_istrict	Geologist, Kamloops Off Confidential: 89.03.25
ASSESSMEN	T REPORT 17227 MINING DIVISION: Revelstoke
-ROPERTY:	Winslow
LOCATION:	LAT 50 38 00 LONG 117 23 00 UTM 11 5608902 472889 NTS 082K11W
CLAIM(S):	Winslow (L.8680), Rit 1-2
OPERATOR (S): Winslow Gold
UTHOR(S)	: Chisholm, R.E.
COMMODITI	AR: 1987, 43 Pages ES
JEARCHED JEOLOGICA	FOR: Gold,Silver,Lead,Zinc,Copper L
SUMMARY:	Cambrian-Devonian Lardeau Group argillites are cut by a north-
	northwest trending shear zone. The zone hosts steeply northeast dipping quartz-siderite veins approximately 5 metres thick. Gold
-	mineralization occurs in pyritic clots and stringers with trace
VORK	sphalerite and chalcocite.
DONE:	Drilling, Physical
-	DIAD 479.5 m 7 hole(s); BQ
	Map(s) = 7; Scale(s) = 1:250
	ROAD 1.4 km
-	SAMP 64 sample(s) ;AU
RELATED	00642 12210
REPORTS:	00042,12310
MINFILE:	002KNW025

100 10 0	331	RD.	-1
LOG NO. D	2011		1
AUTO			
-			
FILE NO:			

DIAMOND DRILLING REPORT on the WINSLOW GROUP CLAIMS AND CROWN GRANTS Trout Lake District Revelstoke Mining Division N.T.S. 82-K/11 W Latitude 50°38' North Longitude 117°23' West British Columbia

November 5, 1987

FILMED

on behalf of

WINSLOW GOGEOULOGICAL BRANCH Calgary, AbSSESSMENT REPORT

اللح and a by R. E. Chisholm, GAC D. 30

TAIGA CONSULTANTS LTD. #100, 1300 - 8th Street S.W. Calgary, Alberta T2R 1B2

TABLE OF CONTENTS

INTRODUCTION
REGIONAL GEOLOGY
PROPERTY GEOLOGY
EXPLORATION TARGETS
DIAMOND DRILLING
SURFACE SAMPLING
CONCLUSIONS
RECOMMENDATIONS
PROPOSED 1988 BUDGET
CERTIFICATE
BIBLIOGRAPHY
APPENDIX: Summary of Personnel, Drill Logs, Certificates of Analysis Summary of Expenditures
FIGURES
1 Location Map
2 Claims Sketch
3 Geological Map of the Ferguson Area
4 Plan of Winslow Workings
5 Plan of Enderby and Okanagan Crown grants

TABLES

1	Orill Hole Summary	7
2	Summary of Mineralized Intervals	.7
3	Vinslow Vein	8

MAP: 1 Location Map - 1987 Drilling Program

SECTIONS

WINS-87-1	WINS-87-3	WINS-87-5	WINS-87-7
WINS-87-2	WINS-87-4	WINS-87-6	

-i-

INTRODUCTION

Taiga Consultants Ltd. was contracted by Winslow Gold Corp. of Calgary to undertake a first-phase diamond drilling program on the Winslow Group property located in the Trout Lake area, Revelstoke Mining Division.

A total of 1,573 feet (479.45 m) of diamond drilling was completed on the property during July and August 1987. The objective of the program was to test the main Winslow quartz vein in order to verify the reported underground gold values and the width of the vein system.

Claims Status

The Winslow Group property consists of three mineral claims (one 6-unit, one 9-unit, one 12-unit) staked under the modified grid system, plus six internal Grown-granted mineral claims. They are situated along Silver Cup Ridge approximately 9 km southeast of the village of Trout Lake in the Lardeau district of the Revelstoke Mining Division (Figure 1). The Rit claims and five of the Crown grants form a contiguous block of ground. The Alice Grown grant is situated approximately 3 km southeast of the block (Figure 2), which necessitates a separate assessment filing as it cannot be "grouped". The various claims, currently recorded in the name of Gerald N. Ross of Calgary, are more specifically described as follows:

Claim	Record No.	No.of	Approx	Date of	Next Assess-
Name	or Lot No.	Units	Area	Record	ment Work Due
Rit 1	769(10)	9	225 ha	Oct.22/79	Oct.22/88
Rit 2	770(1)0	6	150 ha	Oct.22/79	Oct.22/88
Rit 3	1622(8)	12	300 ha	Aug.17/83	Aug.17/89
Winslow	L.8680	1	17 ha)	
Gladhand	L.8681	1	16 ha)	
Okanagan	L.9127	1	16 ha) taxes of	53¢/hectare
Enderby	L.9128	1	17 ha) due July	2 each year
U&I	L.7589	1	20 ha)	1
Alice	L.7440	_1	20 ha)	
		32	781 ha		

The approximate net calculated area of the claims less internal Crown grants) is 675 hectares (1,668 acres).

WINSLOW GOLD CORP.

LOCATION MAP

Location and Access

The contiguous block of claims is accessible via gravel Highway 31 along the northeast side of Trout Lake to a point 8.4 km south of the village, then a further 8.2 km of four-wheel-drive road to the old Winslow mine site. A four-wheel-drive road to the Silver Cup property on the east side of the ridge is within 2 km by foot of the old mill site.

In the fall of 1983, 5.2 km of the trail was re-built to allow easy four-wheel-drive accessibility into the old Winslow mill site. Approximately 2.5 km of this length was ditched for drainage purposes. The starting point of the rehabilitated section is at an elevation of -1400 m ASL from a two-wheel-drive forestry access road between Beau and Copper Queen Creeks. The road is culverted across Copper Queen Creek, and then switchbacks up between Copper Queen and Burg Creeks. The average grade is in the order of 10% with only two short sections (both less than 50 m) exceeding a 12% slope.

A large rock slide near the mill site presents a highly unstable base for the road -- sloughing is expected in these areas during spring thaw. A landing sufficiently wide enough to establish a ten-man camp has been cut at the road end (Winslow mill site). From the mill site, a steep drill access road switchbacks up the hill for 135 m to the edge of the tree line.

Physiography

The claims are located along the crest and southwest-facing flanks of Silver Cup Ridge in the Columbia Mountains. Elevations on the property range from 1,678 to 2,470 m ASL. The Rit 2 claim and the Winslow and Gladhand Crown grants are situated below treeline (~2,134 m ASL), and the remainder of the property is situated over alpine tundra. The slopes facing Trout Lake are very steep and covered with a thick growth of spruce, fir, balsam, and underbrush. The headwaters of Burg and Laughton Creeks drain the claims.

The region has been glaciated to an elevation of at least 2500 m ASL and Triune and Silver Cup peaks form prominent horns above this elevation. Most valleys exhibit evidence of glaciation. Cirques, arrêtes, and serrated razorback ridges are common. The lower slopes of mountains are covered with variable thicknesses of glacial deposits, resulting in only fair bedrock exposures.

REGIONAL GEOLOGY

The first geological map of the area was published in 1929, accompanying Geological Survey of Canada Memoir 161. Numerous descriptions of mineral occurrences in the region appear in B.C. Minister of Mines Annual Reports from 1890 to 1941. Other descriptions appear in Geological Survey of Canada Summary Reports and Annual Reports. Excellent descriptions of the regional geology and mineral deposits are included in B.C. Department of Mines Bulletin 45. Geological Survey of Canada Bulletin 193 includes much relevant regional geological information. The most useful and up-to-date work is included in Geological Survey of Canada Open File 464, published in 1977.

The Winslow Gold property lies within a geologically and structurally complex zone known as the Kootenay Arc, which forms part of the Purcell Anticlinorium in the southern Rocky Mountains. In the Trout Lake area, the Kootenay Arc is comprised of interbedded sedimentary and volcanic rocks of Late Proterozoic to Mesozoic age, which have been subjected to multiple phases of deformation, metamorphism, and intrusion. The Winslow Gold claims are underlain by mafic volcanics, fine-grained argillaceous and siliceous sediments, grits, and carbonates of the Lardeau Group of Lower Cambrian to Middle Devonian age. These rocks have been subjected to at least one episode of metamorphism and now consist of greenstone, limey green phyllite, phyllitic grit, quartz grit, quartzite, limestone, and phyllitic limestone (Figure 3). Read (1973) has mapped two phases of deformation in the area.

The Broadview, Jowett, Sharon Creek, Ajax, Triune, and Index Formations are of chief importance in the project area. Considerable difficulties attend the separation and correlation of these units owing to their similarities in composition, rapid facies changes laterally and along strike, lack of fossil controls, and repetition of sequences through faulting and folding.

PROPERTY GEOLOGY

Of the claims constituting the Winslow Group, most are underlain by the Broadview Formation. The stratigraphically lower Jowett volcanics crop out as a 400 m wide band across the northeast corner of the Rit 1 claim. The band narrows along strike to the southeast, and is only about 200 m wide where it crosses the Enderby Crown grant. This width is fairly constant as far southeast as the Alice Crown grant (the southwest bondary of which lies about 300 m northeast of the band), but abruptly widens again approximately 1 km south of the Alice. The extreme northeast corner of the Rit 1 claim, the northeast half of the Okanagan Crown grant, and the central part of the Alice Crown grant are underlain by the Sharon Creek Formation. The Ajax quartzite crops out as a broad band underlying the northeast one-third of the Alice grant and most of the Rit 3 claim.

The rocks of the Broadview, Jowett, Sharon Creek, and Ajax Formations all exhibit a regional northwest strike, locally complicated by folding. The dominant structural feature of the project area is the Silver Cup Anticline. At least one generation of penetrative foliation is related to this folding.

Detailed geological mapping (one inch = 200 feet) is available covering most of the Winslow, Gladhand, Okanagan, and Enderby Crown grants and a limited surrounding area (originally part of the forfeited Winslow group and now included in the Rit claims). This mapping was carried out by James Millar and Associates in 1964 and 1965.

EXPLORATION TARGETS

The Trout Lake district, which is highly analogous to the Kaslo, Slocan, and Lardeau Pb/Zn/Ag camps, is host to at least two hundred fissure-vein and late-stage shear types of polymetallic occurrences (predominantly Pb, Zn, Ag, Au, and Cu). In the immediate vicinity of the Winslow project, the Silver Cup and Triune (both former small, high-grade producers) were the best known deposits of these styles. More recently, the Granges Exploration/Windflower Mining 'Goldfinch Project' (4 km north of Camborne, 30 km northwest of the Winslow claims) has yielded exceptionally encouraging gold values from a fault or shear-hosted quartz vein/stockwork system. During 1986, Granges completed more than 60 drill holes and have partially delineated at least three separate zones. The Main Zone, with strike length in excess of 1000 feet, has yielded gold values in the range of 0.1 to 1.0 oz/ton (average tenor of approximately 0.3 oz/ton) over widths averaging 5 to 10 feet (rarely up to 33 feet).

The 'Winslow' vein (located within the Winslow Crown grant, L.8680) was staked prior to 1904, and most of the exploration and development work was conducted prior to 1915. A few tons of hand-cobbed high-grade ore were shipped from the property to Trail in 1918; however, from then until 1933, the property lay dormant. Attempts to rehabilitate the old workings began in 1933; by the end of 1939, a 30-ton/day pilot plant scale mill had been constructed and several tons of concentrates shipped. Milling operations continued through 1940 and 1941, when in the latter year, a small tonnage of ore was treated which originated mainly from the Okanagan claim. The property again lay dormant from 1941 to 1963, when rising precious metals prices encouraged a new geological evaluation of the ground.

