ASSESSMENT REPORT ON

GEOCHEMICAL WORK
ON THE FOLLOWING CLAIMS

VR 1 6191(5) VR 2 6192(5) VR 4 6194(5) VR 5 6195(5) VR 6 6196(5)

VR GROUP

located

85 KM NORTH-NORTHWEST OF STEWART, BRITISH COLUMBIA SKEENA MINING DIVISION

56 degrees 38 minutes latitude 130 degrees 14 minutes longitude

N.T.S. 104B/9E

PROJECT PERIOD: Aug. 25 - Aug. 28, 1987

ON BEHALF OF TEUTON RESOURCES CORP. VANCOUVER, B.C.

REPORT BY

D. Cremonese, P. Eng. 200-675 W. Hastings Vancouver, B.C.

Date: G E TO SE O SE O SE S M E N T R E P O R T

17,217

TABLE OF CONTENTS

		Page
1.	INTRODUCTION	1
•	A. Property, Location, Access and Physiography B. Status of Property C. History D. References E. Summary of Work Done	1 1 2 2 3
2.	TECHNICAL DATA AND INTERPRETATION	3
	A. Regional Geology B. Property Geology C. Geochemistry a. Introduction b. Treatment of Data c. Discussion -Rock Geochem Samples -Silt Geochem Samples D. Field Procedure and Laboratory Technique E. Conclusions	3 4 4 4 5 5 5 6 6 6

APPENDICES

- I Work Cost Statement II Certificate III Assay Certificates

ILLUSTRATIONS

Fig. 1	Location Map	Report Body
Fig. 2	Claims Map	Report Body
Fig. 3	Regional Geology (and Legend)	Report Body
Fig. 4	1987 Geochemical Sampling	
_	(Sample Locations and Au & Cu Values)	Map Pocket

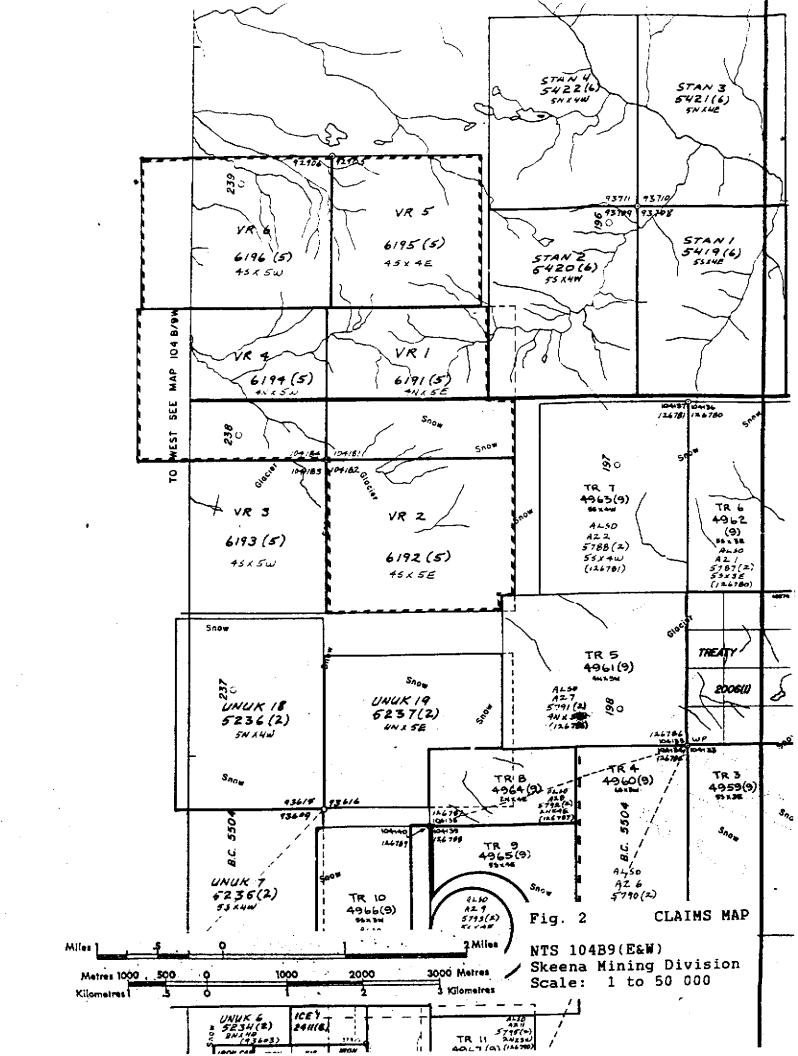
1. INTRODUCTION

A. Property, Location, Access and Physiography

The property is located about 85 km north-northwest of Stewart, British Columbia. Nearest road is the Cassiar-Stewart Highway about 22 km to the east. Access is presently limited to helicopter, either from the base at Stewart or at Bob Quinn Lake (during the 1987 program nelicopter service was provided by Vancouver Island Helicopters directly from the Catear Resources' base camp about 1 km north of Brucejack Lake). The recent completion of a temporary road from a barge terminal on Bowser Lake into the Sulphurets gold-silver prospect near Brucejack Lake has provided yet another alternative means of access.

The VR claims lie just west of the divide between the Unuk River and Treaty Creek drainages. The southern portions of the claim block are characterized by steep to precipitous slopes cut by glaciers and capped by icefields. Maximum elevation in this section is a little over 2,000 meters. The two most prominent glaciers, known as the Rounsfell and Atkins Glaciers, flow northward, terminating close to the legal post for the VR 1, 2 and 4 claims. The northern portions of the claim block (VR 5 & 6 claims) are less rugged; minimum elevation is approximately 1,100 meters.

Lower slopes on the property are vegetated by a medium to sparse mantle of mountain balsam and hemlock. Climate is somewhat less severe than in the immediate Stewart area, and in particular, precipitation is not as severe. Nevertheless, the area still suffers from the typical Stewart drawbacks of frequent inclement weather and a relatively short summer working season.


B. Status of Property

Relevant claim information is summarized below:

Name	Record No.	No. of Units	Record Date
VR 1	6191(5)	20	May 25, 1987
VR 2	6192(5)	20	May 25, 1987
VR 4	6194(5)	20	May 25, 1987
VR 5	6195(5)	16	May 25, 1987
VR 6	6196(5)	20	May 25, 1987

Claim locations are shown on Fig. 2 after government N.T.S. map 104B/9E. The claims are registered in the name of T. MacKenzie who holds on trust for Teuton Resources Corp. of Vancouver, British Columbia, the operator of the claims.

VIÇTORIA

C. History

There is no historical record of previous work on the VR claims area itself.

Cominco worked the Treaty Glacier area, situated a few kilometers southeast of the property, in the early 1930's. This area is presently under active exploration due to the recent discovery of several promising gold showings.

The gold-silver "Sulphurets" property owned by Newhawk and Granduc Mines is located about six kilometers due south of the VR claims. Discoveries made in the Brucejack Lake area within the Sulphurets property are reportedly being groomed for production in the near future.

