LOG NO: 0408	RD.
ACTION:	
127.0	
FILE NO:	

DIAMOND DRILLING REPORT ON THE ENGINEER PROPERTY

ATLIN MINING DIVISION BRITISH COLUMBIA

FILMED

LOCATED:

59° 29'N, 134° 14'W

NTS 104M/8E

OWNER:

ERICKSON GOLD MINING CORP.

500-171 WEST ESPLANADE STREET

NORTH VANCOUVER, B.C.

WORK PERFORMED: SEPT/OCT 1987

REPORT BY: HANS SMIT, B.Sc.

DATE: APRIL 4, 1988

GEOLOGICAL BRANCH ASSESSMENT REPORT

17,253

SUMMARY

In September and October of 1987 Erickson Gold Mining Corp. drilled 1178 metres of core in eight holes on the Engineer property.

The Engineer property, located 35 Km west of Atlin, encompasses crown granted claims of the old Engineer Mine and surrounding modified grid claims. Gold mineralization on the property is hosted by lower Jurassic Labarge Group sediments and is associated with 145° to 160° striking shear zones. The silicified shear zones provide a large tonnage, low grade exploration target. Epithermal quartz veins in tension fractures related to the shear zones were the source of ore in the old mine and are a high grade, lower tonnage target.

Drilling was undertaken to test known structures at depths, and to follow up on targets from a reconnaissance geology, soil geochemistry, and geophysics program carried out on the property earlier in the year.

Numerous quartz veins were intersected, some containing enhanced gold values. Two holes targeted on a major shear zone, Shear A, intersected up to 29m of mixed quartz veins, silicified breccia and intensity silicified argillite. Gold values were low but anomalous throughout, (average 0.008oz/ton gold).

A hole targeted to intersect the Engineer vein, the main source of ore in the old mine, below the lowest mine level failed to intersect the vein.

Five holes were targeted on soil geochemical anomalies along another major shear zone, Shear B. Two holes returned assays of greater than 0.1oz/ton gold on the shear zone. Hole 87-104 had 0.5m at 0.273 oz/t, part of a 0.9m intersection averaging 0.179 oz/t and hole 87-107 had 0.3m at 0.188, part of a 4.2m intersection of mixed quartz veining and intensily silicified argillite.

Drilling did not delineate any ore around the old Engineer Mine. However the property continues to have good exploration potential. There are major structures on the property which were active over a long period of time, providing a deep seated plumbing system for mineralizing fluids. Numerous gold showings occur in the area, and much of the ground has never been explored with modern exploration techniques.

A program of geological mapping, soil geochemistry, and geophysics is recommended, focusing in the area along Shear A from the old mine area towards a quartz diorite intrusion on Engineer Mountain.

TABLE OF CONTENTS

		rage
1.0	INTRODUCTION	2 /
2.0	LOCATION AND ACCESS	2 (
3.0	PHYSIOGRAPHY	3/
4.0	CLAIM STATUS	5 /
5.0	PROPERTY HISTORY	6/
6.0	REGIONAL GEOLOGY	13 /
7.0	PROPERTY GEOLOGY 7.1 Lithology 7.2 Structure 7.3 Mineralization 7.4 Geological History of the Engineer Mine	14/ 16/ 19/ 20/
8.0	SUMMARY OF CURRENT WORK	22 /
9.0	DISCUSSION OF DRILL HOLES AND RESULTS	25 /
10.0	CONCLUSIONS FROM 1987 DRILL PROGRAM	27 ,
11.0	RECOMMENDATIONS	28 /
12.0	COST STATEMENT	29 /
13.0	REFERENCES	30 /
14 0	STATEMENT OF OUNLIFTCATIONS	31

TABLE OF CONTENTS (CONT.)

		Page
LIST OF TABLES	S AND FIGURES	
FIGURE 1 Loc	cation Map	1 /
FIGURE 2 To	tal Erickson's Engineer Property	4 /
FIGURE 3 Eng	gineer Mine Underground Workings	8 /
FIGURE 4 Req	gional Geology from Mihalynuk (1988)	11 /
FIGURE 5 Reg	gional Geology from Schroeter (1986)	12 /
FIGURE 6 198	87 Diamond Drilling (1:5000 scale)	23 /
TABLE 1 Dia	amond Drill Hole Summary	24 /

LIST OF APPENDIXES

APPENDIX A Drill Logs /

APPENDIX B Analytical Results /

LIST OF MAPS IN BACK POCKET

/ OE	1:1000 plan	showing geology	and diamond	drill holes
/ OF	11	ŧt	**	
/ OR	11	11	***	
/ os	**	11	11	

FIGURE 1 LOCATION MAP 1:8,000,000

1.0 INTRODUCTION

In September and October of 1987 Erickson Gold Mining Corp., a wholly owned subsidiary of Total Erickson Resources Ltd. of North Vancouver, British Columbia, conducted a diamond drill program on the Engineer Property. The Engineer property encompasses the workings of the old Engineer Mine on Taku arm of Tagish Lake and some of the surrounding area. Work was conducted on crown granted claims owned by Erickson Gold Mining Corporation (EGM).

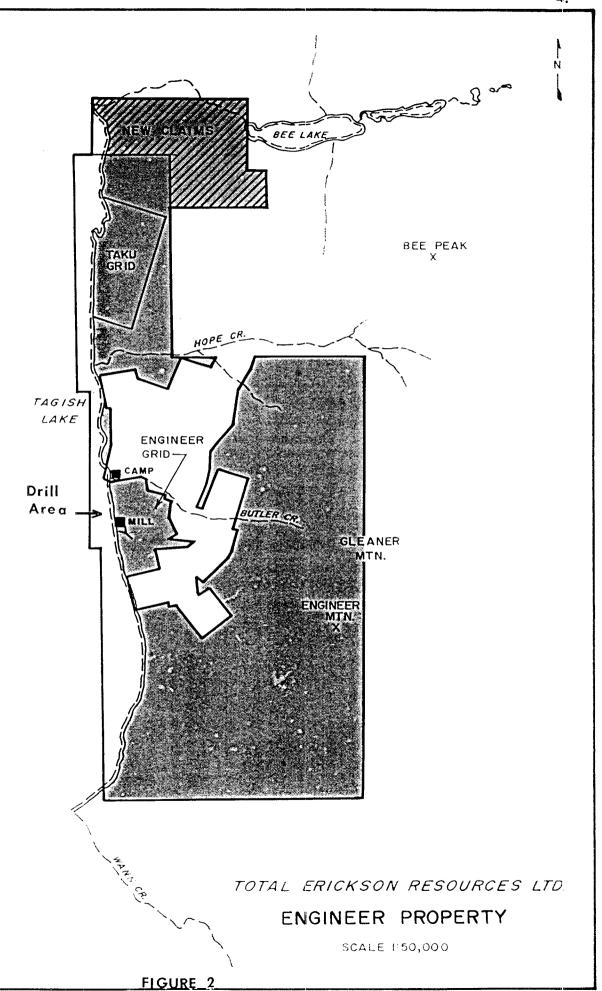
Claims worked on were; Northern Partnership #1, L 918; Northern Partnership #2, L20; Northern Partnership #3, L106; and Northern Partnership #4, L209. Assessment was filed on two claim groups, the Engineer 87 and Taku 87 Groups, which contain claims owned by EGM and by prospector Keith Lumsden.

Drilling tested known structures at depth and followed up targets defined by a reconnaissance geological mapping, geochemistry, and geophysics program undertaken on the property earlier in the summer.

A total of 1778 metres of core were drilled in 8 holes. This report gives the results of this drilling program as well as background information.

2.0 LOCATION AND ACCESS

The Engineer property is located on the East shores of Taku Arm, a branch of Tagish Lake, in northeastern British Columbia. The town of Atlin is 35 Km east of the property and Carcross, Yukon Territory is 100 Km north of the property.


There is no road access to the property. Various forms of transport were used to gain access. Heavy equipment was barged from Carcross or flown in with a Bell 205 helicopter. Lighter loads were moved using float planes from Atlin and Whitehorse, and a Bell 206 helicopter and boat from Atlin.

The Engineer property lies on the west facing slopes of Engineer, Gleaner and Bee Mountains. Elevations range from 650 metres at Lake level to 2000 metres at the peak of Engineer Mountain. In the lower portions of the property, there are a number of fairly level benches, with moderate to steep slopes between them. The upper parts of the property are steep mountainous terraine.

Below treeline vegetation cover varies from sparse pine in areas cleared or burnt during mine operation, to thick spruce and balsam fir in undisturbed areas. Swampy regions have thick strands of alder. Higher elevations have rock outcropping, felsemeer, permanent snow cover or alpine vegetation.

Rock exposure is good at higher elevations, and moderate to poor at lower elevations. Over the main mine area a number of steep slopes and old workings provide good exposure, with poor exposure in interlying flat areas.

Drainage from the property is westward into Tagish Lake, which drains into the Yukon River system.

4.0 CLAIM STATUS

CLAIM	LOT	RECORD NO	OWNER	EXPIRY
ENGINEER 87 GROUP		,		
NORTHERN PARTNERSHIP #1	918	C.G.	EGM	
NORTHERN PARTNERSHIP #2	20	C.G.	EGM	
NORTHERN PARTNERSHIP #3	106	C.G.	EGM	
HALE		2923	EGM	27 MAY 98
BUTLER		2924	EGM	27 MAY 98
ENGIN		2925	EGM	27 MAY 98
GLEAN		2926	EGM	27 MAY 98
BEE		2927	EGM	27 MAY 98
SWIX FR		3018	EGM	10 JUL 98
TUK FR		3019	EGM	10 JUL 98
A.M. FR		3020	EGM	10 JUL 98
JERSEY LILLY	21	19383	K. LUMSDEN	14 FEB 89
MYOSOTIS	239	19400	K. LUMSDEN	14 FEB 89
TAKU CHIEF	240	19399	K. LUMSDEN	14 FEB 89
LAKE VIEW	241	19398	K. LUMSDEN	14 FEB 89
BONANZA	915	19388	K. LUMSDEN	14 FEB 89
RUBBERNECK	916	19389	K. LUMSDEN	14 FEB 89
MICKEY	967	19397	K. LUMSDEN	14 FEB 89
DAISY	970	300	K. LUMSDEN	29 MAR 89
N.PARTNERSHIP #5	972	19401	K. LUMSDEN	14 FEB 89
BETSAY	1262	19387	K. LUMSDEN	14 FEB 89
GOLDEN HOPE SWEEPSTAKE 1	1263	299	K. LUMSDEN	29 MAR 89
CHACKAWANA	3283 3289	302 704	K. LUMSDEN K. LUMSDEN	4 APR 89 21 JUN 89
NEST EGG	3292	19386	K. LUMSDEN	14 FEB 89
TAKU 87 GROUP				
ENGINEER #1	19	C.G.	EGM	
NORTHERN PARTNERSHIP #4	209	C.G.	EGM	
PHILADELPHIA FR	207	2881	EGM	6 MAY 98
BUE FR		2920	EGM	27 MAY 98
TAKU		2921	EGM	27 MAY 98
FET		2922	EGM	27 MAY 98
PATTY		3021	EGM	10 JUL 98
SHAUNA		3022	EGM	10 JUL 98
PLATO	968	2791	K. LUMSDEN	6 JAN 89
SPECULATION	969	301	K. LUMSDEN	29 MAR 89
HILL FRACTION	1264	298	K. LUMSDEN	29 MAR 89
SMITH FRACTION	4658	298	K. LUMSDEN	29 MAR 89

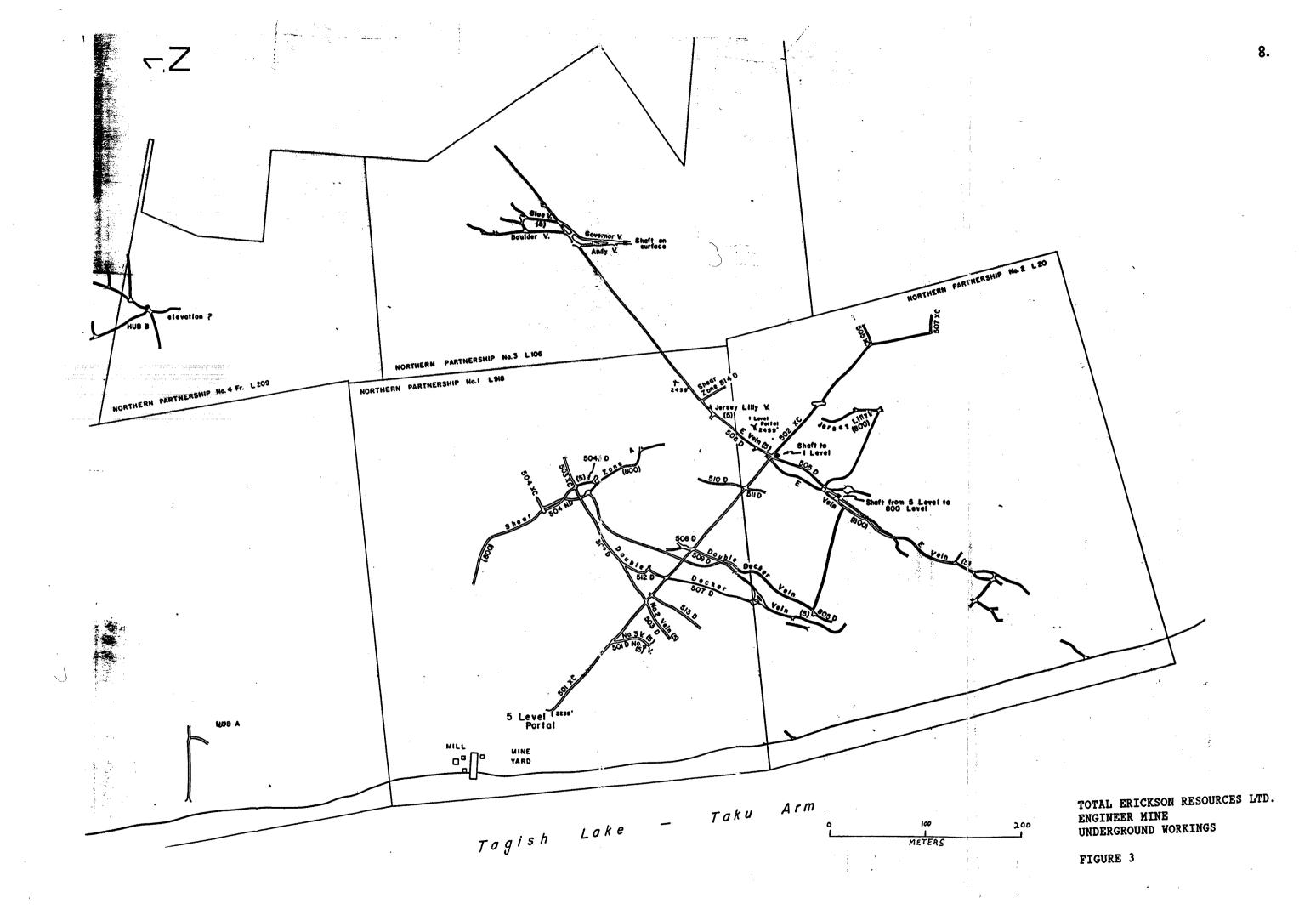
The Engineer Mine has had a long and colorful history. The first claims in the area were staked in 1899 by men working on the construction of the White Pass and Yukon railway. The Engineer Mining Company of Skagway was formed to explore and develop the outcropping auriferous veins which lead to the original staking. In the period from 1900 to 1902 a number of surface cuts and adits were completed. A small amount of hand sorted ore was shipped and a stamp mill was brought onto the property. However there are no reports of the mill being used during this period.

Interest in the property by the original owners waned and the claims lapsed in 1906. Edwin Brown and partners of Atlin restaked the ground and sold it to the Northern Partnership syndicate of Atlin, headed by Captain James Alexander, in 1907. From 1908 to 1911 this syndicate carried out extensive surface exploration and mining and the stamp mill brought to the property earlier was set up.

In 1912 James Alexander increased his control of the property and started a major underground development. Most of this development was on the Engineer Vein. By 1918 a 210 foot shaft was sunk and four levels (from 100 to 400) developed on the As well, a crosscut (Mill crosscut or 500 level) from near the lake shore was initiated which was intended to intersect the Engineer vein after 360 metres. It was undertaken to provide access and a haulage level for the Engineer Vein and other parallel structures to a millsite about 30 metres above the A crosscut from close to the 100 level portal was started to intersect the Boulder and neighbouring veins, though work on this heading did not progress very far.

Production records are incomplete, but it appears that sporadic production of high grade ore was accomplished during this period. Annual production figures range from 34 to 1100 tons, with grades consistently above 2 oz/T Au. The Minister of Mines Report for 1918 reports one 24 lb 8 oz allotment of hand sorted ore contained 160 oz of gold.

In 1918 James Alexander lost his life in the sinking of the 'Princess Sophia' in Lynn Canal, along with his wife, a mining engineer, and agents for a prospective buyer of the property. The property fell into litigation concerning ownership after the loss of Alexander and was idle until 1922.


In 1922 heirs of Alexander, the Smith interests, were awarded the property. From these people New York based entrepeneurs acquired control of the property in 1923 and formed Engineer Gold Mines to develop it in 1924. Considerable work was undertaken from 1923 through 1925. New bunkhouses were constructed, a new 50 TPD mill constructed, a power dam and generating station were constructed on the Wann River south of the mine and a transission line to the camp completed, the Mill crosscut was completed, and 3 diamond drill holes were drilled to test the A and B hubs and a number of small veins by the Boulder Vein. Up to 140 men were employed at one time.

In 1925 reports from the mine were so favourable that stock of Engineer Gold Mines rose to \$100.00 on the New York exchange. Irregularities in the stock rise resulted in fraud investigation against some of the principals of the company. Reportedly more effort was put into stock manipulation by the owners than in developing minable tonnage.

Between 1925 and 1927 the majority of the mine's reported ore was During this period 15,143 tons grading 0.77 oz/T Au were milled. Further development work during this time included the sinking of an internal shaft from the 500 level on the Engineer Vein and the development of the 600, 700 and 800 levels on the vein 100 feet below each other. On the 800 level a crosscut to the Double Decker vein was completed and this vein On the 500 level a crosscut to the veins east of drifted upon. the A shear, (Boulder, Andy, Blue, Shaft), was driven and some drifting on these veins done, including 180 metres on the Boulder As well a shaft was sunk on the B Hub and some drifting off the shaft undertaken. Incomplete production reports indicate that some production occurred from the lower mine levels and that good grade was encountered on the 800 level. Sporadic good values were reported from the Boulder vein as well.

Mining and production became sporadic after 1927 and less than 1000 tons of ore were produced from 1928 to 1931 when the mill officially shut down. Some development continued to explore the lower grade, high tonnage targets along the A shear. Some low gold values were reported from the zone during this work.

From 1932 to 1934 Reginald Brooks did some selective hand mining on the property. In 1934 Mining Corporation of Canada bought the mine at a sherrif's sale. They never worked the property, but lessees from Atlin intermittently high graded from the Engineer and Double Decker veins above the flooded 600 level until 1952.

No production was reported after 1952. Production records are incomplete but from 1910 to 1952 18,421 tons of ore resulting in 19,637 oz of gold were reported. (1.07 oz/T Au). During this period some 5500 metres of drifting and crosscutting were completed. Production was carried out from eight levels on the Engineer Vein, (over a vertical distance of 190 metres), from two levels on the Double Decker vein, and from a number of surface cuts.

In the early 1960's Tagish Gold Mines Ltd. acquired the five main crown grants of the old Engineer Mine. In 1975 Nu Energy Development Corporation acquired the mine through a merger with Tagish Gold Mines. Nu Energy conducted an underground program in 1975 involving detailed sampling of the A shear zone where it is crossed on the 500 level, some underground mapping, and an attempt to dewater the mine to resample levels below the 500 Gold assay results from percussion drill sludges and chip samples of the backs within the A shear on the 500 level were Most were 0.01 oz/T Au to trace and none were higher very low. than 0.03 oz/T. Attempts to dewater the lower levels were unsuccessful and only a brief look at the 600 and 700 levels was accomplished. Unexpectantly high water inflow rates exceeded the capacity of the pumps used.

In 1979 Nu-Lady Gold Mines Ltd. optioned the Engineer mine. In 1980 this company conducted a 15 hole diamond drilling program targeted on known vein structures accessible from the main mine. No significant intersections resulted. In 1981 a further 11 holes were drilled and a geochemical soil survey conducted over an overburden covered area in the north part of the property. Six of the holes tested northeastward extensions of the Double Decker and Engineer veins. Three holes were drilled by the Boulder Vein east of the A shear and 2 holes were drilled to test an anomaly generated by the soil geochemical survey. Only 1 hole, 81-11 testing the geochem anomaly, had a significant intersection. It had one assay of 0.76m of 0.19 oz/T Au.

In 1983 further work discovered the Nutcracker vein 45 m southeast and parallel to the Engineer vein. The vein was 0.4 m wide where discovered and a composite grab ran 3 oz/T gold. The structure was trenched but was only 1 to 5 cm wide over a 12 m strike length and the original 0.4 m appears to have only been a small pod. Six drill holes were targeted on the structure but only stringers with low gold values (highest grade 0.024 oz./ton gold) were encountered. One other hole was drilled in 1983 but no information is available about it.

Nu-Lady's option on the property lapsed in 1985. Core from their drill programs was put into new core racks during 1987 and boxes relabelled where possible. Unfortunately drill plans for the 1980 holes and all drill logs are unavailable.

Total Erickson Resources Ltd. is now the sole owner of the property through Erickson Gold Mining Corp., as Nu Energy became a part of Erickson. In February of 1987, Erickson had an airbourne VLF/Mag survey flown over the mine and surrounding country and in May staked a number of grid claims around the old crown and reverted crown grants adjoining the minesite. In June and July a surface geology, soil geochemistry, and geophysics program was conducted over the old minesite and on some of the new claims. This was followed in September by the drilling described in this report.

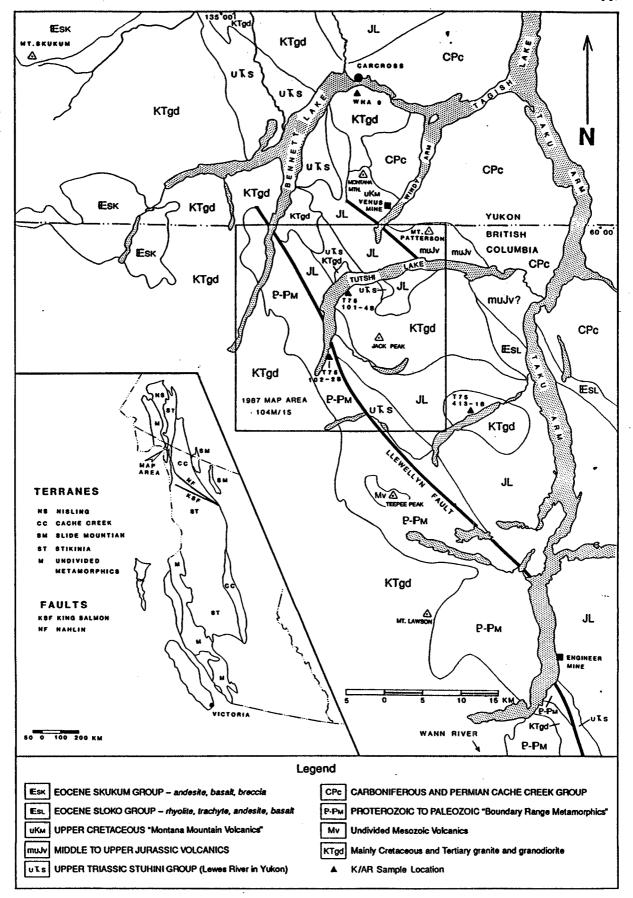


Figure 1-20-1. Regional geologic and tectonic setting of the Tutshi Lake map area (104M/15).

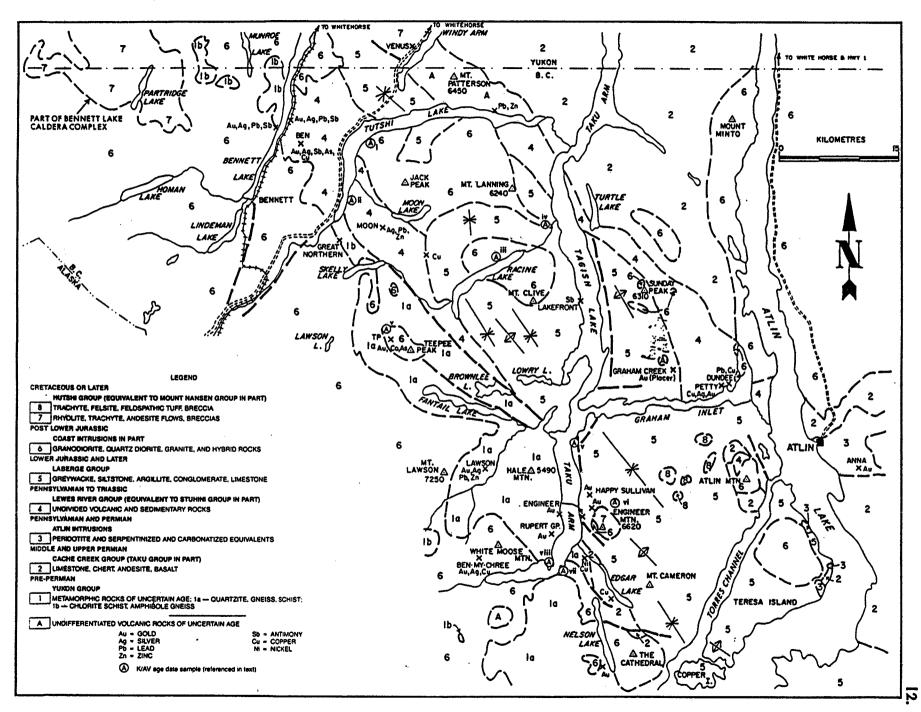


Figure 26-1. Compilation of geology, structure, and mineral deposits. Bennett area.

The Engineer Mine is located in the intermontaine region, just east of the Coast Crystalline Belt. It is hosted by rocks within the Whitehorse Trough, a northwest-southeast fault bounded synclinorium.

The synclinorium is bounded to the northeast by upper Paleozoic rocks of oceanic affinity belonging to the Cache Creek Group (Atlin terrane), along a presumed extension of the northwest striking Nahlin fault.

To the southwest the synclinorium is bounded by the dextral transcurrent Llewellyn Fault. Immediately west of the fault are rocks grouped as Boundary Range Metamorphics (Mihalynuk, 1988). This unit is composed of variably metamorphosed clastics, sediments, and lesser basalts of pre Permian age. Pervasive foliation and structural overprinting suggests a long metamorphic history for these rocks.

The Boundary Metamorphics form the eastern boundary of the main Coast Plutonic Complex, though pluton outliers occur within and to the east of the Boundary rocks.

Rocks within the synclinorium are interpreted to be deposited within a fore arc basin (Morrison, 1981) and are considered part of Stikinia terrane (Wheeler, 1987). Basal rocks of the synclinorium are Upper Triassic mafic flows and associated volcaniclastic rocks of the Stuhini Group. Overlying the Stuhini rocks, and dominating the center of the synclinorium, are a thick sequence of sedimentary rocks belonging to the Lower Jurassic Labarge Group. Rocks within this group include siltstones, sandstones, argillites, conglomerates and minor limestone.

There are a series of volcanic rocks with limited lateral extent which locally overlie the Labarge group. These volcanic rocks are of Jurasic, Upper Cretaceous (Montana Mountain Volcanics) and Eocene (Sloko Group) age. Intrusive rocks include rocks related to the volcanic episodes as well as intrusives related to the Cretaceous Coast Plutonic Intrusions.

Structure in the area is dominated by the large northwest stiking dextral faults (Llewellyn and Nahlin) and by northeast-southwest shortening of the Synclinorium. Shortening has resulted in extensive folding within the rocks, especially amongst the Labarge Group.

The major fault zones and subsidiary structures provided a deep seated plumbing system which was used by various intruding bodies. As well, mineralizing fluids were able to use these conduits and there are a host of showings in the area related to north to northwest trending shears.

Just east of the Engineer Mine, the Gleaner veins, a series of epithermal veins of similar character to the mine veins, occur. These veins were explored from the turn of the century till about 1930. Two adits, one 220 m long, the other 60 m long were driven to crosscut the veins, but no production occurred.

Approxiamately 3 km northeast of the Mine, on the Happy Sullivan property, a zone of high grade, probably epithermal, veins associated with a major north striking lineament was discovered in 1899. Two small adits were driven on this showing in the early 1900's. In 1984-85 De Baca Resources completed an 80 metre long adit on the veins.