The Winslow vein (Figure 4) has been traced from near the southern boundary of the Winslow Crown grant (L.8680) to the crest of the hill between Six Mile Creek and Burg Creek. To date, approximately 1000 feet of underground workings, driven from at least four separate adits (now collapsed and probably not salvagable) have explored the vein over a vertical distance of 300 feet and a horizontal distance of 400 feet. Mineralization consists

mainly of pyrite with lesser amounts of galena, sphalerite, and rare free gold. The vein system consists of two quartz-carbonate veins, reportedly aggregating up to 12 feet in width, with a 1.5 to 4-foot panel of schistose material separating the two veins (Millar, 1963). The vein strikes about N20°E and dips 55°-60°E. The best gold values occur in Adits 1 and 1A with grades reportedly decreasing outwards horizontally along the vein structure (Millar, 1963; Scorgie, 1941). Underground development on the Winslow vein has been described in detail in Millar's report and is summarized below:

Underground workings are known to have been carried out at seven different levels on the Winslow vein structure [the locations of four of these adits and numerous trenches are shown on Millar's 1963 map].

The uppermost workings consist of two adits or underground workings of an undetermined nature that were badly caved prior to an examination of the property in 1937. The vein was stoped to surface from these openings.

At the 1A level (6780' ASL), an adit has been driven 178' following the footwall of the vein. The initial 50' of the adit have been stoped to surface. 150' in from the portal, a "Y-raise" has been driven, following the footwall. The 'stem' of the "Y" is 32' long and each arm is 50' in length. This raise was reportedly actively mined in 1939-1940.

No.1 level (6740' ASL) adit is reported to have been crosscut for 62' and then drifted for 50' following the footwall vein structure. A 40' long stope in the high-grade ore shoot extends to surface through the 1A level.

No.2 level (6640' ASL) was driven as a crosscut for 160' and then drifted 80' along the vein, here averaging 6%' to 10' in width. Assays of samples collected during various examinations indicate that the adit did not intersect the high-grade zone of the Winslow vein. Millar indicated that earlier writers (McDougall & Scorgie) believed that the ore shoot was located to the south of the end of the crosscut, but the drift had been driven to the north and consequently missed it.

No.3 level (6540' ASL) was driven as a crosscut for 300' and intersected the footwall vein, reported to be 52" wide at that point. A heavy flow of water in the vein structure apparently discouraged any further development.

No.4 level (6240' ASL) in the northwestern corner of the Gladhand Crown grant, was driven in an attempt to intersect the Winslow vein at the lowermost level considered topographically

feasible. The adit was driven in 1914 but never reached its objective apparently owing to financial difficulties.

During Millar's examination of the property in 1963, the No.2 level portal was cleared.

Oxidized portions of the Winslow vein system may be significantly enriched in gold, and were reported to have assayed as high as 5.4 oz/ton gold and 4.5 oz/ton silver (MMAR, 1914). More representative grades of unoxidized vein material are reported (Scorgie, 1941) to be in the order of 0.4 oz/ton gold and 0.6 oz/ton silver. There are, however, insufficient data with which to generate level plans or calculate continuity of mineralization, tonnage, grade, or overall economic potential. No diamond drilling has been carried out on the vein. Sampling was only carried out on adit faces and material removed as mill feed.

Several additional targets occur within the property; namely, the Okanagan, Enderby, and Alice occurrences. The best of these is the Okanagan vein (Figure 5), which is located approximately 1 km east of the old Winslow millsite. The vein (explored over a strike length of 200 feet by two 14-foot deep shafts and several shallow open cuts) is 1.5 to 4.5 feet in width where exposed, strikes N10°W to N33°W, and dips 57°-65°E (Millar, 1963). The following assays have been reported:

Location	Width	Au (oz/ton)	Ag (oz/ton)
North shaft	1.2'	1.68	-] Wilkins in
Grab at shaft	-	1.03	-] Millar (1965)
Grab at shaft	-	2.71	-) Gaul (1936)
Grab at shaft	-	2.22	 -) Gaul (1936)
	3.0'	5.4	5.0] MMR 1914
Specimen (no gangue)	-	13.7	67.9] MMR 1914
	3.0'	1.9	2.9] MMR 1914

The vein pinches out about 200' north of the above-described workings, but has been traced southerly from the workings for a "considerable" distance. Most of the workings have sloughed in, some as far back as 15 m from the portals.

In 1983, an unsuccessful attempt was made to relocate the Enderby occurrence. A small trench containing a narrow quartz vein was found adjacent to the southeast boundary of the Enderby Crown grant. The Enderby vein is reported (Millar, 1963) to be 1½ to 3 feet in width, strikes N55°E, and dips fairly flatly to the east. Vein material is described by Millar (1963) as having concentrations of galena and minor pyrite. He compiled the following list of assays, most of which were obtained from Gaul's report (1936):

Width	Au oz	Ag oz	Pb %
grab/dump	0.065	35.2	33.5
two feet	0.04	46.83	43.43
2.5 feet	0.07	7.3	
14' trench (100' from shaft)	0.012	2.68	
	<u>Width</u> grab/dump two feet 2.5 feet 14' trench (100' from shaft)	Width Au oz grab/dump 0.065 two feet 0.04 2.5 feet 0.07 14' trench 0.012 (100' from shaft) 0.012	Width Au oz Ag oz grab/dump 0.065 35.2 two feet 0.04 46.83 2.5 feet 0.07 7.3 14' trench 0.012 2.68 (100' from shaft)

The Alice vein was not relocated by either Allan (1983) or Millar (1963) probably as a consequence of talus debris covering the old workings. The most recently available description of this occurrence is by Scorgie (1947). He states that he could trace the vein for 700 feet from the Alice mineral claim onto the Foggy Day mineral claim of which only the former is currently owned by Winslow Gold Corp. Scorgie indicates that the vein was explored by five different adits. Millar (1963) indicates that adits #1 to #4 lie in the Alice Crown grant. Millar describes the vein as having a width of 2 to 5 feet striking 007° dipping 43°E. He goes on to cite gold assays from reports (not available to this author) by McDougall (1946) that indicate narrow widths of high-grade gold in adits #2, #3, and #4. Unfortunately, no maps were available to this author that pinpoint the locations of these workings or of the vein itself. In addition, none of the assays cited by Millar were confirmed by him or by any subsequent worker. Considering the above points, one must treat McDougall's data with caution.

In recent years, exploration has been carried out by Golden Rule Resources Ltd. (Netolitzky, 1980) on the Bug, Rit 1, and Rit 2 claims. This work consisted of stream silt sampling and B-horizon soil geochemical sampling. The latter outlined only two weak gold anomalies and Golden Rule's interest was allowed to lapse.

Allan (1983) carried out reconnaissance prospecting, limited soil geochemical sampling, and VLF-EM surveying over the Winslow and Okanagan vein systems. Several strong gold-in-soil anomalies were outlined that are probably related to contamination from the mine workings. Two linear VLF-EM anomalies were outlined in the Winslow vein area. A strong conductor is coincidental with the inferred axial trace of the Winslow vein. The second weaker conductor parallels the vein 125 m further to the east.

Recommendations were advanced at that time for a 500 m drilling program directed wholly at the Winslow Vein. Toward this end, road access to the Winslow mill site was completed in the fall of 1983. No exploration has been conducted on the claims nor have any significant developments ensued since the date of this author's last report (September 30, 1983).

DIAMOND DRILLING

During the period July 17 to August 3, 1987, seven diamond drill holes were completed on the property for a total of 1,573 feet (479.45 m). The contractor was White Rock Drilling Ltd. of Surrey, B.C. All holes were drilled with standard BQ bits and all core is stored in racks adjacent to the old mill site. All casing was pulled except for hole WINS-87-7.

Drill core samples were forwarded to Barringer Magenta Laboratories (Alberta) Ltd. in Calgary for gold analysis. Samples were collected by splitting the core with a standard Longyear core splitter and sending half to the laboratory for analysis. Certificates of analysis are presented in the Appendix; the analytical results are included on the drill logs (Appendix) and on the drill sections (map pocket).

Map 1 (in pocket) indicates the locations of drill holes and underground workings.

Table 1 (overpage) summarizes the relevant drill hole data while Table 2 summarizes the significant mineralized intervals encountered by drilling.

A baseline with 10 m stations was established at an Azimuth of 350° with the zero station positioned adjacent to the old mill building. The baseline was oriented to follow the trace of the Winslow Vein which was established from the location of Adits #1 and #1A as well as from the trace of large quartz boulders situated up-slope from the adits.

Drill holes were collared at a bearing of 275°, 15° north of right angles to the vein due to the extreme steepness of the terrain. The trace of the vein strikes up a slope which has an approximate average steepness of 40°.

A large rock bluff at 0+50E between 0+00N and 1+50N severely limited the number of possible drill sites in the vicinity of the old mine workings. Within this limitation, the locations of drill collars and hole attitudes

DDH	No.	Bearing	Angle	<u>Coordinates</u>	<u>Overburden</u>	
Wins	87-1	275°	-60°	133N 40E	3.66 m (12')	75.90 m (249')
	87-2	285°	-60°	43N 56E	3.66 m (12')	79.86 m (262')
	87-3	275°	- 50*	10N 98E	2.13 m (7')	93.27 m (306')
	87-4	275*	-60*	172N 40E	2.13 m (7')	91.75 m (301')
	87-5	275°	-60°	240N 40E	3.66 m (12')	47.55 m (156')
	87-6	275°	-80*	104N 31E	2,44 m (8')	41.15 m (135')
	87-7	275°	-60°	283N 40E	<u>6.10 m (20')</u>	_49.99 m (164')
					23.78m (78')	479.45 m (1,573')

Table 1 - Drill Hole Summary

Table 2 - Summary of Mineralized Intervals

DDH No.	Interval (m)	Length	<u>Au ppb</u>	(Au oz/ton)
WINS-87-1	44.70-45.70	1.00 m	470	
	45.70-46.42	.72 m	6,000	(0.175)
	46.42-47.09	.67 m	no rec	overy
	47.09-48.46	1.37 m	343	
	48.46-51.82	3.36 m	67	
	51.82-52.38	.56 m	1,360	(0.040)
WINS-87-2	50.05-50.90	.85 m	1,600	(0.047)
WINS-87-3	67.57-68.30	.73 m	116	
	77.90-79.90	2.00 m	228	
WINS-87-4	50.93-52.93	2.00 m	86	
	52.93-53.93	1.00 m	740	
	53.93-54.93	1.00 m	1,500	(0.044)
	54.93-59.93	5.00 m	120	
	59.93-60.93	1.00 m	625	
	60.93-61.93	1.00 m	101	
WINS-87-6	29.28-29.59	.31 m	1,400	(0.041)
	29.59-31.09	1.50 m	no ree	covery
	31.09-33.54	2.45 m	692	
	33.54-34.14	.60 m	no ree	covery
	34.14-37.35	3.21 m	900	(0.026)

were selected to obtain intersections along the vein at an average (true) lateral spacing of 25 m.

Four out of seven drill holes (WINS-87-1, 2, 4, 6) intersected significant thicknesses of vein material. Two holes (WINS-87-5, 7) encountered drilling problems and had to be abandoned short of the projected intersection with the vein. WINS-87-3 did not encounter a significant thickness of quartz vein at the projected depth of 80 to 85 m. The hole was continued to 93.27 m and then abandoned due to drilling difficulties. Two narrow quartz-siderite veins were encountered between 78.32 and 79.90 m (analysis: 228 ppb Au) which may represent a pinch-out within the vein. Since only a single tier of holes was drilled in each section, the dip of the vein must be ascertained from vein/host contact core angles and the apparent position of the vein within the old workings. Bearing this in mind, the following approximate vein dips and true thicknesses were encountered:

Table 3 - Winslow Vein

DDH #	Dip of Vein	Approximate True Width
WINS-87-2	-45°	5.0 m
WINS-87-6	* -50°	8.3 m
WINS-87-1	-75°	5.8 m
WINS-87-4	-85°	6.4 m

* vein/host contact ground away; dip interpreted from position of Adit #1A

The Winslow vein can be characterized as made up predominantly of white, opaque quartz with substantial clots and seams of coarse-grained iron carbonate (probably siderite), small xenoliths and panels of argillite and traces of pyrite. Pyrite is found as rare massive bands and as halos to small xenoliths of argillite. Sphalerite and chalcocite were observed in trace quantities in holes WINS-87-2 and WINS-87-4.