D. References

- GROVE, E.W., P.ENG., PH.D. (1983): Private Report for Teuton Resources Corp. on the Treaty Claim.
- 2. GROVE, E.W. (1982): Unuk River, Salmon River, Anyox Map Areas. Ministry of Energy, Mines and Petroleum Resources, B.C.
- 3. GROVE, E.W. (1971): Bulletin 58, Geology and Mineral Deposits of the Stewart Area. B.C.M.E.M.P.R.
- 4. ANNUAL REPORTS, MINISTER OF MINES, B.C.: 1929 -- p. C102; 1930 -- p. A110.
- 5. BRITISH COLUMBIA MINER (1928): "Portland Canal Notes" by W.R. Hull, p. 36, December 1, 1928.
- 6. KRUCHKOWSKI, E.R. (1981): Geological Report Treaty Claim -- Bowser-Unuk Project, NTS 104B/9E, for E & B Explorations Ltd.
- 7. CREMONESE, P.ENG. (1984): Assessment Report on Prospecting Work on the Electrum 1 and Electrum 6 Claims, NTS 104B/9E, On File with the B.C.M.E.M.P.R.
- 8. CREMONESE, P.ENG. (1985): Assessment Report on Geological and Geochemical Work on the Treaty Claim, NTS 104B/9E, On File with the B.C.M.E.M.P.R.
- 9. CREMONESE, P.ENG. (Feb., 1987): Assessment Report on Geochemical Work on the Treaty & TR 2 claims, NTS 104B/9E, On File with the B.C.M.E.M.P.R.
- 10. ALLDRICK, D.J. & BRITTON, J.M. (1988); Geology and Mineral

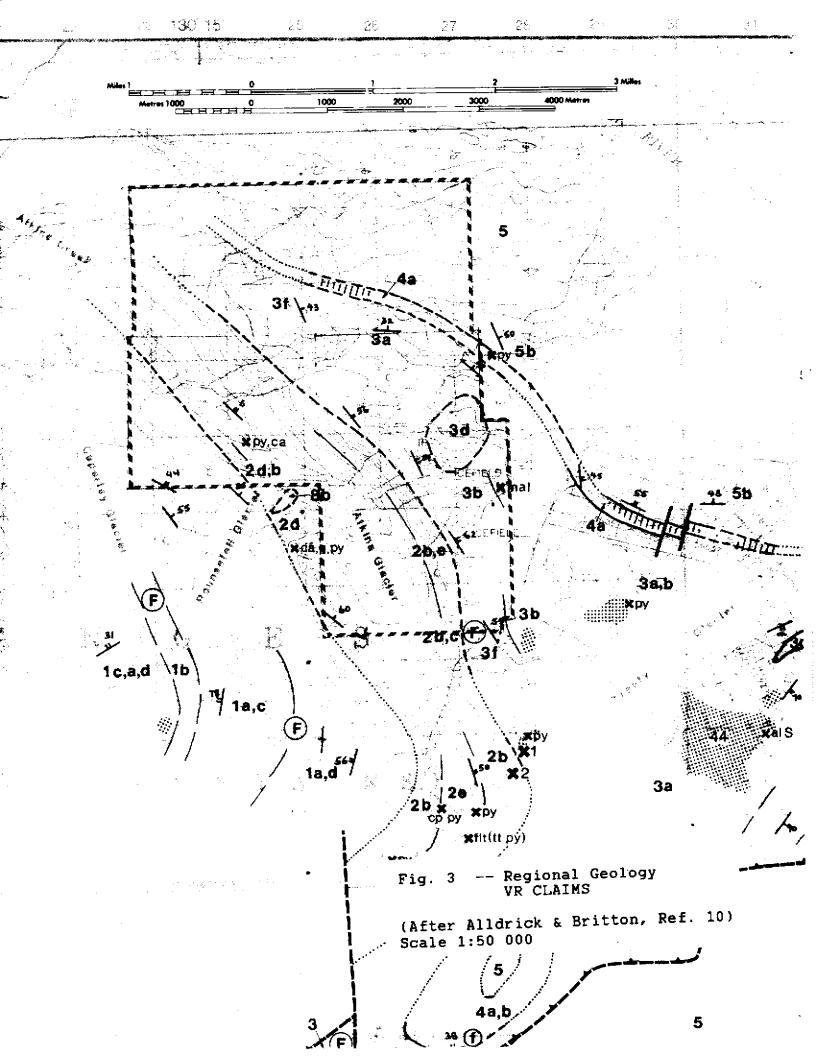
Deposits of the Sulphurets Area, Open File Map 1988-4; Geological Survey Branch, MEMPR

11. NATIONAL GEOCHEMICAL RECONNAISSANCE (1:250 000 MAP SERIES), ISKUT RIVER, BRITISH COLUMBIA (NTS 104B) 1988; GSC Open File 1645, Joint Project of GSC & MEMPRBC

E. Summary of Work Done.

The silt and rock geochemical survey conducted over the claims area was undertaken by contractor E.R. Kruchkowski Consultants of Calgary, Alberta. Kruchkowski Consultants used the Catear Resources camp on the Gold Wedge Fraction (about 1 km north of Brucejack Lake) as a staging ground for reconnaissance exploration programs mounted for several resource companies in the area. Vancouver Island Helicopters also provided flight services directly from the Catear camp, a circumstance which cut costs considerably (in previous years, helicopter service was provided either directly from Stewart, or from the Granduc air strip).

A large field camp complete with generator was mobilized by helicopter to the property on August 25, 1987. Crew consisted of four men, working daily in parties of two. Party leaders were Ken Konkin, geologist, and Gordon Sinden, geol. technologist—two old hands in the Stewart area. Field supervision was the responsibility of E.R. Kruchkowski, P.Geol. Demobilization from the property was completed on Aug. 28, 1987.


Thirty-five rock geochemical samples and forty-one silt samples were collected during the survey. Both the rock and the silt geochem samples were analysed for gold by AA and for 29 elements by I.C.P. (Inductively Coupled Argon Plasma). Some of the geochemical traverses were assisted by helicopter drop-offs and pick-ups in order to maximize amount of ground coverable from a single field camp.

2. TECHNICAL DATA AND INTERPRETATION

A. Regional Geology

The property lies within a broad, north-northwest trending belt of Triassic and Jurassic volcanic and sedimentary rocks termed by Grove (1971) as the "Stewart Complex". This belt is bounded to the west by the Coast Crystalline Belt (mainly granodiorites) and to the east by a thick series of sedimentary rocks known as the Bowser Assemblage (Middle Jurassic to Upper Jurassic age).

