17,205 Part 2,72

GEOLOGICAL BRANCH ASSESSMENT REPORT

ITEMIZED COST STATEMENT

APPENDIX A

FUMED

A.1 Supervision and Wages

The personnel used, number od days worked and daily rates were as follows:

Phase 1 (Exploration) From August 1st to August 14, 1987

_		Daily	Days	
Personnel	<u>Title</u>	Rate	Worked	Cost
~				
E. Horne	Senior Geologist	\$250.00	11	2,750.00
K. Konkin	Senior Geologist	\$150.00	14	2,100.00
G. Sinden	Technician/Prospector	\$120.00	14	1,680.00
S. Stannus	Technician/Prospector	\$125.00	14	1,750.00
D. Lund	Assistant	\$ 80.00	14	1,120.00
E. Kruchkowski	Chief Geologist	\$300.00	2	600.00
<u>Phase 2</u> (Drilling)	From September 19th to N	ovember 1s	t, 1987	
E.Kruchkowski	Chief Geologist	\$300.00	1	300.00
E. Horne	Senior Geologist	\$250.00	44	11,000.00
K. Konkin	Senior Geologist	\$150.00	1	150.00
R. Wares	Senior Geologist	\$320.00	1	320.00
D. Sloan	Faller	\$120.00	3	360.00
B. Almand	Labourer/Falling	\$ 80.00	6	480.00
L. Lepine	Labourer/Core Splitter	\$ 80.00	20	1,600.00
C. Hoffman	Labourer	\$ 50.00	3	150.00
B. Johansson	Labourer/Faller	\$100.00	3	300.00
D. Cambon	Labourer	\$ 80.00	4	320.00
J. Helton	Labourer	\$100.00	2	200.00
G. Radelta	Labourer	\$ 80.00	1	80.00
				25,260.00
	10% Consulting Overhead	· .		2,526.00
	10% Constituing Overhead			2,520.00
	TOTAL			\$27,786.00
A.2 <u>Transportation</u>	& Supplies			
Calgary-Stewart and	return airfare (E. Horne	e)	•	677.93
Camp Rental, 69 man	days @ \$25.00/day/man(exp	oloration)		1,725.00
Generator Rental, @	\$10.00/day, 14 days exp	loration		140.00
Generator Rental @	\$10.00/day, 24 days drill	ling		240.00
Camp Rental, 64 day	s @ \$25.00/day/man (Drill	ling)		1,600.00
(L. Lepine & E. H		87		_,
Building Supplies (Lumber for Drill Program))		401.00
Radio Rental and Re	-			177.00
	14 days @ \$50.00/day			700.00
Explosives				577.91

TOTAL

6,238.84

 $\left(\right)$

A.3 Consumables

Groceries Exploration Phase	1,089.79
Groceries Drilling Phase	881.39
Fuel for drill and camp (includes some expediting)	3,064.29
Sample bags & tags	72.35
TOTAL	5,107.82

A.4 Helicopter Rental

Phase 1 (Exploration)

Date	Hours	Purpose	/Hr. Rate Fueled	Cost
August lst August 12th	3.7 1.8 TOTAL	Camp & Crew Mobilization Groceries & supplies	491.50(206) 491.50(206)	1,818.55 884.20 2,703.25

.

Phase 2 (Drilling)

(

September 19	1.5	Drill Pad Preparation	491.50	763.13
September 20	1.1	Drill Pad Preparation	491.50	559.63
September 22	0.3	Drill Pad Preparation	491.50	147.45
September 25	0.4	Drill Pad Preparation	491.50	229.80
September 26	0.4	Drill Pad Preparation	491.50	229.80
September 28	0.6	Camp Preparation	491.50	344.70
October 2	0.7	Camp Preparation	574.50	402.15
October 8	4.1	Mobilization of rig	574.50	2,355.45
October 9	3.2	Mobilization fuel & camp	418.25	1,338.40
October 10	0.4	Fuel for drill	1,252.50(204)	501.00
October 10	1.4	Mobilization fuel & Camp	574.50	804.30
October 11	0.8	Supplies & Crew	574.50	459.60
October 12	0.8	Supplies & Crew	574.50	459.60
October 16	0.9	Supplies	491.50	442.35
October 18	0.6	Supplies	491.50	344.70
October 19	1.4	Fuel & Supplies	816.00(204,206)	1,143.30
October 20	1.3	Fly out samples	1,043.90(", ")	1,357.05
October 21	1.6	Fuel & Groceries	574.50	919.20
October 22	0.8	Fly out relieved equip't	943.50(204,206)	754.80
October 23	0.4	Samples	491.50	229.80
October 25	0.4	Samples	491.50	229.80
October 27	1.2	Samples	491.50	589,80
October 29	5.7	Demobilization Rig	1,038.40(", ")	5,918.85
October 30	0.4	Personnel	491.50	196.60
November 1	5.4	Demobilization Camp	574.50	3,102.30
	TOTAL		:	23,823.56

A.5 Laboratory Analyses

Phase 1 (Exploration)

182	Soil Samples for gold & silver @ \$69.55/sample	1,738.10
75	Rock Samples for gold & silver @ \$10.75/sample	806.25
29	Assays for gold and silver @ \$10.50/sample	304.50
13	Gold Assays @ \$7.50/sample	97.50
8	Silver Assays @ \$7.50/sample	60.00
1	Arsenic Sample @ \$4.00/sample	4.00
5	Copper, lead, zinc @ \$17.00/sample	85.00
10	Silt samples for gold & silver @ \$11.25/sample	112.50
	TOTAL	3,307.85

Phase II (Drilling)

88	Assays for gold & silver @ \$13.75/sample	1,210.00
275	Rock geochemical samples for gold & silver @ \$10.75/sample	2,956.25
2	Gold Assays @ \$7.50	15.00
2	Platinum geochemical analyses @ \$13.00	26.00
35	Copper Analyses @ \$5.00	175.00
32	Lead Assays @ \$6.00	192.00
32	Zinc Assays @ \$6.00	192.00
2	Antimony, barium @ \$18.75	37.50
6	Elemental geochemical analyses @ \$10.00	60.00
	(30 element inductively coupled plasma)	
Frei	ght	350.00
	TOTAL	5,213.75

A.6 Drilling Cost

Drilling Cost, 1936 feet @ \$21.50/foot		41,623.50
Reaming 126 feet @ \$22.00/foot	2,755. 12	2,755.53
Mobilization/Demobilization (Labour)		4,688.00
Rig Moves (Labour)		1,190.97
Mud, Additives & Lubricants		1,479.40
Camp crew bonus - \$50.00/day/man (23 days, 4 men)		4,600.00
Core boxes		857.80
Work on water supply		198.40
TOTAL - Overall Cost/Foot = \$2	9.65	57,393.60
Exclusve of camp, heli camp accommodation and	•	

Cost does not include fuel.

.....

A.7 <u>Report Preparation</u>

Base maps mylar, prints	250,00
Drafting	450.00
Typing/Printing	200.00
Reprot Compilation and writing	
l geologist, 15 days @ \$250.00/day	<u>3,750.00</u>
TOTAL	4,650.00

GRAND	TOTAL	136,224.67

Say \$136,000.00

(

To Be Apportioned As Follows:

3	Years,	Lots 265 - 269 @ \$100.00/Unit Lots 265 - 269 @ \$200.00/Unit Corey 8 @ \$100.00/Unit	1,000.00 3,000.00
3	Years,	Corey 8 @ \$200.00/Unit	4,000.00 12,000.00
	•	Corey 28 @ \$100.00/Unit Corey 28 @ \$200.00/Unit	4,800.00 6,400.00
		Corey 31 @ \$100.00/Unit Corey 31 @ \$200.00/Unit	4,800.00
3	Years,	Corey 32 @ \$100.00/Unit	6,400.00 6,000.00
	-	Corey 32 @ \$200.00/Unit Corey 35 @ \$100.00/Unit	8,000.00 6,000.00
		Corey 35 @ \$200.00/Unit	8,000.00

•

\$ 70,400.00

APPENDIX B

 \mathbb{C}

 $\left(\right)$

ROCK AND SOIL

CERTIFICATES OF ASSAY

AND GEOCHEMICAL ANALYSIS

۰.	RECEIVED	NEP 24	1987
To:BIG_HORN_DEVELOPMENT_CORP.,	REDENCE	File No.	30343
400, 255 - 17th Avenue S.W.,	/4/4	Date	September 22, 1987
Calgary, Alberta T2S 2T8		Samples	Rock
	<u> </u>		

ATTN: Jack Wyder

LORING LABORATORIES LTD.

SAMPLE No.	OZ./TON GOLD	OZ./TON SILVER	% Cu	% Pb	% Zn
	<u> </u>	012,012			
	Crown Grant L- Upper Adit re-	-sampling of miner	alized		
"Assay Analysis"	section, see	figure 7			
			.73	6.31	23.35
19467	.422	4.58			28.39
19468	.398	16.58	.54	3.52	
19469	.350	7.79	.34	3.58	5.70
19470	.180	7.38	1.42	10.73	14.61
	J Here	by Certify that be by me upon the he	THE ABOVE RESULT	S ARE THOSE Mples	
	ADAIG MAL		- 		

unless specific arrangements made in advance.

(

Assayer

To: <u>BIG HORN DEVELOPMENT CORPORATION</u> # 400, 255 - 17th Avenue S.W. Calgary, Alberta - T2S 2T8 Attn: Mr. Ed. Kruchkowski

File No.	29982
Date	July 9th,1987
Samples	Rock

ASSAY 0~

LORING LABORATORIES LTD.

Page 2

SAN	IPLE No.	Au ppb	Ag ppm		
GEOCHEM	ICAL ANALYSE	<u>s</u>			
18001	EK-1	+1000	+ 30		
18002	ЕК-2	+1000	+ 30	х.	
18003	CGR-01	830	24.3		
18004	CGR-02	270	5.3		
18005	CGR-03	- 30	2.1		
18006	CGR-04	10	5.4		
18007	CGR-07	25	+ 30		
18008	C39-GR-1	10	+ 30		
18009	C38-GR-2	Ni1	20.0		
18010	C38-GR-3	5	2.8		
18011	CR-36-1	15	3.1		
18012	CR-36-2	20	1.6	OTHER	
18013	CR-36-3	10	1.2		
18014	SR2-01	15	4.9		
18015	SR2-02	15	6.1	STAN	
18016	SR2-03	30	2.1		
18017	SR2-04	35	16.3		
18018	SR2-05	25	.9		
18019	SR2-06	20	.5		
			•••	E ABOVE RESULTS ARE THOSE IN DESCRIBED SAMPLES	

Rejects Retained one month,

Pulps Retained one month unless specific arrangements made in advance.

Assayer

	To: BIG HORN DEVELOPMENT CORP.,
	400, 255 - 17th Avenue S.W.,
•	Calgary, Alberta T2S 2T8
	••••••
	ATTN: E. Horne

File N	lo	30061				
Date .		July	31,	1987		-
Sampl	es	Soi]				

St ASSAY %

SILVER CREEK SOILS GRID

Page # 3

SAMPLE No.		PPB Au	· • • • • • • • • • • • • • • • • •	
"Soil Samples"				
eochemical Analysis	SOIL TYPE	-	HORIZON	DEPTH
.0 + 00N-0 + 00 E	Black Organic	30	В	+20 cm
5 E		10		
10 E		5		
15 E	Light brown	45		
20 E	Dark brown	10		
25 E		40		
30 E		25		
CG-13	Silt	5		
		<i></i>		
	I Hereby Certi assays made by me upo			

Rejects Retained one month.

(

..... Assayer

To: BIG HORN DEVELOPMENT CORP., 400, 255 - 17th Avenue S.W., Calgary, Alberta T2S 2T8

File No	30061
Date	July 31, 1987
Samples	Soil

ATTN: E. Horne

LORING LABORATORIES LTD.

Qr.

SILVER CREEK SOILS GRID

Page # 4

SAMPLE No.		PPM Ag		
" <u>Soil Samples</u> " Geochemical Analysis	SOIL TYPE		HORIZON	DEPTH
L0 + 00N-0 + 00 E	Black Organic	NIL	В	25 cm
5ε		.8		
10 E		.4		
15 E	Light Brown	.2		
20 E	Dark Brown	.1		
25 E		.1		
30 E		.1		
CG-13	Silt	.1		- <u></u>
			N. N	
	I Hereby Cer assays made by me u	tity that the ai pon the herein d	BOVE RESULTS ARE Described samples	THOSE

Rejects Retained one month.

Pulps Retained one month unless specific arrangements made in advance.

Assayer

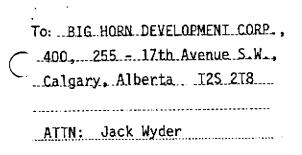
Mouri marge majer

To: BIG HORN DEVEL	OPMENT CORP.,
400, 255 - 17th	Avenue S.W.,
Calgary, Alberta	

File N	o. <u>30101</u>
Date	August 18, 1987
Sample	es Soil & Silt

ATTN: Jack Wyder

LORING LABORATORIES LTD.

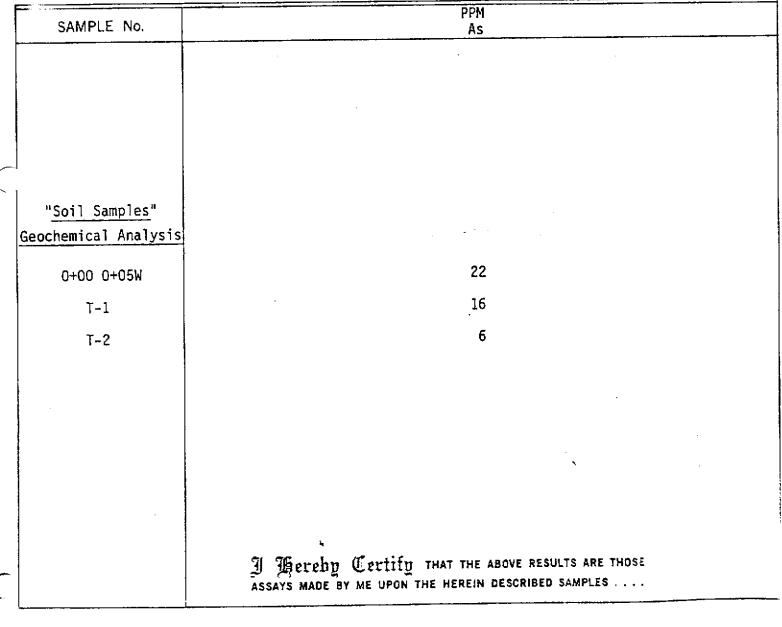

Page # 1

CUMBERLAND SHOWING

SAMPLE No.	OZ./TON GOLD		OZ./TON SILVER
	GULD		
" <u>Soil Samples</u> "			
" <u>Assays</u> "			
0+00-0+05W	.140	Soil Geochem.	-
T-1	.101	In vicinity of upper adit	-
T-2	.042	Tl, T2, T3 are immediately above upper adit	-
" <u>Silt Sample</u> "			
C-G-12	-	Devils Club Creek	1.67
	·		. * *
			x
			:
	J Hei Assays m	ceby Certify that the above result ade by me upon the herein described sa	S ARE THOSE

Rejects Retained one month.

Assayer



File No.	30101
Date	August 18, 1987
Samples	Soil

LORING	LABORATORIES	Ltd.
--------	--------------	------

Servificate ASSAY

Page # 2

Rejects Retained one month.

Assayer

To: BIG HORN DEVELOPMENT CORP., 400, 255 - 17th Avenue S.W., Calgary, Alberta T2S 2T8

File No.	30101	••••••••••••••••••••••••••••••••••••••
Date	August 18	8, 1987
Samples .	Soil	
•		

ATTN: Jack Wyder

LORING LABORATORIES LTD.

0×

CUMBERLAND SOILS GRID

Page # 3

	SAMPLE No.	PPB Au	SOIL TYPE	HORIZON	DEPTH	PPM Ag	
	"Soil Samples"						
G	Geochemical Analysis						
G	$\begin{array}{c} \text{BL-S-0+00} \\ 0+05 \\ 0+10 \\ 0+15 \\ 0+20 \\ 0+25 \\ 0+30 \\ 0+35 \\ 0+35 \\ 0+40 \\ 0+45 \\ 0+50 \\ 0+55 \\ 0+50 \\ 0+55 \\ 0+50 \\ 0+60 \\ 0+65 \\ 0+70 \\ 0+65 \\ 0+70 \\ 0+75 \\ 0+80 \\ 0+85 \\ 0+90 \\ 0+95 \\ 1+00 \\ 1+05 \\ 1+10 \\ 1+15 \\ 1+20 \\ 1+25 \\ 1+30 \end{array}$	645 75 305 85 70 20 35 20 55 NIL 15 30 15 55 45 45 10 30 25 55 NIL NIL 55	Grey leached	C	+25 cm	0.2 0.1 ISS NIL NIL 0.2 NIL ISS 0.5 NIL 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	
	1+35 (ISS) = Insufficient Sample		Gereby Certify ys made by me upon		E RESULTS ARE THOSE RIBED SAMPLES		

Rejects Retained one month.

Assayes

To: BIG HORN DEVELOPMENT CORP.,
400, 255 - 17th Avenue S.W.,
Calgary, Alberta T2S 2T8

File	No.	30101	
Date	.	August 18, 1987	
Samp	oles	Soil	

ATTN: Jack Wyder

 $\left(\right)$

LORING LABORATORIES LTD.

Page # 4

CUMBERLAND SOILS GRID

SAMPLE No.	РРВ	SOIL TYPE	HORIZON	DEPTH	PPM
	Au	<u> </u>			Ag
BL-S-1+40	20	Grey leached	С	25 cm	0.3
1+45	15				0.1
1+50	10				0.1
2+00	NIL				0.1
2+25	NIL NIL				0.1
2+25	20				0.2
2+50	NIL				1.6
2+7 3 3+0 0	NIL NIL .				5.3
0+00-0+50	+1000	Grey leached	С	+ 25 cm	1.4
0+00-0+39	15	arey reached	Ū		NIL
0+15				•	NIL
0+20	75				NIL
0+2	5 [10				NIL
	35				NIL
0+3 0					0.3
0+4 8	NIL				NIL
0+4 2	NIL 10				0.1
0+5	10 10				NIL
0+00-0+0					0.9
0+198	150 470				NIL
0+25S-0+0					NIL
0+253-0+0	15 20				NĨĹ
0+2	10				NIL
0+2	15				NIL
0+3	NIL				NIL
0+3 2 *	25			χ	NIL
0+4	40				0.3
0+4	10			• 	NIL
0+5	20			<u></u>	NIL
0+25S-0+0	5	Black Humus	A state	20 cm	NIL
0+ i	10				NIL
	<u>เ</u>	dereby Certify	THAT THE ABOY	VE RESULTS ARE THOS	
	لا ہے ا	S MADE BY ME UPON			

Rejects Retained month.

Pulps Retained others the unless specific angements made in advance.

Assayer

<u> </u>	To: <u>BIG HORN DEVELOPMENT CORP.</u> , 400, 255 - 17th Avenue S.W., Calgary, Alberta T2S 2T8
	ATTN: Jack Wyder

File No.	30101
Date	August 18, 1987
Samples	Soil

Cumberland Soils Grid

Page # 5

	PPB	SOIL TYPE	HORIZON	DEPTH	PPM
SAMPLE No.	Au				Ag
					100
0+25S-0+15E	NIL	Black Humus	A	20 cm	ISS ⁻
0+20E	5 5				ISS
0+25E	5				ISS
0+30E	NIL		•		NIL .
0+35E	NIL			10 cm	0.5
0+40E	40			20 cm	NIL
0+45E	15	•			NIL
0+50E	NIL				0.5
0+50S-0+05W	15	Organic soil	В	20 cm	0.1
0+10W	10	Grey leached	С		0.1
0+15W	45				NIL
0+20W	70				NIL
0+25W	5			25 cm	NIL
0+30W	10			30 cm	NIL
	5				NIL
0+35W	20				NIL
0+40W	NIL				NIL
0+45W	5				NIL
0+50W	NIL				NIL
0+50S-0+05E					0.2
0+10E	5 50				0.1
0+15E					0.1
0+20E	10				NIL
0+25E	5				NIL
0+30E	NIL				NIL
0+35E	10			<i>.</i>	NIL
0+40E	5			ì	NIL
0+458	NIL				NIL
0+50E	NIL		B	20 cm	NIL
0+75S-0+05W	45	Black organic	ם .		NIL
0+10₩	5				NIL
0+15W	NIL	• • • • • • • •		· ·	1110
	IJIJ	hereby Certify	THAT THE ABOVE	RESULTS ARE THOSE	
	ASSAY	S MADE BY ME UPON	THE HEREIN DESC	RIBED SAMPLES	
1		-			

Rejects Retained one month.

Assaye

To:BIG_HORN_DEVELOPMENT_CORP.
400, 255 - 17th Avenue S.W.,
Calgary, Alberta T2S 218

File No.	30101
Date	August 18, 1987
Samples	Soil

ATTN: Jack Wyder

(

LORING LABORATORIES LTD.

0

St ASSAY

CUMBERLAND SOILS GRID

Page # 6

SAMPLE No.	PPB Au	SOIL TYPE	HORIZON	DEPTH	РРМ Ag
0+75S-0+20W	10	Grey leached	C	25 cm	NIL
0+25W	NIL				NIL
0+30W	15				NIL.
0+35W	NIL				NIL
0+40W	NIL				NIL
0+45W	5				NIL
0+50W	NIL				NIL
0+75S-0+05E	5	Black Organic	В	20 cm	NIL
0+10E	40				0.2
0+15E	NIL				0.1
0+20E	835				0.5
0+25E	NIL				0.9
0+30E	NIL				0.1
0+35E	NIL				0.1
1+00S-0+05W	NIL				0.1
0+10W	30	Grey leached	С	30 cm	0.2
0+15W	15	•			0.1
0+20W	15				0.1
0+25W	15 5 5				7.7
0+30W	5				0.1
0+35W	NIĽ				0.1
0+40W	NIL				8.2
0+45W	15				0.1
0+50W	30				0.1
1+005-0+05E	5	Black Organic	В	25 ст	0.4
0+10E	10	Grey leached	С	-20 cm	0.3
0+15E	5	_			0.4
0+20E	15	Brown	В.	25 cm	0.9
0+255			В	<u> </u>	1.2
0+30E	NIL	Grey leached		25 cm	NIL
0+35E	10	+			1.1
0.002		Gereby Certify	THAT THE ABOVE	RESULTS ARE THOSE	
	ASSA	YS MADE BY ME UPON	INE MEREIN DESCA	UBED SAMPLES	

5th & 7th July

Rejects Retained one month.