Within Boundary Range Metamorphics discontinuous veins with abundant base metals and some gold occur on the shores of Tagish Lake south of the Wann River and directly across from Engineer. Above Bighorn Creek, 13 km northwest of Engineer, mesothermal quartz veins with gold and coarse pyrite occur within the metamorphic rocks. These veins were worked on in the early 1900's and limited production was acheived.

7.0 PROPERTY GEOLOGY

7.1 Lithology

The predominant rock type underlying the Engineer property is Lower Jurassic Labarge group. In the extreme southwest corner of the property, tuffs of possible Upper Triassic Stuhini Group outcrop. Otherwise, all other rocks on the property are younger than the Labarge rocks.

Within the property, Labarge rocks are predominately siltstone or argillite with lesser sandstone and minor conglomerate and limestone. Bedding is generally well developed though later alteration sometimes masks it. Bedding thickness is millimeter to centimeter scale in the fine grained sediments and centimeter to ocassionally meter scale in the sandstones.

The finer grained sediments are generally grey to black with occasional greenish color, while the sandstones tend to be lighter color, especially upon weathering. Ubiquitous fine to medium grained disseminated pyrite is common. Intrusive activity has resulted in varying amounts of hornfelsing of the Labarge Group within the property.

At the higher elevations of Engineer and Gleaner Mountains a distinctive volcanic unit outcrops. This unit is pimarily composed of volcanic breccia or lappilli tuff. Clasts are heterogeneous, usually angular, and vary in size from millimeter scale to more commonly one to ten centimetres to occassionally greater than one metre. They vary in composition from felsic to andesitic. The unit tends to have moderate pervasive clay alteration.

No fragments of Labarge group were observed within the volcanic breccia, but a post Lower Jurassic volcanic center on Engineer Mountain is indicated by this unit.

At the upper elevations of Bee Peak a massive bedded unit overlies the Labarge argillites which has been previously mapped by Christie (1957) as Labarge Group. This unit has a somewhat tuffaceous nature however and is much less deformed than the underlying argillite. It may represent more distal rocks from the same volcanic event. Similarly, south of the volcanic breccia unit on Engineer Mountain a unit with predominately greenish, bedded cherty tuffs overlies the dark grey to black argillites. This unit may also represent rocks associated with the volcanic center on Engineer Mountain. Consequently, these two possible volcanic related rock types have been mapped out and put into one unit.

There are two main intrusive rock types. One is a quartz poor feldspar-augite porphyry. Rocks of this unit occur as a small plug on the northern end of Engineer Mountain, large dykes in the area around this plug, and as occassional dykes and sills within the Labarge Group away from the plug, including in the mine area. The ratio of feldspar to augite phenocrysts varies from almost solely feldspar to predominately augite, though feldspar usually predominates. Phenocrysts are generally between 4 to 10 millimetres long, euherdral, and occassionally show weak to moderate trachytic texture. The matrix is aphanitic to fine grained and light to dark green in color.

The feldspar augite porphyry seems to be coeval with the volcanic unit on Engineer Mountain. Clasts of similar rock are found within the volcanic breccias and the porphyry intrudes the volcanics.

The other major intrusive rock is a plug of quartz diorite on Engineer Mountain and its related dykes. Rocks of similar composition are found in rounded talus on the flanks of Gleaner Mountain above Hope Creek. Another intrusion may underlie this area. The quartz diorite is moderate to coarse grained, light grey-white-black colored, and tends to weather light brown. This intrusion is assumed to be related to the Coast Plutonic Complex.

Dykes of similar composition to the quartz diorite and aplitic and monzonitic dykes which are likely related intrude the Labarge Group rocks. In one place a granitic dyke crosscuts the feldspar-augite porphyry and volcanic units but the relationship between the intrusives is not well established. The contact between the two is not distinctive and further work is required to properly define it. The quartz diorite appears to be a later intrusion but the two may be just different textural and compositional variations of the same intrusion.

If the quartz diorite is later it would put the age of the volcanic unit at between Lower Jurassic (Labarge rocks) and Mid Cretaceouys (Coast Intrusives). Mihalynuk (1988) describes similar volcanic rocks of Mid to Upper Jurassic age in the area north of Engineer.

Other intrusives on the property have been grouped as Diorite Dykes. These include a number of mostly fine grained to medium grained grey to green dykes and sills. Less than 2mm mafic phenocrysts are sometimes visible. Diorite dykes were observed crosscutting and altering other diorite dykes, indicating more than one generation of these dykes.

7.2 Structure

Structure on the property is dominated by a northwest-southeast, (145° to 160°) trend, though an east-west gentle folding is sometimes discernable. The NW-SE trend is due to compression of the Whitehorse trough, resulting in regional folding, and to shearing stress related to the Llewellyn fault and its subsidiary structures. A number of zones of strong deformation striking 145° to 160° and tens to hundreds of meters wide related to the Llewellyn fault occur on the property, with less deformed rocks between. These deformed zones contain strong folding, dextral shear zones, or a combination of the two. Motion on shears is dextral and predominately strike-slip.

Only the Labarge and Stuhini rocks are affected by most of the structural deformation. The overlying Volcanic rocks show only gentle folding, and intrusive plugs and dykes show no major signs of deformation.

In the Labarge rocks, outside the shear deformation zones bedding generally strikes north to northwest and dips moderately to steeply to the east. Within the deformation zones a moderate to strong foliation is developed, bedding is rotated into the shear direction and folding is common. Folds are open to more commonly tight to isoclinal. Broken and rootless folds and minor drag folds are common. Fold amplitude varies from one to several tens of meters. Fold axis are are orientated at 145° to 160° and most commonly plunge shallowly to the southeast, though plunge angle and direction is variable.

Foliation is axial planer to folds and parallel to the shear zones. Dips are generally moderate to steeply northeast.

Two major shear zones transect the property around the old mine workings, (Shear A and Shear B). Shear A forms a distinct linament which can be traced for 4Km running at 145° from Tagish Lake just south of camp to the south end of the property. In the area around the old mine where the shear zone outcrops and has been drifted on and intersected with diamond drill holes, the steeply east dipping shear zone consists of a 5 to 20m wide zone of silicifed argillite, silicified breccia with argillite and quartz fragments, and quartz veining. Recemented fragments, cockscomb textures and alternate quartz and calcite layering in vugs and around fragments indicates multi-episode generation for this structure. The walls of veins have polished surfaces and slickenslides plunging shallowly southeast in places.

At the north end of this structure, 100m east of Tagish Lake, there is a large oval shaped structure 40m wide by 60m long with abundant quartz veining, stringers, and silicification known as Hub A. Old reports suggest that Shear A and a number of quartz veins radiated out of this hub. However it appears that the hub is caused by the intersection of structures running 010° to 020° with Shear A.

South of the old mine area Shear A can be traced as a small linear depression running to the western contact between argillite and the quartz diorite intrusive on Engineer Mountain. The zone then forms the western contact between the intrusive and Labarge argillites. This contact is steeply west dipping to vertical and bedding in the Labarge sediments tends to be parallel to the contact. No shearing is evident along the contact suggesting that the contact is not because the two rock types have been juxtapositioned along the shear zone but that the intrusive rocks used the shear zone as a conduit for implacement.

South of the Quartz Diorite, the shear zone becomes the contact between dark grey to black Labarge argillites and sandstones to the west and moderately folded green to grey Cherty Tuffs to the east. The actual contact between the two rock types was not observed so whether or not it is a shear contact is unknown, however the recessive nature of the contact would suggest that there may be a shear/fault zone in this area.

Shear B, the other major shear zone on the old mine property, appears to start at another large hub of quartz veining and flooding 100m east of Hub A. It runs at 160° from this hub and is similarly a zone of quartz veining, silicified breccia, and intensity silicified argillite. This structure dips 65° to 70° to the northeast. Shear B is not as well defined as Shear A, and is usually only a few meters wide in drill intersections. It can be traced for about 600m through drill intersections and a shallow surface depression.

Veining around the mine is directly related to the two shear zones and always hosted by Labarge rocks. A number of veins striking 360° to 045° project into, but do not cross, the shear zones. Veining can be broken into two types. There are shear type veins with abundant parallel stringers, parallel foliation developed in the argilite host rock, abundant wallrock and vein fragments, and minor vugs. These vein structures strike at low angles to the main shear zones and are interpreted to be Riddell shears off of them. A-3 vein and a number of other smaller structures southwest of Hub A are examples of this kind of vein.

The second type of vein has sharp walls, few associated stringers, and is discordant to bedding and foliation. In places individual beds can be traced directly across the structure. Large vugs, long quartz and calcite needles, and angular wallrock fragments are ubiquitous. These veins are hosted by moderately hornfelsed rock and are interpreted to be brittle tension type. The Double Decker and Engineer veins are examples of tension type veins.

On the 500 level, as the Double Decker approaches Shear A its strike changes from 030° to 010° and it changes from a tension type to a shear type vein. Development of these veins thus would appear to have involved ductile deformation and the development of Riddell shears off of a major shear zone. In areas with hornfelsed, very competent rocks, the ductile shear was only able to continue a short distance from the main shear zone and then brittle deformation replaced it.

Alteration around the veins is limited and consists of silicification and 2 to 5% disseminated pyrite in a generally less than 1m envelope. Diamond drill holes intersected a dyke within Shear A. However the veins associated with the shear all crosscut any dykes which they encounter, indicating a late stage development of the veins.

Veining occurs west of Shear A, (A-3, No. 1 through 7, Double Decker, Engineer, and Jersey Lily veins), and west of Shear B, (Boulder, Andy, Blue, and Shaft veins). Veins west of Shear A have vertial to steep southeast dips while those west of shear B tend to have moderate southeast to east dips. Vein widths vary considerably along strike but are generally less than 1m.

Just off of claims owned by Total Erickson there is a series of veins east of Shear B, (the Gleaner veins), and a very large quartz vein, (the Mickey vein), strikes northeast from Hub B.

On parts of the Engineer property away from the old mine other major shear zones have been outlined. At 1300m elevation on Gleaner Mountain, just above the Bee and Glean LCP, an up to 18m wide zone of intensity silicified argillite and silicified breccia outcrops in a creek gully. The zone strikes 005° to 010° and dips 70° to 80° to the west. Talus covers any strike extension of this structure.

Ground magnetics and VLF over the Taku grid north of the mine indicates that 150° structures underly this area, though extensive overburden masks them. North of Hope Creek a major lineament trending at 010° can be traced for 3.0 Km. At its southern end, along a contact between Labarge argillite and massive sandstone/tuff, this structure hosts auriferous quartz veins within a zone of quartz-carbonate alteration on the Happy Sullivan Property. The northern portion of this lineament lies on Total Erickson owned claims.

7.3 Mineralization

Mineralization on the Engineer property is contained within structures hosted by Labarge group sediments. Two principal There are the large shear zones which target types exist. provide a large tonnage low grade target. The shear zones contain abundant pyrite, (1 to 5%), disseminated in fragments. with the pervasive quartz flooding, along fractures and within Old data from the mine reports some low gold values from samples taken from Shear A underground with some sporadic higher, Au), values also reported. oz/ton Recent work has similarily resulted in some low gold values, (<0.1 opz/T), from Shear A and B as well as the shear zone on Gleaner Mountain, but no economic grades have been encountered.

The most important mineralization found on the property to date is contained within the tension type veins which are associated with the shear zones. These veins are composed of quartz and lesser calcite with minor mariposite, and a pale green mineral, possibly prehnite. Vugs from millimeter to tens of centimeter scale, drusy quartz and calcite coatings, cockscomb texture, long prisms of quartz and calcite and angular wallrock and vein fragments are common. Vugs and fragments often have successive layers of quartz or calcite and euhedral quartz or calcite Such textures indicate an crystals are common in vugs. epithermal multi-injection genesis for the veins. The angular nature of fragments, the large vugs and the needle-like shape of some of the crystals all preclude any major shearing taking place during vein genesis.

Gold is the only economic mineral of significance within the veins. It occurs as native gold and gold tellurides disseminated within the quartz and as thin scales, leaves and fine dendritic forms within fractures and vugs. Sulphide content in the veins is very low, (less than 1%). Associated sulphides include pyrite, chalcopyrite, galena, tetrahedrite, allemontite, (an antimony suphide), and berthierite, (an iron-antimony sulphide).

Gold grades are extremely erratic and oreshoots in the old mineworkings tended to be narrow and steeply plunging. Often samplea would assay trace in gold directly beside ones running several ounces in gold per ton.

Historically the best gold grades were obtained from the Engineer and Double Decker veins. Other veins on the property, while having some good gold assays, were never found to be consistent enough to justify any significant mining.

7.4 Geological History of the Engineer Mine

Observations from 1987 field work combined with published work about the Engineer area suggests the following scenario for the geological history of the Engineer Mine.

During the Late Triassic volcanic rocks of the Stuhini Group were deposited within the northwest trending Whitehorse trough. These were overlain by the sedimentary Labarge Group rocks during Lower During the late stages, or after, deposition of Jurassic time. sediments. plate tectonics resulted Labarge shortening of the Whitehorse trough and northeast-southwest development of the Llewellyn Fault, a major transcurrent dextral fault system which formed the west boundary of the Whitehorse trough in the area. These events resulted in folding of the through compression and shearing and the Labarge rocks development of susidiary shears off of the Llewellyn Fault, including Shear A.

During Mid Jurassic times magma used Shear A, or a parallel shear, as a conduit and the volcanics on Engineer and Gleaner mountains were extruded. The feldpar-augite porphyry plug and dykes are the intrusive equivalent of these volcanics. The Labarge rocks started becoming hornfelsed during this event and the first quartz may have been implaced in Shear A and B.

During Cretaceous time Shear A was again used as a conduit by a rising magma and the quartz diorite plug was implaced. Dyking continued in the area around the mine and the argillites became more hornfelsed towards the intrusive contact. Shear A continued to be active and at times opening occurred, resulting in more quartz being injected. Gentle east-west deformation may be related to this period, though the shear zone shows no evidence of it.

During the late stages of this intrusion dextral shearing occured along Shear A resulting in polished surfaces and slickenslides along margins of quartz veins within it. This shearing did not opening within the structure but it did result in cause subsidiary, Ridell, shears off of it. Where these shears the previously hornfelsed argillite deformation encountered became brittle and tension structures with opening resulted. These openings resulted from sudden breaks and abundant wallrock Late stage deuteric fluids from the fragments were produced. intrusion, or fluids from within country rock, filled the open spaces of the tension fractures. Injection of fluids occurred over a number of episodes and under epithermal conditions. Some of the last fluids contained gold.

After the veins were implaced, very little deformation or later alteration occurred.

e (i.s. **8**¦jaa −

Erickson Gold Mining Corp., a wholly owned subsidiary of Total Erickson Resources Ltd., conducted a diamond drill program on the Engineer property in the fall of 1987. Eight NQ diameter holes were drilled during the period from September 4 to October 20, 1987 resulting in 1778 meters of core.

All core with mineral potential was split and one half sent to Min-En Labratories of North Vancouver for analysis for gold by ire assay or AA and for 31 multi-elements by ICP. A total of 434 core samples were sent. All remaining core was stored on the property in newly constructed core racks.

A Sperry Sun was used to survey down the holes. After drilling, all hole collar locations were surveyed and tied into UTM coordinates.

Drilling was contracted to Conners Drilling of Kamloops, British Columbia. Mobilization of drill equipment and personnel was done using a Bell 205 and 206 helicopters. Supplies were brought in from Atlin by boat. Demobilization was done using a boat to Atlin and a barge to Carcross. A John Deere 350 bulldozer was brought in for drill moves by barge. Unfortunately it spent most of the time in small pieces and a Bell 206 helicopter was required for most of the drill moves.

TABLE 1
DIAMOND DRILL HOLE SUMMARY

HOLE #	NORTH	LOCATION (UTM EAST	ELEV.	AZIMUTH	DIP	LENGTH (M)
87-101	6,594,009.0	543,322.4	773.7	295	-55	291.4
87-102	6,594,067.5	543,394.0	802.0	250	-55	319.7
87-103	6,594,276.2	543,482.4	817.5	293	-42	209.7
87-104	6,594,276.2	543,482.4	817.5	295	-59	99.7
87-105	6,594,528.2	543,368.3	797.2	104	-44	142.0
87-106	6,593,962.9	542,920.3	704.1	102	-48	331.3
87-107	6,594,565.3	543,254.4	773.4	103	-44	196.9
87-108	6,594,191.3	543,411.3	803.6	296	-49	187.8

Two of the eight holes were drilled to test Shear A at the elevation of the lowest level in the old mine, (800 level). Hole 87-101 was targeted on the shear zone where the strike projection of the Engineer vein intersects it at the 800 level. This required a fairly low angle intersection to the shear zone in order to get a good angle to also intersect the Engineer vein. Unfortunately due to the low angle which the drill hole encountered the foliation of the shear the drill azimuth turned northward down the hole and drifted away from its intended target.

The hole did intersect Shear A and a 29.8m intersection of mixed quartz veining, silicified breccia and intensily silicified argillite was encountered. The zone contained 1 to 5% pyrite disseminated in the quartz, in fractures and in small vugs. Most of the intersection was weakly anomalous in gold content with an average grade of 0.009 oz/ton gold. One 1.1m section graded 0.054 oz/ton gold.

On plan this intersection does not line up well with the shear zone location shown in old mine plans or with an intersection in 87-102. Possibly the Sperry Sun was being affected by magnetic dykes and the actual azimuth of the hole is somewhat south of that recorded.

As well as the Shear A intersection 87-101 had six quartz vein intersections from 0.2m to 2.3m long and grading between 0.001 and 0.007 oz/ton gold.

Hole 87-102 was drilled at a high angle to Shear A to prevent deflection of the drill hole. It had a 24.1m intersection on the Shear zone, of similar character to the one in 87-101. Average grade was 0.007 oz/ton gold. This hole intersected 4 quartz veins byefore the shear zone ranging from 0.4 to 1.1m wide and grading between 0.001 and 0.007 oz/ton gold. All of these veins contained minor pyrite, and one contained traces of tetrahedrite.

Holes 87-106 was drilled to test the Engineer vein 70m below the 800 level. It had a 1.6m intersection on the Double Decker vein grading 0.004 oz/ton gold, but never intersected the Engineer vein. Either it crossed the structure in an area where the vein is pinched out, or else the vein does not continue to this depth.

The other 5 holes tested anomalies around Shear B from the soil geochemistry survey conducted earlier in the summer. Hole 87-103 intersected a zone with quartz stringers at low angles to the core axis which contained abundant sphalerite, arsenopyrite, galena and pyrite which graded 0.026 oz/ton gold.

Hole 87-103 hole also intersected two 0.4m quartz veins which graded 0.015 and 0.002 oz/ton gold, and a 0.9m quartz vein with abundant fragments and vugs which may be Shear B. This intersection graded 0.001 oz/ton gold.

Hole 87-104 was a steepening of 87-103. It intersected two zones of mixed quartz stringers, breccia, and silicification which may be Shear B. The first graded 0.179 oz/ton gold ovr 0.9m and the second graded 0.005 oz/ton over 1.6m.

Hole 87-105 was drilled to test an arsenic anomaly east of Shear B, 130m southeast of Hub B. It intersected two quartz veins in the upper part of the hole, with the best assay 0.006 oz/ton gold over 1.6m. A number of stringers were intersected further down the hole, but none contained signifiant gold.

Hole 87-107 was drilled west of 87-105 to test Shear B. It intersected 4.2m of mixed quartz stringers, veins and silicified breccias which averaged 0.020 oz/ton gold and included 0.3m of 0.188 oz/ton gold. Two other veins, 1.7 and 1.2m wide, were also intersected but they did not contain gold.

Hole 87-108 tested the area by the old underground workings around the Boulder vein. A dyke/stringer zone grading 0.007 oz/ton gold over 1.2m was intersected in the upper part of the hole, and lower down there was a 1.6m intersection of quartz stringers which is probably the Boulder vein. It only assayed 0.001 oz/ton gold.

10.0 CONCLUSIONS FROM 1987 DRILL PROGRAM

The 1987 drill program on the Engineer property confirmed the existence of a number of quartz veins and large quartz rich shear zones containing anomalous gold values. However no significant mineralization was encountered and only two assays grading better than 0.1 oz/ton gold were obtained.

Shear A was intersected by two holes at around 600m elevation and shown to have a true thickness of 13 to 15m at this level. Only low gold values were obtained from it, (average 0.008 oz/ton).

The Engineer vein may not extend to 70m below the 800 level of the old mine.

Shear B was intersected in 1 hole for sure and probably in 2 others. It had a true thickness of up to 1.8m. Two samples from the structure assayed between 0.1 and 0.2 oz/ton gold.

A number of quartz veins were intersected around Shear B. Some were anomalous in gold but none had significant gold assays.

Wherever an anomaly from the previous soil geochemistry survey, (mostly arsenic anomalies), was drilled, a quartz vein was intersected. This highlights the value of using soil geochemistry to locate veins on the property.

A substantial amount of drilling has now been conducted over the area around the Engineer Mine. Very few assays with more than 0.1 oz/ton gold have been returned from this work and no potential ore zones have been delineated. The very poddy nature of gold mineralization within the high grade veins makes it hard to properly test them through drilling. The shear zones have so far not proven to contain any significant gold content. It is likely that at the time of gold mineralization the shears were not zones of opening in the area around the mine and thus gold bearing fluids were not able to deposit within them.

However the entire Engineer property remains an attractive exploration bet. Shear A is a major structure which was active for a long time and provided a very deep seated plumbing system to be used by mineralizing fluids. Other shear zones occur on the property which may have similar characteristics. If zones of possible opening during mineralizing events can be found on these structures, they will provide good exploration targets.

The potential of finding new high grade veins related to shear zones, similar to the Engineer vein, through soil geochemistry is good.

Therefore a program of continued geological mapping, geophysics, and soil geochemistry is recommended. This work should focus around Shear A towards the quartz diorite intrusive. Other shear zones on the property should also be examined. No further drilling is recommended unless new targets are generated, or further research allows better targeting of drill holes on known targets.

12.0 COST STATEMENT

DRILLING COSTS:					
coring 1778 X \$90.00/meters	\$160,020.00				
labour/supplies/rig charges 8 X \$2000.00/hole	16,000.00				
Sperry Sun tests	1,755.00				
27 X \$65.00/test core boxes					
300 X \$16.50/box core racks	4,950.00				
	5,334.00				
assays 434 X \$18.00/assay	7,812.00				
mobilization of drill to Atlin	5,000.00				
surveying 8 X \$200.00/hole	1,600.00				
cat rental					
fueL	2,000.00				
	4,050.00				
TRANSPORTATION					
Bell 205 helicopter 15 X \$1501.50/hour	22,522.50				
Bell 206 helicopter 30.9 X \$582.50/hour	17,999.25				
Twin Otter	1,013.00				
Cessna 185					
boat	500.00				
16 X \$250.00/trip	4,000.00				
barge 62 X \$75.00/hour	4,650.00				
Honda 4-wheeler	2,000.00				
TOTAL ERICKSON PERSONNEL					
mobilization to Atlin	4,000.00				
supervisor					
47 X \$250.00/day geologist	11,750.00				
15 X \$200.00/day	3,000.00				
assistant 47 X \$175.00/day	8,225.00				
EQUIPMENT AND SUPPLIES	2,000.00				

13.0 REFERENCES

- B.C. Ministry of Energy, Mines and Petroleum Resources; Minister of Mines Reports 1900 to 1933.
- Cairnes, D.D. (1913): Portions of Atlin District, British Columbia; Geological Survey of Canada, Memoir 37, 129 pages.
- Christie, R.L. (1957): Bennett, British Columbia; Geological Survey of Canada, Map 19-1957
- Mihakynuk, M.G. and Rouse, J.N. (1988): Preliminary Geology of the Tutshi Lake Area, Northwestern British Columbia; B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork, 1988, Paper 1988-1, pages 217-231.
- Morrison, G.W. (1981): Setting and Origin of Skarn Deposits in the Whitehorse Copper Belt, Yukon; unpubl. PhD. Thesis, University of Western Ontario.
- Schroeter, T.G. (1986): Bennett Project; B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork, 1985, Paper 1986-1, pages 184-189.
- Wheeler, J.O. and McFeely, P. (1987): Tectonic Assemblage Map of the Canadian Cordillera; Geological Survey of Canada, Open File 1565.

14.0 STATEMENT OF QUALIFICATIONS

I, Hans Smit of Telkwa, British Columbia, hereby certify that:

I am a graduate of the University of British Columbia and hold a Bachelor of Science (Honours) degree in Geology.

I have practised my profession for various companies over the past seven years.

I am currently employed by Total Erickson Resources Ltd. of 500-171 West Esplanade Street, North Vancouver, and have been so for the last three years.

The work detailed in this report was performed under my direct supervision.

I am the author of this report.