Property location relative to regional geology is shown on

LEGEND

INTRUSIVE ROCKS

TERTIARY

10 POST TECTONIC DYKES: Keratophyre, lamprophyre, microdiorile, diabase (narrow, not shown)

JURASSIC

9

POST-VOLCANIC INTRUSIONS: Subporphyritic to porphyritic rocks with phaneritic groundmass. Texturally dissimilar to their volcanic host rocks

MITCHELL-SULPHURETS SUITE

- 9a Alkali-teldspar Granite: dark rad, holofelsic, medium-grained, equigranular, hypersolvus granite
- 9b Monzonite, Quartz Monzonita: gray-green, pink and red, medium to coarsegrained, subporphyritic (K-feldspar, plagioclase) subsolvus rock. With increasing quartz locally grades into a texturally identical granite
- Monzodiorite: greenish grey, plagioclase-homblende prophyritic, mediumgrained rock; locally grades into light grey equigranular biotite monzodiorite or monzonite
- 8 SYN TO POST-VOLCANIC INTRUSIONS: Perphyritic, hypabyssal rocks with aphanitic groundmass. Texturally similar to extrusive rocks; intrusive relationships not always apparent
 - 8a Walker Porphyry: light grey, homogeneous, plagioclase porphyritic dacite with fine-grained cognate xenoliths
 - 8b Rounsefell Porphyry: light grey, coarse biotite and feldspar phenocrysts in dacitic groundmass
 - Bo Two-feldspar Porphyry: medium to dark green, coarse K-feldspar and fine plagicidase ± hornblende phenocrysts in andesitic groundmass. (Hypabyssal equivalent of Unit 2a)
 - 8d Wedge Lake Porphyry: light green, plagioclase ± quartz phenocrysts in dacitic groundmass
- SUBVOLCANIC INTRUSIONS: Porphyritic hypabyssal rocks with phanaritic groundmass Composition and phenocrysts similar to extrusive rocks
 - 7 Lee Brant Stock: Light grey, K-feldspar perphyritic, hernblende bietite quartz menzenite

METAMORPHIC ROCKS

Phyllitic equivalents of Unit 1 Protolith is Triassic to Jurassic, metamorphism is Cretaceous (?)

- A Metapelito: dark grey, carbonaceous, quartz-feldspar sericite phyllite
- B Felsic Metavokcanics: light green, quartz-albite-chlorite sericite phyllite; to-celly with deformed lapilli
- Mafic to Intermediate Metavolcanics: dark green, plagioclase-chlorite phyllite

VOLCANIC AND SEDIMENTARY ROCKS

(Note: No stratigraphic order is Implied within units)

QUATERNARY

5 UNCONSOLIDATED SEDIMENTS: Alluvium, giaciofluvial deposits, landslide debris (not shown)

TRIASSIC TO JURASSIC

HAZELTON GROUP

MIDDLE JURASSIC (TOARCIAN TO BAJOCIAN)

5

SILTSTONE SEQUENCE (Salmon River Formation): Dark gray, well bedded siltstone and line sandstone

- 5a Basal, foesiliferous, pyritic wacke
- 5b Rhythmically bedded siltstone
- ic Thickly bedded sandstone
- 5d Limestone lenses

LOWER JURASSIC (TOARCIAN)

FELSIC VOLCANIC SEQUENCE (Mount Dilworth Formation): Light weathering, intermediate to felsic pyroclastic rocks, including dust tuff, crystal and lithic tuff, and lapilit luff. Locally pyritiferous (5 to 15%) and gossanous. Minor chalcadonic quartz veins locally

- 4a Massive to bedded airfall tuffs
- 4b Variably welded ash flow tuffs
- 4c Knipplé Porphyry: coarse white glomeroporphyritic plagioclase phenocrysts set in grey dacitic-andesitic groundmass

LOWER JURASSIC (PLIENSBACHIAN TO TOARCIAN)

PYROCLASTIC—EPICLASTIC SEQUENCE (Betty Creek Formation): Heterogeneous, red, green, purple and grey, bedded to massive pyroclastic and sedimentary rocks

- 3a Massive, green and grey andesttic to dacitic tuff, laplif tuff, tuff breccia and minor flows:
- 3ah Hematitic mudstone seams within 3a
- 3b Bedded, heterogeneous, red, green, and grey volcanic breccia, lapilli tuff, crystal and lithic tuff, commonly hematitic
- 3c Basaltic to andesitic pillow lavas
- 3d Atkins Porphyry: hornblende and feldspar porphyritic andesite
- 3e Massive grey arkosic rocks and graywacke
- 31 Bedded, hematitic siltstone, sandstone and conglomerate; locally lossiliferous

LOWER JURASSIC (HETTANGIAN-PLIENSBACHIAN)

ANDESITE SEQUENCE (Upper Unuk River Formation): Green and grey, rarely purple, intermediate to malic pyroclastics and flows with minor interbeds of sittstone and wacks.

- 2a Medium to dark green, K-feldspar and plagloclase ± homblende porphyritic trachyandesite fulfs and flows
- 2b Grey and green plagioclase perphyritic andesite
- 2c Dark green, hornblende ± augite perphyritic basalt-andestte
- 2d Dark grey rhythmically bedded siltstone (turbidite)
- 2e Gray wall-sorted arkosic wacke, graywacke and conglomerate

UPPER TRIASSIC TO LOWER JURASSIC (NORIAN TO HETTANGIAN)

- П
- LOWER SEDIMENTARY SEQUENCE (Lower Unuk River Formation): Brown and grey mixed sedimentary rocks with tuffaceous interbeds
- 1a Immature arkosic and lithic wacke
- 1b Sillstone
- te Polymiclic conglomerate
- s Tuffite
- 1e Andesitic pyroclastics

Fig. 3.

B. Property Geology

The property is underlain by Hazelton Group rocks consisting of several distinct volcanic and sedimentary units. As mapped by Alldrick and Britton (Ref. 10), the oldest unit is the Lower Unuk River Formation (Upper Triassic to Lower Jurassic), consisting of brown and grey mixed sedimentary rocks with tuffaceous inter-This is overlain by an andesite sequence (Upper Unuk River -- Lower Jurassic) consisting of green and grey intermediate to mafic pyro~lastics and flows with minor interbeds of siltstone and wacke. Above this again is the Betty Creek Formation, also of Lower Jurassic age. It consists of heterogeneous, red, green, purple and grey, bedded to massive pyroclastic The Betty Creek is separated from the and sedimentary rocks. Middle Jurassic Salmon River Formation (dark grey, well bedded siltstone and fine sandstone) by a thin felsic volcanic unit termed the Mount Dilworth Formation.

Field notes taken by the geochemical samplers during the 1987 program indicate that the portion of the property traversed (see Fig. 4) was underlain primarily by siltstone, conglomerate and sandstone. Very little sulphide mineralization was noted, however, calcite and dolomite veins of small dimensions were observed in many localities. Minor rhyodacite and feldspar porphyry intrusives were also noticed.

Alldrick & Britton have also mapped a hornblende and feldspar porphyritic andesite (the "Atkins Porphyry") outcropping close to the eastern boundary of the property. This section was not examined during the 1987 work.

C. Geochemistry

a. Introduction

Reconnaissance rock and silt geochemical surveys were carried out over portions of the VR 1, 2, 4, 5 & 6 claims. Object was to investigate the area for gold-silver mineralization of the type now being explored at the proximate Treaty Creek and Sulphurets properties.

Silt samples were taken by carefully screening stream sediment to minus 80 mesh until approximately 500 grams or better was collected. The screened sediment was washed from a sampling bowl into a standard kraft bag, marked and sent to Vancouver for analysis.

Rock samples were taken by chip sampling areas judged likely to contain precious metal values (based on the crew's experience

in the Stewart area--especially the Sulphurets area).