Quartz is often strongly crackle brecciated and occasionally strongly brecciated to the point where fragments have been rounded and comminuted. Crackle fractures and breccias have been filled and re-healed by coarsegrained siderite. Breccia bands and fractures have core angles similar to the core angles of vein/host contacts. Vein contacts with host argillites

tend to be sharp; however, few contacts were observed as most had been ground up during the drilling process. Massive quartz sections contain up to 5% irregular vugs lined by clear secondary quartz crystals.

All of the vein intersections showed considerable evidence of the effects of oxidation with most of the siderite being at least partially altered to limonite. It seems probable that the fractures and breccia zones are very porous, allowing entry of a considerable flow of oxygenated water such as that which issues from the entrances of Adits #2 and #3.

It can be seen from Table 2 that the Winslow Vein, where intersected by drill holes, carries narrow widths of gold mineralization in the order of 0.04 oz/ton (equivalent). The vein as a whole, however, carries moderately anomalous levels of gold over its entire width.

The highest gold values were obtained from sections of vein containing significant pyrite concentrations. Very likely, gold is bound up in the crystal lattices of pyrite accumulations.

As noted earlier, the highest reported gold values from past production came from Adits #1 and #1A in the adits farthest north along the vein. A similar observation is apparent from the recent drilling. The width of gold mineralization and its tenor increase in a very general way from south to north along the vein. Drill holes WINS-87-5 and WINS-87-7 were situated to test portions of the vein to the north and up-dip of Adit #1A. Both drill holes encountered drilling difficulties and were abandoned at approximately the projected depth of the hanging wall contact of the Winslow Vein. It seems probable that the structure encountered by holes WINS-87-5 and WINS-87-7 is the same one which hosts the Winslow Vein.

As a generalization, the gold values returned from the recent drilling are on average an order of magnitude lower than the values reported in the literature by Scorgie and others from underground sampling. The difference in values may be due to (1) the poddy nature of mineralization within the vein; (2) the oxidized nature of the vein allowing weathered portions (i.e.,

pyritic/auriferous sections) to be washed away during the drilling process; and (3) earlier reported values may be for hand-concentrated "ore" and may therefore be unrepresentative of the vein as a whole. It seems likely that all three explanations may explain the relatively low gold values returned in the recent drilling program.

SURFACE SAMPLING

A pyrite pod measuring 10 x 30 cm in graphitic argillite was uncovered in the road cut to hole WINS-87-6 at 1+21N 0+05W. A chip sample of the pod consisting almost entirely of pyrite returned a gold value of 680 ppb. A 50 cm chip sample in the hanging wall composed of graphitic argillite returned a gold value of 200 ppb. The pod has a strike of 284° and a dip of 50°N.

CONCLUSIONS

Phase I drilling indicates that the Winslow Vein is between 5 and 8 m thick over a strike length in excess of 125 m.

The vein as a whole carries anomalous gold values over its full width with narrow higher grade sections returning values between 1000 and 6000 ppb (0.029 and 0.175 oz/ton equivalent). Gold is probably present as intergrowths or lattice fillings in pyrite accumulations. Gold values tend to increase from south to north along the trend of the vein. The vein occupies a large shear zone and so is likely to extend for significant distances along strike and vertically from the area now investigated by drill holes and underground workings.

RECOMMENDATIONS

A five-hole diamond drill program totalling 700 metres is recommended to investigate the northern and down-dip extensions of the Winslow Vein. In addition, a program of three drill holes totalling 300 metres is recommended to test the reported gold values and width of the Okanagan Vein located in the Okanagan Crown grant. Subject to the success of of the Okanagan Vein drilling, consideration should be given to a limited program of drill testing the Enderby Vein system. The program should be conducted in the time frame of late June to early August. Budget requirements (including rehabilitation of access roads, mobilization, drilling, camp support, assays, supervision, and temporary reclamation) will be approximately \$198,000. A proposed budget is set out overpage.

Drilling on the Winslow Vein should be carried out with NQ size core bits and a full complement of drill fluid additives in order to combat the bad ground conditions known to exist along the vein margins.

At least three holes should be located so as to drill the northern extension of the Winslow Vein starting at drill site WINS-87-5. WINS-87-7 should be re-entered and cored through the vein. A third hole should be aimed to strike the vein at least 25 m further along strike. Two to three additional holes should be sited on the vein down-dip of the WINS-87-1 and WINS-87-6 intersections to accurately define the vein attitudes and to test the continuity of mineralization.

In the event that the 1988 drill program is not successful and a decision is made to abandon the project, provision should be made to carry out permanent reclamation of the drill sites and drill access roads. Reclamation (including water-barring of roads, re-seeding of sites, and possibly re-contouring of disturbed areas) is estimated to cost a minimum of \$7,500, the amount currently posted with the Mines Inspector as a reclamation bond. Money spent on permanent reclamation would be in addition to the budgeted drill program.

PROPOSED 1988 BUDGET

DIAMOND DRILL PROGRAM			
Mob & demob (drill crew	and equipment)	10,000	
Diamond drilling, NQ cos	re 1000 m @ \$85/metre	85,000	
Drill supplies and extra	a services	8,500	
Skidder rental	20 hours @ \$ 50/hour	1,000	
Skidder stand-by	10 days @ \$250/day	2,500	
Helicopter	15 hours @ \$650/hour	13,000	120,000
FIELD SUPPORT			
Pre-field preparation,	camp construction		4,000
Mob/demob (geological c	rew)		
Personnel wages	2 men x 2 days	540	
Travel expenses and a	ccommodation	500	
D-6 tractor (road reh	abilitation to Winslow camp		
and drill-site prep	aration 50 hours @ \$100/hour	5,000	
Miscellaneous (lumber	, fuel, disposable supplies	_5,500	11,540
Personnel			
Project Supervisor	4 days @ \$400/day	1,600	
Project Geologist	32 days @ \$350/day	11,600	
Labourer/Sampler	32 days @ \$190/day	6,080	
Camp Cook	32 days @ \$150/day	4,800	
Drill Crew	4 x <u>32 days</u>		24,080
	228 man days		
Camp Costs			
Room and board	228 man days @ \$45/day	10,260	
Generator rental	32 days @ \$15/day	480	
4x4 truck rental	32 days @ \$80/day	2,560	
Communications (radio	rental and calls)	550	
Miscroscope, core spl	itter, transit rental @ \$25/day	800	633 8226
Freight, courier, exp	editing	1,000	15,650
Assays	200 core samples @ \$12/ea		2,400
POST-FIELD			
Data compilation and fi	nal report	4,000	
Drafting	50 hours @ \$24/hour	1,200	
Reproduction of maps; s	upplies; secretarial services	550	5,750
Handling Charges			14,580

TOTAL COSTS \$198,000

R. E. Chisholm, B.Sc., F.GAC

TAIGA CONSULTANTS LTD.

CERTIFICATE

I, Robin E. Chisholm, of 1322 - 1st Street N.E. in the City of Calgary in the Province of Alberta, do hereby certify that:

- I am a Consulting Geologist with the firm of Taiga Consultants Ltd. with offices at Suite 100, 1300 - 8th Street S.W., Calgary, Alberta.
- I am a graduate of Carleton University, B.Sc. (Hons.) in Geology (1977), and have practised my profession continuously since that time.
- 3. I have been engaged in mineral exploration and property development work in the Northwest Territories, Ontario, Saskatchewan, British Columbia, and elsewhere in Canada. I was also engaged in mineral exploration in Niger, Africa; and Algeria, Africa.

Between 1975 and 1985, I have held responsible positions with Uranerz Exploration and Mining, Pan Ocean Oil Ltd., Aberford Resources Ltd., GML Minerals Consulting Ltd., and B.P. Canada Ltd.

- 4. I am a Fellow in good standing of the Geological Association of Canada.
- 5. I am the author of the report entitled "Diamond Drilling Report on the Winslow Group Claims and Crown Grants, Trout Lake District, Revelstoke Mining Division, British Columbia", dated November 5, 1987. I supervised the work described herein during the period July 10 to August 8, 1987.
- I do not own or expect to receive any interest (direct, indirect, or contingent) in the property described herein nor in the securities of WINSLOW GOLD CORP., in respect of services rendered in the preparation of this report.

DATED at Calgary, Alberta, this 5th day of November, A.D. 1987.

	Respect 20,19 subdioged,
PERMIT TO PRACTICE	OT ROBIN E CHISHOLM
Date <u>Man 23/22</u> PERMIT NUMBER: P 2399 The Association of Profassional Engineers, Scologies and Coophysicists of Alberta	R. E. Chisholm, B.Sc. F.GAC FELLON

TAIGA CONSULTANTS LTD.

BIBLIOGRAPHY

- Allan, J.R. (1983): Geochemical and Geophysical Evaluation of a Portion of the Winslow Group Claims; <u>for</u> Winslow Gold Corp., private company report.
- ----- (1983): Road Construction; New Road Access to the Winslow Group Claims; for Winslow Gold Corp., private company report.
- ----- (1987): Geological Evaluation of the Winslow Group Claims and Crown Grants, Trout Lake District, Revelstoke Mining Division, British Columbia; <u>for</u> Winslow Gold Corp., private company report
- Fox, M.S. (1980): Geological Evaluation and Exploration Proposal, Winslow Gold Project; <u>for</u> Sasko-Wainwright Oil and Gas Co. Ltd.; private company report
- Fyles, J.T.; Eastwood, G.E.P. (1962): Geology of the Ferguson Area, Lardeau District; B.C. Dept of Mines, Bulletin 45.
- Gaul, A.J. (1936): Report on Examination of Winslow & Okanagan Groups, Trout Lake Division, Kootenay Mining District, B.C.; private company report.
- ----- (1937): Report on Winslow Mine; private company report.
- Millar, J.F.V. (1963): Geological Report, Winslow Claim Group; private company report.
- ----- (1965): Summary of Geological Report, Winslow Claim Group, Lardeau Area; private company report.
- Netolitzky, R.K. (1980): Geological Evaluation and Exploration Program, Winslow Gold Project; <u>for</u> Golden Rule Resources Ltd., private company report.
- Read, P.B. (1973): Petrology and Structure of Poplar Creek; G.S.C. Bull. 193

----- (1977): Geology, Lardeau map-area; G.S.C. Open File 432

- ----- (1977): Mineral Deposits, Lardeau map-area; G.S.C. Open File 464
- Scorgie, W. (1947): Sunshine Lardeau Mines Ltd. (NPL) (Proposed), compilacompilation report on Scorgie's work as mine manager as well as previous work including assays and shipments of ore and concentrate; private company report.

Walker, J.F.; Bancroft, M.F. (1930): Lardeau Map-Area; G.S.C. Memoir 161.

APPENDIX

Summary of Personnel Drill Logs Certificates of Analysis Summary of Expenditures

TAIGA CONSULTANTS LTD.

