 3+75W 5N 3+25N	6 4 2 2 4	34 18 24 20 17	28 25 17 7 24	90 63 87 63 77	1.7 .3 1.2 .5 .1	15 12 17 12 10	9 5 11 - 8 5	(1682 226 522 239 252	6.71 10.72 4.55 6.64 8.93	(24) 2 12 2 4	5 5 5 5	ОИ ОИ ОИ ЮМ	1 3 2 6 3	13 23 25 32 12	1 1 1 1 1	4 2 2 3	2 2 2 2 2	102 201 86 125 163	.17 .15 .24 .39 .07	.119 .058 .081 .102 .038	12 12 12 19 11	23 43 26 27 39	.18 .27 .40 .78 .19	120 80 74 47 28	.29 .76 .35 .96 .89	14 14 4 3 21	1.40 2.31 2.35 5.25 1.99	.04 .07 .07 .15 .05	.09 .02 .08 .10 .02	1 1 1 1 2	1 1 2 1	
	5H 3+00H 5H 2+75W 5H 2+50W 5H 2+25H 5H 2+00H	1 2 4 6 3	12 24 17 20 18	5 12 22 29 20	59 63 85 69 74	.1 .1 1.3 .3 .5	8 15 14 18 18	6 4 5 4 6	173 172 660 278 203	4.89 10.53 7.83 9.25 8.10	2 5 10 17 10	5 5 5 5 5	ND ND ND ND	4 10 2 4 3	47 8 13 9 13	1 1 1 1	2 2 2 3 2	2 3 2 2 2	130 109 80 79 130	10 04 12 04 10	.049 .025 .120 .061 .061	9 11 16 15 11	22 89 39 51 51	.43 .31 .29 .32 .33	51 34 65 44 35	1.30 .46 .28 .21 .55	3 2 2 12 3	2.51 5.10 3.44 2.94 2.87	.18 .05 .04 .03 .05	.06 .03 .05 .03 .03	1 1 2 2 1	1 2 1 1	
	5N 1+75W 5N 1+50W 5N 1+25W 5N 1+00N 5N 0+75W	0 2 8 7 3	15 23 14 6 15	27 10 33 34 16	93 BB 70 60 71	.5 .9 .5 .1	6 13 4 5 17	4 15 3 2 8	507 1542 421 125 241	13.49 5.92 7.74 7.20 7.49	2 7 16 13 10	5 5 5 5 5	ND ND ND ND	4 4 7 4 4	10 27 4 8 25	1 1 1 1	2 2 2 2 2 2	2 2 4 3 2	66 106 50 104 146	.08 .31 .02 .04 .26	.091 .096 .045 .039 .051	24 22 44 20 12	33 22 17 21 51	.16 .66 .09 .09 .73	20 40 16 26 33	. 39 . 69 . 37 . 54 1.01	3 2 3 12 2	2.48 5.06 2.09 1.77 2.79	.05 .11 .07 .04 .12	.05 .07 .06 .06 .07	4 1 2 1 1	1 2 1 1 1	
. ~	5N O+SON 7 STD C/AU-S	9 18	12 57	24 42	70 131	41 6.9	18 67	4 28	230 1047	9.03 3-88	13 40	5 Zl	ND 7	2 38	16 50	1 18	2 17	2 20	66 57	.03 .47	.045 .090	16 37	42 57	.39 .87	26 180	. 25 . 08	4 34	2.82 1.82	.03 89.	.05 .14	3 14	2 4B	

SOIL SAMPLES

Page 8

ı.

t

t

Ł

t

1

ſ

C

t

	SAMPLEO	NO PPM	CU PFM	P8 PPN	ZN PPH	AG PPM	N] PPM	CO Pfm	NN PPH	FE I	AS PPM	U PPN	DA Ngq	TH PPM	SR PPM	CD PPN	SB PP#	BI PPM	V PPM	CA X	P 1	LA PPR	CR PPn	ИG Т	BA PPM	11 1	8 PPN	AL 2	NA I	K I	W PPN	AU1 PPR	
	SN 0+25N SN 0+25E SN 0+56E SN 0+75E SN 1+09E	4 2 3 3 2	18 31 13 16	23 14 14 18 12	66 61 60 67 63	.1 .9 L.8 .1 .4	t 2 15 13 12 9	5 10 7 8 7	241 531 307 363 284	5.99 4.14 5.60 4.07 5.27	10 9 10 4 12	5 5 5 5	KÖ NÖ ND ND	3 1 2 1 3	13 13 31 49 23	1 1 1 1	2 2 3 2	2 2 2 2 2 2	98 68 96 95 104	,12 ,11 ,31 ,51 ,25	.058 .082 .077 .065 .074	15 14 21 13 19	41 38 10 21 21	. 34 . 35 . 62 . 53 . 44	36 35 30 74 26	.70 .31 .71 .60 .82	2 3 7 5 2	3.26 3.29 3.07 1.59 3.44	.07 .06 .16 .19 .11	.05 .04 .08 .09 .07	4 2 4 1 3	1 2 1 1	
	5N 1+25E 5N 1+50E 5N 1+75E 5N 2+00E 5N 2+25E	5 4 5 4	13 18 14 14 14	25 13 19 13 17	46 65 64 55 303	.1 1.2 .1 .8 .8	8 13 6 10 (57)	(33) 2 6 12	158 1940 182 231 1118	6.61 6.04 4.78 5.79 4.80	13 9 17 11 16	5 5 5 5 5	NÐ ND ND ND	5 4 7 3 6	13 32 8 17 25	1 1 1 1	3 4 3 2 2	2 2 2 2 2	86 105 45 96 36	.14 .37 .10 .19 .36	.040 .081 .052 .040 .085	19 28 43 29 61	24 27 16 30 29	. 33 . 61 . 16 . 47 . 44	22 56 20 28 102	.66 .74 .38 .80 .30	2 4 13 2 2 2	4.22 4.56 3.28 3.49 3.72	.07 .13 .11 .09 .08	.04 .06 .07 .04 .07	6 5 7 4 3	2 2 1 1 8	
	5N 2+50E 5N 3+00E 5N 3+25E 5N 3+50E 4+75N \$+00W	5 9 2 5 3	19 21 39 25 9	16 25 16 25 12	74 73 80 120 58	.9 .7 .2 .8 .3	8 10 61 31 11	4 26 5 7	240 267 1104 677 173	6.27 10.95 8.02 6.72 5.68	10 12 (31) 10 11	55555	ND ND ND ND	2 6 3 5 2	12 9 3 10 37	 	2 4 2 4	2 2 2 2 2	69 66 147 45 163	.14 .08 .05 .09 .36	.047 .058 .108 .053 .070	27 16 9 29 12	27 33 201 42 19	. 26 . 23 . 94 . 40 . 38	20 28 35 43 71	.47 .35 .09 .29 .81	2 2 2 2 3	3.22 2.41 3.78 3.34 1.56	.10 .04 .03 .09 .12	.06 .06 .02 .09 .07	1 1 1 2	1 5 (19) 1 1	
R GRIL	4+75N 3+75W 4+75N 3+25W 4+50N 5+00M 4+50N 3+75W 4+50N 3+25W	2 2 3 2 6	31 11 13 21 23	9 18 9 10	67 52 69 60 62	.1 .1 .2 1.2 .1	13 8 12 12 7	9 7 10 8 5	290 173 249 248 231	6.61 7.25 4.16 6.70 9.22	8 9 10 8 5	5 5 5 5	ND ND ND ND	6 3 4 5	20 32 66 28 25	L 1 1 1	2 2 2 3	2 2 2 2 2	130 162 93 102 130	.33 .20 .58 .27 .25	.119 .040 .074 .079 .050	43 4 7 15 8	24 1B 33 21 23	.80 .37 .70 .64 .18	45 46 56 73 53	1.22 1.47 .44 .93 .86	4 2 3 2 8	5.73 1.41 1.76 5.60 1.76	.15 .10 .27 .10 .07	.08 .05 .10 .04 .05	5 1 4 5 3	1 2 2 2 1	
	4+25N 5+00W 4+25N 3+50M 4+25N 3+25W 4N 5+00W 4N 4+75N	7 6 4 8 4	16 17 29 12 12	17 20 15 22 12	65 70 70 71 37	.6 .8 (4.6 , .1 .6	6 8 10 5 8	6 5 8 4 4	213 225 714 260(99	7.51 7.67 5.53 14.59 1 4.14	14 10 12 4 13	5 5 5 5 5	ND ND ND ND	3 4 2 6 2	12 11 24 21 29	1 1 1 1	2 3 3 2 4	2 2 3 2 3	160 119 145 130 126	.07 .10 .21 .13 .13	.039 .039 .063 .037 .042	13 17 10 11 11	31 40 21 29 32	. 19 . 25 . 36 . 18 . 22	65 26 101 48 69	.66 .83 .38 .61 .32	2 2 4 5	1.75 3.34 2.43 2.33 1.51	.04 .05 .09 .06 .06	.03 .04 .07 .04 .05	1 2 1 2 3	2 1 1 1 4	
	4N 4+50k 4N 4+25W 4N 4+00H 4N 3+75W 4N 3+50W	5 5 8 3 5	7 • 102 24 26 13	25 - 51 - 22 - 14 - 15	54 (239 76 63 50	1.0 12,6. 2.7 1.7 .2	3 (78) 17 11 14	3 17 (7 5	154 1334 210 310 181	6.20 5.48 7.96 5.08 5.28	7 (94) 20 9 8	5 5 5 5 5	ND ND ND ND ND	4 2 1 2 2	11 59 29 19 13	! ! ! !	3 (28 4 2 6	3 2 2 3 2	115 30 117 70 117	.09 .64 .21 .19 .11	.091 .138 .069 .072 .031	18 18 12 19 11	29 47 38 20 36	. 14 . 76 . 40 . 34 . 26	25 (209) 102 34 29	.Bi .03 .25 .36 .36	5 11 2 2 2	1.22 2.04 2.19 2.96 1.71	.08 .03 .09 .07 .04	.06 .08 .06 .06 .02	1 2 1 3 2	2 (12) 1 1 1	
	4N 3+25W 4N 3+00N 4N 2+75W 4N 2+50N 4N 2+25W	4 3 2 9 3	15 33 4 13 9	14 14 10 17 15	55 66 ¹ 34 67 50	.2 17.3 .2 .1 .7	13 7 7 5 11	8 4 4 4	217 519 86 183 146	6.71 4.19 2.17 10.51 5.22	10 51 4 5 51	5 5 5 5 5	ND ND ND NO	4 1 1 4 2	19 7 15 12 15	1 1 1 1	2 3 2 2 2	2 3 3 2 2	145 103 81 157 129	.22 .08 .14 .08 .07	.050 .096 .040 .040 .058	15 6 11 13 9	36 15 24 41 26	.62 .13 .22 .11 .24	25 69 25 28 45	1.08 .11 .34 .95 .81	5 4 2 5 2	2.52 1.00 1.11 1.63 1.69	.10 .02 .06 .04 .04	.06 .06 .04 .03 .03	l 1 1 3 1	1 1 2 1	ì
	4N 2+00W >- STD C/AU-S	3 19	23 57	16 42	50 132	.6 7.1	B 69	4 28	1024 138	5.63 3.87	8 42	5 10	ND 7	2 39	23 51	18 18	2 16	2 19	121 50	.11 ,48	.086 .089	9 39	21 61	, 19 , 87	67 17B	.83 .09	5 35	1.64 1.80	.06 .08	.05 .14	2 14	2 51	

SOIL SAMPLES

١,

Page 9

Т

ı.

í.

(

¢

C

(

€

€

C

(

í.

ſ

SOIL SAMPLES

	SAMPLE	NO PPA	CU PPM	P8 PPN	ZN PPM	AG PPN	NI PPN	CO PPM	MN PPN	FE 1	AS PPN	U PPN	AU PPM	TH PPM	SR PPN	CD PPM	50 PPM	B] PPM	V PPN	CA Z	P Z	LA PPM	CR PPM	MG X	BA FPM	II X	B PPN	AL ۲	NA I	K 1	W PPM	AU t PPB	
	4N +75N	4	12	1	89	2.7	23	19	1716	6.44	6	10	NŪ	4	50	t	2	2	93	.65	. 093	47	36	. 99	(170)	,72	10	4.99	. 18	BÛ.	i	ł	
	4N 1+50W	3	33	23	80	۰,	- 14	Ý	480	5.04	19	7	ND	2	32	1	2	2	82	.37	, 171	10	23	38	77	. 25	8	1.74	.11	.08	2	1	
	4N 1+25W	3	18	12	76	.9	11	14	1060	5,47	2	5	ND	2	24	L	2	2	86	.26	.071	16	33	. 16	40	.56	4	3,78	.11	.06	1	5	
	4N 1+00W	3	13	15	58	.1	11	7	249	7.07	2	5	ND	7	27	L	2	2	137	.26	.055	12	Z3	. 60	28	1,00	17	2.61	13	, VB			
	4N 0+75W	4	17	16	69	.1	14	ģ	277	7,46	2	5	ND	3	28	1	2	2	134	.29	.057	10	26	. /8	18	.95	0	2.43	.11	.03	,	10,	
	4N 0+50W	3	17	11	63	.3	10	,	196	6.52	2	5	NÐ	4	24	1	2	2	140	.25	062	16	37	.55	40	.95	2	4.18	.11	. 03	3	4 (5	
	4N 0+25W	5	12	23	35	- 4	5	3	88	4.38	6	5	ND	2	15	1	2	5	113	.09	.039	14	20	,1/ 20	94 50	1.2	7	5 57	. 20	.10	1	1,5	
	4N 0+25E	3	19	2	56	.1	12	8	243	1.2/	5	3	NU	2	39	1	2	2	195	24	.103	20	50	. 0J 57	104	1147	,	4.48	.03	. 07	2	3	
	4N 0+50E	4	47	38	124	(4.0	. 14	1	5021	0,78	(23)	10	нD НD	<u> </u>	17	•	5	2	100	26	.13/ A99	ŝ	70	77	40	τi	2	1.51	.06	.05	i	1	
	4N 0+75E	4	19	12	57	-2	16	9	100	4./0	11	в	RU	1	24	1	2	2	100	. 20		0	20		**		•				•	•	
	4N 1+00E	11	15	29	72	.3	15	4	389	9.70	8	5	ND	6	8	l	2	2	61	.07	,031	24	32	. 27	17	.42	6	1.98	.05	.04	1	2	
	4N 1+25E	5	26	21	96	- 4	35	7	456	6.37	15	5	NŬ	2	15	1	2	2	55	.11	.062	17	48	. 58	45	.21	3	1.39	.06	107	1	-	
	4N 1+50E	2	19	16	53	.6	14	7	Z03	5.46	5	5	ND	7	29	1	2	2	113	. 32	.102	42	Z?	.12	56	.91	4	4.29	, 10 AD	10	1	2	
	4N 1+75E	9	15	19	72	.5	9	3	303	8.07	8	5	ND	12	5	1	2	2	31	,09	.035	40	- 29	.14	12	.27	2	9.07	.00	.08	د ۱	1	
	4N 2+00E	5	17	17	64	.1	26	7	252	10.04	7	5	ND	4	16	1	2	2	139	•12	.101	10	24	. 30	v	197	ა	1.00		.07	,	L	
	4N 2+25E	7	21	17	70	.6	13	7	212	8.54	4	6	ND	4	40	1	2	2	135	.29	.056	13	33	.47	99	.80	13	2.67	.14	. 06	1	l	
	4N 2+50E	- 4	20	11	69	1.6	12	6	225	7.23	2	5	KD	5	17	1	2	2	109	.21	.079	20	42	.49	22	.11	3	5.12	.09	.05	1	1	
GRID	4N 2+75E	9	15	15	60	.4	5	3	247	6.60	6	5	ND	6	11	1	2	2	78	.08	.049	21	26	. 18	17	.54	2	§. 22	.05	.03	1	4	
	4N 3+00E	4	10	16	50	.2	6	2	233	7.05	6	5	ND	8	12	1	2	2	55	.11	.048	29	25	.16	16	.37		4.45	.08	.04	3	4	
	4N 3+25E	6	14	15	61	.4	15	5	183	6.44	7	5	NÇ	3	12	1	2	2	130	.10	.038	15	44	. 37	25	. 62	2	2.33	. 95	.03	ł	3	
	3N 7+25W	5	14	H	51	1.6	9	7	172	8.59	5	5	ND	4	13	L	2	2	184	.07	,037	8	25	.15	55	1.01	2	1.63	.05	.04	t	16	
	3N 7+00W	14	35	21	125	.3	25	12	259	6.08	19	6	NO	2	22	1	2	2	45	.16	840,	11	15	. 26	74	.03	2	1.49	.06	.07	1	2	
	3N 6+75N	7	31	35	156	3.0	35	22	6365	7.09	12	12	NÓ	5	32	2	2	2	102	.53	.105	20	66	.85	(132	.55	5	4.72	-12	,06	I A	5	
	3N 6+50N	7	32	18	180	3.9	9	6	357	8.43	4 105 /	5	KD	3	10	I	1	2	118	-07	. 059	- 14	14	,16	30	.26	2	Z.81	,04	.03	2	(8)	
	3N 6+25W	6	19	13	67	1.6	9	6	244	5.71	31	5	KD	2	18	1	2	2	[18	.10	.056	7	21	24	70	.37	2	1.47	.04	. Võ	L	· D ·	
	3N 6+00W	5	9	18	112	3.1	17	Ð	861	4.90	11	5	ND	5	21	1	2	2	55	.30	.060	26	28	. 40	62	.43	2	4.38	. 10	.06	1	3	
	3K 5+75W	7	16	23	69	4.1	7	- 4	239	7.50	5	5	NQ	6	14	1	- 4	2	111	.12	.040	21	39	,22	29	.81	2	2,85	.07	.04	E	1	
	3N 5+50N	6	11	13	71	.3	26	5	709	3.73	21	5	NÐ	1	10	1	2	2	71	.05	.038	17	45	.50	6/	.07	1	2.13	.03	.07		4	
	3N 5+25W	8	21	23	91	1.2	17	6	289	10.27	12	5	ND	6	20	1	3	2	133	- 14	.051	14	51	.42	6/	-64	5	3.34	.V6	.00	1	3	
	3N 5+00W	θ	21	28	79	.8	11	5	231	10.57	19	5	NÜ	9	15	1	3	2	94	.09	.057	14	26	.21	38	. 36	\$	2.81	,ψ 3	τυ,	I	2	
	3N 4+75W	10	25	14	84	.7	14	5	112	3.29	.40	. 5	ND	1	15	1	.8	2	72	.12	.064	8	17	.13	47	.04	4	1.35	.04	.05	1	2	
	3N 4+50H	3	15	19	51	.4	- 14	5	207	6.61	9	5	ND	3	16	1	2	2	141	.10	.066	11	39	, 54	/2	. 42	2	2.18	. V6	. 1/	1	1	
	3N 4+25W	- 4	13	15	61	.7	11	7	394	5.23	9	5	ND	4	96	l	2	2	98	.99	.078	19	26	.33	X 2/Q	+84 70	2	4.17	.13	.ų/	1	1	
	3M 4+00W	9	16	23	62	.1	7	5	210	15,48	2	5	ND	6	31	1	2	2	135	.24	.063	13	52	-28	41	./0	2	2.30	112 AE	, VƏ	1	1	
	3H 3+75W	3	27	20	79	2.1	23	9	677	6.47	13	5	ND	2	17	l	2	2	106	.12	.089	Ģ	32	. 51	124	.35	3	2.80	.v a	. Va	1	3	
	3N 3+50N	9	25	27	85	1.1	16	4	394	8.12	20	5	ND	11	5	t	2	2	23	.03	.056	24	38	.23	27	.26	3	4.04	, Ó3	.05	1	3	
	SID C/AU-S	19	58	39	131	7.1	70	28	1045	3.84	41	19	7	38	51	19	17	18	57	.47	.041	78	61	.89	1/8	-08	23	1114	109	.12	12	21	

.

,

R

٠

MINCORD EXPLORATION PROJECT-EASTFIELD FILE # 87-3431

Page 10

	SANPLET	NO FPM	CU PPM	₽8 PPM	ZN PPM	AG PPM	NI PPN	CD PPH	HN PPM	FE I	AS PPH	U PPM	AU PPM	TH PPM	SR PPM	00 PPR	SB PPM	ÐI Ppm	V Ppn	CA 1	Р 2	LA PPN	CR PPH	MG 1	BA PPM	TI 2	8 PPM	AL X	NA Z	r: T	N PPH	AUT PPB	
	3N 3+25N 3N 3+004 3N 2+75N 3N 2+50N 3N 2+25N	3 3 11 5 2	19 41 14 19 18	13 16 15 13 10	66 80 91 72 71	.7 .9 .1 .1 .3	12 37 18 26 10	5 6 5 5 6	228 236 396 246 349	6.79 7.21 9.43 8.44 6.87	8 22 12 12 4	5 5 5 5 5	ND ND ND ND	3 3 5 4 3	9 9 13 14 23	! ! ! !	24362	2 2 2 2 2	132 60 147 112 112	.09 .07 .10 .14 .24	.040 .075 .039 .042 .055	10 B 17 14 12	44 76 30 52 20	.27 .55 .30 .58 .52	46 58 33 36 46	.52 .07 .85 .64 .60	3 2 3 20 8	2,96 5,18 1,80 3,31 3,10	.03 .03 .05 .07 .10	.04 .04 .05 .05	l 1 2 1	16 2 1 1 1	
	3N 2+00W 3N 1+75M 3N 1+50W 3N 1+25W 3N 1+00W	4 3 5 6	23 31 20 14 19	14 12 9 20 13	69 71 66 51 70	1.0 .9 .2 .7 .3	12 25 18 6	9 12 13 13	406 725 210 268 453	6.56 5.52 4.52 5.32 7.47	11 5 12 18 8	5 5 5 5 5	ND ND ND ND ND	4 6 2 4 5	17 26 18 9 14	1 1 1 1 1	202222	2 2 2 2 2 2	126 96 76 94 127	.21 .52 .17 .09 .14	.084 .071 .052 .045 .040	18 17 15 10 21	31 52 32 21 31	.61 1.07 .46 .21 .41	44 41 53 30 35	.81 .69 .22 .46 .69	3 2 6 19 2	4.28 7,56 2.60 2.59 3.45	.09 .13 .07 .06 .07	.05 .04 .07 .04 .06	1 1 2 1	2 4 3 2	
	STD C/AU-5 3N 0+75H 3N 0+50N 3N 0+25N 2N 7+50N	19 5 4 4 2	57 17 31 16 10	40 18 23 22 8	130 83 51 51	6.8 .9 .3 .7 .1	67 9 16 8 9	26 7 5 8 5	1008 442 401 240 138	3.61 7.21 7.96 4.06 4.92	42 6 14 11 5	18 5 5 5 5	7 NÖ ND ND	36 5 3 2 3	47 21 11 38 33	17 1 1 1	18 2 2 2 2 2	21 2 2 2 2 2	56 104 94 82 141	.48 .21 .08 .37 .30	.084 .063 .073 .051 .058	36 16 11 9 7	56 29 32 10 18	.08 .42 .32 .52 .35	176 51 50 54 66	.09 .70 .43 .38 1.03	37 8 13 15 2	1.83 3.68 3.48 1.70 1.37	.08 .12 .05 .19 .11	.12 .07 .04 .09 .05	13 2 2 1 1	51 · · · 2 1 1 1	
R GRID	2N 7+25N 2N 7+00M 2N 6+75W 2N 6+50W 2N 6+25¥	6 5 11 5	23 28 18 15 16	21 25 16 27 25	77 90 61 92 82	,1 (3.1 (3.3) 1.0 2.2	33 21 15 7 8	7 6 7 4 5	337 351 196 388 583	7.93 8.64 5.11 11.71 7.71	48 52 82 13 15	5 5 5 5	ND ND ND ND	5 10 2 8 5	16 7 29 15 12	 	3 2 2 2 2	2 2 2 2 2 2	73 95 129 98 104	.13 .06 .29 .15 .10	.036 .093 .044 .037 .044	18 17 14 24 19	45 42 33 39 31	.71 .44 .43 .28 .31	35 36 65 26 36	.30 .40 .37 .72 .75	2 12 5 4 20	3.57 4.00 2.06 2.78 2.25	.07 .04 .11 .08 .08	.04 .06 .07 .05 .07	3 2 1 1 1	2 6 4 1 3	
	2N 6+00W 2N 5+75H 2N 5+50N 2N 5+25H 2N 5+00W	2 9 5 5 7	10 13 - 67 22 1B	7 15 - 45 19 19	61 77 161 71 6B	1.1 .3 8.7 1.3 .2	10 6 20 37 22	8 6 14 6	221 343 1293 292 389	3.09 8.61 6.56 7.10 9.55	16 21 (29) 15 17	5 5 5 5 5	ND ND ND ND	2 5 3 4	74 18 33 12 16	1 1 1 1	2 2 8 2 2	2 2 2 2 2 2	55 138 84 83 112	.65 .21 .39 .11 .15	.091 .090 .106 .036 .043	7 16 12 16 9	8 19 31 65 63	.50 .42 .60 .63 .44	<139 28 {137 49 55	46 1.02 .36 .28 .38	2 6 3 2 9	1.45 1.54 4.33 3.51 2.47	.25 .09 .08 .03 .06	.10 .04 .07 .03 .05	1 1 1 1	1 2 7 1	
	2N 4+75W 2N 4+50N 2N 4+25W 2N 4+00W 2N 3+75W	8 2 5 8	18 28 17 17	21 10 26 24 13	61 59 108 84 65	.3 .9 1.5 .1 .1	13 15 15 12 6	6 5 16 5 4	198 356 2125 254 265	11.32 2.36 5.53 7.58 4.87	11 7 16 7 10	5 5 5 5 5	ND ND ND ND	4 2 4 5	24 146 34 14 26	1 2 1 1 1	3 2 2 2 2 2	2 2 2 2 2 2	99 32 64 91 82	.17 2.15 .54 .09 .28	.049 .154 .066 .064 .043	10 30 24 10 27	45 12 29 29 15	.36 .31 .49 .32 .37	72 317 96 87 27	. 48 . 14 . 34 . 27 . 67	8 3 2 2 7	2.42 2.08 3.24 3.09 1.99	.07 .09 .11 .04 .13	.04 .04 .07 .04 .07	1 2 3 1	1 1 1 1	
	2N 3+50W 2N 3+25W 2N 3+00W 2N 2+75W 2N 2+50W	4 7 5 4 4	18 17 14 9 9	12 18 18 19 17	66 63 79 85 88	.8 .2 .5 .2 .4	12 8 9 7 6	10 5 4 3 13	669 201 361 232 1458	7.14 8.81 7.02 4.04 6.15	2 6 7 6	5 5 5 5 5	ND ND ND ND	5 6 1 1 5	30 12 16 12 36	1 1 1 1	2 2 2 4 2	2 2 2 2 2 2	123 105 77 44 44	.34 .16 .17 .19 .37	.071 .040 .056 .037 .049	15 25 22 44 28	26 36 28 23 18	.76 .39 .41 .19 .25	45 20 26 49 2127	.94 .77 .53 .48 .29	17 12 2 10 10	3.92 3.57 2.67 5.12 2.99	.16 .07 .13 .12 .11	.09 .05 .10 .07 .08	 1 1 	1 2 1 3 6 .	Ň
	2N 2+25W 2N 2+00W	6 4	17 18	25 22	76 86	.8 1.1	6 12	6 7	375 524	8.15 5.79	5 12	5 5	ND ND	5 3	18 24	3 1	2 2	2 2	78 78	. 18 . 30	. 042 . 058	28 21	20 29	. 25 , 44	66 67	.5L .46	5 6 (3.85 2.90	.06 .11	.05 .07	۱ ۱	1 2	

SOIL SAMPLES

Fage 11

٦

£

t

f

l

{

(

(

C

C

C

Ć

C

(

(

(

(

•

.