Assayer

To: BIG HORN DEVELOPMENT CORP.
400,255 - 17th Avenue S.W., Calgary, Alberta72S_278
ATTN: Jack Wyder

File No.	
Date	August 18, 1987
Samples	Soil

CUMBERLAND SOILS GRID

Page # 7

SAMPLE No.	PPB Au	SOIL TYPE	HORIZON	DEPTH	PPM Ag
1+00S-0+40E	NIL	Grey leached	C	+25 cm	NIL
0+45E	NIL	-			NIL
1+50S-0+10W	NIL				NIL
0+20W	10				0.4
0+30W	15				NIL
0+40W	5				0.2
0+50W	NIL				0.1
1+50S-0+10E	NIL				0.4
0+20E	NIL				NIL
0+30E	5				0.1
0+40E	5				NIL
0+50E	30				NIL
2+00S-0+10W	5 5 30 5				NIL
0+20W	20				NIL
0+30W	25				0.3
0+40W	NIL		×		NIL
0+50₩	10	·			NIL
2+00S-0+10E	NIL				NIL
0+20E	15				6.8
0+30E	NIL				3.3
0+40E	NIL		ā		0.1
0+50E	10				1.7
2+205-0+258	5				NIL
2+50S-0+10W	NIL				0.4
0+20W	5 5 5 5				0.1
0+30W	5			`	0.6
0+40W	5				0.1
0+50W	5				0.2
2+50S-0+30E	NIL				0.1
0+40E	5 5	1	1		0.1
0+50E	5	•	. :		1.2
	JU	iereby Certify 7	HAT THE ABOVE RESUL	TS ARE THOSE	
, see a second s		MADE BY ME UPON THE	HEREIN DESCRIBED S	AMPLES	

Rejects Retained one month.

Assayer

To: BIG HORN DEVELOPMENT CORP.
400, 255 - 17th Avenue S.W.,
Jalgary, Alberta T2S 2T8
ATTN. Jack Wyden

File No.	30101
Date	August 18, 1987
Samples	Soil

ATTN: Jack Wyder

LORING LABORATORIES LTD.

CUMBERLAND SOILS GRID

		Page	#8		561
SAMPLE No.	PPB Au	SOIL TYPE	HORIZON	DEPTH	PPM Ag
2+75S-0+10W 0+20W 0+30W 0+40W 0+50W 2+75S-0+10E 0+20E 0+30E 0+40E 0+50E 3+00S-0+10W 0+20W 0+30W 0+40W 0+50W 3+00S-0+10E 0+20E 0+40E 0+50E T-1 T-2 T-3 CGS-265-04	10 NIL 5 NIL NIL NIL 10 5 20 10 5 20 10 5 5 NIL NIL NIL 20 55 5 +1000 +1000 565 20		C bove upper adit evils Club Creek	+25 cm	0.8 0.1 0.6 0.9 1.2 0.3 NIL 0.6 1.0 1.8 0.6 0.1 0.1 1.0 0.7 0.3 0.8 0.7 1.7 ISS ISS 2.4 NIL
· · · · · · · · · · · · · · · · · · ·	J ASSA	Gereby Certif	U THAT THE ABOVE N THE HEREIN DESCR	RESULTS ARE THOSI IBED SAMPLES	:

Rejects Retained one month.

Assayer

P
To: BIG HORN DEVELOPMENT CORP.
400, 255 - 17th Avenue S.W.,
Calgary, Alberta 12S 2T8
ATTN: Jack Wyder
cc: E. Kruchkowski

File No	30224
Date	September 3, 1987
Samples	Silt

Page # 6

SAMPLE No.	РРВ Au		PPM Ag
DL- 12 13 14 15 16 20 21 22 23 24 25 26 27 28 29 CG-101 BJS- 1 2 3 4 5	NIL 5 15 35 10	ils Club Creek	NIL NIL NIL 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
	J Hereby Cer assays made by me i	CTITY THAT THE ABOVE RESULTS ARE THOSE UPON THE HEREIN DESCRIBED SAMPLES	

Rejects Retained one month.

2512 0 Assayer

To: _BIG_HORN_DEVELOPMENT_CORP.,
Calgary, Alberta 125 218
· · · · · · · · · · · · · · · · · · ·
ATTN: Jack Wyder

File No.	30100
Date	August 18, 1987
Samples	Rock

Page # 2

SAMPLE No.	PPB			PPM
SAMFLE NO.	Au			Ag
"Rock Samples"				
Geochemical Analysis				
euchemical Analysis				
18088	NIL			NIL
18089	5			NIL
18090	+1000	_	Chip 50 cm	5.4
18091	+1000	Trench directly	Chip 50 cm	7.3
18092	+1000	Above lower adit	Chip 50 cm	12.0
18093	+1000	MOOVE TONEL GUIL	Chip 100 cm	7.5
18094	+1000		Chip 100 cm	8.3
18095	610	_		12.8
18096	150	Lower adit cliff face		3.2
18097	105	Above adit		1.1
18098	60			1.8
18099	315	Inside upper adit	Chip 20 cm	30.0+
18100	925 _	inside apper adre	Chip 30 cm	30.0+
9580	+1000		Chip 20 cm	14.4
9581	+1000	Lower adit	-	30.0+
9582	930	Lower duit		11.7
9583	870			10.9
9585	15			0.1
9586	NĨĹ	- Cumberland Grid		0.1
9587	5	- Cumberland Grid		0.2
9588	5.	ounder tand of th	-	0.9
9589		Vicinity lower adit		0.4
9590	90 _	facility lower dure	<u>.</u>	6.3
9591	5	···		0.2
9592	NIL			NIL
9593	15			0.4
9594	5	Cumberland Grid		1.1
9595	NIL			0.3
2020		Bereby Certify that the	ABOVE RESINTS ADE THOSE	
-				
		YS MADE BY ME UPON THE HEREIN		

Rejects Retained one month.

Assayer

Mount (case

To: _BIG_HORN_DEVELOPMENT_CORP. ,
400,255 - 17th Avenue S.W.,
Calgary, Alberta 125 218

File No	30100
Date	August 18, 1987
Samples .	Rock

ATTN: Jack Wyder

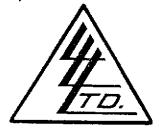
ASSAY or

RECEIVED AUG 1 9 1987

LORING LABORATORIES LTD.

6

SAMPLE No.	OZ./TON GOLD	OZ./TON SILVER
"Rock Samples"		
"Assays"		
18090	.034	-
18091	.116	-
18092	.048	-
18093	.032	-
18094	.036	-
9580	.030 Cumberland Lower Adit	-
9581	.032	1.01
9602	.052	3.05
9603	.090	2.55
9613	.034	-
		1.98
18099	-	8.02
18100 9604	- Cumberland Showing below 2nd adit (float) massive sphalerite sulphides	5.86
	I Hereby Certify that the above assays made by me upon the herein descri	RESULTS ARE THOSE IBED SAMPLES


Page # 1

Rejects Retained one month.

Assayer

LI FLOUNTAUN THATE

To: BIG HORN DEVELOPMENT CORPORATION # 400, 255 - 17th Avenue S.W. Calgary, Alberta - T2S 2T8 Attention: Mr. E. Horne

File No. 30025 Date July 16th, 1987 Samples Rocks, Silts, Soils as identified below

extiticate ASSAY

LORING LABORATORIES LTD.

Page 2

CUMBERLAND ADIT AREA

SAMPLE No.	Au ppb	Ag ppm	
GEOCHEMICAL ANALYSES			
Rocks			
18076	+1000	+30	
18077	+1000	+30	
18078	+1000	+30	Upper Adit
18079	+1000	+30	
18080	+1000	+30	
18081	5	•9	
18082	25	+30	
18083	5	+30	Devils Club Creek
18084	25	3.1	
18085	25	+30	
18086	20	+30	
18087	Nil	16.2	,
<u>Silts</u>			Devils Club Creek
CG-09	Nil	+30	
0 G-10	Nil	+30	N. Contraction of the second sec
Soils			
0GS-02	15	.8	
0GS-03	10.	.2	
			BOVE RESULTS ARE THOSE ESCRIBED SAMPLES

Rejects Retained one month.

Pulps Retained one month unless specific arrangements made in advance.

Assayer

D Hourtain Madeg

To: BIG HORN DEVELOPMENT CORPORAT # 400, 255 - 17th Avenue S.W. Calgary, Alberta - T2S 2T8	
Attention: Mr. E. Horne	
	Ser ASSAY or

ł,

File	No.	30025
Date		July 16th,1987
Samp	les	Rocks & Silts as identified below

LORING LABORATORIES LTD.

Page 1

Cumberland Adit

SAMP	LE No.	Cm	Au oz/ton	Ag oz/ton	Cu %	Pb %	Zn %	
ASSAY	<u>s</u>			ŗ		•	ľ	
Rocks	, ⁻ .							
18076	Chip	50 ci	n .118	8.62	•58	3.01	9.03	
18077	Chip	50 ci	n .054	9.77	-	-	-	
18078	Chip	40 ci	.804	5.70	.32	11.40	12.22	Upper Adit
18079	Chip	100 ci	n .036	1.09	.29	.18	2.83	
18080	Grab	-	.044	4.84	•39	10.80	22.20	
18082	Grab		-	10.18	-	-	.43	
18083	Grab		-	29.66	-	-	•45	Devils Club
18085	Grab		-	50.46	-	-		Creek
18086	Grab		-	53.54	-	-	-	•
18087	Grab		-	-	-	.10	.19	
	Grab							
Silts								
· 0G-09			-	1.17]	Devils Club (reek	
0 G-10			-	1.38				
						ς.		·
						``		
				eby Certify ade by me upon	•			

Rejects Retained one month.

Assayer

To: __BIG_HORN_DEVELOPMENT_CORP., 400, 255 - 17th_Avenue_S.W., Calgary, Alberta__T2S_2T8

File No.	30061
Date	July 31, 1987
Samples	Rock

ATTN: E. Horne

Ser ASSAY or

LORING LABORATORIES LTD.

		РРВ		
SAMPLE No.		Au		
		·		
	• ·		ł	
" <u>Rock Samples</u> "	'			
Geochemical Analysis			•	
9584	Silver Creek	NIL fl	.oat	
9599	Silver Creek	45 · ch	nip 10 cm	
9600	Silver Creek vicinity	NIL ch da	nip 1.0 metres acite porphyry	
			X	
	J Hereby Certil Assays made by me upo	U THAT THE ABOVE R N THE HEREIN DESCRIB	ESULTS ARE THOSE GED SAMPLES	

Page # 2

Rejects Retained one month.

Assayer

To: _BIG_HORN.DEVELOPMENT_CORP.
400, 255 - 17th Avenue S.W.,
Calgary, Alberta I2S 218

File No.	30061
Date	July 31, 1987
Samples	Rock

ATTN: E. Horne

LORING LABORATORIES LTD.

Page # 5

0x

SAMPLE No.	PPM Ag
"Rock Samples"	Silver Creek
9584	30.0 +
9599	30.0 +
9600	3.6
	J Hereby Certify that the above results are those assays made by me upon the herein described samples
	ASSAYS MADE BY ME UPON THE HEREIN DESCRIBED SAMPLES

Rejects Retained one month.

(

Assaver

Mountain Maage Project

To: BIG_HORN_DEVELOPMENT_CORP_+
400, 255 - 17th Avenue S.W., Calgary, Alberta 125 218
ATIN: E. Horne

File No.	30061
Date	July 31, 1987
Samples	Rock

Page # 1

SAMPLE No.	OZ./TON SILVER	
" <u>Rock Samples</u> "		
" <u>Assays</u> "	Silver Creek	
9584	1.68	Float
9599	133.58	10 cm carbonate vein
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	I Thereby Certify that the above a assays made by me upon the herein descri	RESULTS ARE THOSE BED SAMPLES

Rejects Retained one month.

(

Assayer

To: <u>BIG HORN DEVELOPMENT CORP.</u>, <u>400, 255 - 17th Avenue S.W.</u>, <u>Calgary, Alberta</u> T2S 2T8



File No.	30100
Date	August 18, 1987
Samples	Rock

ATTN: Jack Wyder

## Set ASSAY or

### LORING LABORATORIES LTD.

	SAMPLE No.	PPB Au		РРМ Ag
	9596 9597 9598 9601 9602 9603 9604 9605 9610 9611 9612 9613 9614 KKCG-265-10 11 12 13 14 15 16	510 195 280 +1000 115  NIL NIL	erland Grid erland Trenches	0.2 5.9 0.9 11.0 30.0+ 30.0+ 30.0+ 3.1 16.4 2.5 5.9 13.2 NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL
_		J Hereb assays made	U Certify that the above results are by me upon the herein described samples	THOSE 

Page # 3

Rejects Retained one month.

Assayer

manne madde majer

To:BIG HORN DEVELOPMENT CORP.
400, 255 - 17th Avenue S.W.,
Calgary, Alberta T2S 2T8
ATTN: Jack Wyder
cc: E. Kruchkowski



File No.	30232
Date	September 3, 1987
Samples	Rock

Ser ASSAY or

Page # 1

<b></b>	OZ./YON	OZ./TON
SAMPLE No.	GOLD	SILVER
"Assay Analysis"		
"Rock Samples"		
19428	.290	2.13
19429	1.690	2.53
_		169.38
19437	_	2.22
19438	_	346.40
19439	- Devils Club Creek Showing	4.26
19440	-	49.24
19441	-	160.92
19442	-	3.62
19443		1.80
19445	-	2.33
19446	.172	4.22
19450	1.248	1.79
19453	.328	1.75
19454	.058	- 
KK- 88	1.490	2.65
KK- 89	.180	•
KK-127	. 394	5.87
KK-128	.032	-
KK-129		15.20
- ILJ	I Hereby Certify that the above result assays made by me upon the herein described sa	S ARE THOSE

Rejects Retained one month.

0 Assayer

C	To: _BIG_HORN_DEVELOPMENT_CORP., 400, 255 - 17th Avenue S.W., Calgary, Alberta T2S_2T8
	ATIN: Jack Wyder



File No	30101
Date	August 18, 1987
Samples	Silt

Page # 9

SAMPLE No.	PPB Au		PPM Ag
"Silt Samples"			
Geochemical Analysis			
CG-11	75		0.3
CG-12	NIL		30.0+
		•	
	*		
	I Hereby Certify THAT	THE ABOVE RESULTS ARE THOSE	
`I   . Е К	ASSAYS MADE BY ME UPON THE HEI	REIN UCSCRIBED SAMPLES	

Rejects Retained one month.

Assayer

То:	BIG HORN DEVELOPMENT CORPORATION
	#400, 255 - 17th Avenue S.W.
<u> </u>	Calgary, Alberta - T2S 2T8
	Attn: MrEdKruchkowski

**********



File No.	29982
Date	July 9th,1987
Samples	- Si-1 t

# LORING LABORATORIES LTD.

Page 5

SAMPLE No.	Au ppb	Ag ppm	
GEOCHEMICAL ANALYSES			
CG-01	25	+ 30	
CG-02	15	+ 30	
CGS-03 (SOIL)	20	2.0	
G-04	15	.6	CROWN GRANTS
CG 5	105	.9	
CG-06	50	.6	
CG-07	30	.7	
CG-08	25	6.2	
C-36-1	85	.5	
C-38-GS-2	90	.6	
C-38-GS-3	` 130	.5	
C-38-GS-4	50	.3	
C-39-GS-1	+1000	1.5	OTHER
S2-1	35	2.0	· · · · · · · · · · · · · · · · · · ·
S2-2	Nil	1.0	
S2-3	Nil	.6	
\$3-01	Ni 1	.6	
\$3-02	Nil	.4	
\$3-03	Nil St SC 1 M	.3	
L	U gereby U	CTITY THAT THE AB	OVE RESULTS ARE THOSE ESCRIBED SAMPLES
	ASSAYS MADE BY ME	UPUN INC ACKEIN OF	

Rejects Retained one month.

Putps Retained one month unless specific arrangements made in advance.

And.

Assertes

To:	BIG HORN DEVELOPMENT CORPORATION
	# 400, 255 - 17th Avenue S.W.
~	Calgary, Alberta - T2S 2T8
<b>.</b>	Attn: Mr. Ed. Kruchkowski
	· · · · ·



File N	o. 29982
Date	July 9th,1987
Sampl	es Rock

LORING LABORATORIES LTD.

Page 2

SAM	PLE No.	Au ppb	Ag ppm	
GEOCHEM	ICAL ANALYSE	-		-
18001	EK-1	+1000	+ 30	
18002	EK-2	+1000	+ 30	
18003	CGR-01	830	24.3	
18004	CGR-02	270	5.3	CROWN GRANTS
18005	CGR-03	30	2.1	
18006	CGR-04	10	5.4	
10.07	CGR-07	25	+ 30	
08		10	+ 30	
18009		Nil	20.0	
18010		· 5	2.8	
18011		. 15	3.1	OTHER
18012		20	1.6	
18013		10	1.2	· · ·
18014		15	4.9	
18015		15	6.1	х. Х
18016		30	2.1	
18017		35	16.3	
18018		25	.9	
18019		20	•2	
		J Hereby Q Assays made by 1	Dertify that the Me upon the here	HE ABOVE RESULTS ARE THOSE

Rejects Retained one month.

Pulps Retained one month unless specific arrangements made in advance.

13.34

To:	BIG HORN DEVELOPMENT CORPORATION
	400, 255 - 17th Avenue S.W.
	Calgary, Alberta - T2S 2T8
<u> </u>	Attn: Mr. Ed. Kruchkowski



File No.	29982	
Date	J uly 9th,1987	
Samples	Rock & Silt	_

Set ASSAY %

Page 1

oz/ton	oz/ton		
	•		
۲			
.126	4.94		
.064	9.79		
-	102.15	CROWN GRANTS	
-	1.58	OTHER	
. <del></del>	1.78	CROWN GRANTS	
-	2.47	CROWN GRANTS	
.038	-	OTHER	
.106	-	OTHER	
			· .
I Hereb	y Certify THA	T THE ABOVE RESULTS ARE	THOSE
	.126 .064 - - .038 .106	. 126 4.94 .064 9.79 - 102.15 - 1.58 - 1.58 - 2.47 .038 - .106 - Л Тегеви Certifu тна	.126 4.94 .064 9.79 - 102.15 CROWN GRANTS - 1.58 OTHER - 1.78 CROWN GRANTS - 2.47 CROWN GRANTS .038 - OTHER

Rejects Retained one month.

Pulps Retained one month unless specific arrangements made in advance.

Assayer

APPENDIX C

DRILL HOLE CERTIFICATES

OF ANALYSES & ASSAY

<u>400</u>		5 - 1	7th A	venue	CORP., S.W.,	
	gary,	Albe	<u>rta</u>	125	218	
ATT	N: J	lack W	yder			



Ser ASSAY 0×

300 File No. 30586 Date November 9, 1987 Samples Core

 $\{ \phi_{i}, \phi_{j} \}_{j \in \mathbb{N}}$ 2 37

SAMPLE No.	OZ./TON GOLD	OZ./TON SILVER	% Cu	% Pb	% Zn	% Sb	% Ba
<u>BH-1</u>							
30417	.003	.08	-	-	-		-
30418	.043	9.60	.40	1.31	7.41	.02	41.33
30419	.353	2.97	.23	3.62	6.08	.02	46.02
30420	.034	2.56	.49	.68	3.59	-	-
	.016	.96	.17	-	-	-	-
30422	.034	.88	.01	.06	.24	-	-
Zone # 2							
✓ 30440	.015	.44	Trace	-	-	-	-
30441	.002	.01	Trace	-			-
30442	.024	.87	01	-	-	-	-
30443	.004	.06	Trace	-	-	-	-
30444	.005	Trace	Trace	-	-	-	-
<i>₽</i> <u>BH-2</u>							
30621	.002	Trace	-	-	-	-	-
30622	.004	Trace	-	-	-	-	-
30623	.004	.05	-	-	-	-	-
30624	.034	.38	-	.04	.19	-	-
30425 🗸	.035	.30	 -	+	-	-	-
	J H	ereby Certify Made by Me upon	D THAT THE . The Herein				

Page # 1

Rejects Retained one month.

Pulps Retained one month unless specific arrangements made in advance.

Assayer

То:	BIG HORN DEVELOPMENT CORP.,
40	255 - 17th Avenue S.W.,
- Calo	ary, Alberta T2S 2T8
	· · · · · · · · · · · · · · · · · · ·

ATIN: Jack Wyder

TD. TD. Strificate ASSAY

File No	30586
Date	November 9, 1987
Samples	Core

LORING LABORATORIES LTD.

Page # 2

SAMPLE No.	OZ./TON GOLD	OZ./TON SILVER	% Cu	% Pb	% Zn	% Sb	% Ba
BH-2 Cont'd							
V 30426	.033	.54	-	.04	.08	-	-
	-						
	J TA	ereby Certif Made by Me upon	THAT THE	ABOVE RESULT	AMPLES	5E	
Rejects Retained one month.	_1			L	R		

Assayer

To:BIG_HORN_DEVELOPMENT_CORP.
<u>400, 255 - 17th Avenue S.W.</u>
Clalgary, Alberta 125 218
ATTN: J. Wyder

5



File No.	30650
Date	<u>November 30, 1987</u>
Samples	Core

Ser ASSAY or

LORING LABORATORIES LTD.

SAMPLE No.	OZ./TON GOLD	OZ./YON SILVER		% Cu	
BH-6 Cont'd					
30558	.005	.27		-	
30559	.006	.03		*	
30560	.002	Trace		-	
<u>BH-2</u>					
30629	.004	.07		-	
30630	.002	.04		-	
30638	.001	.02		-	
	:				
	I Hereby Certify that the above results are those assays made by me upon the herein described samples				

Page # 3

Rejects Retained one month.

Pulps Retained one month unless specific arrangements made in advance.

.....

To:BIG HORN DEVELOPMENT CORP.,
400, 255 - 17th Avenue S.W.,
- Calgary, Alberta 128 218
· · · · · · · · · · · · · · · · · · ·
ATTN: Jack Wyder



File No. 3	U614
Date N	ovember 9, 1987
Samples C	ore

Ser ASSAY Ox.

2 

LORING LABORATORIES LTD.

Page # 1

SAMPLE No.	OZ./YON GOLD	OZ./TON SILVER
"Core Samples"		· · · · · · · · · · · · · · · · · · ·
"Assay Analysis"		
V 30407	.004	.02
30408	.005	.04
30409	.002	.04
30410	.003	.07
30411	.001	.02
30412	Trace	Trace
30413	.001	Trace
30428	.002	.05
30430	.001	.02
30431	.002	.04
30432	.004	.01
30433	.001	.03
30434	.001	.03
30435	.002	.06
30436	.006	.16
30437	.002	.16
30438	.013	.83
30439	.006	.07
	.006 I Hereby Certify that th assays made by me upon the here	

Rejects Retained one month.

Pulps Retained one month unless specific arrangements made in advance.

. . . . . . . . . . . . . . .

. . . . . .

Assayer

To: <u>BIG HORN DEVELOPMENT CORP.</u>, <u>400, 255 - 17th Avenue S.W.</u>, <u>Calgary, Alberta</u> T2S 2T8



File No.	30614
Date	November 9, 1987
Samples	Core

ATTN: Jack Wyder

## St ASSAY or

## LORING LABORATORIES LTD.

	OZ./TON	OZ./TON SILVER
SAMPLE No.	GOLD	
	.002	.06
V 30446	.001	.07
30447		.09
30448	Trace	.08
30449	.005	.07
30450	.004	.08
30451	.003	
		· · · · · · · · · · · · · · · · · · ·
	or on 1 /IT white out 1	THE ADOVE DESULTS ARE THOSE
	I Hereby Certify that t assays made by me upon the her	HE ABUVE RECOLLS AND A
	ASSAYS MADE BT ME GFOR THE	

Page # 2

Rejects Retained one month.

Assayer

To: BIG HORN DEVELO	OPMENT CORP.,
4CO, 255 - 17th	
🗂 Calgary, Alberta	•
***************************************	
ATTN: J. Wyder	

- - - - -



File No.	30650
Date	November 30, 1987
Samples	Core

LORING LABORATORIES LTD.