SUMMARY OF PERSONNEL

Name/Address	Position	Dates	Man days
	TAIGA pe	csonnel	
J.R. Allan, 3609 lA St. SW Calgary, AB T2S 1R4	Supervisor	July - Nov/87	12.75
Robin E. Chisholm 1322 - 1st St. NW Calgary, AB T2M 2S4	Project Geologist	July ∸ August	off 12.625 fld 23.0
Ian Young 3609 - 1A St. SW Calgary, AB T2S 2S4	Catskinner	July 11-Aug 8	28.0
Mac Hislop P.O. Box 745 Cranbrook, B.C. VIC 4J	Core Splitter/ Assistant	July 12-Aug 8	24.25
Elizabeth Martin General Delivery Nakusp, B.C. VOG 1R0	Camp Cook	July 18-Aug 7	21.5
	WHITE ROCK DR	ILLING LTD.	
Bill Huhtala 16115 - 8th Ave Surrey, B.C.	Foreman	July 15⊢Aug 4	21.0
B. Piurko	Driller	July 15∸30	16.0
J. Lafrance	Helper	July 15-18	4.0
R. Parish	Helper	July 19-30	12.0

TOTAL 152.12

1987 SUMMARY OF EXPENDITURES

Personne1

J.R.	Allan, P.Geol	12.75 X 400/day	5,100.00	
R.E.	Chisholm, P.Geol.	35.625 X 350/day	12,468.75	
I.Q.	Young,	26 X 225/day	5,850.00	
		2 X 190/day	380.00	
J.M.	Hislop	21.5 X 150/day	3,225.00	31,630.75

General Costs

Lab Analyses: 64 rock samples @ \$11,98 ea.	766.75	
Drafting	652.25	
Maps & Reproductions	1.206.39	
Room/Board: 142 man days X 40/day	5 680 00	
Paula Bentale (V/ Con madia basasit ata	5,000.00	
Equip. Kental: 4x4, Gen., radio, transit, etc.	0,440.25	
Travel Expenses	2,882.31	
Secretarial	275.00	
Disposable Supplies	2,339.03	
Courier, photocopying	462.30	
Telephone	348.01	
Equipment repair	307.68	
Handling Charges	3,073.15	24,433.11
D6D Cat Rental: operating 12 hrs X 81.75	981.00	
standby 230 hrs X 35.00	8.050.00	
D6Z Cat Rental: operating 38 hrs X 101.70	3.864.00	
swamper	90.00	12,985.60
Diamond Drilling		
Overburden drilling 79' X \$20/ft	1,580.00	
Coring 1507 ft X \$19/ft	28,633.00	

Coring	1507	ft	х	\$19/ft	28,633.00	
Standby, extra s	ervices &					
Down-hole equip	oment				15,261.00	
Fuel					1,113.40	
Float					950.00	47,537.40
					TOTAL	\$116.586.86

\$116,586.86 ------

1 1 1

WINSLOW GOLD CORP. BC-83-10 Page 1

Area: Trout Lake, BC Latitude: 133N, 40E Departure: Elevation: +61 m		Lake, BC 133N, 40E +61 m	Bearing:275°Data Started:July 17 87Inclination @ collar -60°Date Completed:July 19 87Inclination @ 75.9 m -61°Core Storage:on siteContractor:White Rock Drilling		Hole: Core Size: Total Length: Logged by:		WINS #1 BQ 75.9 m R. Chishol	
FROM (m)	TO (m)	INTER (m)	LITHOLOGY	REC (%)	FROM (m)	TO (m)	INTER (m)	Au ppb
0.00	3.66	3.66	OVERBURDEN, cased					
4.05	5.00	0.95	ARGILLITE, black, grpahitic, trace Fy, 15% siltstone laminations,					
5.00	9.60	4.80	SILTSTONE, lt.grey, minor bands graphitic argillite 5.00 laminations -15° 5.60 laminations -46° 5.85 quartz carbonate veinlet -70° 5.90 laminations -70° >5.90 contorted 6.24 quartz carbonate veinlet -45° 6.66 quartz carbonate veinlet ? 6.75 quartz carbonate veinlet ? 7.05 quartz carbonate veinlet 45° 7.05 quartz carbonate veinlet 9.05 quartz carbonate veinlet .					
9.60	11.24	1.64	9.50 quartz carbonate veinlet -35° ARGILLITE, black, graphitic, contorted, moderately brecciated and rehealed, 2% Py					
11.24	31.86	20.62	10.75 3 cm quartz carbonate vein parallel to c.a. SILTSTONE, lt.grey, laminated, minor interbeds of graphitic argillite; upper contact -35° brecciated; lower contact parallel to c.a.; laminations highly variable orientation. 11.80-13.30° qtz carb vein, subparallel to c.a., max 3 cm thick 14.70° 4 cm qtz vein at -50° 15.00° laminations subparallel to c.a. 19.00° laminations at -60° 19.45° 2 cm qtz vein at -45° 22.50° laminations subparallel to c.a. 26.00° 2 cm qtz vein at -35°, swarm of three 27.00° laminations at -60° 27.85° 2 cm qtz vein at -65° 28.00° laminations subparallel to c.a.					
			30.20 2 cm qtz vein, subparallel 31.00 laminations subparallel to c.a.					
31.86	41.80	9.94	ARGILLITE, black, graphitic, finely laminated, highly contorted, 1-2% Py, 30% siltstone laminations.	100				
41.80	43.29	1.49	SILTSTONE, lt.grey, laminated, highly contorted.	100	49 20	43 72	0 43	10
43.23	40.72	0.43	5% limonite selvages, no fizz in HCl	100	43.72	44.70	0.98	3
40.16	44.10	0.30	MUGIDITID' TO'STON' DOLONELY CONCOLOGY	4 V V	A 10 1 1 44	1.1.1.0	A. 8. A. 10	

1 1

1.1

10

ł.

WINSLOW GOLD CORP. BC-83-10 Page 2

1

L I I I I I I I

Area: Latitud Departu Elevati	Trout e: ire: on:	Lake, B0 133N, 40H +61 m	C Bearing: 275° Date Started: July 17 87 Inclination @ collar -60° Date Completed: July 19 87 Inclination @ 75.9 m -61° Core Storage: on site m Contractor: White Rock Drilling		Hole: Core Si Total L Logged	ze: ength: by:	WINS # BQ 75.9 m R. Chi	1 sholm
FROM (m)	TO (m)	INTER (m)	LITHOLOGY	REC (%)	FROM (m)	TO (m)	INTER (m)	Au ppb
44.70	46.42	1.72	QUARTZ VEIN, white to opaque pink, contact -40°, crackled and brecciated, yellow carbonate and yuggy quartz and limonite in fractures, crackles -55°	100	44.70 45.70	45.70 46.42	1.00 0.72	470 6000
46.42	47.09	0.67	* * missing core * *					
47.09	48.17	1.08	ARGILLITE, lt.grey, 40% graphitic argillite layers -30°.	100	47.09	48.17	1.08	280
48.17	48.46	0.29	Mixed Argillite with 40% quartz veining -50°, conformable, minor limonite stain, 5% yellow carbonate.	100	48.17	48.46	0.29	576
48,46	50.00	1.54	.49 / 1.54 = 32% core recovery; white to yellow QUARTZ with vugs lined by limonite-stained quartz; bottom contact ~45°	32	48.46	50.00	1.54	15
50.00	50.82	0.82	ARGILLITE, 1t.grey, 25% vuggy quartz veins, very broken, trace yellow carbonate in vugs, and limonite.	100	50.00	50.82	0.82	94
50.82	51.82	1.00	Core very broken, BRECCIA re-cemented by carb(?) (could be Sph); 40% carb, 60% white qtz, vuggy qtz stained with limonite, carb partially decomposed orange-brown, could be sideride -> limonite, trace Py blebs.	100	50.82	51.82	1.00	126
51.82	52.38	0.56	20/56 36% recovery, very broken; vuggy white QUARTZ, minor limonite, staining no lower contact.	36	51.82	52.38	0.56	1360
52.38	59.96	7.58	ARGILLITE, grey to salmon coloured, very contorted, kink banded, laminations often parallel to c.a., show as bull's eye.	100	52.38	59.96	7.58	4
59.96	61.10	1.14	QUARTZ veining, top contact -50°, bottom contact irreg parallel to c.a.; white, massive, 10-20% yellow carbonate-filled vugs, 5%		59.96	61.10	1.14	3
61.10	75.90	14.80	<pre>limonite; seams irregular, trace Py blebs. SILTSTONE, with 10% graphitic argillite bands. 61.45-62.30 3 cm qrtz-carbonate vein, limonite-filled vugs 66.35 qtz-carbonate vein -40°, sharp contact, 2% Py blebs laminations very contorted, kinked banded parallel to fine secondary shearing at -50°</pre>		41.45	62.30	20.85	6

75.90 TOTAL DEPTH

WINSLOW GOLD CORP. BC-83-10 Page 1

I I I I I I

Area: Latitud Dopartu Elevati	Trout e: re: on:	Lake, B0 43N, 561 +17;	Bearing: 285° Date Start Inclination @ collar -60° Date Compl Inclination @ 79.25 m -60° Core Store Contractor: White Rock Drilling	ed: July 19 87 eted: July 22 87 ge: on site		Hole: Core Si Total L Logged	ze: ength: by:	WINS # BQ 79.86 R. Chi	2 m sholm
FROM (m)	TO (m)	INTER (m)	LITHOLOGY		REC (%)	FROM (m)	TO (m)	INTER (m)	Au ppb
0,00 3,65	3.65	3.65 43.40	OVERBURDEN SILTSTONE, lt.grey, minor interbands of black graphi laminations strongly contorted, kink banded. 12.04 1 cm qtz-carb vein -25°, carb selva 12.30-12.40 5 cm qtz-carb vein -70° 19.00-19.10 3 cm qtz-carb vein -40° 20.55-20.65 5 cm qtz-carb vein -35° 21.46-21.62 10 cm qtz-carb vein -55° 21.95-22.50 8cm? qtz-carb vein -55° 24.87-25.65 vein swarm -75° 26.20-26.52 ? irregular 27.13-28.10 irregular, 20% carb, some limonite s 28.40-28.47 5cm qtz-carb vein -45° 30.18-30.32 qtz-carb vein -60° along shear plane 31.13-31.25 gtz-carb vein -75°	tic argillite, ges orth along c.a. tain, minor vugs	100	27.13	28.10	0.97	3
47.05	52.43	5.38	31.95-32.22 irregular 32.90-33.49 bull quartz -45° 35.90-36.03 bull quartz -45° 37.88-38.05 2 cm qtz-carb vein parallel to c.a. 39.74-39.83 3 cm qtz-carb vein -45° 46.05-47.05 lt.grey ARGILLITE, limonite seams QUARTZ VEIN, white, opaque, lt.limonite stain, 10% s of yellow carbonate, 2% vuggy quartz; upper contact contact obliterated. 50.12-50.80 trace Fy, 2% blebs	cattered patches -15°, lower	100 100	46.05 47.05 48.05 49.05 50.05	47.05 48.05 49.05 50.05 50.90	1,00 1,00 1,00 1,00 0,85	3 5 7 1600
52.43	79.86	27.43	<pre>SILTSTONE, lt.grey, degree of contortion decreases a</pre>	way from vein.	100	52.43	53.53	1.53	22
	79.86		TOTAL DEPTH						

WINSLOW GOLD CORP. BC-83-10 Page 1

1

٠

Area: Trout Latitude: Departure: Elevation:	Lake, BC 10N, 98E +12 m	Bearing: 275° I Inclination @ collar -50° I Inclination @ 91.75 m -52* C Contractor: White Rock Drilling	Date Started: Date Completed: Core Storage:	July 22 87 July 25 87 on site		Hole: Core Si Total L Logged	ze: ength: by:	WINS # BQ 93.27 R. Chi	3] m sholm
FROM TO (m) (m)	INTER (m)	LITHOLOGY			REC (%)	FROM (m)	TO (m)	INTER (m)	Au ppb
0.00 2.13 2.13 77.95	2.13 (75.82)	OVERBURDEN, cased SILTSTONE, lt.grey, laminated; laminations strongly contorted; penetrative shearing, f numerous small quartz veins with minor carb 14.86-15.34 qtz-carb vein, parallel to 15.61-15.85 gouge zone 21.42-21.62 4 cm qtz-carb vein -75° 27.84-28.10 15 cm qtz-carb vein -50° 28.75-30.90 narrow qtz-carb vein snakes 31.15-31.40 17 cm qtz-carb vein snakes 31.35-35.63 qtz-carb vein 37.02-37.44 irreg qtz-carb vein 37.02-37.44 irreg qtz-carb vein 37.80-39.95 qtz-carb vein 37.80-39.95 qtz-carb vein 37.20-37.44 irreg qtz-carb vein 37.20-37.44 irreg qtz-carb vein 37.20-37.44 irreg qtz-carb vein 37.20-37.44 irreg qtz-carb vein 37.20-39.95 qtz-carb vein 37.20-39.95 qtz-carb vein 50.00 gouge zone 52.20 gouge zone, at least 50 cm 57.27-57.64 qtz-carb veining -50° below 66.75 core recovery "55%, badly b	sub-parallel, foliation -55° bonate, very ir c.a. s across c.a. wide	often to -60°; reg shape.	100 100 100 46 46 100	28.75 29.75 34.87 37.02 37.80 38.87 42.10	29.75 30.90 35.62 37.44 38.87 39.95 42.50	1.00 1.15 0.75 0.42 1.07 1.08 0.40	12 15 2 4 2 3 4
77.95 93.27	15.32	ARGILLITE, black, graphitic, 2% disseminate core badly broken up. 78.32-78.66 white quartz vein 79.55-79.90 white quartz vein -10°	arbonate, -45° ad and stringer:	s of f.g. Py	80	77.90	79.90	2.00	228

93.27

TOTAL DEPTH; driller could not get past graphitic gouge seam

.