	SAMPLE	NC PPN	CU PPH	PB PPM	ZN PPH	AG PPN	NI PPM	CO PPM	MN Pph	FE I	AS PPN	U PPM	AU PPN	TH PPN	SA PPM	CD PPM	58 PP#	BI PPM	V PPN	CA 1	P I	LA PPK	CR PPM	NG 1	BA PPn	11 1	B PPM	AL ĭ	NA 1	K 1	N PPM	AU1 PPB	
	2# 1+75W 2W 1+50W 2W 1+25W 2W 1+00W 2W 0+75W	Z 3 7 5 5	22 19 15 36 33	19 24 25 12 10	73 68 91 123 105	.6 .5 .4 1.0 1.7	10 7 7 25 22	9 5 8 19(481 348 365 884. 6011)	3.83 6.80 10.18 6.56 5.36	2 8 4 3 8	5 5 5 5 5	ND ND ND ND	 2 6 9 4	38 13 21 10 28	L 1 1 1	2 5 2 5 2	2 2 2 2 2	B0 122 66 46 62	.46 .09 .20 .14 .33	.101 .092 .057 .061 .189	12 14 31 38 23	19 28 32 34 39	.46 .21 .35 .46 .60	. 165 59 19 67 78	.17 .45 .45 .30 .13	2 2 4 3	1.92 2,50 3.44 5.50 4.94	.14 .04 .13 .13 .14	.13 .05 .07 .10 .11	i 2 3 4 1	L 1 L 1	
	2N 0+50W 2N 0+25W 1N 7+00N IN 6+75W 1N 6+50N	6 3 4 4 2	17 14 6 15 9	18 9 33 28 12	79 48 31 55 44	.4 .2 (3.7) 4.2) 2.3	8 16 3 10 6	5 6 5	280 178 78 182 149	7,40 2,97 4,51 9,18 5,81	2 11 42 25 10	5 5 5 5 5	ND ND ND ND ND	3 1 5 3	17 17 11 19 17	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	90 62 145 154 105	.16 .13 .06 .18 .16	.054 .046 .035 .040 .039	26 15 6 9 10	37 25 17 27 22	.34 .27 .12 .55 .33	23 37 31 41 29	.50 .18 1.02 1.08 .73	2 2 3 3 2	3.01 1.05 1.00 1.65 1.67	.09 .07 .05 .11 .07	.06 .08 .03 .05 .05	1 2 1 1 1	! 1 7 9 7	
·>	1N 6+25W 1N 6+00N 1N 5+75W IN 5+50N STD C/RU-S	6 2 3 6 19	10 18 12 22 60	23 11 17 37 42	65 67 52 164 134	.5 2.4 1.0 1.7 7.5	6 14 13 21 73	5 11 7 14 29	206 665 225 (1674) 1068	6.22 7.47 6.93 5.78 4.07	8 4 2 9 39	5 5 5 17	ND ND ND ND 7	3 3 3 39	19 33 33 52 53	1 1 1 1 1	2 2 2 2 18	3 2 2 2 21	165 147 138 67 61	.14 .34 .30 .55 .50	.046 .072 .047 .087 .091	13 64 14 39 41	18 29 22 39 59	.16 .81 .60 .23 .91	37 38 31 (174) 172	.92 1.00 .96 .33 .09	(13) 2 5 36	1.13 3.00 2.37 2.53 1.90	.08 .18 .16 .06 .09	.05 .09 .08 .09 .15	1 1 2 1 13	2 1 1 49	tar -
R GRID	1N 5+25N 1N 5+00¥ 1N 4+75W 1N 4+50W 3N 4+25N	6 1 4 2 3	17 12 15 13 18	29 22 19 16 13	89 54 49 59 80	.5 1.4 .6 .5 1.5	9 9 21 10 14	6 4 6 22	233 158 222 240 2831	4.89 2.72 3.92 6.97 5.47	8 2 12 2 5	5 5 5 5 5	NŬ NŬ ND ND	3 1 2 3 2	28 20 13 17 39	1 1 1 1	2 2 2 2 2 2	2 2 3 2 2	69 82 87 143 91	.15 .18 .09 .19 .50	.065 .109 .127 .062 .116	20 19 12 14 32	17 27 43 26 22	.31 .23 .40 .54 .41	i 204 44 63 23 89	.19 .35 .46 .92 .36	4 11 9 7 3	2.00 3.00 1.52 2.51 2.95	.07 .07 .05 .09 .12	.08 .05 .04 .05 .07	2 t 1 2 2	1 1 1 1 1	
	1N 4+00W 1N 3+75¥ 1N 3+50N 1N 3+25¥ 1N 3+26W	2 3 6 1 3	12 15 10 19 14	16 19 21 8 16	54 63 64 55 61	.9 2.0 .7 2.8 .4	12 10 8 10 13	4 14 5 8	143 776 243 205 254	5.25 7.84 5.53 5.76 8.40	5 2 5 3 2	5 5 5 5 5	ND ND ND ND ND	2 3 4 3 5	13 18 25 22 28	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	101 118 120 111 159	.10 .14 .22 .24 .25	.050 .058 .045 .079 .056	11 18 17 22 11	32 39 39 25 25	.32 .33 .41 .63 .68	33 33 32 27 34	.43 .67 .95 .82 1.19	2 4 21 2 3	1.91 2.95 2.13 4.49 2.67	.05 .08 .14 .10 .13	.04 .05 .07 .06 .07	1 1 2 1 3	1 1 1 1	
	LN 2+75N LN 2+50W LN 2+25N LN 2+00W LN 1+75W	4 3 4 5 3	22 30 15 13 13	18 21 24 24 23	69 76 53 67 63	4.6 ¹ 1.5 1.2 1.4 2.4	10 41 16 7 7	13 7 6 4 4	543 339 374 206 161	5.91 7.43 6.57 7.07 7.30	13 12 9 5 7	5 5 5 5 5 5	ND ND ND ND	2 2 3 3	34 16 13 17 19	1 1 1 1	12 J J 2 2	2 2 2 2 2 2	105 101 75 77 94	.36 .13 .11 .15 .15	.069 .155 .068 .080 .074	20 11 16 21 16	24 111 41 28 23	.49 .82 .33 .25 .20	124 77 52 46 49	.56 .18 .34 .43 .53	4 4 3 11 3	3.29 4.27 3.48 3.09 3.32	.13 .06 .04 .08 .07	.08 .03 .05 .05	L 1 4 2 2	1 1 2 1	
	IN L+50W IN 1+25W IN 1+00W IN 0+75W IN 0+50W	4 3 2 3	46 155 14 14 19	33 47 14 13 18	130 185 60 50 66	.8 1.1 1.3 .4 1.0	17 19 12 7 11	18 18 7 6 7	1972 1048 306 170 237	7.22 10.21 6.35 8.59 9.54	(46) (79) 10 3 4) 5 5 5 5 5	ND ND ND	2 2 4 5	29 34 32 18 21	E 1 1	(11) 107 2 3 2) 2 2 2 2 2 2	72 67 121 139 142	.32 .38 .29 .12 .20	.182 .207 .064 .047 .064	9 14 11 10 9	24 19 21 21 21	.29 .30 .52 .46 .65	2991 435 53 68 44	.10 .08 .73 .73 .90	2 7 7 3 17	1.34 1.73 2.13 3.30 3.74	.07 .04 .13 .07 .09	.09 .11 .07 .05 .04	1 1 4 3 1	1 2 1 1 1	r
	1N 0+25W 1N 0+25E	4 3	12 20	16 10	54 60	.5 .9	10 13	6 8	197 257	6.59 6.55	8 8	5 5	ND ND	6 6	17 25	1 1	2 2	2 2	128 135	.19 .32	.083 .083	22 23	25 29	.58 .87	20 32	.90 1.04	2 15	2.63	.09 .13	.06 ,07	2 [1 1	

SOIL SAMPLES

Page 12

•

1

(

£

¢

í

1

•

Page 13

(

(

(

(

C

€

C

C

C

C

C

€

€

C

(

(

t

MINCORD EXPLORATION FROJECT-EASTFIELD FILE # 87-3431

SAMMLER	в0 РРЯ	CU PPM	PB FPM	IN PPM	AG Ffn	N (PPM	CO PFM	HN PPH	FE Z	AS PPN	U 494	AU PPM	TH PPH	SF PPN	CD PPR	SB PPE	B] FPM	V PFA	CA 1	P Z	LA PP#	CR PPM	НG Х	BA PPM	דן ג	B PPM	AL Ն	NA X	K Y	W 964	AU t PPP	
LN 0+50E IN 0+75E IN 1+00E IN 1+25E IN 1+56E	; 4 2 4 2	18 17 7 28 18	9 16 7 16 15	61 50 43 (194.) 56	.8 2.0 .3 1.7	15 11 10 (64 10	9 7 9 13 6	282 244 266 4478 188	7.85 5.55 2.82 5.31 6.74	7 6 12 6	5 5 5 5 5	ND ND ND ND	4 3 1 3 6	25 35 51 35 24	1 1 2 1	01 D1 D1 01 01	22222	139 101 64 75 140	. 32 . 74 . 50 . 55 . 28	.066 .061 .053 .08° .070	17 18 8 28 21	31 22 17 45 26	.80 .57 .64 .71 .56	27 29 31 (172) 29	1.03 69 43 37 1.04	2 19 2 2 2	3.14 2.91 1.30 4.00 3.27	.12 .17 .22 .10 .11	.07 .09 .10 .08 .07	1 [] 1	• 1 1 2	
1N 1+75E IN 2+00F 1N 2+25E 1N 2+55E 1N 2+55E 1N 2+75E	9 6 3 4	13 24 16 19 14	20 18 14 14 17	73 54 58 71 65	.3 1.1 .8 .6	13 15 10 43 17	↓ 5 8 9	289 166 295 302 288	10.82 11.64 5.86 4.42 7.72	6 6 11 8	5 5 5 5 5	ND ND ND ND	9 3 4 2 4	7 25 28 24 33	1 1 1 1	14 CI 74 C I	12222	191 155 116 58 178	.05 .19 .25 .21 .50	.032 .060 .057 .040 .055	20 10 20 7 14	46 62 25 53 51	.30 .47 .46 .88 .73	23 66 35 58 33	.63 .40 .85 .16 1.12	2 2 2 2 2 2 2 2	3.15 2.47 3.54 1.81 2.65	.06 .10 .13 .11 .19	.05 .05 .07 .07 .09	l 1 1 1	1 2 (10) 1 1	
tn 3+00e 1h 3+25e 1n 3+50e 0h 7+00n 0n 6+75m	5 4 5 6 2	12 10 12 14 3	10 15 20 34 17	56 37 46 52 33	.6 .3 .2 1.0 2.1	12 13 8 16 3	8 3 4 5 2	264 BC 114 408 47	6.99 4.79 7.28 4.51 .98	7 9 (B7)	55555	ND ND ND ND	4 3 4 3 1	51 9 15 15 21	1 1 1 1	2 2 2 7 2	22222	173 116 145 91 53	,49 ,04 ,09 ,13 ,11	.056 .030 .027 .037 .037	11 11 10 16 7	24 50 24 32 5	.64 .27 .22 .36 .13	45 46 47 56 70	.90 .42 .77 .32 .4B	2 10 6 4 2	2.26 2.01 1.84 1.54 .59	.25 .04 .05 .06 .05	.09 .05 .05 .06 .04	1 1 1 1	$\begin{pmatrix} 1\\1\\(1)\\6\\6 \end{pmatrix}$	
R GRID ON 6+50N ON 6+25M ON 6+25M ON 6+00M STD C/AU-S ON 5+75M	5 5 20 4	14 16 15 59 8	25 25 21 40 16	62 66 61 129 40	(1.9) .7 .7 7.3 .2	9 10 8 70 9	6 5 5 29 5	302 256 270 1038 147	7.03 6.91 6.58 3.87 4.71	(131) 4 10 37 5	5 5 5 18 5	HD HD HD HD HD ND	5 4 4 37 4	25 16 21 50 21	1 1 1B 1	2 2 21 2	2 2 2 17 3	135 113 112 59 175	.19 .11 .17 .40 .15	.054 .042 .043 .087 .044	10 25 24 38 B	18 36 34 58 29	.35 .26 .29 .89 .26	92 40 49 176 39	.84 .80 .81 .09 1.06	2 2 2 36 2	1.49 2.85 2.71 1.83 1.10	.10 .07 .09 .08 .08	.06 .06 .06 .13 .04	1 1 13 1	5 1 2 52 1	
UN 5+50M ON 5+25m ON 5+00M ON 4+75M ON 4+50M	4 5 4 4	13 13 13 10 22	10 16 19 17 22	62 52 70 78 113	.6 2.1 1.1 .6 1.4	12 11 11 15 23	8 6 10 19 15	239 226 506 1396 985	6.77 5.13 6.36 6.10 8.11	10 8 5 13	5 5 5 5 5	ND ND ND ND	5 3 4 2 6	37 29 33 31 25	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	125 108 113 107 86	.43 .25 .32 .37 .27	.073 .053 .073 .055 .074	17 13 17 12 46	23 29 26 31 39	.70 .38 .49 .40 ,49	50 44 41 68	.99 .59 .81 .62 .40	8 7 3 17 4	4.85 1.79 3.24 2.15 2.55	.14 .13 .14 .31 .09	.07 .08 .08 .07 .10	1 1 2 1 1	1 2 (29) 1 1	
ON 4+25% ON 4+00H ON 3+75% ON 3+50W ON 3+50W	2 5 3 4 2 2	26 7 16 12 31	10 20 13 19 25	90 35 63 43 107	2.0 .1 2.4 1.2 1.0	24 8 12 13 14	23 3 8 4 6	2385 108 229 161 339	5.89 2.57 7.50 5.26 6.55	18 10 (25) 11 50)	5555	ND ND ND ND	2 2 3 2 3	41 11 29 12 13	1 1 1 1	2 4 2 3 7	2 3 2 2 2	96 116 141 135 62	.69 .07 .28 .08 .08	.127 .028 .058 .043 .072	29 15 11 12 18	38 36 27 54 18	.85 .29 .61 .28 .25	85 42 36 38 68	.44 .30 .76 .36 .05	7 13 2 9 10	3.72 1.77 2.33 2.20 2.44	.14 .04 .12 .04 .05	.07 .04 .06 .04 .06	1 1 2 1	1 2 1 L 4	
ON 3+00N "ON 2+75N ON 2+56M OR 2+25N ON 2+05M	8 5 4 9	48 23 19 17 11	27 20 11 29 26	(154) 126 59 70 63	2.0 2.9 1.0 .5 1.7	17 13 11 20 5	B 8 7 4 3	354 1398 350 232 185	6.11 3.77 6.60 5.59 12.25	83 88 12 12 3	5 5 5 5 5	ND ND ND ND	3 2 4 5	4 10 26 11 11	1 1 1 1	14 10 2 3 2) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	40 37 112 45 95	.01 .08 .29 .05 .96	.087 .138 .076 .073 .047	13 13 16 13 22	10 14 32 53 34	.26 .29 .61 .31 .11	87 104 30 84 30	.01 .03 .75 .05 .52	10 13 2 2 2 2	2.13 1.65 4.32 3.15 2.81	.01 .03 .13 .03 .04	.07 .09 .05 .06 .04	1 1 2 1 1	(15) 7 1 1 1	۲
ON 1+750 On 1+500	6 3	28 16	3L 18	108 57	(8,4) (4,3)) 17 ; 19	7	1266 422	5.03 6.26	46 10	5 5	ND Mû	1 2	10 16	1 1	7 2	2 2	59 89	.04 .13	.186 .125	16 15	37 49	. 17 . 43	B7 39	.13 .43	7 2	1.77 2.35	.03 .06	.07 .04	l 1	4 1	

SOIL SAMPLES

٩,

١

~

٠

¥

٦

	SAMPLES	NO PPN	CU PPH	PB PPM	ZN PPM	А <u>б</u> РРМ	NI Pph	00 PP#	MN PPM	FE Z	AS PPM	U PPM	AU PPN	ТН Ррм	SR PPM	CD PPR	SØ Pph	BI Ppr	V PPN	CA I	р 2	LA PPM	CR PPH	#6 1	BA PPK	11 1	B PPM	AL ì	NA Z	K Z	N Ppm	au : Ppb
	ON 1+25W	2	15	19	57	2.2	12	6	260	4.34	3	5	ND	1	77		,	2	04	16				-								
	ON 1+00W	4	12	19	66	.6	11	é	292	7,78	3	5	ND	2	1R	÷	,	,	00 111		.000		27	.26	99	. 59	Z	1.61	, 07	.05	I	2
	ON 0+75W	3	- 14	17	58	.4	12	6	178	5.66	6	5	ND	2	14	i	, i	7	133		.047	- 11	34	. 30	30	.97	Z	1.03	, 09	.07	2	l
	ON 0+50W	2	16	13	56	.2	13	8	276	7.36	2	5	ND	ā	23	÷	7	2	1.17	- 14	.041 	19	42	. 44	36	.11	2	2.78	.07	.05	1	3
	0N 0+25₩	5	15	15	61	1.1	9	6	167	9.02	3	5	ND	5	20	i	5	2	137	,19	.062	12	50	. 64 . 40	25 29	.90	6 2	2.52 3.33	.11 .09	.05 .06	1 2	(6)
	ON 0+25E	3	20	16	87	1.4	16	10	519	5.66	22	5	ыņ	7	51			-				.										
	ON 0+50E	7	13	26	51	.3	6	3	148	7.79	10	š	ND	Ę	11	-	0 1	<u>,</u>	84	. 28	.0/8	20	20	,64	83	.40	2	2.40	. 25	.11	1	2
	ON 0+75E	2	15	12	72	.9	16	12	568	5.90	, A	5	NÜ	1	79	- 1	,	2	104	.09	.053	16	21	.14	23	. 38	2	1.86	.04	.03	2	2
	ON 1+00E	2	12	15	47	۰.	7	5	129	6.53	3	5	พก	ž	14		,	2	100	./0	067	13	Z5	. 80	- 64	.75	4	2,40	- 39	. 16	1	1
	ÓN 1+25E	6	13	29	47	.3	6	2	130	7.28	7	5	ND	2	11	i	3	ź	135	.08	.037	11	27 26	.22	32 22	.11	6 5	1.75	.07 .05	.04 .05	1 4	1
	ON 1+50E	8	8	18	49	1,7	9	3	135	6.35	12	5	ND	2	10	1	7	,	174	47	424	14	24				-					•
	ON 1+75E	2	14	- 14	52	.8	6	4	149	5.88	2	5	ND	2	14	í	5	2	107	.07	034	10	20	-15	23	.62	2 1	1,39	.06	.05	4	1
	ON 2+00E	4	15	19	55	1.8	17	4	138	7.92	7	5	ND	,	10	÷	5		107	.07	.044	15	27	.25	Z/	.75	5 2	2.19	.07	.06	1	Z
	ON 2+25E	7	18	23	57	. 6	5	4	166	8.35	Ŕ	ŝ	ND	τ	11	1	-	4	100	107	.047	15	- 47	.33	30	.59	32	2,48	.04	.05	2	t
	ÚN 2+50E	3	12	19	53	1.4	8	5	242	6.73	, Q	ŝ	112 110	,	21	:	4	4	170	.07	1030	17	28	. 18	34	. 31	2 1	.97	.04	.06	2	1
	AN 31751					_					•	-		•	21	•	2	2	120	.17	.04B	12	20	. 26	40	.84	2 1	.58	.09	.04	1	3
	VH ZY/JE	4	11	16	_ 65	9	19	5	497	6.40	6	5	ND	2	26	L	2	2	108	.31	.053	18	32	. 34	145	53	2 1	91	00	67	,	10-
	ON 3400E	2	18	- 14 (1n	1.6	36	20 (4626	5.42	5	5	ND	2	48	2	2	2	70	.74	.123	18	31	.59	719	34		00	11	.v;	3	(•)
K GRID	UN 312DE	3	16	11	(134	1.0	19	28 5	5204	6.56	6	5	ND	3	37	1	3	2	102	. 53	.087	19	24	17	172	44	• • • •	190	.11	.07		ļ
	UN 3450W	3	23	27	62	1.1	Ø	6	400	4.90	7	5	ND	1	8	1	2	3	73	.05	. 060	15	10	12	52	100	23	-10	. 97	.07	1	2
	0+255 0+00E	5	10	15	63	· 6	8	7	269	8.43	5	5	ND	3	27	1	3	2	134	.24	.058	17	34	.47	29	.88	2 2	.53	.13	.07	3	3 /16 \)
	0+505 0+00E	S	10	18	64	.7	10	5	232	5 (8	,	5	MR.	7			2	•														(
	0+75\$ 0+00E	1	15	7	61		11	7	205	4.45	τ	Š	MD.	7	70		4	4	41	. 19	.044	19	33	.35	25	,75	21	.41	.12	.07	1	1
	1+005 1+75W	6	12	22	75	1.2	8	i.	211	9.77	š	5	1912 1915	4	47	1	4	2	120	.35	105	28	25	.60	36 1	.20	24	.52	.15	.09	i	1
	1+005 1+50W	2	11	11	61	.8	ģ	Å	188	5 53	2	5	NC ND	7	17		5	ź	104	.13	.054	19	34	.19	19	.70	62	.00	.08	.06	1	1
	1+005 1+25W	4	19	17	81	1.7	F1	ě	190	7 14	2	e	ND.	د ۲	27 05	1	2	2	120	- 25	.067	12	23	.50	24	.93	22	. 64	. 13	.06	1	1
	11000 4.000	•				•••		,	603	/.17	4	J	μU	2	20	!	7	2	111	. 26	.067	20	31	.53	38	.64	23	.02	.14	.08	1	2
	11003 11008	2	12	13	56	.6	12	8	211	4.05	2	5	ND	2	48	1	3	2	102	. 39	.066	12	23	.55	AR	79	2 1	¢ο	24	60		•
	1+005 0+/50	2	15	12	63	.2	14	6	141	5.27	2	5	ND	2	19	1	2	2	123	.16	.051	9	74	. 30	10	477 50	1 2		* 4 4 0 7	.07		2
	1+005 Q+50W	2	16	12	70	.5	14	10	287	6.96	2	5	ND	5	37	1	2	2	139	40	047	14	70	07	10 1	4 4 6 5 6			.00	.04	I.	3
	14005 0+258	3	19	12	75	1.4	10	5	123	4.39	2	5	ND	1	10	1	5	2	109	11	055	14	50 84	101	40 1	. 20	0 3.		16	-08	1	1
	I+005 BL	5	9	16	70	.6	11	9	244	6.57	2	5	NÐ	3	47	i.	4	2	157	. 44	.051	11	39	.53	28	.24 .97 .	22.	.43 .51	.05 .21	.03 .08	2 3	2
	1+00\$ 0+25E	1	11	14	60	.3	10	4	206	4.58	2	5	MD	t	19	1	•	-														-
	1+00\$ 0+50E	7	9	26	71	.4	18	5	350	6.54	11	ŝ	NG	5	10		-	4		•19	.048	10	27	.32	43	.74	5 I.	64 .	. 08	.05	L	t
	1+005 0+75E	5	15	17	63	.7	14	5	263	6.97	4	5	ην ND	2	14	1	4	Z	94	.09	.047	21	34	.31	39 .	.53	91.	23 .	.07	.05	3	2
	1+005 1+00E	2	12	24	73	1.5	16	Ă	194	4 31	2	5	AU MR	7	10	-	4	Z	118	-14	.043	17	42	• 22	20	.72	3Z.	52,	,07	. 04	1	1 `
	1+005 1+25E	5	15	25	47	,	 R	Ă	170	0 75	í 1		710' M 11	1	23 16	i	Z	2	87	· 46	.062	51	52	. 49	28 .	.74	23.	72 .	16	.07	1	L
					~•	• *	4	۲	170		J	a	RШ	1	13	L	2	2	100	'12	.043	20	42	.31	31	.73	22.	87.	, 09	. 05	t	2
	1+005 1+50E	2	13	15	76	.6	8	5	192	5.24	4	5	ND	4	21	1	2	2	122	. 18	044	17	20	40	54 4	64		~~				
- >	SID C/AU-S	18	58	44	132	7,0	70	28 1	.049	3.84	42	18	1	39	51	19	16	19	59	. 47	.091	38	61	.85	178 .	.09 .09	2 2. 34 1.	87. 79.	10 .09	.07 .14	1 15	l 47

SOIL SAMPLES

Page 14

SOIL SAMPLES

	SAMPLES	NO PPN	CU PPN	98 991	ZN Pph	AG PPM	NI PPM	CD PPN	NN PPN	FE Y	AS PPN	U PPM	AU PP#	TH PPN	SR PPM	CD PPM	SB Pph	81 PPM	V PPM	CA I	Р 1	LA PPN	CR PPN	₩6 Z	BA Ppn	TT T	8 PPM	AL 2	KA Z	K K	N PPM	ALI# PPB	
	1+005 1+75E 1+005 2+00E 1+005 2+25E 1+005 2+50E 1+005 2+75E	1 7 3 7 4	19 11 22 16 13	11 21 20 30 21	80 79 83 80 77	2.6 .5 .8 1.3 1.5	14 14 34 16 13	7 3 5 5 8	183 347 265 511 493	4.29 7.16 8.33 9.09 6.79	2 7 11 3 2	5 5 5 5 5	ND ND ND ND	3 3 2 4 1	31 7 10 31 35] 1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	72 49 58 76 105	.34 .05 .06 .10 .31	.079 .050 .036 .051 .079	17 23 12 24 10	26 35 70 50 35	.60 .28 .56 .34 .51	30 25 43 21 53	.49 .29 .14 .45 .45	5 2 3 12 2	3.50 2.62 3.37 2.63 1.94	.14 .06 .03 .09 .14	.08 .08 .03 .07 .07	2 2 4 2 1	1 3 2 3 1	
	1+005 3+00E 1+005 3+25E 1+005 3+50E 1+005 3+50E 1+255 1+00M 1+255 BL	7 6 2 3 4	10 11 16 21 15	22 23 10 17 16	70 82 64 84 65	.9 1.2 .4 .6 .8	5 5 9 27 9	4 3 6 6	226 251 187 290 211	9,40 8,42 5,40 7,05 6,06	2 2 3 2	5 5 5 5 5	NC ND ND ND ND	3 4 3 2 2	17 8 17 18 25) 1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	109 63 103 105 133	.15 .08 .19 .15 .18	.125 .066 .059 .050 .059	19 21 13 11 13	23 21 18 54 32	.22 .15 .30 ,53 .30	27 19 45 40 42	.54 .37 .39 .37 .67	2 7 2 2 3	1.49 2.20 4.54 2.82 2.32	.09 .07 .07 .07 .08	.07 .09 .05 .06	1 4 1 1 4	1 1 1 1	
	1+255 2+50E 1+505 1+00W 1+505 BL 1+505 0+25E 1+505 0+50E	1 3 9 7	14 13 14 13 12	12 21 19 33 29	66 77 69 74 64	2,4 .8 .7 1.0 .5	13 11 13 5 6	8 5 7 3 3	239 239 217 192 169	5.33 6.25 7.05 6.87 5.65	2 2 7 4	5 5 5 5 5	NÐ NÐ ND ND	4 3 5 4 4	39 18 24 16 13	L 1 1 1	2 3 2 2 2	2 2 2 2 2	113 105 123 92 72	-44 -18 -28 -13 -11	.100 .061 .069 .041 .042	24 23 18 28 27	24 30 35 30 30	.75 .39 .76 .19 .17	37 27 23 19 18	1.03 .64 .00 .64 .51	13 2 7 2 2	4.46 2.86 3.43 2.68 2.12	.19 .09 .12 .09 .06	.09 .05 .07 .06 .05	2 3 2 2 2	3 4 (5) 1 (5)	
R GRID	1+509 0+75E 1+509 1+00E 1+505 1+25E 1+505 1+50E 1+505 2+50E	7 4 9 2	17 6 14 10 12	22 14 20 32 10	75 38 80 70 52	.4 .3 .6 .2 .1	13 14 9 4 8	5 3 7 3 4	101 82 237 264 129	12.68 2.76 6.97 11.53 4.62	2 15 2 2 6	5 5 5 5 5	ND ND ND ND	5 1 2 6 2	15 15 30 12 23	L 1 1 1	2 2 2 2 2 2	2 2 2 2 2	144 77 148 78 149	.10 .09 .24 .10 .19	.041 .032 .050 .039 .045	12 14 15 19 10	46 33 34 26 30	.30 .29 .32 .16 .26	50 65 47 20 48	.55 .12 .95 .50 .49	8 2 2 2 2	2.65 1.31 1.88 2.75 1.75	.06 .05 .12 .07 .07	.05 .06 .07 .04 .06	1 2 1 4	2 2 1 1 1	
	1+755 I+00W 1+755 BL 1+755 I+75E I+755 2+50E 2+005 1+25W	2 5 5 5 4	10 10 4 22 16	17 19 26 19 24	73 60 42 55 75	.6 .4 .2 1.4 1.1	9 8 7 6 15	5 6 2 5 7	159 240 130 184 357	5.33 7.36 3.21 7.80 5.22	8 2 3 2 10	5 5 5 5 5	ND ND ND ND	2 3 3 4 2	31 34 12 21 44	1 1 1 1	3 2 2 2 4	2 2 4 2 2	107 103 92 152 82	.25 .32 .00 .15 .37	.062 .054 .030 .034 .059	11 17 23 12 12	24 29 25 27 29	.37 .52 .18 .30 .43	48 25 25 36 76	.60 .73 .52 .82 .40	2 2 3 6 2	1.91 2.57 1.43 2.16 2.01	.12 .19 .06 .10 .10	.06 .09 .05 .04 .06	2 1 2 1 1	2 2 6 4 5	
	2+005 1+00N 2+005 0+75N 2+005 0+50N 2+005 0+25N 2+005 BL	8 4 1 4	0 14 14 11 9	10 26 24 15 21	62 76 87 62 67	.2 1.3 .2 .1 .5	8 14 24 7 5	2 9 7 6 3	233 406 323 191 164	5.83 7.52 7.01 5.58 6.01	2 14 2 2 4	5 5 5 5 5	ND ND ND ND ND	5 3 5 6	11 44 33 33 13	1 1 1 1	2 3 2 2 2	2 2 2 2 3	56 154 103 139 73	.09 .45 .30 .28 .14	.034 .062 .048 .059 .042	29 12 16 18 34	40 45 45 31 24	,19 ,69 ,76 ,40 ,22	20 48 43 29 20	.36 .80 .58 1.23 .60	2 3 2 2 2 2	2.32 2.05 2.21 4.17 3.08	.07 .20 .17 .14 .11	.96 .10 .12 .06 .07	2 1 2 2 2	6 1 2 1	
	2+005 0+25E 2+005 0+75E 2+005 0+50E 2+005 1+00E 2+005 1+25E	6 1 3	12 13 10 7 9	22 16 6 21 16	67 60 70 43 65	.7 .3 .1 .3 .3	9 14 13 5 9	5 4 10 3 8	238 175 247 119 287	7.59 7.87 2.80 4.23 3.52	2 6 2 7 2	5 5 5 5 5	ND ND ND ND ND	4 5 1 5 2	12 8 80 10 59	t 1 1 1	2 2 2 2 2 2	2 2 2 3 2	106 130 59 102 89	.11 .04 .72 .06 .54	.041 .027 .069 .028 .054	21 21 5 22 15	38 61 17 29 13	.32 .28 .79 .18 .64	21 28 66 21 54	.69 .49 .44 .63 .55	2 1 3 2 2 1 2 1 2 1	3.02 2.65 1.11 1.79 1.52	.07 .04 .26 .05 .24	.04 .03 .13 .04 .10	t 1 1 3	1 1 3 6	۰.
	2+00\$ 1+50E STD C/AU-5	2 19	10 58	19 41	52 132	.3 7.2	7 69	6 28	246 1049	3.81 3.92	3 40	5 16	ND B	2 40	25 51	t 18	2 17	2 22	129 5B	.18 .47	.063 .089	9 38	19 59	.25 .87	49 182	.75 .09	8 1 35 1	1.20 . 1.83 .	.08 .08	.07 .13	1 14	5 49	

MINCORD EXPLORATION PROJECT-EASTFIELD FILE # 87-3431

. . ,

Page 15

(

٤

t

1

(

C

(

C

C

¢,

€

ι,

4

C

Fage 16

1

C

ſ

MINCORD EXPLORATION PROJECT-EASIFIELD - FILE # 87-3431

· ·

``

R

.