Page # 1

.

SAMPLE No.	OZ./TON GOLD	OZ./TON SILVER	% Cu
"Assay Analysis"			
√ <u>BH-6</u>			
30518	.007	.31	-
30519	.034	.85	-
30520	.028	1.18	-
30521	.005	.11	-
30522	.004	.18	-
30523	.004	.20	-
30524	.002	.07	.01
30525	.007	.20	-
30526	.009	.25	-
30527	.005	.10	-
30528	.006	.20	-
30529	.010	.47	-
30530	.006	.07	-
30531	.006	.06	-
30532	.015	.59	.01
30533	.013	.38	-
30534	.005	.08	-
30535	.006	.10	. –
30536	1003 I Hereby Ca assays made by me	.05 ertify that the above results are upon the herein described samples	- THOSE 

Rejects Retained one month.

To: BIG HORN DEVELOPMENT CORP.
400, 255 - 17th Avenue S.W.,
<u>algary, Alberta</u> <u>T2S 2T8</u>
S
ATTN: J. Wyder



File No.	30650	
Date	November 30, 198	7
Samples	Core	

÷.	ificat.	þ
\$°^	ASSAY	0 pr

LORING LABORATORIES LTD.

SAMPLE No. BH-6 Cont.d	OZ./TON GOLD	OZ./TON SILVER	z Cu
30537	.007	.22	-
30538	.009	.21	-
30539	.036	.92	-
30540	.006	.52	-
30541	.002	.01	-
30542	.002	.03	-
30543	Trace	.04	-
30544	.002	.01	-
30545	Trace	.01	-
30546	.002	.03	-
30547	.902	.22	-
30548	.004	·Trace	-
30549	.001	.01	-
30550	.002	.02	-
30551	.002	.03	-
30552	Trace	.12	_
30553	.001	Trace	-
30554	.001	Trace	-
30555	.001	.07	-
30556	.003	.03	-
30557	.002	.03	-
		Certify that the above results are those me upon the herein described samples	

Page # 2

Rejects Retained one month.

Pulps Retained one month unless specific arrangements made in advance.

RECUI.	· • · •		- <b>1</b>	<b>.</b>	0002
	- A		C		
فاجبدت يستبا	the second second	And 4	÷		6 - J - L

To: BIG HORN	DEVEL	OPMENT	CORP.,
400, 255 -	17th A	venue	S.W.,
-^algary, Alb	erta	T2S 2	278
A	••		***- ** ******



File No	30716
Date	December 18, 1987
Samples	Core

Jack Wyder ATTN:

## LORING LABORATORIES LTD.

Page # 1

ar.

5 .

SAMPLE No.	OZ./TON GOLD
V	
" <u>Core Sample</u> "	
" <u>Assay Analysis</u> " 55	
<u>کې</u> BH <b>-1-30476</b>	∂7/->∂7/2 .152
	J Hereby Certify that the above results are those assays made by me upon the herein described samples

Rejects Retained one month.

Pulps Retained one month unless specific arrangements made in advance,

 $\widehat{O}$ 

Åssayer

То:В	LG HORN DEVEL	OPMENT_CORP.,
400,	<u> 255 - 17th A</u>	venue S.W.,
C ilga	ry, Alberta	<u>T2S_2T8</u>
ATTN:	J. Wyder	



File No.	30650
Date	November 30, 1987
Samples	Core

Servificate ASSAY 0× LORING LABORATORIES LTD.

Page # 4

.

SAMPLE No.	PPB Au _	PPM Ag
"Core Samples" "Assay Analysis" ✓ BH-6-30561 30562 30563 30564 ✓ BH-2-30641 30642 30643 30644 30645 30645 30647 30648 30649 30652	NIL NIL NIL 15 15 NIL 15 NIL 5 NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL	0.3 0.2 0.1 0.1 0.1 0.1 NIL NIL NIL NIL NIL NIL NIL NIL

Rejects Retained one month.

To: BIG HORN DEV	ELOPMENT CORP.
400, 255 - 17th	Avenue S.W.,
Clary, Alberta	T2S 2T8
	• 

.....

ATTN: Jack Wyder



File No	30716
Date	December 18, 1987
	Core

-	•	E
LORING	LABORATORIES	LTD.

Page # 6

		РРМ
SAMPLE No.	PPB	Ag
SAMPLE NO.	<u>Au</u>	
		NIL
BH-2-30646	5	· NIL
30659	20	0.1
30660	5	NIL
30663	NIL	NIL
30664	5	0.1
30668	NIL	NIL
30669	NIL	NIL
30673	NIL	0.1
(BH-1-30414	NIL	0.4
30415	NIL	0.5
30416	NIL	7.8
30423	190	3.5
30424	220	4.9
30425	265	2.3
30426	85	1.6
30427	35	0.6
30429	10	0.5
30456	+1000	0.1
30459	NIL	0.1
30460	315	
	I Hereby Certify THAT	THE ABOVE RESULTS ARE THOSE
1	ASSAYS MADE BY ME UPON THE HE	
,⊥	ASSAYS MADE BY ME UPON THE HE	

Rejects Retained one month.

Pulps Retained one month unless specific arrangements made in advance.

.....

To: BIG.	HORN DEVEL	OPMENT CORP.	P;
400, 2	255 - 17th	Avenue S.W.	>
( lgary	. Alberta	T2S 2T8	
C string	•		

ATTN: Jack Wyder



File No.	30716
Date	December 18, 1987
Samples	Core

ASSAY 0, LORING LABORATORIES LTD.

### Page # 2

٦

	PPB	мчч
SAMPLE No.	Au	Ag
"Core Samples"		
Geochemical Analysis		
		0.5
BH-5-25976	NIL	0.5
25977	NIL	0.2
25978	NIL	0.3
25979	NIL	0.3
25980	NIL	0.6
25981	NIL	0.6
25982	NIL	0.3
25983	15	0.3
25984	NIL	0.2
25985	NIL	0.3
25986	NIL	0.1
25987	NIL	0.1
25988	NIL	0.3
25989	NIL	0.1
25990	NIL	0.2
25991	NIL	NIL
25992	NIL	0.2
	NIL	0.4
25993		0.2
25994	NIL	NIL
25995	NIL	NIL
25996	NIL	0.2
25997	NIL	
25998	NIL	0.1
25999	NIL	0.1
26000	NIL	0.2
30576	NIL	NIL
30577	NIL	0.1
30578	NIL	0.3
	I Thereby Certify THAT THE ABOVE RESULTS ,	ARE THOSE
_	ASSAYS MADE BY ME UPON THE HEREIN DESCRIBED SAME	
	ADDATD MADE BI ME UPON THE HEREIN DESCRIDED SAMP	

Rejects Retained one month.

To: BIG HORN DEVELOPMENT CORP., 400, 255 - 17th Avenue S.W., Calgary, Alberta T2S 2T8



File No	30716
Date	December 18, 1987
Samples	Core

ATTN: Jack Wyder

j

## LORING LABORATORIES LTD.

### Page # 3

÷.

SAMPLE No.	РРВ	РРМ
SAMPLE NO.	Au	Ag
		· · · · · · · · · · · · · · · · · · ·
BH-5-30579	95	0.1
30580	NIL.	0.1
30581	NIL	NIL
30582	NIL	NIL
BH-4-30226	NIL	0.2
30227	50	0.3
30228	NIL	0.1
30229	NIL	0.2
30230	NIL	0.3
. 30231	NIL	0.1
30232	140	0.2
30233	NIL	0.2
30234	NIL	0.2
30235	NIL	0.1
30236	NIL	0.2
30237	NIL	0.1
30238	NIL	0.3
30239	NIL	NIL
30240	NIL	NIL
30241	NIL	0.1
30242	NIL	0.2
30243	NIL	NIL
30244	NIL	0.1
30245	NIL	0.1
30246	NIL	NIL
30247	NIL	0.1
30248	NIL	0.3
30249	NIL	NIL
30250	NIL	0.2
30251	NIL	ŇĨĹ
30252	NIL	0.1
		THAT THE ABOVE RESULTS ARE THOSE
		E HEREIN DESCRIBED SAMPLES
L	ASSAIS MAUE BI ME UPUN IA	E NEREIM DEGURIDED GAMELEG

Rejects Retained one month.

Pulps Retained one month unless specific arrangements made in advance.

	To:BIG_HORN_DEVELOPMENT_CORP.
	400, 255 - 17th Avenue S.W.,
	Calgary, Alberta T2S 2T8
•	
	ATTN: J. Wyder

(



File No.	30686
Date	November 30, 1987
Samples	Core

Ser ASSAY or LORING LABORATORIES LTD.

SAMPLE No.	PPB Au	РРМ Ад
" <u>Core Samples</u> " Geochemical Analysis		
<ul> <li>BH-3-30324</li> <li>30325</li> <li>30326</li> <li>30327</li> <li>30328</li> <li>30329</li> <li>30332</li> <li>30333</li> <li>30334</li> <li>30335</li> <li>30336</li> <li>30340</li> <li>30341</li> <li>30342</li> <li>30343</li> <li>30345</li> <li>30347</li> <li>30352</li> </ul>	NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL	NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL
	J Hereby Certify tha assays made by me upon the p	T THE ABOVE RESULTS ARE THOSE IEREIN DESCRIBED SAMPLES

Rejects Retained one month.

Pulps Retained one month unless specific arrangements made in advance.

To: <u>BI</u>	<u>G_HORN</u>	DEVE	OPMENT.	CORP.,
400,	255 -	<u>17th</u>	Avenue	<u>S.W.,</u>
	ry, Al	<u>berta</u>	<u>, 125 ;</u>	218
ATTN:	Jack	Wyde	r.	



File No.	30716		<b></b>
Date	December	18,	1987
Samples	Core		

Ser ASSAY or

LORING LABORATORIES LTD.

SAMPLE No.         PPB         PPB           Au         Ag           BH-4-30253         NIL         NIL           30254         NIL         NIL           30255         NIL         NIL           30256         NIL         0.2           30257         NIL         0.1           30258         15         0.6           30259         NIL         0.1           30260         NIL         0.2           30261         5         0.6           30262         NIL         0.1           30263         NIL         0.1           30264         NIL         0.1           30263         NIL         0.1           30264         NIL         0.1           30360         NIL         NIL           30361         NIL         NIL           30362         NIL         NIL           30363         NIL         NIL           30364         NIL         NIL           30365         NIL         0.1           30366         NIL         0.1           30370         NIL         0.1           30371         NI				
BH-4-30253         NIL         NIL           30254         NIL         NIL           30255         NIL         0.1           30256         NIL         0.1           30257         NIL         0.1           30258         15         0.6           30259         NIL         0.1           30261         5         0.6           30262         NIL         0.1           30263         NIL         0.1           30264         NIL         0.1           302658         NIL         0.1           30263         NIL         0.1           30264         NIL         0.1           30358         NIL         NIL           30360         NIL         NIL           30361         NIL         NIL           30362         NIL         NIL           30363         NIL         NIL           30364         NIL         NIL           30365         NIL         NIL           30366         NIL         NIL           30367         NIL         NIL           30368         NIL         0.1           3037		CAMPLE No.	РРВ	PPM
30254         NIL         NIL           30255         NIL         0.2           30256         NIL         0.1           30257         NIL         0.1           30258         15         0.6           30259         NIL         0.2           30260         NIL         0.2           30261         5         0.6           30262         NIL         0.1           30263         NIL         0.1           30264         NIL         0.1           30365         NIL         0.1           30366         NIL         NIL           30360         NIL         NIL           30360         NIL         NIL           30360         NIL         NIL           30364         NIL         NIL           30365         NIL         0.1           30366         NIL         0.1           30367         NIL         NIL           30368         NIL         0.1           30370         NIL         0.1           30372         NIL         0.1           30374         NIL         0.1           30375 <th></th> <th>SAWIFLE INO.</th> <th>Au</th> <th>Ag</th>		SAWIFLE INO.	Au	Ag
30254         NIL         NIL           30255         NIL         0.2           30256         NIL         0.1           30257         NIL         0.1           30258         15         0.6           30259         NIL         0.2           30260         NIL         0.2           30261         5         0.6           30262         NIL         0.1           30263         NIL         0.1           30264         NIL         0.1           30365         NIL         0.1           30366         NIL         NIL           30360         NIL         NIL           30360         NIL         NIL           30360         NIL         NIL           30364         NIL         NIL           30365         NIL         0.1           30366         NIL         0.1           30367         NIL         NIL           30368         NIL         0.1           30370         NIL         0.1           30372         NIL         0.1           30374         NIL         0.1           30375 <th>• 1</th> <th>BH-4-30253</th> <th>NIT</th> <th>NTI</th>	• 1	BH-4-30253	NIT	NTI
30255         NIL         NIL         NIL           30256         NIL         0.2           30257         NIL         0.1           30258         15         0.6           30259         NIL         NIL           30261         5         0.6           30262         NIL         0.2           30263         NIL         0.2           30264         NIL         0.1           30263         NIL         0.1           30264         NIL         0.1           30358         NIL         0.1           30360         NIL         NIL           30361         NIL         NIL           30362         NIL         NIL           30363         NIL         NIL           30364         NIL         NIL           30367         NIL         0.1           30368         NIL         0.1           30370         NIL         NIL           30372         NIL         0.1           30374         NIL         0.1           30375         NIL         0.1           30376         NIL         0.1				
30256         NIL         0.2           30257         NIL         0.1           30258         15         0.6           30259         NIL         NIL           30260         NIL         0.2           30261         5         0.6           30262         NIL         0.1           30263         NIL         0.1           30264         NIL         0.1           30365         NIL         NIL           30366         NIL         NIL           30361         NIL         NIL           30362         NIL         NIL           30363         NIL         NIL           30364         NIL         NIL           303658         NIL         0.1           30366         NIL         NIL           30367         NIL         NIL           30368         NIL         0.1           30369         NIL         0.1           30370         NIL         0.1           30373         NIL         0.1           30374         NIL         0.1           30375         NIL         0.2           30376 <th></th> <th></th> <th></th> <th></th>				
30257         NIL         0.1           30258         15         0.6           30259         NIL         NIL           30260         NIL         0.2           30261         5         0.6           30262         NIL         0.1           30263         NIL         0.1           30264         NIL         0.1           30264         NIL         0.1           30265         NIL         0.1           30264         NIL         0.1           30365         NIL         NIL           30366         NIL         NIL           30367         NIL         NIL           30368         NIL         NIL           30367         NIL         NIL           30368         NIL         0.1           30369         NIL         0.1           30369         NIL         0.1           30370         NIL         NIL           30373         NIL         0.1           30374         NIL         0.1           30375         NIL         0.2           30377         NIL         0.2           30378 <th></th> <th></th> <th></th> <th></th>				
30258         15         0.6           30259         NIL         NIL           30260         NIL         0.2           30261         5         0.6           30262         NIL         0.1           30263         NIL         0.1           30264         NIL         0.1           30263         NIL         0.1           30264         NIL         0.1           30358         NIL         0.1           30360         NIL         NIL           30361         NIL         NIL           30362         NIL         NIL           30364         NIL         NIL           30367         NIL         NIL           30368         NIL         0.1           30369         NIL         0.1           30370         NIL         0.1           30371         NIL         0.1           30372         NIL         NIL           30373         NIL         0.1           30375         NIL         0.1           30376         NIL         0.1           30377         NIL         0.2           30376 <th></th> <th></th> <th></th> <th></th>				
30259       NIL       NIL         30260       NIL       0.2         30261       5       0.6         30262       NIL       0.1         30263       NIL       NIL         30264       NIL       0.1         303658       NIL       0.1         30360       NIL       NIL         30361       NIL       NIL         30362       NIL       NIL         30364       NIL       NIL         30367       NIL       NIL         30368       NIL       NIL         30367       NIL       NIL         30368       NIL       NIL         30367       NIL       NIL         30368       NIL       NIL         30370       NIL       NIL         30370       NIL       0.1         30370       NIL       NIL         30371       NIL       NIL         30372       NIL       0.1         30374       NIL       0.1         30375       NIL       0.1         30376       NIL       0.2         30378       NIL       0.2 <tr< th=""><th></th><th></th><th></th><th></th></tr<>				
30260       NIL       0.2         30261       5       0.6         30262       NIL       0.1         30263       NIL       0.1         30264       NIL       0.1         30265       NIL       0.1         30264       NIL       0.1         30365       NIL       NIL         30366       NIL       NIL         30367       NIL       NIL         30368       NIL       NIL         30369       NIL       NIL         30368       NIL       0.1         30370       NIL       NIL         30370       NIL       0.1         30370       NIL       NIL         30377       NIL       NIL         30378       NIL       0.1         30379       NIL       0.1         30378       NIL       0.2         30380       NIL       0.2         30380       NIL       0.1				
30261         5         0.6           30262         NIL         0.1           30263         NIL         0.1           30264         NIL         0.1           BH-3-30301         NIL         NIL           30358         NIL         NIL           30360         NIL         NIL           30361         NIL         NIL           30362         NIL         NIL           30364         NIL         NIL           30367         NIL         NIL           30368         NIL         NIL           30369         NIL         0.1           30370         NIL         0.1           30371         NIL         0.1           30372         NIL         0.1           30373         NIL         0.1           30374         NIL         0.1           30375         NIL         0.1           30376         NIL         0.2           3037				
30262       NIL       0.1         30263       NIL       NIL         30264       NIL       0.1         BH-3-30301       NIL       NIL         30360       NIL       NIL         30361       NIL       NIL         30362       NIL       NIL         30363       NIL       NIL         30364       NIL       NIL         30365       NIL       NIL         30366       NIL       NIL         30367       NIL       NIL         30368       NIL       0.1         30369       NIL       0.1         30370       NIL       0.1         30371       NIL       NIL         30372       NIL       NIL         30373       NIL       0.1         30374       NIL       0.1         30375       NIL       0.1         30376       NIL       0.1         30377       NIL       0.2         30380       NIL       0.2         30380       NIL       0.1				
30263         NIL         NIL           30264         NIL         0.1           BH-3-30301         NIL         NIL           30358         NIL         NIL           30360         NIL         NIL           30361         NIL         NIL           30362         NIL         NIL           30364         NIL         NIL           30365         NIL         NIL           30366         NIL         NIL           30367         NIL         NIL           30368         NIL         0.1           30369         NIL         0.1           30370         NIL         NIL           30371         NIL         NIL           30372         NIL         NIL           30373         NIL         0.1           30374         NIL         0.1           30375         NIL         0.1           30376         NIL         0.1           30378         NIL         0.2           30380         NIL         0.1           J         Hereby Certify THAT THE ABOVE RESULTS ARE THOSE	$\bigcap$			
30264       NIL       0.1         BH-3-30301       NIL       NIL         30368       NIL       NIL         30360       NIL       NIL         30361       NIL       NIL         30362       NIL       NIL         30364       NIL       NIL         30365       NIL       NIL         30366       NIL       NIL         30367       NIL       NIL         30368       NIL       0.1         30369       NIL       0.1         30370       NIL       0.1         30372       NIL       NIL         30375       NIL       NIL         30376       NIL       0.1         30377       NIL       0.1         30378       NIL       0.2         30379       NIL       0.2         30380       NIL       0.2         30380       NIL       0.1				
BH-3-30301       NIL       NIL         30358       NIL       NIL         30360       NIL       NIL         30361       NIL       NIL         30362       NIL       NIL         30364       NIL       NIL         30368       NIL       NIL         30369       NIL       0.1         30370       NIL       0.1         30371       NIL       NIL         30372       NIL       NIL         30373       NIL       NIL         30374       NIL       0.1         30375       NIL       0.1         30376       NIL       0.1         30377       NIL       0.1         30378       NIL       0.1         30379       NIL       0.2         30380       NIL       0.2         30380       NIL       0.2				
30358       NIL       NIL         30360       NIL       NIL         30361       NIL       NIL         30362       NIL       NIL         30364       NIL       NIL         30367       NIL       NIL         30368       NIL       0.1         30369       NIL       0.1         30370       NIL       NIL         30371       NIL       NIL         30372       NIL       NIL         30373       NIL       NIL         30374       NIL       NIL         30375       NIL       0.1         30376       NIL       0.1         30377       NIL       0.1         30378       NIL       0.1         30379       NIL       0.2         30380       NIL       0.2         30380       NIL       0.2         30380       NIL       0.1				0.1
30360       NIL       NIL         30361       NIL       NIL         30362       NIL       NIL         30364       NIL       NIL         30367       NIL       NIL         30368       NIL       NIL         30370       NIL       0.1         30370       NIL       NIL         30370       NIL       NIL         30371       NIL       NIL         30372       NIL       NIL         30373       NIL       NIL         30374       NIL       NIL         30375       NIL       0.1         30376       NIL       0.1         30377       NIL       0.1         30378       NIL       0.2         30380       NIL       0.2         30380       NIL       0.2         30380       NIL       0.2				NIL
30361       NIL       NIL         30362       NIL       NIL         30364       NIL       NIL         30367       NIL       NIL         30368       NIL       0.1         30369       NIL       0.1         30370       NIL       NIL         30372       NIL       NIL         30375       NIL       NIL         30376       NIL       0.1         30377       NIL       0.1         30378       NIL       0.1         30379       NIL       0.2         30380       NIL       0.2         30380       NIL       0.2				NIL
30362       NIL       NIL         30364       NIL       NIL         30367       NIL       NIL         30368       NIL       0.1         30369       NIL       0.1         30370       NIL       NIL         30372       NIL       NIL         30373       NIL       NIL         30374       NIL       NIL         30375       NIL       0.1         30376       NIL       0.1         30377       NIL       0.1         30378       NIL       0.2         30379       NIL       0.2         30380       NIL       0.2         J Hereby Certify THAT THE ABOVE RESULTS ARE THOSE       0.1				NIL
30364       NIL       NIL         30367       NIL       NIL         30368       NIL       0.1         30369       NIL       0.1         30370       NIL       NIL         30372       NIL       NIL         30373       NIL       NIL         30374       NIL       NIL         30375       NIL       0.1         30376       NIL       0.1         30377       NIL       0.1         30378       NIL       0.2         30379       NIL       0.2         30380       NIL       0.1				NIL
30367       NIL       NIL         30368       NIL       0.1         30369       NIL       0.1         30370       NIL       NIL         30370       NIL       NIL         30371       NIL       NIL         30372       NIL       NIL         30373       NIL       NIL         30374       NIL       NIL         30375       NIL       0.1         30376       NIL       0.1         30377       NIL       0.1         30378       NIL       0.2         30379       NIL       0.2         30380       NIL       0.2         J       Thereby Certify THAT THE ABOVE RESULTS ARE THOSE			NIL	NIL
30368       NIL       0.1         30369       NIL       0.1         30370       NIL       NIL         30372       NIL       NIL         30373       NIL       NIL         30374       NIL       NIL         30375       NIL       0.1         30376       NIL       0.1         30377       NIL       0.1         30378       NIL       0.1         30379       NIL       0.2         30380       NIL       0.2         J Hereby Certify THAT THE ABOVE RESULTS ARE THOSE       0.1			NIL	NIL
30369       NIL       0.1         30370       NIL       NIL         30372       NIL       NIL         30373       NIL       NIL         30374       NIL       NIL         30375       NIL       0.1         30376       NIL       0.1         30377       NIL       0.1         30378       NIL       0.2         30380       NIL       0.2         Whereby Certify THAT THE ABOVE RESULTS ARE THOSE       0.1				NIL
30369       NIL       0.1         30370       NIL       NIL         30372       NIL       NIL         30373       NIL       NIL         30374       NIL       NIL         30375       NIL       0.1         30376       NIL       0.1         30377       NIL       0.1         30378       NIL       0.2         30379       NIL       0.2         30380       NIL       0.2         J Hereby Certify THAT THE ABOVE RESULTS ARE THOSE       0.1			NIL	0.1
30370       NIL       NIL         30372       NIL       NIL         30373       NIL       NIL         30373       NIL       NIL         30374       NIL       NIL         30375       NIL       0.1         30376       NIL       0.1         30377       NIL       0.2         30378       NIL       0.2         30379       NIL       0.2         30380       NIL       0.1         J Hereby Certify THAT THE ABOVE RESULTS ARE THOSE       0.1		30369	NIL	
30372       NIL       NIL         30373       NIL       NIL         30374       NIL       NIL         30375       NIL       0.1         30376       NIL       0.1         30377       NIL       0.1         30378       NIL       0.2         30379       NIL       0.2         30380       NIL       0.2         J       Hereby Certify THAT THE ABOVE RESULTS ARE THOSE	•	30370		
30373       NIL       NIL       NIL         30374       NIL       NIL       NIL         30375       NIL       0.1         30376       NIL       0.1         30377       NIL       0.2         30378       NIL       0.2         30379       NIL       0.2         30380       NIL       0.1         J Hereby Certify THAT THE ABOVE RESULTS ARE THOSE       0.1		30372	NIL	
30374       NIL       NIL         30375       NIL       0.1         30376       NIL       0.1         30377       NIL       0.2         30378       NIL       NIL         30379       NIL       0.2         30380       NIL       0.2         J Hereby Certify THAT THE ABOVE RESULTS ARE THOSE       0.1		30373	NIL	
30375       NIL       0.1         30376       NIL       0.1         30377       NIL       0.2         30378       NIL       NIL         30379       NIL       0.2         30380       NIL       0.2         J Hereby Certify that the above results are those       0.1		30374		
30376       NIL       0.1         30377       NIL       0.2         30378       NIL       NIL         30379       NIL       0.2         30380       NIL       0.2         J Hereby Certify THAT THE ABOVE RESULTS ARE THOSE       0.1		30375		
30377NIL0.230378NILNIL30379NIL0.230380NIL0.1J Hereby Certify that the above results are those				
30378       NIL       NIL         30379       NIL       0.2         30380       NIL       0.1         J Hereby Certify that the above results are those       0.1				
30379 NIL 0.2 30380 NIL 0.1 I Hereby Certify that the above results are those				
30380 NIL 0.1 I hereby Certify that the above results are those	e.			
I Hereby Certify that the above results are those	• .			
				V.1
ASSAYS MADE BY ME UPON THE HEREIN DESCRIBED SAMPLES				
			ASSAYS MADE BY ME UPON THE HEREIN DESCRIBED SAMPLES	

Page # 4

Rejects Retained one month.