Gold and copper values have been plotted on Fig. 4. The other elements analysed for in the appended Assay Certificates were not pictorially represented because of their low levels and flat distribution.

b. Treatment of data

Reconnaissance geochemical data were plotted on a base map prepared on a scale of 1:5000. Locations were predicated on field altimeter readings and reference to airphotos. Rock sample sites are identified on the maps by a triangle, silt sample sites by a circle. Gold values are indicated beside the sample sites in ppb; copper values are to the right of the gold values (separated by a comma) and are in ppm (see Fig. 4).

c. Discussion

Silt Geochem Samples

Compared to other areas in Stewart with which the author is familiar, metal values in the silt geochemical samples obtained during the property survey are not particularly promising. However, gold and copper values show a modest elevation above typical background values and for this reason values for same have been plotted on Fig. 4.

Rather than attempt a statistical work-up on such a small sample set, the author prefers to compare the survey results with the recently released data from the National Geochemical Reconnaissance for NTS 104B (Ref. 11). Over 95% of all the samples taken during the National Geochemical Reconnaissance reported values of less than 169 ppm for copper and 168 ppb in gold. Of those samples taken in siltstones (the predominant rock unit underlying the property area), 95% of the samples reported values less than 109 ppm in copper and 33 ppb in gold.

Based on such comparison, it is possible to tentatively designate samples TS 41, 42 and 43 as slightly to moderately anomalous in copper and gold. Values for these samples are shown below:

Sample No.	Gold (ppb)	Copper (ppm)
TS-41	56	199
TS-42	46	177
TS-43	62	199

These samples were taken from the confluence area of two

streams (see Fig. 4). Surrounding country rock is described in field notes as "black siltstone with calcite stringers". A little upstream, in the vicinity of rock geochem sample TR-72, the outcrop is described as "orange-brown gossan, limonitic, no visible sulfides". Significantly, silt samples taken upstream of the samples tabulated above show an abatement of copper and gold values.

Because 15 of the 41 silt samples taken during the survey registered copper values in excess of 100 ppm, it is more likely that the streams are reflecting a high background copper content in the siltstones (and/or areas of calcite/dolomite veining) rather than discrete structures within the country rock. Further prospecting is needed to verify or disprove this hypothesis.

Rock Geochem Values

The rock geochem results were much less promising than those obtained in the silt geochem sampling. Highest copper value obtained was 154 ppm (#KK-270); highest gold value obtained was 43 ppb (#KK-268). Neither of these can be considered anomalous under any criterion.

D. Field Procedure and Laboratory Technique

Silt samples were taken in the field by sieving fine stream sediments through a -40mesh nylon screen till approximately 300 to 500 grams of material was collected. This was rinsed from a plastic collecting basin into a standard Kraft Bag. The bags were then marked, allowed to dry, and shipped by bus to Vancouver for analysis at the Acme Analytical Laboratories facility on 852 East Hastings Street.

After standard sample preparation, a .500 gram subsample was digested with 3ml of 3-1-2 HCl-HNO3-H20 at 95 degrees Centigrade for one hour, then diluted to 10 ml with water. The resulting solution was tested by Inductively Coupled Argon Plasma to yield quantatitive results for 30 elements. Gold was analysed by standard atomic absorption methods from a 10 gram subsample.

Rock geochem and character samples were analysed in the same manner as described above.

E. Conclusions

Results of the 1987 work show that the portions of the property investigated are underlain by sediments with limited potential for economic mineralization. Nevertheless, modest copper/gold anomalies obtained in stream sediment sampling at one

locality probably warrant some minor follow-up.

Such follow-up should be undertaken as part of a future reconaissance program over the uninvestigated southeastern corner of the property. Based on recently released geological mapping by the B.C. government (and proximity to gold-silver zones presently being explored on the adjacent TR claims), this area has good potential.

Respectfully submitted,

D. Cremonese, P.Eng.

Aug. 22, 1988

APPENDIX I -- WORK COST STATEMENT

Field Personnel:	
K. Konkin, Geologist Aug. 25-28 incl. 4 days @ \$220/day	\$ 880
G. Sinden, Geol. technologist, Aug. 25-28 incl. 4 days @ \$181.50	726
I. Hayton, Assistant Aug. 25-28 incl. 4 days @ \$165/day	660
H. Christianson, Assistant Aug. 25-28 incl. 4 days @ \$181.50	726
Field Supervision: E.R. Kruchkowski, Geologist 1 day @ \$330/day	330
Helicopter Vancouver Island Hel. (Catear Base) Mob/demob camp & pesonnel, crew drop-offs/pick-ups 3.8 hrs. @ \$588.75	2,237
Food 16 man-days @ \$25/man-day	400
Camp equipment rental (generator, radios, tents etc.) 4 days @ \$120/man-day	480
Supplies (plywood and 2 by 4s for tent frames, plastic sample bags, gasoline, diesel etc.	180
Sample transport	60
Assays Acme Analytical Geochem Au, I.C.P. and rock sample preparation 35 @ \$13.25/sample	464
Geochem Au, I.C.P. and silt sample preparation 41 @ \$11	451
Share of Project Support Costs: Personnel: mob/demob (Calgary-Catear), Catear base camp set-up Supplies, transportation, equipment rental, truck rental, radio, wood frames, helicopter mob/demob,	500
accommodation, etc. Report Costs	500
Report costs Report and map preparation, compilation and research D. Cremonese, P.Eng., 2 days @ \$300/day Draughting F. Chong Word Processor - 4 hrs. @ \$25/hr. Copies, report, jackets, maps, etc.	600 170 100 70
TOTAL	. <u>\$ 9,034</u>

APPENDIX II - CERTIFICATE

- I, Dino M. Cremonese, do hereby certify that:
- 1. I am a mineral property consultant with an office at Suite 200-675 W. Hastings, Vancouver, B.C.
- 2. I am a graduate of the University of British Columbia (B.A.Sc. in metallurgical engineering, 1972, and L.L.B., 1979).
- 3. I am a Professional Engineer registered with the Association of Professional Engineers of the Province of British Columbia as a resident member, #13876.
- 4. I have practiced my profession since 1979.
- 5. This report is based upon work carried out on the VR 1, 2, 4, 5 and 6 mineral claims, Skeena Mining Division in August, 1987. Reference to field notes and maps made by geologist Ken Konkin and geol. technologist G. Sinden is acknowledged. I have full confidence in the abilities of all samplers used in the 1987 geochemical program (K. Konkin and G. Sinden well over 5 years experience in the Stewart area alone) and am satisfied that all samples were taken properly and with care.
- 6. I am a principal of Teuton Resources Corp., beneficial owner of the VR claims: this report was prepared solely for satisfying assessment work requirements in accordance with government regulations.

Dated at Vancouver, B.C. this 22 day of August, 1988.