.

	SAMPLER	ND Pph	CU PPĦ	PB PPM	ZN Pfm	46 Ppm	NT PPM	00 FFM	MN PPM	FE 1	А5 РРМ	U FPM	A() PPM	ТН РРМ	5R PPn	ED ₽₽₩	SB FPM	81 PPA	V PPM	CA Z	P 1	LA PPM	62 691	46 Z	BA PPR	11 2	8 PPM	At 2	NA 2	K Y	н Ррн	AU I PP B	
	2+00\$ 1+75E	;	16	21	64	.8	13	B	289	5.83	5	5	ND	3	25	ł	7	7	98	^8	053	17	• 3	70	t I	43		7 44	17	47	,	1	
	2+005 2+00E	5	14	33	63	1.1	5	4	143	9.88	6	5	ND	6	11	1	~	5	111	10	040	10	77	77	20		-	7.01	- 1-2	.07	÷		
	2+005 2+25E	6	15	21	67		14	6	230	5.77	q	Ś	ND	1	20		,	2	107	25		10	47	4 -	2.7		-	0.01	105	102	1	j	
	2+005 2+508	2	11	17	67	.9	13	Ā	5.69	1 (1)	A	5	ND	í	17	ŕ	-	-	101		.0.0	10	9) 54	. 92	27	- 33	2	2.11	-11	.96	4	2	
	2+005 2+758	6	13	21	65	.6	12	Ĩ	254	8.3	17	5	ND	i	15	,	2	2	90	.13	.049	16	13	, 42 , 28	34	, 37	2	1.61 3.96	.1. .0?	. 08 . 08	í L	1	
	2+005 3+00E	5	11	37	57	.8	ņ	2	105	4.77	e	5	NÐ	2	12	١	7	2	100	09	044	17	•.	10	40	40	n	1 1 6	64				
	2+005 3+25E	2	14	16	69	1.0	15	9	237	4.12	A	5	ND	1	40	÷	2	-	81		071	0		.10	10	- 4 -		1.10	. 104	, e.j. An			
	2+255 BL	3	19	22	73	0	39	14	351	7.78	Ă	5	ND	5	14	i	5	5	154	75	050	11	04	1 7.	35	1.04	-	1,20	. 29	01	1	1	
	2+255 1+00E	2	8	19	61	.4	9	6	190	4.77	4	5	ND	2	79	;	2	5	108		050	10	27	50	11	07	-	3.19	111	203			
	2+505 BL	2	16	18	60	,7	ą	7	237	7.26	2	5	ND	4	23	1	2	2	119	.25	.065	11	22	.38 .57	40 28	.87	2	2.00 4.16	.15	.07	1	2 1	
	2+505 0+25E	8	9	36	78	1.0	4	3	298	9.16	9	5	ND	10	11	1	2	n	70	10	632	19	20	17	14	51	,	7 9A	62	(1E		7	
	2+50S 0+50E	3	9	23	55	. 4	6	5	205	7.73	A	5	ND	2	17	÷	-	-	145	17	054	,e 0	20	117	70		-	2.04	.07	, V3 	1	5	
	STD C/AU-S	19	60	44	132	7.4	70	28	1078	T 99	38	18	7	τ 0	51	19	17	77	50	110	.0.00	70		.21	192	.8.	3	1.50	.08	.00	1	2	
	2+505 0+75E	1	11	19	66	.5	0	7	716	5 59		5	MD	1	74	1	17 5	23	1.1	197	.007	-)7 10	67	.87	1/2	.08	36	1.84	-04	.14	15	48 /	
	2+505 1+00F	3	16	72	54	1.0	Å		177	9 13	2	4	עויי	5	30	1	4	4	114	. 30	,937	20	16	.58	39	*88	2	2.64	.16	.07	t	1	
	• -••	·					ŭ	0	10	0.11	1	J	πIJ		20	1	2	2	124	.19	.041	4	24	. 36	51	.89	2	2.90	.08	.05	1	L	
:	2+75\$ BL	2	17	18	72	.6	12	7	230	6.90	8	5	ND	4	22	1	2	2	134	.32	.064	18	34	. 68	27	.95	2	3.48	.11	. 07	1	1	
	3S BL	- 4	11	24	55	.7	В	5	151	6.79	8	5	ND	4	19	L	2	2	127	. 70	.044	15	40	.47	71	.81	Ĩ	2 20	10	107		1	
GRID	35 O+25E	3	12	17	64	.7	н	5	138	6.17	8	5	ND	3	11	1	2	- i	99	.11	.044	10	17	47	20	591	1	2.29	AL	107	4		
u	3S 0+50£	6	14	30	58	1.3	4	3	234	10.71	2	5	NO	,	10	1	÷	7	75		A70	10	27	174	29			2.90	.00	.03	4	ć	
:	35 0+75E	2	8	20	52	1.0	6	4	169	6.36	5	5	ND	3	20	1	2	ź	131	.15	.039	6	19 19	.30	35	.13 .96	2	3.28 1.25	.08 .08	.05	1	1	
2	IS 1+00E	4	21	22	92	.5	34	4	210	4.73	9	5	NŬ	4	8	1	,	,		Ċ.	A76	75	ш	57	11	74	E .	7 47	45	AE		, ,	
	3S 1+25E	9	24	25	77	1.4	5	3	325	16.89	3	5	ND	7	Å	÷	5	5	109		A66	17	74	14	31	. 2 9		3.03	.43	.03	1	. 6	
3	IS 1+50E	6	22	24	69	1.1	21	5	209	8.63	16	5	ND	÷.	15	÷	2	5	.00 D1	17	.033 SIS	13	27 40	.19	11	./\		(, D) , , 7	104 AE	.03	4	1	
1	3S 1+75E	2	41	39	92	.9	7	5	143	5.77	17	ŝ	ND.	Ť	11	÷	5	5	01	07	.V9J	14	10		37	. 33		3.17	.02	*03	2	2	
	35 2+00E	4	17	11	62	.7	15	5	179	5 17	í.	ŝ	มก	, ,	13	,	÷	<u></u>	71	.07	+032	14	- 21	-14	84	.1	10 1	2.07	.02	•09	1	: 12 /	
		-			••	••		u	•=/	4.	,		U	4	14	1	4	4	1.90	.12	.042	11	36	.20	25	. 31	2 1	1.83	.03	.04	1	1	
3	35 2+25E	10	6	26	67	.5	4	2	159	6.82	11	5	ND	- 4	10	1	2	2	78	.07	.038	29	27	.13	25	. 49	2 3	2.38	.05	07	2	1	
	IS 2+50E	4	9	28	48	.6	11	5	159	4.24	6	5	ND	3	29	1	2	2	107	.23	.047	12	29	. 37	73	52		57	11	07	1	-	
3	3S 2+75 ξ	3	24	19	79	.5	15	5	125	6.68	8	5	ND	3	11	1	5	2	110	- 06	059	10	4.5	76	55	71		1 2 0	04	497 AS		-	
1	3S 3+00E	5	26	t9	79	.5	8	7	193	5.89	(2i \	5	ND	t	34	1	2	2	104	79	045	0	15	45	4.8	21			.04	10	1	1	
1	3\$ 3+25E	7	20	20	ш	.7	7	4	430	7.22	18	5	ND	3	16	1	2	2	77	.27	057	18	24	.21	62	.23	3 2	2.40	.04	.08	1	l	
1	3+255 +5 0W	3	30	17	82	1.1	35	6	477	6.13	12	5	NĎ	2	10	t	4	2	67	.05	.070	12	53	.64	93	.16	, ,	. go	03	05	1	,	
1	3+255 BL	4	£4	28	59	1.0	9	5	145	4.66	12	5	ND	4	14	i.	2	2	9t	.14	03R	70	37	. 33	7 *	69	2 2		.00	04 194	+	2	
1	3+259 3+25E	7	38	29	99	.3	B	5	177	8.44	(35)	5	ND	3	3	t	9	3	51	.01	.045	10	14	10	89	.00		1 4 4 1 1 4	. 97	.va	+	<u>4</u> .	۱
3	3+50S 1+50W	3	19	24	61	1.7	20	6	467	6.55	9	5	ND	2	15	1	2	,	R1	ΔR	090	17	44	77	00	-V- - 1	2 2		• ¥1	.08	1	8	
1	5+505 8L	7	11	32	73	.8	6	3	196 t	3.76	8	5	ND	5	13	1	2	2	78	.09	.065	19	26	.17	97 30	.41 .41	2 2	.17	.05 .05	.05 .06	1 2	1	
3	5+505 3+25E	6	18	19	71	.8	18	5	206	7.92	14	5	MD	5	10	1	3	2	90	.05 · .	.041	11	57	.28	44	.46	т. Т.	07	-04	.05	7	1	
3	3+755 [+50W	4	E4	25	73	1.4	16	19 (2351)	5.78	7	5	NÐ	2	18	1	2	2	94	.16	976	15	32	.31	02	46	2 2	. 27	.05	.08	i	1	

SOIL SAMPLES

۶.

~

		SAMPLEN	70 PPK	CU PPN	PB PPN	ZN PPN	45 PPN	NI PPM	CO PPM	KN PPN	FE 1	AS PPM	U PPM	ACJ PPM	TH PPH	SR Ppn	CD PPN	SB PPM	EI PPM	V FPM	CA Z	P I	LA PPN	°CR PPH	NG I	BA PPH	11 2	B PPN	AL X	NA Z	K X	W PPH	alit PPB	
		3+755 1+25₩	5	19	8	70	1.5	10	5	135	3.30	(15)	5	MD	2	13	1	-13	; ,	95	. 11	.050	•	18	14	47	17	5	1.55	61	04	,	5	
		3+755 BL	L	16	14	73	.4	12	9	329	6.64	2	ŝ	NÖ	4	27	ż	2	2	120	.28	.077	11	25	.10	10		2	1.55	10	07		2	
		45 1+50W	4	26	23	89	1.3	23	6	288	6.82	11	5	ND	2	9	1	2	2		.06	.074	18	40	.41	49	17	ŝ	1.15	67	.01	1	1	
		45-1+25k	3	22	l۵	71	1.0	12	13	713	7.06	5	5	ND	4	23	Ť	2	2	120	. 74	. 060	17	20		रत	. L/ 	1	3.63	13		1	1	
		45 1+00W	2	12	13	60	.2	10	6	216	6.91	6	5	ND	3	27	i	2	2	139	.23	.056		26	. 33	55 A T	.73	2	1.57	.09	.05	1	1	
																			-				•		• • •			•				'	•	
		45 0+75W	6	11	25	67	.7	5	3	258	7.27	7	5	ND	4	9	i	2	2	94	. 07	.033	22	26	.18	20	.65	2	2.25	.06	.05	1	1	
		4S 0+50W	7	23	26	- 73	.9	16	- 4	379	10.98	12	5	ND	10	8	1	2	2	70	.06	.063	15	31	. 44	42	. 33	6	3.72	.05	.05	2	I	
		4S 0+25W	9	21	28	65	.9	4	4	346	12.22	2	5	ND	6	13	1	2	2	129	.09	.072	13	25	. 19	40	. 68	2	2.37	.06	.05	1	ł	
		45 BL	2	16	29	61	.2	18	3	155	5.81	10	5	ND	2	10	1	2	2	111	.06	,042	17	47	.32	42	.43	2	2.36	.03	.04	1	2	
		45 O+25E	4	Ŷ	21	57	.6	6	4	156	8,14	6	5	ND	5	15	1	2	2	109	.14	.035	19	33	. 28	21	.65	2	2.63	. 08	.04	1	1	
		45 0+50E	3	16	22	54	1.1	A	6	221	7.83	2	5	NĤ	5	17		,	,	115	15		17	ТА	47	EF	07	2	7 60	40			-	
		45 0+75E	3	18	21	55	1.1	12	Ā	141	3.78	- 11	5	NB	1	15	1	2	2	133	12	.012	17	34	113 16	33	.83	4	2.0V 7*30	. 44	.03	د .	3	
		45 I+00E	1	11	11	R7	.1	8	Ś	161	3.73	,	5	Nß	;	30	÷	τ τ	2	163	112		17	33		32	+1/		2.00	.00	.06		3	
		45 1+25E	5	24	24	72	. 8	20	3	239	7.96	17	ŝ	ND	12	7	i	2	5	66	. 51	.007	10	27	.¶J 77	76	1.43	17	2.27	- 11	. 40		L L	
		45 1+50E	1	14	10	65	.3	3	Ă	777	5.89	ų,	5	Wß	1	17	1	2	2	51 51	103	.013	12	12	.3/	4/	-10	4	0.63	.05	.06	د •	1	
					•			-	-		••••	•			•		•	•	-	24	.17	.075	•	1.5	. 17	27	.01	2	3.29	.03	.07	1	ţ	
		4S 1+75E	5	15	45	64	2.3	6	6	644	5.20	7	5	ND	3	18	1	2	2	102	. 14	. 086	19	26	. 74	45	.74	2	1.37	69	06	1	1	
		4S 2+00E	5	25	21	67	1.6	11	8	269	9.57	5	5	ND	2	19	1	2	3	187	.07	.061	12	54	.17	10	.79	,	7.77	07	101	i	2	
R G	RID	4\$ 2+25E	4	24	19	83	1.6	15	6	369	7.35	10	5	NÐ	4	22	i	2	3	89	.15	.074	12	48	. 38	58	. 13	2	7 71		07	1	i	
		4S 2+50E	5	20	16	77	.8	7	6	408	8.31	3	5	NQ	4	10	t	2	2	94	10	.058	24	32	.33	23	59	;	3.31	.07		1	- i	
		45 2+75E	4	18	23	68	.5	8	3	168 j	10.38	6	5	ND	3	á	i	2	2	77	.04	.058	15	45	.16	26	.30	2	3.23	.03	-03	1	1	
		10. 7. 660	-			•••	_																	•				-				•	•	
		45 3+005	<u></u> ১	18	12	79	.8	24	4	175	7.93	13	5	ND	3	7	1	2	2	68	.04	.073	- 34	51	.41	27	. 26	2	3.1B	.03	.03	1	t	
		43 3+232	6	51	20	67	.5	16	7	180	6.83	f 23	5	ND	2	12	1	2	2	50	.08	.102	12	1 B	.12	95	.04	Ż	1.52	.01	.06	1	5	
		4+205 1+20N	2	17	17	- 11	2.2	10	5	183	5.84	6	5	ND	3	16	1	2	3	110	.16	.062	12	27	.34	37	. 59	2	3.35	.06	0	1	1	
		4+235 BL	<u></u>	12	25	64	• 2	8	4	115	6.41	- 4	5	ΗĎ	4	23	1	2	2	108	.13	.050	9	22	.23	64	- 64	2	2.07	.07	.06	1	1	
		4+255 3+00E	2	18	20	75	.4	19	5	183	6.81	11	5	₩Ð	2	11	1	2	2	93	.11	.045	13	49	.34	32	-11	5	2.74	.04	.06	1	1	
		4+505 1+25W	2	20	17	<u>7</u> 9	(1.5)	14	9	413	5.46	5	5	ND	4	35	ı	2	7	127	. 17	049	10	17	70	50	DO	•	T 40		17			
		4+505 1+00W	4	77	- 51	119	1.4	11	9	287	7.19	18	5	NÐ	2	24	i	3	5	57	.20	192	10	17	•// रा	70	•77 6.8	2	3.90 3 14	.10	+14		. 10	
		4+505 0+750	3	9	14	48	.9	9	7	232	5.23	6	5	ND	3	35	÷	,	5	117	τ <u>γ</u>	044	12	51	50	71	+V7 45	7	1 10	.01	.00		(4)	
		4+505 0+50W	2	f1	17	46	2.0	6	5	181	5.46	5	5	ND	2	IA	i	2	2	125	15	045		14	20	20 77	+0-J 0-7	3	1.70	•17 •00	.03		2	
		STD C/AU-S	18	60	37	126	6.9	67	28	1022	3.79	41	7	7	36	48	19	14	21	56	.45	.084	74	54	.JZ 49	37 170	.92 AB	20	1.07	.08	103	1	1	
	-											-		-			•	• •			• • •		~~					20			.13	17	42	
		4+505 0+25₩	1	12	11	47	1.9	6	6	354	5.77	2	5	ND	3	29	1	2	2	107	.26	.050	7	17	.43	22	.72	2	1.47	.14	.05	1	2	
		4+505 BL	2	25	10	62	2.1	7	5	160	4.55	2	5	ND	5	19	1	2	2	94	.20	.083	(107)	18	. 38	36	. 58	9	4.41	.09	.06	1	2	
		4+505 0+25E	4	12	17	47	.2	13	- 4	99	5.54	14	5	КÐ	3	10	1	2	3	110	.05	.035	<u>`</u> 12 ´	38	.22	28	. 30	2	2.11	.03	.03	ī	Ā	¥
		4+505 0+50E	- 4	20	23	59	2.4	14	2	157	5.60	9	5	ND	3	7	1	2	2	66	.03	.047	27	31	.23	38	.34	4	2.60	.04	.04	i	i	
		4+505 0+75E	3	16	14	55	1.8	7	5	245	4,77	4	5	ND	2	15	1	2	2	73	.11	.067	19	24	.27	25	.45	2	2.55	.08	.06	i	1	
		4+505 1+00F	3	14	17	64	. 8	10	5	205	110		5	ND.	τ.	14		7	-		13	470	40	75										
		4+505 J+25F	7	20	15	60	13.9	17	9	20J 220	7.3V 5.5D	0	5 E	л <i>и</i> ИР	3	10	1	1	4	118	.12	.038	12	35	-41	24	- 65	5	2.72	.08	.03	L	1	
			-		••		(a.r)	10	1	440	9.97	0	1	10	د	47	4	4	7	70	• 20	.082	19	22	./6	22	· 9R	5	3.ZZ	.13	.07	L	1	

SOIL SAMPLES

Page 17

	SAMPLEO	NO PPM	CU PPM	PB Pfm	ZN PPM	A6 PPN	NT PPN	CO PPM	MN Pph	FE X	AS PPM	U PPH	AU Pph	TH PPN	SR Pph	CD PPH	SB PPM	81 PP#	V PPH	CA Z	P Z	LA PPM	CR PPM	HG Z	BA PPN	TI X	B PPM	AL X	KA 2	K 1	N PPM	AUX PPB
	4+505 1+50E 4+505 1+75E 4+505 2+00E 4+505 2+25E 4+505 2+50E	2 2 5 3 1	14 20 11 10 12	16 10 20 13 6	58 49 50 57 48	,1 (1.8) .1 .3 .5	12 10 6 11 8	7 8 5 10 7	1277 364 245 293 174	2.94 3.01 8.80 4.53 2.79	16 6 2 2 2	5 5 5 5 5	ND ND ND ND	l 2 3 1 1	28 49 22 62 36	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	54 44 119 101 54	.33 .51 .20 .67 .33	.079 .087 .037 .050 .076	9 19 12 7 6	18 11 15 15 6	, 44 , 68 , 40 , 94 , 56	101 31 48 57 32	. 15 . 23 . 57 . 67 . 30	2 2 2 2 2	1.25 2.83 1.93 1.66 1.24	.11 .25 .10 .30 .14	.07 .08 .08 .11 .09	2 1 2 1 3	1 (6) 1 1 2
	4+50S 2+75E 4+50S 3+00E 4+50S 3+25E 4+755 BL 4+75S 3+00E	3 4 4 2 5	20 13 12 16 12	19 20 16 17 24	64 54 56 55 61	.1 .3 .5 1.2 .3	32 10 10 10 12	6 4 6 5	205 170 183 196 200	7.71 5.85 5.59 6.00 5.48	11 7 2 2 2	5 5 5 5 5	ND ND ND ND	3 2 2 3 1	19 13 18 15 30	1 1 1 1	2 2 2 2 2	2 2 2 2 2	83 98 95 109 81	.15 .14 .19 .17 .29	.033 .044 .046 .065 .052	6 11 10 23 13	63 34 27 29 25	. 68 . 26 . 33 . 60 . 51	55 31 30 33 34	.25 .55 .56 .62 .41	2 2 9 2 2	2.65 2.17 2.17 3.86 2.44	.08 .05 .08 .07 .15	.05 .06 .05 .05 .08	1 1 1 1	 4 3 1
~	55 BL 55 0+25E • STD C/AU-S 55 0+50E 55 0+75E	4 3 19 3 3	11 11 57 11 23	20 16 39 11 15	47 43 125 63 61	1.3 4.9 ,1 ,5.8	9 7 66 6 11	5 3 27 5 7	145 101 1026 271 197	3.92 4.72 3.90 5.48 6.71	4 9 41 7 3	5 5 18 5 5	ND ND ND ND	1 2 35 1 6	26 12 47 16 18	1 1 18 1	2 2 15 2 2 2	2 2 20 2 2	114 125 54 111 124	.22 .08 .45 .16 .18	.047 .032 .085 .052 .066	9 10 36 11 21	24 33 57 19 34	. 37 . 21 . 90 . 32 . 62	55 (130) 184 36 52	.35 .40 .07 .23 .63	2 2 39 3 2	1.03 1.93 1.85 2.95 4.57	.10 .04 .08 .05 .08	.06 .03 .13 .03 .07	2 L 13 1 1	1 53 · 5
	55 1+00E 55 1+25E 55 1+50E 55 1+75E 55 2+00E	2 6 3 3 1	11 14 8 17 12	12 24 17 18 17	52 52 45 61 65	-8 -6 -2 -5 -4	9 5 23 13	5 3 4 8	179 158 116 219 219	6.41 9.94 3.78 5.81 5.23	3 3 8 9 2	5 5 5 5	ND ND ND ND ND	3 4 1 2 3	16 15 31 18 38	1 1 1 1	2 2 2 2 2	2 3 2 2 2	124 112 112 99 122	.17 .11 .29 .13 .39	.037 .042 .038 .029 .071	11 11 7 9 11	29 29 9 48 22	.46 .18 .31 .60 .71	23 37 56 61 31	.80 .59 .53 .19 1.03	14 5 2 2 2	2.13 1.74 1.22 3.07 3.58	.08 .04 .10 .06 .18	.04 .04 .05 .05 .08	1 1 1 1 1	1 2 1 2 1
R GRID	55 2+25E 55 2+50E 55 2+75E 55 3+00E 55 3+25E	4 3 2 3 7	16 13 19 9 21	17 18 14 23 21	69 65 61 50 87	1.0 1.6 .8 1.2 .5	12 9 12 7 26	11 8 7 5 6	776 474 233 153 210	5.60 3.97 8.03 3.10 5.69	5 6 2 3 21	5 5 5 5 5	ND ND ND ND	3 2 5 1 2	26 30 25 30 17	1 1 1 1	2 2 2 2 2	2 2 3 2	112 98 137 66 105	.25 .27 .29 .28 .14	.062 .048 .072 .062 .033	10 11 12 12 11	23 22 28 18 25	.53 .46 .78 .41 .25	51 36 32 36 68	.87 .86 1.06 .49 .22	2 11 2 2 2 2	2.33 2.05 4.32 1.54 2.06	.11 .16 .11 .13 .06	.09 .08 .05 .07 .08	1 1 1 1	2 1 3 1 2
R/L TRAV	RL 0+25 RL 0+50 RL 0+75 RL 1+00 RL 1+25	3 3 2 6 7	18 16 15 46 30	9 10 16 22 35	63 53 59 138 124	$(\frac{1.0}{.8})$	11 8 14 16 11	7 5 8 15 4	280 151 304 1432 233	7.57 5.45 6.50 5.34 6.81	2 4 5 (114 278	5 5 5 5 5	ND ND ND ND	4 3 3 1 2	20 18 26 6 5	1 1 1 1	2 2 2 (14 20)	2 2 2 2 2 2	116 118 108 35 47	. 22 . 19 . 27 . 06 . 01	.070 .083 .057 .146 .183	17 12 11 12 8	27 24 31 10 16	.67 .44 .77 .37 .17	25 25 43 85 48	.82 .81 .66 .01 .03	5 2 2 2 5	4.22 3.51 3.74 1.59 1.46	.10 .08 .12 .02 .01	.05 .06 .06 .07 .05	l 3 1 2 1	t 1 (11) (20)
	RL 1+50 RL 2+00 RL 2+25 RL 2+50 RL 2+75	6 3 2 1 2	27 35 25 14 12	23 6 19 14 17	80 66 56 42 38	2.7 7.1 .4 .4 .2	9 15 12 22 8	5 47 9 6 6	166 4251 241 248 174	6.69 3.89 8.86 3.36 7.06	(83 [°]) 2 12 3	5 5 5 5 5	NÐ ND ND ND	3 3 4 1 2	4 50 13 17 8	1 1 1 1	13 2 2 2 2 2	2 2 2 2 2	191 191 191	.01 .75 .11 .15 .02	.052 .144 .057 .037 .038	11 61 9 4 5	18 21 32 38 18	.13 .70 .54 .62 .27	48 B3 40 58 (125)	.08 .19 .76 .22 .88	6 2 9 2	2.15 5.13 3.78 1.59 1.76	.02 .20 .07 .05 .04	.05 .07 .05 .10 .03	1 1 1 2 1	6 1 1 2 1
	RL 3+00 KL 3+25	2 3	10 13	15 21	56 58	.3 1.0	11 9	9 4	269 111	6.43 5.72	2 4	5 5	ND ND	4 2	42 14	1 1	2 2	2 2	157 79	.37 .11	.049 .057	7 20	17 32	.71 .26	54 1 26	.21 .51	2 1 3 3	1.53 5.25	.20 .06	.09 .05	1 2	1 2

SOIL SAMPLES

Fage 10

	SANPLEU	NO Pph	CU PPM	PB PFH	ZN PPB	AG PPM	NI Ppn	CQ PPM	NN Ppm	FE 1	AS PPN	U PPM	AU PP n	TH PPM	SR Ppm	CD PPR	SB PPM	B1 PPM	V PPN	CA X	P X	LA /PH	CR PPN	M6 t	BA PPN	11 2	8 PPN	AL Z	NA Z	K Z	N PPn	AUX PPB
	RL 3+50	3	12	14	52	.8	10	6	160	4.49	6	5	ND	2	35	1	2	,	99	11	053	10	70	40	10	47	ч			<u>.</u>		
	RL 3+75	2	14	13	54	t.ó	11	6	173	4.17	3	5	NŌ	- Ā	28	i	,	,	77	10	074	41	11	50	10	103	4	1,13		.00	1	1
	RL 4+00	3	9	16	49	.6	12	7	195	4.10	6	5	ND	i	14	i	-	2	100	, JV 77	010	-0	10	0L.	23	. 31	1	3,40	.14	.07	•	1
	RL 4+25	3	19	21	68	. 4	42	6	194	6.13	17	5	ND	3	25	÷	ì	2	47	ارد . غا	010	0	20	ور. در د	77	- ()	2	1.29	. 10	.01	1	1
	AL 4+50	3	20	20	65	1.0	13	8	238	0.51	4	5	ND	5	24	i	2	2	124	.21	.047	11	40	.89 .57	32	1.01	3	2.40 3.00	.04	.05 .04	1	1 3
	RL 4+75	2	14	16	58	.2	11	7	237	7.66	3	5	NÐ	4	17	1	2	2	137	.17	.057	12	27	. 61	29	. 94	2	2.99	. 08	. 62	1	1
R/L TOM	RL 5+00	?	9	13	56	.1	10	7	192	4,31	7	5	ND	2	44	1	2	2	100	.42	.055	6	15	.53	30	72	2	1.37	.18	.06	÷	1
ME TRAV	RL 5+25	5	7	11	43	.6	7	4	145	3.60	7	5	NŪ	3	24	1	3	2	123	.20	.035	15	21	. 28	24	. 62	2	91	. 10	.06	2	
	RL 5+50	3	18	15	53	.6	11	7	171	9.97	2	5	ND	5	19	1	2	2	163	.10	.046	6	29	.42	41	1.02	2	1.72	.06	.05	i	I.
	RL 6+00	1	П	16	73	.6	10	4	118	1.41	5	5	ND	2	33	1	3	2	63	. 32	.071	10	20	. 32	33	. 46	2	2.09	. 15	.05	ī	1
	RL 6+25	5	18	20	68	.7	10	7	266	8.91	4	5	ND	5	13	1	2	2	172	. 07	.048	14	38	.17	37	1.20	2	2.64	.07	.05	1	1
	_RL 6+50	4	17	20	58	.3	18	5	134	7.96	13	5	NÐ	3	10	1	2	2	176	.02	.025	9	71	. 32	42	.64	3	2.63	07	. 07	ī	7
	≫STD C/AU-S	20	58	39	130	7.3	69	28	1057	3.87	41	19	8	28	51	19	17	23	59	.47	.090	39	61	.87	178	.09	35	1.82	.09	.14	13	ii 🤆

SOIL SAMPLES

Page 19

ŧ

C

Ç.