Pulps Retained one month unless specific arrangements made in advance.

To: BIG HO	RN DEVEL	OPMENT	CORP.,
400, 255	<u>- 17th</u>	Avenue	S.₩,
gary, I	\lberta	T25 2	218
	•		
ATTN: Ja	ck Wyder		



File No.	30716	
Date	December 18, 1987	
Samples	Core	

Se ASSAY 0×

## LORING LABORATORIES LTD.

### Page # 5

-

			РРМ
	SAMPLE No.	РРВ	Ag
	SAMFLE RU.	Au	
	BH-3-30381	NIL	0.1
	30382	NIL	NIL
	30383	NIL	0.1
1	30383	NIL	0.1
	30385	NIL	0.2
ŀ		NIL	0.1
	30386		NIL
	30387	NIL	0.1
_	30388	NIL.	NIL
(	30389	NIL	NIL
	30390	NIL	
	30391	NIL	0.1
	30392	NIL	0.1
	30393	NIL ··	NIL
	30394	NIL NIL	NIL
	30395	NIL	NIL
	30396	NIL	. NIL
.	30397	NIL	NIL
	30398	NIL	0.1
	30399	NIL	NIL
	30400	NIL	NIL
	BH-2-30627	225	4.1
1	30628	20	1.5
·	30631	40	1.0
	30632	15	0.4
]	30633	15	0.5
	30634	5	NIL
	30635	30	2.1
	30636	15	0.5
	30637	NIL	0.1
	30639	NIL	0.4
	30640	NIL	NIL
		I mereby Certify that the above results are those	
ļ			
5		ASSAYS MADE BY ME UPON THE HEREIN DESCRIBED SAMPLES	

Rejects Retained one month.

Assayer

To: BRUCEJACK GOL	D LID.,
400, 255 - 17th	Avenue S.W.,
Calgary, Alberta	T2S 2T8
ATTN: Ed Kruchkov	vski



File No	30615
Date	November 9, 1987
Samples	Core

LORING LABORATORIES LTD.

Page # 7

SAMPLE No.	PPB Au	PPM Ag
		······································
		· ·
		-
"Core Samples"		
eochemical Analysis		
30401	NIL	0.2
30402	NIL	0.2
30403	20	0.2
30404	NIL	0.3
30405	NIL	0.3
30406	NIL	0.3
	I Hereby Certify that the	ABOVE RESULTS ARE THOSE
	ASSAYS MADE BY ME UPON THE HEREIN	DESCRIBED SAMPLES

Rejects Retained one month.

..... Assayer

To: <u>BIG HORN DEVELOPMENT CORP.</u>, <u>400, 255 - 17th Avenue S.W.</u>, <u>Calgary, Alberta</u> T2S 2T8 ATTN: Jack Wyder



File No	30650-1
Date	January 4, 1988
Samples	Pulp

LORING LABORATORIES LTD.

Page # 1

a.

•

SAMPLE No.	PPB Pt
	· · · · · · · · · · · · · · · · · · ·
" <u>Pulp Samples</u> "	
30520	-30
30522	-30
	(-) = Less Than
	I Hereby Certify that the above results are those assays made by me upon the herein described samples
Rejects Retained one month.	6

Pulps Retained one month unless specific arrangements made in advance,

(

To: <u>BIG HORN DEVELOPMENT CORP.</u>, 400, 255 - 17th Avenue S.W., Calgary, Alberta T2S 218

. . . . . . . . . . . . .



File No.	30650-1
Date	January 4, 1988
Samples	Pulp

ATIN: Jack Wyder

# LORING LABORATORIES LTD.

Page # 2

SAMPLE No.	%Cu	% РЬ	ž Zn
"Pulp Samples"			
30518	.06	.13	.60
30519	.15	.18	2.50
30520	.17	.23	1.65
30521	.02	.02	.17
30522	.02	.03	.26
30523	.01	.01	.14
30524	.01	Trace	.10
30525	.01	Trace	.08
30526	.01	.01	.05
30527	Trace	Trace	.11
30528	Trace	Trace	.07
30529	Trace	Trace	.05.
30530	Trace	Trace	.05
30531	Trace	Trace	.06
30532	.01	.01	.04
30533	.01	.01	.04
30534	Trace	Trace	.05
30535	Trace	Trace	.05
30536	Trace	Trace	.04
30537		Trace Uertify that the above results ar me upon the herein described sample	

**Rejects Retained one month.** 

Pulps Retained one month unless specific arrangements made in advance.

To: BIG HORN DEVELOPMENT CORP., 400, 255 - 17th Avenue S.N., Calgary, Alberta T2S 218



File No.	30650-1
Date	January 4, 1988
Samples	Pulp

ATTN: Jack Wyder

# LORING LABORATORIES LTD.

Page # 2

SAMPLE No.	% Cu	% Pb	% Zn
30538	Trace	.01	.06
30539	.01	.01	.05
30540	Trace	.01	.07
			c
			. •
	I Berchn (	ertify that the above results ,	RE THOSE
	ASSAYS MADE BY M	E UPON THE HEREIN DESCRIBED SAME	LES

Rejects Retained one month.

Pulps Retained one month unless specific arrangements made in advance,

To: BIG	HORN DEVE	LOPMENT CORP	·,
400, 25	5 - 17th	Avenue S.W.	2
lgery	, Alberta	T2S 2T8	
· · ·	•		



File No.	30586-1
Date	January 4, 1988
Samples	Pulp

ATTN: Jack Wyder

Ser ASSAY 0x

LORING LABORATORIES LTD.

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	d k	%
SAMPLE No.	Cu	Pb	Zn
· · · · · · · · · · · · · · · · · · ·			
" <u>Pulp Samples</u> "			
30442	.01	.01	.03
30625	.01	.02	.23
30626	Trace	.01	.15
•			
			:
	·		
	•		
	I Hereby C	ertify that the above results	ARE THOSE
	ASSAYS MADE BY MI	E UPON THE HEREIN DESCRIBED SAM	PLES

Rejects Retained one month.

Pulps Retained one month unless specific arrangements made in advance.

Assayer

ŧ.

(

(

÷.

(

٢.

1

41

Ċ

(

C

(

(

()

(

(

C

(

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAN SAMPLE IS DIGESTED WITH JML 3-1-2 HCL-HN03-H20 AT 95 DEC. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MR FE CA P LA CR MG BA TI B & AND LIMITED FOR WA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: Pulp

852 E. HASTINGS ST. VANCOUVE

	DATE RECEIVE	Dŧ	DEC	7 (96	87	DATI	e re	POR	t me	AILEI	Dı	\mathcal{D}	æ	9/8	97	ASS	AYER	.D	.A	Zefer	DE	AN T	TOYE	E, CI	ERTI	FIE) B.	C. (ASSA	YER	
									LC	RING	6 LP	BOR	ATOR	IES		File	e #	87-ć	6053												
	SAMPLE	MO PPH	CU PPM	PB PPH		A5 PPH	NI PPH	CO PPM	MN PPH	FE I	AS PPN	U PPM		TH PPM	SR PPM	CD PPM	58 PPM	BI PPM		CA I	-	LA PPM	CR PPN		da PPN	TI Z	B PPH	AL I	NA I	X 1	N PPN
÷	30650-1 BH-6 30520 30650-1 BH-6 30522	6 3	1839 220		17959 2022		22 35			6.92 5.60	112 169	5 5	Z KØ	2 2	25 19	110 6	9 2	2 2		1.16 1.16	. 101 . 043	2 2		1.26 1.08	39 84	.45 ,35	-	2.52 2.04			1 1

ACME ANALYTI LABORATORIES LTD.

852 E. HASTINGS ST. VHILLUUVEN R. C. VOH ING

rhund (604) züümütüdi i hakküri zi

11

٢.

С.

(°-

(

ſ

ţ

(

Ĺ

(

Ċ

(

C

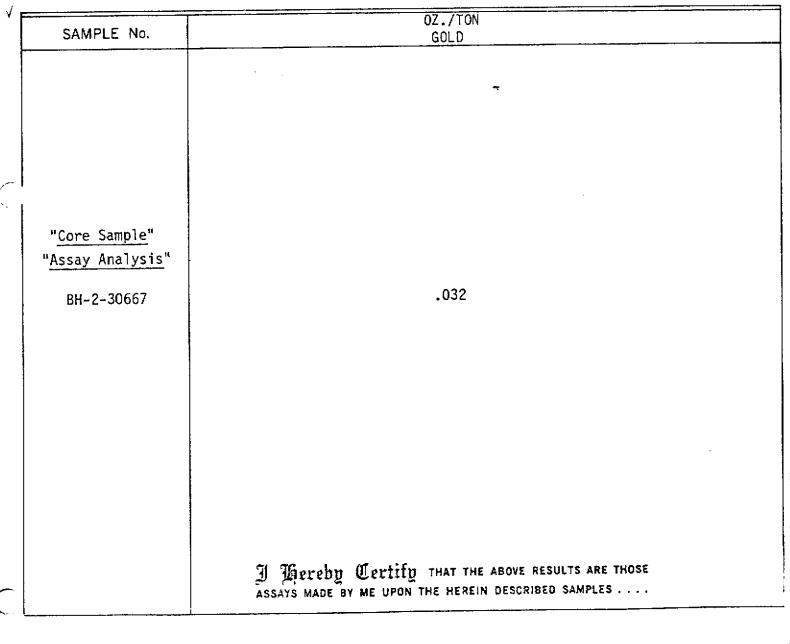
GEOCHEMICAL ANALYSI CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-Z HCL-HN03-H20 AT 95 DEC. C FOR ONE HOUR AND IS DILUTED TO 10 NL WITH WATER. THIS LEACH IS PARTIAL FOR NN FE CA P LA CR NG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM.

			- \$A	WIPLE 1						,			1.				A	1	1											
DATE RECEIVE	Ď:	DEC	7 1987	1	DATE	REI	PORT		ILED RING						ASSA File				1	DE	AN T	OYE	, CE	RTIF	FIED	в.	5. A	SSAY	'ER	
SANPLE	ND PPM	CU PPM	PB PPN	ZN PPN	a g PPN	NI PPH	C0 PPH	NN PPN	FE 1	as PPM	U PPH	AU PPM	TH Pphi	SR PPN	CD PPN	SB PPM	BI PPM	Y PPM	CA I	P I	LA PPN	CR PPN	MG I	BA PPH	IT I	0 PPM	AL I	NA I	X	N PPN
30586-1 8H-2 30625 30586-1 8H-2 30626 30586-1 70x682 30442 30586-1 8H-1 30419	4 4 5	47 52 77 2484	63	104	27.0	18 21 55 6	20 22 30 2		5.54 5.89 21.69 1.57	65 119 455 78	5 5 5 5	ND ND ND 10	3 1 3 1	15 15 15	5 2 277	2 6 24 20	2 2 7 2		1.97	.136 .119 .072 .001		8 10 21 1	1.17 .71 .76 .08	64 44 11 25	.40 .58 .25 .01	2	1.76 2.11 1.36 .09	.08 .08 .06 .01	.09 .16 .03	1 1 2 10

- ASSAY REQUIRED FOR CORRECT RESULT -

To: BIG HORN DEVELOPMENT CORP., 400, 255 - 17th Avenue S.W., algary, Alberta T2S 2T8


File No	30750
Date	December 18, 1987
Samples .	Core

ATTN: Jack Wyder

Set ASSAY or

LORING LABORATORIES LTD.

Page # 1

Rejects Retained one month.

Pulps Retained one month unless specific arrangements made in advance.

To: BIG HORN	DEVELOPMENT CORP.
400, 255 -	17th Avenue S.W.,
Calgary, Alt	perta T2S 2T8

File No.	30750		
Date	December	18,	1987
Samples	Core		

ATTN: Jack Wyder

LORING LABORATORIES LTD.

Servificate ASSAY or

Page # 2

/ 		
SAMPLE No.	PPB	РРМ
Grum EE 110.	Au	Ag
"Core Samples"		
Geochemical Analysis	*	
BH-2-30601	20	0.4
30602	75	0.2
30603	80	0.4
30604	45	0.1
30605	85	0.2
30606	45 85 15 55	0.3
30607	55	0.4
30608	50	0.5
30609	30	0.3
30610	NIL	0.3
30611	15	0.4
30612	55	0.6
30613	45	0.5
30614	140	0.7
30615	NIL	0.8
30616	20	0.8
30617	50	0.9
30618	30	1.0
30619	115	1.0
30620	145	0.5
30650	50	0.6
30651	275	0.6
30653	NIL	0.7
30654	20	0.4
30655	80	0.8
30656	40	0.7
30657	135	0.6
30658	40	0.7
	I hereby Certify that the above results are those	
	ASSAYS MADE BY ME UPON THE HEREIN DESCRIBED SAMPLES	
	ASSAIS MADE OF ME UPUN INE DEREIN DESURIDED SAMPLES , , , ,	

Rejects Retained one month.

To Ecol

Accorer

	To:BIG_HORN_DEVELOPMENT_CORP.
	400, 255 - 17th Avenue S.W.,
	Calgary, Alberta 125 218

.....

File No.	30750
Date	December 18, 1987
Samples	Core

ATTN: Jack Wyder

(

LORING LABORATORIES LTD.

Page # 3

	P PB		РРМ
SAMPLE No.	Au		Ag
BH-2-30661	25	· .	0.9
30662	15	*	1.0
30665	20		1.1
30666	55		0.6
30667	+1000		2.4
30670	110		0.5
30671	145		0.5
30672	20		0.6
BH-3-30302	25		1.7
30303	NIL		0.7
30304	10		0.8
30305	35		1.4
30306	65		1.2
30307	15		1.2
30308	35 65 15 15		1.1
30309	20		1.1
30310	10		0.9
30311	10 5		1.1
30312	30		1.1
30313	25		1.0
30314	20		1.0
30315	10		0.9
30316	30		0.9
30317	25		0.9
30318	NIL		1.0
30319	15		0.7
30320	85		0.6
30321	45		0.9
30322	10		0.7
30323	15		0.9
30330	85 45 10 15 15 J 頂ere		0.9
50550	I Than	by Certify that the above results a	
		DE BY ME UPON THE HEREIN DESCRIBED SAMP	1 5 5
	ASSAYS MAD	IE BT ME UPUN ING NEKEIN DESCRIBED SAMP	223
1	1	· · · · · · · · · · · · · · · · · · ·	

Rejects Retained one month.

Pulps Retained one month unless specific arrangements made in advance.

To: BI	G HORN DEVELOPMENT CORP.,
400,	255 - 17th Avenue S.W.,
Calga	ry, Alberta T2S 2T8
ATTN:	Jack Wyder

(

File No.	30750
Date	December 18, 1987
Samples	Core

 zifica	te
S [¢] ASSA	Y 4

LORING LABORATORIES LTD.

Page # 4

	PPB	PPM
SAMPLE No.	Au	Ag
	110	
BH-3-30331	10	0.8
30337	15	~ 0.7
30338	35	0.9
30344	10	0.6
30346	NIL	0.8
30348	15	0.8
30349	5	0.7
30350	20	0.6
30351	20	0.7
30353	10	0.8
30354	NĨĹ	0.7
30355	10	0.9
30356	15	0.7
30357	5	0.6
30359	10	0.7
30363	NIL	0.8
30365	10	0.7
30366	20	0.6
30371	15	0.7
BH-3-Special Sample	20	0.2
BH-6-30501	NIL	0.2
30502	5	0.3
30503	10	0.3
30504	NIL	0.2
30505	NIL	0.5
30506	25	0.4
30507	5	0.9
30508	5	0.4
30509	5	0.4
30510	25 5 5 20 15 J Here	0,4
30511	15	0.2
		by Certify that the above results are those
	ASSAYS MAT	DE BY ME UPON THE HEREIN DESCRIBED SAMPLES

Rejects Retained one month.

(

Pulps Retained one month unless specific arrangements made in advance.

R

Assayer

-- -- --

To:BIG HORN DEVELOPMENT CORP.,
400, 255 - 17th Avenue S.W.,
Calgary, Alberta T2S 218

File N	o. <u>3</u>	0750		
Date	D	ecember	18,	1987
Sample	s C	ore	· · · · · · · · · · ·	

ATTN: Jack Wyder

Se ASSAY 0x LORING LABORATORIES LTD.

Page #	ŧ 5
--------	-----

SAMPLE No.	PPB Au	PPM Ag
BH-6-30512 30513 30514 30515 30516 30517	20 65 5 NIL 20 25	0.3 0.2 0.4 0.4 0.5 0.9
	J Mereby Certify that the above results an assays made by me upon the herein described sampl	E THOSE ES

Rejects Retained one month.

Pulps Retained one month unless specific arrangements made in advance.

APPENDIX D

(

DRILL LOGS

	\cap			E.R. KRUCHKOWSKI	(} ^{₽. 1}		
				LOGGED BY E. HORNE				
ROPERTY	Crown Grant				NISHED 17	th Oct,	/8/	
WRILL HOLE _	BH-1 (Az 070 @ 44.5 [°])			DEPTH 416.0' DOWN TIME Hydraulic Drive	ASSAYS			
SAMPLE	INTERVAL	FORM	ALT,	DESCRIPTION	Au	Ag		
	0.0 - 7.0	\uparrow		Casing				
	7.0 - 11.0			Missing Core (Ground Up)				
	11.0 - 12.5			Andesite/Dacite "Greenstone" Broken core				
		1		slightly weathered ~ 1% Po, Py	ppb	ppm		
30401	12.5 - 15.5	Box	rich	Dacitic fragmental, trace Po, Py silicified &	Nil	0.2		
30402	15.5 - 19.0		eous te á ite	Epidote rich in part brecciated & crinkled	Nil	0.2		
30403	19.0 - 24.0		Silice Epidoti chlori	with hairline fractures @ 30° - 45° C.A.	20	0.2		
30404	24.0 - 29.0		ਾ ਸ਼ੁਰੂ ਹ	Minor rubbly paleosol @ 20 & 21 feet (Dirt	Nil	0.3		
		\uparrow		filled fractures 2" wide). AlsO silicified pale olive green				
				from 23.5 - 24.5 feet. 🛹 3% Po @ 22.5'. Slight rust & block	у			
<u>, <u>(</u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>				ground @ 23.5'. Hairline to 1/" quartz. Epidote fractures				
				over 5% total rock @ 30-45 ⁰ C.A. from 24.5' to 30.0'.				
30405	29.0 - 34.0	× 7		Andesite/dacite with 0.5 mm (5%) phenocrysts of amphibole	Ni1	0.3		
		Box		Less frequent hairline quartz fractures (2% of total)				
				@ 35° to 80° C.A. Strong epidote alteration 6" @ 29.5',				
			 	3" @ 31.5', trace Po.				
30406	34.0 - 39.0			As above with silicification & epidote	Nil	0.3		
		1 1		Alteration 6" @ 35.5' Missing core 🛩 38.0 - 39.0	oz/to	n oz/t	>n	
30407	39.0 - 44.0			Andesite/Dacite with mafic_phenocrysts 2-5%	.004	.02		

E.R. KRUCHKOWSKI C ULTING

LOGGED BY E. HORNE

PROPERTY Crown Grants L265		DATE 12th Oct/87	DATE 12th Oct/87 STARTED FINIS					
DRILL HOLE BH-1		DEPTH DOWN TIME		Δς:	A55AY\$			
SAMPLE NUMBER	INTERVAL	FORM	ALT.	DESCRIPTION		Øz∕ton		ļ
		Ъ		& quartz hairline fractur	$es 40^{\circ} - 80^{\circ} C.A. (5\%)$			
30408	44.0 - 49.0	Box		As above with conjugate i		.005	.04	
		1		filled & up to 5% quartz	eyes 1.0 - 5.0 mm			
30409	49.0 - 54.0			Andesite/Dacite as above	with 10% quartz eyes	.002	.04	
				1.0 mm size from 49.0 - 4	50.0. Pyritization 1-2%			
				in thin(along)quartz hain	rline fractures & small disseminat	ions		
30410	54.0 - 59.0			Broken up fragments 54.0	- 55.0 @ 20° & 80° C.A.	.003	.07	
				open & oxidized. From 5	5.0 - 59.0 Andesite/Dacite with			
		Зох		patchy mottled more fragm	mental appearance 6% @ 56.5',			
				58.0' & 59.5				<u> </u>
30411	59.0 - 63.0			Andesite/Dacite with sma	11 1. mm size mafic	.001	.02	<u></u>
				Phenocrysts (1-3%) & fra	gmental mottled zones 5" @			<u> </u>
				59.5', 61.5' open fractu	re from 61.0 - 62.0' @ 85 [°] C.A.			
	Box 3 Sto	ps @		with quartz & 1% Py.				
30412	63.0 = 68.0			Dacitic fragmental (mot	tled) with epidote	Tr	Tr	
			1	chlorite alteration slig	htly brecciated			
		Box		appearance & trace Py.	·			
30413	68.0 - 73.0			Dacitic fragmental 1" q	uartz stringer @	001	Tr	
				69.5' thin hairline quar	tz stringers over		L	
1							!	1