WINSLOW GOLD CORP. BC-83-10 Page 1

Arca: Trout Lake, BC Latitude: 172N, 40B Departure: Elevation: +80 m		Lake, B 172N, 40 +80 m	IC Bearing: 275° Date Started: July 25 87 IE Inclination @ collar -60° Date Completed: July 27 87 Inclination @ 91.44 m -50° Core Storage: on site Contractor: White Rock Drilling			ize: Length: by:	BQ 91.75 R. Chi	m sholm
FROM (m)	TO (m)	INTER (m)	LITHOLOGY	REC (%)	FROM (m)	TO (m)	INTER (m)	Au ppb
0.00 2.20	2.20 26.17	2.20 23.97	OVERBURDEN, cased ARGILLITE, black, graphitic, 10% grey siltstone bands & laminae; core badly broken to 19.0 m; 1-2% finely disseminated Py; numerous (1/30 cm) thin quartz-carbonate veins mostly pulled apart; most core angles -35° to -55°; bottom contact -50°. 8.50 kink bands parallel to core 19.75-20.00 kink bands parallel to core 20.36-30.50 2.0 cm quartz-carbonate vein -80° 23.26-23.36 6.0 cm quartz-carbonate vein -55° 23.41-23.55 1.5 cm quartz-carbonate vein -70°	100				
26.17	28.20	2.03	SILTSTONE, 1t grey, laminated. 27.03-27.15 6.0 cm guarts-carbonate vein -50°					
28.20	32.37	4.17	ARGILLITE, black, graphitic, rock completely crushed and relithified, fragments completely contorted, much feathery qtz veining which has been brecciated with numerous limonite crackles; bottom contact -60°. 31.40-31.52 ~10 cm quartz vein 31.60-31.69 8 cm qtz vein -25°					
32.37	40.00	7.63	31.72-32.14 35 cm quartz veining -25° SILTSTONE, lt.grey, laminated, layers strongly contorted, 30% black		31.46	32.14	0.68	8
			34.51-35.10 45 cm quartz-carbonate veining -50° 35.27-35.49 12 cm quartz-carbonate veining -60° 36.32-36.51 13 cm quartz-carbonate veining -55°		34,51	35.10	0.59	3
40.00	42.73	2.73	ARGILLITE, black, graphitic, 30% siltstone laminations, strongly contorted, some brecciation.					
42.73	50.93	8.20	SILTSTONE, 1t.grey, 30% black graphitic argillite layers, moderately contorted.		40.02	50.02	1.00	
50.93	62.80	11.87	QUARTZ VEIN, white, opaque; often vuggy, lined with quartz crystals, stained by light limonite; bands and clots of yellow carbonate -> siderite, siderite often weathered to limonite; vein often brecciated, crackle to crush, re-cemented by carbonate; narrow (up to 5 cm) bands of Py, minor disseminated Py in clots, trace chalcocite; core badly		43.33	50.55	1.00	3
			broken; upper contact ground up, lower contact sharp -55°; crushed bands -45° to -55°; carbonate bands -35°; thin seams (<1 cm) of silt- stone -35° to -45°.		50.93 51.93	51.93 52.93	1.00	100 72 740
			56.32-56.83 crush breccia heavily re-cemented by siderite, weathered		53.93	54.93	1.00	1500
			56.83-57.25 30% siltstone fragments 57.90-58.65 crush breccia heavily re-cemented by siderite, weathered: 1% coarse Py blebs		54.93 55.93 56.93	55.93 56.93 57.93	1.00	236 39 154

The second secon

WINSLOW GOLD CORP. BC-83-10 Page 2

Area: Latitud Departu Elevati	Trout e: re: on:	Lake, BC 172N, 40E +80 m	C Bearing: Inclination Inclination Contractor	275° n @ collar -60° n @ 91.44 m -60° : White Rock Dr	illing	Date Started: Date Completed: Core Storage:	July 25 87 July 27 87 on site		Hole: Core Si Total L Logged	ze: ength: by:	BQ 91.75 R. Chi	m sholm
FROM (m)	TO (m)	INTER (m)		************	LITHOLOGY			REC (%)	FROM (m)	TO (m)	INTER (m)	Au ppb
			58.65-59.76 60.00-60.09 60.70-61.00 60.90-61.00 61.00-62.80	crackled and re 1% Py blebs <4 massive Py band bands of massiv possible Sphale massive white q tr Py	placed by mm e siderite rite tz, 5% vug	40% fresh c.g. s in quartz with s lined with qtz	siderite; 3% diss Py a crystals,		57.93 58.93 59.93 60.93 61.93 62.80	58.93 59.93 60.93 61.93 62.80 63.80	1.00 1.00 1.00 1.00 0.87 1.00	90 80 625 101 63 36
62.80	91.75	28.95	SILTSTONE. 1t. g	Core Recovery 50.39-52 52.43-54 54.86-56 56.08-53 58.52-61 61.26-62 rey, often stron	Interval 1.50 2.43 1.22 2.44 2.75 1.54 gly contor	Core 1.15 1.40 0.58 2.24 2.55 1.55 ted.		77 58 48 92 93 100	63.80	64.80	1.00	5
	01 75		68.85 69.30 83.85-84.26 88.73-89.12	"sand seam" go "sand seam" go narrow qtz-carb narrow qtz-carb	uge zone uge zone vein snak vein snak	es down c.a. es down c.a.						

WINSLOW GOLD CORP. BC-83-10 Page 1

Area: Latitud Departu Elevati	Trout e: 2 re: on:	Lake, B 240N, 40 +114	C Bearing: 275° E Inclination @ collar -60° Inclination @m M Contractor: White Rock Drilling	Date Started: Date Completed: Core Storage:	July 28 87 July 29 87 on site		Hole: Core Si Total L Logged	ze: ength: by:	WINS # BQ 47.55 R. Chi	m sholm
FROM (m)	TO (m)	INTER (m)	LITHOLOG	βY		REC (%)	FROM (m)	TO (m)	INTER (m)	Au ppb
0.00 3.66	3.66 15.52	3.66 11.86	OVERBURDEN, cased Core very broken up, core recovery 57%; argillite with bands of graphitic siltst laminations -35°, limited contortions.	Mixed black grap one and lt.grey s	hitic iltstone;	57				
15.52	44.83	29.31	SILTSTONE, lt.grey, laminated with 5% gr as 15 cm bands, often contorted. 12.75-12.80 quartz vein, vuggy -30° 19.40-21.00 minor arenaceous bands 20.65-20.85 gouge zone 29.18-29.33 quartz vein, vuggy, -33° 30.63-30.80 gouge zone	aphitic laminatio	ns -32°					
44.83	46.33	1.50	GOUGE ZONE, graphitic driller could r	not get through.						

I F I I I F I I B I I I I I I I I

46.33

1

ŧ

TOTAL DEPTH, hole abandoned

WINSLOW GOLD CORP. BC-83-10 Page 1

Area: Latitud Departu Elevati	Trout e: re: on:	Lake, B 104N, 31 +37	C Bearing: 275° Date E Inclination @ collar -80° Date Inclination @ 39.62 m -80° Core m Contractor: White Rock Drilling	Started: Completed: Storage:	July 30 87 July 31 87 on site		Hole: Core Si Total L Logged	ze: ength: by:	WINS # BQ 41.15 R. Chi	m sholm
FROM (m)	TO (m)	INTER (m)	LITHOLOGY			REC (%)	FROM (m)	TO (m)	INTER (m)	Au ppb
0.00 2.44 3.60	2.44 3.60 6.40	2.44 1.16 2.80	OVERBURDEN ARGILLITE, black, graphitic Mixed laminated grey Siltstone and black graph with 20% limonitic weathering layers which giv test.	itic Argill e weak posi	ite 50/50 tive HCl					
6.40	9.60	3.20	ARGILLITE, black, graphitic; 35% grey siltston	e, contorte	d.					
10 33	29 28	18 95	ARGILLITE, black, graphitic: 40% grey siltator	e. contorte	d.	100	28.43	29.28	0.85	8
29.28	29.59	0.31	QUARTZ VEIN, white to orange; 10% siltstone fr stringers of Py in siltstone to 5% total volum crackled at -65° with limonite staining.	agmonts wit e; minor vu	h blebs & gs to 3 mm;	100	29.28	29.59	0.31	1400
29.59	31.09	1.50	* * * no recovery * * *	10-11-11-11-11-12-12-12-12-12-12-12-12-12-	CASH TO BE REAL		21 72 A	22722	1000	1000
31.09	33.54	2.45	QUARTZ, white, opaque; often crackled with fra limonite; minor siderate splotches; minor vugg pyrite along "siltstone" stringer. 32.00-32.22 limonite fracture 32.20-32.50 -80° to '85° with associated of 32.87-33.06 brecciated, resealed by limoni	ctures fill iness up to rackle zone te	ed with 1.5 cm;		31.09 32.09	32.09 33.54	1.00	1000 480
33.54	34.14	0.60	* * * no recovery * * *				444755475	2.2	100000	
34.14	34.90	0.76	QUART2 VEIN, as 31.09-33.54 m 34.44-34.52 fragment of siltstone with 15%	Py blebs,	-50°		34.14	34.90	0.76	762
34.90	36.15	1.25	Band of yellow to cream Iron Carbonate, partia limonite, 10-15% quartz veining. 36.00-36.05 siltstone fragment with 15% bl	lly weather ebs Py, -55	ed to °	100	34.90	36.15	1.25	1460
36.15	37.35	1.20	QUART2, white; limonitic crackles, 5-10% silts 10% Py blebs; crackles filled with limonite of -60°; total 10% iron carb; lower 15 cm badly b	tone frags r iron carb roken.	containing -45° to	100	36.15	37.35	1.20	404
37.35	39.50	2.15	* * * no recovery * * *				1000	00000	100	32.
39.50	40.23	0.73	QUART2, white, minor fine limonitic crackles,	very barren	looking.	100	39.50	40.23	0.73	11
	40.23		TOTAL DEPTH Driller advanced to 41.15 m in "sand" section but could not make headway; very spongy - probably gouge zone in argillite; core barrel cut in half by fragments falling down hole. Core barrel, reaming shell, and bit left in ho	le.						