ſ

!

(

ACME ANALYTICAL LABORATORIES

./

052 E. HABTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE 253-3130

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. This leach is partial for MN FE CA P LA CR N5 BA TI B N AND LIMITED FOR NA AND K. AU DETECTION LIMIT BY ICP IS 3 PPM. - Sample Type: P1 to P11-5011 P12-511T P13-ROCK AUX ANALYSIS BY AA FROM 10 GHAM SAMPLE.

•

DATE RECEIVED: AND 19 1987 DATE REPORT MAILED: US 26/87 ASSAYER. A. JOPAT. DEAN TOYE, CERTIFIED B.C. ASSAYER MINCORD EXPLORATION File # 87-3392 Fage 1

	SAMPLE	NÛ PPN	CU Pfm	РВ РРМ	?N PPH	AG PPM	NI PPH	CO PPM	NN FA Ppn 1	E AS L PPM	U PPM	AU Ppn	TH PP n	SR Ppm	CD PPM	SB PPM	81 PPP	V PPM	CA 1	P	LA PPM	CR PPN	M6 X	BA PPM	T 1	B PPN	AL Z	NA X	r: z	N PPN	AU 1 PPB
	31-A 33+00N 31-A 32+00N 31-A 31+00N 31-A 30+00N 31-A 29+00N	6 5 13 11 2	45 23 44 39 28	33 33 26 40 18	(266) 181 (246) 197 129	2.7 1.5 .6 .8	23 21 22 12 5	14 5 5 17 10	474 10.69 326 7.72 281 10.41 561 11.32 568 10.04	2 (26 12 (23 18 19 12	> 5 5 5 5 5 5	ND ND ND ND	9 3 2 5 2	3 10 8 9 22	2 1 1 2 1	2 2 5 2	4 2 2 2 2	51 30 107 85 120	.02 .04 .06 .10 .18	.053 .056 .089 .103 .162	13 14 8 12 7	40 34 42 29 17	.36 .29 .21 .51 .15	53 45 79 58 42	.08 .10 .08 .26 .12	2 2 5 6	6.67 5.34 4.57 4.73 4.37	.01 .02 .01 .03 .02	.03 .03 .04 .04 .03	1 1 2 1 1	1 1 1 1 1
	31-A 28+00N 31-A 27+00N 31-A 26+00N 31-A 25+00N 31-A 24+00N	2 9 5 9	25 51 27 37 78	18 26 28 27 39	87 , 344 , 177 128 , 294	1.0 1.5 2.2 .5 1.1	3 32 15 4 15	4 7 4 10 11	145 12.69 471 7.18 300 8.61 628 14.49 509 15.32	18 (29 (23) 7 .24	5 5 5 5 5	ND ND ND ND ND	3 12 3 5	4 7 10 13 9	1 1 2 1 1	4 2 4 2 2	2 3 3 2 2	159 71 40 87 76	.05 .03 .06 .11 .08	. 132 . 059 . 059 . 087 . 082	15 12 12 6 13	20 40 38 1B 47	.06 .59 .20 .33 .37	25 75 36 30 46	.11 .07 .1B .21 .17	2 2 2 • 5	5.82 4.12 7.79 5.58 6.30	.01 .01 .03 .04 .03	.02 .04 .04 .03 .04	1 1 1 1	1 4 2 1 1
31 A TRAV.	31-4 23+00N 31-4 22+00N 31-4 21+00N 31-4 20+00N 31-4 19+50N	4 3 4 3 7	42 53 43 10 29	17 35 28 12 33	163 113 172 47 106	1.0 .4 1.1 .5 .8	4 3 19 5 5	13 16 9 6 7	1232 13.28 1252 17.51 367 9.06 131 3.71 546 16.65	4 2 17 5 19	5 5 5 5 5	NŬ ND ND ND ND	2 3 3 2 3	7 10 14 17 14	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	95 91 80 167 143	-06 -05 -12 -09	.116 .172 .423 .031 .335	9 7 5 6 7	20 22 40 13 39	.62 .26 .53 .14 .28	49 43 73 52 31	.13 .15 .03 .92 .30	2 2 6 2 3	5.45 4.56 4.14 .56 2.23	.01 .01 .03 .03	.02 .02 .04 .02	1 1 1 1 1	2 1 1 1 1
	31-A 19+00H 31-A 18+00N 31-A 17+00N 31-A 17+00N 31-A 15+00N 31-A 15+00N	8 2 5 4 22	53 31 37 44 16	31 18 19 25 14	354) 154 175 212 82	.7 1.9 1.1 .9	13 3 4 14 10	19 (9 12 9 5	2092)19.30 1007 13.73 1055 10.82 352 10.45 152 3.33	/23) 10 11 36 13	555555	ND ND ND ND	5 2 3 4 3	5 9 4 3 18	1 1 1 1 2	2 2 2 3 4	2 2 2 2 3	59 65 52 83 76	.04 .03 .05 .03	.115 .187 .145 .248 .062	11 8 10 12 13	18 15 19 33 11	. 29 . 76 . 89 . 83 . 28	96 54 45 65 46	.03 .15 .04 .05 .22	5 2 5 2 3	3.31 2.27 3.56 3.67 1.02	.01 .01 .01 .01	.04 .02 .02 .03 .04	1 1 1 1	. 7 1 2 1
	31-A 14+00N 31-A 13+00N 31-A 12+00N 31-A 12+00N 31-A 10+50N 31-A 9+00N	15 18 3 (44)	30 67 38 29 54	24 48 22 23 21	141 (216) 150 105 (297)	1.7 (4.8) 1.0 1.9 1.3	23 6 18 13 52	6 6 5 5 4	197 9.46 213 19.55 233 7.17 256 9.06 171 6.46	16 79 17 18 (32)	5 5 5 5 5	ND ND ND ND ND	4 3 4 5 2	12 18 8 10 3	1 1 1 1 1	4 ,7 > 2 2 2 2	2 2 2 2 3	132 114 92 104 159	.10 .15 .05 .05 .03	.047 .079 .036 .048 .063	10 3 7 10 5	41 41 30 35 25	. 33 . 24 . 51 . 31 . 38	64 36 78 61 40	.32 .21 .11 .25 .07	2 5 2 9 2	3.31 2.97 3.25 3.17 2.49	.04 .07 .01 .02 .01	.04 .05 .04 .04 .03	1 1 1 2 2	1 7 4 1 2
	31-A 7+50N 31-A 6+00N 31-A 4+50N 31-A 3+00N 31-A 1+50N	6 4 4 4	44 38 28 47 28	31 27 28 22 28	113 167 171 184 173	(3.8) .2 .5 .7 .4	15 13 8 13 11	5 11 12 (13 14	232 9.96 1067 6.23 1459) 5.72 1196 5.53 1519: 5.90	18 14 14 17 17	5 5 5 5 5	ND ND ND ND ND	2 4 2 2 2	8 32 38 38 30	1 1 1 1	2 2 2 2 2	2 2 2 2 2	119 49 45 61 46	.05 .58 .64 .51 .54	.155 .138 .155 .141 .167	7 18 18 18	39 17 14 19 17	.30 .97 .98 .98	68 106 117 98 120 /	.11 .17 .18 .15 .15	5 11 2 16 3	3.01 1.68 1.77 1.89 1.89	.01 .03 .06 .01 .03	.03 .06 .06 .06 .06	1 1 1 1	2 1 1 6
GRID	<u>31-A 0+00N</u> J17N 3+00N J17N 2+75M J17N 2+50N J17N 2+25M	3 2 1 1	27 75 82 62 60	35 24 30 10 24	183 100 108 102 102	.2 .3 .1 .1 .3	4 24 26 21 18	11 .3 15 1 17 1 12 12	2149 4.56 1015 5.23 1156 5.41 800 5.49 802 5.40	17 16 (21) 14 14	5 5 5 5 5	ND ND ND ND ND	2 2 1 1 1	36 19 30 20 23	1 1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	44 125 125 129 114	.64 .26 .37 .20 .25	.157 .148 .142 .094 .120	25 13 13 10 17	12 40 37 35 34	.94 i 1.01 1.17 .90 .90	175 ⁾ 102 100 92 82	.18 .13 .15 .22 .20	4 2 3 3 4 2 8 2 3 3	2.19 5.06 2.79 2.93 5.21	.03 .02 .02 .03 .04	.06 .10 .10 .08 .09	1 1 1 1	1 ; 0 5 , 12 6
	J17N 2+00N STD C/AU-S	1 10	105 60	28 41	111 132	.2 7.0	29 69	19 (1 27 1	302) 5.10 044 4.08	17 36	5 19	NŬ B	38 3	35 50	1 17	2	2 23	[14 59	.48 .48	, 166 , 090	15 37	38 61	1.25 ÷	126) 177	. 18 . 98	32 301	1.46 1.77	.04 .06	.13 .13	1 11	7 51 🗲

SOIL SAMPLES

	SAMPLE	nd PPn	CU PPM	РВ РРМ	ZN PPN	AG PPR	N (PPN	CO Ppn	MN Pfn	FË 1	as Pph	U PPM	AU PPM	TH PPN	SR PPM	CD PPM	SØ Ppfi	91 919	V PPN	CA 1	P 1	LA PPN	CR PPH	п6 1	BA PPM	11 I	B PPN	AL Z	NA T	K I	и Рри	AUC PPB
	317N 1+75W	t	59	21	103	.3	22	15	1017	5.04	18	5	ND	2	16	1	3	2	137	- 19	.122	10	40	1.05	90	13	5	7 87	. 02	.11	1	1
	J178 1+50W	L	77	14	102	. 2	26	15	826	4.74	17	5	ND	3	38	1	2	2	121	51	116	17	19	1 22	125	70	q	7 48	04	10	-	•
	J17N 1+25W	4	89	17	110	.3	30	17	1003	5.36	17	5	ND	3	35	1	2	2	142	.47	. 123	13	43	1.41	176	. 71	Å	3.09	02	12	i	1
	STD C/AU-S	20	60	41	135	7.5	70	30	1086	4.00	41	18	3	42	52	18	18	71	67	.49	.089	79	61	RA	180	10	19	1 29	67	11	11	50
	J17N 1+00W	1	97	14	105	.1	Z9	14	751	4.B9	18	5	ND	3	30	1	2	2	125	.40	.123	14	39	1.26	(125)	1.14	4	2.57	.02	.09	1	9
	J17N 0+75W	1	92	19	110	.4	27	18	1125	5.03	(23)	5	ND	4	41	1	2	2	113	. 57	.159	18	37	1.19	114	.22	2	2,10	.04	.10	L	1
	J17N 0+50N	1	67	20	97	.1	22	15	1055	5.39	16	5	ND	3	24	2	2	2	131	.31	.110	11	36	1.04	94	.22	4	2.69	.03	.08	I.	7 5
	J17N 0+25W	2	56	19	98	.3	19	13	1036	5.57	12	5	ND	4	21	1	4	2	109	. 25	.093	17	33	.85	67	. 40	2	3.42	.05	.05	2	1
	JI7N BL	3	70	19	100	.3	23	16	1131	5.99	{22 }	5	ND	3	1B	1	2	- 4	121	. 24	.101	12	42	.92	69	. 34	8	2.97	.04	.06	1	6)
	J17N 0+25E	2	66	23	114	•1	19	12	629	5.46	14	5	ND	5	18	1	3	2	99	.24	.104	18	33	. B4	59	. 36	B	3.22	.06	.00	ì	2
	J17N 0+50E	I	? [19	104	.2	35	20	1128	5.61	17	5	ND	3	32	1	2	2	140	.59	. 108	11	56	1.64	111	.27	6	3.05	.04	.09	I	I
	J17H 0+75E	2	59	15	103	.1	20	15	865	5.41	14	5	ND	1	24	1	2	2	134	.30	. 103	10	30	.91	78	. 36	7	2.91	.05	.07	1	L
	J17N 1+00E	2	64	24	105	.1	23	11	862	5.10	17	5	ND	2	23	1	2	2	119	.35	.092	11	39	1.07	114	.19	4	2.66	.02	, 68	1	L
	J17N 1+25E	L	91	26	100	.1	30	19	1171	5.52	15	5	ND	3	19	1	2	2	109	.27	. 109	12	46	1.15	94	.18	3	2.66	.01	.07	1	5)
	J17N 1+50E	4	(135)	21	148	.4	31	27 ((1368)	6.05	17	5	ND	4	37	2	4	2	82	.40	.148	17	35	1.33	ψi)	.12	4	2.35	.05	.11	1	5 ⁻
	J178 1+75E	3	116	24	138	.5	32	22	1276	5.26	22	5	ND	4	55	1	2	2	104	.75	.145	16	37	1.23	(150)	.14	4	2.13	.03	.17	L	3
	J17N 2+00E	2	107	20	118	.2	22	23	1248	5.45	10	5	ЖĎ	4	49	L	2	2	102	.54	.154	15	39	1.47	106	.10	2	2.27	.03	.13	i.	·7)
	J17N 2+25E	2	104	21	114	.1	22	23	1203	5.20	12	5	ND	3	48	1	2	2	99	.53	154	15	38	1.42	103	.10	2	2.16	.03	.13	1.7	123)
J GRID	J17N 2+50E	L	113	20	119	.2	24	25	1329/	5.46	12	5	ND	4	51	1	2	2	106	.58	. 164	15	38	1.46	108	.it	2	2.25	.03	.12	1	10)
	J16H 3+50W	2	55	19	67	،،	22	13	1152	5.11	16	5	ND	1	19	1	2	2	128	.21	.102	11	36	. B7	113	.11	6	2.87	.02	.07	ĩ	2
	J16N 3+25W	t	84	19	t13	.7	27	18	1134	5.07	17	5	нD		**	1	2	,	117	17	145	14	74	1 17	. 140.	71	,	7 70	¢£	10	1	
	J16N 3+00W	1	90	22	182	.1	78	16	1084	5.34	.20	5	ND	,	25	ì	τ. τ	2	100	20	*103	10	40	1 15	101	14	4 0	2417 7 74	07	10	•	1
	J16N 2+75W	t	85	27	89	.1	26	14	1096	4.40	19	š	ND	÷	11	÷.	2	2	112	54	144	13	10	1.10	101	15	145	2.14	07	10	-	2
	116N 2+50W	i	89	23	109	.7	79	17	1112	5.06	19	5	ND	Ť	19	i	2	•	177	50	157	14	70	1 74	. (51)	10		2.17	07	110	ł	()
	J16N 2+25W	2	103	20	123	.3	37	20 ((1296)	5.64	13	5	ND	4	31	1	2	ź	132	.50	.140	18	41	L.59	132 ,	.24	4	2.94	.02	.14	i	i.
	J16N 2+00W	i	92	22	100	.2	26	19 (1272)	4.89	19	5	ND	3	49	1	2	2	117	.57	. 154	14	35	1.22	159	. 19	3	2.20	.04	.11	1	67
	J16N 1+75W	1	17	18	104	.1	29	15	969	5.51	17	5	NÐ	2	20	1	2	2	142	.25	.093	10	44	1.25	110	.19	2	3.10	.02	.10	1	i
	J16N 1+50W	1	70	21	9B	.1	22	13	1065	5.03	123	5	ND	3	24	1	3	2	123	.34	.112	10	36	94	107	. 16	Ā	2.51	.02	.08	1	1
	J16N 1+25N	5	37	16	90	.1	11	11	1066	5.24	15	5	ND	2	15	1	2	2	105	.16	.075	10	24	49	57	. 75	,	2.70	.03	.04	1	i
	J16N 1+00N	L	81	17	96	.2	24	18	1098	5.14	18	5	ND	3	33	1	2	2	114	.52	124	14	33	1.15	83	.17	4	2.33	.01	.00	i	1
	J16N 0+75W	2	105	24	105	.1	26	17	945	4.99	24)	5	ND	2	23	1	2	2	107	.32	.095	10	33	1.08	75	.16	6	2.19	.01	.07	1	6
	JI6N 0+50W	1	105	22	105	.4	28	17	922	5.11	17	5	MD	4	34	L	2	2	122	. 59	.136	15	37	1.32	(134 N	.18	3	2.30	.02	. 11	1	8
	JIGN 0+25W	2	101	33	113	.3	29	19	(1608)	5.26	19	5	ND	3	29	1	2	2	111	.41	.130	18	38	1.13	122/	.27	1	2.60	.04	08	1	4 1
	JIGN BL	4	73	23	114	.4	24	18	990	5.24	17	5	ND	4	21	1	2	2	120	. 20	.116	21	43	1.19	88	.24	11	3.06	.03	.11	1	7 1
	J16N 0+25E	2	7 3	27	110	.1	21	18	942	5.10	16	5	κđ	3	20	t	2	2	117	.26	. 112	20	38	1.06	82	.23	12	2.92	.03	.09	1	16/
	J16N 0+50E	3	110	23	124	.2	29	27 (1541)	6.06	17	5	ND	2	23	1	2	2	128	. 26	. 126	13	43	1.08	89	.76	2	3.07	.03	.04	1	(13.)
	J16N 0+75E	2	63	18	91	.1	25	20	835	5.41	9	5	ND	3	96	i	2	2	113	1.05	. 115	12	32	1.64	77	.46	2	2.20	.39	17	1	1

SOIL SAMPLES

Fage 2

٧

C

C

C

(

C

C

C

€

¢

¢

С

C

С.

Ċ

. C

¢

¢

Ç

C

¢

s,

the set of a																															. • 4	
SANFLE	PPM PPM	СU РРЯ	PB PPM	2N PPH	AG Ppr	NI PPN	CO PPN	NN PPN	FE 1	AS Ppn	U PPN	AU PPM	TH PPN	SR Ppm	CD PPH	SB PPN	B1 PPM	V Ppn	CA Z	P	LA PPH	CR PPH	NG Z	BA PPN	T[X	8 PPM	AL Z	NA Z	ĸ	N PPN	AUT PPS	
J16N 1+00E	3	106	25	120	.5	27	24	915	5.40	10	5	NB	5	67	1	2	,	107	74		17	30				_						
JIAN 1+25E	2	118	22	112	.5	22	22	1154	5.90	13	5	ND	ž	10	-	<u>,</u>		103	./0	-141		20	1.38	90	.30	2	2.50	-17	.16	t	- 9)	
JI6N 1+50E	1	121	28	126	.5	24	24	1232	5.97	14	Ĭ	MD	5	40	1	4	4	90		.166	15	20	1.34	147	2.11	2	2.10	.03	. 12	Ł	(18,	
J16N 1+75E	1	114	21	110	. 4	21	22	1014	\$ 27		0 E	nıy MD	2	98	4		2	69	. 48	.137	17	31	1.23	116	.07	2	2.25	.02	-11	L	5	
J16N 2+00E	3	14.9	u.	110	.,	20	44	1010	1.77	11	3	NU	\$	51	1	2	2	71	- 54	.154	15	- 34	1.41	92	07	2	2.16	.03	.10	1	6	
	•	100		130	• •	10	32	1704	a.//	12	2	ND.	4	58	1	2	2	69	.54	.167	16	30	1,27	124	2.06	2	2.17	.02	.12	1	(12)	
J16N 2+25E	1	120	23	110	4	77	22	1107	5 01				-			_	_														.,	
115N 4+50H	3	94	77	100		10	11	INC	J.72	11	3	NU	2	6/	1	2	2	78	.66	.154	14	30	1.43	107	.10	2	2.09	.04	.12	1	7	
115N 4+25W	ī	12	24	104		20	17	1031	a. (1	15	2	MD	3	20	L	2	2	128	.25	.075	12	39	1.25	106	.19	2	3.00	.02	.11	1	2	
115N 4+00M	1	04 01	24	171		17	14	ARI	6.40	- 11	5	ND	1	14	1	2	2	144	.12	.116	12	42	. 82	69	.16	2	3.58	. 01	. OR	ī		
315N TA75N	5	71	47 7/	131		23	10	1001	3.81	16	5	MD	5	17	1	3	2	116	.23	.132	21	38	1.06	99	.19	2	3.69	03	.11	i	Å	
410H 31738	,	13	20	141	•4	24	18	1550	6.55	(25)	5	ND	2	40	L	2	2	135	. 35	142	14	38	1.17	145	7.25	2	3.63	.06	.09	i		
115N 3+500	1	54	14	07						_														1.1		-			•••		•	
115N TA25N		-FL 00	17			14	- 17	1035	6.14	7	5	ND	3	46	1	- 4	2	137	.51	.100	15	35	. 91	155 \	. 41	2	3.73	.10	. 09	1	1	
1164 7.664	4	77	73	104	- 4	28	18	1449	5.97	17	5	ND	2	38	1	Z	2	143	.36	.103	12	41	1.31	: 138	17	10	3 14	07		;	- -	
3130 3400W	1	110	24	136	- 1	32	20	1481	7.15	Q2.)	5	NĎ	1	29	1	2	2	166	.77	098	10	4R	1 45	100	1.7	7	1 71	475	.11		3	
913N 2475K	5	68	45	113	4	20	22	1996	7.54	20 *	5	ND	2	31	2	2	2	177	1	119	10	10	1 07	150		, '	3111	.02	.13	+	I .	
J15N 2+50H	3	96	24	127	• 6	29	19	1159	5.44	18	5	ND	4	42	2	2	2	113	47	143	14	31	1 24	112	- 11	3	2+02	.04	.09	1	3	
															-	-	-		• • •			90	1167	114	. 20	2	2.02	.VB	.13	2	10	
JISN 2+25W	2	113	23	118	.4	26	19	14B1	5.52	21 '	5	ND	3	29	1	2	2	115	.41	149	14	11	1 25	07	16	(1 7)	a / c	42			-	
JISN 2+00W	2	45	21	128	.2	22	- 14	1183	6.02	21	5	ND	2	22	1	2	2	177	.74	101		46	1111	77	117	113	2.00	.02	.10	1	1	
J15N 1+75W	4	23	17	62	. 6	ß	7	672	4.72	5	5	ND	1	20	ī	2	,	122	147	. 101	-	47	. 17	114	•10	3	2.84	.01	.08	1	4	
J15N 1+50W	2	68	16	116	.4	24	15	1091	5.94	16	ŝ	ND.	,	21	ì	5	4	120	.10	. 191		22	26	67	. 49	2	1.38	.03	.05	1	1	
J15W 1+25W	3	71	21	102	.1	22	15	967	5.10	15	5	ND.	ž	42	4	,	2	110	1.34	105	14	41	1.15	81	.25	5	3.13	.03	.11	1	18	
													v	72	· * /	2	4	110	. 23	.123	13	34	1.22	65	.24	2	2.29	.09	.12	1	4	
J15N 1+00W	3	86	22	109	.4	23	18	1065	5,78	17	5	м'n	٦	14	1	2	7	197	5.4							_	_					
J15N 0+75W	2	95	22	132	.2	25	18	1157	5.80	25	5	ND.	ŝ	70		4	-	110	+ JV	. :	14	42	1.32	12	-24	2	3.04	.03	-17	l	<u>'</u> 2	
JISN 0+50M	2	114	29	133	.3	27	19	1319	A 57	25	5	90 90	4	40	1	4	4	105	• • 47	127	21	32	1.07	67	- 24	2	2.79	.04	.12	1	6	
JISN 0+25#	1	99	20	108	.7	21	14	897	5 10	44	5	ND NO	1	40	1		2 - Z	121	,49	134	21	39	1.16	74	.35	2	3.42	.09	-11	2	(8)	
J15N BL	3	62	17	91	1	11		515	6 17	10	3	AU		33	1	Z	2	130	.43	.121	12	36	1.23	93	.18	2	2.86	.02	.10	1	5	
	-		••		••		r	913	a. 17	13	2	NU	1	24	I	Z	2	127	.28	.107	14	33	.85	61	.27	2	3,34	.03	.0B	2	2	
J13N 5+500	5	75	29	135	.5	22	18	1889	5 97	:70	5	W D				•																
J13N 5+25W	3	63	27	127		19	10	7071	5 50		с	ny Na	3	41	1	2	2	78	.51	.141	22	27	2.01	116	.10	2 :	2.78	.02	.10	1	4	
J138 5+00W	i	77	71	110	1	21	17	2002	J.JV 5 70	¥4.3	3	RU		RÔ	1	2	2	67	.95	- 154	21	22	1.50	(142)	.12	2	2.51	.05	.10	1	/B)	
J138 4+75a	2	ea	14	107	••	41	13	2002	3.79	20.	2	KD	Z	37	1	2	2	97	.44	.130	14	33	1.31	(144)	.07	2 :	3.19	.01	-10	1	17	
313N 4450H	Ť	74	10	75		49	14	(1)3	3.3/	16	5	ND	2	25	1	2	2	123	.27	.116	15	38	1.14	105	.13	9	3.06	.07	.11	1	τ.	
	*	10	14	13	-1	4	2	275	2.99	9	5	ND	1	22	1	Z	2	91	.27	.087	7	26	.31	109	.27	7	1.95	.04	.07	i	1	
J13N 4+25H	1	115	24	169	3	74	10	1177	E 10				_			_									_					•	•	
J13N 4+00M	,	-10	14	117	*# T	3 4 44	17	1132	3.70	18	5	ΚD	2	39	1	Ż	2	137	.53	.128	12	46	1.53	-148 -	.17	6 3	3.07	.02	. 14	1	62	
J130 7475		75	17	120	••	11		600	4.07	10	5	ND	2	32	1	3	2	76	. 28	.120	11	25	. 46	122	.07	5 1	1.97	.04	- 09	;	1	
1130 TAKAL	4	/3	11	120	•Z	73	16	1203	5.79	16	5	ND	E -	86	1	2	2	130	.35	.106	9	39 1	1.17	196 1	.tA	2 1	t 17	۸7 17	11	1	184 J	
1176 31300 1176 31300	2	71	Z3	113	•7	25	20	1262	5.24	16	5	NÐ	4	32	1	2	2	124	. 46	. 144	14	40	1.35	74	20	.15)	75	+V4 A4	***	- ! (<u> </u>	
4194 94Z3N	Z	64	20	101	.2	19	13	879	5.31	11	5	KD	2	24	1	2	2	131	.33	126	10	42	1.14	64	.23	7 1	 	.04	11 11	1	6 = ·	
J13W 3+00M	,	45	20	120	-			nar			_											- •		÷.					• • •		•	
STD C/AU-S	18	6J 41	40	127 11	 γ Λ	17	10	1293	5.79	13	5	ND	2	20	1	2	3	147	.30	. 119	10	42 1	.04	128	. 20	11 3	,04	.04	. 10	1	1	
			10	121	/.v	6/	41	1430	4102	78	19	7	37	49	17	17	19	58	.47 .	. 085	37	58	.84	176	. ÓR	17 1	75	64	12		in all	

SOIL SAMPLES

J GRID

.