P

\bigcirc			E.R. KRUCHKOWSKI C		P.3	ſ	$\overline{)}$	
				LOGGED BY: E. HORNE				
Crown Grant	s L265		DATE 12th Oct./87	STARTED	FINISHE	D		
BH-1	<u> </u>	<u></u>	DEPTH	DOWN TIME		ASSAYS		
INTERVAL	FORM	ALT.	DESCRIPTION			Au	Ag	
			3%. Pronounced epidote & chlo	orite alteration &				
			silicification & trace dissem	inated Py.				Det
73.0 - 78.0			As above with trace dissemina	ted Py]	Ni1	0.1	Ppb Ppm Ppt
78.0 - 81.0			Dacitic fragemental as above	≁ 5% hairline	1	111		Ppb Ppm
81.0 - 84.0		t-	Quartz stringers & 1% white r	ound quartz	1	111	0.5	Ppb Ppm
		Box	Fragments (amygdules) alterat	ion is silicification,				
		\uparrow	epidotization & chloritizatio	n, hairline quartz stringer				
			exhibiting brecciation & more	frequent down hole (random				
			orientation).6" broken core,	minor oxidation & slightly				
	1		higher sulphides 1% Py @ 78.5	* & 80.5' to 81.0'	0	z/to	n oz/t	[
84.0 - 86.0						<u>.003</u>	0.08	Ppb Ppm
		1						
	1							
86.0 - 89.1	0			neavy dark to medium		.043	9.60	Ppb Ppm
		× 2			icif1-			
		<u>A</u>						
	-							
		-+						
	BH-1 INTERVAL 73.0 - 78.0 78.0 - 81.0 81.0 - 84.0 84.0 - 86.0		BH-1 INTERVAL FORM ALT. $73.0 - 78.0$	Crown Grants L265 DATE _ 12th Oct./87 BH-1 DEPTH	LOGGED BY: E. HORNE Crown Grants L265 DATE 12th Oct./87 STARTED	LOGGED BY: E. HORNE Crown Grants L265 DATE 12th Oct./87 STARTED	LOCGED BY: E. HORNE Crown Grants L265 DATE 12th Oct./87 STARTED	LOGGED BY: E. HORNE Crown Grants 1265 DATE 12th Oct./87 STARTED FINISHED BH-1 DEPTH DOWN TIPE ASSAYS INTERVAL FORM ALT. DESCRIPTION Au Age INTERVAL PORM ALT. DESCRIPTION Au Age INTERVAL PORM ALT. DESCRIPTION Au Age INTERVAL Au Age INTERVAL PORM ALT. DESCRIPTION Au Age INTERVAL Au AI INTERVAL Assays INTERVAL Au INTERVAL DESCRIPTION Au Age INTERVAL DESCRIPTION Au Age INTERVAL DESCRIP

	\bigcirc			E.R. KRUCHKOWSKI O JULTING LOGGED BY E. HORNE	P. 4	<u>)</u>
PROPERTY Crown Grants L265 DRILL HOLE				DATE <u>14th Oct. 1987</u> STARTED FINIS DEPTH DOWN TIME	SHED	SAY5
SAMPLE NUMBER	INTERVAL	FORM	ALT.	DESCRIPTION	Au	Ag
		1		(fine grained) are stibnite, tetrahedrite & enargite	oz/tor	oz/ton
				fracturing & banding at 30 - 40° C.A.		
30419	89.0 - 92.0			Sulphide zone (recovery 80%) heavy dark	.353	2.97
				to medium blush grey color with fine sulphides		
				quartz strong silicification, wispy contorted quartz &		
				pyrite stringers as above but with some chalcopyrite 1-3% $\&$		
				malachite (highest percentage down hole)		
30420	92.0 - 94.0			Broken core recovery 🗸 75% dark green	.034	2.56
		х С		andesitic rock with silicification & heavy massive stringers		
		X		of light grey sulphides @ 92.5 (2") & 94.0 (3")		
				Minerals identified include Py 3-15%, chalcopyrite (1-3%)	<u> </u>	
				malachite 🕶 2%.		
30421	94.0 - 97.0			Andesitic fragmental or pipe breccia with strong	.016	0.96
				silicification & 20% light grey quartz, fracture fill (random)		
				∼ 15% pyrite dissemination		
30422	97.0 - 102.0			As above with 5% quartz hairline	.034	0.88
		@102.5		Fractures @ 60 [°] C.A. (5%) trace Cpy, galenz	ррЬ	ppm
30423	102.0-105.0	¢		Andesitic fragmental or breccia pipe with	190	7.8
		Вох		quartz eyes 15% @ 104.0' ~ 15% Py over		

	\bigcirc			E.R. KRUCHKOWSKI ()ULTING	t 2 1	P.5	7			
				LOGGED BY E. HORNE						
PROPERTY	Crown Grants	s 1265		DATE 14th Oct./87 STARTED	FINIS	HED				
DRILL HOLE	ВН-1			DEPTH DOWN TIME						
SAMPLE NUMBER	INTERVAL	FORM	ALT.	DESCRIPTION		Au	Ag			
		\uparrow		Section; trace galena, chalcopyrite						
30424	105.0-110.0	2	to	Greenstone, strongly oxidized & Broken up		220		Ppb Ppm		
		Box	ard 05.0	to 109.0' from 109.0 to 110.0 up to 30% quartz						
30425	110.0-115.0			Greenstone, strongly oxidized, with strong		265	1	Ppb Ppm		
			ized h fr race	silicification & 35-40% quartz 113.0 - 115.0						
30426	115.0-120.0		oxid Suisl	Greenstone (oxidized) with up to 15% quartz		8.5		Ppb Ppm		
			ite stir 120 (eyes @ 116.5' & 118.5 - 120.0						
30427	120.0 - 125.	at 122.0	Pyri dis to 1	Greenstone silicified with up to 10% quartz		35	1.6	Ppb Ppm		
· · · · · · · · · · · · · · · · · · ·		Î		eyes 1/8 to 1/4" size	· ·					
30428	125.0-130.0			Greenstone silicified with up to 15% quartz eyes	•	oz/ton .002	oz/to .05	n 		
				Trace pyrite. Oxidized intervals 126.0 to 129.5				<u> </u>		
i		X		Open joints (fractures @ 20° C.A. & 55° C.A.						
30429	130.0 - 135.			As above with some fractures @ 10 ⁰ C.A.		10	0.6	Ppb Ppm		
				Trace pyrite			 			
30430	135.0-139.0			As 125.0-130.0		bz/tor .001	oz/to .02	'ħ ∔		
30431	139.0-144.0	@ 141.5↓		Greenstone strongly silicified with up to 20%		.002	.04			
		\uparrow		quartz eyes, trace pyrite.				ļ		
30432	144.0-149.0	× 8		Greenstone strongly silicified as above		.004	.01			
		Bo		with quartz stringers & blebs @ 147.0-148.0			 	<u> </u>		
i				Trace pyrite only		9	1	}		

	\frown		·	E.R. KRUCHKOWSKI P SULTING	P.6		
				LOGGED BY E. HORNE]
PROPERTY _				DATE <u>14th October, 1987</u> STARTED FI	NISHED		
RILL HOLE	BH-1			DEPTH DOWN TIME	ASS Oz/Ton	SAYS Oz/Top	
SAMPLE	INTERVAL	FORM	ALT,	DESCRIPTION		Ag	
30433	149.0-155.0	8		Greenstone strongly silicified up to 15%	.001	.03	
		Box		quartz eyes & 5% quartz stringers &			
30434	155.0-159.0	@ 159.5		Hairline Fracture fill again only trace pyrite	.001	.03	
30435	159.0-162.5	1		Greenstone strongly silicified 5% quartz	.002	.06	
				eyes 1/8" strongly brecciated (fragmental)]
				with 1/8" quartz stringers @ 5° C.A.			
				160.5' & 162.0' 3% Cpy stringers & disseminations			
30436	162.5-166.0			As above with 30% quartz filled hairline	.006	.16	
	-	σ		fractures (Random orientation)	·		
30437	166.0-171.0	Box		Dark Green silicified greenstone with	.002	.16	
				up to 15% quartz eyes & 10% quartz filled		 	
				hairline fractures with some, chalcopyrite 1% dissemination			
· · · · · · · · · · · · · · · · · · ·				& fine stringers.			
30438	171.0-174.0			As above with up to 30% Po & Cpy mineralization	.013	.83	
**				in stringers & 4" massive bands 172.5-173.0		 	
30439	174.0-180.0	@ 178.5	,	Silicified greenstone fragmental with strong Po	.015	0.44	
 		1		Cpy mineralization i.e. 2" massive band @ 181.0',			
		2		184.5' also fine dissemination 5% 182.5 to 184.5'			
30441	185.0-189.5			Silicified greenstone fragmental with 2-3%	.002	0.01	
							4

	\bigcirc			E.R. KRUCHKOWSKI SULTING	P.7	$\mathbf{)}$	
				LOGGED BY E. HORNE			
PROPERTY	Crown Grants	s L265			SHED		
ORILL HOLE _	BH-1		- <u></u>	DEPTH DOWN TIME	ASS 10z/T 1	SAYS Oz/T I	
SAMPLE NUMBER	INTERVAL	FORM	ALT,	DESCRIPTION		Ag	
			>	Cpy dissemination & 1/8" stringers unit has			
			× · · · · · · · · · · · · · · · · · · ·	some rounded 1/16" mafic phenocrysts or tuffaceous fragments (5))		
30442	189.5 - 192	.0		Silicified greenstone with massive cpy, Po	.042	.87	
				Bank 190.5 - 191.5' & 1" stringers of Cpy, Po			
				@ 190.0' & 5% disseminated Cpy @ 191.5 to 192.0			
30443	192.0 - 197	0		Silicified greenstone fragmental 5% quartz	.004	.06	
				eyes \sim 1% disseminated Cpy & blotchy rusty			
				section @ 198.0' (2-4") ~ 5" missing core (ground up)			
30444	197.0 - 200	0		Silicified greenstone 🛩 5% quartz eyes & 5%	.005	Tr	
		and the second se	ход 1	Round mafic fragements 2-4% Po & Cpy stringers	ļ		
				& dissemination.	<u> </u>		
30445	200.0 - 205	5.0		As above with 1" bands Po & Cpy @ 200.5' & 30% massive zone	<u> </u>		
				from 204.0 - 204.5'			
30446	205.0 - 210	0.0		Silicified greenstone fragmental, as above	.002	.06	
				with \sim 2% Cpy dissemination & hairline stringers			
30447	210.0 - 215	5.0 @ 21	↓ ι5.0	Silicified greenstone fragmental, as above	.001	.07	
			12-	with \sim 1% Cpy dissemination & hairline			
			Box	stringers & trace pyrite slightly lighter color (grey green)			
30448	215.0-220.0	0		silicified greenstone fragmental 2% pyrite	Tr.	.05	

	\bigcirc			E.R. KRUCHKOWSKI	ING	P.8	$\overline{)}$
					LOGGED BY E. HORNE		
PROPERTY	Crown Grants	3 L265		DATE 15th Oct./87	STARTED	_ FINISHED	
ORILL HOLE _	BH-1			DEPTH	DOWN TIME	AS	SAYS 0z/Ton
SAMPLE	INTERVAL	FORM	ALT.	DESCRIPTION		Au	Ag
				in fine 1/16" wide hairl	<u>ine quartz stringers & fine d</u>	issemination	
30449	220.0 - 225.	<u> </u>		Silicified greenstone fra	gmental ~1% Pyrite	.005	.08
}		× ×		dissemination ~ 5% quartz	hairline stringers		
30450	225.0 - 229.	0		As above		.004	-07
30451	229.0 - 234.	0		Silicified greenstone fra	gmental 15% quartz	.003	.08
		@ 234.0		hairline fracture fill &	5% quartz eyes		
				5% mafic round fragements	. Trace pyrite.		
<u>N/S</u>	234.0 - 236	.0 1		As above (Less silicified	no sulphides)		
N/S	236.0 - 246	.0		Green volcanic trace Jasp	er & epidotization		
		 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		one speck of pyrite			
N/S	246.0 - 249	.o č		First Jasper Group - mafi	c volcanic with strong		
				15% wavy contorted epidot	<u>e bands &amp; up to 5% red Jasper</u>	· · · · · · · · · · · · · · · · · · ·	<u> </u>
				infrequent pyrite < 0.5%	some quartz stringers.		<b></b>
N/S	249.0 - 269	<u>.p</u>	Box 14	First Jasper Group - mafi	c_volcanic ~ 7%		<u> </u>
				jasper epidote some ~ 3	% quartz hairline		<u> </u>
				stringers - no sulphides.	Quartz epidote alteration		<b></b>
				@ 265.5 ~ 6" some fractu	ring @ 30° C.A. & quartz fill	ed	<u> </u>
				hairline stringers @ 40°	C.A chlorite 40% 268.0-273.0	(fragmenta)	<b></b>
N/S	269.0 - 288		<u>Box 15</u>	As above 5% disseminated	pyrite 271.0 - 274.0		<b></b>
, <b>.</b>							

E.R. KRUCHKOWSKI ASULTING

i

**P.**9

 $\bigcap$ 

			L	OGGED BY E. HORNE			
PROPERTY	Crown Grants 1265		DATE 15th Oct./87	STARTED	FINISHED		
ORILL HOLE			DEPTH	DOWN TIME	A	55AYS	
SAMPLE NUMBER	INTERVAL FORM	ALT.	DESCRIPTION		Au	Ag	
30456	271.0 - 274.0		Sampled over 271.0 - 274.0. More	e 25% epidote & quartz/	+1000 .152 pz/to	.05	
			Jasper 🗸 278.0'				
N/S	288.5 - 308.D	Box 16	First Jasper Group. Mafic volcan	ic with patches of epidot	e		
			Jasper to 310.0'	·····			+
·	<u> 308.0 - 310.p</u>	<u>Box 17</u>	As above				+
	<u>310.0 - 319.p</u>		Only 1.5' core (fault gouge) 317	.5 to 319.0' depth		-	ррБ
30459	317.0 - 319.0		~ 2% pyrite sampled. 317.5 - 3	19.0 only	Nil		ppm
	319.0 - 329.0		First Jasper Group with blocky f				
			329.0' & quartz hairline fractur	es @ 30° C.A.	· · · · · · · · · · · · · · · · · · ·		ppb
30460	329.0 - 330.0		As above $\sim 15\%$ quartz fractures	& 5% Pyrite	315	0.1	ppm
	330.0 - 332.0	Box 17	As above no pyrite				
	332.0 - 350.0	Box 18	First Jasper Group. Mafic volcan				
			Jasper patches & 3% hairline qua	rtz fracture fill $\sim 40^{\circ}$ (	3.A.		-
			to 60° C.A.				
	350.0 - 369.0	Box 19	First Jasper Group with light co	olored epidote zones 351.0	) -		
ļ			352.5', 355.5 - 357.0', 365.5 -	366.5', unit also contair	15		
			feldspathic eyes (crystal tuff)				
	369.0 - 388.0	Box 20	As above with light colored epic	lote zones @ 370.5',			
			373.0 - 374.5', 380.0 - 381.0',	383.0 - 384.5 & 386.0 - 1	388.0'		
<u> </u>			Dark zones contain 15% feldspar	& quartz eyes (crystal to	uff)		

	$\frown$		. <b>.</b>	E.R. KRUCHKOWSKI SULTING		P.10	(	$\overline{}$	
					LOGGED BY E. HORNE				
PROPERTY	Crown Grants	s 1,265		DATE			SHED _		
ORILL HOLE	BH-1			DEPTH	DOWN TIME		A	5SAYS	
5AMPLE	INTERVAL	FORM	ALT,	DESCRIPTION			ppb Au	ppm Ag	
	388.0 - 406.	5	Box 21	As above with light colored e	pidote zones				
				@ 398.0', 400.0 - 402.5, 404.	5 ~ 406.5'				
	406.5 - 416.	.0	Box 22	First Jasper Group		· · · · · · · · · · · · · · · · · · ·	· .		
				Mafic volcanic with Jasper $\sim$	10% feldspar & quartz eyes				
				(crystal tuff) epidote,light,	zones 108.0 - 109.0 110.5	- 111.5			
				No sulphides.					
		••					<b></b>	<u> </u>	
				T.D. @ 416.0 Hole flattened or	ut, pressure on rods (turni	ng			
				tight also lost circulation	∼ 319' could not get retur	<u>n.</u>	<b>_</b>		
				Delays on rig due to broken b	earings, (hydraulic drive fi	Lxed)			ļ
				due to tight rods could not	chance another major break	down			
				T.D. Hole @ 416.0 instead o	f 600'.				
						·			
					an da an		1		
J		<del> </del>	+				-1		1

I	$\bigcirc$			E.R. KRUCHKOWSKI CONSULTING P.1	ſ		
	Ŧ			LOGGED BY E. HORNE	<u> </u>	}	
PROPERTY	Crown Grant:			DATE 18th Oct./87 STARTED 18th Oct./87 FIN	ISHED	i	
RILL HOLE	BH-2 (60 ⁰ Az	070)		DEPTH 334.0 DOWN TIME	AS	SAYS	
SAMPLE NUMBER	INTERVAL	FORM	ALT.	DESCRIPTION			
	0.0 - 5.0	10.41		Casing			
	4.0 - 7.0	Missing	Core	5.0 - 19.0 Andesite/Dacite 12.0' core missing core (5.0 -			
				7.0 ground up)		<u> </u>	
30601	7.0 - 13.0			Greenish grey volcanic trace disseminated P.o. $\sim$ 3%	20	0.4	ppb ppm
			-	hairline quartz stringers 2" @ 9.0' 40°C.A. chlorite (35%)		<u> </u>	<u> </u>
				epidote (5%)			
30602	13.0 - 16.5		<u>د</u>	As above 🕶 55% chlorite & 5% Po, Anhedral crystals & patches	75	0.2	
				up to 5mm size. Rusty fracture @ 17.3' 30°C.A.			
30603	16.5 - 22.0			Andesite/Dacite with 5% mafic inclusions. Quartz hairline	80	0.4	
				fractures @ 80° C.A. ~ 5%. Slightly more silicified &			
				epidote rich.		<b>_</b>	
30604	22.0 - 27.0			Andesite/Dacite as above, rusty fractures 1" @ 22.5' & 23.5'	45	0.1	
				Light epidote rich zone 25.0 - 27.0. Some crinkling (Folding)			
		_		& slightly fragmental appearance. Trace pyrite.			
30605	27.0 - 32.0			Dacite fragmental with 5% hairline to 1/8" quartz stringers	.85	0.2	-
				@ 30 & 45° C.A., trace pyrite. Slightly andesitic segment	_		
				24.5 - 25.5' & Po (euhedral 1/8" 2% crystals) @ 32.0			+
30606	32.0 - 37.0		× M	Dacitic fragmental. Trace pyrite, Po. Hairline quartz	.5	0.3	
		·····	Ī.	stringers @ 80 [°] C.A. & slightly wavy			
l		F	l		l.		

	$\bigcap_{i=1}^{n} (i)$			E.R. KRUCHKOWSKI CO YLTING P.2 LOGGED BY E. HORNE		$\cap$	
ROPERTY	Crown Grants L	265		DATE 20th Oct. 1987 STARTED FINI	SHED _		
RILL HOLE	вн-2			DEPTH DOWN TIME	AS	SAYS	
AMPLE	INTERVAL	FORM	ALT.	DESCRIPTION	ррЪ	ppm	ррь
30607	37.0 - 41.0			As above trace pyrite (slightly more andesitic?) with fractures	55	0.4	ppm
		30 X		(rusty 38.5 - 39.5) & 41.0 - 42.0		ļ	
30608	41.0 - 47.0	@ 46.5 47.0		Andesitic fragmental crystal tuff 5% - 7% mafic fragments	50	0.5	
		1		5% siliceous fragments, 5% quartz hairline fractures @ 20 ⁰ C.A.	ļ	<b>_</b>	
				$\& 70 - 80^{\circ}$ C.A.			
30609	47.0 - 52.0			Dacitic andesitic fragmental as above 1% quartz, hairline	30	0.3	
		m		fracture @ 60 ⁰ C.A., trace pyrite.		<u> </u>	
30610	52.0 - 57.0	Box		Andesite fragmental with chlorite, epidote & quartz fracture	NIL	0.3	
30611	57.0 - 62.0			fill ~ 2% @ 80° C.A. & 30° C.A. Trace pyrite along hairline	15	0.4	
			<b></b> .	fractures, more fragmental nature 52.0 - 54.0	-		
30612	62.0 - 67.0		<b></b>	57.0 - 58.4, 61.5 - 62.0, 62.5 - 63.0, 65.0 - 66.0 Unit has	55	0.6	
		$\downarrow$		10-15% mafic fragments (crystal tuff)	_ <b>_</b>		
30613	67.0 - 72.0	$\uparrow$		Andesitic/Dacitic fragmental with mafic crystal fragments	45	0.5	
		X 4		10% up to 1cm size and epidote quartz fracture @ 5° C.A. from		_	
		9 A	 	65.5 - 66.5, pyrite ~ 0.5%	_		_
30614	72.0 - 77.0			Andesitic crystal tuff (mafic fragments) $\sim$ 1-2mm size sub	140	0,7	_
30615	77.0 - 82.0	@ 82.5		rounded up to 15%. 🛩 2% quartz stockwork hairline fracture	NIL	8,0	
30616	82.0 - 87.0	2		fill ~ 2% - 5% quartz fragments ~ 1% pyrite in hairline	20	0.8	
		Box		fractures (conjugate ~ 45° C.A.) blocky jointed		·	

k

	$\bigcirc$			E.R. KRUCHKOWSKI CULTING LOGGED BY E. HORNE		)
PROPERTY	Crown Gra	ants		DATE 20th Oct. 1987 STARTED FINI	SHED	
SAMPLE	1		·····			5AYS Oz/Ton Ag
NUMBER 30617	INTERVAL 87.0 - 92.0	FORM	ALT.	DESCRIPTION 74.0 - 76.0' @ 35° C.A. From 83.0 more dacitic green chert	50	0.9
				epidote @ 82.5 - 84.0 & 87.0 - 88.0 & 90.0 with up to		
30618		ب بر		0.5% disseminated pyrite. Quartz filled 1/8" fractures	30	1.0
		Boz		@ 20 [°] C.A. @ 91.0, 94.0 & 98.0.		
30619	94.0 - 99.0			Blocky and slickensided $1/16$ " 92.0 & 94.0 Jointing @ $10^{\circ}$ C.A.	115	1.0
				@ 100' pyrite overall ~ 0.5%.		 
30620	99.0 - 102.0			Dacitic fragmental. Open fractures @ 10° C.A. @ 101.0 - 102.0	145	0.5
				$\sim$ 1% pyrite.		
30621	102.0 - 107.	0		Dacitic fragmental 10% mafic fragments & crystals (crystal	.002	Tr.
				tuff) ~ 1% pyrite.		<b> </b>
30622	107.0 - 110.			Dacitic fragmental chlorite & epidote alteration, siliceous	.004	<u>Tr.</u>
		Box		with 5% quartz, patchwork & 1% pyrite. Fracture @ 70° C.A.		<u> </u>
				@ 110.0.	<u> </u>	<b></b>
30623	110.0 - 112.	¢	<u> </u>	Broken chloritic slightly rusty zone 6" good core @ 110.5 -	.004	.05
				111.0 ~ 1% pyrite. Sulphide zone 112.0 to 120.0 patchy.		
30624	112.0 - 115.	<u> </u>		~ 20% grey sulphides in light green volcanic fragmental.	.034	. 38
				silicified and in part vuggy 112.0 - 112.6	.035	.30
30625	115.0 - 118.	c @ 119		Green/Grey volcanic with quartz hairline fracture fill & 5% py.	.035	.30
30626	118.0 - 120.			30% massive sulphides grey color altered replaced fragmental	.033	.54
		l ĕ				