7 A. U. I. B. U. L. A. G.

WINSLOW GOLD CORP. BC-83-10 Page 1

i) I I I I I I I I

Area: Latitud Departu Elevati	Trout le: 2 irs: on:	Lake, B 283N, 40 +135	C Bearing: 275° Date Started: Aug. 01 87 E Inclination @ collar -60° Date Completed: Aug. 03 87 Inclination @m Core Storage: on site		Hole: Core Si Total I Logged	ze: length: by:	WINS # BQ 49.99 R. Chi	7 m sholm
FROM (m)	TO (m)	INTER (m)	LITHOLOGY	REC (%)	FROM (m)	TO (m)	INTER (m)	Au ppb
0.00 1.52	1.52 33.45	1.52 31.93	OVERBURDEN SILTSTONE, lt.grey, green; arenaceous; well laminated with 5% graphitic argillite bands <5 cm thick, cut by numerous pinkish orange quartz veins and veinlets; rock has been bleached to lt.green and pink colours in a blotchy and irregular manner. 2.88-3.20 pink qtz vein, irregular, vuggy -65° 4.72-4.84 pink qtz vein, irregular, vuggy .chloritic spots -40° 6.21-6.33 pink-orange qtz vein, limonitic fractures -35° 13.11-15.27 pink to orange qtz vein, some limonitic fractures, -30°, trace carb veining, incorporates 30% host rock 15.91-17.37 irregular veining as above 26.08-26.26 pink quartz vein ~-60° 27.54-27.61 pink vein -30° 28.67-29.10 orange veining -55°	100 62	13.11 14.11 15.91	14.11 15.27 17.37	1.00 1.16 1.46	3 4 3
33.45	47.15	13.70	32.83-33.45 orange limonitic fracture -35" SILTSTONE, 1t.grey to black, laminated; similar to lt.grye siltstone	70	32.83	33.45	0.62	5
			33.83-34.27 white qtz vein, 20% host fragments, irreg contacts 35.80-36.26 irregular veining, slightly vuggy 36.79-36.88 white opaque quartz -25° 42.07-42.64 white opaque quartz vein, few limonitic fractures. trace vellow carbonate, slightly vuggy	100	33.70 42.07	34.27 42.64	0.57	5 10
47.15	49.99	2.84	SCHIST, graphitic, almost solid graphite.	25				
	49.99		TOTAL DEPTH; could not drill further, water will not flush cuttings, core barrel finished, reaming shell etc. Hole abandoned. Casing left in hole					

AUTHORITY:R. CHISOLM

TAIGA CONSULTANTS LTD.

100, 1300 - 8 STREET S.W. CALGARY, ALBERTA T2R 1B2

ATTN: R. ALLEN

*** FINAL REPORT ***

GEOCHEMICAL LABORATORY REPORT

	S	A	MJ	PL	.E	T	YP	E:	: 1	DR	IL	.L	CORE FIRE ASSAY
S	A	М	1	P	Ľ	E	N	U	М	B	Ē	R	PPB
W	IN	s	4	: 4	19	.93	-5	0.	93				3.0
W	IN	S	4	:5	0	,93	-51	1.	93				100.0
W	IN	S	4	:5	51	.93	-5:	2.	93				72.0
W	IN	S	Ą	15	12	.93	-53	3.	93				740.0
W	IN	S	4	: 5	3	.93	-5	4.	93				1500.0
ы	IN	S	4	: 5	54	. 93	-5	5.	93				236.0
W	IN	S	4	:5	55	. 93	-5	6.	93				39.0
W	IN	S	4	: 5	56	. 93	-5	7.	93				154.0
W	IN	S	4	:5	57	.93	-5	8.	93				90.0
W	IN	s	4	::	68	.93	-5	9.	93				80.0
W	IN	S	4	:5	59	.93	-6	ο.	93				625.0
W	IN	S	4	:6	50	.93	-6	1.	93				101.0
W	IN	S	4	:(51	.93	-6	2.	93				63.0
W	IN	5	4	:(52	. 93	-6	з.	80				36.0
													<i>n i</i>

SIGNED: C. Douglas Read, LABORATORY MANAGER

FOOTNOTES: P=QUESTIONABLE PRECISION; *=INTERFERENCE; TR=TRACE; ND=NOT DETECTED; IS=INSUFFICIENT SAMPLE: NA=NOT ANALYZED; MS=MISSING SAMPLE ADVANCED TECHNIQUES AND INSTRUMENTATION FOR THE EARTH SCIENCES

BARRINGER Laboratories (NWT) Ltd.

P.O. BOX 864, YELLOWKNIFE, NWT, CANADA X1A 2N6 PHONE: (403) 920-4500

> 06-JUL-87 PAGE: 1 OF 1 COPY: 1 OF 2

PROJECT: BC-83-10

WORK ORDER: 4224D-87

BARRINGER MAGENTA

- Laboratories (Alberta) Ltd.

42008 - 10 STREET N.E., CALGARY, ALBERTA, CANADA T2E 6K3 PHONE: (403) 250-1901

AUTHORITY:R. CHISOLM

TAIGA CONSULTANTS LTD.

100, 1300 - 8 STREET S.W. CALGARY, ALBERTA T2R 182 BARRINGER Laboratories (NWT) Ltd. P.O. BOX 864, YELLOWKNIFE, NWT, CANADA X1A 2N6 PHONE: (403) 920-4500 31-JUL-87

PAGE: 1 OF 2 COPY: 1 OF 3

PROJECT: BC-83-10

WORK ORDER: 4217D-87

ATTN: R. ALLEN

*** FINAL REPORT ***

GEOCHEMICAL LABORATORY REPORT

		5	A	M	PJ	LE		T	P	E	:	I	R	IL	L	CORE FIRE ASSAY	
	0				×.							ų.	-			AU	
	5	9	ſ	1	r	1.	E	•	N	1	J	m	в	E	ĸ	PPB	
	W	IN	S	1	:	43	. 2	19.	-4	3	.7	2				10.0	
	W	IN	S	1		43	.7	2.	-4	4.	.7	0				3.0	
	W	IN	S	1	:	44	. 7	10.	-4	5	.7	0				470.0	
	W	IN	S	1	:	45	.7	10-	-4	6	. 4	2				6000.0	
	W	IN	S	1	:	46	. 4	12	-4	7	. 0	9				MS	
	ш	TN	S	1		47	. (9.	-4	8	. 1	7				280.0	
	W	IN	IS	1	-	48		17	-4	8	. 4	6				576.0	
	W	IN	S	1	:	48		16.	-5	0	. 0	0				15.0	
	W	IN	IS	1	:	50	.(00	-5	0	.8	12				94.0	
	W	IN	IS	1	:	50	. 8	32	-5	1	. 8	2				126.0	
3	W	IN	IS	1	:	51	. (32	-5	2	.3	8				1360.0	
	W	IN	IS	1	:	52		38	-5	3	.3	8				4.0	
	W	IN	IS	1	:	59	. 9	96	-6	1	.1	0				3.0	
- 3	W	IN	IS	2	:	46	. (05	-4	7	. 0	15				3.0	
	W	١Ņ	IS	2	:	47	. (05	-4	8	. 0)5				5.0	
	ы	TN	S	2		48		05	-4	9	. 0	5				7.0	
	W	IN	15	2		49		05	-5	0	. ()5				5.0	
	W	IN	IS	2		50		05	-5	0	. 5	00				1600.0	
	W	Th	15	2	::	50) .	90	-5	2	. 1	13				52.0	
	W	T	IS	2	::	52		43	-5	3	. 1	13				2.0	
		-			-												

- 42008 - 10 STREET N.E., CALGARY, ALBERTA, CANADA T2E 6K3 - PHONE: (403) 250-1901

AUTHORITY:R. CHISOLM

TAIGA CONSULTANTS LTD.

100, 1300 - 8 STREET S.W. CALGARY, ALBERTA T2R 1B2 BARRINGER Laboratories (NWT) Ltd.

- P.O. BOX 864, YELLOWKNIFE, NWT, CANADA X1A 2N6 - PHONE: (403) 920-4500 31-JUL-87 PAGE: 2 OF 2 COPY: 1 OF 3

PROJECT: BC-83-10

WORK ORDER: 4217D-87

ATTN: R. ALLEN

*** FINAL REPORT ***

GEOCHEMICAL LABORATORY REPORT

SIGNED: C. Douglas Read, LABORATORY MANAGER

CC'S TO: TAIGA CONSULTANTS LTD. REVELSTOKE, B.C. R. CHISOLM

FOOTNOTES: P=QUESTIONABLE PRECISION; *=INTERFERENCE; TR=TRACE; ND=NOT DETECTED; IS=INSUFFICIENT SAMPLE; NA=NOT ANALYZED; MS=MISSING SAMPLE

ADVANCED TECHNIQUES AND INSTRUMENTATION FOR THE EARTH SCIENCES

- 42008 - 10 STREET N.E., CALGARY, ALBERTA, CANADA T2E 6K3 - PHONE: (403) 250-1901

AUTHORITY:R. CHISOLM

TAIGA CONSULTANTS LTD. 100, 1300 - 8 STREET S.W.

CALGARY, ALBERTA T2R 1B2

ATTN: R. ALLEN

COPY: 1 OF 2 PROJECT: BC-83-10

12-AUG-87 PAGE: 1 OF 2

Laboratories (NWT) Ltd.