•

Page 3

٩,

C

(

,

Ç

C

C

€

¢

ς.

C

C

ζ.

C

C

¢

C

¢

C

(

	SARPLE#	KO PPM	CU PPH	р9 Ррн	2n Ffm	ag Ppm	NI PFM	CG PPM	AN PPR	FE Z	AS PPH	U PFM	AU PPM	тн РРМ	SR PFN	CD F₽#	SB Ppm	Ð I Ppm	V PPM	CA ۲	የ ኒ	LA FPM	CR PPH	л6 Х	BA PPH	11 2	8 PPM	AL X	NA 1	r X	N Pfr	AU R PPe	
	J13N 2475N J13N 2450N J13N 2425N J13N 2400N J13N 14759	3 1 1 2 1	92 79 92 90 97	35 23 21 23 23 27	-243) 166 134 145 179	.3 .2 .2 .1 .1	28 22 25 18 22	19 16 22 15 29	(1938 1138 41550 980 1187	3.85 6.49 6.63 6.40 6.27	(*21 16 14 25 (83	55555	ND ND ND ND ND	5	24 30 61 42 46	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	132 129 143 140 131	.30 .36 .69 .56 .55	.204 .200 .172 .231 .135	27 22 17 14 20	37 34 36 29 30	1.33 1.20 1.55 1.43 1.27	(152) 83 86 50 83	.22 .24 .31 .16 .14	{12 : 3 2 10	3.68 3.84 3.22 3.65 3.13	.04 .09 .16 .04 .04	. 14 . 15 . 19 . 15 . 12	; ; ; ; ; ; ;	/ 23 / 5 16) 2 5 ~	
	J13N 1+50N J13N 1+25M J13N 1+00N J13N 0+75N J13N 0+50H	1 2 5 8	105 62 100 97 133	25 18 16 32 19	139 131 152 153 137	.2 .1 .1 .1 .4	18 12 19 21 20	20 (15 19 19 15 ((1324) 967 1062 1131 (1349)	26.54 5.14 6.68 5.01 5.46	(164.) 10 16 (28 39)	5055	ND ND ND ND ND	1 3 6	77 49 44 30 27	 	2 2 2 2 2	2 2 2 2 3	149 117 136 106 61	.92 .53 .54 .32 .30	.139 .127 .126 .153 .115	20 18 15 22 74	27 24 27 29 31	1,34 .05 1,30 .92 .42	69 36 45 44 77	.22 .17 .15 .20 .16	2 2 3 2	2.88 4.06 3.69 3.36 4.62	.05 .04 .01 .03 .03	. 16 . 07 . 08 . 07 . 06	1 3 2 1 2	5 3 4 9)	
-2	-STD C/AU-S JI3H 0+25M JI3N BL JBL 18+00N JBL 17+75N	1 3 19	60 159 1 57 92 84	41 18 30 27 18	139 165 102 120 105	7.3 .2 .2 .1 .1	73 22 8 27 26	29 16 10 16 19	1105 1080 1048 913 1034	4,17 5,85 5,79 5,30 5,05	39 15 5 14 21	1° 5 5 5 5	7 ND ND ND	41 3 4 3 2	53 65 21 39 51	19 1 1 1	17 2 2 2 2 2	23 2 2 2 2 2	63 140 91 122 112	.49 .81 .20 .55 .70	.095 .162 .115 .158 .170	40 26 28 17 18	60 29 22 36 33	.89 1.34 .41 1.25 1.19	190 57 36 111 103	.08 .19 .23 .19 .21	36 2 4 2 2	1.82 2.71 4.03 2.66 2.31	.07 .02 .03 .03 .03	.13 .08 .06 .11 .11	12 1 2 1 1	52 6 4 7 7 7 7 7 7	
I GRID	JRL 17+50N JRL 17+25N JRL 16+50N JRL 12+75N JRL 12+50N	1 1 2 1	68 105 119 83 103	15 20 28 25 19	86 106 109 145 126	.1 .1 .1 .1	24 34 32 14 25	16 20 20 14 21	1017 (1401) 1164 687 1127	5.64 5.80 5.69 5.10 5.77	14 14 19 12 12	5 5 5 5 5 5	ND ND ND ND ND	2 2 3 3	35 33 32 42 72	i 1 1 1	3 2 2 3 2	2 2 2 2 2	152 141 120 126 102	.49 .50 .46 .54 .75	.151 .136 .127 .132 .156	9 17 15 19 14	38 43 39 26 26	1.43 1.44 1.36 1.11 1.40	95 104 113 49 87	.16 .15 .24 .21	3 6 2 2 2	2.36 2.63 2.68 3.23 2.04	.02 .02 .02 .04 .13	.08 .09 .10 .07 .13	2 1 1 1	73) 6 2	
r Grid	R21+00N D+25E R21+00N 0+50E R21+00N 0+75E R21+00N 1+00E R21+00N 1+25E	2 2 1 1	24 16 22 21 27	13 18 9 12 11	81 91 78 99 100	.5 .1 .1 .1 .1	15 12 14 15 22	13 10 9 13 11	432 327 420 726 542	6.08 4.47 5.98 6.22 6.14	2 2 2 2 4	5 5 5 5 5	ND ND ND ND	3	73 76 30 85 49	1 1 1 1	2 2 2 2 2 2	2 2 2 2 3	115 119 120 126 119	.75 .75 .39 .86 .52	.087 .085 .104 .101 .131	12 12 11 12 16	25 22 25 24 34	1.09 .77 .71 .99 .82	50 58 35 66 52	.65 .66 .65 .63 .55	2 6 2 5 10	2.88 2.62 3.44 3.26 4.13	.32 .30 .15 .38 .19	.14 .13 .08 .17 .11	1 1 1 1	3 1 1 3 2	
	R21+00N 1+50E R21+00N 1+75E R21+00N 2+00E R21+00N 2+25E R21+00N 2+50E	1 1 2 4	25 23 73 19 19	18 9 44 20 13	107 94 147 59 55	.1 .5 .3 .2	31 13 38 10 11	14 6 34 7 7	866 285 977 585 261	5.36 5.96 5.54 6.20 7.70	4 2 (31) 6 3	5 5 5 5	NÐ ND ND ND	2 2 3 1 4	47 23 16 24 19	1 1 1 1	2 2 2 2 2 2	2 4 2 2 2	95 118 42 96 139	.55 .26 .19 .22 .21	.237 .106 .116 .098 .080	15 12 17 15 9	37 26 19 25 27	.96 .47 .83 .41 .53	63 34 98 37 27	.23 .59 .04 .36 .73	2 2 4 8 2	3.01 4.55 2.16 2.81 2.16	. 17 .07 .06 .09 .06	.09 .06 .13 .07 .07	1 1 1 2	2 (22) 2 2 2 2	
	R21+00N 2+75E R21+00N 3+00E R21+00N 3+25E R21+00N 3+50E R21+00N 3+75E	1 2 1 1	20 19 9 22 20	14 9 10 11 8	50 55 37 115 54	.2 .1 .2 .2 .3	10 12 6 13 10	6 7 2 20 (7	191 263 71 2718 237	5.98 4.12 2.42 6.95 4.92	3 4 2 2 2	5 5 5 5 5	ND ND ND ND ND	3 1 1 2 3	25 29 13 26 27	1 1 1 1	2 2 2 2 2	3 3 6 2 3	117 95 107 151 103	.28 .30 .13 .36 .31	.084 .101 .073 .123 .089	9 10 9 14 10	27 29 19 36 33	.50 .45 .10 .89 .47	48 37 38 61 35	.65 .52 .63 .40 .53	2 2 2 2 2	2.56 2.95 1.18 5.47 3.42	.06 .11 .03 .07 .09	.05 .08 .03 .06 .06	2 1 1 1	2 3 1 1 2	
	R21+00N 4+00E R21+00N 4+25E	1 1	25 21	22 8	70 61	.5 .1	15 12	8 6	403 226	7.28 6.22	2 2	5 5	ND ND	4 3	16 20	1 1	2 2	3 2	128 102	. 25 . 24	.079 .092	23 16	54 30	, 47 , 45	29 21	.66 .56	2 2	4.69 5.69	.05 .06	.04 .94	1 ?	2 1	

SOIL SAMPLES

Hage 4

ι

(

C

(

•

C

€

€

€

C

C

•

¢

ł

(

.

÷ •

•

-

.

											MINC	CRD	EXP	LORA	ATIO	N	FIL	E #	67-	- 3.19	20								•			Pag	e 5
	SAAPLEO	NÛ PPM	CU PPM	P8 FPn	ZN Pfr	AG Ppm	N! PPM	CO Ffn	HN PPH	FE 1	AS Pfr	U Ppm	AU PP#	TH PPM	SR FFN	CO PPM	SB Pfr	Bİ Ppn	V PPM	CA Z	Р 2	LA PPm	CR PPM	NG Z	8A Pfm	11 r	Ð PPK	AL I	NA 1	ĸ	м РРМ	. AU# .PPB	
	K21+00N 4+50E R21+00H 4+75E R21+00H 5+00E R20H 1+00H R20H 0+75W	6 2 3 3 2	12 19 19 14 30	21 6 2 13 20	55 61 48 37 67	.9 .4 .6 .1	4 10 10 9 14	J 5 7 7 5	148 129 171 157 331	5.81 5.87 5.47 3.18 4.83	5 2 2 2 5	7 5 5 5	ND ND ND ND	3 2 3 1 1	10 17 27 33 19	1 1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	64 90 110 125 90	.10 .19 .32 .29 .21	.058 .076 .078 .061 .123	15 9 14 6 9	20 27 24 19 35	.14 .39 .62 .39 .41	19 28 25 96 79	.48 .65 .94 .53 .26	3 6 2 2 2 2	1.67 3.48 3.77 1.20 2.11	. 05 . 64 . 10 . 19 . 03	.05 .04 .05 .08	1 1 1 1 1	4 2 1 7 3	
	RION 0+508 RION 0+258 RION 0+258 RION 0+258 RION 0+758	3 1 3 3 2	19 18 11 21 19	8 4 15 7 10	59 67 42 61 71	.5 .3 .2 .3 .6	13 10 4 11 16	9 5 6 9	310 140 76 169 454	5.37 5.23 4.69 5.88 4.79	2 4 2 2 4	7 6 5 5 5	ND ND ND ND	4 3 1 3 1	23 24 8 24 9	1 1 1 1	3 5 2 2 2	2 3 2 2 2 2	102 95 82 115 83	.30 .26 .10 .32 .07	.070 .060 .053 .100 .071	14 8 15 15 12	31 24 27 29 38	. 82 . 30 . 14 . 58 . 37	35 72 18 28 47	.89 .53 .47 .94 .34	2 2 7 7 2	2.95 3.22 2.92 4.49 2.79	.08 .04 .03 .09 .03	.08 .04 .02 .05 .05	2 2 1 1 1	2 4 2 1 4	
 ;	AZON 1+00E R2ON 1+25E ≫STD C/AU-S R2ON 1+50E R2ON 1+75E	5 5 19 4 5	10 17 59 23 19	17 19 39 11 8	70 67 131 69 67	.4 .2 6.9 .5 .3	10 68 12 11	9 4 28 12 9	729 265 1020 600 850	6.60 7.15 4.07 7.45 6.12	4 5 37 2 2	5 5 18 6 5	ND ND 7 ND ND	2 3 36 5 2	16 9 49 26 27	1 10 1	2 2 10 4 2	2 2 23 2 3	95 83 59 125 100	.17 .08 .48 .29 .33	.065 .060 .086 .074 .080	16 16 37 14 11	30 25 59 20 23	.35 .21 .86 .68 .54	27 24 180 34 52	.54 .54 .10 1.00 .73	2 2 37 2 4	2.39 2.25 1.77 4.92 3.70	.08 .06 .06 .07 .10	.07 .07 .13 .07 .07	1 1 15 1	1 1 52 2 1	_
R GRID	R20N 2+00E R20N 2+25E R20K 2+50E R20N 2+55E R20N 3+00E	5 6 5 2 5	21 32 22 24 28	4 18 15 8 15	55 115 103 69 71	.1 .1 .6 .5	9 22 17 9 16	7 17 9 6 8	200 1031 521 213 294	6.99 6.52 5.29 6.00 8.47	2 8 4 3 5	6 5 5 7	ND ND ND ND ND	4 6 4 3 4	28 8 12 15 21	 1 	2 2 2 2 2 2	2 2 3 2 2 2	120 53 72 99 131	.33 .09 .13 .19 .22	.087 .073 .088 .090 .069	12 25 26 20 20	24 32 32 35 46	.58 .49 .36 .40 .55	36 43 48 34 35	.97 .31 .45 .66 .87	2 2 2 2 2 2	4.29 3.70 4.14 4.38 2.94	.11 .06 .06 .08 .09	.07 .08 .06 .06 .09	 	t 2 1 1 2	
	R20N 3+25E R2UN 3+50E R2UN 3+75E R2ON 3+75E R2ON 4+00E R2ON 4+23E	2 6 2 2 5	13 17 28 29 26	20 15 8 17 13	52 56 92 76 73	.1 .5 .1 .7 .5	7 7 (64) 14 16	7 4 9 10 5	370 191 379 496 212	3.72 6.28 4.39 3.89 5.68	2 5 9 10 5	5 7 5 5 5	ND ND ND ND	1 3 4	33 9 8 5 17	1 3 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	126 103 35 44 93	.39 .10 .05 .09 .21	.065 .055 .039 .062 .094	6 15 11 11 14	17 34 64 24 42	.42 .26 .02 .41 .39	38 24 49 49 31	.56 .66 .02 .23 .62	3 3 2 5 6 3	1.06 2.04 3.65 2.68 1.63	.07 .03 .01 .02 .08	.05 .05 .05 .08 .08	1 2 1 1	3 2 1 4 1	
	R20N 4+50E R20N 4+75E R20N 5+00E R19+00N 0+25E R19+00N 0+50E	3 2 5 3 4	33 14 16 18 19	18 19 14 6 19	94 41 42 58 63	.3 .4 .4 .4	23 6 4 10 26	21 (3 4 3	1329) 123 130 332 102	4.41 3.38 6.17 4.14 3.88	9 5 4 2 6	5 5 5 5	ND ND ND ND ND	2 3 2 1 2	24 8 7 21 7	1 1 1 1	2 2 2 2 2	3 2 2 3 2	47 119 67 77 51	. 27 . 08 . 06 . 22 . 06	.085 .058 .055 .080 .057	10 11 12 11 18	30 (48) 26 27 45	.68 .12 .08 .36 .55	52 29 19 52 31	.21 .84 .27 .29 .27	9 2 4 1 2 2 5 2 2 2	2.14 2.54 2.20 2.71 2.53	.10 .04 .02 .07 .03	.10 .05 .03 .08 .05	1 1 1 1 1	1 1 1 2 1	
	R19+00N 0+75E R19+00N 1+00E R19+00N 1+25E R19+00N 1+50E R19+00N 1+75E	2 5 3 6 2	33 26 19 17 15	14 10 22 21 10	96 72 55 50 41	.4 .5 .3 .6	26 10 5 3 7	8 17 3 2 4	353 639) 369 190 22	1.70 3.97 7.78 7.52 1.69	6 7 8 7 2	5 5 6 5	ND ND ND ND ND	3 3 4 4 4	14 10 5 9	1 1 2 1 2	2 2 2 2 2	2 2 2 2 2 2	81 81 46 49 83	.15 .10 .06 .05 .15	.110 .069 .054 .052 .062	18 22 20 29 16	(49 ⁻⁾ 35 27 18 27	.64 .26 .13 .13 .28	4B 33 18 17 17	.43 .36 .26 .23 .59	2 3 2 3 2 3 2 3 5 2	. 60 . 4B . 33 . 23 . 59	.06 .04 .04 .03 .04	.07 .05 .04 .04 .04	1 1 2 1	2 1 1 3 2 1	
	R19+00N 2+00E R19+00N 2+25E	2 3	1 8 17	B 13	45 45	.4 .3	11 6	5 3	137 : 114 - 4	i.32 1.67	2 4	5 5	ND ND	3 2	14 8	1 1	2 2	2 2	95 73	.26 . .09 .	.078 .054	26 14	31 29	.43 .19	25 23	.65 .41	33. 22.	.72 . .51 .	.05 . .03 .	04 05	L L	2	

(

ſ

(

C

C

C

C

C

¢

SOIL SAMPLES

	SAMPLEO	н0 РРМ	CU PPH	Р8 РРМ	ZN PPM	AG PPM	NJ PPM	CO PPM	NN PPM	FE X	AS PPN	U PPM	AU Pph	тн Ррн	SR PPM	CD PPM	SB PP#	18 1997	V PPN	CA ۲	P I	LA PPN	CR PPM	NG Z	8A PP#	T I X	B PPM	AL Z	NA X	*	N PP#	AU 1 PP 6	
	619+00N 2+50E	7	24	13	39	.3	5	2	113	7.15	7	5	КĎ	2	s	1	5, [/]	7	۶ĩ	ú5	655	77	Lin	10		20	,	र छ ?	n 1	nt	,	1	
	R19+00N 2+75E	4	20	11	74	.0	B	-	259	6.05	6	5	ND	,	13	;	Ĩ	· ,	76	71	049	~ <u>*</u>	100	- 1 V 70	24	51	ĥ	5.00	.93 A9	• V 7 0 6	;	,	
	R19+00N 3+00E	5	13	9	58	.8	8	5	396	5.44	Ã	5	NÐ	ì	5	ī	1	ĥ	70	• • • •	010	27	7. 73	14	14	- 1.0 7.6	1	4 4 1	۰۷, ۵۲	. ve 85	÷	,	
	R19+00N 3+25E	7	23	12	44	.2	Ā	2	148	8.76	11	ŝ	NO	,	,		,		44	. U.	057	44	47	.10	10		-	7 44	. 10	.03	-		
	819+00N 3+50F	i	14	19	85	1	š	,	200	4 17		ś	มก	5	ó		-		40 70		.037	17	- 52	10	11	.10	4	3.90		. (**	1	:	
			••				3	ŭ	/ • •	,	*	9	ΠŲ	•	,	1	2	-	20	.19	.030	12	16	. 40	-1	. 21	3	2.23	.01	.11	L	1	
	#19+00N_3+75E	3	16	11	67	.1	12	7	256	5.75	2	5	ND	1	22	1	2	2	126	, 19	.060	16	53	.41	66	.73	2	4,27	.04	.94	1	1	
	R19+00N 4+0+E	4	20	11	47	1.2	11	6	174	6.05	2	5	ND	3	24	2	2	2	102	. 32	.068	14	41	.51	29	,70	4	3,13	.19	.05	1	1	
	R19+00N 4+25E	- 4	29	- 14	95	.2	31	10	507	5.63	8	5	ND	3	27	1	4	2	78	·29	,090	19	50	.00	42	.45	2	3.69	1	.09	1	1	
	R19+00N 4+50E	6	17	6	53	.1	6	2	215	6.67	6	5	ND	2	- 4	1	3	2	54		.061	23	22	.16	16	.21	2	2.65	.04	.05	1	L	
	R19+00N 4+75E	4	29	15	88	.1	(66)	7	364	9.30	10	5	NÛ	I	7	i	2	2	62	.04	.047	12	75	.94	61	.12	5	3.51	.01	.06	!	:	
	R19+00N 5+00E	3	24	11	71	, 9	9	15	748	5.43	۴	5	ND	I	16	1	2	2	0ġ	.18	.074	11	32	.44	30	.60	2	4.04	.05	.46	t	1	
	R18H 0+25E	6	29	9	60	.1	7	21	(1928)	5.20	- 4	5	NÛ	1	12	1	2	2	111	.10	.075	12	31	.24	62	.28	3	3.08	.03	.07	1	1	
	R18N (+50E	5	25	5	45	.1	7	6	340	6.65	3	5	мD	ſ	11	I	2	2	112	.10	.058	15	39	.27	4 B	.45	2	3.66	.02	.03	1	i	
	R18N 0+75E	4	56	20	116	.2	37	15	1150	5.50	14	5	ND	2	9	1	2	2	48	.10	. 126	21	43	.74	67	. 06	2	2.47	.07	.08	i	i	
	R18N 1+00E	3	18	15	51	.4	8	9	599	5.04	2	5	ND	2	19	L	2	2	137	.17	.087	8	26	.28	76	.66	8	1.43	.05	.09	ĩ	1	
	R18W 1+25E	2	24	9	44	.1	12	5	144	4.98	2	5	ND	1	12	Ł	2	2	88	. 24	.054	16	48	.43	36	.58	6	3.13	04	.04	L	5	
0.000	RIBN 1+50E	3	26	12	65	.3	27	6	308	6.83	10	5	NÐ	1	11	1	6	2	132	.06	.055	12	57	.45	64	.28	2	2.97	.01	- 68	1	1	
R GHID	R18N 1+75E	4	26	2	57	.2	10	Ģ	291	7.91	4	5	NÐ	4	72	1	2	2	134	.74	.115	15	29	. 83	72	1.20	2	5.86	31	.14	i	1	
	R18N 2+00E	3	20	2	51	.3	11	9	280	7.53	2	5	KD	5	54	i	2	2	131	.63	.116	13	30	.99	59	1.74	2	5 16	23	12	. 2		
	R18W 2+25E	4	11	13	48	.3	5	3	173	4.65	5	5	ND	1	1 B	1	2	2	97	. 18	.047	16	26	. 20	60	. 49	2	1.36	.04	.04	2	1	
	R18N 2+50E	5	21	8	60	.2	2	5	269	5.58	8	5	ND	2	7	1	2	2	44	. 09	.069	24	30	.19	25	.25	2	5.25	.05	.05	ı	1	
	R18N 2+75E	L	28	15	111	.1	(78)	14	594	4.64	9	5	NÐ	1	10	2	2	2	40	04	.059	11	76	1.16	67	. 04	h	7.75	01	.06	1	1	
	R18N 3+00E	4	27	ę	93	.5	10	7	365	5.54	6	5	ND	1	19	1	2	2	94	.24	087	13	31		46	45	5	3.40	.06	.07	,	i	
	R18N 3+25E	4	28	9	100	.9	11	7	411	5.36	5	5	ND	2	22	2	3	- 7	104	. 27	.083	11	37	52	77	51	Ĩ	3 45	04	08	1		
	R18N 3+50E	3	12	12	31	1	4	2	112	4.16	4	5	ND	1	6	ī	2	2	71	.06	.050	13	30	.13	18	. 49	2	1.35	.03	.03	1	i	
	R1BN 3+75E	4	24	12	B7	.5	34	9	892	5.93	13	5	NÔ	3	5	2	2	3	45	.04	.042	19	54	.56	37	.17	4	3,55	.02	.05	1	i	
	R18N 4+00E	2	17	7	53	.6	14	4	158	4,25	6	5	ND	2	13	1	2	2	62	.13	.060	13	30	. 39	42	. 39	2	3.56	.03	.04	1	1	
	AL8N 4+25E	1	12	15	31	.2	7	3	136	3.45	3	5	ND	1	11	1	2	2	B7	.10	.071	7	34	.21	36	. 42	2	1.76	02	.04	1	i	
	R18N 4+50E	3	15	12	48	.2	19	4	143	3.47	7	5	NØ	1	19	1	2	3	70	.09	.053	12	49	.33	51	.23	2	2.18	.01	.05	ī	i	
	R18N 4+75E	2	17	13	45	.5	11	4	144	5.77	6	5	ND	3	15	i	2	2	77	.13	.054	12	29	.34	45	.59	2	3.21	.05	.05	2	i	
	R18N 5+00E	3	t9	11	58	.2	13	14	729	6.53	6	5	ND	2	13	L	2	2	85	.17	.079	17	32	.40	43	.39	2	2.50	,03	.06	1	i	
	R17N 0+25E	2	25	12	87	.5	10	8	620	5.93	6	5	ND	2	19	i	2	2	113	.19	. 085	15	34	.40	47	.51	2	3.40	. 05	.07	1	ł	
	R17N 0+50E	2	22	3	50	1.2	10	8	314	7.10	5	5	ND	4	33	L	2	2	117	.33	.112	10	29	.63	45	.99	2	5.33	.09	.05	1	i	١
	R17N 0+75E	5	36	9	57	1.1	15	7	196	8.09	16	5	ND	2	7	1	2	2	120	.04	.047	13	54	.30	47	.19	3	3.54	.01	.04	Ť	i	
	R17# 1+00E	4	25	12	77	.3	12	17 (1372,	6.43	3	5	ND	2	15	Ī	2	4	99	.10	.066	16	38	.47	30	.49	Ż	3.89	.06	.07	1	i	
~~>	STD C/AU-S	18	57	30	126	7.3	67	27	995	4.0B	37	17	7	35	48	16	18	18	58	. 48	.083	36	64	.86	177	.10	37	1.91	.06	. 12	14	48 @	<u>e</u>
-	R17N 1+25E	2	25	2	58	.4	12	8	268	6.81	2	5	ND	5	22	t	2	2	107	.31	.085	16	34	.72	23	.84	5	4.36	.10	.06	1	i	

SOIL SAMPLES

Page 6

X.

C

¢

t

Ę

¢.

Ç.

(

(

¢

(

C

(

¢

C

C

X

(

(

1

.