DATE

Hans Smit

Project Geologist

APPENDIX A DRILL LOGS

ERICKSON GOLD MINING CORP. MINERALS SECTION

DRILL LOG

PROJECT	GROUND ELEV.
Engineer	773,70 m
HOLE No.	
87 - 101	BEARING 295°
LOCATION	DIP
N 4,009.00	55°
E 3,322.40	TOTAL LENGTH
LOGGED BY	291.4 m
	HORIZONTAL PROJECT
J. Pardoe.	172.99m
Sept 9 /87	VERTICAL PROJECT
CONTRACTOR	234.48m
	ALTERATION SCALE
Conner's Drilling	
	absent
CORE SIZE	slight
N.Q	moderate
DATE STARTED	intense
Sept 8/87	7074
DATE COMPLETED	TOTAL SULPHIDE SCALE
Sept 14/87.	traces only
DIP TESTS DIF AZM.	-
39.6 -54.6 300 157.3 -53.8 301 248.7 -53.0 307	1% - 3%
248.7 -53.0 307	3%-10%
291.4 -52.5 316 COMMENTS	1944 × 10%
INTERSECTIONS!	LEGEND
86.6-86.8- gtz stgr (below dyles) white + transmer == Ft druoy vuss, arg. bxc, 1-290 sx (py+ aspy?)	
,	
169.6-182.0 - gtz flooded bxa (fault) zone (Hw to wer	())
3-7 locally 670 py.	1
182.0-190.5- 8tz van - white, gray & transmissi 8tz,	
drusy rugs, ars bear, local fre bear to	SHEAR A
" frank halos", local tale, 3-670 py	29.8 m @ 0.009 oz/ten Am.
190.5- 193.1- Sta flooded Sxa (FW to Vain), drung	₩1.1m@0.054
mgs. 3% M	
193,7-199,4 - Ste ven - initially gray transforment fte	
then write gre, drung ongs, are word? I bron	
trace -> 3% py possible aspy.	
4 ((

PAGE	7	2	OF	27	PRO	JECT: Engineer							HOL	E N	o . 8	7-	107	
<u>6</u>	S _C	չ	Ä					-	AL	TE	RAT	ION			≻	کے		
DEPTH (METRES)	% Core Recy	LITHOLOGY	STRUCTURE			GEOLOGICAL DESCRIPTION		3.	Bcare		० महाऽ	D	E	FRACT	INTENSITY	clay alth		-
0		П	Ш				П	П	П	\dagger	\top	П	T	ТП	T	П	П	十
		11	III		2.0		$\dagger \dagger$	$\dagger \dagger$	\parallel	\dagger	$\dagger \dagger$	11	\parallel		+	++-	 	†
_		††	† ††	0-	3.0	Casing & overlander	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	11	11	H		\top			+
-		++-	H	20		0.00	\parallel	$\dagger \dagger$	+	+	\forall	+	$\dagger \dagger$		+	+	HH	+
	F	1	H	3.0	- 32.1	Argflife	\vdash	$\dagger \dagger$	+			$\dagger \dagger$	$\dagger \dagger$		+	††	$\dagger\dagger\dagger$	十
4		╢┼				- blk to local being grey snivls	H	+	+			++	++	+++	+	++	Hf	+
	-	╫	H	ļ		(mid? hffs? hfls?) scattered gtz/carb stors + irregula:	H	+ 1	+	1		+	H	HH	+	++	++	+
		╫╴	H	 		fracture fillings occurring - 10 per meter through-	dille	44	ste.	-12	H	++	+	+++	+	+	$\dagger \dagger \dagger$	+
		- -	++	ļ		ant Stroke often @ 20-30° to c.A. a	+	+	+	1		++	+	╂╂┪	+	+	H	+
		╫╴	++	 		mosting 1-3 mm in width. Moderate to locally	\vdash	+	\dashv	-19	H	++	++	+++	+	+	H	+
- 8	┝╌┼	╫-	\square	 		strong harnfels. Local intense alt in	21	44	69-1	-		+	+	╁╁┧	+	$+\!\!+$	+++	+
	-	- -	\square	 		too or use of the core, generally associated	H	\coprod	+	4	#	$+\!\!+$	+	+H	\parallel	++	++	+
		₩-	\Box	1		with grz/coal orgas. The althy is being in	- -	+	\parallel		41	+	+	+++	+	$+\!\!\!\!\!+$	$ \cdot $	+
			\square	1		local sunces of med s dle gra, intensely silicific		\perp	-	4		$\perp \downarrow$	$\downarrow \downarrow$		44	44	$\sqcup \downarrow$	\downarrow
		-₩-	\Box	ļ		and notecate each, with 1-2-70 fig. py in	14	1411	1/0/12		4	\dashv	$\downarrow\downarrow$	+ + +	\mathbb{H}	$\bot\!\!\!\!\bot$	$\left \cdot \right $	+
12		-₩-	Ш	-		blubs and disseminated	\coprod	\perp	$\perp \mid$	-14	4	44	$\bot\!\!\!\!\bot$		44	\bot	\coprod	\downarrow
		\coprod	Ш	ļ			\coprod	Ш	$\perp \downarrow \downarrow$	12	,	4	$\downarrow\downarrow$	\Box	$\perp \downarrow$	44	\coprod	1
		Ш.		ļ		(3.0-15.4) - " evenulated" foliation @ 40° to		Ш		19		$\perp \downarrow$	\coprod		$\perp \downarrow \downarrow$	44	Ш	
		Ш	Ш	1		C.A., modurate hfls, local miner py on	Ш	Ш	Ш	1			Ш	Ш		$\perp \! \! \perp$	Ш	1
		Ш.				Fracty (es	Ц								$\perp \downarrow$	$\perp \! \! \perp$	Ш	\perp
		4)			(18.6-19.2) - strong hfls 1-3% diss py												\perp
- 16		A.				(19.7-19.9) - pyritized - famil zonged fracture @			N.							mvm		
		اً_ا				But to C.A. in first 1 cm. Blubs of callette is	П											
						yellon-bourn mineral (nduste?).												T
		-		1		(20.3 - 20.6)- 6tz/calcite bug and buge mul Talty.							\prod	\prod				Τ
		╫										1	11			\prod		T
20		╢	$\dagger\dagger$	†		bxa, Clasts & 1 cm, senerally 6 mm on long axis				\top	\Box		11			77	$\dagger \dagger \dagger$	十
		- -	H	†		10cal 1-27, py	H	4	4	3			††	††		+	111	十
	\	$+ \parallel -$	+++	+		(21.6 - 72.1) - shone hfls, 1-270 diss py.	$\dagger\dagger$	+	H	1	248	+ -	$\dagger \dagger$	++-	H	++	$\dagger \dagger \dagger$	+
		╫	H			(23.6 - 23.2) regular of 2 (rest styr. is mod ?	$\dag \dag$	+	H	+	HH	$\mid + \mid + \mid$	$\dagger \dagger$	++-	+	+	111	+
		╫	1			internal altr as discribed above	++	+	H	+	Н	$H + \frac{1}{2}$	+	++-	H	3,	+++	十
- 24		+#-	+++	 -		(24.3 - 24.6) - moderately broken core = olight	+	+	\dashv	+	H	H	++	++-	H	2	+++	+
		- -	H	 		fault garge.	++	+	H	+	H	H	+	+	\mathbb{H}	4	HH	+
			++	-	 	(25.5-25.8)- 3 alth bands of - 2-3 cm width	++	+	\mathbb{H}	+	Н	H	+		H	+	╁┼┨	十
		$+ \parallel$	$\ \cdot\ $	 		in mover fresched stor + strong gin alth.	++	+	\vdash	1	18	H	+	+		+	+++	+
		_ -	\coprod	ļ		(26.2-29.4) - strong Hits is 1-32 diss py	H	-	#	L P		$ \!\!\!\! + \!\!\!\! $	+		$ \cdot $	$+\!\!+$	HH	+
28		$\bot \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	Ш	ļ		(30 3 - 20.4) - air band @ 50° to C.A.	\coprod	4	Щ	$oxed{\bot}$	$ \downarrow \downarrow $	\coprod	\coprod		\prod	$+\!\!\!+$	\coprod	4
-		$\bot \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	Ш	 		(31.9 - 32.1) - alt related to interessor	\sqcup	1		4	Ш	Ш	$\bot\!\!\!\!\bot$	\coprod		4	\coprod	-] -/.
		$\downarrow \downarrow$	Ш	ļ			\coprod				Ш	Ш	4	\coprod	Ш	4	\coprod	14
				<u> </u>	<u> </u>	<u> </u>	\coprod					Ш	\coprod	\coprod	Ш	$\perp \! \! \perp$	Ш	\perp
						<u> </u>	\prod					$\coprod J$		\prod				\perp
32		1.	\prod				П	Т	П		П		Π	T	П	TT		Τ

AGE 3 OF 27	PROJECT: En	gineer							HOLE	No. 8	7-101
MINERAL DESCR	IZATION	TOTAL	INTERVAL	WIDTH	ASSAY NUMBER	% Au PB	% Ад рум	%	Au ortun		COMPOSITE
6.8-17.1 - local inte	altythic in	De la	······································	.3m	5714	10	2.2		40		
color to slight gree			•								
bka - liveniac gr	- /cais stort and	1-27									
of in fractules	0		_								
	·		_								
8.0-18.3 - rimila	to above w		_	,3m	5715	5	1,2.		tr		
sureal fine stors			_			ļ	<u> </u>				
1			_			ļ	ļ				
			_			ļ					
							-				
			_				<u> </u>		1		
							ļ				
							ļ				
			_				<u> </u>				
						ļ			-		
			-	-		 	ļ		-		
			-								
			_						-		
			L				 				
						-	 		-		
								ļ			
			_	-	<u> </u>	1	<u> </u>	<u> </u>			
			_		1		<u> </u>	<u> </u>			
		-111	<u> </u>	-				<u> </u>			
			_		1						
			L				-	 	_		
			-					<u> </u>	-	ļ	
23.0-23.2 - Intense	alth to irregular	- 	-	0.2	5716	5	2,0	 	tr	-	ļ
\$7/cars fracture			_					 			
mayes of gr/costs				_			 	┼—	-	ļ	
"flooding" cut by	later white it /c	a55	-	-	-		+				
alter grey-beigh		1/3 1 1	-		-	<u> </u>			 		-
	Si up to 17. bu	1/2 1 1	_					-	-	<u> </u>	
solved by Local		active	_					-	-		-
Egrinde.	, , , ,		-							-	
30.3 - 30.4 - inter	alty, buge i	= 	_	0.1	5717	5	1.7	-	K	 	
		1/3//	_							<u> </u>	
gen streates	, ,	1 1/2/11									
gen streates	ory .	124	_			_				-	

PAGE	4		OF	27 PROJECT: Engineer					Н	IOLE	No. ?	31 -	101
- 6	Recy	GΥ	2			AL	TER	ATIO	N		. ≿	atty	
DEPTH (METRES)	% Core R	LITHOLOGY	STRUCTURE	GEOLOGICAL DESCRIPTION	ر ا ا	Salt B		1 2	3	E	FRACT INTENSITY	clay at	
32	H	不	-		OXX		T	1	3	П		TT	П
				32.1-34.6 Intrusive dyles.		#	+		;	++	HH	++	$\dagger\dagger\dagger$
				- light green to herse smarts. Abundant	#1	#	+		}	+	H	++	$\dagger \dagger \dagger$
				mali (1 mm) ûnite feldopar x1s; some ase		#	+	1	H	╫		+	╫
		ا ا		contangular, others are rounded. Intimarly	##	#	$+\!\!+$	H		+	H + H	++	+++
34		<u>ځ</u>		strifted = 370 dis mg-cg. py and local	#	4	$+\!\!+$	1	4	╫	++	++	${\mathbb H}$
			S/2	py organ tracydot de sin chlonie fracture	44		$+\!\!+\!\!\!+$	1	\mathbb{H}	$+\!\!+\!\!\!+$		+	+++
		木		filling the infloret - I mm. width, approx	\mathcal{A}		+		4	++		++	+++
			~~	20 per / 30 cm. Irregular contacts @ rapply	1	44-	+	12	4	$+\!\!+\!\!\!+$	\square	+++	$\{ \} \}$
				200 to C.A. Lower contact is brecciated	44	11	$+\!\!+\!\!\!+$	1	4			\mathbb{H}	+++
- 36		4	~~	in limes 28 m \$ staleach banded	4	#	$+\!\!+\!\!\!+$	14		$+\!\!+$		╁┼┼	+++
				argi (approx 2.3 cm with a loner contact	1	41	$\bot \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$			$\bot\!\!\!\!\bot$			\coprod
			12			\prod	\coprod	$ \downarrow \downarrow \downarrow$	\coprod	$\bot \!\!\! \bot$			\prod
				34.6-76.6. Avallite - Laborge Gp			4	Ш	$\perp \mid$	4	Ш	$\perp \downarrow \downarrow$	\prod
			~	- overall more all them previous argollite		-	4		\perp	$\bot\!\!\!\bot$		4	\prod
38			1	may contain some vor material		11	$\perp \! \! \! \! \! \! \! \! \! \! \! \perp$	Ш	\perp	$\perp \! \! \perp$			\prod
J ()			<u></u>			\coprod	$\perp \! \! \! \! \! \! \! \! \perp$	Ш	$\perp \downarrow$	$\perp \downarrow$			\prod
			~	(34 6 - 365) - heige colored smorts compromise		\coprod	$\perp \! \! \perp$	Ш	$\perp \downarrow$	$\perp \! \! \perp$			\coprod
			~~	30% of Be cove. In upper 5 m there are		\coprod	Ш	Ш	$\perp \downarrow$				Ш
			~~	local associated Stz/cock stagest 2.476 py in		Ш				\coprod			Ш
– 40			~	stops a elemente patches. From 35.4 + 36.5		$\perp \!\!\! \perp$		Ш	$\perp \downarrow$			Ш	Ш
		•	~ ~ ~	mall Fractures sub // to core + rush, colored		Ш		Ш				Ш	Ш
		ole	~~	occuí		Ш	Ш	Ш	Ш			Ш	
		>	~~	(36.5. 41.5) - fracture zone. 5m 36.5-37.5		Ш					MI		Ш
		A.		core is badly bridgen + locally alta to ruly		Ш							
		d.		day (genge). The rest of the section is slightly									
42		7		broken but breeciated indicating probable									
				earlier fracturing		\prod							
				(115-41.9) sight to modulately chlorifized argalize									
				(419-44.6) vac(?) - upper contact shorp @ 40° to		\prod							
- 44		1	***			\top	11			\top			\prod
-			~	- vac	MA			M			\prod		\prod
						加			$/\!\!\!/$	11	\prod		Π
				Tabindant fine fractures (40 or more / 30 cm)	1			T 1/4		+	\prod	$ \uparrow \uparrow $	111
				filled is ftt/carb and chlonge Abundant		#			州	$\dagger \dagger$			†††
46			~~~	systic species (1-2 mm dia) in uper 40 cm.	M	才	++	1 1/8	州	+			†††
			22	upper contact. (@ 45° to C.A. (sheep 2 mm. star.)			++	1	}	++	 	$\parallel \parallel$	
				Lower contact less district @ ~ 10° to C.A.		44	++	1	4	++		$\parallel \parallel \parallel$	†††
				(44.6-47.3) - yellow - green a burge streaks	1	++-	++	- -	+	+	+++	++	$\dagger \dagger \dagger$
				comprise 40% of cale strong - Si = pornibly	1	+	+	 	+	++		++	+++
48		1		alter voic? or mix of seds a tuff? Broken	1/1	للك	Ш	Ш	Ш	4	Щ	LLL.	atlas • 2

.

HOLE No. 87-101 PAGE 5 OF 27 PROJECT: Engnier TOTAL SULPHIDE COMPOSITE NTERVAL WIDTH **MINERALIZATION** ASSAY 6A **ASSAYS** Au NUMBER . DESCRIPTION tin PPM .28. 65 0.8 5718 .002 34.32-34.6- becated, silicified intrusive. Angular clasts gray stuffe is ~ 200 to C.A., 3-470 cig. cubic py diss, and in fractures 5719 <u>ුට</u> 24 1.0. 003 beios mud (?)/alt/12) survis. Rusty factor

PAGE	4	-	OF 1	27 PRO	NECT: Engineer						Ľ	IOLE	No. 3	37 -	101	
<u> </u>	Recy	>	RE					AL	TERA	TIO	٧					
DEPTH (METRES)	% Core Re	LITHOLOGY	STRUCTURE		GEOLOGICAL DESCRIPTION	1	×i A	Cur B	s Itfls	U.D		Sev E	FRACT		tenla	ا `
48	١	不	·	34.6.7b.6	Laborge cont-		T	П		T	П	П		\prod	П	П
				<u> </u>	cove to custy liminate on fractule surfaces		1	1			П	\top	au			
					1 @ 44.0-44.4 45.9-46.2 46.4-46.5, and					\prod	П					Γ
							1		111		П		her	\prod		T
					46.7-47.0, Last broken attival contains local					$\dagger \dagger$	Ħ			\prod	#	T
					i-clay alt. Bottom contact is abrupt @		1			$\dagger \dagger$	Н	\Box			11	T
					5 mm. Str/ canb Stor @ 40° to CA.	1			1	$\dagger \dagger$	I	+	##	Ш	11	T
					(47.3 - 53.6) - mod hels blk augitite	\dagger			1	H	Н	+	 	 	+	\dagger
					thin 8t7/cms stors occurry - 6/m.	+-				$\dagger \dagger$	t	H	$\dagger\dagger\dagger$	$\dagger \dagger \dagger$	1	t
					(some approx to be tenous garbher.) Lower	+		$\dagger \dagger$	掛	††	\dagger		$\dagger\dagger$	$\dagger \dagger \dagger$	\top	t
-55	-	+			contact" made by 1 cm wide ftz/cais	+	+	+		+	\dagger	H	$\dagger \dagger \dagger$	H	$\dashv \dagger$	t
					ster @ 20° to C.A.			1/2		1/2	+-		+++	H	+	t
					(53.6-64.0) - intense hels blk argallite.	12			17	///-	+	++	+++	+++	+	+
		.		,	propose tenes throughout increasive in intensity	1/2	gr.	4	143		╁	\vdash	┼┼┼	╂┼╌	$+\!\!+$	+
				· · · · · · · · · · · · · · · · · · ·	downsection irregular Sta/cars fracture filling	3		1	+ 12	#	+	++	+++	++	H	+
,,-		.			comprise up to 30% of the core locally.	13				#	╀		+++	++	+	+
		<i>~</i>			and gen mineral (charite?) occurs to fracture	1	<i>i</i>		-144	44	+	H	╁┼┼	+	\mathbb{H}	+
))			fillings + locally contains minor bxa. 1%	1			1//	4	+		+++	╂╂	H	+
		5			py diss, in small blubs and locally small	4					\downarrow	\square	+++			+
-		*			needles (Inn.)	1					\downarrow	\sqcup				+
-62		<u>پ</u>			1(64.0 - 67.7) - 1 - hfls arghlite, strongly alta	_		$\!$			\downarrow	$\sqcup \downarrow$	14	+		+
VC.		. \			To pale yellownon oyeen - beige surives comprising	1		\coprod		41	\downarrow		14	\coprod		1
		نہ			40% of core Locally broken along fractures	1	Ш	Ц.		44	1		1/4	11		\downarrow
		1			To chlorite, Stefcach, 1-2 % py - mod slay alty	1		11		41			141	11		1
					in surfaces in upper 3 m. Dannsection is	\perp		\coprod		4	1				1/2	1
مران ساخت					highly fractured to local unbooken sections					\mathbb{A}			M		1/2	1
65.5					Bady broken - clay alta core @ 67.9 - 68.3,				12			1	M	\coprod	1	1
					69.5-69.8 72.3-74.7. (last interval is							M	1			1
		3.			very grund up in possible tale in lower. 3m)							1		1	
			***	-	< 40 stays of service/tale (2) per 30 cm	\top										
					(74.9 - 75.3) - green grey all angliste/high?			\prod	1		T	No.			A	T
-69		\Box	~~~		shot through in white speeks or fractures of	T	\prod	$\dagger \dagger$		1	Ť	1	W	\prod	1	T
٠.			~~		tale:	T	$\dagger \dagger$	$\dagger \dagger$			\dagger	1	1	,	4	1
j			1		- 1 · · · - · · · · · · · · · · · · · ·	1		#		1	1		1	11	17	1
					(75.3-76.7) - silicified fault zone. Ote win	1				$\dagger \dagger$	+		17	#		†
					30 cm wide at top to upper contact @ 30° to	1	1	#		\dagger	\dagger		17	#		†
72.5			***		C.A. Oto Age of similar agressares, ~ 1.5	1		#	HH	\forall	+	H	1	#	HH	+
					cm wide follows sul // to core down rest of	· 1/2 .		#		+	+	╁╁┼	17	#		+
			/		interval. Argalite clasts angulas, I cm or	1		1+		+	+	HH	#	#		+
			Sive	<u> </u>	less in intensely oflicified core	K	4	4+	HH	$+\!\!\!+$	+	H	##	+	- -	+
		1	1		i	1	1 1	1	1 1 1 1	11	-	1	111]	

PAGE 7 OF 27	PROJECT: Gran	iel								HOLE N	lo. 87	-101
	_IZATION RIPTION	TOTAL	SULPHIDE	INTERVAL	WIDTH	ASSAY NUMBER	% Au PPB	% Ag Ppm	%	Au OZ/ Itm	С	OMPOSIT ASSAYS
		\bot	\square	-			ļ	-				
			\perp	_		·	-					
					-	***************************************	 					
		$\dashv \vdash$	+	_			 			1		
		┵	\mathbb{H}	_	-	 -	<u> </u>			-		
		+			-	····	 	ļ		1 1		
	,	$+\!\!+\!\!\!+$		_	-		 	 				
		+		_		······································	 	<u> </u>	<u></u>	╁┈┈╂		
		+		<u>. </u>			 - ;	<u> </u>	····	-	 	
		+	H				1	 		-		
	,	+	\vdash	_			-		_			
		+	\vdash				 	 		-		
	······································	-H	-	_			ļ ;;	 				
		-++	\vdash		-		<u> </u>	 	<u> </u>	 		
		\dashv	╁┼	-			 	 	<u> </u>			
		+	H	-			 			++		
	•	+	-	_		····	 	 	 	-		
			\vdash	_	-		 	 		1		
688-69.1- 917 stg		- 132	1	-	0.3	5720	70	1.3		0002		
,	e w small (1-2 mm)	+	H		-		-	 		+ +		
	angular arg. bxn lu	' '	H	 			+	-		+		
to 5 mm dia). F	grivalent width of g		+	-			 	ļ		-		
flooding whome 67	Q 2-4% cy py in	1	H	-	-			 		++		
fractures in HW	4 F.W.	-14		-	-					+		
		1.1/1/	-	 			+	-		++		
74.0-74.5 - A7:	stor + flooding in alt	7 1/1	+	 -	0.5	5721	1 30	2.3		.001		
	roken white T trans-		#	-	-			 	 	++		<u></u>
	à limenite on fracture			-	-		-	+		++		
+ Bt Harding/lon	angle stor? is small	-14	+	 -	-		 	1		+	-	
(1-2mm) angular	angle stor? is small arg. In a 2-3% p	7	#	 -	-					+		
		- 17	1	-	-	<u></u>		-		-		
74.7-74.95- wansle	wit gray gtz w	-++	┼┼-	+	0.25	5722	40	23		1001		
	V argilite. No usible		+	_			-	 	ļ	-		
Ay Badly broken	w12		╫		_		ļ	-	ļ			
75.3-75.6- 872 W	Lin - translucent gy		\vdash	<u> </u>	0.3	5723	50	0.4		1001		}
- white w abundar	of canties (up to 1 cm	-	#		<u> </u>		 	-	<u> </u>	1		
wide) (oxally contains	my drusy Ste Local	- 1/4	#	- K		ļ	-	 	 	1 1		1
1% diss py and	omall (1mm.) ble spee	ua 🕽	\coprod	T ~	-			<u> </u>	_			
(argillite bxa?)				1	1			1	1			

:

PAGE	8		OF	27 PRC	UECT: Engineer		·					HOLE	No.	87	1	>1	
DEPTH (METRES)	% Core Recy	LITHOLOGY	STRUCTURE	-	GEOLOGICAL DESCRIPTION	Si		Cnl	TER	μs	chi	Ser	FRACT	N ENSI T			
76	8		S			HA	+	В 	++	<u> </u>	D	E	+	\overline{H}	\sqcap	П	+
				34.6- 79.6		+	$\dagger \dagger$	+		+	+	+++	+		H	+	+
_					(76.7-76.9) - 51k, modindurated argaliste	T	$\dagger \dagger$	††	1	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger \dagger$	\prod	Ш		\forall	1
		I			(Ism or has midfle)	\parallel	\parallel	\parallel	1		\dagger		\parallel				†
- 77		,			(76.9- 79.6) - possible volc? pale yellow-gray	\sqcap	$\dagger \dagger$	\top	11			\prod	W	П			T
-		I			w ahundant dk gren gr + chlonte (:) filled	\prod							W	П			
_		i)			fractures, 76.9-77.9 is moderately broken		П	\prod		\prod			1				
- - 78					~ local 2-472 py assor. ~ oft stors. 77.9-79.1						M		A.S.				
- 70					is only strettly broken, 79.1 - 79.6 is brecciated		Ц	Ш	Ш					Ш	Ш	Ш	
					legar up to yem longth is local clay alth	Ш	Ц		$\perp \mid$		14		10		Ш		\perp
_					0 . 1		\coprod				Ц			Ш	Ш	Ш	
- 49		,					\coprod	Ш	$\perp \parallel$	$\perp \mid$	Ш		Ш	Ш		Ш	
-		,	22	79.6-86.6	Feldspar perphry dyke.		$\perp \mid$	$\perp \downarrow$	\perp	$\perp \mid$	44		1		_ _		\perp
-			~~~		- yellowish grey to grey fis-ms grand	4	\sqcup	$\perp \mid$	$\bot\!$	- -	$\bot\!$	13	\bot	Ш	- -	Ш	+
-					mass in abundant feldspar x12 up to	4	\coprod	$\perp \mid$	\coprod	\bot	$\perp \downarrow$			4	\sqcup	H	+
- 80					4 mm in lingth Dyles is pute alter .	14	\sqcup	\bot	44	$\dashv \downarrow$	$\dashv \downarrow$	14		-	H	Н	+
_					locally silverfied = ~ 2% dies py	14	\mathbb{H}	+	+	+	+	W.		-	H	H	- - -
_					Arrongent. Feldspors are alt to		\dashv	+	+	+	+		4	╁	++	H	+
-					seriete. Local sta stars 4 a vein	1	H	+	+	+	+	1	+	\vdash	H	Н	+
-81	-				I am The rock I described apposite page	+	+	+	+	╁	+	1	+	+	H	H	+
-						+	+	\mathbb{H}	+	+	++	+	++	╁┼╴	H	Н	+
-		1					H	+	+	+	+	++	++	${\mathbb H}$	 		+
-						+	H	+	+	+	+	+++	++	H			H
- 83		- 本	<i>~</i> ~			++	+	+	+	+	╁	+++	$\dagger \dagger$	\vdash	H	H	\dag
		Str.				++	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	+	$\dagger\dagger$	$\dagger\dagger\dagger$	$\dagger \dagger$	\vdash	H	H	+
-			***			++	$\dagger\dagger$	+	+	$\dagger \dagger$	+		+	H	H	-++	+
-		:				$\dagger \dagger$	$\dagger \dagger$	+	+	$\dagger \dagger$	$\dagger\dagger$	+++	+	\sqcap	H		十
- 83			~~~				$\dagger \dagger$	\forall	$\dagger \dagger$	$\forall \exists$	$\dagger \dagger$	111	$\dagger \dagger$	\sqcap	H		十
- ,					 	$\dagger \dagger$	$\dagger \dagger$		\dagger	$\dagger \dagger$	$\dagger \dagger$		11.	П	Ш		十
			<u>.</u>			$\dagger \dagger$	H	\forall	$\dagger \dagger$	$\dagger \dagger$	$\dagger\dagger$	$\dagger\dagger\dagger$	$\dagger \dagger$	\sqcap			\top
-							\parallel	\parallel	$\dagger \dagger$		11		\parallel		Ш		十
- 84						11	\prod	\parallel	#	11	T		\parallel	П	Ш		T
-						\parallel	\parallel	\parallel	11	\prod	\prod		\top	П			T
•						\prod	\prod			11				П	П		T
					1	\prod	\prod	\parallel	11	\prod	\prod		\prod		П		+
- 35						\prod	\prod	\prod			\prod						
-							П		\prod		\prod						
_							\prod			\prod							
- %						П	П	\prod	\prod	\prod	П				\prod	\prod	Τ

PAGE 9 OF 27 PROJECT: Engin	عه	<u> </u>			 		.		HOLE No	. 87 - 101
MINERALIZATION DESCRIPTION	TOTAL	SULPHIDE	INTERVAL	WIDTH	ASSAY NUMBER	% Au 708	% Ag ppm	%	Au Ot/. /ten	COMPOSIT
75.6-767 - grz stryc similar to		1	L 3							
go vein described above, in stiliffed	لله	1	_ ß							1.4m,00
argulate bus (as described p 6)		.]'	الم الم			T				
(75.6-76.2) - as above		, T_'	ī 1	0.6	5724	60	3.2		.002	
(767) - as about	1	,	- ↓	0.5		20	2.4	i ,	(0)	11
	#	,†††		1	31	1 ac	\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	i	1.001	
76.7-76.95- gra floorled wic(:) white		T	Ī	0.25	57 26	10	1.5	i	tr	
+ transment grey gtz ~ local drusy gtz	1 1	\prod_{i}	Ī			T		i		
in canties filling ~ 20-30% of irregular		, T	Ī.			1		i		
fractures in alt voic no mobile x.		,†[Ī			<u> </u>		·		
,	- Y/X/	1	<u> </u>	0.3	5727	5	0.6	i	tr	
77.8-78.1- 177 stars in volc (?). White 9		<i>#</i>	Γ	0.5	376.	+-	10	i —		1
transment oft stor, ~ I cm will @ 35°	梦	<i>#</i>	Γ			†	1	i		
to C.A. To canties filled by e.g. cusic p		#	Γ			 	1		+	
Massive py stors in alta voic(2) of ItWa	#	#	Г	-		+	1	í	+++	
	1	#	Γ.			+	1.51		-	
80.2-80.4 - Sta store in feldspoor perplay.		#		0.2	57-28	60	1.9	ı 	.002	
3 transmeent " white fit stays, .5 to 1.5	#	#	\vdash	 	<u> </u>	 				
cm with @ 35° to C.A. Massive c.g. py	4		-			 		 		
patches may 87grs . ~ 5% py in sample	4	#	+		 	<u> </u>	1	 	1	
80.7-81.1 - Str vein in foldspar purply.	#	44	-	0.4	5729	150	30.9	 	.006	
translucent den & white 212 vein, ~ 40cm	4	4	—			<u> </u>		<u> </u>		
wide, @ 10° to C.A. At hast 2 phases of	1.4	4	L			<u> </u>	<u> </u>	<u> </u>		
St injection. Small open spaces is local dues		I / M	L					Ī		
or local py, small (1-3 mm.) areflute (L 1 1 1	Ĺ		<u> </u>			i		
bo ~10% mg py in solicified peopling	6.77	1	Ī.			T		i		
81.9 - 82.8 - ftz van in perphiry.		\prod_{i}	Ī			<u> </u>		i		
White for very a 35th 2.A. approx		, T	<u></u>							
45 cm wide. Miner driesy conties, upper		, 1	Ī			1				
+ lower contacts fractived and banded	11	, †††	Ī			1		<u></u>		
•	#	,	Γ				-		 	
in white a rusty tale. I cm under trans.	11	+++				 	1			
Judent grey strong @ 35' to C.H (M. H.) 1	+	#	Γ	+		-	\vdash	·	+	
similar star @ ~10° po (A. ii in F.W.	++	_+++	_			 		ı	 	
~5% diss py in File + HW	#	杫	Γ	+		 	+	i	-	
(819-824) 11 W4 most of 872 vin	#	44	\vdash				1.5	i	tr	409m, 00
(824-828) ~ 10 cm of van a F.W.	#	1797	 			1	1.4		.002	<u> </u>
86.35 - 86.6 15% massive py in	13	#	-	0.25	5732	40	1.3		100.	
porplary w mall (2.3 mm) 877 + take	4	4	-		<u> </u>	 			<u> </u>	
etys:	4	14			ļ		<u> </u>			
· · · · · · · · · · · · · · · · · · ·	Ш		1		i			i		

PAGE	10	············	OF 7	27 PROJECT: Engineer					,	1			No. 3				
2	Recy	5	A FI				AL	ΓERA	TIO	N				ci.			
DEPTH (METRES)	Core	-ITHOLOGY	STRUCTURE	GEOLOGICAL DESCRIPTION	<u>ک</u> ز		(سإ	TERA IHA C	, (41	Se	1.	FRACT	الم			_
	%	<u> </u>	S		A	\bot	В	С	1	<u> </u>	Ε	_	<u> </u>	Ļ	_	1 7	┷
- 86			3200	86.6-121.2 Laburge Grp	\perp	Ц	Ц	Ш	4	\downarrow		Ц	11	Ш	\coprod		\downarrow
_				(86.6-89.6): voic / alt or sillite? - dry	\perp	\coprod	\coprod	\coprod	4	\perp	-		$\bot\!\!\!\bot$	\coprod	$\!$	Ц	1
				yellow and bluich BK I local purplish -	\perp	\coprod	Ц	Ш	$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	1	Ш		11	Щ	Ш	\coprod	1
				gen tones. Moderate fine chiaritic fractures	\perp	Ц	Ц	Ш	\coprod		\coprod	Ц	$\bot\!\!\!\!\bot$	Ц	Ц	Ц	1
_				throughout 3-6 gtz/cais stors (Imm width)		Ц	Ц	Ш	Щ		Ш	Ц	Щ	\coprod	Ц	Ц	\downarrow
				per 30 cm: Local Stz Flooding / abundant	\perp	Ц	\coprod	Ш	Ш	_		Ц	$\perp \! \! \perp$	\coprod	Ш	Ц	\downarrow
				stgs @ 86.6.86.9 and 89.1-89.3 Mod +		Ш	Ш	Ш	Ш		Ш	Ц	$\perp \! \! \perp$	Ш	Ш	\coprod	1
				bady brace core @ 382-884 - 89.0-89.05		Ц	Ш	11,1	Ш			Ц	$\bot \! \! \bot$	\coprod	\coprod		\downarrow
_				(89.6-115.7) blk argille - mod indurated	\perp	Ц	\coprod		\coprod	\perp	\coprod	Ц	\coprod	\coprod	\coprod	\prod	1
0 r				fine (1-3mm) gre/cust stees ~ 10/m.	\perp	\coprod	\coprod		\coprod	\perp	\coprod	Ц	\coprod	\coprod	\coprod		1
 95				Core becomes increasing alter in yellow							Ш	Ц	\coprod	Ц	\coprod	Ц	
-				! Smirts and local purplish-red steaks. Intense								\prod	\coprod	Ш	Ш		\perp
_				hfts @ 95.7 - 105.1., weakly inducated		Ш	Ш	1	1		Ш	Ц		Ш	\coprod	Ц	\perp
_				demoscetion in intense yellow alth.		Ш						Ш	Ш	Ш		Ш	
_				28.8.99.2 - mod broken, oright clay alty			Ш					ŀ	1/2	1	Ш	Ш	\perp
-		1	≈ ≈	I can wide cars stor @ law afte							Ш				\coprod	Ш	
-				105.1-105.5- mad broken mod clay alter							Ш					Ш	-
-		٤		110.3 - sange		П											W
_		ĕ		115.3. 115.7 - intense yellow alt W, mod									11			Ш	
-		*	1	6x0/cm = genze @ 115.35-115.45.							Ш		1			\coprod	┸
-104		Ş	~~	(115.7 - 121.72) blic acollite to yellow-orey			Ш					Ц	\coprod	\coprod	Ш	Ц	
-		1		aniels comprising ~ Both of core, locally							Ц	Ц	$\perp \downarrow$			\prod	\perp
-		-1		up to 4676 and cove is bxd, att stors		1			$\perp \! \! \! \! \! \! \! \! \! \! \perp$	\perp		Ц	$\perp \! \! \perp$	\coprod	\sqcup	\coprod	
-				more atoundant, larger and increase in			$\perp \mid$		Ш		\coprod	Ц	11	\coprod	\coprod	11	\perp
				size downsection, correspondently core			$\perp \downarrow$		Ш		Ш	Ц	$\perp \downarrow$	\coprod	\coprod	Ш	\perp
-				goes from mod = i solicification. "270 py	1						Ш	Ц	$\perp \perp$	Ц		$\downarrow \downarrow$	\perp
_			~~~	occurring in organs, locally absent.	1	1				\perp	\coprod	Ц		\coprod			\perp
-				0 7		Ш			Ш	_				\coprod	\coprod	\coprod	\perp
_				121.2-123.5 Qtz Vein.		Ш			Ш	1	Ц			Ш	\coprod	\coprod	\perp
u3			1.	- white and used grey It is abundant								Ц		Ш		\coprod	\perp
: :				angular amplifie doss causing I un or less							\coprod	Ц	$\perp \! \! \perp$	\coprod	\coprod	\coprod	\perp
_				dia. up to 4 cm.) Local scattered fig. py			Ш		Ш			Ц	\coprod	Ш	\coprod	\coprod	\perp
				blubs, semetimes within clasts, bronze & silvery		\prod								\coprod	\coprod	Ш	\perp
-				colored (possible aspy?), <170 sx overall.						\perp		Ц		\coprod	\coprod	\coprod	\perp
				Very fine orange casts stars-locally. Upper . 5 m					\coprod		\coprod	Ц	$\perp \! \! \! \! \! \perp$	\coprod	\coprod	\coprod	\perp
				is dominately grey gtz gradually being domin-							Ш	Ш		\coprod	\coprod	\coprod	
_				ated by wonte for upper contact @ 10° to c.A.		\coprod	\coprod					Ц	\coprod		\coprod	Ц	_
 L				F.W contract more irregular but rangely								\bigsqcup					
_		1	1	Phe same Ovange carb stors are more						\int	\prod		\prod	\prod	\prod	\coprod	
122		gh		abundant in lance part of vein 9 in stres	Π	П	\prod							\prod	\prod		

PAGE II OF 27 PROJECT: Gron	eel							HOLE No). 87-101
MINERALIZATION DESCRIPTION	SULPHIDE	INTERVAL	WIDTH	ASSAY NUMBER	% Au PPB	% Ag PPM	%	Au sey	COMPOSIT
86.6-86.8 - 877 stor in alt voic/			0.2	5733	40	0.5		.001	
aryllite? + white a translucent of sty		_			ļ		,	L	
~ 4 cm wide, @ roughly 350 to CIA.		-			ļ				
(irregulas centraets) Almindant drung courtes					ļ				
and scattered tolk aveillite (?) bea. ~1-2%	4 11	_			ļ				
diss. sulfides - pyrile and a offery needle-	911	_			ļ				
19a mineral (possibly Aspy?)						ļ	······································		
86.9-87.0 - massive py is miner office		-	6.1	5734	5	1:7		4	
fooding in disting yellow alter wicharge?			ļ		ļ				
n 5% pg								ļ	
89.2-89.45 - utegular ft stops in all		_	0.25	5 735	100	1.7		.003	
voc face? what a translucent of atoms	$\sqcup \sqcup$	_			ļ				
locally (25° to C.A. local parties		_						ļ	
of py, liss than 170 py overall									
1187-11595 - regular of steers in blk		_	0.25	5736	10	0.6		tr	
argillite Transher of gron - white str is		_							
smu drusy mgs 2-392 from py in fractured		_							
117.8-118.3 - 672 states in bx4 = alta volc/		_	0.5	5737	ડેગ	1.0		-001	
orgalite White a little transhum oft									
to local drusy rues in 1-2 cm wide sters			<u> </u>						
a irregular fractures. Volc/arg is alter		_			ļ				
gray to yellow torus - highly fractured 2-3%									
py in fractures		_							
118.6-119.1 - frz flooded bxa zone I-si	411	-	0.5	5738	130	0.9		•004	
and local white ofthe stores up to 3 cm wide	211	-	<u> </u>						
Small , scattered dissy rues throughout . 1-29		-							
Py	411	_							
19.25-119.75. interise ofthe flooding. White russes	+++	-	0.5	5739	190	1.8		.003	
translucent for form 70+76 of core, Are		_		·	ļ				
rest is aigstife by Local drugging.									
Minor rule filled fractures in lower loca. 170 mg	+	_		· · · · · · · · · · · · · · · · · · ·					
119.95- 120.5 - as above, Though fts sucreases	411	_	0.5\$	5740	70	0.4		.002	
Arrenge sichen to only Sith of coice 1-290 on	411	_							
20.7-121.2- pt flooded bxa	411	_	0.5	5741	40	23		100.	
of core Massive pry on fractives, 270 mg	411								
121.2-121.7 - Oto ven described p10, Deminanty	\coprod	_ 1	0.5	5742	100	ا ژ.ن		.003	
grey St.	\coprod	ا -							
121.7-122.2. Qtz vein (p10) - deminanty waite		- 3.v.	0.5	5743	110	<u>်</u>		.003	
122.2-1227 11-	$\perp \downarrow \downarrow \downarrow$	_	05	5744	160	0.4		.005	>2.3m, .00
122.7 · 123.2 - "		i	0.5	5745.	col			.003	1)

AGE	12		OF 7	27 PR	WECT: Engineer					·		Н	OLE	ΞN	o. 3	7-1	٥١		
т (S	ecy.	790	URE			-		A	LT	ERA	TIOI	V T		<u> </u>	ĬΪ				
DEPTH (METRES)	6 Core Recy	LITHOLOGY	STRUCTURE		GEOLOGICAL DESCRIPTION		S ,		us B	1+ <i>(-1)</i>	د ا		Ε	FRAC	INTENSIT				
12	8					+	$\ddot{\Pi}$	T	T	П	T	П	ĪĪ	力	П		\uparrow	Π	1
		ź		121.L - 123.5	Qtz Vein (cont)	+	$\dagger \dagger$	H	\dagger	111	$\dagger \dagger$	H	$\dagger\dagger$	+		H	\top	\sqcap	1
		3			occurring in F.W.	\top	††	H	\dagger		$\dagger \dagger$	H	††	\dagger			\top	$ \uparrow \rangle$	1
		875				\perp	$\dagger\dagger$	$\dagger \dagger$	\dagger	$\dagger \dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	\dagger			\top	H	1
			_	123.5- 137.2	9 11	7	11	††	\dagger	1/	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	+		\prod	1	H	1
					(1235-1254) - blk anglithe cut by abunda		*	$\dagger \dagger$	\dagger		$\dagger \dagger$	H	++	\dagger		H	\top	$ \uparrow $	
	1 1				5/16 577 stage (20-30/30cm). Argalite is	- 1	1	$\dagger \dagger$	\dagger		$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	\top		П	\sqcap	\prod	
					weatery indurated. Locally intense strops an	٠,		$\dagger \dagger$	\dagger		$\dagger \dagger$	$\dagger \dagger$	11	+		П	巾	$ \uparrow \rangle$	_
			~~		veining as discribed on p 13.	f	1	H	T	M	$\dagger \dagger$	\parallel	\top	\top			П	П	
					(175.4-137.2) - blk argollite 5,576 localy		††	$\dagger \dagger$	T		$\dagger \dagger$		11	1		\prod	П	П	7
126.5	\vdash				30% buge mud (7), whatly occurring as irregular		††	+	\dagger	H	#		\parallel	T		П	П	П	
					miris, locally fine isometed hadden (?) @	- 1	$\dagger \dagger$	$\dagger \dagger$	\dagger	甘	#	$\dagger \dagger$	$\dagger \dagger$	\top			IT	\prod	_
					1 70° to c.A. Minor local ott styrs, when	4	$\dagger \dagger$	$\dagger \dagger$	†	뒴	$\dagger \dagger$	††	$\dagger \dagger$				\sqcap	\prod	_
				<u> </u>	1 com matte, approx 1/m. Moderate	\top	$\dagger \dagger$	$\dagger \dagger$	1	n	\parallel	Π	\top	\top			П	П	_
					broken cure = stight clay alth @ 125.4 > 125.7 132.1 > 132.4 133.2 > 133.6 , 135.0 >		††	11	T	11	\top		\prod	1			П	П	i
						- 1			7	M				T				П	
					135.9 (locally), 136.9-137.2. Argillite in			\parallel	1	H	\top		\Box	1			П	П	
		5		<u> </u>	mod indusated				1		11						Π	П	7
				127 2 127 6	s Sty Vein	\top		\top	1		11		\prod				П	\prod	_
		7 -		138.6-1372	White + translucar for w may (1-3 mm).											\prod			L
- 131			<u> </u>		local bilk arg. bxa. At hast 2 episodus of									\prod					L
					its injection - white fits box in latex											Ц		Ц	L
			/m_		translucent gre up to 170 diss es entricipy					\prod	\prod								
					Vein is moderately fractived to tale & finely											Ц	Ш		L
			,,,		grand gtz on fracture surfaces Local									Ш		Ц	Ц	Ш	L
			\~~~		array vugo in the gro.									Ц	Ш	Ш			L
					1									Ц	Ш	Ц	Ц		
				137.55-138.8	Laborge Gp									Ц		Ц	Ц	Ш	
•					Argilite as described about fix vein.						Ш	\perp		Ц	Ш	Ц	Ц	Ш	L
			\Z_		Local laminations @ 700 to C.A. Clay alt						\coprod				Ш	\coprod	Ц		L
1 35.5		П			- broten core @ 140					\coprod				Ц		Щ		\coprod	L
														Ц	\coprod	Ц	Ц	\coprod	L
				138.5-139.3	(1.2m)					\coprod				Ц		\coprod	Ц	Ц	L
		1	-		As previous vin alove to local larger						\prod			Ц	\coprod	\coprod	\coprod	\coprod	L
		8tz			blk availate bia (up to 1.5 cm in large) +]								Ш		Ш	Ц		L
		2-1			from features 1-270 diss py 2 on fractul	6,5			\coprod					\coprod	\prod	\prod	Ш	ot	Į.
		广	1		Local F.g. silver-syen sx. (tetra? aspy?) Mirer w									\coprod		\prod	Ц	Ц	Ľ
					Arragent Including of blk arrallite from									Ш	\coprod	\coprod	Ц	Ш	L
		22			138.9 - 139.2									\prod	\prod	\prod	\prod	\prod	Ĺ
14.0		1	m			T	П			\prod	\prod		$ \cdot $	\prod	\prod	\prod	\prod	\prod	ĺ

PAGE 13 OF ZT PROJECT: ENGY	reed							HOLE No	87-101
MINERALIZATION DESCRIPTION	TOTAL SIII PHIDE	INTERVAL	WIDTH	ASSAY NUMBER	% Au 7pb	% Ag ppm	%	Au	COMPOSITE
123.2 - 123.5 - ATZ vein and FiW.			0.3	5746	80	6,0		.002	
Oto win as discribed p 10, abundant	1911		<u> </u>		 				1)
strops of same ztz in FW assolling	-1211		ļ		ļ <u>.</u>				
12 - 50% of sumple 612 pg	411		-	<u> </u>	 		-		
235-1240- F.W of win. Blk aregulit		_	0.5	5747	10	1.2		tr	
= ftz styre/ven as premensly	 /	+			<u> </u>			ļļ	
described: 30-40% of sample is		-		! 	<u> </u>			 	
(12	41	1			 ,				
24.7-125.4- pr stor in ble avolling	4++-	 	0.7	5748	10	1.6		hr	
whose + translucent got w miner pale	+++	 	}		 	-		-	
cronse carb(?) streaks in store are		 			 	-		 	
exegular fractures. Strong fractures	+++	+			ļ				
! massive py patches (-5%) in force	+++	· -			<u> </u>	<u> </u>			
(6 cm.	Aur	- -			 		-		
	+++		<u> </u>		 				
	+++	 			 	<u> </u>			
	+++	_	-		 				
			-			ļ			
		-						<u> </u>	
137.2- 137.55 - Otz ven as described	12/2	 	0.35	5749	250	3001		F00.	
P 12. 170 PM	124	+	ļ		-	 			
		+		272	 			-	
	+H	- -	-	<u> </u>		 		ļ <u></u>	
	+++	 	-			<u> </u>			
		 			 			├	
	+++				 	 		┼┼	
	+++	 	 	-	 			-	
	+++	 	-	 	-	ļ		+	
	+++	+	-		-	 		+	
.724	1967	 	-		1	17 ~		00.7	
138 1 - 139. D- AH van an accident p.			0.5	5750	100	17.2		,003	1 2
17 1-7-74 5x:		 	 		 			+	1.2 m
126 0 000	+++	+	100	5/5/	1-,,-	1.2		1.010	0.006
139.2 - 139.7 - 862 raw as described	+++	+	0.5	5601	350	11.5		•010	
p 12 17. py	+44	 	-		1			+ -	-
	+++	 	-					-	
	+++		-					+	
	+++	 	-	 	+			+	
	+++		<u> </u>			-	ļ	+	

		•	OF	27 PRO	JECT: Engineer						н	OLE	No.	87	-10	١.	
HES)	e Recy	LITHOLOGY	STRUCTURE		GEOLOGICAL DESCRIPTION		Т		TERA	T	Т		FRACT	- 100	Marysite		
D + (METRES)	% Cor	LITHO	STRUC		GEOLOGICAL DESCRIPTION	5 i		િલ (ક 8	; If:	1		E	FR/	2	144.00		
140				139.7- 181.5	Labores Gp.					$\perp \! \! \perp$	\coprod		Ш			_	L
					(139.7-169.6) - We and my/gray	X	1 1/2		-	+	\coprod	+ + +	1	4		\perp	H
		-			mother and one of the foundant white and	1/2	1	\coprod	#	$+\!\!\!+$	-	$+\!\!+\!\!\!+$				+-	F
					yellowish git / care (3) stress or fractione	1//		\mathbb{H}	1/4	$+\!\!+\!\!\!+$	#	++	1/1	4		\perp	H
					Films 120/10cm.). Mod-hfls	1/2			44	$+\!\!+\!\!\!+$	\coprod	\square		\downarrow		\perp	ŀ
					(ST?) Stops are locally verget. 2% py	12		\mathbb{H}	4/	#	\coprod	+	77	4		+-	H
					locally up to 5% py, in particular fracture	· 1/4			14		\coprod	+	10	\downarrow		+	H
					Local hererated a ste flunded zones	1/2	1	4	-14)	44	\vdash			+	$\left \cdot \right $	+	ł
					(discuted p 15)	14	14	11	4/4	++	igapha		10	+		+	+
-150		$\vdash \downarrow$	ļ		med broken roce . week :- tem alt @	1	² .	H	+#	$+\!\!\!+$	\dashv	+	4	+	H	+	+
					152 67 153.4 Mod. broken core = local	1/2		\prod		+	\coprod	+		+		\perp	ļ
					! slight clay alty @ 165.0 - 165.4.	4	Į,	\coprod	1/4	$+\!\!\!+$	\coprod	4	\Box	\perp		+	╀
			~~		158.2 - 164.3 has only 3-6 stages/ 10cm	1	H	\Box	-44	$+\!\!+\!\!\!+$	\coprod			+		\perp	ļ
					is deminently black and has 2-3% py in			4			H	+	$\left \cdot \right $	+		+	+
					f.g. 1 mm. patches disseminated in core	146	14	4	-14	+	+			+	\vdash	+	+
						+	\dashv	H	+		$oxed{+}$	-	-++	+		+	ł
		, ,			<u> </u>	+	H	H	- - -	+	-	+-	\mathbb{H}	+	H	+	+
		3] .			+	H	\dashv		+	H	+	Н	+		+	+
		1						\mathbb{H}	+H	╫	╫	+		+	\vdash	-	+
-160	-	1			1(169.6 - 1815) - solicified ha zone.	10		╁	+	+	╁	+	\mathcal{H}	4	H	+	\dagger
					upper contact in previous ours @ 25° to C.A	X	H	H		$+\!\!+$	+	++-		}		+	+
					OBIK - Linge argliste ba ; angular classes	1	\mathcal{H}	H	+	$+\!\!+\!\!\!+$	╫	+	$\frac{44}{2}$	4		+	+
					generally 1 cm or uss in size, floating.	14		H	++	+	╫	╁	$\frac{1}{2}$	4	\vdash	+	+
					1 & dk grey soliceous matrix, locally to	1	H	+		$\dashv +$	+	╁┼	4	4	-	\vdash	+
			ļ		white fit flowing. @ Locally the core	1		+		+	H	+	4	4	\vdash	\mathbb{H}	+