D. Cremonese, P.Eng.

D. Semmen

APPENDIX III

ASSAY CERTIFICATES

-	_	~	-	

	. ,										т	EUT	ON F	ESOL	JRCE	s	FIL	E #	87-	410	ì												Paqe →	
	SAMPLES	MQ PP#	CU PPM	РВ Р ҮМ	ZN PHM	46 PPM	NI MY9	CO PPM	AN PPh	FE	AS PPM	U PPM	AU FPM	TH PPM	SR PPM	CD PPM	SB PPM	91 Prm	V PP#I	CA Z	P Z	LA PFM	CR Pr#	MG X	BA PPM	11	B PPM	AL Z	NA I	K	₩ PHM	AU s PPB		t
	KKS-10 KKS-11 KKS-12 KKS-13 KKS-15	7 6 1 2 4	56 54 43 36 46	16 20 11 8 13	590 822 129 109 180	.5 .5 .2 .1	62 66 79 73 66	14	1158 742	4.84	57 49 28 18 32	5 5 5 5 5	ФИ ФИ ФИ ФИ ФИ	2 2 3 2 2	33 32 46 77 65	3 5 1 1 1	2 2 2 2 2	2 2 2 2 2	49 48 32 32 35	.30 .22 .25	.077 .075 .053 .041	9 6 3 5	29 29 32 35 35	.62 .60 .50 .49	392 477 263 172 350	.02 .02 .01 .01	3 6	1.35 1.34 1.07 1.14 1.21	.03 .03 .02 .03 .02	.11 .11 .11 .12	1 1 1 1	6 1 1		
	KKS-16 KKS-17 KKS-18 KKS-19 KKS-20	10 2 1 2 2	63 75 77 91 109	12 11 12 10	354 78 92 76 82	.6 .2 .2 .4 .3	73 31 25 13	11 15 16	70B 910 939	5.08 4.25 5.28 5.77 6.57	82 26 31 18 21	5 5 5 5	ND ND ND ND	2 2 3 4 4	70 117 60 83 86	2 1 1 1 1	6 2 2 2 2	2 2 2 2 2	150 156	2.15 .72	.066 .161 .171 .246 .267	6 10 12 12 12	43 24	.53 1.09 1.41 1.60 1.82	477 130 97 130 186	.01 .03 .09 .05	2 2 5	1.45 1.31 1.77 1.75 1.99	.02 .02 .07 .03	.17 .10 .11 .10	1 1 1 1	5 1 3 2		ţ
-	KKS-21 KKS-22 KKS-23	2 2 1	101 71 70	12 14 14	75 112 110	.2	12 59 53	15 13	842 770	6.11 4.53 4.50 4.82	18 14 16	5 5 5	ND ND ND	3 3 2	81 43 41	1 1 1	2 2 2	2 2 2	175 47 45 57	. 49	.231 .102 .105	11 10 9	22 39 37 18	1.85 .85 .18.	172 316 384 286	.08 .01 .01	4 13	1.88 1.39 1.31	.05 .02 .02	.11 .17 .14	1 1 1	2 2 1 3	ግ	(
1	KKS-24 KKS-25	2	105 97	41 13	197 133	.5 .3	32			5.19	23	5	KD CH	2	46	1	2	2	60	.56	.145	11	24	.60	222	.02	2	1.24	.04	.17	1	1	1	•
	KKS-28 KKS-27 KKS-28 AKS-29 KKS-30	2 2 3 1 3	115 123 111 95 47	48 38 21 20 14	225 230 145 131 124	.6 .4 .4 .5	26 25 24 26 21	18	1013 1059 1037	5.68 5.74 6.72 5.96 8.05	67 65 115 30 16	5 5 5 5	ND ND ND ND	3 2 1 2 3	46 47 39 35 43	i i i 1	3 2 4 2 2	2 2 2 2 2 2	54 57 82 102 61	.73 .39 .61	.148 .150 .104 .157	11 11 9 10 9	19 19 21 28 20	.42 .43 .57 1.04	295 311 237 222 484	.01 .01 .02 .01	6 2 5	.99 1.00 1.11 1.62 1.70	.02 .02 .05 .03	.17 .15	1 1 1	5 1 6 2	VF	? _{/M} s:
	KKS-31 KKS-32 KKS-33 KKS-34 KKS-35	11 11 8 9	44 45 50 54 48	13 17 10 7 9	199 196 289 306 254	.3 .2 .8	30 29 33 36 72	10	584 807 978	5.16 5.11 4.85 4.99 4.64	19 20 42 46 16	5 5 5 5	01 01 01 01 01 01	1	47 45 32 32 38	2	2 2 3 3 2	2 2 2 3 2	27 26 61 62 46		.058 .058 .050 .051	15 15 13 14	10 9 23 23 41	.24 .24 .73 .75 1.05	382 325 284 195 285	.01 .01 .01 .01	7		.01 .04 .04 .05	.18 .18 .18	1 1 1	1 1 2 2 1		(
{	KKS-36 PIS-01 PIS-02 PIS-03 PS-1	5 1 2 2 2	50 21 20 24 18	16 17 21 22 19	274 101 93 104 86	. 4 .7	75 .9 9 7	10 9	883 801 1187	4.67 5.03 5.06 4.46 4.42	35 51	5 5 5 5 5	08 08 08 08 08	5 6 7	38 34 34 32 22	1	2 3 5 5	3 2 2 2 2 2	53 46	.42 .41 .36	.082 .095	11 16 19 22 19	39 14 14 11	1.01 .63 .63 .55	319 223 431 420 210	.01 .14 .05 .06	4 5 5	1.99 1.26 1.26 1.29 1.14	.05 .02 .02 .01	.20 .27	l l	5 1)	(
	PS-2 PS-3 PS-4 TS-37 TS-38	1 2 2 3 2	21 22 20 73 31	19 21 26 67 32	95 109 180	.4 .5 .4 .8	8 7 11 8 4	9 11 14	1266 558	4.47 3 4.53	59 185 31	5 5 5 5 5	ДИ ФИ ОИ ОИ	8 6 2	30 22 21 47 54	1 1 2	4 7 7 4 2	2	40	.38 .27 .24 .47	.064 .061 .092	19 19 23 6 4	12 12 13 13	.59 .55 .59 .81	311 248 141 4 7	.07 .05 .01 .07	4 3 5	1.21 1.13 1.44 1.11 .59	.01 .01 .01 .02	.22 .19 .11	! 1 1	3 1 1	_ •	(
	15-39 SID C/AU-S	i 18	120			7,0	35 65			7 4.87 7 4.04							2 17	2 23			.131 .085	12 36		.71 .85	299 174	.01		1.23			13	11 49	ZVR	CLAIMS