÷

	SAMPLE®	HO PPH	CU PP#	98 894	ZN PPN	AG PPM	NI PPM	CO PPM	RN PPN	۶E ۲	AS Ppn	U PPN	AU PPM	TH PFN	SR PPN	CD PPN	SØ PPM	BI PPM	V PPN	CA I	P I	LA PPN	CR PPH	MG 2	BA PPM	11 1	B PPN	AL 1	NA X	K I	N PPN	AU# PPB
	R17N 1+50E R17N 1+75E R17N 2+00E R17N 2+25E R17N 2+50E	9 11 8 6 6	37 27 33 36 15	22 19 11 18 22	136 74 73 83 46	.4 .7 .8 .7 .7	7 6 11 34 7	12 5 13 10 3	2827 420 703 1308 152	7.41 9.07 7.24 7.75 5.97	8 5 2 10 7	5 5 5 5 5	ND ND ND ND	6 3 5 2 2	3 9 27 22 10	1 1 1 1	2 6 2 3 2	2 2 2 2 2 2	37 67 118 99 101	.05 .10 .30 .20 .08	.125 .061 .092 .108 .071	27 19 15 10 15	17 36 34 55 25	. 14 . 18 . 58 . 67 . 21	18 17 35 43 24	, 21 , 40 , 84 , 23 , 53	2 5 4 3	5.18 4.32 5.09 2.93 1.87	.11 .08 .13 .06 .04	.09 .07 .09 .06 .05	1 1 1 1	$\frac{\binom{2\theta}{2}}{1}$
	R17N 2+75E R17N 3+00E R17N 3+25E R17N 3+56E R17N 3+75E	5 2 11 8 6	30 25 22 17 18	14 23 21 20 6	73 92 62 63 53	.5 .9 .4 .9 .3	11 10 11 6 30	7 10 11 8 5	508 1 700 4 438 10 1321 1 168 6	5.82 4.49 0.68 7.29 8.78	5 6 3 5 13	5 5 5 5 5	ND ND ND ND	2 1 5 2 3	17 10 22 20 7	1 1 1 2 5	2 2 4 4	2 5 2 2 2 2	87 72 176 103 116	.19 .09 .24 .26 .05	.071 .073 .081 .074 .030	15 13 10 11 13	30 34 35 24 59	. 40 . 32 . 54 . 29 . 54	38 62 37 30 33	.46 .15 1.44 .62 .31	2 2 5 4	2.93 3.84 4.73 1.72 2.89	.06 .04 .09 .10 .01	.06 .10 .05 .08 .04	1 1 1 1 1	l 1 2 2
	R17N 4+00E R17N 4+25E RBL 21+00N RBL 20+50N RBL 20+00N	2 5 4 3	38 23 16 24 42	38 15 21 13 28	75 53 78 82 91	.5 .6 .2 1.5 .5	11 26 29 15 8	11 5 5 23 18	1274 4 181 7 237 4 1188 6 1438 6	4.51 7.43 4.97 6.08 6.54	5 12 7 2 15	5 5 5 5 5	ND ND ND ND ND	2 2 1 3 2	30 13 17 52 17	1 1 1 2	2 2 2 2 3	3 2 2 2 2 2	63 107 98 113 65	.36 ,04 .13 .54 .20	.097 .044 .070 .092 .137	11 9 12 45 17	20 57 51 29 16	.71 .44 .59 .84 .61	106 59 67 62 77	.28 .32 .33 .72 .13	9 3 3 2 2	2.54 2.68 2.40 4.11 2.56	.04 .01 .03 .21 .06	.12 .04 .05 .11 .09	1 1 1 1	2 2 1 1
R GRID	RBL 19+50N RBL 19+00N RBL 18+50N RBL 18+00N RBL 17+50N	1 7 8 3	19 24 15 21 19	15 13 10 14 13	36 70 57 85 50	.2 .9 .3 1.0 .6	4 13 10 9 11	4 5 7 5 8	129 2 250 6 291 3 424 7 220 7	2.54 5.23 5.68 7.36 7.60	6 5 7 2	5 5 5 5 5	KD ND ND ND ND	1 5 2 2 5	7 16 48 12 23	1 1 1 1	2 3 2 2 5	4 2 2 2 2	81 64 99 70 137	.05 .18 .47 .12 .27	.053 .100 .068 .082 .110	10 48 16 18 8	13 31 23 31 28	.12 .36 .61 .22 .70	51 20 41 31 30	.22 .31 .81 .35 1.06	9 2 2 2 4	1.13 4,00 2.46 3.45 3.61	.02 .09 .20 .08 .07	.09 .08 .10 .08 .08	1 1 1 1	i 1 2 2 2
	RBL 17+00N RBL 16+50N RBL 16+00N RBL 15+50N RBL 15+00N	3 2 4 7 2	34 10 20 20 14	14 24 12 12 13	89 26 70 61 58	-6 -5 -8 -5	41 5 9 12 10	9 3 9 10 9	397 4 109 2 611 5 293 8 350 4	1.45 2.25 5.67 3.39 1.88	10 5 4 3 5	5 5 5 5 5	ND ND ND ND ND	2 2 3 5 4	32 15 22 46 62	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	70 122 99 149 117	.30 .10 .22 .48 .61	.099 .051 .081 .120 .076	13 7 14 16 10	50 20 30 29 23	.96 .15 .44 .84 .65	73 45 26 42 66	.20 .54 .61 1.37 .96	5 2 4 2 3	3.52 1.02 3.36 4.59 2.05	.12 .02 .08 .19 .24	.10 .05 .07 .10 .11	2 1 1 1 1	2 2 1 2
	RBL 14+50N RBL 14+00N RBL 13+50N RBL 13+00N RBL 12+50N	2 3 7 1 3	17 42 19 43 18	22 22 8 23 12	42 108 57 135 69	.7 .5 .3 .9	7 21 11 14 10	4 11 8 24 (6	82 6 832 4 224 7 2370 6 197 6	5.43 1.34 7.37 5.44 5.12	4 (24.) 4 10 2	5 5 5 5	ND ND ND ND ND	4 1 4 2 2	13 37 22 42 16	1 1 1 1	5 3 3 2 2	2 2 2 2 2 2	7191 72 136 109 108	.08 .38 .24 .74 .20	.043 .094 .049 .260 .064	10 12 10 10 12	41 29 25 28 35	.16 .59 .68 .51 .41	42 93 23 (177) 27	.97 .20 1.17 .26 .71	3 2 5 2	1.81 1.91 2.47 2.20 4.19	.02 .05 .07 .06 .05	.03 .07 .05 .11 .04	1 2 1 1	2 10 1 1 1
	RBL 12+00N RBL 11+50N RBL 11+00N RBL 10+50N RBL 10+00N	2 4 2 3 3	21 19 16 23 24	6 12 13 19 20	55 62 38 95 122	.6 1.3 .3 .2 .3	8 10 9 10 17	5 7 3 9 18 (188 6 436 6 73 4 581 6 1811 5	5.42 5.30 1.92 5.53 5.95	2 4 7 8 6	5 5 5 5 5	ND ND ND ND ND	2 3 1 2 3	18 20 9 28 31	1 1 1 2	2 2 6 2 4	2 3 2 2 2	119 106 114 98 92	.21 .22 .05 .27 .32	.063 .072 .042 .088 .094	12 10 10 12 21	24 27 29 22 36	.49 .59 .12 .44 .55	24 31 40 56 77	.85 .78 .34 .44 .41	2 2 2 2 3	4.11 4.09 1.89 2.49 2.58	.06 .06 .01 .09 .12	.04 .04 .03 .08 .12	1 1 1 1	1 2 2 1 2
~>>	RBL 9+50N ⊳STD C/AU-S	1 19	15 62	16 41	37 131	.1 7.2	6 70	4 28	103 5 1047 4	5.92 1.12	5 40	5 19	9M 8	4 39	14 51	2 17	5 17	2 19	124 60	.14 .48	.074 .090	10 38	19 60	.19 .86	26 183	. 80 . 10	4 36	1.99 1.76	.03 .06	.04 .13	1 13	2 50 <

SOIL SAMPLES

Page 7

K

(

£

Ć

C

¢

C

¢

C

٢

€

C

C

¢

¢

C

C

C

Ç

٩.

	SAMPLE4	NO PPM	CU PPN	PB PPN	ZN PPW	AG Ppm	N L PPM	CO PPM	HN PPH	FE X	AS PPN	U PPW	AU PPN	TH PPM	SR PPN	CD PPN	SB PPN	BI PPM	V PPM	CA I	P I	LA PPM	CR PPH	MG X	BA PPM	T L X	B PPM	AL I	NA 1	K Z	N PPH	AUX PPB
	RUL 9+00N RUL 8+50N RUL 8+50N RUL 8+00N RUL 7+50N RUL 7+00N	1 1 1 9	25 15 16 20 13	10 15 12 11 10	74 49 50 51 63	.7 .7 .9 .4	37 7 9 8 2	7 3 5 5 2	365 133 154 164 271	6.69 4.59 5.66 5.11 10.79	6 4 2 9	5 5 8 5	ND ND ND ND	3 2 3 5 5	8 15 18 29 6	2 3 4 5 3	2 2 2 2 5	2 2 2 2 2 2	87 92 104 124 54	.06 .15 .21 .34 .05	.070 .050 .050 .078 .036	15 10 9 17 19	(78) 25 27 30 20	.70 .29 .43 .54 .09	55 29 24 27 13	.24 .62 .79 1.19 .52	2 2 2 2 2	3.52 2.42 2.31 4.45 2.17	.01 .05 .06 .11	.04 .05 .05 .06 .04	 1 1 1	3 5 1 I
	RBL 6+83N RBL 6+50N RBL 6+00N RBL 5+50N RBL 5+00N	 	20 18 10 24 15	12 13 12 24 18	54 49 34 61 60	.4 .3 .1 .8 .4	10 8 19 9 8	7 3 5 3	224 194 122 258 223	7.12 6.47 2.93 6.36 6.57	2 2 7 7 7	5 5 5 5 7	ND ND ND ND ND	6 3 1 4 3	24 27 11 9 9	5 3 1 2 2	2 4 2 2 2	2 2 3 2 2	151 139 83 69 107	.25 .23 .07 .13 .05	.056 ,045 .026 .061 .035	15 6 12 28 20	35 28 35 41 27	.55 .37 .37 .26 .13	31 64 44 19 30	1.28 1.02 .34 .53 .70	2 2 2 2 2	4.13 1.92 1.33 3.70 2.64	.09 .09 .03 .09 .02	.05 .06 .05 .07 .03	1 1 1 1	2 1 1 1
	RHL 4+50N RHL 4+00N RHL 3+50N RHL 3+00N RHL 2+50N	1 1 1 1	15 14 33 19 27	20 12 27 24 16	36 51 73 45 63	.1 .7 .8 .5 2.3	5 6 12 7 14	4 5 4 5 9	97 178 290 246 668	4,42 5,81 15,24 4,68 6,92	2 2 10 2 5	5 11 5 7 9	ND ND ND ND ND	1 4 14 1 3	17 21 4 29 27	2 5 3 4	2 2 6 2 2	2 2 2 2 2	128 148 105 161 132	.16 .22 .03 .20 .23	.059 .037 .025 .074 .080	8 11 16 8 9	20 28 63 26 29	.21 .38 .18 .30 .44	40 27 32 81 76	.71 1.52 .60 .78 .90	2 2 4 2 2	1.41 1.99 4.06 1.34 2.10	.04 .07 .02 .06 .09	.05 .04 .05 .06 .07	 	t 1 1 2 5
R GRID	RBL 2+00N RBL 1+50N RBL 1+00N RBL 0+50N RBL 0+00	1 1 1 1	29 47 24 20 19	18 28 16 20 14	100 87 54 63 49	.8 .2 2.5 (3.5) 2.6	30 10 8 14 11	6 7 5 6	383 307 215 278 174	7.46 4.49 6.22 6.03 6.88	7 (22) 5 15 2	5 5 6 5 5	ND ND ND ND	3 3 3 3	17 4 11 17 16	1 2 3 3	3 4 2 4 2	2 6 2 2 2	64 34 99 97 116	.16 .02 .13 .20 .21	.052 .062 .056 .064 .068	23 10 18 24 12	42 24 37 37 31	.51 .15 .35 .35 .59	57 59 27 134) 19	,37 .01 .65 .65 .93	3 2 3 2 2	2.99 2.12 2.89 3.42 3.25	.09 .01 .05 .05 .05	.11 .07 .04 .06 .05	1 1 1 1	
S'TRAV.	S 0+00 S 0+25 S 0+50 S 0+75 S 1+00	2 3 6 1	28 14 38 97 12	16 14 26 27 6	63 42 111 142 28	.5 .5 .7 1.5 .3	6 5 9 19 6	4 5 9 30(1 6	116 149 482 3514) 236	8.30 6.16 8.24 7.21 2.13	(31) 5 13 7 2	5 5 5 5	ND ND ND ND	1 4 4 1	11 29 27 37 30	1 4 2 2 1	4 2 2 2 2	4 2 3 2 4	90 190 61 71 47	.09 .23 .40 .49 .36	.043 .034 .084 .127 .080	9 5 7 37 4	19 16 23 39 10	.12 .30 .34 .25 .28	33 58 40 (138) 25	.11 1.43 .26 .38 .35	2 2 3 2 2	1.73 .09 2.73 4.74 .78	.02 .10 .08 .03 .08	.04 .04 .05 .04 .05	1 1 1 1	1 3 4 1
	S 1+25 S 1+50 S 1+75 S 2+00 S 2+25	2 1 1 2	38 44 56 15 33	37 35 20 17 28	116 112 92 42 110	1.4 .8 .6 .7 .5	11 17 13 5 9	7 8 9 6 5	723 1 398 578 346 516	14.58 9,43 7.58 6.20 8.13	19 14 18 2 (39)	5 5 5 5 5	ND ND ND ND	4 5 1 9	13 17 10 25 4	2 1 1 2	3 2 2 2 6	5 4 4 7	91 69 94 157 24	.14 .15 .07 .19 .03	.169 .063 .124 .096 .150	10 10 8 8 8	29 31 28 15 28	.22 .49 .63 .48 .10	35 52 90 71 21	.36 .10 .11 .35 .15	5 4 2 2 2	2.42 3.40 3.33 2.20 B.86	.02 .05 .02 .06 .02	.04 .04 .04 .04	1 1 1 1	5 2 6 1
	S 2+50 S 2+75 S 3+00 S 3+50 S 3+75	3 2 2 5	22 17 78 15 37	28 6 35 2 18	60 28 117 44 113	.8 .1 .7 .4 .7	5 5 17 8 11	4 5 8 7 7	315 110 229 180 254	8.77 2.66 8.60 3.01 6.70	11 (24-) 5 (73)	5 5 5 5 5	ND ND ND ND	4 1 6 1 3	27 18 3 (44) 19	1 1 1 1 1	5 2 3 4 3	5 3 6 3 2	37 141 42 72 174	.18 .11 .01 .46 .09	.065 .024 .051 .051 .051	8 5 8 6 6	23 13 32 12 34	.08 .18 .41 .40 .13	38 25 61 44 65	.18 .74 .07 .30	2 2 2 2 2 2	3.64 .55 4.80 .92 1.40	.02 .04 .01 .11 .01	.03 .02 .03 .05 .02	1 1 2 1 1	3 2 4 1 1
	S 4+25 >6TD C/AU-S	i 18	59 63	39 41	142 134	1.1 7.3	16 71	8 28	392 1 1067	4.23	(42) 37	5 17	ND 7	4 40	7 52	3 17	4 17	2 23	104 62	. 15 . 52	.][4 .094	10 40	39 62	.31 .92	57 181	.31	3 35	3.64 1.84	.01 .07	.05 .13	1 12	2 40

SOIL SAMPLES

Fage 0

١

(

4

(

1

(

(

€

€.

C

(

C

¢

¢

C

C

(

ŧ.

.

	SAMPLEN	MO Pfm	CU PPM	PB PPM	ZN PPH	46 Ppm	N I PPN	CD Ppn	MN PPM	FE I	AS PPM	U PPm	AU PPM	TH Pph	SR PPM	CD PPN	58 Ррн	BT PPN	V PPN	CA X	P Z	LA PPR	CR PPM	M6 X	ва Рич	11 2	B PPM	AL Z	NA Z	K I	W PPH	AUX PPB
	S 4+75 5 6+00 5 7+00 5 7+25 5 7+75	1 5 10 3 2	0 79 66 33 47	4 11 26 46 12	35 169 169 87 165	.1 2.2 1.3 1.1 .2	6 9 23 9 28	3 11 10 8 15	93 1512 535 461 1634	.02 9.03 0.99 9.10 7.90	2 (179) 10 15	5 5 5 5 5	ND ND ND ND ND	1 9 5 2 1	55 7 26 27 29	1 1 1 1	$\begin{pmatrix} 2\\ \ddot{q} \\ 2\\ 3\\ z \end{pmatrix}$	2 2 2 2 2	15 30 69 171 117	.47 .09 .22 .25 .39	.059 .300 .103 .138 .191	2 19 B 7 5	7 29 30 40 59	.20 .17 .60 .40 .82	49 59 60 41 90	.12 .12 .17 .43 .10	2 2 1 2 2 2 2	.46 0.05 2.96 2.01 2.93	.05 .01 .08 .05 .07	.05 .04 .05 .05	 2 	2 1 1 3 1
	5 8+50 5 8+75 5 9+00 5 9+25 5 9+75	1 2 1 3 1	34 43 37 82 33	7 10 17 17 17	113 173 161 202 82	.7 .7 .4 .1 .B	11 23 19 36 12	9 12 11 14 7	615 1202 1855 990 838	7.32 6.06 5.73 7.07 7.74	2 (23 (21 (26 18	5 5 5 5 5	ND ND ND ND	5 2 2 3 1	22 11 16 6 23	1 1 1 1	3 2 5 4 3	5 2 2 2 2	110 73 76 67 103	.28 .18 .23 .11 .11	.174 .099 .113 .119 .091	6 11 12 15 6	28 39 37 46 29	.44 .51 .45 .76 .30	51 105 110 102 89	.99 .09 .10 .07 .19	5 4 2 2 2	6.37 3.59 3.25 4.05 2.24	.05 .01 .03 .01 .05	.05 .07 .06 .05 .04	1 1 1 1	3 1 1 4
<i>*</i> .	S 10+50 STD C/AU-S S 10+75 S 11+25 S 11+75	l 10 1 1	25 60 40 15 93	10 39 9 8 16	81 127 74 40 153	.1 6.9 .2 1.6 .2	12 69 14 8 36	17 28 18 8 22	2436 1011 1069 202 982	7.08 3.90 4.87 3.02 7.45	(30) 39 (24,) 7 (40)	5 17 5 5 5	ND 7 ND ND ND	2 38 1 6	32 50 53 38 6	1 18 1 1	2 17 2 2 2	3 20 2 2 2 2	122 59 103 70 83	.32 .44 .52 .31 .08	.241 .090 .095 .066 .116	6 37 7 6 16	32 59 24 13 46	.60 .81 .87 .49 1.19	50 [69 56 42 83	.52 .10 .45 .22 .06	2 37 2 4 5	3.51 1.86 2.14 1.53 4.13	.13 .06 .24 .15 .01	.07 .12 .10 .07 .06	1 13 1 1 1	1 52 1 1 1
	S 12+00 S 12+25 S 12+50 S 12+75 S 12+75 S 13+00	1 6 724 21 6	92 9 15 16 11	14 7 19 22 10	154 61 50 53 53	.1 .1 .6 .8 .1	37 7 6 7 6	22 4 3 4 6	927 236 272 279 261	7.61 1.01 7.25 8.11 4.77	(41) 2 9 8 3) 5 5 5 5 5	ND ND ND ND	4 1 16 21 3	(163) 21 21 35		2 3 4 8 2	2 2 2 7	82 18 54 48 111	.08 3.19 .12 .13 .25	.111 .055 .044 .048 .057	17 4 10 11 11	40 6 20 31 13	1.1B .25 .21 .25 .39	90 116 42 40 46	.06 .15 .42 .37 .76	2 4 2 4 2 5 2 1	1.16 .55 1.89 6.49	.01 .06 .05 .06 .12	.05 .04 .05 .05 .05	1 `l 1` 2 1	2 1 1 1
	S 13+50 S 14+00 S 14+25 S 14+50 S 14+75	5 1 4 1 1	48 122 23 60 9	18 18 21 11 9	167 157 52 65 19	.1 .1 .1 2.4 .1	22 39 6 12 2	14 15 6 7 2	2797 369 567 175 90	5.43 6.38 9.33 6.65 3.71	(45 - - 21 -) - 8 - 17 - 5) 5 5 5 5 5	ND ND ND ND	2 3 1 2 2	30 14 13 9 5	1 1 1 1	2 2 2 2 3	2 2 3 4 7	44 55 128 78 115	.45 .19 .10 .04 .04	.077 .051 .040 .055 .037	10 7 7 5 10	29 42 24 29 12	1.09 1.37 .22 .41 .12	(177) 76 60 52 29	.06 .02 .51 .14 .63	2 2 2 5 2 1 2 3 2 1	2.14 5.12 1.93 5.49 1.41	.02 .01 .05 .01 .01	.04 .05 .04 .03 .05	1 1 1 1	1 3 1 1
S TRAV.	S 15+00 S 15+25 S 15+50 S 15+75 S 16+25	1 3 6 2 1	10 4B 47 76 11	19 17 22 14 9	33 153 131 72 26	.1 .1 .1 .3	4 34 23 14 5	4 14 13 14 4	163 460 1 689 660(1 72	3.41 0.54 9.32 2.23) 1.58	28 21 (195)	5 5 5 5 5 5	ND ND ND ND	1 4 4 2 1	6 2 2 3 21	1 1 1 1	2 2 2 2 2 2	4 2 2 (43) 3	112 92 91 566 99	.02 .01 .02 .08 .20	.123 .086 .055 .107 .042	12 13 15 2 5	15 42 53 95 14	.21 1.16 .60 .90 .15	66 79 92 9	.15 .07 .12 .67 .39	2 2 2 5 2 6 2 3 3 1		.01 .01 .01 .01 .01	.03 .06 .06 .03 .03	2 2 1 2	1 1 1 1
W-2 TRAV.	S 17+00 W-2 0+00 W-2 01 W-2 3+00 W-2 4+00	- 3 4 1 8 3	22 48 24 25 23	21 26 19 15 13	41 544 59 99 97	.2 .1 .6 .1 .2	7 (67) 6 26 29	4 17 4 5 5	159 1047 250 249 76	8.04 4.72 4.59 9.54 2.68	5 14 11 16 8	5 5 5 5 5 5	ND ND ND ND	4 1 1 2 1	5 49 23 10 31	1 1 1 1	2 2 2 2 2	10 2 2 2 2	176 50 69 92 66	.03 .5B .22 .05 .13	.048 .092 .076 .049 .041	7 16 9 12 6	26 34 22 47 26	.19 .68 .27 .20 .30	59 (154) 83 67 52	.92 .08 .14 .17 .09	2 2 2 1 2 2 2 2 2 2 4 1	2.12 .76 .24 .87 .26	.01 .07 .03 .01 .04	.02 .08 .06 .03 .06	1 1 1 1 2	4 2 1 1 1
	W-2 5+00 W-2 6+00	4 5	27 32	11 20	84 62	.4 2.2	17 13	6 5	163 165	5.71 4.36	11 13	5 5	ND KD	3 1	25 22	2 1	2 2	4	91 78	.12 .15	.045 .060	10 5	33 26	. 22 . 29	48 49	.15 .30	31 21	.51 .60	.05 .07	.05 .04	1	L ł

SOIL SAMPLES

Fage 9

												MIN	ICOR) EX	PLO	RATI	0N	FI	LE	# 87	7-33	\$92												Pana	10
		SAMPLEN	NQ PPM	CU PPN	PB PPN	ZN PPN	AG PPM	NI PPN	CO Ppn	KN PPM	FE	AS PPM	U PPN	AU PPR	TH Pph	SR PPM	CD Ppn	SB PPM	BL PPN	V PPN	CA Z	Р 2	LA PPH	CR PP n	N6 Z	9A PPM	11 2	B PPN	AL Z	NA Z	К Х	W Ppn	AU1 PPB	, ogu	1.5
		N-2 7+00 N-2 8+00 N-2 10+00 N-2 12+00 N-2 13+00	6 2 7 5	41 43 14 42 67	17 5 5 16 11	92 92 74 167 (240	1.0 .2 .2 1.4 .7	18 20 12 38 60	7 3 5 5	14B 45 75 160 111	7.01 2.16 3.16 6.70 8,03	8 8 5 6 14	5 5 5 5 5	ND ND ND ND ND	3 3 2 10 1	29 7 16 7 14	3 1 1 2 2	2 3 2 2 2	2 4 2 5 2	93 77 61 44 63	.24 .05 .09 .05 .06	.054 .020 .037 .043 .028	6 9 13 11 7	37 14 28 39 53	.35 .06 .28 .30 .46	44 31 53 34 56	.20 .06 .27 .17 .03	8 2 10 3 2 8 5 2 2	2.35 .70 2.66 .40 2.01	.08 .02 .03 .02 .02	.05 .03 .04 .03 .04	2 1 1 1 1	1 1 1 1		
W-2	TRAV	N-2 14+00 N-2 15+00 N-2 16+00 N-2 17+00 N-2 18+00	8 12 9 7 3	23 30 27 41 16	14 11 17 15 8	71 (324) 94 (217) 38	.4 (<u>1.5</u> (<u>3.4</u> 1.1 1.0	12 60 13 53 3	5 25 (4 3	144 8082 156 142 70	8.19 3.87 9.76 7.47 7.42	5 2 12 13 2	5 5 5 5 5	ND ND ND ND	6 4 3 7 3	112 172 5 13	1 2 1 4 1	2 2 2 2 2 2	3 2 2 2 2 2	(201) 99 157 52 201)	.06 .95 .04 .01 .07	.027 .082 .042 .039 .010	6 16 6 8 4	32 49 35 70 22	. 14 . 63 . 13 . 62 . 06	35 (149) 33 48 16	1.56 .50 .70 .01 1.43	2 1 2 3 2 1 6 5 3	.11 .95 .85 .78 .65	.02 .08 .01 .01 .01	.03 .06 .03 .04 .02	1 1 1 3 1	2 2 1 1		
		N-2 19+00 N-2 20+00 N-2 21+00 N-2 22+00 N-2 23+00	9 5 6 4	72 42 36 27 38	13 16 17 21 23	(220) 192 (268 151 188	1.0 1.9 2.1 1.5 1.6	51 30 20 24 36	8 5 5 5 10	125 132 259 202 490	7,59 6,92 7.26 9.65 6.81	12 23 25 30 22	5 5 5 5 5	ND ND ND ND	6 3 9 11 4	4 17 4 3 29	3 2 3 1	3 2 2 3 3	4 2 2 2 2	85 67 64 47 53	.03 .14 .02 .01 .22	.026 .063 .027 .055 .056	9 10 23 10 11	83) 46 40 49 56	.41 .34 .22 .32 .61	99 74 76 33 73	.01 .05 .09 .15 .09	3 6 3 2 2 4 4 6 2 3	. 10 . 37 . 66 . 84 . 50	.01 .01 .02 .01 .08	.03 .04 .05 .03 .05	2 2 1 2 1	1 2 1 6		
		SID C/AU-S	19	60	41	131	7.2	67	29	1043	4.11	37	25	7	40	50	19	18	21	60	.49	.087	38	61	.87	188	.09	31 1.	78	.06	.13	11	48		

SOIL SAMPLES

€

¢

(

C

¢

۲

`. .

. . . .