P.O. BOX 864, YELLOWKNIFE, NWT, CANADA X1A 2N6 PHONE: (403) 920-4500

WORK ORDER: 4233D-87

BARRINGER

*** FINAL REPORT ***

GEOCHEMICAL LABORATORY REPORT

HO HO SAMPLENUMBER PPB WINS 6:28.43-29.28 8.0 WINS 6:29.28-29.59 1400.0 WINS 6:31.09-32.09 1000.0 WINS 6:32.09-33.54 480.0 WINS 6:34.14-34.90 762.0 WINS 6:34.90-36.15 1460.0 WINS 6:36.15-37.35 404.0 WINS 6:36.15-37.35 404.0 WINS 1:61.45-62.30 6.0 WINS 1:61.45-62.30 6.0 WINS 3:28.75-29.75 12.0 WINS 3:329.75-30.90 15.0 WINS 3:37.02-37.44 4.0 WINS 3:37.02-37.44 4.0 WINS 3:37.80-38.87 2.0 WINS 3:37.90-38.87 2.0 WINS 3:37.90-79.90 228.0 WINS 3:77.90-79.90 228.0 WINS 4:31.46-32.14 8.0 WINS 7:13.11-14.11 3.0 WINS 7:13.11-14.11 3.0 WINS 7:15.91-17.37 3.0 WINS 7:33.70-34.27 5.0 WINS 7:33.70-34.27 5.0 WINS 7:42.07-42.64 10.0			S	A	M	P	L	E		1	Y	F	P	2	-	1	DI	R	11	.1	•	CORE FIRE ASSAY
WINS 6:28.43-29.28 8.0 WINS 6:29.28-29.59 1400.0 WINS 6:31.09-32.09 1000.0 WINS 6:32.09-33.54 480.0 WINS 6:34.14-34.90 762.0 WINS 6:34.90-36.15 1460.0 WINS 6:36.15-37.35 404.0 WINS 6:39.35-40.23 11.0 WINS 1:61.45-62.30 6.0 WINS 1:61.45-62.30 6.0 WINS 3:28.75-29.75 12.0 WINS 3:34.87-35.62 2.0 WINS 3:37.02-37.44 4.0 WINS 3:37.80-38.87 2.0 WINS 3:37.90-79.90 16.0 WINS 3:37.90-79.90 228.0 WINS 3:67.57-68.30 116.0 WINS 4:34.51-35.10 3.0 WINS 4:34.51-35.10 3.0 WINS 7:13.11-14.11 3.0 WINS 7:15.91-17.37 3.0 WINS 7:33.70-34.27 5.0 WINS 7:33.70-34.27 5.0 WINS 7:42.07-42.64 10.0	S		۵		4	P		ī.		F		à				м	1	2	F	1	P	PPB
WINS6:28.43-29.288.0WINS6:29.28-29.591400.0WINS6:31.09-32.091000.0WINS6:32.09-33.54480.0WINS6:34.14-34.90762.0WINS6:36.15-37.35404.0WINS6:36.15-37.35404.0WINS6:39.35-40.2311.0WINS1:61.45-62.306.0WINS1:61.45-62.306.0WINS2:27.13-28.103.0WINS3:28.75-29.7512.0WINS3:37.02-37.444.0WINS3:37.80-38.872.0WINS3:37.80-38.872.0WINS3:67.57-68.30116.0WINS3:77.90-79.90228.0WINS4:31.46-32.148.0WINS7:13.11-14.113.0WINS7:13.91-17.373.0WINS7:15.91-17.373.0WINS7:33.70-34.275.0WINS7:33.70-34.275.0WINS7:42.07-42.6410.0	0		-		•			-				17		u	50	n	1	2	Б	1	n	rr b
WINS6:29.28-29.591400.0WINS6:31.09-32.091000.0WINS6:32.09-33.54480.0WINS6:34.14-34.90762.0WINS6:36.15-37.35404.0WINS6:36.15-37.35404.0WINS6:39.35-40.2311.0WINS1:61.45-62.306.0WINS2:27.13-28.103.0WINS3:28.75-29.7512.0WINS3:329.75-30.9015.0WINS3:37.02-37.444.0WINS3:37.80-38.872.0WINS3:37.80-38.872.0WINS3:67.57-68.30116.0WINS3:77.90-79.90228.0WINS4:31.46-32.148.0WINS4:380-64.805.0WINS7:13.11-14.113.0WINS7:13.370-34.273.0WINS7:33.70-34.275.0WINS7:33.70-42.6410.0	W	I	N	s	6	:	2	8		4:	3-	-2	9		2	8						8.0
WINS6:31.09-32.091000.0WINS6:32.09-33.54480.0WINS6:34.14-34.90762.0WINS6:34.14-34.90762.0WINS6:36.15-37.35404.0WINS6:39.35-40.2311.0WINS1:61.45-62.306.0WINS1:61.45-62.303.0WINS2:27.13-28.103.0WINS3:28.75-29.7512.0WINS3:329.75-30.9015.0WINS3:37.02-37.444.0WINS3:37.80-38.872.0WINS3:37.80-38.872.0WINS3:67.57-68.30116.0WINS3:77.90-79.90228.0WINS4:31.46-32.148.0WINS4:34.51-35.103.0WINS4:63.80-64.805.0WINS7:13.11-14.113.0WINS7:15.91-17.373.0WINS7:33.70-34.275.0WINS7:33.70-34.275.0WINS7:42.07-42.6410.0	W	I	N	s	6	:	2	9		21	в-	.2	19		5	9						1400.0
WINS6:32.09-33.54480.0WINS6:34.14-34.90762.0WINS6:34.90-36.151460.0WINS6:36.15-37.35404.0WINS6:39.35-40.2311.0WINS1:61.45-62.306.0WINS1:61.45-62.303.0WINS2:27.13-28.103.0WINS3:28.75-29.7512.0WINS3:329.75-30.9015.0WINS3:37.02-37.444.0WINS3:37.80-38.872.0WINS3:37.80-38.872.0WINS3:67.57-68.30116.0WINS3:77.90-79.90228.0WINS4:31.46-32.148.0WINS4:63.80-64.805.0WINS7:13.11-14.113.0WINS7:15.91-17.373.0WINS7:33.70-34.275.0WINS7:32.83-33.455.0WINS7:32.07-42.6410.0	W	I	N	s	G	:	3	1		0	9-	•3	12		0	9						1000.0
WINS 6:34.14-34.90762.0WINS 6:34.90-36.151460.0WINS 6:36.15-37.35404.0WINS 6:39.35-40.2311.0WINS 1:61.45-62.306.0WINS 1:61.45-62.303.0WINS 2:27.13-28.103.0WINS 3:28.75-29.7512.0WINS 3:29.75-30.9015.0WINS 3:34.87-35.622.0WINS 3:37.02-37.444.0WINS 3:37.80-38.872.0WINS 3:38.87-39.953.0WINS 3:42.10-42.524.0WINS 3:67.57-68.30116.0WINS 3:77.90-79.90228.0WINS 4:31.46-32.148.0WINS 7:13.11-14.113.0WINS 7:13.11-14.113.0WINS 7:13.11-14.2524.0WINS 7:13.11-14.113.0WINS 7:14.11-15.274.0WINS 7:13.12-14.113.0WINS 7:14.11-15.274.0WINS 7:14.11-15.275.0WINS 7:32.83-33.455.0WINS 7:32.83-33.455.0WINS 7:32.07-34.275.0WINS 7:42.07-42.6410.0	W	1	N	s	G	:	З	2		0	9-	-3	33		5	4						480.0
WINS6:34.90-36.151460.0WINS6:36.15-37.35404.0WINS6:39.35-40.2311.0WINS1:61.45-62.306.0WINS2:27.13-28.103.0WINS3:28.75-29.7512.0WINS3:34.87-35.622.0WINS3:37.02-37.444.0WINS3:37.80-38.872.0WINS3:37.80-38.872.0WINS3:67.57-68.30116.0WINS3:77.90-79.90228.0WINS4:31.46-32.148.0WINS7:13.11-14.113.0WINS7:15.91-17.373.0WINS7:32.83-33.455.0WINS7:33.70-34.275.0WINS7:42.07-42.6410.0	W	I	N	S	G	:	3	4	•	1	4-	-3	4		9	0						762.0
WINS 6:36.15-37.35 404.0 WINS 6:39.35-40.23 11.0 WINS 1:61.45-62.30 6.0 WINS 2:27.13-28.10 3.0 WINS 3:28.75-29.75 12.0 WINS 3:29.75-30.90 15.0 WINS 3:34.87-35.62 2.0 WINS 3:37.02-37.44 4.0 WINS 3:37.02-37.44 4.0 WINS 3:37.02-37.44 4.0 WINS 3:37.80-38.87 2.0 WINS 3:37.80-38.87 2.0 WINS 3:37.80-38.87 2.0 WINS 3:37.90-79.90 228.0 WINS 3:67.57-68.30 116.0 WINS 4:31.46-32.14 8.0 WINS 4:31.46-32.14 8.0 WINS 4:33.80-64.80 5.0 WINS 7:13.11-14.11 3.0 WINS 7:14.11-15.27 4.0 WINS 7:15.91-17.37 3.0 WINS 7:33.70-34.27 5.0 WINS 7:33.70-34.27 5.0 WINS 7:42.07-42.64 10.0	W	I	N	S	G	:	з	4		9	0-	-3	6		1	5						1460.0
WINS 6:39.35-40.23 11.0 WINS 1:61.45-62.30 6.0 WINS 2:27.13-28.10 3.0 WINS 3:28.75-29.75 12.0 WINS 3:29.75-30.90 15.0 WINS 3:34.87-35.62 2.0 WINS 3:37.02-37.44 4.0 WINS 3:37.80-38.87 2.0 WINS 3:37.80-38.87 2.0 WINS 3:37.80-38.87 2.0 WINS 3:37.90-79.95 3.0 WINS 3:67.57-68.30 116.0 WINS 3:77.90-79.90 228.0 WINS 4:31.46-32.14 8.0 WINS 4:31.46-32.14 8.0 WINS 7:13.11-14.11 3.0 WINS 7:13.11-14.11 3.0 WINS 7:15.91-17.37 3.0 WINS 7:33.70-34.27 5.0 WINS 7:42.07-42.64 10.0	W	I	N	S	6	:	з	6		1	5-	-3	37		3	5						404.0
WINS 1:61.45-62.30 6.0 WINS 2:27.13-28.10 3.0 WINS 3:28.75-29.75 12.0 WINS 3:29.75-30.90 15.0 WINS 3:329.75-30.90 15.0 WINS 3:37.02-37.44 4.0 WINS 3:37.02-37.44 4.0 WINS 3:37.80-38.87 2.0 WINS 3:37.80-38.87 2.0 WINS 3:37.80-38.87 2.0 WINS 3:37.80-38.87 4.0 WINS 3:37.80-38.87 2.0 WINS 3:37.80-38.87 2.0 WINS 3:37.80-38.87 2.0 WINS 3:37.90-79.90 228.0 WINS 4:31.46-32.14 8.0 WINS 4:31.46-32.14 8.0 WINS 7:13.11-14.11 3.0 WINS 7:14.11-15.27 4.0 WINS 7:15.91-17.37 3.0 WINS 7:32.83-33.45 5.0 WINS 7:33.70-34.27 5.0 WINS 7:42.07-42.64 10.0	W	I	N	s	G	:	3	9	•	3	5-	- 4	0		2	3						11.0
WINS 2:27.13-28.10 3.0 WINS 3:28.75-29.75 12.0 WINS 3:29.75-30.90 15.0 WINS 3:34.87-35.62 2.0 WINS 3:37.02-37.44 4.0 WINS 3:37.02-37.44 4.0 WINS 3:37.80-38.87 2.0 WINS 3:37.80-38.87 2.0 WINS 3:38.87-39.95 3.0 WINS 3:42.10-42.52 4.0 WINS 3:67.57-68.30 116.0 WINS 3:77.90-79.90 228.0 WINS 4:31.46-32.14 8.0 WINS 4:34.51-35.10 3.0 WINS 4:63.80-64.80 5.0 WINS 7:13.11-14.11 3.0 WINS 7:15.91-17.37 3.0 WINS 7:32.83-33.45 5.0 WINS 7:33.70-34.27 5.0 WINS 7:42.07-42.64 10.0	W	I	N	S	1	:	6	1		4	5-	• 6	2		3	0						6.0
WINS 3:28.75-29.75 12.0 WINS 3:29.75-30.90 15.0 WINS 3:34.87-35.62 2.0 WINS 3:37.02-37.44 4.0 WINS 3:37.80-38.87 2.0 WINS 3:37.90-79.90 3.0 WINS 4:31.46-32.14 8.0 WINS 4:34.51-35.10 3.0 WINS 4:33.80-64.80 5.0 WINS 7:13.11-14.11 3.0 WINS 7:15.91-17.37 3.0 WINS 7:32.83-33.45 5.0 WINS 7:33.70-34.27 5.0 WINS 7:42.07-42.64 10.0	W	I	N	S	2	:	2	7	•	1	3-	-2	28		1	0						3.0
WINS 3:29.75-30.9015.0WINS 3:34.87-35.622.0WINS 3:37.02-37.444.0WINS 3:37.80-38.872.0WINS 3:37.80-38.872.0WINS 3:38.87-39.953.0WINS 3:42.10-42.524.0WINS 3:67.57-68.30116.0WINS 3:77.90-79.90228.0WINS 4:31.46-32.148.0WINS 4:34.51-35.103.0WINS 7:13.11-14.113.0WINS 7:13.11-14.113.0WINS 7:15.91-17.373.0WINS 7:32.83-33.455.0WINS 7:33.70-34.275.0WINS 7:42.07-42.6410.0	W	I	N	s	3	::	2	8		7	5-	-2	29		7	5						12.0
WINS 3:34.87-35.62 2.0 WINS 3:37.02-37.44 4.0 WINS 3:37.80-38.87 2.0 WINS 3:37.80-38.87 4.0 WINS 3:42.10-42.52 4.0 WINS 3:67.57-68.30 116.0 WINS 3:77.90-79.90 228.0 WINS 4:31.46-32.14 8.0 WINS 4:34.51-35.10 3.0 WINS 4:63.80-64.80 5.0 WINS 7:13.11-14.11 3.0 WINS 7:15.91-17.37 3.0 WINS 7:32.83-33.45 5.0 WINS 7:33.70-34.27 5.0 WINS 7:42.07-42.64 10.0	W	1	N	S	3	:	2	9		7	5-	-3	80		9	0						15.0
WINS 3:37.02-37.44 4.0 WINS 3:37.80-38.87 2.0 WINS 3:37.80-38.87 2.0 WINS 3:38.87-39.95 3.0 WINS 3:42.10-42.52 4.0 WINS 3:67.57-68.30 116.0 WINS 3:77.90-79.90 228.0 WINS 4:31.46-32.14 8.0 WINS 4:34.51-35.10 3.0 WINS 4:63.80-64.80 5.0 WINS 7:13.11-14.11 3.0 WINS 7:15.91-17.37 3.0 WINS 7:32.83-33.45 5.0 WINS 7:33.70-34.27 5.0 WINS 7:42.07-42.64 10.0	W	I	N	S	3	:	З	4		8	7-	-3	35	i .	6	2						2.0
WINS 3:37.80-38.87 2.0 WINS 3:38.87-39.95 3.0 WINS 3:42.10-42.52 4.0 WINS 3:67.57-68.30 116.0 WINS 3:77.90-79.90 228.0 WINS 4:31.46-32.14 8.0 WINS 4:34.51-35.10 3.0 WINS 4:63.80-64.80 5.0 WINS 7:13.11-14.11 3.0 WINS 7:15.91-17.37 3.0 WINS 7:32.83-33.45 5.0 WINS 7:33.70-34.27 5.0 WINS 7:42.07-42.64 10.0	W	I	N	s	з	:	З	7		0	2-	-3	37		4	4						4.0
WINS 3:38.87-39.95 3.0 WINS 3:42.10-42.52 4.0 WINS 3:67.57-68.30 116.0 WINS 3:77.90-79.90 228.0 WINS 4:31.46-32.14 8.0 WINS 4:34.51-35.10 3.0 WINS 4:63.80-64.80 5.0 WINS 7:13.11-14.11 3.0 WINS 7:15.91-17.37 3.0 WINS 7:32.83-33.45 5.0 WINS 7:33.70-34.27 5.0 WINS 7:42.07-42.64 10.0	W	I	N	S	3	3:	3	7	•	8	0-	-3	88		8	7						2.0
WINS 3:42.10-42.52 4.0 WINS 3:67.57-68.30 116.0 WINS 3:77.90-79.90 228.0 WINS 4:31.46-32.14 8.0 WINS 4:34.51-35.10 3.0 WINS 4:63.80-64.80 5.0 WINS 7:13.11-14.11 3.0 WINS 7:15.91-17.37 3.0 WINS 7:32.83-33.45 5.0 WINS 7:33.70-34.27 5.0 WINS 7:42.07-42.64 10.0	W	I	N	S	3	3:	3	8		8	7-	-2	39).	9	5						3.0
WINS 3:67.57-68.30 116.0 WINS 3:77.90-79.90 228.0 WINS 4:31.46-32.14 8.0 WINS 4:34.51-35.10 3.0 WINS 4:63.80-64.80 5.0 WINS 7:13.11-14.11 3.0 WINS 7:14.11-15.27 4.0 WINS 7:15.91-17.37 3.0 WINS 7:32.83-33.45 5.0 WINS 7:32.07-34.27 5.0 WINS 7:42.07-42.64 10.0	W	I	N	S	3	3:	4	2		1	0-	- 4	12	2 .	5	12						4.0
WINS 3:77.90-79.90 228.0 WINS 4:31.46-32.14 8.0 WINS 4:34.51-35.10 3.0 WINS 4:63.80-64.80 5.0 WINS 7:13.11-14.11 3.0 WINS 7:14.11-15.27 4.0 WINS 7:15.91-17.37 3.0 WINS 7:32.83-33.45 5.0 WINS 7:33.70-34.27 5.0 WINS 7:42.07-42.64 10.0	W	I	N	S	3	3:	6	7		5	7-	-6	58	3.	3	10						116.0
WINS 4:31.46-32.14 8.0 WINS 4:34.51-35.10 3.0 WINS 4:63.80-64.80 5.0 WINS 7:13.11-14.11 3.0 WINS 7:14.11-15.27 4.0 WINS 7:15.91-17.37 3.0 WINS 7:32.83-33.45 5.0 WINS 7:33.70-34.27 5.0 WINS 7:42.07-42.64 10.0	ω	I	N	S	3	3:	7	7		9	0-	-7	79).	5	0						228.0
WINS 4:34.51-35.10 3.0 WINS 4:63.80-64.80 5.0 WINS 7:13.11-14.11 3.0 WINS 7:14.11-15.27 4.0 WINS 7:15.91-17.37 3.0 WINS 7:32.83-33.45 5.0 WINS 7:33.70-34.27 5.0 WINS 7:42.07-42.64 10.0	W	I	N	S	4	1:	3	1	•	4	6-	-3	32	2.	1	4						8.0
WINS 4:63.80-64.80 5.0 WINS 7:13.11-14.11 3.0 WINS 7:14.11-15.27 4.0 WINS 7:15.91-17.37 3.0 WINS 7:32.83-33.45 5.0 WINS 7:33.70-34.27 5.0 WINS 7:42.07-42.64 10.0	W	I	N	S	4	1:	3	4		5	1.	-3	35	5.	1	.0						3.0
WINS 7:13.11-14.11 3.0 WINS 7:14.11-15.27 4.0 WINS 7:15.91-17.37 3.0 WINS 7:32.83-33.45 5.0 WINS 7:33.70-34.27 5.0 WINS 7:42.07-42.64 10.0	W	I	N	S	4	1:	G	3		8	0.	-6	54	۱.	8	10						5.0
WINS 7:14.11-15.27 4.0 WINS 7:15.91-17.37 3.0 WINS 7:32.83-33.45 5.0 WINS 7:33.70-34.27 5.0 WINS 7:42.07-42.64 10.0	W	11	N	S	7	7:	1	3		1	1.	-]	4	۱.	1	. 1						3.0
WINS 7:15.91-17.37 3.0 WINS 7:32.83-33.45 5.0 WINS 7:33.70-34.27 5.0 WINS 7:42.07-42.64 10.0	W	1	N	S	7	7:	1	4		1	1.	-1	15	5.	2	27	5					4.0
WINS 7:32.83-33.45 5.0 WINS 7:33.70-34.27 5.0 WINS 7:42.07-42.64 10.0	W	11	N	S	7	7:	1	5	•	9	1.	-]	17		3	37						3.0
WINS 7:33.70-34.27 5.0 WINS 7:42.07-42.64 10.0	W	11	N	IS		7:	13	32		8	3.	-3	33	3.	. 4	15						5.0
WINS 7:42.07-42.64 10.0	4	11	IN	S	7	7:	13	33		7	0.	-3	34	1.	. 2	27						5.0
	W	11	N	IS	;	7:	4	12		0	7.	- 4	4:	2.	. (54	ŧ					10.0