1	$\cap$			E.R. KRUCHKOWSKI CULTING	P. 4 Y E. HORNE	6					
	Crown Gran	ts L265	·	DATE 20th Oct. 1987 STARTE	D FIN	ISHED					
RILL HOLE					IME		ASSAYS Qz/ton Oz/ton				
SAMPLE	INTERVAL	FORM	ALT.	DESCRIPTION		Au	Ag				
				Some green chert and quartz replacement	barite?_galena, py		l				
				chalcopyrite, and sphalerite.				<b> </b> ]			
30627	120.0 - 124	× 1		Andesitic cherty greenstone, blocky wit	h rust l" quartz	225	4.1	ppb ppm			
		Å		stringers 120.0 - 121.0, Trace pyrite,	no chalcopyrite!			ļ			
				Missing core	·						
30628	124.0 - 129	0		Blocky highly fractured andesite minor	rusty alteration	20	1.5	թթե թթա			
				only. Recovery ~ 75%.				<u> </u>			
30629	129.0 - 131	5		Recovery ~ 30%. As above 129.0 - 131.5							
	131.5 - 136	.5		missing (mislatch) As above, rusty and	blocky	.004	.07				
			,	No visible pyrite. 5-7% quartz stringe	rs		ļ	-			
30630	136.5 - 141	@ 138. 0 Box		Greenstone fragmental. Trace pyrite and	chalcopyrite	.002	.04	-			
30631	141.0 - 143	$\uparrow$		As above $\sim$ 30% patchy blocky and hairli	ne quartz.	40	1.0	ppm ppb			
				Fractures @ 25° C.A. ~ 3% chalcopyrite.	·						
30632	143.0 - 148	3.0		Greenstone fragmental 30% quartz and 20	)% epidote		0.4	ppb opm			
30633	148.0 - 15	a 3.0 ≱	:	~ 1% chalcopyrite disseminated. More of	common 148.0 - 153.0	.5	0.5	opb mgg			
30634	153.0 - 15	E E		Greenstone (less siliceous or fragment:	al)	5	NIL	opb ppm			
				5% quartz eyes 1 mm size and 5% quartz				<b>_</b>			
				hairline fractures 20 and 75° C.A., Tra	ace pyrite			<u> </u>			
30635	156.0 - 16	1.0 @ 159.		Blocky fractured rusty greenstone	<u> </u>	30	2.1	ppb ppm			

	$\bigcirc$			E.R. KRUCHKOWSKI CONSULTING P. 5 LOGGED BY E. HORNE	Ç		
PROPERTY	Crown Grant BH-2	L265	· · · · · · · · · · · · · · · · · · ·	DATE         20th Oct, 1987         STARTED         FINIS           DEPTH          DOWN TIME	_	SAYS	
SAMPLE NUMBER	INTERVAL	FORM	ALT.	DESCRIPTION	Au	Ag	
NUMBER				Trace pyrite fractures $\sim 10^{\circ}$ , $20^{\circ}$ and $30^{\circ}$ C.A.			<u> </u> ]
30636	161.0 - 166	0		Greenstone siliceous fragmental, trace pyrite			ppb
30637	166.0 - 172	0 <del>0</del> ×		As above 10% quartz eyes, hairline fractures	15	0.5	ppm
30638	172.0 - 177			10% - 20% epidote alteration trace pyrite	.001	.02	oz/to ppb
30639	177.0 - 180	0 @177.0		Greenstone fragmental, trace pyrite ~ 10%	NIL	0.4	ppm_
30640	180.0 - 185	1 1		quartz and epidote 180.0 - 185.0 As above	NIL	NIL	
30641	185.0 - 190	0		Hairline quartz fractures 0° C.A. and 70° C.A.	15	0.1	
30642	190.0 - 196	X		Minor Jasper @ 182.5, 189.0, 190.0	NIL	0.1	
50042				First Jasper Group @ 190.0 Transitional			
				contact less quartz (white) more epidote and quartz (jasper)	1		
				$\sim$ 0.5% pyrite euhedral 4 mm cube $\sim$ 195.0			
30643	196.0 - 203	.0		First Jasper Group with ~ 15% epidote	15	NIL	ppp pdd
		0x 11		10% white quartz and 5% jasper. Dark green volcanic			
30644	203.0 - 205		-	203.0 - 205.0 ~ 1%. Euhedral pyrite 4-5 mm size cubes			
			-	6" epidote rich @ 199.5 jasper content up to 10% from 203.0'			
				Open fracture @ 5° C.A. @ 203.0' - 204.0'			_
30645	205.0 - 210	).0		As above slightly less pyrite open fracture set @ 30° C.A. and	5	NIL	ppb ppm
		-		$1^{\circ}$ C.A. ~ 210.0			
30646	210.0 - 215	5.0		First Jasper Group with 20% epidote $\sim$ 10% jasper	5	NIL	ppm ppm

	$\bigcirc$			E.R. KRUCHKOWSKI CONSULTING LOGGED BY E. HORNE P.6	ŕ,	$\cap$	
PROPERTY	Crown Grant BH-2	1265		DATE         22nd Oct./87         STARTED         FINIS           DEPTH         335.0         DOWN TIME	SHED _	SAYS	
	INTERVAL	FORM	ALT.	DESCRIPTION		n Oz/to Ag	an
				5% white quartz and chlorite			<b>_</b>
				Fracture set @ 15°C.A, / 215.0 - 241.0 First Jasper Group			<b>_</b>
Description 215 - 241		0		~ 25% epidote @ 217.0 - 218.0 and 222.0 - 224.0	•		
Except int	rvals as			core piece 220.0 - 221.0 taken out for microscope work.			
30647	215.0 - 220.0	P		(example) with euhedral py	NIL	0.1	pbp bbp
30648	221.0 - 225.0	• •		as above with approx 20% white quartz eyes	NIL	0.1	ррБ ppm
30649	225.0 - 230.0	•		225.0 - 226.0 (1-3 mm size)	NIL	NIL	ppb ppm
30650	230.0 - 235.0	•		235.0 - 237.0 approx 5% large euhedral py	<u> </u>		
30651	235.0 - 237.0	0	$\uparrow$	Approx 1.5 cm size			
30652	237.0 - 241.	¢	13	First Jasper Group. 10% jasper 30% quartz epidote dark grey	NIL	NIL	
_			Box	fine grained volcanic. Trace py. Stockwork jasper quartz epide	te		
30653	241.0 - 243.	d		As above with // C.A. shearing and minor rusty appearance			
30654	243.0 - 248.	c		As above First Jasper trace pyrite.			
30655	248.0 - 250.	О Арр	rox 250.0	As above py. Approx 1.5% large euhedral crystals (3 mm)	ļ		
30656	250.0 - 255.	q	$\uparrow$	with wavy epidote trace py and 1% quartz eyes?			_
30657	255.0 - 260.	q	14	with 1% large py (euhedral x-tals 4 mm)			
30658	260.0 - 266.	0	Box	First Jasper Group as above 1% py			
30659	265.0 - 269.	0	266.5	and more slickensized approx 10° C.A. More silicified blocky chloritic with 5%			
				py large cyrstals and very fine grained			

)		
	$\mathcal{D}$	$\mathbf{)}$

E.R. KRUCHKOWSKI CM VLTING

-

LOGGED BY E. HORNE

ROPERTY	Crown Crant L	265			SHED	
RILL HOLE	вн-2			DEPTH 334.0 DOWN TIME		SAYS
SAMPLE	INTERVAL	FORM	ALT.	DESCRIPTION	ppb Au	Ag
				less epidote more chlorite approx 30%		
				From 265.0 - 269.0		
30660	269.0 - 274.0			Dark volcanic with approx 7% jasper approx 10% epidote	5	0,1
30661	274.0 - 279.0		× 15	in stockwork fashion approx 15% - 20% of unit		
30662	279.0 - 284.0		то В	as above with 6" chloritic zone 279.0 - 279.5		
30663	284.0 - 289.0	0	285.0	@284.5 fracturing//C.A. and 10° C.A. and 25° C.A.	NIL	NIL
30664	289.0 - 294.0		15	Down to 294.0 with brownrusty stain on fracture surface (even)	5	NIL
30665	294.0 - 297.0		Box	294.0 - 297.0 approx 6% fine grained pyrite		
30666	297.0 - 302.0		303.5	Jasper epidote dark volcanic blocky and fractured		
N/S	302.0 - 304.0		$\uparrow$	slightly only		
30667	304.0 - 309.0			As above ) near fault zone?	+1000 .032 	2.4
30668	309.0 - 313.5			As above	NIL	0.1
30669	313.5 - 316.5		17	More broken up. Slickensided from 313.5	NIL	NIL
30670	316.5 - 319.0		Box	onward - lost circ. gouge approx 4" @ 316.0	_	
				and 320.0 - 322.0 (approx 2% py) blocky approx 2% py		
30671	319.0 - 324.0	9 @	321.0	1-3% quartz stringers to 334.0'		
30672	324.0 - 329.0	)	1	Fracturing @ 20° C.A. and 70° C.A. Trace		
30673	329.0 - 334.0		18	py but approx 5-10% rusty on fractures	NIL	NIL
N/S	_	END	Box	Lost circulation T.D. @ 334.0' Missing core approx 3' overall		
				in blocky ground		

IDPERTY I	Crown Grant L					P,1		
ILL HOLE	BH-3 (Az 070			DATE         23rd Oct 1987         STARTED         FINIS           DEPTH         459.0'         DOWN TIME		SAYS		
MPLE MBER	INTERVAL	FORM	ALT.	DESCRIPTION	pb Au	ppm Ag		
	0.0 - 5.0		^	Casing				
	5.0 - 7.0			Ground core				
30301	7.0 - 11.0			fragmental Andesite/dacite agglomerate with chlorite epidote quartz	NIL	NIL		
				stringers approx 1% py, 1% po and trace cpy				
30302	11.0 - 13.0			11.0 - 13.0 more quartz epidote and cpy 0.5% stringer quartz	25	1.7		
			X I	@ 45 [°] C.A. approx 1/2". 12.5 - 13.0 blocky ground				
30303	13.0 - 18.0			andesite/dacite fragmental 0.5% Po trace cpy	NIL	0.7		
30304	18.0 - 23.0			andesite/dacite more massive quartz stringers @ 10 ⁰ , 30 ⁰ C.A.	10	0.8		
=				5% Po (0.5%,trace cpy.) blocky 22.5 - 23.0 (rusty)				
30305	23.0 - 28.0		25.5	As above with blocky vuggy sections 26.5 - 27.5, 28.0 - 36.0	35	1.4		
30306	28.0 - 33.0		1. 1	(intensely fractured rock with zones trace py? po? epidote	65	1.2		
30307	33.0 - 36.0			rich 29.0 - 31.0	15	1.2		
30308	36.0 - 41.0	-	× 2	Dacitic massive to slightly fragmental, 10% quartz hairline fra	c15	1.1		
				and $1/4"$ stringers $20^{\circ}$ , $40^{\circ}$ , $45^{\circ}$ and $70^{\circ}$ C.A. approx 1% Po				
30309	41.0 - 46.0		@43.5	approx 0.5' missing	20	1.1		
30310	46.0 - 50.0	-	Box 3	approx 0.5' missing. More epidote rich 46.0 - 49.0 trace py onl	y 10	0.9		
30311	50.0 - 55.0			Dacitic fragmental crystal tuff with approx 10%	5	1.1		
30312	55.0 - 60.0			mafic phenocrysts approx 5% white hairline	30	1.1		
30313	60.0 - 65.0	-	63.0	Quartz stringers. Trace py slightly more	25	1.0		
			-					

	( )			E.R. KRUCHKOWSKI COMSULTING			~	
				LOGGED B	YE. HORNE P.	.2 (	)	
ROPERTY	Crown Grant L2	65		DATE 23rd Oct 1987 STARTED	FINISHE	D		
RILL HOLE				DEPTH DOWN TIME		ASS	SAYS	
SAMPLE NUMBER	INTERVAL		т.	DESCRIPTION	Αι	1	Ag	
30314	65.0 - 70.0		4	Fragmental 65.0 - 66.0, slightly blocky	20	)	1.0	
30315	70.0 - 75.0		× ₽	56.0 - 58.0 hairline quartz stringers at	10	)	0.9	
30316	75.0 - 80.0	@ 80.	0	5°, 15°, 45° conjugate and 80° C.A. often	30	)	0.9	
30317	80.0 - 85.0		$\wedge$	slightly wavy open rusty fractures at	. 25	5	0.9	
30318	85.0 - 90.0			10 - 15° C.A. at 79', 75' at 25° C.A. at 70.	0 - 71.5 and 80.0 NIL		1.0	
			2 X O	slightly rusty. Only trace py slightly				
30319	90.0 - 95.0		<u>nā</u> — -   	more siliceous with green chert and quartz	15	5	0.7	
30320	95.0 - 100.0	@ 98	.0	87.0 - 88.5 at 94.5 and 109.0 - 109.5 not	85	5	0.6	
30321	100.0 - 105.0		Î	sampled seperately only slight py content	45	5	0.9	
30322	105.0 - 110.0		• <del>••</del> ••	difference (tr+)	. 10	)	0.7	
30323	110.0 - 115.0		Box	as above dacitic fragmental	15	5	0.9	
30324	115.0 - 118.0	@ 11	<del>.</del> .0		N	IL	NIL	ppb mag
30325	118.0 - 120.0		· · · · · ·	approx 1% py with green chert	N	IL	NIL	ppm ppb ppm
30326	120.0 - 125.0	1 1	1	As above dacitic fragmental approx 1% quart	z. N	IL	NIL	ppb ppm
30327	125.0 - 130.0			hairline fractures approx 5% at 45° C.A. mi	nor N	IL	NIL	ppm ppm
30328	130.0 - 135.0		4 X	blocky zones at 120.5 and 123.0 with slicke		IL	NIL	ppb ppm
			<del></del>	at 30° C.A. 130.0 - 135.0 approx 25% green				
				quartz-epidote. Some crinkling approx 2% p	······			
30329	135.0 - 139.0	0 approx	<u> </u>	siliceous chloritic dacitic fragmental	N	IL	NIL	
		<u>                                      </u>						

٤.

	$\bigcirc$			E.R. KRUCHKOWSKI	C	7	
				LOGGED BY E. HORNE	2.3	,	
PROPERTY _	Crown Grant I	L265		DATE 23rd Oct 1987 STARTED FINIS	SHED _		
DRILL HOLE	BH-3			DEPTH DOWN TIME	A5	SAYS	
SAMPLE NUMBER	INTERVAL	FORM	ALT.	DESCRIPTION	Au	Ag	
30330	139.0 - 141.	5	1	crystal tuff with gouge zone (soapy &	.5	0.9	
30331	141.5 - 144.0	9		schistose) at 140.5 (6") and 141.5 - 144.0 trace pyrite	10	0.8	
30332	144.0 - 147.	5	∞	147.5 - 149.5, 150.0 - 152.0. Gouge zones	NIL	NIL	ppb ppm
30333	147.5 - 150.0	<b>D</b>	- Boz	152.0 - 154.0 dacitic? andesitic? fragmental blocky	NIL	NIL	BBP BBPm
30334	150.0 - 152.0	• (	152.0	//C.A. trace pyrite - no quartz eyes - unit similar greenstone fi	agNIL	NIL	BBP
30335	152.0 - 154.0	•		Dacitic fragmental agglomerate (greenstone)	NIL	NÏL	ppb ppm
30336	154.0 - 159.0	0		164.0 - 174.0 and 174.8 - 178.5 core taken 172.0 - 172.7 so	NIL	NIL	bbw bbp
30337	159.0 - 164.0	•	6 X	Sample minus this interval tr, py. Sections 174.0 - 174.8 & 178.5 m	ore ⁵	0.7	
30338	164.0 - 169.0	9	R L	massive with mafic phenocrysts (crystals tuff)	35	0.9	
30339	169.0 - 174.	0 (	170.5	from 178.5 - 194.0 Dacitic/andesitic	NIL	NIL	ppb ppm
30340	174.0 - 179.	¢	P P	massive crystal tuff with 1-2% hairline	NIL	NIL	ppb ppm
30341	179.0 - 184.	0	E Boj	white quartz fracture fill wavy	NIL	NIL	ppb BBB
30342	184.0 - 189.	q	a 189.5	@ 80 [°] C.A. 45 [°] C.A. also trace pyrite	NIL	NIL	ppm
30343	189.0 - 194.	d	1	20 & 0.2	NIL	NIL	bbw bbp
30344	194.0 - 199.	d	L L	Two samples taken 194.0 - 194.5, 194.0 - 199.0 using 2nd half	10	0.6	
30345	199.0 - 204.	d	Boj	dacitic/andesitic massive tuffaceous	NIL	NIL	bbw bbp
30346	204.0 - 209.	d (	209.0	greenstone approx 5% quartz hairline fractures and fragmental	NÎ.T	0.8	 
30347	209.0 - 214.	d	2 ->	sections approx 203.0 - 204.0 fractures quartz @ 45° C.A., 25°	NIL	NIL	bbw add
			Xo	C.A., $0^{\circ}$ C.A. other open at 25° C.A. and $0^{\circ}$ C.A.			 
L							

E.R. KRUCHKOWSKI C **ULTING** _

LOGGED BY E. HORNE

PROPERTY	Crown Grant	L265		DATE 23rd Oct 1987	STARTED	FINISHED		
	ВН-3			DEPTH	DOWN TIME		SAYS	
	INTERVAL	FORM	ALT,	DESCRIPTION		Au	Ag	1
UMBER 30348	214.0 - 213.		209.0	Dacitic greenstone massive	approx 1% pyrite	.5	0.8	1
30349	219.0 - 224.0	)	×	209.0 - 214.0 6" approx 5%	- 15% red chert at	5	0.7	
30350	224.0 - 229.0	>	228.0	214.5 from 214.5 - as above	with trace pyrite	20	0.6	+
30351	229.0 - 234.0	)	1	Also trace jasper @ 217' fr	acturing at 45°	20	0.7	1
30352	234.0 - 239.0		13	C.A. at core ends. Minor e		NIL	NIL	ppb ppm
30352	239.0 - 239.0		Box	Minor hairline quartz fract		10	0.8	
30354	244.0 - 249.0	 P	247.0	30 ⁰ C.A. and random. From	249.0 - 250.0 approx 20%	NIL	0.7	
30355	249.0 - 254.0	•	$\uparrow$	Quartz epidote stringers ar	nd patchwork unit	10	0.9	
30356	254.0 - 259.0			More chloritic 247.0 - 252.	0 minor jasper at 252.0 some	approx 3% quar	0.7 tz eye	s
30357	259.0 - 264.0		Box	2 mm sub rounded along with	1-5 mm	5	0.6	
30358	264.0 - 269.0	9	266.5	(10% - 15% mafic phenocryst	s (crystal tuff)	NIL	NIL	
30359	269.0 - 274.0	4	15	From 252.0 - 269.0. Overal	1 trace random	10	0.7	
30360	274.0 - 279.0	9	Box	disseminated py, approx 0.55	% slightly higher	NIL	NIL	
30361	279.0 - 284.0	Appr	ox 283.0	content than before.270.5 -	- 272.5 fractures	NIL	NIL	
30362	284.0 - 289.0	9	Î ↑	(open//C.A. & 5-10° C.A. a	also some at 274.0 - 275.0	NIL	NIL	
30363	289.0 - 291.0	9		Quartz epidote stringers ½'	' at 277.5	NIL	0.8	
30364	291.0 - 294.	d	16	trace pyrite <u>only</u> approx 3-	-5% quartz eyes at	NIL	NIL	Τ
30365	294.0 - 298.	5	Box	280.0 - 282.0 otherwise app	prox 1% only except	10	0.7	
30366	298.5 - 300.	5	1	3% py at 289.0 - 291.0, 298	3.5 - 300.5 still approx 2% qu	uartz 20	0.6	T
								T

1	$\bigcirc$			E.R. KRUCHKOWSKI C JULTING	LOGGED BY E. HORNE	P	<u>,5</u>	
	Crown Crant BH-3		···········	DATE 23rd Oct 1987 DEPTH		SHED	SAYS	
SAMPLE	INTERVAL	FORM	ALT.	DESCRIPTION		Au	Ag	ppb ppm
			@302.0	eyes and mafic 10% clasts and	phenocrysts			
30367	300.5 - 304.	0	301.5	As above to 314.0 with quartz	epidote 3" at 70 [°] C.A.	NIL	NIL	
30368	304.0 - 309.	0	17	at 308.0' <u>NO</u> py except trace	throughout unit	NIL	0.1	
30369	309.0 - 314.	0	30X	more fragmental and chloritic	with 1/2" 75° or // C.A.	NIL	0.1	
30370	314.0 - 319.	0	320.5	Quartz at 313.3 also quartz e	pidote (barren) at	NIL	NIL	
30371	319.0 - 321.	0		316.5 - 317.5 at 50° C.A. and	bleb at 318.5 from			
30372	321.0 - 326.	.0		314.0 - 319.0 lighter color ( fracturing at 5 C.A. and 5%	more epidote) 319.0 - 321.0 large 5 mm	NIL	NIL	
30373	326.0 - 331.	.0	30 X	crystals of pyrite				
30374	331.0 - 335.	.0		greenstone fragmental trace p and crinkles at 326.0 and	yrite with chlorite and epidote 331.0	NIL	NIL	
30375	335.0 - 339.	.0	@339.0	slightly higher + trace pyrit	e 331.0 - 335.0	NIL	0.1	
30376	339.0 - 342.	.0	A .	fracture 1 ^t long at 5 [°] C.A. t	race only of white quartz	NIL	0.1	
30377	342.0 - 345.	.0		hairline fractures more cryst	al tuff (massive - 335.0 - 339.0)	NIL	0.2	
				339.0 - 342.0 greenstone frag	mental trace pyrite slightly more			
		1		hairline quartz approx 7% 342	.0 - 345.0 more chloritic, mafic	1		1
	-		× 1	phenocrysts and 1% Py, Po.		-	···	1
30378	345.0 - 350	.p		345.0 - 350.0 slightly <1% P	y. Po.	NIL	NIL	1
30379	350.0 - 355	.p		quartz hairline fractures at	250 CA approx 3-5%	NIL	0.2	1
					349 in chloritic material approx			
			1	3% 5 mm size 350.0 more massi	ve dacitic			