÷

	SAMPLE®	м0 РРЖ	CU PPM	PB PPN	ZN PPN	AG PPM	NI Pph	CO PPM	NN PPN	FE I	AS PPM	U PPN	AU PPM	TH PPM	SR Ppn	CD Pfn	SB PP#	B1 PPM	V PPN	CA X	P Z	LA PPN	CR PPM	46 I	BA PPM	1 E 2	B PPM	AL Z	NA Z	K T	N PPN	AUX PPB
ι.	5 3+25	12	35	17	69	1.4	6	4	145	13.33	16	5	ND	4	7	1	6	2	129	05	611	10	7.		47		-					_
	5 4+00	11	67	52	661	.0	17	8	449	14.61	/ 43 3	5	ND	4	B	2	ดี	2	111	.14	114	0	11	11. ar	42	10/	4	1.33	.02	.02	1	3
	5 4+50	9	39	21	93	. 3	13	7	240	10,70	1 67	5	ND	2	17	2	5	2	73	.74	.095	, 0	10	- 27	100	150	10 T	3./8	.01	.05	1	
	S 5+25	23	106	13	179	1.3	7	11	919 (20.06	45	5	ND	Ā	4	2	2	7	92	02	1003	11	10	120	40 61	117	· · ·	2.1/	.02	.05	1	I.
	S 5+50	6	34	12	89	15.5	8	9	992	777	24 2	5	2	2	17	1	2	3	105	16	175	10	0.5	-1-2	23	.12	3	/./* 5 70	, 11	.03	1	1
			_			<u>`</u>					مرين . رو ان					•	-	-					21	. 60	60	.62	•	4.20	.05	.96	1	1
	5 3+/3	6	81	14	180	2.6	9	10,	(1594)	0.69	30	5	ND	6	7	2	(11)	Ŷ	38	.10	.274	17	31	.13	62	. 14	3 (2-19	. Bt	.03	ı.	1
	5 6723	2	16		1	1.4	6	6	(1395)	5.32	2	5	ND	2	19	1	2	4	131	. 39	.447	6	23	.22	42	79	2 :	ξ. 95	.02	06	i	1
	5 6+30		27	24	(345)	••	23	12	438 (1.23	26	5	KD	9	3	1	4	3	104	.04	.084	27	42	. 39	72	.25	2	5.32	.01	.04	2	i
	3 67/3	ò	24	12	×214.2	.1	26	13	694	9,04	[21]	5	ND	t.	6	1	7	3	132	.11	.133	8	60	. 62	101	. 19	2 4	1.53	.01	.04	ĩ	3
	5 /+00	¢	36	43	157	.5	14	10	2291	8.21	18	5	ND	2	9	t	3	2	150	.26	.416	6	41	.37	62	.43	2 2	2.60	.01	.24	1	2
S TRAV	6 6.00	-						_																							•	+
• · · · · · · · ·	5 6+00	\$	20	10	151	. 6	21	12	401	6.99	ę	5	ND	Z	6	1	2	4	94	. 09	.093	8	46	.49	114	.03	2.5	. 04	.01	. 65	1	1
	5 8+25	2	4/	16	73		9	19	426	6.36	11	5	ND	2	17	1	2	4	97	.17	. 133	8	22	. 37	48	.13	6 2	. 12	.05	.05	i	÷
	5 10.00	4	34	22	124	1.9	15	0	480	6.21	17	5	NÐ	3	17	1	3	4	71	.15	.121	8	34	. 3B	51	. 19	3 3	. 4.6	.03	05	i	7
	5 10+00	6	30	15	B1	.2	11	6	694 1	0.95	20	5	ND	1	21	1	2	2	133	.14	.127	7	37	.31	48	.39	2 2	.50	70.	. 63	1	2 1
	9 JU+23	ز	34	15	117	.3	15	11	?58	8.07	19	5	ND	2	19	1	5	2	96	.20	.341	8	46	.46	67	-14	2 4	.01	.04	.05	1	i t
	S 11+00	5	31	19	102	2	69	0	474	0 (A			60	-																		
	S 11+50	Ā	67	10	1357	í، ⁽ أَنَّ	17	10	100	741V 0 11	20	5 6	NU NA	3	13	1	2	4	74	.07	-121	8	34	.45	41	.26	35	.03	.02	.02	4	1
	5 13+75	Ā	30	17	79	<u> </u>	' 49 11	2	1111	4 00 0+11	20	2 5	RU 140		5	1	3	-	48	.05	.137	25	37	.45	57	.10	24	.50	.02	.04	2	2
	5 16+00	Ĩ,	35	16	51		10 10	2	114 1	1.70	13	2	ND	0	14	I	2	2	194	•19	.051	7	48	.71	51	. 44	25	. 82	. 07	.05	1.	1
	S 14+50	4	358	82	120)	.7	26S Y	i de la	, 174, 1 174, 1	1.29	737	- -	40 MD	L E		1	2	2 ((293.)	.09	.059	7	47	.41	37	.69	22	. 66	.01	.02	1	ł
			200	••	$e_{\mathcal{V}}$	••	2	ല	<u> </u>	1+41	9	J	ΜŲ	3	Ð	L	Ż	2	49	.07	.146	25	41	1.95	111	.01	63	- 58	.01	.08	1	2
	S 17+25		40	19	122	.2	15	8	368-1	0.43	18	5	ND	4	3	t	,	,	871	04	144		47	E7								
	5 17+50	3	68	26	129	.6	29	11	291	B.55	12	5	ND	5	Ă	;	2	Ť	01	- 11		19	4/	.32	۵/	.10	25	.27	.01	-04	1	1
	STD C/AU-S	18	62	38	132	7.5	68	28	1047	1.04	40	tB	B	37	50	18	15	21	40	47	A0A	8 70	21 21	.37	6/	.02	64	. 63	+01	.04	1	1
								-					•		••			61	94		+ 410	74	36	.a2	180	, 0/	52 1	.75	.05	.12	12	53

SOIL SAMPLES

Page 11

C

C

C

C

Ċ

<

(

¢

`

•

.

-

.

.

.

	SAMPLE	H 0	CU	PÐ	ZN	AG	TN.	CO	HH	FE	AS	U	AU	ŤH	SR	CD	SB	10	¥	ÇA	ρ	LA	CR	R6	BA	T1	B	AL	NÁ	K	N	AUt	
	,	PPR	PPH	PPM	PPN	PPH	PPN	РРЛ	PPN	Z	PPN	PPN	PPR	PPH	PPN	PPN	PPN	PEN	PPR	I	I	PPN	PPH	Z	PPM	X	PPN	z	I	z	PPN	PP9	
W-2 TRAV (bottom)	C 01	25	163	16 26		2,4	61	22	1066	8.25	(60)	5	ND	3	28	8	j [∶] 12]	> 2	59	.17	. 135	10	37	.53	133	.01	2	1.56	.01	.07	3	1	
	0.0.02	. !!	100	25	(1945)	1.2	131	21	1015	6.84	<u>,</u> п.,	2	ND	2	39	- 21	8	2	30	. 31	.099	12	39	.70	122	.01	- 37	1.53	.02	.07	4	1	
S TRAV	5 2+84	3	123	24	168	•1	38	19	857	6.37	12 8 j	5	ND	3	46	1	2	2	29	. 56	.152	7	23	.86	105	.01	2	1.53	.02	.04	l	1	
	5 13+25	7	62	11	103	.2	22	13	(2493-)	4.94	146	5	NÛ	2	54	1	2	2	42	1.04	.086	14	28	.89	200	.09	2	1.93	.03	.04	1	1	
	W-2 0+00	5	70	- 24	492	.5	64	17	1073	5.42	15	5	ND	3	B3	L	3	2	63	.89	.113	20	40	.94	239	. 15	3	1.96	.11	.12	2	Ā	
																									1		-			• • •	-		
	W-2 4+00	4	37	16	385	.3	60	14	(2 <u>1</u> 93))	4.50	13	5	ND	2	(150	1	2	2	45	1.18	.089	14	34	.76	216	. 07	20	1.50	.08	08	1	1	
	₩-2 05	6	42	- 11	411	.1	62	15	1708	4.87	14	5	ND	2	82	2	2	Z	43	.61	.080	15	36	.76	182	.04	,	1.51	05	. 69	- î	i	
14/ 0	W-2 06	- 4	36	13	5 447	.2	65	15	1722 -	4.80	12	5	ND	3	107	2	2	2	49	.84	.080	13	37	.89	183	. 10	ī	1.49	09	09	, i	i	
¥¥ - Z	₩-2 07	5	40	9	447	.2	64	17	1836	5.14	14	5	ND	2	119	1	z	2	52	. 91	.084	14	39	.84	205	.11	5	1.84	09	08	2	, ,	
	W-2 08	5	37	12	420	'1	63	16	1980	4.64	12	5	ND	2	122	2	2	2	47	.97	-085	13	75	.87	1 IAA	10	7	1 100	101		1	,	
IRAV.					1 1			,				-		-		•	-	•		• * *					1.00		2	1107		1 40	1.	,	
	W-2 09	5	39	14	455	.1	66	16	1169	4.74	12	5	ND	2	114	1	7	,	47	89	086	17	77	96	102	00	2	1 71	67	۸0	,	` .	
	W-2 10	4	39	13	447	.1	67	17	1908	5.03	12	5.	NÜ	ī	104	,	- 7	2	40	90		17	70	.0.	1.02	.00	4	1.01		.00	1	4	
	W-2 10-A	4	22	10	172		31	,'	630	3.64	10	5	ND	÷	04	÷	,	- 7	40	1 14	. 079	13	20	· 91 67	1170	.08	4	1,01	107	.07	1	1	
	k-2 11	3	27	7	3715	. र	47	, ń	3567	1 24	4	š	MB	;	104		-	ب م	74	1.39	.080	10	4U 57		170	.06	2	2,05	104	.06	L.	I	
	N-2 12	i	79	17	1170	.,	50	17	11818	1 20	170)		~~~	<u>,</u>	140	-	<u>,</u>	4	34	. 77	.0/3	¥		*26	151	.06	2	1.19	.03	.06	1	1	
	* 2 11	•	• (14	1911		20	14	11903	3.17	0	J	RŲ	4	70	3	4	4	34	1.01	.0/9	12	22	.70	167	.08	4	1.41	.06	.08	2	1	
	W-2 19+50A	8	62	74	111713	.5	214	191	1419	5.98	17	4	ND	4	1201			•	54	74	0 * 0		F 1		1		•				_		
	¥-7 20+00	5	61	18	1410	1	177	20	1270	5.00	14		MD	3	, ia	-	3	4	30		.070	14	34	. 69	1141	.04	5	2.87	.05	+07	3	1	
	K-7 71400	ŝ	40	- 10	517		197	40	1220	2100	10	ں ج		-	97	4	1	4	40	• 67	.080	Y	54	1.18	140	.03	2	1,94	.03	.05	1	1	
	N-7 77400	5	50	10	1.0	.1	120	17	1440	7.00	17	3			60	1	2	5	49	• 66	.077	9	53	1.17	143	-03	2	1.95	.03	.05	2	1	
	W-1 21100	3	40	17	247		149	- 17	1913	4.78	17	2			63	3	2	2	29	.65	.077	10	54	1.17	139	.03	5	1,98	.03	.06	-1	1	
	#"Z Z3TVU	4	84	17	1201	•1	177	14	1208	4.96	18	5	ND	1	74	2	2	2	39	.72	.078	9	52	1,14	出44	.03	9	1.95	.03	, 05	2	1	
	STD C/AU-S	18	59	36	131	6.7	68	28	1033	4.10	36	17	7	36	50	16	17	21	59	.47	.091	37	60	.87	177	. 07	36	1.76	.06	.13	13	48	

STREAM SEDIMENT SAMPLES

Ć

Page 12

۰,

€

,

· ·

· · ·

· ·

•

• •

· •

Ť

ł

.

	SAMPLE	MQ PPM	CU PPH	98 PP#	ZN PPM	AG PPM	NI Pph	CD PPN	NN Pph	FE Z	AS PPH	U PPM	AU PPM	TH PPM	SR PPM	CD PPN	SB PP#	B1 PPN	V PPM	EA Z	P Z	LA PPM	CR PPM	м6 Х	84 FFM	וז 1	B PP#	AL I	NA I	K 2	N PPN	AUR PPB
31 A TRAV STREAM	31A 0+00 31A 1+50 31A 3+00 31A 4+50 31A 6+00	9 7 7 6 7	67 47 44 45 45	16 18 13 20 10	271 254 243 219 269	1.0 .5 .7 .5 .4	27 20 18 17 20	17 12 11 12 11	1950 1125 905 1134 1017	6.56 5.44 5.56 5.96 5.45	. 42 31 26 27 31	5 5 5 5 5	ND ND ND ND	3 3 3 3	44 65 55 58 49	3 2 2 2 2 2	2 2 5 2 2 2	2 2 2 2 2 2	52 51 52 55 48	. 40 . 59 . 62 . 62 . 51	.137 .132 .141 .142 .114	16 14 13 15 12	15 16 13 14 12	1.03 .96 .94 1.02 .95	(134) (134) (134) (124) (124) 111	.10 .12 .13 .13 .11	2 2 3 15	1.85 1.68 1.56 1.74 1.60	.04 .08 .05 .05 .05	.96 .05 .05 .07 .05	 	(11) 1 2 1 1
SEDS.	31A 7+16 31A 34+00 ROU 0+00 ROU 0+25 BOU 0+75	12 - 10 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3	106 45 182 175 127	20 15 37 33 26	1173) 375 155 161 126	1.4 .5 .4 .4	71 27 29 25 21	22 11 32 32 26	2885 948 1445 2063 1657	8.14 5.38 7.51 8.24 7.23	46 25 35 83 83	5 5 5 5 5	ND ND ND ND ND	3 2 2 3 2	42 <u>17</u> 25 23 25	13 4 1 1 1	5 2 5 10 7	2 2 2 2 2 2 2	49 54 145 139 121	.47 .42 .45 .48 .84	.138 145 104 .111 .112	26 12 9 11 6	19 	.74 (1,02 1.84 1.99 2.02	(139) 91 53 46 51	.03 .11 .17 .18 .17	2 2 8 16 2	2.28 1.56 3.69 3.25 2.65	08 08 04 04	.04 .04 .07 .07 .09	1 1 1 1	. 8 1 10 15 2
BOU 3 CLAIM	BOU 1+50 BOU 1+75 BOU 2+00 BOU 2+25 BOU 2+50	2 3 3 2 2	199 162 207 176 189	30 35 73 48 51	182 168 279 211 210	.3 .5 .4 .5	31 26 33 30 28	56 30 36 33 34	2493 1892 2247 1933 2020	9.17 7.82 8.67 8.13 8.32	51 36 77 65 73	5 5 5 5 5	ND ND ND ND	2 2 2 8 2 2	26 17 18 18 19	1 1 1 1 1	2 2 6 5 5	2 2 2 2 2	170 131 124 143 126	. 52 . 38 . 40 . 43 . 47	.104 .104 .095 .096 .099	10 17 10 9 8	41 41 52 50 40	2.25 1.89 2.39 2.35 2.25	66 54 49 51 48	.20 .18 .16 .17 .15	3 6 15 3 2	3,56 3,31 3,40 3,31 2,91	.04 .05 .04 .04	.05 .07 .07 .07 .08	1 1 1 1	8 17 23 7 144
SOIL SAMPLES	BOU 2+75 BOU 3+00 BOU 3+25 \$OU 3+50 BOU 4+25	3 3 10 11 2	163 170 198 188 171 -	30 28 33 23 36	140 155 158 137 177	.4 .5 .5 .5	23 22 27 27 27 27	34 33 44 43 31	1824 1680 2421 2301 1292	8.27 8.77 10.79 9.91 8.42	67. 96 160 (103 (44)	5 5 5 5 5	ND ND ND ND ND	3 2 2 2 2 2	18 19 24 26 18	1 1 1 1 5	4 2 9 3	2 2 2 2 2	121 117 95 88 128	.55 .55 .47 .52 .38	.106 .118 .126 .108 .115	7 8 9 7 5	27 24 18 19 53	2.19 2.13 2.12 2.10 2.70	45 48 73 58	.15 .14 .16 .17 .17	2 17 13 11 2	2.59 2.61 2.50 2.31 3.12	.04 .04 .08 .08 .03	.05 .04 .05 .06	1 1 1 1 1	17 41 156 55 42
. در می	800 4+50 Bau 4+75 Bau 5+00 Bau 5+50 Std C/Au-5	2 2 3 .4	215 196 199 15 57	31 88 45 3 39	150 421 221 37 131	.3 .6 .3 .1 7.1	2B 26 3B 14 67	32 36 56 4 27	(1648) 2048 1861 98 1039	7,91 8,77 8,87 8,11 3,99	(50) 1343 108 8 38	5 5 5 5 20	ND ND ND ND 7	29 2 3 4	15 21 14 13 50	1 2 1 1 18	3 5 4 2 17	2 2 2 2 20	121 103 108 119 57	.38 .41 .30 .02 .48	.137 .075 .092 .022 .086	11 12 7 10 37	47 26 47 51 55	2.31 2.01 2.62 .23 .89	57 91 71 51 178	.16 .12 .13 .38 .08	12 2 2 2 36	3.49 2.76 3.20 1.94 1.86	.04 .04 .03 .02 .08	.07 .05 .06 .02 .13	L L L 14	13 480 28 2 48

STREAM SEDIMENTS & SOIL SAMPLES

,

Page 20

٩

•

	COMPANY: HI TEC RESD	URCE MANAG	ENENT		相比	I-EN LABS	ICP R	EPDAT				(ADT	:F31)	PASE 1 DF 1
	PROJECT NO: 87 BC 03	4		705 WES	15TH 51	I., NORTH	VANCO	WVER, B.C.	V7N 1	12			FILE	NO: 7-15975
	ATTENTION: D. LYNAN				(60)4) 9E	0-5914 0	R (604)988-4524		¥ TYPE	501L 5EOC	HEH +	DATE:0	CT 16, 1987
	(VALUES IN PPN)	A6	ĀS	BA	CD	ĊO	CU	MN	ND	PB	SB	ZN	CR	AU-FPB
	L 701 STREAM	1.5	15	309	2.8	13	23	1457	2	31	6	142	29	5
0+755 3125W	L 702	2.6	13	89	.4	10	21	468	i	17	1	64	37	5
11 3+50W	/ L 704	1.0	10	120	.9	6	24	268	3	5	1	72	44	5
11 3+75W	/ L 705 40M	1.0	13	87	1.8	7	12	147	ł	14	i	41	2	5
" 4+00 W	/ 1 706	1.7	9	10B	, 5	10	31	835	1	16	1	82	50	10
11 4-125W	L 707	.7	23	166	.3	6	24	273	2	18	2	6B	49	5
11 4+5DV	✔ L 70B 40H	1.5	16	75	.1	7	27	639	2	15	7	77	63	5
	L 709 STREAM	3 . 8	12	70	.3	23	33	4555	3	27	5	75	21	5
	L 710 STREAM	3.7	18	71	• 5	23	27	2317	3	22	2	85	74	10
0+155 4+75W	L 711	1.8	<u>۹</u>	179	,2	7	11	202	4	13	4	53	12	5
5+00W	'L 712	4.3	14	247	. 4	11	17	2213	4	31	4	55	17	2
R GRID 5+50W	L 713	3.7	1	102	.6	9	23	386	5	27	4	81	36	5
	L714 STREAM	2.9	6	198	.7	11	24	579	3	22	1	158	22	10
	L715 STREAM	3.3	1	171	1.8	i 4	33	2076	3	22	7	198	27	5
07255 5100W	L 716	6.9	48	100	.6	28	45	1290	3	10	10	98	18	5
	L 718 40M STREAM	2.7	28	467	2.8	21	42	1746	2	27	9	186	21	5
4+255 1+00W	L 720	3.6	7	63	.7	6	21	175	6	32	3	42	26	10
0+255 0+00BL	L 721	4.3	12	56	i.3	12	25	290	3	21	3	84	31	5
	L 723 STREAM	2.1	12	90	1.3	i 6	26	1125	2	26	3	90	13	5
14+00N OHOOBL	. <u>L 725 40M</u>	3.1	1	47		<u> </u>	20	284		37	9	75		5
14150N, 0100BL	. L 726	2.9	3	47	.6	10	25	2115	10	27	1	130	7	10
18 HODN 1400 E	<u>1_729</u>	1.4	8	6B	.i	6	26	546	4	24	10	122	26	3
	L 771 STREAM	1.9	8	245	2.4	9	25	2861	2	49	1	186	2	5
below J GRIL	L 772 AUN STREAM	1.0	22	207	2,4	11	30	1836	3	27	ł	163	17	19

- ·

· · · · · · · · · · · · · · ·

.

•

STREAM SEDIMENT AND SOIL SAMPLES

.

.

۰ ب

٩.
MINCORD EXPLORATION FILE # 87-3392

.

.