SAMPLE	MO PPM	CU PPM	PB PPM	ZN PPM	A G PPM	NI PPM	CO PPM	IIN Pph	FE 1	AS PPM	U PPM	AU Pph	TH PPh	SR PPH	CD PPM	SB PPM	18 199	,V PPM	CA Z	P I	LA PPM	CR PPN	яG Z	BA PPM	11 1	B PPM	AL I	HA Z	K 1	# PPM	AU# PPB
15-40	Ž	135	23	142	,4	72	20	895	6.19	23	5	NO	3	80	ı	2	2	68	1,00	.130	16	45	.79	740	.01	13	1.52	.02	, 26	1	12
TS-41	2	199	36	160	.7	35	23	1105	7.23	47	5	MD	3	50	1	4	2	66	.63	.133	10	23	.54	261	.01	15		.05	. 20	i	56
IS-42	2	177	26	126	.4	33	22	866	6.99	42	5	ND	2	45	ı	5	2	60	.57	.134	10	23	.53	147	.01		1.18	.05	.20	1	46
TS-43	1	199	32	142	. 4	31	22	968	6.94	43	5	ND	2	45	1	4	2	6 l	.57	.130	10	21	-51	255	.01		1.15	. 04	. 20	1	62
15-44	. 2	139	35	151	.4	32	21	911	6.52	32	5	ND	3	45	1	3	2	58	.57	.139	10	19	.50	299	.02		1.11	.05	.20	1	22
TS-45	1	56	19	139	.2	46	13	910	4.56	13	5	ND	2	38	1	2	2	50	.39	.078	12	39	.92	248	.03	5	1.71	.06	.15	1	1
15-46	1	92	23	110	.2	28	15	1036	5.11	19	5	ND	2	44	1	2	2	58	.46	.092	13	29	.76	311	.03		1.63	.07	.19	i	i
15-47	1	93	ΙÝ	114	.2	26	15	886	4.96	19	5	MD	3	45	1	2	2	59	.53	,114	14	27	.74	429	.02		1.58	.05	.22	1	2
15-48	1	99	14	118	. i	29	15	683	5.13	18	5	ND	2	47	1	3	2	63	.55	.123	15	33	.78	457	.01		1.70	04	. 25	i	i
IS-44	1	76	10	88	.1	18	13	1010	4.28	13	5	MD	2	41	1	2	2	47	.47	.106	14	17	.42	357	.01		1.25	.03	. 22	1	5
TS-50	1	71	56	254	.4	23	13	1120	4.91	14	5	MD	4	36	1	2	2	53	.49	.110	16	22	.65	276	.01	á	1.59	.u3	.24	1	6
15-51	2	60	26	216	. 3	47	13	953	4.63	13	5	ND	2	38	1	3	2	54	.41	.075	12	43	94	167	.03		1.73	.0Ь	.15	ì	4
TS-52	1	91	52	249	. 5	30	15	1135	4.92	17	5	ND	3	35	1	2	2	50	.46	.099	14	28	.70	242	.01		1.46	.03	.18	1	à
18-53	1	107	33	160	.5	26	17	1063	5.74	53	5	MAL	2	37	1	5	2	59	. 4B	.124	11	23	. 57	218	.01		1.26	.04	.18	1	21
TS-54	2	135	22	119	.3	30	21	931	6.24	35	5	MD	2	42	1	4	2	62	.55	.131	11	21	.47	276	.01		1.11	.03	.20	1	29
TS-55	ı	94	11	111	.1	22	14	841	5.82	18	5	ND	2	33	1	3	2	85	.59	. 153	9	27	1.11	258	.01	14	2.02	. 02	. 20	1	5
TS-56	ì	110	12	109	. 2	18	14	847	6.20	18	5	ND	2	36	1	2	2	95	.72	. 167	9	24	1.24	287	.01		2.16	.02	. 21	1	2
TS-57	ı	93	44	185	.3	22	16	1117	5.31	37	5	MD	2	34	1	4	2	64	.49	.129	10	21	. 55	250	.02		1.33	. 03	. 20	i	iS
TS-58	ι	117	13	109	. 2	18	15	856	6.60	18	5	ND	2	42	1	2	2	101	.88	.195	9	22	1.34	195	.01		2.31	.01	.22	i	1
1S-59	2	85	14	113	.1	18	14	812	5.84	22	5	MD	2	32	1	2	2	83	-55	. 145	θ	24	1.03	211	.01	4	1.92	. 03	.19	1	4
15-60	ì	111	12	114	.1	17	15	819	6.05	23	5	ND	2	30	1	2	2	78	.54	. 148	8	20	.7B	238	.01	3	1.53	.02	.21	1	3
15-61	í	86	16	102	. 2	27	13	481	4,87	15	5	MÜ	2	61	1	2	2	102	.78	.133	10	37	1.15	337	.05	20	1.61	. 05	.19	ī	5
TS-62	1	85	30	156	.6	24	10	975	4.22	36	5	ND	2	193	1	3	2	65	4,40	.110	8		1.13	137	.01		1.04	.02	. 13	i	2
12-92	2	79	24	150	.5	24	10	943	4,13	34	5	ND	2	193	1	3	2	84	4.43	.108	9		1.12	247	.01		1.07	03	. 15	ī	ī
, TS-64	2	79	23	155	.6	23	10	1024	4.25	35	5	MĐ	2	201	1	5	2	45		.106	8		1.15	165	,01	-	1.05	.02	.14	1	5
STD C/AU-S	19	60	37	132	6,9	64	26	1022	4.02	27	19	7	38	48 .	17	16	18	56	.47	.003	36	63	.B4	171	.08	31	1.74	.06	.13	13	50

UR CLA IMS ACME ANALYTICAL LABORATORIES LTD.

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

1CP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-L-2 HCL-HNO3-H20 AT 95 DEC. C FOR ONE HOUR AND IS DILUTED TO 10 HL WITH WATER.
THIS LEACH IS PARTIAL FOR MM FE CA P LA CR MG BA TI B W AND LIMITED FOR WA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM.
- SAMPLE TYPE: P1-SILT P2-3 ROCK AUX AMALYSIS BY AA FROM 10 GRAM SAMPLE.

DATE RECEIVED: DCT 20 1987

DATE REPORT MAIL

. NOV 2/87

ASSAYER. A. ALGA... DEAN TOYE, CERTIFIED B.C. ASSAYER

TEUTON RESOURCES

File # 87-5109

Page 1

TS-65 1 112 25 140 .5 34 16 995 5.26 30 5 ND 2 53 1 3 2 69 .85 .158 12 21 1.03 185 .01 3 1.54 .04 .12 1 6 75-66 2 111 163 260 .8 30 13 1055 4.68 90 5 ND 1 214 1 5 2 56 5.07 .144 9 18 1.18 47 .01 2 .87 .02 .07 2 13