E.R. KRUCHKOWSKI CO YLTING

ļ

LOGGED BY E. HORNE

PROPERTY	Crown Grant	L265		DATE23rd Oct 1987	STARTED FI	VISHED		
DRILL HOLE	ВН-3	· · · · · · · · · · · · · · · · · · ·		DEPTH	DOWN TIME			
SAMPLE	1		I				SAYS	ррЪ
	INTERVAL	FORM	ALT.	DESCRIPTION		Au	Ag	bbw
				crystall tuff with euhedral	2mm - 3 mm feldspar phenocrysts an	d		
			19	mafic 1 mm rounded fragment	s approx 10% each. Quartz chlorite			
·····			- Box	epidote wavy mottled zone :	353.5 - 354.5 trace pyrite			
		0	358.0	Overall, all same				
30380	355.0 - 360.	0	$\uparrow$			NIL	0.1	
30381	360.0 - 365.	0		description + 360.0' massiv	ve mafic crystal tuff dacite with fi	ne NIL	0.1	
30382	365.0 - 370.	0	x 20	disseminate py. 0.3 - 0.5%	from 360.0 - 375.0 with wavy quartz	- NIL	NIL	
30383	370.0 - 375.	o	Å	epidote patches 1" at 360.	2 at 60° C.A. 363.5 - 365.0, 368.5 -	NIL	0.1	
30384	375.0 - 380.	0 appro	x377.0	369.5, 370.0 - 371.5 and 3	' at 373.0 at 65 ⁰ C.A. Also at	NIL	0.1	
30385	380.0 - 385.	p	21	382.0 - 382.5, 385.0 4", 3	00.5 - 392 trace py overall	NIL	0.2	
30386	385.0 - 390.	p	Box	MC (misslatch at 381.0 - m	inor 6" L.C.) from 395.0 - 415.0	NIL	0.1	
30387	390.0 - 395.	p @	396.5	andesite/dacite with 10-15 and at 20-30° C.A. only	« quartz hairline fractures random	NIL	NIL	
30388	395.0 - 400.	p	1 1		ne quartz was reason to continue hol		0.1	
30389	400.0 - 405.	þ		Unit also has approx 2% fe	ldspar phenocrysts approx 1% quartz	NIL	NIL	
30390	405.0 - 410.	þ	x 22	eyes and approx 6% mafic p	nenocrysts mm size. Unit overall	NIL	NIL	
			A A	dacitic crystal tuff				
30391	410.0 - 415.	0 0	414.5	415.0 - 459.0 Less only ap	prox 5% quartz hairline	NIL	0.1	
30393	415.0 - 420.	0		fracturing. Dacitic cryst	al tuff with 1" quartz at 45 ⁰ C.A. a	t NIL	NIL	
30394	420.0 - 425.	0	×o	417.5 & some wavy chlorite	(2") only trace pyrite also 1/2" quar	tz 20 0 NIL	NIL	
								Γ

	$\cap$			E.R. KRUCHKOWSKI CO-VLTING LOGGED BY E. HORNE		$\cap$	
PROPERTY	Crown Grant	s L265			SHED _		
	BH-4 (Az 11	<u>LU (45)</u>		DEPTH 239.0 DOWN TIME	1	SAYS	Ppb
SAMPLE NUMBER	INTERVAL	FORM	ALT.	DESCRIPTION	Au	Ag	Ppm
	0.0 - 6.0	î		Casing			ļ
30226	6.0 - 11.0			Andesite/Dacite with $\sim$ 5-7% mafic rounded and euhedral pheno-	N11	0.2	ļ
				crysts (crystal tuff) $\sim$ 3% quartz hairline stringers @ 20° &			
				45° C.A. Some cherty bands ~ // C.A. (2-5%)	<u> </u>	<u> </u>	<b></b>
		Box		Trace pyrite core recovery 4.5' broken up 6.0 - 7.0			. 
30227	11.0 - 14.5			& 10.0 - 11.0 As above with open Mm stained fractures // C.A. &	50	0.3	
				10 - 15% patchy quartz-epidote alteration. Trace+ pyrite,			<u> </u>
				some leached vugs (2%)	ļ	Ì	<u> </u>
30228	14.5 - 20.0	24.5	approx	Andesite/Dacite with minor 2% white	Ni1	0.1	
30229		$\uparrow$		quartz hairline fractures random, 85° C.A.	N11	0.2	
				and 80 - 90° C.A. Trace pyrite 20.0 - 25.0 as above with			
				leached patches with epidote alteration @ 20.0 - 22.0	[	1	<u></u>
			 	4" @ 23.5 & 24.5	ļ		
30230			 	Dacite crystal tuff/fragmental with dark patches around	N11	0.3	-
		5		clasts some large mafic phenocrysts 5mm. More wavy patchy			
		Box		epidote and ~ 5% white quartz hairline fractures $0.40^{\circ}$ , $80^{\circ}$	<u> </u>		
				C.A. and // C.A. @ 28.5.			_
30231	30.0 - 35.0			As above with some open fracture // C.A. and more slabby/	Ní1	0.0	
				blocky core ~ 10% rusty on open fracture planes. Trace pyrite.		<u> </u>	
					ľ		

	$\bigcirc$			E.R. KRUCHKOWSKI CONTING		$\bigcirc$	
h				LOGGED BY E, HORNE	SHED		}
PROPERTY DRILL HOLE _	Crown Grants BH-4			DATE         26th Oct.         1987         STARTED         FINIS           DEPTH         239.0         DOWN TIME		SAYS	РрЪ
SAMPLE NUMBER	INTERVAL	FORM	ALT.	DESCRIPTION	Au	Ag	Ppm_
30232	35.0 - 40.0	2		Also slabby due to fractures // C.A.	140	0.2	 
		-Box		Less broken Sections @ 30.0 - 31.0, 32.0 - 33.0 &			 
		@ 44.0		34.0 - 35.0, 39.0 - 40.5 Lost core ~ 6" spread out over box		<b> </b>	
30233	40.0 - 45.0	1		Dacite (more fragmental, agglomeritic @ 40.0 - 40.5 only trace	N11	0.2	<b>_</b>
30234	45.0 - 50.0	ς Γ		pyrite overall as previously blocky 40.5-45.0, 47.0-48.0 1/4"	N11	0.2	<b>_</b>
30235	50.0 - 54.0	Box		gouge @ 43.5, some open fractures @ 50-55° C.A. & flatter	N11	0.1	
30236	54.0 - 55.0			& (light) epidote @ 44.0-45.0, no pyrite. 45.0 - Dacitic	Nil	0.2	<u> </u>
30237	55.0 - 60.0	@ 61.5v		fragmental more siliceous greenstone with more frequent	Ni1	0.1	<u> </u>
		Γ 1		white quartz hairline fractures, random & @ 70°, 20°, 45° C.A.			
				More pyrite 0.5% along fractures & siliceous zones. (54.0 -	<u> </u>		
				55.0 5%) Blocky core 53.0 - 54.0 2" @ 56.5 and 60.5			<u> </u>
30238	60.0 - 65.0			Dacitic crystal tuff (more massive) with white quartz hairline	Nil_	0.3	
		t-		fractures 30 [°] , 45 [°] , 80 [°] C.A. 10%			
30239	65.0 - 70.0	- Boz		with chlorite, green silica and $\sim 1\%$ pyrite	Nil	N11	
				6" epidote stain 68.0 - 68.5, 65.0+ as above with quartz			
				hairline fractures (~ 7%)			
30240	70.0 - 75.0		-	As above ~ 10% quartz hairline fractures 1% pyrite	N11	N11	
30241	75.0 - 80.0		-	As above with quartz epidote wavy patches @ 80.0 - 81.5;	N11	0.1	
30242	80.0 - 82.0			83.0 - 83.3, 83.7 - 84.0 wavy with pyrite 0.5%	N11	0.2	
		Box	1				

.

:	$\bigcap_{i=1}^{n}$			E.R. KRUCHKOWSKI CP YLTING LOGGED BY E. HORNE		$\cap$	
PROPERTY	Crown Grant	s L265		DATE 26th Oct. 1987 STARTED FINIS	SHED		
DRILL HOLE	BH-4			DEPTH 239.0' DOWN TIME	AS	SAYS	<b>ј</b> Ррђ
SAMPLE NUMBER	INTERVAL	FORM	ALT.	DESCRIPTION	Au	Ag	Ppm
		<u>بر</u>		and possible darker sulphides? Trace pyrite			
30243	82.0 - 84.0	Box		from 81.5 - 83.0 10% quartz hairline fractures	Nil	Ni1	 
30244	84.0 - 89.0			Dacitic/Andesitic crystal tuff $\sim$ 7% quartz hairline fractures	Nil	0.1	
30245	89.0 - 91.0	@100.0.		@ 75° C.A., 30° C.A. and 45° C.A. Dacitic fragmental with	Nil	0.1	ļ
		Î		gouge @ 89.5 and $\sim$ 1% pyrite overall (some green chert and wavy	 		
				epidote chlorite			1
30246	91.0 - 95.0			Dacitic crystal tuff, quartz hairline fractures pyrite	Nil	Nil	
				some green chert (greenstone like), trace pyrite.	<u> </u>	<u> </u>	 
30247	95.0 - 98.0	X O		Crystal tuff (dacitic) with chloritic fracturing $\frac{1}{6} \& 10^{\circ}$ C.A.	Nil	0.1	
				trace pyrite 95.0 - 96.5'		<u> </u>	<u> </u>
30248	98.0 - 100.0			As above with silicified, chloritized quartz-epidote patch	NIL	0.3	
30249	100.0 - 105.			(wavy $\sim //$ C.A. with pyrite 1-2%)			
		$\uparrow$		From 100.0	N11	Ni1	_
30250	105.0 - 110.			Dacite crystal tuff, with rare quartz hairline fractures &	N11	0.2	
		Box		more chlorite epidote patches. Again only trace pyrite with			
30251	110.0 - 115		-	more fragmental 105.0 - 110.0, slightly more pyrite 0.5%	Ni1	N11	1
30252	115.0 - 120	J J		Some green chert & ~ 2% white quartz hairline fractures	Ni1	0.1	
30253	120.0 - 125	ř.		110.0 - 120.0 and from 120.0 - 125.0 with < 1% quartz eyes -			
	1			also only trace pyrite, darker more mafic chloritic volcanic	N11	NII	

E.R. KRUCHKOWSKI COULTING

**P.** 4 ( ٦

			N.	LOGGED BY E. HORNE		, 	
PROPERTY	Crown Grants	L265	······································	DATE 26th Oct. 1987 STARTED FINIS	HED		
RILL HOLE	ВН-4		·······	DEPTH 239.0' DOWN TIME	AS	5AYS	{
JAMPLE	INTERVAL	FORM	ALT.	DESCRIPTION	Au	Ag	ррЪ ррт
30254	125.0 - 128.	0	`	First Jasper Group transition. Trace pyrite only. 128.0-131.0			I
			<u> </u>	slightly more fragmental with spiderweb network of quartz	Nil	Nil	
30255	128.0 - 131.	0 6	BOX	epidote & 🕶 1-2% red Jasper, trace pyrite 2" bleached pod	N11	Nil	
30256	131.0 - 135.	0		quartz jasper @ 131.0 - 135.0 as above less quartz epidote			
		@136.3		with 10% quartz eyes @ 134.5 - 135.0	Nil	0.2	L]
30257	135.0 - 137	.5		More siliceous with green chert, slightly more pyrite (trace	Nil	0.1	
30258		1		plus) & some Chalcopyrite ~ 3% @ 137.5 - 138.5 Quartz hairline	15	0.6	 
				& fracturing, from 135.0 - 141.0 $\sim$ 10-15% with green chert,		ļ	
2				greenstone type sequence (siliceous)			
30259	<u>138.5 - 141</u>	0		Fragmental type greenstone with quartz hairline fractures &	Nil	N11	
			00	green chert to 141.0	N11	0.2	
30260	141.0 - 143	.0	Boy	141.0 onward (transition @ First Jasper ~ 2-3% jasper)			
30261	143.0 - 144	.0		Slightly more pyrite trace chalcopyrite 143.0 - 144.0	5	0.6	
30262	144.0 - 149	.0		Dark mafic volcanic with epidote/jasper stockwork trace pyrite,	N11	0.1	
30263	149.0 - 154	.0		some ~ 5% patchy quartz eyes	Nil	Ni1	
30264	154. <u>0 -</u> 1 <u>58</u>	.0 @155.	5	Lighter more green chert less Jasper $\sim 0.5\%$ and euhedral	Ni1	0.1	
			6	pyrite crystals up to 5mm size @ 155.0 - 158.0 (~ 3%)			
			€-Box	1'Quartz/epidote patch 156.5 - 157.5 & 2" @ 158.4'			
N/S	@ 158.5 -17	@175. 5.0	.0	First Jasper Group mafic volcanics with $\sim 10\%$ bright red			
	Republic The Control Street Street Street Street Street Street						

1	$\bigcirc$			E.R. KRUCHKOWSKI CO YLTING P.5		$\bigcirc$	
				LOGGED BY E. HORNE			··
ROPERTY	Crown Gran	ts L265		DATE 26th Oct. 1987 STARTED FINIS	HED	<b></b>	
RILL HOLE	BH-4		, , , , ,	DEPTH DOWN TIME	AS	SAYS	1 oph
AMPLE	INTERVAL	FORM	ALT.	DESCRIPTION	Au	Ag	ppb ppm
				Jasper pods and patchwork $\sim$ 5% epidote $\sim$ 2% quartz			
				fragments (eyes) No pyrite. Very dense & hard (poor penetration			
		, ,	101	rate), mafic crystal tuff with jasper solution stockwork &			ļ
			- Box	fracture fill $@ 10^{\circ}$ , $30^{\circ}$ , & $45^{\circ}$ C.A. wavy chlorite $\sim 10\%$			
				along healed fracture planes. Another name for this unit			
				"Purple red volcanic".			
N/S	175.0 - 194	4.0					
N/S	194.0 - 196	6.0 ^{@195}	.0	Slightly more fragmental or stockwork with 10% white quartz -		<b>_</b>	
				no pyrite or sulphides.		<u> </u>	
N/S	196.0 - 209		- 	As 175.0 - 194.0 with quartz epidote patches @ 191.0', 193.5			
			-Box	& 201.0 - 202.5 quartz eyes ~ (3-5%) also		<b>_</b>	
	209.0 - 213	1.0		trace pyrite @ 204.0 & 209.0 - 211.0 with chlorite wavy zone		ļ	
		@ 214	7°	~ // C.A. & some broken up core. M.C. ~ 4"?	· .		
N/S	211.0 - 23		× 12	First Japser Group dense purple/red volcanic with 15% - 20%			
			H BOI	epidote/jasper patches (stockwork infill) 5% quartz eyes &		-	
		@ 230.	5	clasts.		ļ	
N/S	230.5 - 23	9 0	13	Predominant infill fracture sets @ 45°, 30° & 15° C.A.	<u> </u>		
			Box	some also // C.A.	<u> </u>		
				Total depth @ 239.0'. Last Hole Az 110 is @ 45°. Purpose		_	
				was to check for up plunge or down plunge of Main "A" sulphide zone. Zone was not encountered @ Az 110 (on Bh-4 or BH-5)			

<b>!</b>	$\bigcirc$			E.R. KRUCHKOWSKI CO JLTING	P.1 LOGGED BY E. HORNE	<b>.</b>	$\cap$	
ROPERTY	Crown Grants BH-5 (Az 110			DATE27th Oct. 1987 DEPTH209.0'	STARTED FINI DOWN TIME	SHED	5AYS	
AMPLE IUMBER	INTERVAL	FORM	ALT.	DESCRIPTION		Au	Ag	Ppb Ppm
N/S	0.0 - 6.0			Casing				
N/S	6.0 - 8.0	 		Broken up core N/S				
N/S	8.0 - 13.0	- Box		Dacite crystal tuff/fragmental	with			
N/S	13.0 - 18.0			~ 10% Quartz hairline fractu		Not s	1	
N/S 25976	18.0 - 21.0 21.0 - 23.5	V		<u>Epidote alteration @ 19.5 - 21</u> Pyrite(except some crystals @		use B Nil	0.5	
·		·		silicified greenish chert and	less than 1%			
25977	23.5 - 29.0			Siliceous greenstone as per 6.	0 - 21.0 with trace pyrite	<u>N11</u>	0.2	
25978	29.0 - 34.0	Box		Siliceous dacitic epidotized u	nit with 5% guartz hairline	Nil	0.3	<b>_</b>
N/S	34.0 - 39.0	 		fractures @ 85° & 45° C.A. onl	y trace pyrite, epidote zone			<b></b>
25979	39.0 - 44.0	@44.0	,	(bleached) ~ 34.0 - 39.0 & mor	e fractured & blocky	Nil	0.3	<b>_</b>
				(some lost core 8")			<b> </b>	
				Zone from 39.0 - 44.0 with tra	ce pyrite			
25980	44.0 - 49.0			Dacite/Greenstone siliceous wi	th ~ 10%	<u>N11</u>	0.6	
25981	49.0 - 54.0			quartz hairline fractures (fra	gmental) trace pyrite &	Nil	0.6	
25982	54.0 - 59.0			some green chert ~ 44.0 - 49.0		Ni1	0.3	<u> </u>
25983	59.0 - 64.0			~ 49.0 - 59.0 @ 59.4, higher	sized pg. 	15	0.3	
		47 X	1	5% pyrite overall ~ 5% white	quartz hairline fractures 🗠 25%			<b>_</b>
				C.A. & 80 [°] C.A. From 44.0 - 4	9.0 $\sim$ 8% guartz hairline fractu	re fill	<b> </b>	
·						1		

E.R. KRUCHKOWSKI CO JLTING

					LOGGED BY E. HORNE				
ROPERTY	Crown Grant	1.265			DATE 30th Oct, 1987 STARTED	FINIS	HED		
RILL HOLE	BII-5				DEPTH 209.0' DOWN TIME			- A.V.C	
SAMPLE						. 1	AS:	SAYS I	Ppb
	INTERVAL	FORM	ALT		DESCRIPTION		Au	Ag	Ppm
	ĺ		1	۲	Some epidote and blocky ground 62.5 - 64.0 minor rust at	62.5-63.	0		
25984	64.0 - 69.0				Dacitic greenstone fragmental with approx 3% white quartz	í <u>-</u>	NIL	0.2	
25985	69.0 - 74.0			4	hairline fractures		NIL	0.3	
25986	74.0 - 78.5		F	ล <u>ี</u> เ	and 8% - 15% chlorite/green chert overall		NIL	0.1	
		Q	81.0	4	trace pyrite <u>only</u> no concentrations				
25987	78.5 - 84.0			 ↑	from 78.5 - 84.0 blocky and rusty yellow stain (78.5 - 79		NIL	0.1	
					fractures at $30^{\circ}$ and $45^{\circ}$ C.A. No pyrite to trace	,;0)			_
25988	84.0 - 89.0				Andesite/dacite with approx 5% white quartz hairline frac	tures	NIL	0.3	
				;	approx 3% greenish chert. No pyrite to trace approx 2" qu	artz-			
				X OG	epidote @ 85.0"				
25989	89.0 - 94.0				As above with epidote/chlorite/quartz patches at 89.0-89.	.5, 90.5,	NIL	0.1	_
<b>_</b>				Į	92.0-92.3 and 94.0		 		1
25990	94.0 - 99.0	ଡ	100	0	Andesite/dacite with patches of epidote/chlorite/green ch	nert	NIL	0.2	
				Î	(quartz) 98.8 - 99.5, only trace pyrite	· · · · · · · · · · · · · · · · · · ·			
25991	99.0 - 104.	0			As above approx 6% white quartz hairline fracture	·	NIL	NIL	
25992	104.0 - 109	.ρ	1	o X	Fill wavy approx $30^\circ$ C.A. and $75^\circ$ C.A. patchy epidote etc	2:	ŅĪL,	0.2	
25993	109.0 - 114	.ρ		≧ ₽	at 101.5 - 102.5 at 1080' 3" <u>only</u> trace pyrite	1	NIL	0.4	
25994	114.0 - 119	.p			some open fractures at 20° C.A.		NIL	0.2	
				V					
· · · · · · · · · · · · · · · · · · ·				·······					
			- <b>.</b>				1	1	

E.R. KRUCHKOWSKI CO-VLTING

(

LOGGED BY E. HORNE

PROPERTY	Crown Gra	nt L265			DATE 30th Oct, 1987 STARTED FINIS	HED _		
)RILL HOLE _	вн-5				DEPTH DOWN TIME	AS	SAYS	f
	INTERVAL	FORM	ALT		DESCRIPTION	Au	Ag	Ppb Ppm
		6	119 (	0	slightly more siliceous crystal tuff and trace + pyrite 109.0 -		i	
			Î		114.0 with patchy epidote quartz @ 113.0 @ 115.0			
25995	119.0 - 124	0			andesite/dacite crystal tuff. slightly more fragmented, quartz	NIL	NIL	
					hairline fractures			
25996	124.0 - 129	0	~		approx 6% at $5^{\circ}$ $40^{\circ}$ & $80^{\circ}$ C.A. and wavy along with 2-3% green	NIL	NIL	
			Boz		chert & trace pyrite,			
25997	129.0 -134.0	•			Some brecciation/fragmental and more intense hairline fracturing	NIL	0.2	
1					and trace pyrite from 129.0 - 133.0			
25998	134.0 - 139.	.0 @	ð 138.	0	as above andesite/dacite crystal tuff with quartz-chlorite and	NIL	0.1	
			$\uparrow$		green chert fracture fill and patches and trace + pyrite			
4					patchy epidote 135.5 - 136.0	· .		
25999	139.0 - 144	.0			Dacite/andesite x-tuff slightly fragmental	NIL	0.1	
26000	144.0 - 149	.0	00		Some stockwork at 139.0 - 140.0 and approx 3%-5%	NIL	0.2	
NEW			xox		white quartz hairline fractures random			
SERIES					& $15^{\circ}$ and $50^{\circ}$ C.A. Also some $80^{\circ}$ at 131.0			
30576	149.0 - 154	.0		(	As above with first red jasper @ 149.5	NIL	NIL	
		(	@ 157.	0	More fragmental appearance and odd quartz-eye. Again trace pyri	te		
			σ		and green chert fragments (more greenstone type)			
30577	154.0 - 159	.p	ROX B	400	Greenstone fragmental trace pyrite as per 149.0 - 154.0 open	NIL	0.1	