					is clast supported to clast size up to	1		+	+H	+	╫	$+\!\!+$	4	4	+	- -	+
					3-5 cm dia 1 Locally cove has a	1		H	+ + +	+	╫	+		4	\vdash	otag	+
					nottled ("pseudo-mylonihia) apprevance	14	#	+		+	$\!$	++	H	4	H	otag	+
					to elimenta irregular consider classes and	1	#	H	+	+	H	$+\!\!+\!\!\!-$		4	-	+	+
-170			 		large (1 cm - 2 cm) particles of fig massive	#	1	\dashv			$\dashv \vdash$	$+\!\!\!+$	4	4	-	4	+
					py 3-5% py Availant	14	4	$\dashv \mid$	+	$+\!\!+\!\!\!+$	$\!$	++	H	+	-	-	+
					1	+	11	\dashv	+ + +	$+\!\!\!+$	$oxed{+}$	+	Ш	+	+	\dashv	+
					<u> </u>	$+\!\!\!+$	+	\dashv		+	H	+	H	+	-	4	+
						+	#	\dashv		+	\dashv	+	Ш	4	-	\vdash	+
						$+\!\!+\!\!\!-$		\parallel		$+\!\!\!+$	\prod	$+\!\!\!+$	$ \cdot $	\dashv	-	+	+
						+	#	\dashv	+		$\!$		Ш	4	H	-	4
						+-	\dashv	\parallel	+	$+\!\!+\!\!\!+$	$\!$	+	H	+		+	+
						$+\!\!\!+$	\coprod	$\downarrow \downarrow$	-		\coprod	#		\downarrow		4	+
						44	╁╂-	\coprod	+	4	\coprod	\coprod		4		4	+
180		4															

PAGE 15 OF 27	PROJECT: Engine	\$			•				HOLE No	2 87-101
MINERALI		TOTAL	INTERVAL	WIDTH	ASSAY NUMBER	% Au ppb	% Ag ppm	%	An Oty	COMPOSI
140.4 - 140.9 - grz fl	ouded a mod bxd			0.5	5602	40	2.1		.001	
)	ransment grey STO									
•	compliants combains					<u> </u>				
~ 20% of are.						Ī				
patches + fractul	,									
141-2-147.0 - gra-fi	_		•	0.8	5603	50	1.9		100.	
1	clasts, I cm or luss,					T				
1	* translucent gray		•							
ett. Later pule	• 1	MI				<u> </u>				
1	ent cove 37 diss py		•							
· ·	h was to contacts a									
~ ZS° to C.A.	,	1111	•		****				 	
150.7-151.2- Qtz W		团什	•	105	5604	sao	1.9		216	
1		加什		0,0	5607	300	1.7		.015	
are close (= 2 cm)		煳什		-		 				
arg. clasts (= 2cm).		掛十						· · · · · · · · · · · · · · · · · · ·		
1	- contact & 500 to	 								
LA Fabrantie						<u> </u>			,-	
155.6- 156.1 - 8-2 64				0.5	5605	OFL	1.9		.005	
White + miner transh	_		'							
pal vance rock (:		捌十				<u> </u>				
(2-6 cm.) drum			•	-		ļ				
mall asyllife back	in silicions matrix	1444		-			L			
3% py in fig patches	cs. cubes, mostly	料井								
in arg a basqueen							ļļ			
156.5-157.0- OFT ST				6,5	5606.	90	1.2		.003	
Transment des -	<u> </u>	122 1 1		L	,	ļ				
to arg. bra, small drus						ļ				
py -> posnible vein d										
as low & wire) Nu					4704					
stors of minder co										
aglife	, ,									
16.6-1701- grz flo	roduld bree described		入	0.5	5607	રુજ	33		.006	
subscript () p.14						57,55	α, α		.00,5	
171.5-172.0 - pussil		甜丁		0.5	51.00	200	2 2		.008	
		翻十	J		5608	380	2.0		.000	
(172 4 - 173 0 7 0 0 1			ξ		71.0					
172.4-173.0- 821			14	0.6	5609	250	4.0		.007	
to miner and 5 01- 6	, , ,	HH	ধ	-						1.3m, .009
173.0 - 173.7 - as	Į.	244	ν Χ Δ	6.7	5610	350	4.5		-011	<u> </u>
174,3 - 175,3 - Str. Clos	oded 5xa (2) 3-47. pg	12/1		1.0	5611	60	2.3		.002	

PAGE		16	OF.	27 PRO	JECT: Engneer					•		нс	LE	No	8	7.	101	
+ ES)	Recy	750	URE					Г		ERA	TION	1		15	<u>}</u>			7
D + (METRES)	% Core	LITHOLOGY	STRUCTURE		GEOLOGICAL DESCRIPTION	5-		رهی آ	רל.	relis	Ok)		Ε	FRACT	NIEN	Trong of the state		
180	181	Î	\	181.5-190.5	Qtz ven	ΙŤ	T	\prod	T	П	T		Π	T	\sqcap	П		
<u> </u>				101 5 10015	(181.5-183.5) - ale grey and white gre,		T	11			$\dagger \dagger$			\parallel			\prod	
-		E			both slightly translucent, Angolar and			П			П		П	П	П	П		П
		۲			rounded argalate has (1 cm dia ar less)	П		П										\coprod
		$ \downarrow $			Armed out scattered, mall (5 mm or uss)			\prod										\prod
					drusy russ in white fits. 1-370 fis py									Ш	Ц	Ш	Ш	Ш
_					ass & in patches			Ц		Ш	\coprod		Ц	Ш		Ш		Ц
					(183.5-186.0) - whole minus translucent for			Ц	\perp		Ш	Ш		\coprod	Ц	Ц	Ш	
					in large argollite/ 1016(?) class. Ote contains			Ш		Ш	$\bot\!\!\!\!\bot$	\coprod		Ш	Ш	\coprod	\coprod	
183					monerous small (1-2 mm) drusy vues. From		1	\coprod		Ш	4			\coprod			\coprod	1
_ 165					183 5 > 185.0 Phuse are intervals (classe(?) of	Ш	1	Ц		Ш	Ш	Ш		\coprod	Ц		\coprod	
					1 areforde up to ,2 m until of core, w 4-8%	Ц	\perp	Ц		Ш	\coprod	Щ	Ц	\coprod	Ц	Ц	\coprod	1
					fre py in patches (This interval may actually	Ц	\perp	Ш		Ш	\coprod			\coprod	11	$\perp \downarrow$	\coprod	1
					be fte stars in host rice) From 185.0 > 186.0,		\downarrow	\coprod	_		4	igert		\coprod	\coprod	$\downarrow \downarrow$	\coprod	#
					to is dominant in large (1-5 cm) angular		-	\coprod	1		\coprod	<u> </u>		-	\coprod	$\downarrow \downarrow$	\prod	₩.
					clasts of arghite + local 2-5% py usually	\sqcup	4	\dashv	\downarrow	\square	11-		igdash	\coprod	\sqcup	\dashv	\coprod	
-					occurry in the class.		\perp	\coprod	1		$\bot \bot$	\coprod	\vdash	4	$igdate{}$	\bot	#	<u> </u>
		. کے .			(186.0 - 190.5) - transment white gray		+	\dashv	-		\bot	-	\parallel	-	\sqcup	\dashv	$\dashv \vdash$	1
		2			977 , From 1860 -> 18813 , rounded class,	-	-	\sqcup	-		+		\sqcup	$\!$	\dashv	\coprod	$\dashv \downarrow$	#
- 186		7)			1 3 cm or less of translacent grey ftz floatin	-	+	H	+		+	#	H	H	H	+	H	-
-		223			a grayed white fit mater a comprise - 40%		+	igwedge	+		+	\vdash	${f H}$	\dashv	╁	++	╁	-
_					of core Lucal are, bxa (<7 mm dia). Drusy vigo	H	\downarrow	H	+	H	+	\vdash	H	\dashv	$\dashv \vdash$	+	$\!$	#
_					locally up to 5 cm dia. 17 py as short	++	+	\mathbb{H}	+	H	$+\!\!+\!\!\!+$	╂	H	+	+	+	+	+-
-					I "medletitu" stage a locally in view. Locally tale	╁	+	H	+	H + H	+	+	H	+	╁╁	+	╁┼	++-
-					fills fractions as mall fibrars medles	H	+	$\dashv \dashv$	+	H + H	+	H	H	╫	H	╁╁	H	++-
<u>_</u>					in the ftz between 186.3. 186.9. From 188.3	++	+	H	+	H +	$+\!\!+\!\!\!+$	+	++	H	+	+	╁┼	+
-					to 190.9 Pu gtz is transment whate w white	H	+	H	+	$H + \frac{1}{2}$	+	+	H	${f H}$	H	+	H	+
-					species and scattered rays. Locally @ 188.7 -> 189.0	+	+	H	+	H	╂┼	+	╁	+	H	+	╁	+-
-		-			transluseent rounded ofte to "growil halos" are	+	+	H	+		╫	-	H	╫	+	+	H	+
189	-	+-	 		present (up to 3.5 cm dia.) At 189.15 -> 189.4	++	+	H	+-	H	$+\!\!\!+$	+	H	+	${\dagger}$	++	H	+
H					is grey 877 To small (<1 cm) angular acchiece	+	+	+	+	H	+	+	H	${\dagger}$	H	++	+	+
-					box 61% diss py FW contact @	++	+	H	+	H	+	++	H	$+\!\!+$	H	++	H	++
-				,	ZO° to C.A.	+	+	H	+	H	$+\!\!\!+$	╁┼	H	$\dagger \dagger$	$\dagger \dagger$	+	$\dagger \dagger$	+
-						H	+	$\dagger \dagger$	+	H	+	+	H	++	H	++	$\dagger\dagger$	\Box
190.5		-*		190.5-193.7	Laterge Grp.	1	1	H	+	$\parallel \parallel$	1	H	$\dag \dag$	++	$\dagger\dagger$	+	$\dagger \dagger$	++
+		1 5			(1965-191.5) - 877 flooded voic (?) / arg bra	1	X	4	+	H	#	++	$\dag \dag$	$\dagger \dagger$	H	++	$\dagger\dagger$	
-		1 30			Yellowing to gray subangular bear up to 3 cm	1	1	+	+	H	1	H	#	++	$\dagger \dagger$	$\dagger \dagger$	$\dag \uparrow$	
-		دَ			dia, we die gen chiorite froutures floating in	1	X	+	+	$\parallel \parallel \parallel$	1	H	$\dagger \dagger$	++	$\dagger \dagger$	+	$\dag \dag$	#
100					translucent grey to white fit in local drusy	1	X	#	+	H	A.	H	H	++	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	
192	1	i_ ¥_	L		1 vugs. 3% f.s. py in patches i fractures.	i T				Щ	14	ш	ىلى			Щ.	L	• 255-8444

AGE 17 OF Z7.	PROJECT: En	gned	······································	,			,		HOLE No.	87-101
MINERAL DESCRI		TOTAL SULPHIDE	INTERVAL	WIDTH	ASSAY NUMBER	% Au Ppb	Ag ppm	%	Au oy ten	COMPOSITI
20 11 - 128 11 - On Cont	14 Lu (1) 28 a		7	(.0	5613	350	-		- (W)	<u> </u>
77.4-178.4- gz (100d) 78.4-179.05- as			.	0.65		400	2.3		.012	\ 1.65m, .011
79.7 - 180.3 - 3tz fle			- ,	0.6	5615	1	5.6		.028	1
			ک ۔ ۔	1	2012	000	1		1.065	-17
_	The (possibly vein?)		- ५ २			1				} 1.1 m, .017
30.3 - 180.8 - as ab	-		boded	0.5	5616	110	4.6		,003	1)
	_		- 2 0	10.5	7616	" 	1.0		1,00,5	
2-3 cm mile, wh	•		- v s							
1 2	•		1	0.5	5617	480	5.0		.014	<u> </u>
vein / Flooding? as			_					,		
12.0-182.5. as al				0.5	5618	350	14.6		.012	
32.5 - 183.0 - as a		捆目	-	0.5	5619	1	33.4		.013	1
83.0 · 183.5 · as			-]	0.5	5620	-90	4,4		,003	
33.5 - 184.0 - Whit			-	0.5	5621	110	53. 2		.003	
bxa-possible stay	-		- }		1200	1	32.			74.5m, 00
14.0 - 184.5 - as	- 1		-	0.5	5627	210	13.3		.006	
34.5 - 185.0 - as			-	6. 5	5623	350	3.1		1011	
			- }	0.5	5624	390	2.2	72.07.112	.012	
15.0 - 185.5. white fixal 2-5% py	The world yes	捌用	- 1	0.5	3021		8.0			
85.5 - 186.0 - as	above		{\frac{5}{2}}	0.5	5625	340	2,6		.011	
86.0- 186.5 - translu			 5	0,5	36 26	10	0.3		H	
872 To rounded trans	• •	- 1/2/X 1								·
170 pg 86.5-187.0 - as a	Lynn		-	0.5	5627	5	0.2		tr	
57.0 - 187.5 · as			-	0.5		1	0.3		tc	
87.5 - 188.0			-	0.5		1	0.7		tr	4.5m, .001
880-1885 as a			-	ی د	5630		0.2		10	
88.5 - 189.0 - white of	L	7 121 E E	-	0.5		1	0.5		rc	
89.0 - 189.5 · as a			-	0.5	563Z		0.7		.005	
89.5 - 196.0 - 25			-	0.5		1	0.3		.003	
90.0 - 1905 - as	*		_1	0,5			40.6		.003	
							100			
90.5-191.0- gto f	looked volc/are(?	、創一	_	0.5	56.35	370	2.5		.011)
bxa as discubil f	216 3% pm		_							1.0m, 017
191.0 - 191.5 - as				0.5	5636	750	2.8		,023	
										
		- 1 1 1 1 1	-		t	 	 		 	

PAGE	18	•	OF	27 PR	DJECT: Engineer						١	HOLE	No	8	7-1	01	
D. 1 (METRES)	% Core Recy	LITHOLOGY	STRUCTURE		GEOLOGICAL DESCRIPTION	S ₁ -			TERA	Т			FRACT	NSITY			
	% Cor	LITH	STRU			A		В	С		D D	Ε	E.	N N			
192		1		190.5-193.7	Laborge Gp. (cont)		\coprod	\prod			1,	-		\coprod	-	$\!$	\downarrow
					(191.5-193.7) yellowen to grn-grey voly	X	41	\mathbb{H}	+	13		H	1	H	H	${\mathbb H}$	+
		$\widehat{\mathbb{S}}$			arg(?) Abundant fractures filled in all	1/	\mathbb{H}	+	44	- 4		H	4	H	╫	$\!$	+
		ars/volc			gon ebligate (1-2 mm will) cut by later	1/2	\prod	+	4			H	H		+	H	+
193		7/8			hundhunt white streets frat are randonly	4	\coprod	+	-	1	4		4		+	H	1
, , ,		Ś			orientated + . 2 to 4.0 cm will. ato is	14	44	\coprod	44	4	14				\coprod	\coprod	\downarrow
		ڹ			-20% of care. 34% dies py exupl in	142	Ш	\coprod					3/2	11	\coprod	\coprod	1
					bottom . 6 m (which also lacks abundant oft	1/2		Ш	Ш	Ľ				14	Ш	\coprod	1
		*		_	stors:)		Ш	Ш			\coprod	Ш	\coprod	Ц	Ш	\coprod	\downarrow
-194		E Properties					\coprod			Ц		Ш	\coprod	Ц	Ш	\coprod	\perp
-174		\top		193.7 - 199,4	Ota Vein	\prod	\prod				[\prod					
				175.1 175-1		Π	T	\prod	\prod	П	П		\prod				1
					(1937-195.1) - voic/axg (3) bon in grey	$\dagger \dagger$	$\dagger \dagger$	\top	11		11	\prod	H	†	\sqcap	$\dagger \dagger$	1
					translucent Str. Angular to sub-angular,	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	#		${\dagger \dagger}$	H	$\dagger \dagger$	$\dagger \dagger$	T	11	1
					yellowish to goon from generoally < 1 cm	$\dagger \dagger$	+	+	+	$\dag \uparrow$	$\dagger \dagger$	$\dagger\dagger\dagger$	$\dagger \dagger$	$\dagger \dagger$	††	Ħ	7
195					dia floating (though locally touching) in	+	$\forall i$	+	++	H	++	H	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	+
					fte. Bu dominates core (- 80%), Local	++	+	+	$\dashv +$	\vdash	++	HH	$\dagger \dagger$	$\dag \dag$	H	$\dagger \dagger$	+
					1 x-cutting white + translucent gray store	++	+	+	+	H	++	H +	H	H	++	+	+
					2-4% diss py H.W. contact @ 20° to CA	+	+		+	\vdash	+	+++	╁	+	++	H	4
					(195.1-196.9) - white gr is much transluce		- -			\sqcup	++	$\downarrow\downarrow\downarrow\downarrow$	+	\coprod	+	H	4
- 196					I spey oft is locally abundant large "clasts"	11	\prod	\dashv	4	4	+	\Box	+	\sqcup	++	$oldsymbol{ec{ec{ec{ec{ec{ec{ec{ec{ec{ec$	4
1,6		3,			of received to great voic (arg (?) . might also	11	$\perp \mid$	Ш	-11	Ц	$\downarrow\downarrow$	\Box	\coprod	\Box	$\bot\!\!\!\!\!\bot$	\coprod	_
					be discribed as intensely gree flooded laborg				$\perp \! \! \! \! \! \perp$			\coprod	\coprod	\coprod	1	11	4
		ghz			Qto is a 80% of core in upper , 95 m., but	Ш	Ш			Ц		Ш	$\perp \! \! \! \! \! \perp$	Ш	$\perp \downarrow$	Ц	
		2			only 60-70% of core in lover . 3 m. 2-3%							Ш	Ш			Ш	
					f. 5 = 6.4 py in patches + fractures. Some is												
197						\prod					П					П	
					somey - mudlelike - possible aspry?				11		T			П	\prod		1
					(1969-199.4) - write & to would mis anyth				\top	$\dagger \dagger$	$\dagger \dagger$		$\dagger \dagger$	\top	11	Π	1
					aryflite bxa. Class generally I am or less,	11				$\dagger \dagger$	+	†††	$\dagger \dagger$	$\dagger \dagger$		$\dagger \dagger$	
					1 locally @ 197.4-197.8 they are anguled T up	+	+		+		++	$\dagger\dagger$	$\dagger\dagger$	H	$\dagger \dagger$	++	
-178	-				to 5 cm lingth Influx of grey gr. w	++	+	H	+	H	++	╂┼┼	+	+	++	+	\dashv
•					virinded are & for closes (< 1cm dia) @ 198,1 >	+	+	Н	++	H	++	+++	$+\!\!+$	╁	+	+	\dashv
					198.9. Scattered small drung vings locally	+	4	+	+	H	+	+++	$+\!\!+$	╁╂	$+\!\!\!+$	+	\dashv
					large (5 cm lengt), white for Loral trans-	+	+	$ \downarrow \downarrow $	4	$\downarrow \downarrow$	+	+++	#	╁┩	+	+	\dashv
					ment fly dasts in white ft Local 1-2%	$\downarrow \downarrow$	4	Ш	4	\sqcup	#	$\downarrow \downarrow \downarrow$	#	$\downarrow \downarrow$	4	$\downarrow \downarrow$	4
199					1 py on fractuses " in gray gre. F.W contact	.	\perp	Ш		Ц	11	\prod	\coprod	$\downarrow \downarrow$	$\bot\!\!\!\!\bot$	\coprod	Ц
1 17					@ 15° to C.A.						\coprod	Ш	\coprod	Ш	\coprod	$\perp \mid$	
	=	V				\prod				\prod	П	\prod			\prod	П	Π
					<u> </u>	$\dagger \dagger$	\dagger	$ \uparrow $		$\dagger \dagger$	\prod		††		\top	\top	1
	1	1				++	+	H	+++	$\dagger \dagger$	+	+++	+	+	++	+	+

AGE 19 OF LA. PROJECT: ENO	neer							HOLE	No.	87-101
MINERALIZATION DESCRIPTION	TOTAL	INTERVAL	WIDTH	ASSAY NUMBER	% Ди РРО	% A 5 ppm	%	Au out ton		COMPOSITE ASSA
1915 - 1920 - Az Az Az Gartinad			0.5	5637	1500			. 047		
191.5 - 192.0 - Otz store in fractured unclarg? as during p18 3470 py				7671	11500	,	-	1011		1.im, .056
97 0-192 5 as above		_	0,5	5638	2100	4.6		.061		
92.6 - 193.1 - as above		 	o.s	56 <i>39</i>	T	29.7		.011		
93.7-194.2- volc/ass(2) brea in Handle			0.5	<u> ५६५०</u>	80	3,2		-002		
82 as described p18 2-470 py		-	-	8111	-	2 0		00.5		
94.2 - 194.7 - as above 94.7 - 195.1 - as above		_	0.S	5641 5642	170	3.5		.005		
		-								
		_								
		_								
195.1 - 195.6 - white gtz is local volu arc. bxa 270 p. 8070 546	/	-	0.\$	5643	280	2.3		800.		
arg. bxa 270 p. 807. 516 195.6-195.05 - as above		- 5	0.45	5644	230	4.6		.007		
196.05 - 196.5 - 875 9 vary arg?) ha	12/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/	- 43-	1			5.5		.012		75.7m, of
60% Gt 2% py 1965 - 1970 - as above but ~ 70% gt				5646	1100	3.0		.032		
3% 6x > py + possible aspy		_								
197.0-197.5 - white gt is are been a	5	-	0.5	5647	620	1.0		.018		
197.5- 1980 - as above 5 local large		_	0.5	5648	100	1.0		, 003		
98 17 -1985 - 75% orcy gt as described		_	u.5	5649	320	6.4		.009		
P8 = 25% white SIT 1-2% py 985-1990- hambleant gray (60%) .	F-2P 1 1	_	0.5	5650	300	17.9		-009		
white (40%) 8th. 1% py on fractive		_								
99.0 - 199.5 - white ste \$ bra			0.5	5501	700	10.9		,020		<u> </u>
			1	1		1				

•

PAGE	2.0	5	OF	27 PRO	JECT: Ergnier	_					ŀ	HOLE	No.	37-1	01	
DE (METRES)	% Core Recy	LITHOLOGY	STRUCTURE		GEOLOGICAL DESCRIPTION	5	ri A	Al Gad	TER	ATI	ION CLI D	Ser E	FRACT INTENSITY	michi posite		
500		个		199.4-202.2	Lasarge Grp.			П	П	\prod	П	П		П		
					- yellowish green w dk grn/bll: patcher = marls		XX.	Ц	Ш	\prod					Ш	\prod
_		را			abundant fine fractures sombly much explists			Ш	Ш	$\perp \! \! \! \! \! \! \! \! \! \! \perp$				\coprod	Ш	Щ
- zoi		rs/volc			+ vac naterial shift to mad - Si. whate	X		Ш		$\perp \mid$				$\perp \! \! \! \! \! \! \! \! \perp$	Ш	Ц
-		کی			\$7 Stors - Fracture fillings & I cm will		8	\prod	Ш	\prod	Ш				Ш	4
_		j			OSCUR ~ 15 / 30 cm. Local 2-370 pg assoc	X		\coprod	Ш	$\downarrow \downarrow$			3	4	Ш	$oldsymbol{\perp}$
_			,		₩ grz ergs.	X	Ž.			$\bot \!\!\! \downarrow$			Č.	$\perp \downarrow \perp$	Ш	-
- 202					(199.4-200.0) - fr Hooked & breesented	X	XX	#	\square	$\!$	-				Ш	1
_		*			cove. mod> 551, white + transment 872	X	(X)	#	$ \cdot $	\dashv	+				H	\vdash
		- -			files fractures comparing ~ 30-4070 st	X	XX	\vdash	╂╂	+	+			++-	Ш	H
		ž			cole 1-490 pg	B	M	+	H	+	+	H		+	H	-
- 2 03		2			1	H	\dashv	-	$\left \cdot \right $	H	$+\!\!+$	H		+	H	H
-		ج ٦		202.7:203.6	Introduce? F.g. volc?	╫	\vdash	H	H	╫	++-			+	H	H
-		<u>_</u>			- part green fig. grand mass \$ 5 mall (1 mm	╁┪	\vdash	H		+	++-	1		++	\mathbb{H}	+
-					or uss) ble specks. Small, pale (not all that	1 1	+	H	H	+	++	1		++	H	H
- 204					ristar) gon-white foldspar (?) vis that have	H	\vdash	$\dag \dag$	H	$\dagger \dagger$	H			++-	Н	╟
					alth to service 470 mig. diss py and	H		H	H	$\forall t$	++			+	H	
-					f.S. py in fractures. Minor (~1/20cm) write	H		H	H	+	+			+	H	H
-		واد			gr- styrs. Styre comments @ 30° to C.A. ItW	+	\vdash	$\dagger \dagger$	H	+	++-			+	H	$\dag \uparrow$
205		3			1 contact @ ~ 10° to con, a not well defined	$\dagger \dagger$	\vdash	$\dagger \dagger$	$\dagger\dagger$	+	+				Н	I^{\dagger}
-		\$			F.W. contact marp @ 15° to C.A.	+		H	111	$\dagger \dagger$	+			++-	Н	\sqcap
• • • •		3		3 7 4 - 4 7 1 0	lalare, C.	$\dagger \dagger$	\sqcap			++	++-				Ш	ΓŤ
-		1		203.6- 104.0	Labouse GP - bilk in genion grey streams (sur 1 to c.A)			\prod			T					П
- 206		1													П	
•					comparine ~ 30 760 70 coco (abundance no-	1	\sqcap	11								\prod
•					creases demosection). Weale to made industrial						\top					П
					Fin rushite fre orgas occurry ~ 15-20/30cm			П							П	
- 207		个		207.0-207.6	Intruence ? VOIC? - as described 202.2-7203.6m				Ш			The same of the sa				
-		447-) }											
-		*		207.6 - 213.4	Labarge Gp	\prod		\prod		\prod					Ш	\prod
- - 2 0ठ					(207.6-209.1) - as described in 203.6+2070 m	\coprod				Ш					Ш	
					(209.1-210.2) - bxd/ gringray " usser the	Ц		Ш		\coprod			1/2			Ц
-					are /voic(?). Weale induration. Miner ft			Ш	Ш	Ш			14		Ш	Ц
-		محالد-			fracture fillings except in lower .5m which	\coprod			Ш	\coprod					Ш	Ц
		ars Ivole			is for floodel (possible win?) 10% py locally				Ш	\coprod					Ш	4
zv9 -		٤ ا			in 5 mm width stort @ Ion angle to CA above	1			Ш	\coprod					Ш	L)
-		ا ر		M	Ste flooding / vein		1		Ш	\coprod			41		Ш	Ц
-					, , , , , , , , , , , , , , , , , , , ,		\perp	1	Ш	\coprod	\coprod			$\bot \!\!\! \bot$	Ш	1
210		4				П			Ш	\perp						

PAGE 21 OF 27 PROJECT: Eng	ineer							HOLE	No. Ø	37-101
MINERALIZATION DESCRIPTION	TOTAL	INTERVAL	WIDTH	ASSAY NUMBER	% Ди ррь	% Ag ppm	%	Au oz/ ton	As San	COMPOSITE ASSAY
		-								
199-4-200.0 - bx4 - fre flooded ans/ as discribed \$ 20. 1-4.70 py	/voc	-	0.6	5502	1060	1.0		0031		
		-								
		-								
		- -								
		- -								
		- -								
209.7-210.2- &t ven?/floodin? Laborge grp. White - user transme grey &t = 5 bxd pal grn vac/a "Hw" contract irregular FW @ 200 C.A. Loial drum veg is \$t 2-3 py in fractives. Whiles	in cent	-	0.5	5503	1030	13.5		.030	0.4	
"Hw" contact irregular FW @ 200 C.A. local drum ving in ftz 2-3 py in fractives. Whiles	ν 57.	- - -								

PAGE			OF	27 .	PRO.	JECT: Engrie	·····						HOL	E.	No.	87	- 11	١٥
DE (METRES)	ore Recy	LITHOLOGY	STRUCTURE			GEOLOGICAL DESCRIPTION	\ \&	-	AL	TE	RA Hls	Ch	I 1 Sen		RACT			*
O WE	% Core	Ë	STRI				A		В		Ċ	D	E		Œ <u>F</u>			
210		3.5		207.6- 21	ι, [Latorey Gp (sont.)	П	\prod			П	\prod		П	П			
		-Int				(210.2 - 217.1) - grain gray to 10-20% blk	W		Ц	4	\coprod	12		Ц	\coprod	\perp		44
		Ĵ				swils. Abundant fine fractures (>40/30m)	1/4	\coprod	\bot	1	Ц	12		Н	$\bot \downarrow$	ļ		
		اد				filled 5 transment gray fre + chl. (?)	4		$\downarrow \downarrow$		\coprod	14		\coprod	\coprod	\bot	4	\sqcup
213.5		Int				<u> </u>	A	\coprod	$\downarrow \downarrow$	-	\coprod	\bot		igert	$\dashv \downarrow$	+	4	
		1		211.1- 211	.3	Intraduce	X	Ш	\bot	4	H	#	1	H	\mathbb{H}	+	-	\mathbb{H}
						- pale on to locally white; minutar to	4	\coprod	$\downarrow \downarrow$	1	\vdash	#		\parallel	$\dashv \downarrow$	4		\mathbb{H}
						Anat described . 202.2-> 203.6 but c.a.	14	\coprod	\bot	+	H	#		\mathbb{H}	+	+	4	++
						cut by abuntant translucent unite factuses	1	\coprod	\mathbb{H}	+	H	#	14	H	+4	+		H