the second s

	SAMPLE	MO	CU	PB	ZN	AG	NE	CO	IN	FE	AS	U	AU	TH	SR	CD	58	BI	v	CA	Р	1A	C.R.	#6	RA	71	P	۵1	NG	r		6118
21 A		PPN	PPN	PPN	FFN	PPN	PFN	PPH	PPN	1	PPN	FPN	PPH	PPH	PPN	PPN	PPN	PPN	PPN	1	1	PPN	PPN	1	PPN		PPN	, y	4	Ŷ	ЙО Н	000 000
SIA	X	_																			•	,		•		•	••••	•	•	•		F F C
	31-A 0+00	2	16	19	154	.1	2	7	412	7.74	10	5	ND	5	91	2	2	2	31	2.39	. 268	τ	12	84	177 .	01	7	2 21	a t	75		n
TRAV.	31-A 4+50-H	1	11	16	66	. 1	2	1	190	1.22	3	5	ND	6	34	1	2	2	1	.33	.013	79	4	00	(200)	61	. 21)	£123 \$3	.05	20		4
	31-A 19+50-R	1	6	13	68	.1	1	3	297	4.17	6	5	ND	1	3	2	2	2	76	.06	470	2	- 11	1 20	15	01	<u>(a</u>		. (*)	120		1
	31-A 25+60-R	8	22	15	62	,1	2	10_	228	5.67	24	5	NĎ	i.	15	1	2	2	47	.70	.137	Å	9	70	50	01	2	1.01	.01	٤0, ۸۸		4
	J16+70N 0+50W -R	6	29	13	60	.1	10	6	343	5.74	23	5	ND	2	4	1	2	2	18	. 10	009	Å	18	1 73	11		2	•11 7 17		10		·
J GRID)																-	-				-		1140			£ .	2,02		+10		2
	J13N 2+00W -R	1	12	17	62	15.2	3	1	64	2.61	-176	5	ND	1	3	1	п	3	7	. 01	004	5		ń١.	17	64	7	41	A 1	A 4		(a
	AZ1+85N 3+00E -R	2	55	11	55	.2	/114	30	11735	5.97	7	5	ND	1	dir.	ť	2	2	80							.01	4	4V'		.44	+	ູລານີ້າ
	R21+30N 2+25E -R	3	4	19	10	.1	4	1	49	1.87	9	5	ND	3	17	;	2	2	70	0121	. 031	- 11	146,	3.75	· 1/1 ·	•01	67	2.46	.02	.12	1	1
	R21 0+50E -R	1	23	16	113	.1	30	16	1017	6.71	Ĵ	5	ND	16	(717)	۱.	2	,	115	••• • • •	*VJ0 7AQ	. 33 1 77	5	1.04	70			.33 	.03	-10	1	3
	R21 0+66E -R	3	23	15	109	.1	26	15	1003	5.40	6	5	ND	14	1,	1	2	;	110	1 11	100	5 73 1 44	34	4.00	- 201 -	' . 49 	2.2	<i></i> /U	.06	.04	1	l
											-	-		1		•	•	•		1,01	+270	1	10	1.33	37	. 34	37	6.46	•Q7	.02	1	1
	R21 0+93E -R	4	29	15	(215)	.1	25	15 /	1127 -) 6.28	6	5	2	1,9	145)	1	2	7	174	S D1	200	1 10	40	n 60)						
R GRID	R21 1+35E -R	- 4	24	13	95	.1	28	15	617	5.67	4	š	ND	115	-07	1	7	5	114	J. 71	1200	1 10	46	2.02	122.4	. 55	12 3	1.33	,05	+02	L	2
	R21 2+05E -R	2	29	15	164	.1	43	16	771	6.69	,	Ę	ND	17	16)		4	÷.	123	7.17	1232	128	48	1.90	33	.45	8.3	5.87	•05	•01	1	1
	R21 2+06E -R	2	23	15	104	.2	31	13	547	4. 49	ŝ	č	ND		S		4 7	-	144	3.73	.270	201	32	4.29	60	. 54	5 4	,00	•04	.02	· I	1
	821 2+11E -R	4	24	8	121	.2	32	i.	HIT	5.01	Ĩ	ś	ND.	10	(-	<u>_</u>	4	103	4.01	. 276	1.	48	1.52	45	.44	12 3	5.57	.05	.02	1	I
			-	-			•••		W (1)	4.41	7	ų	ny	£7.	ATT.	Ŧ	4	1	131	4.75	. 362	{ 4 6	51	2.11	92	47	15 4	, 43	.04	.02	2	1
	RBL 19+30N -R	1	123	22	6B	.5	12	127	12172	4 02	26	5	MB	7	<u>, (15</u>)	•	•	•	70			••										1.5
	80L 6+74N -8	1	5	2	13	.7	,	1	134	50	20	5	NV MB	- J - T	1010	+	2	-	28	4.67	.127	11	12	. 58	83	.01	19	.76	.03	.30	1	(42)
	RBL 1+66# -R	1	27	7	124	.,	10	ġ	747	4.50	0	5	90 -	1	П	ي •	3	-	4	.05	.007	2	4	.08	10	. 01	4	.15	.01	.02	1	<u></u>
S TRAV.	5 2+84N -R	6	54	11	70		10	ці.	852	4.04	20	ŝ	105			- 1	2	4	44	•12	.087	(257	4	.07	80	.01	1	.70	.02	.26	1	1
10/-2	¥-2 1+62 -R	3	5	13		.1	7	10	70	1 31	75)	5	ND.		19	1 7	í A	2	48	.35	.098	15	20	1.57	(189.)	.17	28 - 2	2.09	.07	.10	1	4
		-	•			••	•	•	21	1131		4	AU.	8	а	3	8	2	1	•01	.007	·Z	3	•02	1 35	.01	4	-19	.05	.13	1	L
I HAV.	₩-2 &+10 -R	2	12	5	66	-1	77	4	100	1 05		c	N0	•	<u>(</u>)			-														
~~~>	STD C/AU-R	18	62	40	133	7.3	¥9	78	1141	4 17	41	10	עה	40	(301/	1		2	13	2.04	030	2	10	.51	32	.01	8	.79	.02	.05	I	4
- /				••				20		1.14	71	11	'	40	30	18	17	14	28	. 48	, OB9	28	60	.87	180	.09	37 1	.74	.06	.13	12	520

* ALL SAMPLES LISTED ON THIS PAGE ARE GRAB SAMPLES.

ROCK SAMPLES

Page 13

N

٠. ٩,

#### MINCORD EXPLORATION PROJECT-EASTFIELD FILE # 87-3431

SAMPLEN	NO PPM	U) FPM	FB Pfm	2N PPN	A <del>G</del> PPM	NÎ PPM	CD PPN	HN ₽PM	FE 1	а5 Ррн	U PPM	AU PPN	TH PPM	SR PPM	CD PPN	SB FFM	B I PPM	V Pfn	CA 2	P 2	LA PPN	ER PPM	MG l	8a PPM	11 1	8 PPM	AL 1	NA I	K T	W PPN	AU <b>#</b> PPB
BOU 3 800 51	i t	48   10	18 11	68 92	.1 .1	6 17	9 20	1682 1066	6.81 6.83	127) Ž	5 5	MD Nd	1 	(693) 47	1 1	17 ⁻ 2	2 2	36 139	12.05	.071	4 3	6 34	3.63	57 66	.01 .31	2 2	. 44 3. 16	.01 ,06	.23 .0B	2 1	1 3
CLAIM BOU 53 BOU 54	1	68 140	7 3	58 55	.2 .3	66 15	23 17	920 1052	4.51 5.00	47	5	NQ ND	3 1	22 330	L 1	2 7	2 2	99 49	.97 5.10	.162 .116	6 6	191 13	3.51 1.77	( ¹³⁴ 128)	.12 .01	2 7	2.44	.04 .06	.08 .25	2	1 2
BOU 55 ROU 54	3	117	11 20	74 311	.I .3	17	18	890 1957	5.24	4 20 )	5	ND ND	1	21 • 725 \	۱ ۲	2	2	16L 24	. 64	. 108	3	53	2.73	- 39	. 29	,18 ,32	·2,78	.0H .01	.06	1	1
900 57 600 58	1 2	64 97	13 12	10 61	.2 .3	3 16	3 15	104 447	3.30	16 4	5 5	HD ND	2 2	98 22	י ו ו	5	3	27 128	.09 .91	.098	8 3	11 53	.32	(1 <u>38</u> )	. 19 . 44	6 (19	.82 2.16	.06	.25	1	2
R GRID ^{R-00N 6+60 N-R}	2 1	5 5	13 11	8 24	.3 .7	1 1	1 1	21 69	.70 1.31	-187 (303)	6 6	ND ND	3 5	12 5	1 I	2 9	2 3	1 2	.01 .03	.009 .008	21 28	4	.01 .03	108 122	.01 .01	2 2	.18 ,15	.01 .01	.23 .15	1 1	$\langle \overset{2}{(4)} \rangle$
R-00N 2+12 X-R STD C/AU-R	1 18	58 58	7 40	60 131	.3 6.8	2 67	4 27	1020 1039	1.97 3.95	12 39	5 17	ND 7	4 38	95 49	1 18	2 17	2 19	5 56	2.36	.057 .087	16 37	1 57	.36 .88	98 176	.01 .08	39 2	.33 1.03	.05 .08	.16 .13	i 13	 495
																														·	

ALL SAMPLES LISTED ON THIS PAGE ARE GRAB SAMPLES.

ROCK SAMPLES

Fade 21

٢

-----

٦

and the second 
	C P	COMPANY: HI TEC RESOURCE MANAGEMENT PROJECT NO: 87 BC 036				T MIN-EN LABS ICP REPORT (ACT:F31 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7K 1T2 FILE NO								:F31) E NO: 7	246E 1 OF 1 -13978/21+2	, ,	
	Ĥ	TENT	ION: D. LYM	AN			(604)	980-5814	DR (60	4)988-4524		+ TYPE	ROCK GEO	Chen +	DATE:0	CT 15, 1987	ŗ
	-	(VALU	ES IN PFM I	AG	AS	BA	EÐ	60	СIJ	MN	MO	FB	59	ZN	<b>C</b> R	AU-PP8	•
	-	L703	¥G	1.0	19	259	2.0	9	29	708	í	13	i	81	· <u>-</u>	22	
		1717	G	208.9	301	72	1.5	1	93	34	7	546	37	185	37	190	
		L719	Ģ	4.2	21	172	.1	9	34	1053	2	29	2	82	2	35	
		L722	9	2.6	16	44	.1	4	21	558	1	15	1	4B	100	5	
R GRIL	D.	L724	G	2.0	22	123	1.8	7	15	784	1	33	2	71	19	<u>i 6</u>	_
		L727	9	2.0	17	78	1.0	7	10	607	2	19	i	89	37	19	
		L728	4	2.1	15	492	.7	9	4	67B	1	7	6	68	37	27	
		L730	G	3.5	24	76	.6	15	26	872	1	20	1	5B	38	7	
		1731	a	1.3	17	64	1.2	4	19	340	1	17	3	42	29	25	
<b></b>		L732	G	.8	<u> </u>	60	.2	1	5	1090	1	18	<u> </u>	26	101	22	_
		L773	Ģ	.5	74	176	.2	12	11	125	5	19	6	4i	66	17	
31 A TRA	۵١/	L774	4	3.5	29	167	2.0	1	46	28	22	25	11	232	45	12	
31 7 11/	<b>י אר</b> .	L775	<u> </u>	.5	198	214	.3	13	17	133		25	3	41	61	14	_
		L776	R	.6	33	312	.6	16	11	170	12	20	5	33	57	7	
	-	L777	R	.7	32	. 219	.4	13	9	331	12	12	6	105	37	Z	`,
		L77B	R	1.6	11	141	.1	7	38	182	1	20	1	35	14	8	
below J Gl	RID	L779	Ķ	.6	15	90	1.4	4	17	523	1	27	3	61	6	8	
		L780	<u>X</u>	1.4	3	84	.6	5	21	339	1	19	3	71	41	5	-
<u> </u>		1781	K	2.2	23	70	1.5	9	14	785	2	27	3	83	10	8	
		1081	q	1.2	1	9	.4	3	20	2589	i	15	i	52	103	22	
		L802	ĸ	2.5	19	96	.8	17	114	623	4	15	2	59	57	9	
		L803	K	1.9	1	16	.4	8	29	1006	1	15	5	56	68	7	
BOU 3 CLAII	MS.	1804	<i>R_</i>	2.4	19	69	.6	10	132	586	1	14	2	75	40	7	_
		L905	R	.8	16	27	2.6	Ь	14	443	1	27	2	63	104	7	
	ł	1806	R	1.8	23	36	2.7	10	31	960	1	33	1	95	56	9	
		LB07	R	1.9	24	53	2.6	14	60	913	2	31	3	86	29	12	_

. .

5 F **5** F 5 F

١.

.

¥

**. . . .** . . .

.

. . .

SAMPLE TYPE: C = CHANNEL SAMPLE R = ROCK CHIP SAMPLE G = GRAB SAMPLE

ROCK SAMPLES

APPENDIX V

Statistical Analysis of Data

R & J Grid Soil Samples



 $\Box$ 

(PFM) 1_____ 1 đ 1 _____t 4 ( 3) 調調 9) 6 ( 8 ( 19) **1920 1920** 10 ( 12 ( 91) 14 ( 109) 16 ( 114) 20 ( 22 ( 4(1) 新聞時間期的時間的時間時間 24 ( 26 ( 26) 28 ( 21) 30 ( 14) 32 ( 12) 34 ( 10) 36 ( 6) **(200** 38 ( 5) 4O ( 1) 🔢 42 ( 44 ( 2) 11 46 ( 2) 🏨 48 ( 3) 開設 50 ( 1) 11 52 ( () 📘 54 ( 0) 📘 2) 👪 56 ( 58 ( 2) 國 <u>60 ₹</u> 1) 52 ( 1) 11 64 ( () 🚦 Over ( 7) **HERE** j----ł. T ľ  $\odot$ 25 50 75 100 125 Number of Samples 781 Samples 204 Maximum: Mean: Minimum: 3 Median:

Standard Deviation: 13

19

16

----- ----- ------ ------

.

- 2

•

AG (PPM)			
0.1 (	113)		
0.2 (	58)		
0,3 (	76)		
0.4 (	53)		
0.5 (	<b>6</b> 3)		
0.6 (	5Z)		
0.7 (	54)		
0.8 (	54)		
0.9 (	37)		
1.0 (	32)		
1.1 (	22)		
1.2 (	18)		
1.3 (	21)		
1.4 (	14)		
1.5 (	12)		
1.6 (	1 <del>4</del> )		
1.7 (	12)		
1.8 (	5)		
1.9 (	4)		
2.0 (	5)		
2.1 (	6)		
2.2 (	7)		
2.3 (	3)		
2.4 (	7)		
2.5 (	3)		
2.6 (	4)		
2.7 (	2)		
2.8 (	2)		
2.9 (	1)	93	
3,0 (	2)		
Over (	24)		
		0 25 50 75 100 125	
		Number of Samples	
	,		
		781 Sampies Maximum: 17.5 Mean:	0.9
		runimum: 0.1 Median:	0.6
		Standard Deviation:	1.1

NI (PPM)

.

.

• ,

.

.

.

*

•

.

(FEF	17								
			<u> </u>	<b>I</b>	<b>I</b>				
2	(	2)							
4	(	20)							
6	K	75)							
8	(	117)							
10	¢	143)							
12	K	130).							
14	- (	86)							
16	(	54)			ļ				
18	(	32)							
20	(	22)		nie II I					
22	(	16)							
24	(	14)		Ĭ					
26	(	15)		24					
28	۲ ۲	රා							
30	(	4)							
32	(	6)							
ు4 రాగ	¥,	/)							
ురు నార	ų,	4)							
්පි දෙස	5	/) 							
40	ţ	رد حر	114						
42	5	<u>رد</u>	112						
4+4 <u>4</u>	5	2) 4 )	12						
40		1)	88						
40 EA	۲ ۲	1)	11						
		رد. دن	836 E						
-1.4. ≓:/i	,	O	A E						
しか 馬と	÷		8						
	÷	2.) t )	E 8 E 9						
	2	<u>م</u>	F A						
00 Duce	ì		1 【 釈誦】						
uvei	`	Cr7	t 169110					1	
			ŭ	40		120	140	200	
			-		Number of Sa	moles			
			781	Samples	Maximum:	125		Mean:	13
					Minimuma	1		Median:	11
							Standard	Deviation:	10

- ----- ------

.....

. .

AS (FPM) 1 ļ I Ē 2 ( 5 ( 39) dina di Katana da da da da 4 ( 55) 5 < 68) 6 ( 66) 7 ( 47) 8 < 77) 9 ( 40) 10 ( 42) 11 ( 40) and and a state of the second state of the state of the second sta 12 ( 31) 13 19) ( 14 ( 10)4,86 15 ( 13) | ..... 16 ( 9) 10888 17 ( 12) 1.6 18 < 9) 5 19 ( 5) 1 20 ( 2) 🔡 21( 6) 關聯 22 3) 🖬 ( 23 2) ( Ē 24 2) ( 10 25 (2)( ft 26 ( 0) 👔 27 ( 0) 1 28 ( 1) H 29 ¢ 1) 11 30 ( 0) 👔 31 3) 10 - ( 32 ( 0) Over 22) ¢ Į. 5 1 1  $\mathbf{O}$ 4Ö 80 120160200Number of Samples 781 Samples Maximum: 155 9 Mean:  $\mathbf{2}$ Z Minimum: Median: Standard Deviation: 13

CR									
(PPM	)		-			_	_	_	
_			I	I	I		<b>I</b>	J	
6	ŝ,	33	1日第	_					
9	•	73							
12	4	5)							
15	<	27)							
18	(	45)							
21	(	ė1)							
24	(	88)							
27	(	109)							
30	(	88)			机合体运行机 化电子用于服用中止				
33	(	76)				A COMPANY OF A PARTY OF A			
36	ł	63)				ł			
39	(	45)							
42	(	33)	物情况.		8				
45	{	27)							
48	ł	18)		tin (fighte 12), Bone ( Inner of Fighte 15), Bone (C)					
51	ć	24)							
54	ť	16)							
57	Ś	11)							
60	<	4)							
63	(	10)							
66	(	5)	PRO						
69	(	1)	H						
72	(	2)	I E						
75	(	2)	12						
78	(	4)							
81	(	0)	ł						
84	1	1)	11						
87	(	1)	11						
90	(	()	1						
93	<	1)	H						
96	¢	0)	1						
Over	ζ.	4)							
			<b>[</b>				·····		
			Ö.	25	50	75	100	125	
					Number of Sa	amples			
			781	Samples	Maximum:	241		Mean:	32
					Minimum:	5		Median:	29
							Standard	Deviation:	16

•

٠ ۰.

5

.

.

.

-

. .

1 ۰.

٠ .

.

·· ,

-

•

.

•

CCLJ (PPM)   1 1   25 (   25 (   30 (   30 (   30 (   30 (   30 (   30 (   30 (   30 (   30 (   30 (   30 (   30 (   30 (   30 (   30 (   30 (   30 (   30 (   30 (   30 (   30 (   40 (   40 (   50 (   50 (   55 (   55 (   60 (   55 (   65 (   10 (									
(FPM)   25 (1)   25 (1)   30 (1)   35 (1)   35 (1)   35 (1)   35 (1)   35 (1)   35 (1)   35 (1)   35 (1)   35 (1)   35 (1)   35 (1)   35 (1)   35 (1)   35 (1)   35 (1)   35 (1)   35 (1)   35 (1)   35 (1)   35 (1)   35 (1)   35 (1)   35 (1)   35 (1)   35 (1)   35 (1)   35 (1)   35 (1)   35 (1)   35 (1)   35 (1)   35 (1)   35 (1)   35 (1)   35 (1)   35 (1)   35 (1)   35 (1)   35 (1)   35 (1)   35 (1)   35 (1)   35 (1)   35 (1)   35 (1)   35 (1)<									
(PPM) 	CL								
1 1 1 1 1   25 1 1 1 1   30 1 1 1 1   35 1 1 1 1   40 1 1 1 1   40 1 1 1 1   45 0 1 1 1   50 0 1 1 1   55 2 1 1 1   60 5 1 1 1   65 10 1 1 1	(PPM)		°M)						
25 ( 1) [HERRIN]   30 ( 1) [HERRIN]   35 ( 1) [HERRIN]   40 ( 1) [HERRIN]   45 ( 0) [   50 ( 0) [   55 ( 2) [HERRIN]   60 ( 5) [HERRIN]   65 ( 10) [HERRIN]				ll	j	<u> </u>	I	l	
30 ( 1) 1   35 ( 1) 1   35 ( 1) 1   40 ( 1) 1   45 ( 0) 1   50 ( 0) 1   55 ( 2) 1   60 ( 5) 1   65 ( 10) 1	25 (	(1)	5 ( 1)						
35 ( 1) 1   40 ( 1) 1   45 ( 0) 1   50 ( 0) 1   55 ( 2) 1   60 ( 5) 1   65 ( 10) 1	30 (	(1)	) ( 1)						
40 ( 1) <b>(2000) 45 ( 0) (</b> 50 ( 0) ( 55 ( 2) (2000) 60 ( 5) (2000) 65 ( 10) (2000) 75	35 (	( 1)	5 ( 1)						
45 ( 0)   50 ( 0)   55 ( 2)	40 (	(1)	) ( 1)						
50 ( 0)   55 ( 2)   <del>                                  </del>	45 (	( 0)	5 (	1					
55 ( 2) <b>Herrick Constant Southern State</b> 60 ( 5) <b>Herrick Constant Southern State</b> 65 ( 10) <b>Herrick Constant Southern State State</b>	50 (	( 0)	) ( O)	I					
60 ( 5) <b>HEREFORE AND AND AND AND AND AND AND AND AND AND</b>	55 (	(2)	5 (2)						
	60 (	5)	) ( 5)		and an				
	65 (	( 10)	5 ( 10)						
	70 (	(7)	0 (7)						
	75 (	(7)	5 (7)						
	80 (	4)	) ( 4)						
	85 (	(8)	5 ( 8)			المراجعة ال المراجعة المراجعة الم			
	90 (	5)	5 ( 5)						
	95 (	8)	5 ( 8)						
	100 (	9)	5 ( 9)					1	
	105 (	Ģi							
	110 (	41)	5 7 A)				an an an the stand of the stand of the standard of the standard of the balance of the balance of the balance of	I	
	115 (	51	57 51		and and a second se				
	120 3	4) 41	ાર હા		nethiniti la la contra de la cont Referencia de la contra de la cont				
	1/255 (	1)	23 <del>7</del> 7 57 1)	A DESCRIPTION OF A D					
	130 (								
	135 (	2)	5 (						
	140 (	 	1 ( A) ) ( A)						
	175 (	- O)		8					
	150 (	01							
	155 (		) ( O) 5 / O)	ji E					
A CARLER A COMPANY AND A SUBSCRIPTION OF A SUBSC	1400 (	• • •							
		1)	/ / //						
	uver (	1)	( 1)						
					i .u	۹ ب	1 0	10	
v z a a iv				U 4	Number of Co.	o noles	a	10	
NUMBER OF DAMPIES					NUMBER OF DA	uhrez			
								•	
94 Samples Mavinum, 148 Meses				94 Gammlas	Mayimum•	1.6.9		Maan.	a
Minimum 23 Madiase (				70 Gampies	Mini⁄num∙	73		Madian	
Standard Deviation:					, the true is possible	<u> </u>	Standard	Deviation:	2

•

87 86 25

•

٠

.

.

.

.

.

.

.

.

•

.

*

FB (FPM)							
	<u> </u>		<b>b</b>		<u> </u>		
14 (	3) ()						
15 (	2)						
	4)						
17 (	44 J						
19 (	71		25 - 1.				
19 (							
20 (	8)						
21 (							
22 (	9) 						
23 (	9)						
24 (	11)						
25 (	4)						
26 (	2)						
27 (	4)						
28 (	ری 						
29 (	2)						
30 (	2)						
31 (	2)						
32 (	1)						
33 (	1)						
34 (	ပ္						
35 (	1)						
36 (	0)						
37 (	0)						
38 (	$\circ$						
39 (	0)						
40 (	0)						
Over (	1, )			_	_	_	
				1	1		
		0 5	10	15	20	25	
			Number of Sar	nples			
		96 Samples	Maximum:	45		Mean:	22
		·	Minimum:	14		Median:	22
					Standard	Deviation:	5



115 110

Standard Deviation: 23

AG (PPM) I_____[ E_ 0.1 ( 0.2(0.3 ( 0.4 ( (15)0.5 ( 6) 副語語語語 0.5 ( 2) 個職 0.7 ( 0) 0.8 ( 0) 🕴 0.9 ( 0) 🛔 1.0 ( 0) 🛔 1.1 ( 0 1 1.2 ( () I 1.J ( () I 1.4 ( () 1.5 ( 0) 1.6 ( 0) 1.7 ( 0) 1.8 < 0) [ 1.9 ( 0) I 2.0 ( 0) 2.1 (  $\langle 0 \rangle$ ł 2.2 ( 0) 🖡 0) 1 2.3 ( 2.4 ( -0) I 2.5 ( 0) 1 2.6 ( 0) 2.7 ( 0) 1 2.8 ( 0) 2.9 ( 0) 3.0 ( 0) Ĩ 4Q 50 1020 30 O. Number of Samples 0.2 96 Samples Maximum: 0.6 Mean: Minimum: 0.1 Median: 0.2 Standard Deviation: 0.1

•

.

,

.

e.

,

NI (PPM)			
- ·			
8 (	(ز.		
9 (	()		
10 (	01		
	12		
12 1	1)		
1.3 (	17		
144 (	1)		
	0) ()		
10 (	0)		
19 (	30) 30		
10 /	رد د		
70 (	07 रा		
20 ( 21 /			
	ন		
म्म २ १			
20 V 74 I	10)		
25 (	7)		
26 (	7)		
27 (	5)		
28 (	6)		
29 (	7)		
30 (	2)		
31 (	1)		
32 (	3)		
33 (	0)	I	
34 (	2)		
35 (	1)		
36 (	0)	ł	
37 (	1)		
38 (	$\odot$	l de la construcción de	
		0 5 10 15 20 25	
		Number of Samples	
		96 Samples Maximum: 37 Mean:	24
		Minimum: 8 Median:	24
		Standard Deviation:	6



.

.

.

*.* 

.

.

.

.

.

.

,

• •

.

.

.

CF: (PPM)			_				
						<u></u>	
22 \	رد. مرد						
24 ( D/ /	∠) 4)						
40 ( 70 /	শা; ব্য						
20 V 30 /	ມ) ຊາ						
20 (	ریں (ت	i mananya kata kata kata kata kata kata kata ka					
74 ( 74 (	12)						
34 (	13)						
39 (	17)						
40 (	14)						
42 (	8)						
44 (	5)						
46 (	2)						
48 (	1)						
50 (	0)	i					
52 (	0)	1					
54 (	0)	I					
5 <del>6</del> (	1)						
58 (	$\odot$						
60 (	()	1					
62 (	0)	l					
64 (	0)	l I					
66 (	0)	1					
68 (	0)						
70 (	0)	1					
72 (	())						
74 ( 77, 7	() ()						
78 % 79 /	0)	1					
70 N 00 7	- 01	1					
001	0,	· · · · · · · · · · · · · · · · · · ·					
		0 5	<b>1</b> 0	15	20	25	
		-	Number of San	ples			
		95 Samples	Maximum:	56		Mean:	36
			Minimum:	22		Median:	<u>ن</u> ن ،
					standard	veviation:	6

-----

PB (PPM) 1 1 2 ( 6) 指題 4 ( 5) 1988 6 ( 1008 ( 30) 10 ( 39) 12 ( 69) 14 ( 76) 16 ( 101) 18 ( 110) 20 ( 98) 22 ( 79) 24 ( 57) 26 ( 44) 28 ( 19) 30 ( 12) 32 ( 3) 🔛 34 ( 9) 日期期時 36 ( 2) 18 38 ( 4) 間離 1) 40 ( 42 ( O) | 44 ( 1) 46 ( 2) 🏙 48 ( 1) || 50 ( 0) 52 ( 2) 📓 54 ( 0) 📘 56 ( 0) 58 ( 0) **6**0 ( 0) 1 0) J 62 ( Over 1) H ÷ -1---F 5075 100 125 Q 25 Number of Samples 781 Samples Maximum: 203 Mean: 18 2 Minimum: Median: 18 Standard Deviation: 9

_____

------

_____

.

ć

ZN (PPM	)		· · · · ·	
25 30 35 40 45 50 55	(((())))	1) 2) 14) 17) 31) 53) 78) 78)		
45 70 75 80 85 90 95	$\langle \langle $	123) 103) 81) 59) 33) 28) 18)		
100 105 110 115 120 125	( ( ( ( ( (	15) 3) 6) 10) 4) 6)		
130 135 140 145 150 155	$\langle \langle \langle \langle \rangle \rangle \rangle$	4) 2) 1) 0) 2) 1)		
160 165 170 175 Over	( ( ( (	1) 2) 0) 0) 7)		
		<i>,</i>	0 25 50 75 100 125 Number of Samples	
			781 Samples Maximum: 303 Mean: Minimum: 25 Median: Standard Deviation:	69 65 24

### APPENDIX VI

Statement of Costs



#### COST STATEMENT PROJECT 87BCØ36 WORK PERIOD: JULY 15, 1987 TO SEPTEMBER 31, 1987

#### WORK PERFORMED BY NEWHAWK: Salaries: T. MacKenzie 21 days @ \$250.00/day \$ 5,250.00 W. Rogers 20 days @ \$225.00/day 4,500.00 F. Swertz 9 days @ \$225.00/day 2,025.00 G. Garratt 3 days @ \$350.00/day 1,050.00 J. Morton 1 day @ \$350.00/day 350.00 T. Drown 7 days @ \$350.00/day 2,450.00 Expenses (Mobilization) 1,344.26 Sample bags 68.90 Freight (Motorways) 186.60 Walkie Talkies - Rental - Comwest 307.40 Room and Board Brucejack Camp 44 mandays @ \$50/day 2,200.00 Helicopter 15.1 hrs 8,853.90 Geochemistry (10 rock samples were taken off the property) 1107 ICP Analysis @ \$6.00/sample 6,642.00 1107 Geochem Au Assay @ \$4.25/sample 4,704.75 42 Rock Sample Preparation @ \$3.00/sample 126.00 44 Silt Sample Preparation @ \$ .75/sample 33.00 1021 Soil Sample Preparation @ \$ .75/sample 765.75 \$40,857.56 Management Fee 4,085.68 \$44,943.24



#### COST STATEMENT (CONTINUED)

WORK PERFORMED BY HI-TEC RESOURCE MANAGEMENT LTD: Mobilization/Demobilization \$1,020.00 Helicopter 6.6 hours and fuel 3,682.78 Vehicle Expense 619.50 Field Supplies 128.96 Assays (7 rock and 4 stream samples were taken off the property) 28 soil geochem ICP \$154.00 28 SOIL GEOCHEM AU wet 126.00 28 soil sample preparation 25.20 33 rock geochem ICP 181.50 33 rock geochem Fire Au 222.75 33 rock sample preparation 115.50 courier 7.15 832.10 Report (summarizing Hi-Tec and Newhawk data) 4,000.00 \$10,283.34 15% Project Management Fee 1,542.50 Salaries D. Lyman, Geologist 5 days @ \$300.00/day \$1,500.00 A. Cooper, Technician 7 days @ \$200.00/day 1,400.00 2,900.00 Supervision J.P. Sorbara - 3 days @ \$400.00/day (HI-TEC and Newhawk work) 1,200.00 \$15,925.84 TOTAL COSTS: \$60,869.08



-		
	0a,c COUL1 520(2) 1 A B 10a,c COUL1 520(2) COUL1 520(2) S S S S S S S S S S S S S	R GRID 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 12b,d 1
	CENTMENTARY AND VOLCANTO POCKS	BEULUGI LEGENU PLUTONIC ROCKS
	LOWER JURASSIC UNUK RIVER FORMATION	LOWER JURASSIC AND YOUNGER (?) 5a DIORITE
	12a GREEN, RED AND PURPLE VOLCANIC BRECCL SANDSTONE AND ARGILLITE	METAMORPHIC ROCKS JURASSIC 2a ARGILLITE AND SILTSTONE HORNFELS
	120 ARGILLITE AND SILTSTONE	2b QUARTZITE AND TUFF HORNFELS
	12d RHYOLITE AND DACITE FLOWS	SYMBOLS
	12e SANDSTONE AND SILTSTONE	10人 ★ BEDDING (inclined, vertical) → 4500 ← CONTOURS (interval 500 feet)
	TAKLA GROUP (?)	fault GEOLOGIC CONTACT (defined, approximate)
	10e LIMESTONE	JOINT SYSTEM (inclined, vertical)
	SOME GEOLOGY FROM GROVE (1986).	OUTCROP

1





# GEOLOGICAL BRANCH ASSEESMENT REPORT 17,203

SILISTONE, GREYWACKE, SANDSTONE, SOME CALCARENITE, ARGI-LITE, CONGLOMERATE, MINOR LIMESTONE, MINOR COAL UNCLU-DING EQUIVALENT SHALE, PHYLLITE, AND SCHISTE

PRECOW LAVA, BROKEN PILLOW BRECCIA (a), ANDESITIC AND BAS-THE THE SILISTONE WI, MINOR CHERT AND LIMESTONE LIN-

SILTSTONE, SANDSTONE, CONGLOMENATE GE VOLCANIC SILT

· [-- `-++-. . . . . - 3000 ----+ 6234' د سه مه سر ارسه سه مرک

800 METRES

2DATE : FEB./ 1988 FIG. No .: 104 / B 5







•

∆ - 8,1.4,4 SAI	STREAM 6 Au (ppb) MPLE NUMBERS	SEDIM , Ag ( p FOR L- A	IENT pm) NDC-	SA , As Serie:	MP (p) s s/
	SYMBOLS	INDIC	ATI	NG	EI
	▲.	Au	2	10	p
		Ag	2 2	2.0	p
	Δ	As	≥	30	p







. •

-- -

A Location ppm) A Number & Location S RANCH REPORT BRANCH REPORT BRANCH REPORT BO BO BO BO BO BO BO BO BO BO	Location (ppm)				
A Number & Location (ppm) <b>RANCH</b> <b>RANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b> <b>BRANCH</b>	Location ppm )				
BRANCH REPORT OG OG AL REPORT ON THE SULPHERE IS PROPERTY. AMD. B.C. by D. A. Lyman. Feb 1988. O O O O O O O O O O O O O O O O O O	Number & Location s (ppm)				
AL REPORT ON THE SULPHERETS PROPERTY. A MD., B.C. by D. A. Lyman, Feb 1988. <b>5</b> 600 BOO METRES <b>5</b> Corporation <b>8</b> Corporation <b>8</b> Corporation <b>8</b> Corporation <b>8</b> Corporation <b>8</b> Corporation <b>10</b> CHEMISTRY As <b>10</b> DATE : FEBRUARY 1988 <b>10</b> FIG. No.: <b>8</b>	BRANCH REPORT				
AL REPORT ON THE SULPHERETS PHOPERTY. AA M.D., B.C. by D. A. Lyman, Feb 1988. <b>S Corporation</b> <b>S Corporation</b> <b>ROPERTY</b> , B.C. IMS OCHEMISTRY As Serwin DATE : FEBRUARY 1988 FIG. No.: 8	03				
Serwin DATE : FEBRUARY 1988 FIG. No.: 8	AL REPORT ON THE SULPHERETS PROPERTY, IA M.D., B.C. by D. A. Lyman, Feb 1988.				
S Corporation S Corporation PROPERTY B.C. IMS OCHEMISTRY As Serwin DATE: FEBRUARY 1988 FIG. No.: 8					
BOO METRES S Corporation S Corporation PROPERTY B.C. IMS OCHEMISTRY As Serwin DATE: FEBRUARY 1988 FIG. No.: 8					
Serwin DATE: FEBRUARY 1988 FIG. No.: 8	D 600 BOO METRES				
PROPERTY , B.C. IMS OCHEMISTRY As Serwin DATE : FEBRUARY 1988 FIG. No.: 8	s Corporation				
As Serwin DATE : FEBRUARY 1988 FIG. No.: 8					
Serwin   DATE : FEBRUARY 1988     04 / B   FIG. No.:     10,000   8	, B.C.				
. 10,000	IMS OCHEMISTRY As				
	AS Serwin DATE: FEBRUARY 1988 FIG. No.: 8				

• - .



Location (ppm), Sb(ppm)					
Location (ppm), Sb(ppm)					
Number & Location n (ppm), Sb (ppm)					
AL REPORT ON THE SULPHERETS PROPERTY					
NA M.D., B.C. by D. A. Lyman, Feb 1988.					
0 600 800 METRES					
s Corporation					
PROPERTY ., B.C.					
IMS					
OCHEMISTRY (8)					
, Sb					
D. Serwin   DATE : FEBRUARY 1988     04 / B   FIG. No.:					
: 10,000 8 0					