	$\bigcirc$			E.R. KRUCHKOWSKI C JULTING LOGGED BY E. HORNE	P		
PROPERTY	Crown Grant L	.265		DATE 30th Oct, 1987 STARTED FINIS	SHED _		
ORILL HOLE	ВН-5	·····		DEPTH DOWN TIME	AS	SAYS	D.1
SAMPLE NUMBER	INTERVAL	FORM	ALT,	DESCRIPTION	Au	Ag	Ppb Ppm
			<u>^</u>	fractures approx 2' intervals			
30578	159.0 - 164.	0		At 25° C.A. and esite/dacite crystal tuff. Minor $\frac{1}{2}$ " and hairline	NIL	0.3	
				quartz approx 70° C.A. No pyrite			
30579	164.0 - 169.	0		Greenstone fragmental (in part) dacitic rock. Trace only pyrite	95	0.1	
			5 X OH	& infrequently disseminated			
30580	169.0 - 174.	þ		very small miniscule 1-2% quartz-eyes only. Fracturing at $15^{\circ}$	NIL	0.1	
				C.A. 171.0 - 172.0' More epidote in fractures instead of quartz			
		0	175.0	approx 2% red chert (First Jasper Group) fracture displaces			
			1	veinlets 2 cm.		 	
30581	174.0 - 179.	р		Quartz approx 10% in hairline fractures and pods	NIL	NIL	
			10	First Jasper Group approx 174.0. Not pyritized			
	179.0 - 209.	O NOT SAMPI	ED R	As above First Jasper Group - <u>NO</u> pyrite or sulphides. Dense			
				dark volcanic with 10% jasper and 20% quartz epidote and chlorite			
	LED	Q	193.0	patches and stockwork breccia - poorly silicified. Epidotized			
	SAMPLED		1	patch @ 193.0 - 194.0. Some open fractures 3' intervals at			
	LON			approx 20° C.A. No pyrite or chalcopyrite Po. except odd 2 mm.			
			× 11	cube (one at 190.0') some more intense			
30582	193.0 - 195.	5	X Dg	Fracturing 193.0 - 195.5 (sampled)	NIL	NIL	
				END OF HOLE at 209.0'			

~	$\left( \bigcap_{i=1}^{n}\right) $			E.R. KRUCHKOWSKI Q JULTING	6	$\overline{}$	
,				LOGGED BY E. HORNE P	. 1	/	
	Crown Grant L			DATE	SHED		
RILL HOLE	BH-6 Az 080 t	o 082 @ 46	D 	DEPTH DOWN TIME	AS	SAYS	
MPLE JMBER	INTERVAL	FORM	ALT.	DESCRIPTION	ppb Au	ppm Ag	
	0 - 5.0			Casing. Missing core 5.0 - 6.5			
N/S	6.5 - 9.0		- 1-	Blocky core dacite crystal tuff approx 5%			
n/s	9.0 - 10.0	МС		Green chert MC 9.0 - 10.0 blockyat 10.0	-		_
30501	10.0 - 15.0			Dacite, crystal tuff/fragmental green and siliceous approx 0.3%	PMIL	0.2	
30502	15.0 - 20.0			As above more broken up from 16.0 - 17.0 & 18.5 - 19.5. Missing	5	0.3	
30503	20.0 - 25.0			core in next Box #2. Combined interval 15.0 - 20.0 fracturing	10	0.3	
			Box	approx $5^{\circ}$ , $30^{\circ}$ & $50^{\circ}$ C.A. approx 2% thin white quartz hairline			
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				fragments & trace to approx 0.3% pyrite overall. Chlorite/			
				epidote wavy bands approx(/C.A.			
30504	25.0 - 28.5		25.0	As above with more silica & epidote (fragmental) only trace py.	NIL	0.2	
A <b></b>			Î	Lighter colour quartz stringer & hairline fracture fill at $30^{\circ}$ ,			
				45° C.A.			
30505	28.5 - 31.0		#2	More siliceous/fragmented or brecciated with approx 4% Po &	NIL	0.5	
			BE	trace chalcopyrite			
30506	31.0 - 36.0		d I U O H S	Dacitic crystal tuff less fractured trace pyrite	25	0.4	
30507	36.0 - 41.0		HS #	As above more fractured (quartz-epidote) trace + Po. approx 1%	5	0.9	
			SAYS	pyrite. 2" quartz stringers 55 [°] C.A. @ 39.4 &			
30508	41.0 - 46.0			More massive dacite/andesite crystall tuff	5	0.4	
		approx	44.0	approx 3% white quartz-hairline fractures trace pyrite			
· · · · · · · · · · · · · · · · · · ·							

l

٠.

E.R. KRUCHKOWSKI ( BULTING

LOGGED BY E. HORNE P. 2

DATE 28th Oct, 1987 Crown Grant L265 STARTED FINISHED PROPERTY DRILL HOLE BH-6 DEPTH _____ DOWN TIME ASSAYS Oz/ SAMPLE Au Ag Ton DESCRIPTION ALT. INTERVAL FORM **UMBER** At 45°, 55° approx 30° C.A. slightly more fragmental and 46.0 - 49.030509 5 ふ 0.4 blocky downhole. Trace pyrite 49.0 - 50.0 30510 Dacitic greenstone fragmental with quartz 20 0.4 * Hairline structures and stockwork, approx 1% py open 1" rusty 30511 50.0 - 53.015 0.2 ы fracture, at 47.0' and blocky 5 SHO Broken up at 49.0 - 51.0' no increase in sulphides. 50.0-53.0 53.5 - 54.5 30512 20 0.3 **.**† dacite more massive ВфХ 53.0 - 54.0 siliceous stringers approx 5% py Po? more massive 0.2 65 30513 54.5 - 60.0S SAT dacite pyrite approx 0.5% along fracture planes  $@ 30^{\circ}$  and  $50^{\circ}$ and 80° C.A. open fracture 5° C.A. at 62.0 30514 60.0 - 64.063.5 approx 5 0.4 64.0 - 69.030515 Dacite greenstone, siliceous altered 0.4 NIL blocky Missing core 72.5-73.5 Some grey quartz py approx 1% core badly broken up approx  $55^{\circ}$  C. ground 30516 69.0 - 74.0Dacite (siliceous greyish alteration) 0.5 20 epidote-quartz fracturing approx 10% random pyrite approx 1.5% 30517 74.0 - 79.0 Dacite (siliceous greyish) pyrite approx 2% 25 0.9 4 BE 11 30518 79.0 - 81.5 Blocky rusty (yellowish) .007 .31 OUL 81.5 - 82.0 Missing core N/S in above blocky ground 5 30519 Greenstone with stringers of grey quartz and heavy some copper 82.0 - 84.0 034 .85 11 ŝ BOX stain (sulphide zone)

	$\cap$			E.R. KRUCHKOWSKI O JULTING LOGGED BY E. HORNE P. 3	(		
PROPERTY	Crown Grant L	.265		DATE	HED		
RILL HOLE	вн-6		<u> </u>	DEPTH DOWN TIME	AS	SAYS	0z/
SAMPLE JUMBER	INTERVAL	FORM	ALT.	DESCRIPTION	Au	Ag	Ton
30520	84.0 - 86.0		86.5	wavy bands approx ½" to 1" approx//C.A.	.028	1.18	
30521	86.0 - 89.0	9	86.5	Dacite greenstone with 5% patchwork white & light grey quartz	.005	.11	11
			$\uparrow$	approx 5% pyrite blebs and dissemination			
30522	89.0 - 90.5			Approx 50% quartz (grey) stockwork and blebs in greenstone	.004	,18	u
				(heavy) with some grey sulphides (tetrahedrite? stibnite?)(fine)			ļ
30523	90.5 - 93.0		e 5-	approx 30% grey quartz stockwork (heavy)? barite? & tetrahedrite	?.004	.20	"
30524	93.0 - 95.5		1 PI	As above 15-20% grey quartz and heavy fine grained sulphides	.002	.07	11
			should	(some approx 2% chalcopyrite and pyrite			
30525	95.5 - 100.0		x Q	Greenstone siliceous breccia fragmental with 5-6% py, cpy	.007	.20	11
<u> </u>			Ba	stringers and some galena (trace) throughout (no concentrations)			
30526	100.0 - 104.	.0 Approx	105.0	and minor grey sulphides adjacent cpy stringers from 100.0 -	.009	.25	11
			1 1	105.0 as above with more cpy approx 10% Rusty zone 104.0 - 105.5		1 .	1
				(blocky) greenstone			
30527	104.0 - 109	.p		Dacite with grey quartz stockwork? and rusty quartz. Pyrite and	.005	.10	11
				malachite. Greenstone frag.			
30528	109.0 - 113	.p	Says	Greenstone siliceous fragmental/stockwork breccia with grey	.006	.20	"
			x Q	quartz. Grey sulphide and pyrrhotite 2-3%			
30529	113.0 - 116	.p		As above with approx 30% 2" stringers chalcopyrite @ 30 to $40^{\circ}$	.010	.47	"
				C.A. at 113.5 and 115.5 slightly wavy and stockwork like with			1
			¥				T



DATE _ 28th Oct, 1987

- i - i

;

Ì.

PROPERTY _____ Crown Grant L265

LOGGED BY E. HORNE P. 4 FINISHED STARTED DOWN TIME

ORILL HOLE	вн-6			DEPTH DOWN TIME	AS	5AYS	
SAMPLE	INTERVAL	FORM	ALT.	DESCRIPTION	Au	Ag	Oz/ Ton
30530	116.0 - 120.	0	个	5% quartz eyes (specks 1 mm) greenstone fragmental with 10%	,006	.07	IJ
				quartz eyes and 10% white quartz hairline fractures at approx			
				45° C.A. and 2 mm stringers of chalcopyrite @ approx 6" intervals			
			ig	total pyrrhotite approx.4%			
30531	120.0 - 122.	5	þe	Greenstone (siliceous) fragmental 15% quartz eyes 2+5 mm approx	.006	,Q6	tt.
			ould	10% white quartz hairline fracture fill and stockwork. approx			
			7 St	45° C.A. some fine stringers chalcopyrite and pyrite along			
}			xo	Quartz approx 3% pyrrhotite			
30532	122.5 - 124.	δ		Grey quartz fine grey sulphides? and 10-15% chalcopyrite 122.5 -	.015	, 59	ņ
		6	124.5	123.0 heavy/from 123.0 124.5 quartz eyes, quartz blebs and $2\frac{1}{2}$		<u> </u>	
			<b>Λ</b>	stringer chalcopyrite (massive)			
30533	124.5 - 128.	0		Siliceous greenstone stockwork at 30% quartz, with approx 15%			
				chalcopyrite and dark fine sulphides. Stringer chalcopyrite $1\frac{1}{2}$ "	.013	.38	
			þe	127.0 - 127.5 and disseminated 10% to 128.0			
30534	128.0 - 131.	•	ulđ	Siliceous greenstone approx 10% quartz eyes and 10% quartz	.005	.08	"
			shd	stockwork and quartz hairline fracture fill			
30535	131.0 - 135.	9	ox v	at 45 - 70 [°] C.A. some grey sulphide %? 131.0 - 135.0	.006	.10	"
30536	135.0 - 140.	q		More fine sulphides (heavy) siliceous greenstone with 15%	.003	.05	
	_		V	quartz eyes 15% quartz stockwork and fine grained grey sulphides			
	1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19						

	$\bigcirc \cdot$			E.R. KRUCHKOWSKI FYSULTING	r	)	
				LOGGED BY E. HORNE P	. 5		
PROPERTY	Crown Grant I	.265		DATE	SHED	<b>.</b>	
RILL HOLE	BH-6			DEPTH DOWN TIME	AS	SAYS	
JAMPLE	INTERVAL	FORM	ALT.	DESCRIPTION	1	Ag	Oz/ Ton
· · · · · · · · · · · · · · · · · · ·			1	and pyrrhotite approx 15-20% 131.0 - 135.0 and 10-15% 135.0 -			
				140.0			
30537	140.0 - 144.	5 @	142.0	Siliceous greenstone quartz stockwork. Approx 10-15% chalcopy.	.007	.22	11
				and grey fine sulphides (heavy) barite?			
			ould	ERROR MARKING SAYS 149.0 SHOULD BE 143.0			
			9 sh	NOTE SAYS 149.0 WHERE SHOULD BE 143.0 POSSIBLY 1' MISSING CORE			
,			Box be 8	BUT NOT 6'			
	ERROR IN TAL	LY OR MC U	SE MEASUR	ED FOOTAGE			
30538	144.5 - 147.	ρ	$\uparrow$	Greenstone siliceous in part rusty 145.5 - 146.0	.009	.21	"
30539	147.0 - 149.	5		barite? Well mineralized pyrrhotite 20% grey sulphide 30% fragmental	.036	.92	u
30540	149.5 - 153.	5	ο Ω	At 150' says 159' (missed run/overcount) as above less	.006	.52	11
· · · · · · · · · · · · · · · · · · ·			1q p	mineralized. Trace jasper 151.0			
30541	153.5 - 158.	.5	shou	Greenstone fragmental approx 5% quartz eyes and siliceous grey	.002	.01	11
			6 X	to buff quartz 10% less mineralized approx 1% chalcopyrite			
			e e	NOTE 142.0 - 162.0 all 20" core in box			
		e	162.0	BOX WOULD TAG OUT @ 170' NOT CORRECT USE MEASURED FOOTAGE			
30542	158.5 - 163.	. \$	Id	Greenstone siliceous with approx 30% grey and buff quartz	.002	.03	11
30543	163.5 - 168	.5	should	5% quartz eyes (fragmental or breccia zone silicified) trace py	TR	.04	11
30544	168.5 - 173	.5	6	and chalcopyrite	.002	.01	"
			D B O				
	l	<b>t</b>	Ę.	F. Construction of the second s	•	4	<b>1</b> 1

	$\bigcirc$			E.R. KRUCHKOWSKI ULTING LOGGED BY E. HORNE P. 6		$\cap$	
PROPERTY	Crown Grant L BH-6	.265		DATE         28th Oct, 1987         STARTED         FINIS           DEPTH          DOWN TIME	SHED _		
SAMPLE	1		1.		AS Au	SAYS Ag	Oz/ Ton
JUMBER	INTERVAL 173.5 - 175.		ALT.	DESCRIPTION as above trace chalcopyrite	TR	.01	"
30545  30546	175.5 - 177.		should	as above trace chalcopyrite	.002	.03	
30547	177.0 - 178.	·	10	Blebs and stringers of massive chalcopyrite. Total 60%	.002	.22	11
	-		Box De	chalcopyrite in siliceous greenstone	 		
30548	178.5 - 183.	5 e	182.0	Greenstone, siliceous with 10% quartz eyes 1-3 mm approx 3%	.004	TR	"
				chalcopyrite to 5% chalcopyrite in stringers			
30549	183.5 - 188.	5 @	182.0	Siliceous greenstone breccia stockwork or fragmental with	.001	.01	11
30550	188.5 - 193.	5	[d.	stringers and patches of chalcopyrite approx 3-5% total.	.002	.02	н
30551	193.5 - 198.	5	shoul	Fracturing at 30° C.A. some chalcopyrite stringers along	.002	.03	Ħ
			11 II	fractures. Quartz eyes approx 2 mm - 6 mm up to 5% total.			
			Box be	193.5 - 198.5 10% chalcopyrite			
30552	198.5 - 203.	5 @	202.0	some fracturing @ 10 [°] C.A. approx 10% quartz eyes in siliceous	TR	.12	11
			11	greenstone and approx 10% mafic eyes (phenocrysts) only trace cp	<b>Y</b>		
30553	203.5 - 208.	5	q p	Siliceous quartz-eye greenstone fragmental	.001	TR	11
30554	208.5 - 213.	5	shou	approx 5% quartz eyes approx 10% quartz stringers and hairline	.001	TR	1)
30555	213.5 - 218.	. Þ	12	fracture fine (random) and disseminated chalcopyrite stringers	.001	.07	"
			Вох	approx +3% chalcopyrite. Some fracturing			
30556	218.5 - 222	.p @	222.0	at 30° C.A. approx 9" intervals	.003	.03	TT .
<b>3</b> 0557	222.0 - 226.	.5		As above siliceous greenstone approx 1% chalcopyrite	.002	.03	"
11 <b>1 1</b>							

E.R.	KRUCHKOWSKI	CQ YLTING

LOGGED BY E. HORNE P-, 7

PROPERTY	RTY Crown Grant L265			DATE 28th Oct, 1987 STARTED FINI	ISHED			
RILL HOLE				DEPTH DOWN TIME		ASSAYS		
SAMPLE	INTERVAL	FORM	ALT.	DESCRIPTION	Au	Ag	Oz/ Ton	
30558	226.5 - 229.			1-2" stringer massive chalcopyrite approx 15° C.A. and quartz	.005	.27	11	
			should	stringer with possible other sulphides 208.0 - 229.0. Also				
			14	4" ground core				
30559	229.0 - 234.	0	Box be	Greenstone less silicified, more epidote/quartz filling approx	.006	.03	11	
30560	234.0 - 239.	0 @	242.0	15% fractures approx 40° C.A. only trace sulphides	.002	TR	"	
30561	239.0 - 242.	.0		First Jasper Group - approx 5% red jasper	NIL	0.3	BBu	
30562	242.0 - 247.	.0	14	More epidote and trace pyrite only	NIL	0.2	ppt ppn	
30563	247.0 - 252.	.0	d te	First Jasper Group approx 10% jasper,	NIL	0.1	ppt ppn	
N/S	252.0 - 259.	.0	houl	quartz epidote 20% chlorite interval is devoid sulphides and no	E			
			15 s	sampled. Some fine hairline quartz fractures approx 3% and				
			Box	minor purplish quartz (amethyst)				
30564	262.0 - 265	.p	262.0	Chloritic with approx 2% large 4 mm pyrite crystals (interval	15	0.1	ppi ppi	
				measured 262.0 is marked 259.0)				
N/S	265.0 - 279	.p		As above approx 10 - 15% red jasper and 15% epidote stockwork	_			
				Dark colour and dense hard drilling. Not sampled on this hole				
	279.0			T.D. at 279.0 T.D. may be out of adjustment (off tally) but				
				not off by much, adjusted up hole,				

APPENDIX E

٠,

,

 $\left( \right)$ 

## HISTORICAL DATA

## CUMBERLAND

This group, sometimes referred to as the Daly group, consists of the Cumberland, Silver Pine, Middlesex, Xyphis, and Ougma Crown-granted claims and is owned by George E. Olmstead, Madison and Walnut streets, Danville, Ill. The property is situated on the Mount Madge ridge-slope to the south side of Sulphurets creek, about 2 miles from its mouth. The main showings are at elevations of 1,200 and 1,350 feet. Densely timbered and rugged slopes rise to the crest of the ridge, which is about 5,500 feet in elevation. The ridge-crest continues easterly for about 2 miles and then rises abruptly to the precipitous triangular peak of Mount Madge, the elevation of which is approximately 7,500 feet.

The property is reached by trail to the mouth of Sulphurets creek. The old trails that once extended up the mountain-slope to the property are now so densely overgrown that the easiest route through the "bush" is followed.

The property was staked about 1808 by H.W. Ketchum, who later in association with a man named Daly and with Ceperley, Rounsefell & Company, of which E. Olmsted was secretary. During the subsequent two years some developmentwork was carried out on the property and in 1903 the construction of a wagon-road from Burroughs bay was started. The attempt to transport machinery to the property failed and operations ceased. In 1931 the group was purchased by the present owner at a tax sale, but no further work has been done. At an elevation of 1,400 feet and about 300 feet westerly from the upper adit the decayed remains of a bunk-house and assay office overgrown by dense underbrush may be seen.

The rocks of the locality include argillites and dense andesitic tuffs and lavas intruded by several light-coloured siliceous dykes and lamprophyre dykes. The mineral deposits occur close to the contacts of the sediments and volcanics and have been developed by two short adits. The mineral deposits include two types: -

(1.) A sheared fissure-vein mineralized with quartz, calcite, barite, pyrite, galena, sphalerite, stibnite, tetrahedrite (grey copper), and argentite. The values are mainly in silver.

(2.) A quartz replacement-zone mineralized mainly with pyrite, pyrrhotite, chalcopyrite, sphalerite, and galena, and carrying appreciable gold values.

At an elevation of 1,200 feet a sheared and brecciated zone intersected by a lamprophyre dyke occurs in volcanics. The zone strikes north 39 degrees west, dips steeply north-easterly, and contains small and irregular lenses and stringers of quartz, barite, and calcite. With the exception of some pyrite, the zone is practically barren of sulphide mineralization where exposed. On the north side of the dyke an adit, timbered for 20 feet from the portal, has been driven for 51 feet in a direction south 39 degrees east. An irregular quartz vein up to 10 inches in width, also some barren quartz and calcite patches and stringers, are seen in this adit between the timbering and the face. The latter is in crushed rock with a few horizontal seams of calcite. A slip striking north and dipping a few degrees east crosses the working about 15 feet from the face. The presence in a near-by small dump of cobbed vein material of quartz, calcite, and barite gangue well mineralized with pyrite, galena, sphalerite, tetrahedrite (grey copper), stibuite, and some argentite indicates that some mineralization occurred in this working. The location of this mineralization may now be obscured by the timbering. A grab sample taken from the dump assayed: Gold, 0.02 oz; silver, 104.6 oz per ton; copper, 0.5 per cent; lead, 8 per cent; zinc, 4 per cent. A reported dump of 20 tons of similar mineralization prepared for shipment could not be located.

At an elevation of 1,350 feet, several hundred feet north-easterly from this showing, a zone containing quartz veins of the replacement-type over a width of 20 to 30 feet outcrops up the face of a bluff which slopes at 70 degrees to the canyon of Sulphurets creek 500 feet below. The rusty outcrop can be plainly traced down the bluff-face for about 150 feet and is a prominent feature of the landscape when viewed from the north side of Sulphurets creek. The zone, striking north 15 degrees west and dipping 70 degrees east, occurs in a dense, highly altered and generally silicified volcanic rock. At the top of the bluff a deep open-cut continued as an adit follows the foot-wall of the zone for 30 feet and then crosscuts it for 21 feet in a direction of south 64 degrees east. In this working veinlets and replacement-lenses of quartz are accompanied by stringers, patches and disseminations of chalcopyrite, pyrrhotite, pyrite, sphalerite, and galena. A representative sample taken from a dump of about 15 tons at the portal of the adit assayed: Gold, 0.26 oz. per ton; silver, 2.4 oz. per ton; copper, 0.3 per cent.; lead, 3 per cent.; zinc, 10 per cent.

## REPORT OF THE MINISTER OF MINES, 1906

## SULPHIDE CREEK

Recent discoveries have been made on this creek near its mouth, and consist of two veins which have been developed by several short drifts and open cuts. One of the veins outcrops along a narrow gulch and has been traced about one thousand feet up the gulch. It strikes usually N.  $25^{\circ}$  W., dips  $30^{\circ}-60^{\circ}$ N.E. and varies in width from 2 to 8 inches. The vein minerals are chiefly tetrahedrite (gray copper) pyrite, sphalerite, galena and native silver; near the surface they are usually altered and enveloped in a soft ferruginous matrix of weathering products. The native silver is a product of the superficial alteration of gray copper. About 100 tons of ore are reported to have been taken from this vein and to have given high assay returns, particularly in silver. The country rock consists of altered limestone and breccia with some quartzite and slate, cut by intrusives of several types. The second vein outcrops a short distance south of the first vein, and is exposed along the face of a steep cliff where it is easily recognized by its brown oxidized coating. At the surface it appears to be 20 to 30 feet wide and is heavily mineralized in spots with pyrite, fine galena (steel galena) and occassional sphalerite and chalcopyrite. Native gold is said to have been observed in the oxidized elevation above sea-level. The vein shows distinct banding and strikes N  $5^{\circ}$  W. with dip  $80^{\circ}$  to  $85^{\circ}$  E. A fine-grained basic dyke is exposed along the west side of the tunnel. On both these veins the development work which has been accomplished is not sufficient to permit definite statements in regard to their future. The indications, however, appear sufficiently favourable to warrant the test which the company plans to give the property in the near future.