-217		$-\Box$				1-2-70 diss py.	14	\square	\bot	+	\coprod	$+\!\!+\!\!\!+$	14	4	$\dashv \dashv$	+		
:							4	44	_	-	\sqcup	$+\!\!+\!\!\!+$	-	\prod	+	-		
				211.3-213	.4	Lator se Gp	1		\bot	4	\sqcup			\sqcup	+	-		
						as discribed 210,2-711,1 but fractures	4	41	\bot	\perp	H	4	H	\dashv	+	+		Н
						are filled to white oft.	14	٤	+	-	H	#		H	+	+	-	H
210.5						-	H	\mathbb{H}		\vdash	\dashv	+-		H	+	+	-	$\left\{ \cdot \right\}$
				713.4- 213	8	Intrusive		H	+	H	\dashv	++	H.,	H	+	+	-	
						-c.g. pale gin (mulas to previous intrusives)	4	4	+	\vdash	H	+	1	\mathbb{H}	+	+	-	+
						270 diss py Abundant fine translucent &?	12	\mathcal{H}	+	\dashv	\dashv	+		Н	+	+	\vdash	H
						otys. ~ 36/30cm. upper contact regular @	1	\mathbb{H}	+	+	\dashv	╫	1	4	+	+	\vdash	
-224	<u> </u>					1 lm 1 to C.A. Lower contact @ 35° to CA.	1	4	+	H	H	╫	11/2	\mathbb{H}	+	+	\vdash	
		243					++	+	+	\vdash	+	+	 	H	+	+	+	
		<u>,</u>		213.8 - 23	2.9	Laberg Gp	1	$\dashv \dagger$	+-		\mathbf{x}	++		Н	+	+	+	
						Greenish grey - home blk argolfe, mottled	1	+	+	+		+	H	+	+	+	$\dagger \dagger$	
						1 to swelld Mod lifes. Fine white gir	₩	\forall	+			+	$\dagger\dagger\dagger$	\dagger	+	+	\dagger	
227.5						Styr 1-2 mm wade, locally up to 6 cm.	1/	+	╁	H,	11	+	H +	+	+	+	+	H
						(described under murralization) 15-20 fine	1/	+	+			$+\!\!+$	HH	+	+	+	+	╂┼┼┼
						grz sters / 30 cm Local patches of fig.	H	+	╁	H		+	+++	H	+	+	\vdash	H
•						PY	/ /	+	+	1	11	+	H	H	+	\dagger	+	
						(725.0-225.5) - Highthy broken circe	#	+	+			+		Н	+	+		\Box
-231	-		· · · · · ·			470 FS py in elimente putales	1/1	+	+	1	4	╫	+++	+	+	+	\vdash	
						(775.7-2272) Slightly booky core	1/1	+	+	1	1	廾	+++	\dagger	+	+	+	
		<u></u>				(232.3.232.9) 1-hfls.	1	+	+	H	11	+	+++	\parallel	+	+	+	
				232.7- 23	} .3	Feldoper perphry like	1		+	H	H	$\dagger \dagger$	1	H	+	+	$\dagger \dagger$	H
سے درو						- med grey, mig grand mass w abundant	1		+	H	$\dagger \dagger$	+		3	+	+	$\dag \uparrow$	H
234.5		ئىنۇ مىنىۋ				foldspar (:) x12 1-3 mm de where are alter	1	1	+	H	++	+	1	H	+	+	$\dag \uparrow$	H
		द्				to put gen + whiteh desicate. Intense Si.			+	H	+	+	H	+	+	+	 	H
		7				Abundant white of sters 1-2 mm will.	1	#	+	\parallel	+	+	11	H	+	+	H	H
						1 ~ 20-25 Aggs / 3D cm. HW contact @ SS° h	+	41	+	H	+	++	HX	+	+	+	+	H
				1		C.A. Fw. mtact @ 30° to C.A.	1 ;	ા	- 1	1	1 1	1 :	1 + Y	1 '	1	1		

PAGE 23" OF 27 PROJECT: Engin	w	/								HOLE	No. 8	7-101
MINERALIZATION DESCRIPTION	TOTAL	SULPHIDE	INTERVAL	HIGIW		ASSAY NUMBER	% Au ppb	% Ag ppm	%	An Ot/ ten	As of the	COMPOSITI ASSAYS
	44	#	-		_					ļ		
	-11	#	-		_	······································						
	4	Ш	L		_							
	Ш	\coprod	L	ļ	\downarrow	····			······································			
		11	_									
		Щ			\bot					<u> </u>		
	Ш	Ш				THE						
	Ш	Ш	L									
		Ш										
							•					
	11	$\dagger \dagger$	<u> </u>		1							
	11	11	Τ		\top					1		<u> </u>
	\Box	$\dagger \dagger$	†		1		 			†		<u> </u>
	\forall	$\dagger \dagger$	<u> </u>		\dashv							
	\dashv	+	 	<u> </u>								
	+	++	-	<u> </u>	+		 	<u> </u>		 		
	+	╁┼	\vdash	-	\dashv					 		<u> </u>
	+	++	 -	-			ļ			<u> </u>		
	$+\!\!+\!\!\!+$	#	├	-	-					ļ	ļ	
	\dashv	++	 	-	+		ļ			ļ		
216.8-21692 - white fitz steps, 6 cm wild	4	44	-	0.1	2	5504	400	6.5		1012	ļ	
@ 45° to C.A TO // bands - 2cm	4	44	_		_					ļ <u>.</u>		· · · · · · · · · · · · · · · · · · ·
width in F.W. Scattered Imm dia vu	ر إي		<u> </u>		\downarrow							
in ftz 1-270 py in stays // to band	~ v/v		L						_			
in F.W.			L									
217.25-217.7 - Water + Water translacent				0.6	5	5505	670	64.4		.020	1.9	
gray stay Irrapilar contacts ~ 2-3	v x	π	T									
em will @ ~150 to c.A. 2-370 fig.		7	Γ		T			<u> </u>				······································
	- r 1	71	T									
py in alongala patches + store next to		計	<u> </u>		+					<u> </u>		
<u> </u>	11	1	 				7.	1.2		-	ļ ——	
219.0-219.3. Zwhite &tz stors on	1/1	計	†	10.	3	5506	20	1.2		.001	ļ	······································
4 cm widd @ 300 to C.A. An opins	17	\mathcal{H}	+	-	-+				·	 	ļ	
8 cm with @ 450 to C.A. Larger Stop	+	#	+		\dashv				ļ	-		
contains elargate translation of the are	4	4	 -	-	_		ļ		ļ		<u> </u>	
bxa ~ 170 pg in boil.	4	#	1		_		ļ			<u> </u>		
	Ш	$\perp \downarrow$	1		\perp		ļ		<u></u>			
	Ш	\coprod	1		\perp							
				_							•	

P/	AGE	2	4	OF 7	Z-7 PR	DJECT: Engineer							T	HOLE	No.				1
	- 🔅	ecy	չ	RE					AL	TE	RA	rıo	N		,	-		<u> </u>	1
1090	METRES)	% Core Recy	LITHOLOGY	STRUCTURE		GEOLOGICAL DESCRIPTION	5		Cas	\$	Hfls	1			FRACT	LENS!	lay alph	Srcf	
		%	7	+	·		Ļ	Δ_	В		С	C	_	Ε					上
-	238		一个		237-3-272.	(237.3-263.7) grey - hoser blk argiliste, smrlid	Ш	Ш	Ш	Ц	Щ	П		Ш	Ш			Ш	
_						green sh grey woer blk argilite, sured	Ш	Ш	Ш	Ц	Щ	Ц	Ш	Ш	Ш	1	Ш	Ш	1
_						to mother textuse. Fine (1-2mm) white fit	Ш	Ш		Ц	Ш	Ш	Ц	Ш	Ш			Ш	
						87815. 10-20 Agres / 30 cm. Local	Ц	Ш	Щ	Ц	Щ	Ш	Ш		Ш	\perp		Ш	
- 20	42					1-2 cm unde stars.	\coprod	Ш		Ц,		Ц		\coprod	Ш	\perp		Ш	\perp
1	, •					(237.3-238.8) light grey wlocal miner blk	Ш					Ш	Ш		Ш	\perp	Ш		
						patches Intense - hfls. Local white fits styr		Ш				\coprod			Ш	\perp			\perp
						2590 of core to local gan alty "halos"	Ш					\coprod			Ш			Ш	
						abrupt lawer centact (2 350 to C.A. Chardness	Ш	Ш				Ш	Ш					Ш	
	246					may also be i-Si.)	Ш			12			Ш					Ш	
						(257.4-258.4) - badly broken core, intense						\prod							
						clay alt 1 4690 of care		\prod				\prod	П		1		1/1		T
						(258.9 - 259. E) mod. broken care local					П	П	П	\top	1				T
						mod clay alth					П		\prod	\prod		1	1		T
[,						(259.8 - 260.5) sightly broken coxe = mod	\prod				П						g.		T
- 2	SO		ر. د،			day alth. bathy broken core in last 10 cm.		\prod						\prod		1	70		T
Γ			છુ			(260.5-261.6) i- 5, intensely fractured but		1				П				7			+
			_			not broken in abundant white rlight orcy oft		7				Ħ		11	17	1		\prod	
			s s				1	П		1		Π	$\dagger \dagger$	$\dagger \dagger$	1	才			†
			ذ	1	et:	in fractives 170 to locally 470 py in areas	X			\dagger		\parallel	\parallel	11				+	†
	254		1			1 of strong 82.	Ħ	11		1		$\dagger \dagger$	$\dagger \dagger$	11	1	2/	١,	\top	T
r						(262.6-263.3) badly toroken, slight to local	$\dagger \dagger$	+		+	\Box	$\dagger \dagger$	$\dagger \dagger$	\top	1		2	1	†
							$\dagger \dagger$	$\dagger \dagger$	+	+	H	$\dag \uparrow$	$\dagger \dagger$	++		1		+	†
 						(263.6-263.9) Slightly broken = slight clay MPY	$\dagger \dagger$	+		+	H	$\dagger \dagger$	$\dagger \dagger$	+		- F		+	十
				~~~		on fractures.		1	+	+		$\dagger$	${\dagger}{\dagger}$	††		1		#	t
-21	58					(263.9 - 265.7) for flooded a biecciated	1	<b>7</b> 1	4	+		H	+	+	H	1	H	1	+
-				n-		i- si w green gro and white for in abunda	1		9	+	$\vdash$	H	+	+	HH	1	+1	+	+
-	İ			###		fractures. Local graphite + 51. Set clay alth (	1	1	1	+	$\vdash$	╫	H	++	H	1	+	++	+
<b>H</b>						263.7 > 249.1 , 264.4-264.7 and 265.2->		#	3	+		H	H	+		-19		机	+
H						265.6 (also stightly briller) Cocal stight			6	+		H	+	+	H	6	+	#	+
-	262	$\vdash$				cash alt local 1-270 py	142			+	-	$\vdash$	+	++	120	. []		4+	+
F				~~~		265.7-7.72.3 - fault bxa Zone Deminently	H	+	+	+		$\vdash$	H	+	1			+	+
-						blk argillite , highly fractived in - 10%	H	++	$\dashv$	+	$\vdash$	$\vdash$	H	+	1		-17	++	+
-						shife ofte in fractures core is slight to	+	+	+	+	+	-	H	++-	H	41	2     	$+\!\!+\!\!\!+$	+
-						badly broken to local mod - i clay alt	1		- -	+		-	H	++-		4	4	+	+
-24	66			~~		T breceiated Assuffer Interes gto flooding		#	$\parallel \parallel$	1	4	4	$\prod$	44	1			+	1
-	-			m		in lunce 1.1 m. (possibly part of ven?)	14	4	$\perp \mid$	$\perp$	4	-	$\coprod$	#	1			#	•
-				in	· · · · · · · · · · · · · · · · · · ·		$\coprod$	11	$\perp \mid$		1		$\coprod$	#	$\coprod$	$\downarrow \downarrow$	$\bot \downarrow$	$+\!\!\!+$	1
;				2		1.		$\coprod$	$\coprod$	$\perp$	Ш		$\coprod$	11		$\coprod$	$\coprod$	4	$\perp$
<u>-</u>					•			$\coprod$	$\coprod$	Ш	Ш	_	Ц	$\coprod$		$\coprod$	$\coprod$	$\perp \! \! \! \! \! \perp$	L
2	40		V	-					Ш										

PAGE	25 OF Z7 PROJE	CT: Engue	~								HOLE N	0. 87	-101
,.·	MINERALIZATION DESCRIPTION	i i	TOTAL	SULPHIDE	INTERVAL	WIDTH	ASSAY NUMBER	% Au PPb	% Ag ppm	%	An ord		COMPOSITE ASSAYS
				Ш									
				Ш	<del></del>					., .,			
					_								
					_								
			$\top$		_							$\neg \uparrow$	
			$\dashv$	H	_								
<del></del>			+	HH	-						<del>  </del>		<del></del>
			$\vdash$	H	<del></del>			<b> </b>			<del>                                     </del>	-+	
			+	H							<del>                                     </del>	$\dashv$	
	Annual Control of the State of		$oxed{+}$	$\coprod$	<del></del>						<b>  </b>	_	
			$\vdash$	Ш				<u> </u>					
			Ц	Ш	<del></del>		,						
				Ш									
260.5	-261.05- gtz flooded	Fractured	W.			0.55	5507	45	1.8		.002		)
ar	•			14	<del></del>							1	1.1m, .069
761.05	•	11		$\Pi$	_	0.55	5508	520	1.3		.015		
		170 Pg		Ш	_						1	!	
	- 264,4 - Intense 876	10000		H	<del></del>	0.5	5509	630	9.8		.018		<del>}</del>
	escalled p 24. Inca			++				<del>                                     </del>			Ours?	(	19
	1-265.05 - as above				_	0.65	5510	260		<u>-</u>	.008		1.8 m, -010
745.0	5 - 265.7 - as abo	<u>ue</u>	4	Ш	<del>-</del>	0.65	5511	230	1.8		.008	/	· .
			$\prod$	Ш									
				Ш	_			ļ			ļ		
	· · · · · · · · · · · · · · · · · · ·		Щ	Ш	_								
					_							ŀ	
				$\prod$	_								
771 -	- 221 74 - 29 -		1		<del></del>	0.55	Tr>		, ^ ^		1000		<del> </del>
<u>←₹1.7.</u>	= 271.75 - white + no	moucine of en	*		-	0.33	3512	90	0.9		1005	$\dashv$	}
815	₩ arg9417e bxa V	en or graflowd-	1	++-	<u> </u>	-		<del> </del>			<del>                                     </del>		
,	,	· ·	K	$\mathbb{H}$	_	-					<del>  -</del>		1.1
	ts angular - govern				_	-		ļ			<del>                                     </del>		lilm, -003
us	s 170 pg in f	s. parther	1		_			ļ	ļ				
271.7	15-279.3 - 00.	abone	1	Ш	_	0.55	5513.	140	1.0		.004		
		***************************************		Ш									
						Γ		1			1		

PAGE	26	-	OF	27	PRO	ECT: Engnier							HOLE	No.			
	Recy	3₹	RE						Al	TEF	RAT	ION		] ;	-		
DEPTH (METRES)	% Core Re	LITHOLOGY	STRUCTURE	i		GEOLOGICAL DESCRIPTION	[;	۶ ₁ -	cus	5 11	(Is			FRACT	L L N	day	`v
	%	רוז	STF				_	A	8		С	D	Ε	-	2		
270		1		272.3	272.6	Qtz Veinlet.	П		П								$\prod$
		مح				- white fre - abundant ble against											
		3				beca. Class sub angular, generally 1.5											
		Ĩ				cm in length & elementer very fine pade	П										
		<u> </u>				your cars (?) fractures cut everything	П		7								П
		<u> </u>	-				П		7	Ш	T		П		П		П
						6 1970 py locarry in classes. H.W. @ 15° to	П			$\Pi$	1		$\Pi$	$\Pi$			T
						C.M., F.W @ 30° to CA Both contacts	H	7	7	$\dagger\dagger\dagger$	T		$\prod$	#			11
						next to i-clay att angilite.	H	1	1		T		H	$\dagger \dagger$			$\dagger \dagger$
			m				$\dagger \dagger$	+	H	H	1		H	$\dagger \dagger$	$\dagger$		++
-275	$\vdash$	+	1 1	272.6-	291.4	Laborse gp-	H	+	$\dag \uparrow$	H	1	H +	H	++-	H	╁┼┤	++
			~			de gren to blk argalite is local being	+		$\vdash$	1/1	//-	H + H	╂┼┼	++-	H	H	+
						a graish yellow alth patches (63 cm widt)	H	+	${\mathbb H}$	1/4	4	H	+++	+	H	HH	+
			~			moderate to generally strong his. Fine	H		-	1/4	4	H	+++	+	$\vdash$	Н	+
			2			white fit spors Animperat ~ 10-20/3000	1	1/2	-	$H_{A}$	4	H	HH	+	$\mathbb{H}$	H	+
			~			673.5 - 274.4) - transment grey + white	1	$\mathscr{A}$	$\vdash$	14		$\mathbb{H}$	H		-		$\dashv$
			~	·		Gtz flooding (Iaw angle vein?) " - bxd	4	4	$\vdash$		4	$\coprod$	$\ \cdot\ $	+	igwdapped	$\square$	- -
						argalite. Abundant small fractures cut	14	1	$\coprod$		4	Ш	1-1-1	-	$oxed{\bot}$		4
						core. A stronger fracture running sub 11 to	14				4	Ш	$\prod$	$\coprod$	$\coprod$		$\perp \mid$
						C.A. Spirs core in half through section	14		Ш		4,	Ш	$\coprod$	44	Ш		$\perp \downarrow$
_ 7 <i>a</i> A						4170 pg		1/2	Ц		1		$\coprod$			Ш	Ц
- 280		X	3			(274.6-275.0) - bady broken, mod-; day				1	1		Ш				$\coprod$
		3				alter. 3% py in patches.					1	Ш			1	1	
9.1 1		- 1				(275.4-217.7) mod broken to local				3	1			W			
		]		,,,,,		mod clay alth Haronflowin					1						
				-,	*****	(280.7 - 281.1) - stiffel to mod. broken			П								
									П		1			1			
						local mod. clay alf	Ħ				1			1			
						(2371-283.9) - nightly broken night to	T				1	111	$\prod$	1			П
						nod clay alth on fractive mefaces	$\dagger$		$\dagger \dagger$	11				4			$\top$
						(228, 3 - 288.4) slight broken as above	+	$\vdash$	H				111	1			++
-285	-					(289.7 - 290.0) mod. broken is mod clay	+		H	1		+++	++	撒	H	1112	,
			-			alth on fractives , local i-clay alth in	+	H	+		2	1	++	1	H.		+
						center of interval		$\vdash$	╁	10		++		14	H		+
							+	$\vdash$	$\vdash$	H	+	+++	+++	+	++	++	+
							+	$\vdash$	H		+	+++	+	+	H		+
							$\perp$	-	-	$  \cdot  $	+	$+\!\!\!\!\!+\!\!\!\!\!\!+$	++	$+\!\!+\!\!\!+$	-	+	$+\!\!+\!\!\!+$
						E.O.H (291,4 m.)	$\perp$	Ш	$\coprod$	$\prod$		$\prod$	$\prod$	$\bot$	$\coprod$		+
									$\coprod$		$\perp$		$\prod$	$\bot$	$\coprod$		$\downarrow \downarrow$
											$\perp$	Ш	Ш	$\perp \! \! \! \! \! \! \! \! \perp$	$\coprod$	Ш	1
		-															
290			1									$\prod$			$\prod$		

PROJECT: Engrue HOLE No. 87 - 107 . PAGE 27 OF 27. COMPOSITE TOTAL SULPHIDE INTERVAL **MINERALIZATION** ASSAY A5 **ASSAYS** Au NUMBER **DESCRIPTION** ot/tam ppb ppm 0.8 5514 60 772.3-272.6 - alto ventet as described -002 p 26. <170 py 273.5-274.05 - gro flooded argaliste asp 1.3 6.55 5515 .007 11m, 007 0.55 5516 230 1.4 ,007

PAGE			OF .		PRO	OJECT:			,				HOL	E.	No.				
H (S)	Recy	767	URE						AL.	ren.	ATI	ON	т	$\Box$					<b>]</b> .
DEPTH (METRES)	% Core Recy	LITHOLOGY	STRUCTURE			GEOLOGICAL DESCRIPTION									FRACT			į	-
5	%	ב	ST				Α		В	<u> </u>		D	Ε		_ <u>z</u>				
-							Щ	Ц	$\coprod$	$\coprod$	Ц	Ц	$\coprod$	Ц	Ц	Ц	$\coprod$	Ц	
-							-	$\coprod$	44	#	Ц	$\coprod$	$\prod$	$\coprod$	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$\coprod$	$\coprod$	$\coprod$	+
-						1	4	$\coprod$	$\coprod$	$\coprod$	$\coprod$	$\coprod$	$\coprod$	$\sqcup$	44	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$\coprod$	$\coprod$	+
-				ļ			_	${f H}$	$\coprod$	-	$\sqcup$	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$\prod$	++	$\parallel$	$\dashv$	44	+
- 1				<u> </u>		1	_	H	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$\coprod$	H	$\coprod$	$\coprod$	H	$\dashv \vdash$	H	$+\!\!\!\!+$	+	
-							$\perp$	$\parallel$	${\mathbb H}$	╫	$\vdash$	$\dashv +$	${\mathbb H}$	H	$\dashv$	H	$\dashv$	$\dashv$	+
<u> </u>							+	$oxed{+}$	${f H}$	╫	H	H	╫	${\mathbb H}$	$+\!\!+$	╁	$+\!+$	H	+
-						1		${\mathbb H}$	H	╫	$\vdash$	${f +}$	╫	H	+	${\mathbb H}$	${f H}$	H	+
<del> </del>							+	H	╁	${\it H}$	-	+	H	H	+	H	++	H	+
<del> </del>							+	+	++	╁┼	$\dashv$	${\mathbb H}$	H	${}^{\dag}$	+	H	++	H	+
<b> -  </b>				<u> </u>			+	+	++	+	H	H	╫	H	H	+	+	H	+
<b> -</b>						1	+	╁╁	╁	╁┼	$\vdash$	+	+	Н	++	++	$+\!\!+$	+	+
F 1							+	╁	+	╫	H	H	H	Н	+	H	++	++	+
-							+	H	H	H	H	+	+	H	+	$\dagger \dagger$	++	$\dag \dag$	+
<b>-</b>					· · · · ·		+	H	H	$\parallel$	H	H	$\dagger \dagger$	H	$\dag \dag$	$\dagger \dagger$	+	$\dagger$	+
-							+	H	$\dagger\dagger$	$\dagger \dagger$	H	$\dag \uparrow$	$\dagger \dagger$	H	+	$\dagger \dagger$	++	$\dagger \dagger$	<del>,</del>
							+		$\dagger \dagger$	$\dagger \dagger$	H	$\dagger \dagger$	$\dagger \dagger$	H	$\dagger \dagger$	$\dagger\dagger$	††	H	7
-					<del></del>		+	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$		$\dagger \dagger$	$\dagger \dagger$	$\parallel$	$\dagger \dagger$	$\dagger\dagger$	#	$\dagger \dagger$	†
-							+	$\dagger \dagger$	$\dagger \dagger$	$\dag \dag$	$\dagger$	$\dagger \dagger$	H	$\parallel$	H	II	††	$\dagger \dagger$	†
						1		$\dagger \dagger$	$\dagger \dagger$	H	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	Ħ	$\dagger \dagger$	††	11	11	1
	ĺ							$\parallel \parallel$	$\dagger \dagger$	$\prod$		$\prod$	Ħ		11	II	$\prod$	$\prod$	十
-											$  \uparrow  $	T	$\prod$	$\parallel$	$\dagger \dagger$	$\prod$	$\dagger \dagger$	$\prod$	十
_	į						1		$\parallel$		H	11	$\prod$		$\dagger \dagger$	$\prod$	$\dagger \dagger$	$\prod$	†
_									$\prod$	$\prod$			$\prod$	П		П	$\prod$	$\prod$	T
									$\prod$				$\prod$	П	$\prod$		$\prod$	$\prod$	T
								П	$\prod$	$\prod$					$\prod$		$\prod$		T
																	$\prod$	$\prod$	$\prod$
												$\prod$					$\prod$		$\prod$
												$\prod$				$\prod$	$\prod$	$\prod$	$\prod$
																	$\prod$	$\prod$	I
									Ш							$\prod$	$\coprod$	$\coprod$	
										Ш								Щ	
									Ш	Ш							$\coprod$	$\coprod$	_
						1			Ш		$\perp$			Ц			$\coprod$	Ц	
									$\coprod$	Ш							Ш		سينية اد
									Ш	Ш			Ш	$\perp$			$\coprod$	$\coprod$	$\downarrow$
										Ш	$\perp$	$\coprod$				$\coprod$	Ш		$\perp$
_							$\perp \mid$		Щ	Ш							Ш	$\coprod$	1
		1								$\  \ $									

## ERICKSON GOLD MINING CORP. MINERALS SECTION

## DRILL LOG

PROJECT	
ENGINEER	GROUND ELEV.
HOLE No. 87-102	BEARING 250°
LOCATION	
N 4067,47	DIP -55
ь 3393.95	TOTAL LENGTH
	3/9.7 M
LOGGED BY H. SMIT	HORIZONTAL PROJECT
17. 31417	194.15m
DATE SEPT 17/87 TO SEPT 23/87	VERTICAL PROJECT
•	253.89m.
CONTRACTOR	ALTERATION SCALE
CONNERS	111
·	absent
CORE SIZE	slight
$\wedge Q$	moderate
DATE STARTED	intense
SEPT 15/87	TOTAL SULPHIDE SCALE
DATE COMPLETED	1 4 4 4 4
SEPT 20/87	traces only
DIP TESTS 010 9210 DECEMBER DIC 92100 253°	1     < 1%   1% - 3%
179 9 -53.0 2490	3% - 10%
196.9 -52.0 248° 206.0 -51.5 250°	> 10%
COMMENTS	LEGEND
INTERSECTIONS:	
42.6-43.6 QV ARG FRAGS, NUCS, 1% PY (1.0m) CO.003 02 Hon An	
207.8-208.9 QY (1.1m) CO.001 OZ/TON Au.	
232.3-232.7 QY MINOR YULS: 10% ARG FRAS; (0.4m) MINOR PY, Tr-Tetra. 60.005 62/ton Au.	
243.1-243.5 QY WHIGHEY RTZ; 40 % ARG FROMS (0.4m) MINOR YOLS; <1% PY IN FROMS @0.007 oz/TEN AN	
257.8-281.9 BRXX/ALTE/ VEIN ZONE (24.1m)	l ·
MIXED C-S: BRXX; SI FLOODING;	·
SHEAR A	
36.EUV (1 0 0 000 1-	

PAGE	â	)	OF	42	PRO	DJECT: ENGINEER							Н	DLE	No	. 8	7-,	102	
	5	>	ш	l	<u> </u>		T		ALT	ER	AT	ION	l			_		Τ	┪
DEPTH (METRES)	ore Recy	LITHOLOGY	TRUCTURE			GEOLOGICAL DESCRIPTION	<i>Ş.</i>	1	۵	c	47	T	Ţ	Ser	RACT	ENSIT	K	HF	15
<u> </u>	% Core	Ė	STR				A		В	L	С	D		Ε	Ē	Z			
v			Ш	0-3	3 <i>.3</i>	OYERBURDEN	Ш	Ц	$\coprod$	Ш				Ц	$\coprod$	Ш	Ш	Ш	Ц
							Ш		Ш	$\coprod$				Ш	Ш	Ш	Ш		Ш
			П															Ш	
		10	Ш	3.3-	42,6	ARGILLITE	П		П	П	Τ			П	$\prod$	П	П		П
						- DARK GREY TO BLACK; BEDDING	$\prod$	П		$\prod$						П		$\prod$	П
						OCCASSIONALLY VISIBLE AT HIGH L TO	$\Pi$	П	$\top$	#	T			$\prod$	$\prod$	П	$\prod$	$\top$	П
				1	-,-, <del>-,</del>	·•	T		, -	7	T		1	T	$\dagger \dagger$	$\Pi$	$\prod$	H	11
		<del>     </del>		<u> </u>		C.A.; BEDS 2 TO 20 MM, VARYING	11	П		1	$\dagger$	H	$\dagger$	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	1/2	H
		13				IN COLOR: DISCONTINUOUS STRE AND	1 I			1	$\dagger$		H	tt	††	$\dagger \dagger$	#	1%	
		1	H	<del> </del>		POTCHES OF LICHT IRREGUAR CALCAR	$\dagger \dagger$	$\dagger \dagger$	#	1	$\dagger$		#	$\dagger\dagger$	$\dagger \dagger$	$\dag \dag$	$\prod$	1	H
5	-	<del>         </del>	++	<u> </u>		FOUS FLOODING (~ 10 % OF CORE	++	$\forall$	$\mathcal{H}$	1	+	+	+	$\dagger\dagger$	$\dagger \dagger$	H	++	W	廾
		1	H	-		DECREASING TO 15% Down HOLE);	++	$+ \downarrow$	4	#	+	₩	+	H	╫	H	++	#	4
				ļ		CALC. FLOODING SOMETIMES ASSOC	++	+	+	1	4	-	H		╫	H	+	+	+
		<b>*</b>	++	<u> </u>		IN PERVASIVE WEAK CHL. GIVING A	+	H	7	#	4		H	14	+	╁╉	+	H	+
	们	$\parallel \parallel \parallel$	$\mathbb{H}$			GREENISH COLOR TO ROCK; DURSON	+	$\coprod$	A+	4	+	#	-	+	₩	$\mathbb{H}$	+	$\frac{1}{2}$	4
	'_	Ш	Ш			AL BANDS UP TO SCM TO 3 TO 5 %	44	$\coprod$	44	14	4	Н.	$\sqcup$	$\coprod$	$\coprod$	$oxed{H}$	$\dashv$	4	4
	10	Ш	Ш			DISS. PY IN ARG; PY TENDS	$\bot$	$\sqcup$	4	1/4	$\downarrow$	-	1	$\coprod$	$\downarrow\downarrow$	$\coprod$	44	A	1
	00	Ш	Ш			TO BE ANHEDRAL & IMM:	44	$\perp \downarrow$	41	4	$\perp$	Щ.		$\coprod$	$\bot$	$\coprod$		4	4