ADVANCED TECHNIQUES AND INSTRUMENTATION FOR THE EARTH SCIENCES.

AUTHORITY:R. CHISOLM

TAIGA CONSULTANTS LTD. 100, 1300 - 8 STREET S.W. CALGARY, ALBERTA T2R 1B2 BARRINGER Laboratories (NWT) Ltd.

- PHONE: (403) 920-4500 12-AUG-87 PAGE: 2 OF 2 COPY: 1 OF 2

PROJECT: BC-83-10

WORK ORDER: 4233D-87

ATTN: R. ALLEN

*** FINAL REPORT ***

GEOCHEMICAL LABORATORY REPORT

SIGNED: C. Douglas Read, LABORATORY MANAGER

FOOTNOTES: P=QUESTIONABLE PRECISION; \star =INTERFERENCE; TR=TRACE; ND=NOT DETECTED; IS=INSUFFICIENT SAMPLE; NA=NOT ANALYZED; MS=MISSING SAMPLE ADVANCED TECHNIQUES AND INSTRUMENTATION FOR THE EARTH SCIENCES

42008 - 10 STREET N.E., CALGARY, ALBERTA, CANADA T2E 6K3 PHONE: (403) 250-1901

AUTHORITY:R. CHISOLM

TAIGA CONSULTANTS LTD.

100, 1300 - 8 STREET S.W. CALGARY, ALBERTA T2R 182

ATTN: R. ALLEN

BARRINGER Laboratories (NWT) Ltd.

PHONE: (403) 920-4500 05-0CT-87 PAGE: 1 OF 1 COPY: 2 OF 2

PROJECT: BC-83-10

WORK ORDER: 4357D-87

*** FINAL REPORT ***

GEOCHEMICAL LABORATORY REPORT

SAMPLE TYPE: ROCK

	FIRE	ASSAY
	A	U
2	PP	в

SAMPLE NUMBER

CRBC10:	120
CRBC10:	121

680.0 200.0

SIGNED:

Collect

C. Douglas Read, LABORATORY MANAGER

RECEIVED NOV 2 5 1987

FOOTNOTES: P=QUESTIONABLE PRECISION; *=INTERFERENCE; TR=TRACE; ND=NOT DETECTED; IS=INSUFFICIENT SAMPLE; NA=NOT ANALYZED; MS=MISSING SAMPLE ADVANCED TECHNIQUES AND INSTRUMENTATION FOR THE EARTH SCIENCES

la

T.D. 75.90 m (249')

Om

4

3

R

10

- 0 m

						OVB	Overburden	<i>6</i>
						l a b	Grey Siltstone Pink Siliceous Siltstone	
						2	Graphitic Argillite	GEOLOGICAL BRANCH
				•		3	Argillaceous Sandstone	ASSESSMENT REPORT
						4	Grey Argillaceous Limestone	
						Q	Quartz - Siderite Vein	17 007
						G	Gouge Zone	
						1	Lithological Boundary	
						0.72/6000	Sample Interval (width in metres/Au in ppb)	
							Brecciated Quartz recemented by coarse grain	ned Siderite
			201			1	Core Angle for Laminations, Foliation	
						1.	Attitude of Quartz, Siderite Veins	
						1.	Attitude of Limonite Filled Fractures	WINSLOW GOLD CORP.
					~	м	Missing Core	TROUT LAKE, B.C.
- 14						Ру	Accessory Pyrite	D.D.H. WINS 87-5
						Sph	Sphalerite	DATE NOV. 1987 NTS 82 K/11
) A		Br	Brecciated	SCALE I:250 0 5
								TAIGA CONSULTANTS LTD. MAP

14

10

OVB	Overburden	
la b	Grey Siltstone Pink Siliceous Siltstone	
2	Graphitic Argillite	GEOLOGICAL BRANCH
3	Argillaceous Sandstone	ASSESSMENT REPORT
4	Grey Argillaceous Limestone	
Q	Quartz - Siderite Vein	1/207
G	Gouge Zone	
/	Lithological Boundary	makes A hardward however
0.72/6000	Sample Interval (width in metres/Au in ppb)	
and a second sec	Brecciated Quartz recemented by coarse grained	Siderite
/	Core Angle for Laminations, Foliation	
1.	Attitude of Quartz, Siderite Veins	
1.	Attitude of Limonite Filled Fractures	WINSLOW GOLD CORP.
м	Missing Core	WINSLOW GROUP CLAIMS TROUT LAKE, B.C.
Ру	Accessory Pyrite	DRILL SECTION D.D.H. WINS 87-6
Sph	Sphalerite	DATE NOV. 1987 NTS 82 K/11
Br	Brecciated	PROJECT BC-83-10 DRAWN BY R. CHISHOLM
		TAIGA CONSULTANTS LTD. MAP

•

2

.:

•

1.4

1.0

1

		OVB	Overburden	2
123		1 0	Grey Siltstone	
<i>t</i>		b	Pink Siliceous Siltstone	GEOLOGICAL BRANCH
		2	Graphitic Argillite	ASSESSMENT REPORT
		3	Argillaceous Sandstone	
		4	Grey Argillaceous Limestone	17 007
		Q	Quartz - Siderite Vein	
		G	Gouge Zone	
10		1	Lithological Boundary	
		0.72/6000	Sample Interval (width in metres/Au in ppb)	
		11	Brecciated Quartz recemented by coarse graine	ed Siderite
	1	1	Core Angle for Laminations, Foliation	
		1.	Attitude of Quartz, Siderite Veins	
		1.	Attitude of Limonite Filled Fractures	WINSLOW GOLD CORP.
		м	Missing Core	TROUT LAKE, B.C.
		Py	Accessory Pyrite	D.D.H. WINS 87-7
		Sph	Sphalerite	DATE NOV. 1987 NTS 82 K/11
12				PROJECT BC-83-10 DRAWN BY R. CHISHOLM
		Br	Brecciated	SCALE 1:250 0 5 10m
				TAIGA CONSULTANTS LTD. MAP