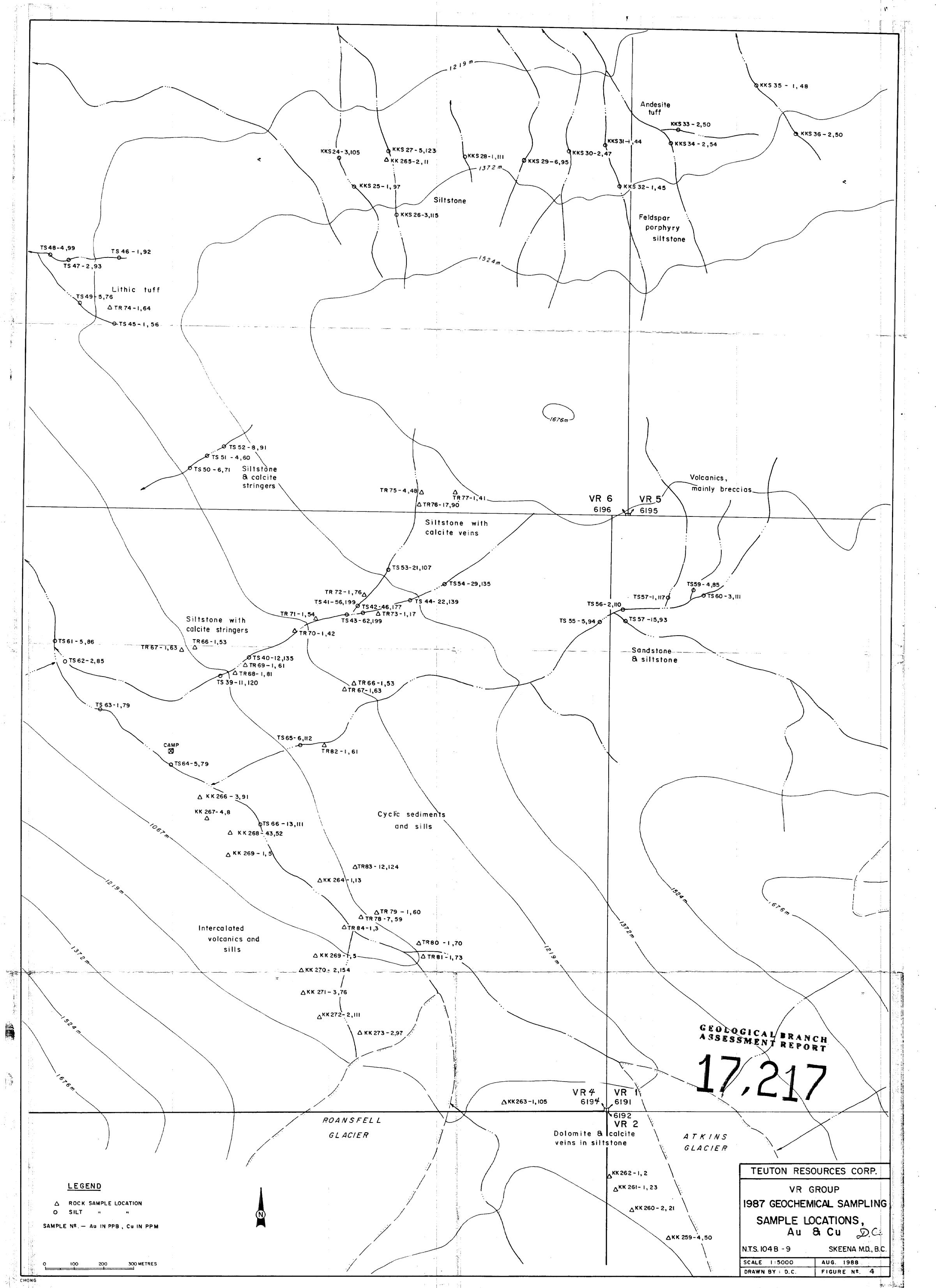
. ., 7

CLAIM

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR NG BA TI B N AND LIMITED FOR NA AND K. AU DETECTION LIMIT BY ICP 18 3 PPM.

- SAMPLE TYPE: P1-3 ROCK P4-5 SILT AUX ANALYSIS BY AA FROM 10 BRAM SAMPLE.


SI/1-5 -40 MESH, PULYER 12 CD.

DATE CONSIDER MOLECULAR PULYER PULY

DATE F	RECEIV	ED:	SEPT	T 12 19	/87	DAT	ER	EPO	RT M	AIL	ΞD: β	Sept	t2	6/8	7	ASS	3AYE	F⊀	JL ⊊	perje	7.D)EAN	אם דו	/E, (CERT	TIFIE	D B	ı.C.	ASS	AYEF	¢	
									TEU.	TON	RES	OURC	æs	F	ile	# 8	37-4	101	• •	F'aqe	a 1											
SAMPLE	MO PPM	CN R44	28 PPM	ZN PPH	AG PPM	ŅI PP N	CO PPM	HN PPM	FE Z	AS PPM	U PPM	AU PPM	TH PPM	SR PPM	CD PPM	SB PPM	BI PPM	V PPM	CA Ž		LA PPM	CR PPM			T I		AL I	NA 1	K Z	W PPM	AU# PPB	
[H-01	1	19	19	175	. 6	25	6	732		22	5	ND	2	293	2	13	3				2					4	.11		.08	1	1	
IH-02	1	22	149	87	.7	29	5	707	3.12	40	5	ND	2	415	2	Ģ	2	8	5.04		2	18			.01	7	.13		.08	1	1	
IH-03	15	12	6	266	.7	6	1	73	.58	13	5	ND	. 1		3	7	2	12			2			93			.05 .25		.03	1 2	1	
1H-04	2	46	17	36	.4	5	6	935		8	5	MD	1	66B	1 20	2 5	2 2				4 2			86 15	.0i .01		.25		.03	1	12	
1H-05	11	82	2	1658	•7	15	1	57	.B5	34	5	МD	1	12	20	J	۷.	. 16	-16	.010	2	4	.01	13	• 41	o	.04	.01	.03		14	
1H-06	1	50	11	33	.3	3	5			3	5	ND	1		1	3	2		24.07			12							02	2	1	
1H-07	1	36	2	32	.3	5	6			128	5	ND	1		2	2	2		18.14		3	4					.19		.05	3	7	
1H-08	1	64	7	36	.2	4	7	769		5	5	ND	1		I	2	2		13.81			7					.31	.01	.06	i	ì	
1#-09	1	105	4	55	.4	8	7	594		11	5	ND	1		1	2	2		11.41				3.71		10.		.28		.04	2	2	
KK-249	3	30	21	79	.7	2	14	934	5.95	7	ь	ND	3	17	2	2	2	113	-91	.073	5	10	1.17	24	.27	b	2.03	_04	.02	1	2	
KK-250	4	33	12	78	,3	2	9	878	4.93	21	5	ND	2	33	1	4	2	64	1.11	.OB8	10	9	.75	i 60	.05	. 2	1.38	.03	.06	1	5	
KK-251	. 8	13	20	38	2	3	2	99	3,86	49	5	ND		17	2	6	2	7	.06	.035	9	5	.05			9	.32			1	2	
KK-252	1	23	12	78	. 2	3	3	96	5.18	17	5	ND		22	1	5	2	14			10	5					.4E			1	1	
KK-253	2	26	10	117	. 2	4	4	185	4.64	11	5	ND	2	12	1	3	2	18	.41	.157	10	7					45			1	1	
KK-254	2	6	15	24	.2	2	1	37	1.43	14	5	₩Đ	4	4	1	2	2	2	.01	.005	21	2	10,	52	.01	. 2	.14	.03	.07	2	2	
KK-255	2	22	14	ЗB	.3	1	1	118	5.38	23		MD	4	5	ı	3	2	3			24						.88			2	1	
KK-256	2	59	2	97	.3	73	20		6.31	92				126	1	4	2	56			3									!	1	
KK-257	i	9	17	3	.1	2	2			4				37	Ţ	2	2										.23			1	6	
KK-258	1	10	9	13	.3	1	2		2.57	5				17	2	3_	2	10								**	.31					
KK-259	i	50	13	52	, 4	. 28	ó	825	3.40	120	5	ND	1	564	1	5	2	29	11.10	.052	6	23	2.45	67	.01	. 5	. 29	.01	.06	,1	•	ľ
KK-260	1	21	6	20	.2	10	4	623	2.26	30	5	ND	1	719	1	2	2	26	15.97	.037	3						.18				2	- 1
KK-261	1	23	4	18	.1	5	4	467	2.14	11			1	773	1	2	2		18.65								.19				1	1
KK-261A	1	2	2	1	.1	1	1	262		2					1	2	2		24.64								.05			4	1	- 1
KK-263	7	105	17	4	.6	8	16			7						2	2		1.59											1	1	I
KK-264	4	13	16	48	. 1	4	3	101	2.77	21	. 5	ND	1	32	. 1	4	2	4	.77	.040	4	5	.12	2 39	.01	! 5	. [4	.03	.11	1	1	1
KK-265	8° 1	11	2	31	.1	2	1			2	. 5			646		2	2	6												1	2	1
KK- 745 A ,	266 2	91	16	92	.6	5	4	322		19							2													1	3	1
KK-267	3	8	2	42		á	1			23					1	2	2										.04				4	ļ
KK-268	i	52		23			2			54					1	4	2														43	
KK-269	1	5	2	4	-1	1	1	552	2.16	18	5	MD	1	863	1	2	2	7	21.49	.003	2	1	6.84	90	.01	i 11	.07	.01	.01	3	i	
KK-270	3	154	20	41			11		4.83	11					ı	2	2		4,69								.63				2	
KK-271	3	76	5	47	.3	7	12		4.53					:	1	2	2		13.74								.70				3	
KK-272	2	111	9	51			14		5.54							3	2		10.56							_					2	
kk-273	17						12		19.55						-	15						•									2 2	1
KK-274		4	75	1	.5	1	1	34	.45	52	5	ND	7	5	1	3	3	1	.05	.004	13	2	2 .02	2 117	.01		.14	.01	.13	1		