	`	Ш				CORE BLOCKY WITH MINOR	$\bot \bot$	Ц	41	14	$\downarrow$	Ш	Ц	$\downarrow \downarrow$	$\coprod$	Ц	$\downarrow \downarrow$	4	4
						CLAY-CALC-CHL-IRON STAIN ON				1/4		$\coprod$	Ц	$\bot$	Ц	$\coprod$	$\perp \mid$	1	_
- 10	Ľ					FRACTURES; FRACTURES TEND TO				1/4		Ш	Ц		Ш	Ц	_	1/4	1
10		RG				IBE EVERY 5 to 20cm BUT										Ш		1	1
		THE STATE OF THE S				ZONES UP to IM TO BROKEN			Ш	1									1
			$\prod$			CORE (~ 1/5 M) CORE HAKO TO			1	7/		$\prod$	П						1
				†		EXTLEMENT HARD (MOD HORNEDS			7	1		$\prod$	П	$\prod$	П			7	
				<b>†</b>		5.6-6.4 n DYKF; FELD PPY	1		4	7		$\prod$	П	$\Pi$	$\prod$	$\prod$		1	
		HH	Hf	<u> </u>			11		1	1/	T	$\parallel$	$\dagger \dagger$	11	$\parallel$			1	7
		-	+++	1		- GREY-GREEN GROUND MASS TO	††	+	111	挧	†	$\prod$	††	$\dagger \dagger$	#	$\dagger \dagger$	$\dagger \dagger$		1
		<del>                                      </del>	HH	†		20% UP TO 5 MM GREENISH	$\dagger\dagger$	$\dagger$	4	ᅦ	$\dagger$	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	1	1
		H	H	<del>                                     </del>		REZIC FEED PHENO'S; PHENO'S	+	+	11	$\forall$	+	H	$\dagger \dagger$	$\dagger \dagger$	$\dagger\dagger$	††	+	1	+
		HH	H	-		TEND TO HAVE A WHITISH HALO	++	+		1	+	$\dagger \dagger$	╁╂	++	$\dagger \dagger$	$\dagger \dagger$	+	1	十
- 15	-	╁╫┼	H +	<del> </del>		AROUND THEM (SERIC?) CONTAC		+		+	+	${\mathbb H}$	H	+	+	+	+	1	7
		-  -	Ш	<b></b>	·	AT ~ 90° TO C.A. ; 2% FINE	1 1	+	12	+	+	${f +}$	H	+	╁	+	+	-14	+
			$\coprod$	<del> </del>		DISS. PY; CORE BROKEN, FRACTURE		+	11	4	+	╁	H	++	$+\!\!+$	+	+	-14	+
			$\coprod$	-		WEATHERED , Som OF 3% DOS	+	+		+	+	H	H	+	$+\!\!+$	$\mathcal{H}$	+	-4	4
			$\coprod$	<b></b>		PY IN FW; OTHERWISE LITTLE	$+\!\!+\!\!\!+$	+			+	#	H	+	$+\!\!\!+$	$\mathcal{H}$	+	+	+
		Щ				ALT OF ARG. VISIBLE	4	1	14	4	4	#	$\coprod$	$\prod$	#	$\coprod$	$\Box$	11	4
		9	taka				$\perp \! \! \perp$	1		1	1	Ц.	$\coprod$	$\prod$	$\coprod$	Ц	$\perp \mid$	1/4	4
						17.6-17.9	$\perp \downarrow \downarrow$			1/4	$\downarrow$	Ц.	$\coprod$	$\coprod$	$\coprod$	$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	$\perp \downarrow \downarrow$	4	4
		181				- 2cm QTZ- CARB STR AT STO 10°T			Ш			Ш			$\coprod$				1
		4				C.A. : INTERGROWN CLEAROTZ		Γ				$\prod$	$\prod$	$\prod$					2
			$\prod$			MILKY CALLITE, BAND OF	$\prod$		12	14	T	П		TT	П	П		N	4

.

	AGE 3 OF 42 PROJECT: ENG	いしてこれ							HOLE N	0. 87-102
77.6-17.9	MINERALIZATION	TOTAL	INTERVAL	WIDTH		Au	Aδ	%	Au	COMPOSITE
7,6-17.9			_			ļ	· .			
7.6-17.9			_						-	
7.6-17.9									<del>  -</del>	
7.6-17.9			_	-		ļ	ļ		<del>  -</del>	
7.6-17.9			_	-		<b></b>			-	
7.6-17.9			_			<del> </del>			-	
7.6-17.9			<del>-</del>			<del>                                     </del>				
7.6-17.9							†			
7.6-17.9			<del></del>			1	1	·		
7.6-17.9			<del></del>							
7.6-17.9		1111								
7.6-17.9				····		1				
7.6-17.9										
7.6-17.9										
7.6-17.9										
7.6-17.9										
7.6-17.9			<b>_</b>			ļ	ļ			
7.6-17.9			_							
7.6-17.9				ļ			ļ		-	
7.6-17.9			_			ļ	ļ			
7.6-17.9			_	-		ļ	<u> </u>		<u> </u>	
7.6-17.9			_	<u> </u>		-	ļ		<u> </u>	
7.6-17.9			<del></del>	-		ļ	ļ	<u> </u>	$\vdash$	
7.6-17.9			_	-		<b>-</b>	<del> </del>			
7.6-17.9			_	<u> </u>		<del> </del>	<del> </del>		-	
7.6-17.9			-	-		ļ	<b>-</b>	ļ	-	
7.6-17.9			-	ļ		<del> </del>	┧	<b></b> -	<del>                                     </del>	
7.6-17.9			_	-		<del> </del>	<del> </del>	<del> </del>	<del>                                     </del>	
7.6-17.9							<del> </del>	<b></b>	<del>  -</del>	
7.6-17.9			-	<b> </b>		<u> </u>	+	<del> </del>	+ +	
7.6-17.9			-	-		+		<del>                                     </del>	1	
7.6-17.9 2 cm QTZ-CARB STR 9T			_			+	+	<del>                                     </del>		<del></del>
7.6-17.9  2 cm QTZ-CARB STR AT								<del>                                     </del>		
7.6-17.9 2 cm QTZ-CARB STR AT						<del>                                     </del>	<del> </del>	<u> </u>		
2 cm QTZ-CARB STR AT	7.6-179		_	0.2	CC17	1.	1.7	<u> </u>	.001	
	2 m DTZ-CALB CTH OT	- 1		7.3	13311	100	1 1		+ +	
6, 570 1, A MINC 11), K. 1/1/11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	a, Lyp (A Ping 11.0	· 1/2/1			<b>†</b>	<b>†</b>	<b>†</b>		1	

adibbias un constitution de la c

			OF L	2 PROJECT: ENGINEER					<del></del> -		Н	OLE	: N	lo. d	87-	105
- 6	င္မ	չ	Æ					TER					┨.	_		
DEPTH (METRES)	re R	10F0	STRUCTURE	GEOLOGICAL DESCRIPTION	S;		D	C	١,	$\tau$		Ze	DACT	ENSI.	K	H- F
M. D.	ن %	LITHOLOGY	STR		A		В	(	:	D		Ε	Ĭ	- N		
				17.6-17.9 QTZ-CARD STR (CONT)	$\perp$			4	$\prod$		$\prod$	$\prod$	$\prod$	$\prod$		
					4	1	$\coprod$	-11	$\sqcup$	$\mathbb{H}$	H	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	+	H	++	
				ARL TO 1- PY IN CENTERIOR	_	H,	$\mathbb{H}$	4	$\coprod$	Ш	$oldsymbol{\parallel}$	$\coprod$	$\coprod$	Ш	4	1/4
				STR; ICM OF i- py IN HW'	$\perp$	L/2	╢	4	Ш		$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$\coprod$	$\bot$	Ш		14
				MOTTED BROWN- GREEN FLOODING		Ц,	4	4	Ш	Ш	Ц	$\coprod$	Ш	Ш	11	14
				FOR 5 cm in Hw; Far over			Ц	44	Ш	Ш	Ц	$\coprod$	$oldsymbol{\perp}$	Ш		14
				WEAKLY ALT TO PALER COLOR		LĽ,	4	1	Ш		Ц	$\coprod$	Ш	Ш	$\coprod$	14
				DEVELOPED IN ARC. FOR 5 TO			Ш	4	Ш		Ц	Щ	Ш	Ш	Ш	[]
				10 cm.		1	4	14	Ш		Ц	Ш	Ш	Ш	Ш	
- 20						Ц	4	11	Ш		Ц	$\perp \! \! \perp$	Ш	Ш		Ш
- 10			PIEH STICK	20.7 SLIP TO CALC-CHE-			4	1			$\coprod$	$\coprod$		Ш	Ш	
			PITCH	PY IN 2 mm BAND & SLICKS		$\prod I$	$\prod$					$\prod$			$\coprod T$	
				PITCHINA ~85°								$\prod$				
								1			$\prod$	$\prod$	$\Gamma$			M
				27.8M DISTINCT BEDDING P				77	П		П					
				60° TO 6.2 : 1 TO 8 MM BEDS		1		7	П		П	П		П		$\mathcal{M}$
	<u> </u>	7		VARYING IN COLOR FROM LIGHT			П	7	П		П	$\prod$	T	П		1
	10	5	60° 60°	GREENISH - GREY TO DAKK				1/1	П		П	$\prod$	T	П		1
	00/	1RG	٠.٠٠.	GREY; ALL FINE GRAINED	1	ľ		1/1	$\prod$		П	I	T			M
		ν.	t	(SLST- ARG): MINOR CROSS-		17		1/1	T		$\prod$	#	$\top$			1/
-30	.	,		CUTTING LIMM (ME. STRS IN	$\top$			Ħ	T	$\parallel$	П	$\dagger \dagger$	十			1
1	V	1	<b> </b>		$\dagger$	П	H	1/1	$\dagger$		$\dag \uparrow$	$\forall$	T	П		17
			-	MARIOUS BIRECTIONS		H	H	11	$\dagger$	$\Vdash$	$\dagger \dagger$	$\dagger \dagger$	$\top$	$\prod$		
				40.5-42.6 ALT 2 ZONE;				Ħ	T		$\dagger$	$\dagger$	$\dagger$	П		1
				BROWMSH - GREY ALTE IN PATCHES			4	1	Г		П	$\prod$	T			M
				AND INREGULAR LAYERS ASSOC. W		·		14	Γ	П	$\prod$	$\prod$	T	$\prod$		$\prod$
				1 QT2-FLOODING, GENTRALY WEAK				77			П	$\prod$	1	П		M
				FOLIAT - OUTLINED AT 30 TO 40° TO		T,		7	П	П	$\prod$	$\prod$	T	$\prod$		
}				C.A. (m-S:-T-Se?);0,5 ro				1	T	$\prod$	$\prod$	$\prod$	$\top$	$\prod$		14
				4 cm QSTRS AT 30 ro 40° ro		H	1	#	T	-	$\prod$	$\prod$	1	$\prod$		111
- 46	H			(A FROM YOF & 41.4 M; 3%	1		$\top$	#	$\dagger$	-	H	$\forall$	+	$\parallel$		11
ļ			Fol. 3070	PY DISS IN ARG AND WIN	*	$\dagger \dagger$	-	1/1	$\dagger$	1	1	켊	$\top$	$  \uparrow \rangle$		1/
			70 C.A.	1	1/	$\dagger \dagger$		1	$\dagger$	H	#	41	-	$\parallel$		11
				S:1 FLOODEN AREAS; VERY MINOR	+	$\dagger \dagger$	+	1	$\dagger$	$\vdash$	$\dagger \dagger$	+	+	H		11
				pyhro.; Minor (HE IN LOST		$\dagger \dagger$	1	1/2	H	$H^-$	$\dagger \dagger$	+	+	$\dagger$		177
				1.0M. OF INTERVAL	+	H	+	#	+	$\vdash$	$\dag \uparrow$	++	+	+	H +	+
					+	H	+	+	+	$\vdash$	$\dag \uparrow$	+	+	+	H	+
			<b> </b>		+	${+}$	+	++	+	$\vdash$	${\it H}$	$+\!+$	+	$\vdash$	H	++
İ	1	i	,		- 1		1 1	1 1	1 .		1 1		- 1 -	1 (		1 , ,
					-	H	$\parallel$	$+\!\!+$	$\mathbb{H}$	-	$\parallel$	+	+	-	+	+++

PAGE 5 0	F 42	PROJECT: ENGI	reb	X							HOLE	No. 8	7-102
)	MINERAL DESCR		TOTAL	SULPHIDE	INTERVAL	WIDTH	ASSAY NUMBER	% Au ppb	% Ag ppm	%	Au ortan		COMPOSITE ASSAYS
	<u> </u>												
					1								
		· · · · · · · · · · · · · · · · · · ·		$\coprod$	L-				<u> </u>				
			$\perp \downarrow \downarrow$	$\coprod$				· .	ļ	ļ			
			_	#		ļ			ļ	<u></u>	<u> </u>		
				$\bot$	-			ļ		ļ		·	
			$\dashv$	$\dashv$	_			<del> </del>		ļ			
			$\dashv$	╫	_			<del> </del>	<del> </del>		<u> </u>		
			$\dashv +$	++	<u> </u>		-	<del> </del>	<del> </del>	-	-		
			++	+	_	-	1	<del>                                     </del>	<del>                                     </del>				
			-++	╫	-	-		<del> </del>	+	<b> </b>	-		
		· · · · · · · · · · · · · · · · · · ·	$\dashv$	+	-	ļ		<del> </del>	<u> </u>	<u> </u>	<del> </del>		
		1,000		$\dagger \dagger$	-			<del> </del>			<b></b>		
		· · · · · · · · · · · · · · · · · · ·	11	$\dagger \dagger$	_			<u> </u>	<b>†</b>		<u> </u>		
			$\dashv$	$\dagger \dagger$				<b>†</b>	<u> </u>	ļ	1		
<del></del>				11				1					
				11									
<del></del>				$\dagger \dagger$									
	···.												
			$\perp \downarrow \downarrow$	Ц	_				ļ	ļ			
40.5-40.9			$\perp \downarrow$	$\prod$	<del> </del>	0.4	5518	5	1.2	ļ	tr	<b> </b>	1
		ALTERED A		$\bot$	<u> </u>			<b>_</b>	_		ļ		
3 % PY	2101	6 PB 1~ UP >	2	#	_	<u> </u>		ļ	<b>-</b>	<u> </u>	<u> </u>		<u> </u>
1 cm	ar cotes	WITKIN A	-13	#	+	ļ		<del> </del>	<del> </del>	ļ		ļ	<b></b>
1cm Q	72- FC	CONED ZONE		4	-			-	-		-		<del>                                     </del>
110 0 11			$\dashv$	╫	-	0.5	7510	<del> </del>	<del>                                     </del>	-			<del>                                      </del>
40.9-41				#	<del> </del>	0.5	5519	10	0.8	<u> </u>	tr		1.6m tr
		TSR + ALTO	-	+	-	-		1	<del> </del>	<del> </del>	+	-	<del>                                     </del>
		Y; STRS HAVE		#	_	-		<u> </u>	+	+	<del>                                     </del>		+
,		H GREY QTZ		1	+		<del> </del>	†	<del>                                     </del>	<del> </del>	<del>                                     </del>	<del>                                     </del>	+
BANDIN	<u> </u>			7	-			+	<del> </del>	1	+	<del> </del>	
41.4 - 4	2 /			+	-	67	5520	<u>۔</u>	1,2	<del>                                     </del>	1-	<u> </u>	+
m. C	* - T - C	e(?) ALT DARG		$\dagger \dagger$	+	0.7	3370	13	11.2	<del>                                     </del>	tr	<del> </del>	<del> </del>
w- ch/	70/	PY	1	++	+			<del>                                     </del>	<del> </del>	<u> </u>	+	<del>                                     </del>	<del>                                     </del>
VV CN	- 10	1.1	+1	$\dagger \dagger$	+			+	<del>                                     </del>	T	+		
113 . 4	26	ALTI ARG.	4	<u>e</u> t †	+-	2.0	5521	100	+	+-	• 003	<del> </del>	<del> </del>

is.

PAGE	.6	<u></u>	OF	42	PRO	JECT: ENGINEER							н	DLE	No.	8		10:	2
_	ç	<b>&gt;</b>	Ä				7		AL	TEF	?A	ΓION	 		,	T		Γ	7
DEPTH (METRES)	Core Re	LITHOLOGY	RUCTUR			GEOLOGICAL DESCRIPTION		Si:	D	T		T	5	e e	FRACT	ENSI			7
	8		ST					A	В		С	D		Ε	-				
41				42.6	-43.6	QUARTZ VEIN (1.0M)												Π	$\prod$
						- CONTACTS IRKEGULAR ED			Ш	Ш		Ш			Ш			$\prod$	$\prod$
						AT HIGH (75-850) L TO						Ш		Ц				Ш	Ш
L						C.A. ; SEE DESCRIP. OPPOSITE	-							Ш	Ш				
_						<u> </u>						Ш						Ш	Ш
_																			
_											I								П
_										$\prod$		П							$\prod$
										П	Τ	П		П	[ ]	T		П	$\prod$
43								-											
رہ —	П						T			$\prod$	T	$\prod$	T	$\prod$	$\prod$	T		$\prod$	$\prod$
-		>					T			$\top$	T		T		$\prod$	$\top$		П	П
		8					$\top$				1	$\prod$	1			1		П	$\prod$
<del>-</del>				43.6-1.	54.8	ARGILITE				$\top\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	†	$\prod$				1		$\prod$	$\prod$
_					170	ARGILLITE 43.6-45.6 i-AIT=; i-S;			$\Box$	$\top\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	T	Ш	T		Ш	$\top$		П	
-						AS PERMASINE FLOODING AND LIMM	1			$\top$	T	Ш			Ш	1		$\sqcap$	11
-	%	*				TO 15 CM QSTRS AT MOD TO HIGH	. 7	7		1	1	$\mathbf{Z}$	1			T		$\prod$	<del> </del>
	0					ANGLES TO C.A. BONT LICHT	- 1 /	7		7	1		7	И				П	Ĭ
<del>-</del>	2					GLEYISH -GREEN (TOME-SEX-CITE?)	$\uparrow$			17	1		1	1		T	П	$\parallel$	$\dagger \dagger$
		.				PERYASINE ALT=: 3% FINE		1		11	<u> </u>	17	Τ,			$\top$		$\parallel$	$\dagger \dagger$
44			*****		!	DISS PYRITE; QSTR X-CUT !	7	7		1	1		1		Ш	1		$\prod$	$\dagger \dagger$
-						COMPTIME OFFSET PACE ATTEX	17	1			1	1		A		$\top$			$\dagger \dagger$
-						~ 25 % OF INTERVEN IS QTZ	+			1	x-1	1	1		H	$\dagger$		$\parallel$	$\dagger \dagger$
_		į				F) / OF INTER YOL IS Q12	1	1		1	<u>.</u>	M				$\top$	H	$\parallel$	$\dagger \dagger$
_		છ				· · · · · · · · · · · · · · · · · · ·	Ť	1		17	7	1	1	7		T		$\parallel$	$\dagger \dagger$
-		AR					7			11	2	$\forall$				+	H	$\parallel$	#
		!					+	1	+		+		7	Ĺ		+	H-	††	$\dagger$
							$\forall$	$\forall$	$\forall \dagger$	+	7	K				十		$\dag \uparrow$	$\dagger \dagger$
_							1	4	+			1	1			+	$\vdash$	H	+
-					<u></u>		+	1	$\dashv \dagger$	+	+		+	-	HH	+	$\vdash$	$\vdash$	H
<del></del> 45		+	<del></del>				+	7	$\dashv$	+	1	H	1	-	H	+	$\vdash$	${f H}$	+
_							+	4	+	4	4	1	+*		H	+	$\vdash$	$\vdash$	+
_							-	$\mathbb{H}$	+	+	+	11	1	1	H	+	-	+	++-
-							+	+	+	+	+	H	+	1	H	+	$\vdash$	H	+
-								4	+	#	+	1 1			H	+	+	H	#
								4	+	14/	+	1/2	1	-	H	+	+	+	ļ!.
_							4	+	+	+	1	H	+	#	H	+		+	1
_							+	+	+	+	+	H	+	4	$\left  \cdot \right $	+	-	$\vdash$	+
					<del>-</del>		$\perp$	+	+	+	+	H	+	4	$  \dots  $	+	-	$\vdash$	igoplus
<u>-</u>					<del>i</del>		+	+	+	+	+	H	+	4	$  \downarrow \downarrow \downarrow$	$\dashv$	-	4	#
46		$\overline{\mathbf{v}}$		L			$\perp$		Ш	Ш	L	Ш	Ш			Ш		Ш	$\coprod$

----

PAGE 7 OF 42	PROJECT: ENGI	NE	ピペ				,			HOLE No.	87-102
MINERAL DESCR		TOTAL	SULPHIDE	INTERVAL	WIDTH	ASSAY NUMBER	% Au ppb	% Ag ppm	%	Au Ob/tu	COMPOSITE ASSAYS
42.6 -43.6				42.6-43,1	<i>6.</i> 5	5522	150	0.3		.004	
MOTIZED MILKY	WHITE TO GREY	//-	$\mathbb{H}$				<u> </u>			<b> </b>	10m, .003
QTZ: MANT (40%	ANGULAR ALL.	<b>4</b> 1	4	43,1-43.6	0.5	2273	30	0.2		.001	)
FRAGS : ARG FRA	ous LIMM TO	,	$\perp \downarrow$	_ `						ļ	
3cm: SOME FA	RACS BRXX WITHIN		Щ	<u> </u>					<del></del>		
ABNT YUAS U	P TO SEVERN		Ш						~=		
CM LONG AND			Ш								
WITH EUHDDKAL		[4]	Ш								
			Ш						1 1-11		
IN FRAAS BUT	- MINOR AS										
COATINGS ON A	ITZ CTLS IN VUGS										
		Ш									
		Ш		<del></del>							
		$\prod$				• •					
43,6-44,3	30 % WHITE	M			0.7	5524	320	1.1		.019	
	INSIVE 5:1;3%	1		<del>-</del>	<u> </u>		240				
Diss Py.		Ź		_						1	
44.3-44.7	5% 00000	1	$\parallel$		04	5525	40	1.6		,00)	1
20/004		게	$\dagger$	_	<u> </u>	ر کر کی ر	170	1.0		1	
44.7-44.85		ſΉ	H	<del> </del>	n K	5526	10		<del></del>	tr	
		Ш	$\dagger$	<del></del>	2.13	12 2 Eb	1	0.2		1''1	
WHITE OTZ		1	$\parallel$		<del> </del>		<del> </del>			<del>                                     </del>	12.
/	on LICM YULS:	枡	$\vdash$	<del> -</del>	-		<del> </del>	-		<del>  -</del>	1.3m, .001
1% PY WIN A.	-		$\vdash$	-	<b></b>		-			<del>                                     </del>	
CONTACTS IRREG		[3]	H	<b>-</b>	ļ					<del>                                     </del>	
HICH / TO CA		1-1-	+	-			<del>                                     </del>	<u> </u>		<del> </del>	<del></del>
44.85 - 45.6 3		<b>1</b> /11/1	H	<del> -</del>	V. 75	5527	40	1,4		•001	<del></del>
	QSTRS & ANG	1/1	+	-			ļ	<b>_</b>			
i . /	DOES A > 5cm	17.1	H-	<del> -</del>				<u> </u>			
STR W CALC. X		F 71	$oldsymbol{arphi}$	_			<b> </b>			-	
GROWING ON XTZ		$/\!\!/$	$\coprod$	<del> </del>			<u> </u>	ļ		<del>  -</del>	
IN TURN HAVE	QT2 x72'S	A	Ц.	<u> </u>			ļ			<u> </u>	
GROWING ON TI	tem in a YUG		Ц.	L			ļ. <u></u>				
WHICH CUTS T	KOULH THE CORE		Ш	_							
FINE GRAINED	PY IS GROWING	11		_							
ON THE LAST		//	$\prod$	_							
DT2- Cc - Q		1	$\prod$								
			$I^+$		-						
			1								
	And the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s		$\dagger \dagger$	<del> </del>			1		<u> </u>		
		+		<del>                                     </del>	-	<b>†</b>	<del> </del>	<del> </del>		<del>  </del>	
				1	1	L	1	1	1	L 1	ŀ

PAGE				42	ROJECT: ENGINEER							ł	HOL	E i	٧٥. ر	\$7	-/		
_ ¤	a cy	β	R E			I		Ai	LTE	RA	TIO	N			<u>.</u>	$\cdot \Gamma$			7
DEPTH (METRES)	Core Re	LITHOLOGY	TRUCTUI		GEOLOGICAL DESCRIPTION	3	ĵ.	٥		Ch/	7	-	و کو	•	FRACT				
46	8		S	117 6		+ '	<u> </u>		+	ΙŢ	╁	<u>,                                    </u>	-	$\dashv$	_ ТТ	+	_		+
- 7				43,6-154	8 ARGILLITE (CONT.)	$\mathbb{H}$	+	H	1	#	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	+		$\sqcup$	H	H	+	$\mathbb{H}$	-
_						H	+	₩	$\prod'$	#	${f H}$	+	$\Box$	+	H	H	+	+	$\vdash$
ļ.					45.6-47.5 WEAK LIGHT	$\mathbb{H}$	4	${\mathbb H}$	H	$\mathbb{H}$	$\coprod$	$\mathbb{H}$	Н	4	$\coprod$	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$\bot$	$\perp$	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
L					GRET-GREEN ALT IN IRRELUL		$\bot$		Ц,	11	$\coprod$	$\bot$	Щ	$\downarrow$	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$\coprod$	4	$\perp$	-
<b>L</b>					PATCHES AND DISCONTINUOUS BAND	<u>;</u>	4	$\coprod$	Щ	11	$\coprod$	$\perp$	Ш	$\downarrow$	$\coprod$	$\coprod$	$\bot$	$\perp$	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
_					22/M LICM QSTRS ; 2 TO	$\perp \downarrow$	$\downarrow$	Щ	Ľ	11	$\coprod$	$\perp$	1	$\downarrow$	$\coprod$	$\coprod$	$\perp$	$\perp$	$\coprod$
		,			4 % PY FINERY DISS ; IN	Ш	1	Ш	LZ		11	$\perp$	Ш	Ц	$\coprod$	$\prod$	$\perp$	Ш	-
L					- 2 MM STRS; WEAR- CEIN	$\coprod$	1	$\coprod$	Ц	Ц	$\coprod$			Ц	$\coprod$	$\prod$	$\perp$	4	$\coprod$
_					IRREQUENC UP TO 2 CM WHITS	4	_	Ц	Ц	Ц	$\coprod$	Ц	Ш	Ц	$\coprod$	Ш	$\perp$	Ш	$\coprod$
47			<u> </u>		PATCITES , ROCK MODERATERY	$\downarrow \downarrow$	$\perp$	Ц	$\coprod$	11	$\coprod$	Ц	Щ	$\perp$	$\coprod$	$\coprod$	Щ		$\perp$
4 /					HARD			Ш	1							Ш			Ш
									$\coprod$										
					47.5-48.1 QSTR/FLOODING														
_					ZONE , SEE DESCRIP. OPPOSITE														
<b></b>							-	П	$\prod j$	M	П				П				
_	1					1/	7	П	П	П	$\prod$				$\prod$				П
	0	1				17	7		П	$\prod$	$\prod$					П			Π
<del>-</del>	0,	- 9				71	1.			$\prod$	$\prod$				П		П		
_	00	$\propto$				И	7		$\prod$	$\prod$	$\prod$	T			$\prod$		П	$\top$	П
48		A			148.1-154.8 ARGILLITE	17	7	$\prod$	$\prod$	$\Pi$	11				$\prod$			$\top$	$\prod$
48		ſ			WITH SOME POSSIBLE TUFF BENS	.17	7,		$\prod$	$\dagger \dagger$	††		П		$\prod$	11			П
_	1	A			MED TO DAKK GREY WITH ~5 %	1 1		<del> </del>	$\dagger \dagger$	$\prod$	$\dagger \dagger$	T			$\dagger \dagger$	I			丌
-	1 1					$\dagger \dagger$	1	$\dagger \dagger$	$\dagger\dagger$	$\dagger\dagger$	$\dagger \dagger$	$\top$	H	H	$\dagger \dagger$	11	$\top$		$\dagger$
_					LIGHTER GREY TO GREY-GREEN	$\dagger \dagger$	$\top$	$\dagger \dagger$	H	H	$\dagger \dagger$	$\dagger$		H	$\dagger\dagger$	$\dagger\dagger$	+	$\top$	廾
					ALTE PATCHES AND BANDS ; ARG	+	1	$\parallel$	††	$\dagger \dagger$	$\dagger \dagger$	$\dagger$			$\dagger \dagger$	$\dagger \dagger$	1	$\sqcap$	$\dagger \uparrow$
_					IS MASSIVE TO OCCASSIONALLY	$\dagger \dagger$	+	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	††	+	H	H	+	H	+	+	$\parallel$
_					BEDDED: CORE MODERATEY HOAD	+	+	++	$\dagger \dagger$	H	+	+	H	H	H	$\dagger \dagger$	+		十
					(SCRATCHES), > 20cm LONGTHS	+	+	+	H	╁	+	+	H	H	H	╁		+	十
<del></del>					Common; AUTO CONSISTS OF	H	+	-	╁	$\forall \vdash$	+	+	H	+	+	$\dagger \dagger$	+	+	十
					IRREGULAR PATCHES AND UP	+	+	H	+	+	+	+	H	$\dashv$	H	╁┤	+	+	${\sf H}$
49	-				TO 10 CM BANDS OF PERVASINE	+	+	+	╁	H	+	+	$\mathbb{H}$	H	╁┼	╁┤	+	+-	${\mathbb H}$
_					S; ± Cc ± T = Se = Ch/ = Py	+	+	H	H	H	+	+	$\mathbb{H}$	+	+	+	+	+	H
-					Cc-Ch/-T-PY ON FRACTURES	+	+-	H	++	╁	+	+	$\mathbb{H}$	H	+	+	+	+	+
					FRACTURES BANDING TENOS	+	+	H	H	igwedge	H	+	H	$\dashv$	H	++	+	+	+
_					TO BE AT MOD. LTO C.A.	+	-	-	H	$\dashv \downarrow$	$\dashv$	+	$\mathbb{H}$	$oldsymbol{\parallel}$	+	H	+	+	+
_					RORE UP to 1cm QTZ =	$\dashv$	+	$\coprod$	H	#	$\dashv \downarrow$	$\parallel$	$\mathbb{H}$	4	+	+	+	+	#
-					CC STRS; 2%, LOCALLY 5%		4		$\downarrow \downarrow$	#	$\prod$	$\downarrow$	Ш	4	$\downarrow \downarrow$	$\coprod$	$\perp \mid$	4	_
_					PY OVERALL IN FRACTURES, ALT?		$\bot$	$\coprod$	$\coprod$	$\coprod$	$\downarrow \downarrow$	$\coprod$	Щ	$\downarrow$	$\coprod$	$\downarrow \downarrow$	$\bot$	_	4