SAMPLE#	HO PPM	CU 22 k	P.B PPM	ZN PPM	AG PPB	N.I PPM	CO PPh	rin PPh	FE %	AS PPM	U FPM	AU PPM	TH PPM	SR PPN	CD PPM	SB PPM	BI PPM	V PPM	CA Z	۹ ۲	LA PPM	CR PPM	116 %	BA PPM	T I	B PPM	AL Z	NA Z	K	Ni PPM	AU‡ PPB	
TR-64	ţ	15	2	31	.1	8	4	255	1.59	8	5	ND	ı	3	ı	2	2	9	.04	.019	b	7	.36	21	10.	2	.59	.01	.05	1	1	
TR-65	1	35	2	42	- 1	54	15	494		7	5_	ND	1	73	ļ	2	2	73	4.59	036	3	114	2.97	23	. 16	2	3.31	, 04	.04	1	1	
TR-66	2	53	2	75	.3	31	8	732	3.58	6	5	NĎ	i	560	1	2	2	52	7.76	.006	8	33	1.19	153	.01	6	1.10	.02	.14	1	1	-
TR-67	2	43	5	45	.2	6	8	1418	4.10	10	5	ND	2	542	1	2	2	61	8.28	.115	9	15	1.91	406	.01	3	. 57	.02	.12	3	1	
TR-68	3	81	8	92	.3	20	20	808	5.85	20	5	NĎ	2	324	į	2	2	92	4.23	.089	6	27	1.68	193	.01	7	.51	.03	.17	1	1	
TR-69	2	61	2	71	.2	24	14	1126	4.90	8	5	ND	2	174	i	2	2	127	3.67	.112	7	34	i.29	239	.01	2	.89	.03	.09	1	1	
TR-70	3	42	6	3₿	.2	9	8	736	4.47	6	5	ND	1	699	2 3	2	2	88	12.34	.061	3	13	4.03	235	.01	4	. 39	.02	.08	4	1	
TR-71	2	54	6	43	.1	11	10	956	4.44	12	5	ND	1	711	1	2	2		8.86	.082	5	14	2.89	108	.01	9	.36	.02	.09	2	1	
1R-72	3	76	11	74	.2	20	9	820	3.00	23	5	MD	2	137	i	2	2	35	4.00	.087	4	16	84	142	.01	5	.51	.02	.16	1	1	
TH-73	i	17	2	30	-1	14	2	584	3.21	14	5	ND	3	56	í	2	2	39	2.04	.088	5	21	36	337	.01	2	.86	.02	.15	1	ī	
IR-74	1	64	6	43	.1	6	10	1061	3.46	21	5	NĐ	2	310	1	2	2	13	4.80	.045	4	8	.53	318	.01	4	. 38	.01	.21	1	1	
J#-75	1	48	3	31	.3	7	4	1145	3.23	6	5	ND	2	311	2	2	2	27	9.95	.066	R	15	1.74	112	.01	5	.35	. 01	.16	2	4	
TR-76	1	90	5	25	.3	11	6	914	2.67	5	5	ND	1	300	3	3	,		14.19	.073	7	14	27	107	.01	2	.48	.01	.15	ī	17	
TH-77	1	41	2	25	.1	5	3	1118	2.60	8	5	ND	1	224	ť	2	2	-	12.19	087	Ĺ	15	.70	149	.01	2	.90	.01	14	2	1	
TR-78	3	59	14	80	.3	12	9	760	3.43	15	5	ND	2	364	i	2	2	90	5.61	087	9	. 21	.65	60	.01	2	.82	.02	10	1	7	
IR-79		40	9	145	.2	4	9	1208	4.30	20	5	ND	,	400		2	,	52	4.88	.076	7	10		74	Δ1	,	71	42	00			
TR-80		70	12	68	.2	,	9	981	4.33	11	-		3	316		- 4	2				,	10	1.55	74	,01	2	.36	.02	.08		1	
TR-81		73	11	75		4			4.70		3	ND	_	-		- 4	- 4	52	5.64	.129	7	14	1.72	161	.01	*	.65	.02	.15		1	
TR-82					.3	77	10	915		10	5	ND	2	136		Z	2	89	3.47	.138	y	16	1.47	215	.01	2	.87	.02	.12	1	1	
	1	61	8	79	.2	33	10	768	3.68	8	5	ND	2	336	1	2	2	62	4.82	.097	y	24	1.66	145	.01	2	.53	.02	13	1	1	
TR-83	3	124	14	67	.3	15	B	696	3.12	21	5	ND	2	312	1	2	2	BO	5.98	.095	9	19	2.01	83	.01	2	.69	.02	.05	1	12	i
TR-84	1	3	2	5	.1	4	2	406	.85	2	5	ND	1	B71	t	2	2	21	22.26	.012	2	13	. 27	5	.02	2	. 29	.01	.01	3	1	J
STD C/AU-R	18	62	37	132	7.1	68	27	1024	3.96	39	21	8	38	49	19	18	22	56	.44	.087	37	61	-91	174	80.	3B		.06	.13	13	490	

CLAIMS