					PATCHES AND FINERY DISS. W		$\perp$	Ш	$\coprod$	Ц	$\coprod$	Ц	Ш	$\perp$	Ш	$\coprod$		1	$\coprod$
L					ARG.	Ш	$\perp$	Ш	$\coprod$	Ц	$\coprod$	Ц	Ш	$\coprod$	$\coprod$	Ш	$\perp$	$\perp$	$\coprod$
		l																	

PAGE 9 OF 42 PROJECT: ENGIN	RE.	7R	· · · · ·							HOLE	No. 8	7-102
MINERALIZATION DESCRIPTION	TOTAL	SULPHIDE		INTERVAL	width	ASSAY NUMBER	% As pp	% A6 ppm	%	Ar Str		COMPOSIT ASSAYS
	П	1.1										
			Ī									**************************************
	П		Τ						· · · · · · ·			
	11	П	T			•						
	$\prod$	$\prod$	T									
	#	$\dagger \dagger$	T									<del></del>
	$\dagger \dagger$	$\dagger\dagger$	$\dagger$									
1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987	$\dagger \dagger$	$\dagger\dagger$	+						·····		<del></del>	
	$\dagger\dagger$	$\dagger\dagger$	$\dagger$									<del></del>
	+	$\dagger \dagger$	+							<b> </b>		
	+	$\dagger\dagger$	+	•					·	<u> </u>	<del></del>	
	$+\!\!+$	$+\!\!+$	+			i						
17 6 118 1 20 - 1	_{_	#	+			Fr- 0						
47.5-48,1 OSTR/FLOOD ZONE		41	+		0.6	5528	40	1.6	·····	.001		
MIXED WHITE OSTES TO VULS &	1 7	#	+						<del></del>			·
ARC FRACE 'SILICIFIED ARC BRXV	4	#	+							ļ	· · · · · · · · · · · · · · · · · · ·	
AND i- STRINGERED ARG :5%	$\downarrow \downarrow$	74	+		ļļ				<del></del>			
DISS PY WITH THE ALL PORTION	5/	11	_							,		
STRS AT HIGH L'S TO C.A.	1/	4										
			L									
	Ш	Ш		_								
, w			-				1.					
	П	$\prod$				` ·	,					
	$\dagger \dagger$	T	T									
	H	$\parallel$	†									
	T	$\dagger \dagger$	†			W						
A CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR	H	$\dagger \dagger$	十				i					
	$\dagger\dagger$	$\dagger\dagger$	+		<b></b>	<del></del>		<b> </b>		<b></b>		+M 1 - P
	$+\!\!+$	++	+							<b></b>		
	+	╫	+		<b></b>					<b></b>		
	${f H}$	╫	+					<b> </b>		ļ		
	$+\!\!+$	╫	┼	-								
	$\coprod$	$\coprod$	<del> </del>		<b></b>							
	$\coprod$	$\coprod$	$\perp$									
	$\coprod$	$\coprod$	_				:					
	$\prod$											····
	$\prod$	$\prod$	T									
	††	$\dagger \dagger$	†						···			
	$\dagger \dagger$	$\dagger\dagger$	+							<b>-</b>		
	1.1		1_					1 1				
		11										

ć

PAGE	10		OF '	42 PRO	JECT: ENGINEEX							ŀ	HOL	Εŀ	No. 8	7-	102	
	ŝ	34	RE					AL	TE	RA	TION	N		T	<u></u>			$\neg$
DEPTH (METRES)	Core Re	LITHOLOGY	RUCTURE		GEOLOGICAL DESCRIPTION	S	;:	D	(	Chi	T	•	Şe	-	TENSIL	K	M	as .
	8	ت	S			A	4	В		С	D		Ε		_	Ĺ.,		
- 80				43.6 - 154.8	ARGILLITE (CONT)	H	$\prod$	$\parallel$		$\parallel$	#			+	$\frac{1}{1}$		4	$\parallel$
• •		o L			77.5 M) BEDDING AT 850				1		$\parallel$	ļ						
					TO C.A. ; UP TO ICM	$\sqcup$	4	$\mathbb{H}$	4	${f H}$	$\coprod$	H	$  \dots  $	4	$\coprod$	H	-2	+
					GREEN ! GREY BANDS	$\coprod$	$\coprod$	$\perp$	4	$\coprod$		ot		4	$\coprod$		[4	$\dashv$
•					79.00 WHAT APPEARS TO BE	$\coprod$	$\coprod$	Ц	$\perp$	Ц	$\coprod$	L		$\perp$	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$		4	$\perp$
					BEDDING @ 450 TO C.A (COLOR	Ш	Ш	Ц	$\perp$	Ц	$\coprod$	ļ	Ш	Ц	Ш		4	Ц
_			]		(80.2-92.6) CORE HARDER;	Ш	$\coprod$	Ц	$\perp$	Ц	Ш	$\perp$	Ш	Ц	Ш		4	
_		,			(80.2-92.6) CORE HARDER!	Ш	$\coprod$	Ц		Ш	Щ	$\perp$	Ш	Ц	Ц	Ш		Ш
90		·			OFTEN DOESN'T SCRATCH!		Ш		Ш	Ш	$\coprod$	L	Ш		Ш	Ш		
/0					UP TO 7% FINERY DISS. PY;													
•			1		WEAK FOLL OUTLINED BY	П	П				П				П		Ę	
•					DARKER & LIGHTEX COLOR AT	П				П					П		-	П
•					40 TO 50° TO C.A.; STELL	$\prod$	$\prod$			$\prod$	$\prod$	T			$\prod$			
	1		1		IRREGULAR PATCHES OF CC-	$\prod$	$\prod$	T		П	$\prod$	T			$\prod$	$\prod$		
					QTZ ATT (L5% OF ROCK)	H	11	+		Ħ	$\dagger \dagger$	T	T	П	$\prod$			1
•	0				(92.6-98.0) LO.SMM BLACK	$\dagger \dagger$	††	1	$\dagger$	H	††	T	$\Box$	$  \uparrow  $	$\parallel$	H		1
	0					$\dagger \dagger$	H	$^{+}$		$\dagger\dagger$	$\dagger \dagger$	$\dagger$		$\parallel$	$\dagger \dagger$	$\prod$		$\uparrow$
•	00		1		SPECKS (non-MAGNETIC) IN CORE	$\dag \dag$	$\dagger \dagger$	+		H	$\dagger \dagger$	+	H		$\parallel \parallel$	H		+
-					COMPRISOR ~ 5 TO 10 % OF ROCK;	+	${\dagger}{\dagger}$	$\dagger$	H	$\forall t$	$\dagger \dagger$	$\dagger$	$H^{-}$	H	$\dagger\dagger$	-	+	+
- 100	-				POSSIBLE TUFF?	++	+	+	$\dag \uparrow$	++	$\dagger \dagger$	$\dagger$	$H^{-}$	H	$\dagger \dagger$	$\dag \uparrow$	H	+
-	1		ł		94.0) SCM BAND \$ >70%	++	╫	+	H	+	+	+	H	H	+	H		+
•	4		ł		PYHRO. AT 30° TO C.A.	$\dashv \downarrow$	+	+-	+	H	+-	+	H	H	+	${f H}$	Н	+
					TRACE PO AFTER	╁┼	$+\!\!+$	+	+	H	╫	+	H	H	╁	$\dashv$	-	
					103.1) BEDDING @ 50 TO 60°	+	+	+	╀	${f H}$	#	+	++	Н	++	╫	-	+
			1		TO C.A.	44	$\bot$	+	$\coprod$	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	#	+	#	Н	$\dashv$	oxdapprox	-	+
					(114.1-114.4) COLE MOD.	$\Box$	$\coprod$	1	$oxed{\bot}$	$\sqcup$	#	1	1	$\sqcup$	$\coprod$	1	<b>                                     </b>	-
			,		BROKEN		$\coprod$	1	$\coprod$	$\coprod$	4	1	$\coprod$	Ц	$\coprod$	-		1
					(123.0-123.7) BRXX ZONE;	11	$\perp \! \! \perp$	1	$\coprod$	Ц	4	1		-	$\prod$	-		
					60% ANG ARG FRAGS IN A					Ш	Ш	1	Ш	Ц	$\coprod$	Ш		
_120			1.		SILICEOUS, PYKITIC MATRIK;	Ш	Ш		Ш	Ш			Ш	Ш	$\coprod$			
					CONTACTS NOT WELL PRESERVED													
			-		BUT ABPEAR TO BE AT MOD. L							I						
•			1		TO-C.A. CORE GROUND				$\prod$	П	11	1		П	$\prod$	$\prod$		
•			PA		(125.0-125.3) FAULT GOVEE;	1	$\mathbb{Z}$	T	$\parallel$	$\prod$	T	T	$\sqcap$		$\prod$	$\prod$		
•			0-		1	T	$\Pi$	$\dagger$	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	$\dagger$	11		$\dagger \dagger$	$\prod$		
•			~~		m-K , CORE IN SMALL PIECES	$\dagger\dagger$	$\dagger \dagger$	$\dagger$	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	$\dagger$	H		7	$\dagger \dagger$		1
					126.0) 3 CM WHITE RSTR	+	+	+	H	$\dagger\dagger$	$\dagger \dagger$	$\dagger$	${\dagger}{\dagger}$	H	++	$\dagger \dagger$	+	-
-					6 50° to (A; 4 cm of	+	++	+	++	H	+	+	+	H	+	$\dagger \dagger$	+	+
					1-Sil, py in Fw	+	+	+	++	H	+	+	╫	H	+	++	+	+
-	ľ					++	+	+	H	$\dashv$	+	+	+	++	+	+	-	+
130	1	<u> </u>	<b></b>				Ш	Ш.	Ш	Ш	Ш			Ц	Ш			

PAGE 11 OF 42 PROJECT: ENGIN	१८८	Z			1. W.				HOLE No	87-102
MINERALIZATION DESCRIPTION	TOTAL	SULPHIDE	INTERVAL	WIDTH	ASSAY NUMBER	% Au ppb	% Ag ppm	%	Au of ten	COMPOSITI
	$\prod'$	$\prod$								
	++'	+++	_				-			
	+++		<u>-</u> 							
	$\prod$	$\prod$	_							
	++'	+	<del>-</del>							
: N	+	+++				-	-			
N ;			_ ·  _ · .							
	$\prod$	$\prod$	_							
	4	$\prod$	<b>⊢</b>			ļ				
	#	++-	<u> </u>			+				
	#	##				+	-			
			Ĺ							
	$\prod$	<u> </u>	<u></u>			<u> </u>				
	#	+	<b>H</b>	-		<del> </del>				
	+	++-	F	-		<b> </b>				
	$\parallel$	111								
94.0-94.1 Sem PO BAND	$\prod$	7	Ī	0.1	5529	5	1,4		tr	
@ 30° TO C.A.	#	#	Ł	ļ			-		-	
	#	++!	-	-		-	-			
	#	++-								
	$\prod$									
123.0-123.7 BRXX ZONE;	#	#	<b></b>	0.7	2230	90	9.6		,603	
SILE; 10 % PY FINELY DASS	#		-	-		-			-	
123.0-123.7 BRXX ZONE; SIL= 10 % PY FINELY DASS IN MATRIX AND IN <2 MM STRS.	**	#	<u></u>	-		+	-		1	
	$\frac{1}{1}$	<u> </u>	_							
	+	++!	<u> </u>	-		<del> </del>	-	 		
	#	++-	<u></u>	<u> </u>					-	
126.0-12 <b>6.</b> 15	#	++1		n.15	2231	90	3.3		.003	
126.0-128.15 -3cm QSTR & Sil, PY F.W. 3% PY NERALL	II									
F.W. 3% PY NERALL	#	]	_	-		-				
	14	4				<u> </u>			1 .	

S   D   CN   T   S   S   S   S   S   S   S   S   S	PAGE	12		OF ·	42	PRO	ECT: ENGINEEX	. •										フー		
136-154.   ARGILLITE (CONT.)		ट	<u>&gt;</u>	W.		<u> </u>		T		AL	TE	RAI	rion	1		Γ	≻			7
136-154.8 ARGULITE (CONT.)  126.15-130.2 MCe ALTZ;  Co ON FANCTURES AS WELL AS  PEXNASIVE THAN - DUT . MINNER  UP TO 2 CM SLL 2 BKM 2008;  33'44 MORTH DIN BANX.  20045 ! IMPERIUM STXS.  MINDER THE SHOWERS (C20A);  14 10 20 70 C.A . COME FORMY  CREEN IN INTERNSTY DITTE  BOO SO (CA) COME FORMY  CREEN IN INTERNSTY MITTER  BOOS 2 MORTH SIN GEDON  135 (136.7-137.0) CREEN BEDDON  165.7-137.0) CREEN BEDDON  17 ± SC + CA FORMY  CAN FORM IN THE SHOW THE  11MAN UNITE SHEETS (COLT)  1	PTH	re Re	OLOG	CTUF			GEOLOGICAL DESCRIPTION		S	D	c	41	7		Se	ACT	ENSIT	K		<u> </u>
136-154. ARGILLITE (CONT.)  126.15-130.2 MCe ALTE,  Ce on ENCRIPS BY WELL AS  PRINTSINE THEN OUT . THINK II  W TO 2 CM SILL GAR ZONG  3.3/44, MOTHY DIN BARY  ZONGS: IMPERIAM STRS.  FINDER THE STRINGENICEZAND: II  3.1 CM QITAL IN COST  2.0 CM & 50° TO Q. J. I. J. S. R.  E. 10° TO C. A. COME FAIRLY  BREEN IN INTERSYME: ALTA  DROPS IN INTERSYME: ALTA  DROPS IN INTERSYME & C.S. J.  T ± Se ± (61 PATCHES (AS  AFFIRE)  (136.7-137.0) GREEN, GEDDED,  GEDS 2 MM TO 20 M Q TO TO  80° TO C. A. WEBBERY (ALE  THROUT: SATE STREENS (ASE  ALTMA WHITE STREETS (ASE  ALTMA WHITE STREETS (ASE  ALTMA WHITE STREETS (ASE  (137.0-154.8) 20 % IF COST  W UP TO 10 CM GARDS MAKE  IN COLOR: CONTROLLY LANCED!  AT COLOR: CONTROLLY LANCED!  AND DE DIFFERENT CONTROLLY  PROPERTY OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF THE COLOR OF	(ME DE	ပိ %	LITH	STRL					A	В		С	D		Ε	Ē	IN I			
126.15 - 130.2   M-Ce ALTON	125				43,6 -	154.8	ARGILLITE (CONT.)								Ш	Ш				$\coprod$
LIGHT AFTCHES AS WELL AS  PENNASIVE THAN - OUT . MINER  UP TO 2CM SILE BASK 2008;  3° LEY, MORTH DIN BANK  20085 ! MARCHIM STRES  MYNON THE STIMEDIS (C2nn).  3 ICM QSTRES IN CAST  20CM & 50° TOC. 9; 1 9 SKr.  E 20° TOC. 9; CARE FAIRLY  BREEN IN INTERSITY AFTER  302 TO GCOSSIENAL CCESS;  T ± SCE CAI PARCHES (AS  SCENCE)  (136.7 - 137.0) GREEN, SEDDED;  SEEDS 2MA TO 20M P TO'S  80° TOC. A. WEARLY CALC.  THE UNIT SOME BEEN WITE  LISTIN WHITE SPECES (OUT  FELD IN TUFF)  (170-1548) 20° 11 COME  IN UP TO 10 CM SAMOS AT HER IN  LY TO CAR ! MERCHIM PARCHES  (18 COURS CENTRALLY LYCULOS)  BANDON TO SEMONS AT HER IN  LY OUR CENTRALLY LYCULOSI  BANDON TO SEMONS AT HER IN  MY COURS CENTRALLY LYCULOSI  BANDON TO SEMONS AT HER IN  MY COURS CENTRALLY LYCULOSI  BANDON TO SEMONS TO MENON SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVING AND SERVI							\	Ц		$I_{\mathbb{Z}}$	Ш	1	$\coprod$	Ц	$\coprod$	11	Ц	11	$\coprod$	Щ
LINE PATCHES AS WEEL AS  PRINASIVE THINK OUT . MINING IN  WE TO 2CM SLIZ BLEW 2018;  3° SUPY, MORTH SIN BANK  2005 ; IMPERIUM STRS  MINON THIC STATEGIS (2200).  3 ICM QITES IN COLT  20 CM & 50° TO C. 9; I 9 Str  BANKEN IN INTERSITY AFFEX  130.2 TO OCCASSONAL CEZS:  TESE (AI POTCHES (AS  REFLE)  1(136.7-137.0) GREEN, GEDDED  (136.7-137.0) GREEN, GREEN, GEDDED  (136.7-137.0) GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREE							126.15 - 130.2 M-Ce ALTES	Ш	Ĺ	1/	Ш	$\perp$	$\coprod$	Ц	$\perp \! \! \! \! \! \! \! \! \! \! \perp$	Ш	$\perp \downarrow$	11-	Щ	Щ
LINE PATCHES AS WEEL AS  PRINASIVE THINK OUT . MINING IN  WE TO 2CM SLIZ BLEW 2018;  3° SUPY, MORTH SIN BANK  2005 ; IMPERIUM STRS  MINON THIC STATEGIS (2200).  3 ICM QITES IN COLT  20 CM & 50° TO C. 9; I 9 Str  BANKEN IN INTERSITY AFFEX  130.2 TO OCCASSONAL CEZS:  TESE (AI POTCHES (AS  REFLE)  1(136.7-137.0) GREEN, GEDDED  (136.7-137.0) GREEN, GREEN, GEDDED  (136.7-137.0) GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN, GREE							,	Ц		1/2	Ш	┸	Щ	Ц	$\perp \downarrow$	Ш	Ш	Ц.	Щ	Щ
PRIVASINE THRU-OUT. Morn W  W TO 2CM SLL BARK 2008  3 Yely MOSTRY DIN BARK  TOWNS INCLUM STREY  MONON THE STRINGERS (2200):  3 1CM QSTRES IN LOST  20CM & 50° TO. 9: 1 9 5K  & 20° TO. 9: CARE FORKY  BROKEN IN INTERSITY AFTER  130.2 TO GC(ASSENIA CE S.)  1 ± SE * CAI PATCHES (AS  BEFORE)  1(136.7-137.0) GREEN, BEDDED;  80° TO (A WENKLY COLC.  THRU-WIT; SOME BOOS WINE  LIMM WHITE SPECKS (OUT)  1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1										1	Ш	$\perp$	Ц	Ц	11	Щ	Ш	11	Ц	Щ.
130   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	Γ									1	Ш		Ш	Ц	Ш	Ш	Ш	11-	Ц	1
3 % PY MONTY DIN BANK							UP TO 2CM SILE BAR ZONE		Ц	1	Ш		Ш	Ц	Ш	Щ	Ш		Ц	$\coprod$
130   19   19   19   19   19   19   19   1							3 % PY MOSTZY WIN BACK			1	Ш		Ц	Ц	$\perp \! \! \perp$	$\coprod$	Ш		Щ	$\coprod$
130   19   19   19   19   19   19   19   1							ZONES ! IRREZULME STRS;			1	Ш	1	$\coprod$	Ц	$\perp \! \! \perp$	11	$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	11	$\coprod$	1
3   CM Q   TRES   W CAST   20 CM & 50° 70 C. A;   1 9 Str     20 CM & 50° 70 C. A;   1 9 Str     20 CM & 50° 70 C. A;   1 9 Str     20 CM & 50° 70 C. A;   1 9 Str     20 CM & 50° 70 C. A;   CME FAIRLY     30.2 TO OCCASSIONAL CE 5 S; 1     17 ± Se ± (h) PATCHES (AS     BEECHED     136.7-137.0) GREEN GEDAGO;     6805 2 MM TO 20 M & 70° 10° 10° 10° 10° 10° 10° 10° 10° 10° 1	130								Ц	1/	Ш		<u> </u>	Ц	$\perp \! \! \! \! \! \perp$	Ш	$\perp \mid$	11	$\coprod$	Ц.
BROKEN IN INTERNAL: ALTA  BROKEN IN INTERNAL: ALTA  BROKEN IN INTERNAL: ALTA  BROKEN IN INTERNAL: ALTA  BROKEN IN INTERNAL: ALTA  BROKEN IN INTERNAL: ALTA  BROKEN IN INTERNAL:  GENERAL BROKEN  GENERAL BROKEN  (136.7-137.0) GREEN, BEDDED;  BEDDED;  BEDDED 2 MM TO 20 M C 70° TO  80° TO C.A.: WEAKLY CALC,  THEV-DUT; SOME BEDS MAYE  LIMM WHITE SPECKS (ALTA  LIMM WHITE SPECKS (ALTA  FEED IN TUFF?)  (137.0-154.8) 20° 11 OF CORE  (140 UP TO 10 CM BROWNS OF MENN  LYON LYO CAP (REPORTED LANGUAGE)  MY COLOR: GENERALLY LANGUAGES  PREDICTIONATING IN BROWNS; UP TO  S ° 12 PY; 3° 20° PR (UN CONTROL)  THE ALTA:  => 139.3-139.45 CORE	,30										Ш		Ш	Ц		$\perp$	$\perp \mid$	4	$\coprod$	Щ.
BROKEN IN INTERNAL: ALTA  BROKEN IN INTERNAL: ALTA  BROKEN IN INTERNAL: ALTA  BROKEN IN INTERNAL: ALTA  BROKEN IN INTERNAL: ALTA  BROKEN IN INTERNAL: ALTA  BROKEN IN INTERNAL  GOLD SAMM TO SOME BEDDED;  BOO'TO C.A.: WEAKLY CALC,  THROUNT: SOME BEDDS MAYE  LIMM WHITE SPECKS (ALTA  FEED IN TUFF?)  (B3.0-154.R) 20% of coas  IN UP TO 10cm BROWS AT HEAL  TO C.A.: INTERCUMENT PATTERS  IN COLOR: GENTRALLY LAVORED!  BROWN OF TO CAB; UNEXALLS  BROWN AT LOW LTO CAB; UNEXALLS  PREPARTMENTING IN BROWS; UP TO  SOME BLOWN INTERNALS  PREPARTMENTING IN BROWS; UP TO  SOME BLOWN INTERNAL  TO ALTA:  TO ALTA:  TO BROKEN INTERNAL  TO ALTA:  TO BROKEN  TO ALTA	Γ						20cm @50° roc. 9; 195kg		Ц	Ш	Ш			Ц	Ш	$\perp \downarrow$		11	$\coprod$	Ц.
130.2 TO GCCASSIONAL CE S. 1   130.2 TO GCCASSIONAL CE S. 1   T ± Se = Ch1 PATCHES (AS   BEFLE)    (136.7 - 137.0) GREEN BEDDEO;   BEDS 2 MM TO 20 M P 70 10   80 ° TO C. B. · WEAKLY CALC.   THEV-DUT; SOME BEDS MANE   LIMM WHITE SPECKS (ALT)   FECS IN TUFF?     (187.0 - 154.8) 20 % OF CORF     HAS S: CC - T - CH(?) ALTC   IN UP TO 10 CM BEDS AT HER     LTO C. A. & IRREGULAR PATCHES     IN (01002: GENTRALLY LATERED!     BANDON TO DIFFORENT MINERALS     PKEDWINTING IN BANDS: UP 10   S ° 12 PY & 3° 12 PR (UNCOURTED)     TO ALTC :   = 7 139.3 - 139.45 (ORE)							@ 20° TO C.A. " CORE FAIRLY			Ш	Ш		$\coprod$		Ш			$\perp \downarrow$	$\coprod$	Ш
130.2 TO GCCASSIONAL CE S. 1   130.2 TO GCCASSIONAL CE S. 1   T ± Se = Ch1 PATCHES (AS   BEFLE)    (136.7 - 137.0) GREEN BEDDEO;   BEDS 2 MM TO 20 M P 70 10   80 ° TO C. B. · WEAKLY CALC.   THEV-DUT; SOME BEDS MANE   LIMM WHITE SPECKS (ALT)   FECS IN TUFF?     (187.0 - 154.8) 20 % OF CORF     HAS S: CC - T - CH(?) ALTC   IN UP TO 10 CM BEDS AT HER     LTO C. A. & IRREGULAR PATCHES     IN (01002: GENTRALLY LATERED!     BANDON TO DIFFORENT MINERALS     PKEDWINTING IN BANDS: UP 10   S ° 12 PY & 3° 12 PR (UNCOURTED)     TO ALTC :   = 7 139.3 - 139.45 (ORE)							BROKEN IN INTERYAL; ALTO	r		Ш	Ш		$\coprod$	Ц		Ш	Ш	$\coprod$	Ц	$\coprod$
130.2 TO OCCASSIONAL CE S. +							DROPS IN INTENSITY AFTER	4		$\coprod$	Ш		$\coprod$	Ц		Ц	$\downarrow\downarrow$	4	$\coprod$	1
135  IT ± SC ± (6) PATCHES (AS  REFORE)  (136.7-137.0) GREEN BEDDED;  BEDS 2mm TO 20 M P 70 TO  80° TO C.A. WEAKLY CALC.  THRU-OUT: SOME BEDS NAVE  LIMM WHITE SPECKS (ALT)  FELD IN TUFE?  (1370-154.8) 20 % OF CORE  IN UP TO 10 CM BANDS OF HEAN I  L TO (.A. INCERCUME PATCHES)  IN (010A: GENTRALY LAVELED)  BANDED TO DIFFERENT NINDERS;  PREDIMINATING IN BANDS: IF TO  5° 10 PY; 3° 10 PP (UNCOMMEN)  TO ALT.  -7 139.3-139.45 CORE	Γ						130.2 TO OCCASSIONAL CC= Six	$\perp$	Ш	Ш	Ш	Ц	$\coprod$	Ц		Ш	Ц	$\bot \bot$	Ц	Ш
(136.7-137.0) GREEN, BEDDED;  (136.7-137.0) GREEN, BEDDED;  (80° TO C.A. · WEAKLY CALC,  THRU-OUT; SOME BEDS HAVE  LIMM WHITE SPECKS (ALT)  (137.0-154.8) 20% OF CORF  HAS S:-CC-T-CHI(?) ALTE  IN UP TO 10CM BANDS OF HEN  L TO C.A.; IRREGULAR PATTINES  IN COLOR: GENTRALLY LAVERED!  (BANDED TO DIFFERENT MINERALLS  PREDVINATING IN BANDS; UP 10  5° 1/2 PY; 3° 1/2 PR (UNCOMMEN)  TO ALTE:  =7 139.3-139.45 CORE	Γ						T ± Se = Chl parches (AS	_		$\coprod$	Ш		$\coprod$	Ц		Ш		Ш.	Ц	-
(136.7-137.0) GREEN BEDDED:    (136.7-137.0) GREEN BEDDED:   (136.7-137.0) GREEN BEDDED:   (136.7-137.0) GREEN BEDDED:   (136.9-100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.0000													$\coprod$	Ц		Ш	Ш	Ш	Ш	$\coprod$
BEDS 2 MM TO 20 M C 70 TO  80° TO C.A. WEAKLY CALE.  THRU-OUT; SOME BEDS MAYE  LIMM WHITE SPECKS (ALT)  (137.0-1548) 20% OF CORE  (137.0-1548) 20% OF CORE  MAS SI-CC-T-CHI(?) ALTE  IN UP TO 10 CM ARNOS AT HEH  L TO C.A. & IRREGULAR MATCHES &  IN COLOR: RENDRICH LAYBUED/  BANDED TO DIFFERENT MINERALS  PREDIMINATING IN BANDS; W TO  5° 10 PY; 3° 1/2 PP (UNCOMMON)  TALT  = 139.3-139.45 CORE	Γ							$\perp$		Ш			$\coprod$	Ц		$\perp$	4	11-	$\coprod$	$\coprod$
BEDS 2 MM TO 20 M C 70 TO  80° TO C.A. WEAKLY CALE.  THRU-OUT; SOME BEDS MAYE  LIMM WHITE SPECKS (ALT)  (B7.0-1548) 20% OF CORE  (B7.0-1548) 20% OF CORE  MAS SI-CC-T-CHI(?) ALTE  IN UP TO 10 CM ARMOS AT HEN  L TO C.A. GIRRERGUAN PATCHES  IN COLOR: GENTRALLY LAYBUED/  BANDED TO DIFFERENT PLINERALS  PREDIMINATING IN BANDS; UP TO  S °10 PY; 3°1/2 PM (UNCONTRON)  TO ALT  = 139.3-139.45 CORE	130			<u> </u>			(136.7-137.0) GREEN, BEDDED	1	Ц	Ш			$\coprod$		Ш	Щ	$\perp \downarrow \downarrow$	$\bot$	$\coprod$	┦-
140  80° TO C.B. · WERKLY CALC  THRU-OUT: SOME BEDS MAYE  LIMM WHITE SPECKS (DET  (137.0-154.8) 20% OF CORE  (137.0-154.8) 20% OF CORE  HAS SI-CC-T-CHI(?) ALTE  IN UP TO LOCA BANDS AT HEN  L TO C.A. : LAKERGUAN PATCHES  IN COLOR: GENTRALIT LAYERED  100 COLOR: GENTRALIT LAYERED  100 SOMPTIME IN BANDS: UP TO  SOMPTIME IN BANDS: UP TO  SOMPTIME  THE PROFESSION OF TO  SOMPTIME  TO ALTER  200 139.33-139.45 (ORE	[ ]						BEDS 2 MM TO 20M @ 70'r	6		$\coprod$		Ц	$\perp \!\!\! \perp$		Ш	Ш	Ш	$\bot \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	$\prod$	$\coprod$
THRU-OUT; SOME BEDS MAYE  LIMM WHITE SPECKS (ALT)  FERD IN TUFF)  (137.0-154.8) 20% OF CORE  HAS S:-CC-T-CHI(?) ALTC:  INU UP TO 10CM BANDS OF HEAH  L TO C.A.; IRREQUENT PATTIFES  IN COLOR: GENTRALLY LAYBRED  BANDED TO DIFFERENT MUTERALS  PREDIMINATING IN BANDS; UP TO  5 % PY; 3 % PM (UNCOMMON)  TO ALTD:  39,3-139.45 CORE 1							80° TO C.A. " WEAKLY CALC		Ш		Щ	Ц	$\coprod$			$\perp$	Ш		$\coprod$	$\coprod$
LIMM WHITE SPECKS (ALT)	Γ							1		/	Ш	Ц	$\sqrt{A}$				Ш		$\coprod$	$\bot\!\!\!\!\bot$
(137.0-154.8) 20 % of coat (1)  HAS SI-CC-T - CHI(?) ACTC  IN UP TO 10 CM BANDS AT HEAD (1)  L TO C.A. & MERCACULAR PARCYCES (1)  AT LOW L TO C.A; GREENISH CREY (1)  IN COLOR: GENERALLY LAYBEED (1)  BANDED TO DIFFERENT PUNCKALS  PREDMINATING IN BANDS: UP 10  S % PY & 3 % PP (UNCOMMEN)  TO ALT :  =7 139.3-139.45 CORE	Γ						LIMM WHITE SPECKS (OLT	<u> </u>		1		Ц	1		Ш	Ŀ		$\coprod$	$\coprod$	₩
(137.0-154.8) 20 % of coas (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)							FECO IN TUFA >	Ľ/				Ц							$\coprod$	$\coprod$
HAS S:-CC-T - CHI(?) ALTE							•	_[/		1		Ц		l	Ш					$\coprod$
HAS S:-CC-T - CHI(?) ALTE		Ì					(137.0-154.8) 20 % OF CORE	$\mathbb{Z}$		į			ę,			$\perp$			$\coprod$	$\coprod$
140  L TO C.A. ; IRREQUER PATCHES  AT LOW L TO C.A; GREENISH CREY  IN COLOR: RENTRALLY LAYBRED  BANDED TO DIFFERENT MINERALS  PREDIMINATING IN BANDS; UP TO  5°10 PY; 3°10 PP (UNCOMMON)  TO ALT  =7 139.3-139.45 CORE			İ				HAS SI-CO-T - CHI(?) ALTE.			4			ľ		Ш	$\perp$		Ш	$\coprod$	$\perp \!\!\! \perp$
140  LYO (.A. ; IRREQUENT PATCHES )  AT LOW LTO (.A.; GREENSH-CREY)  IN COLOR: GENERALLY LAYERED/  BANDED TO DIFFERENT MINERALS  PREDIMINATING IN BANDS: UP TO  5°10 PY ; 3°10 PP (UNCOMMEN)  TO ALT=  =7 139.3-139.45 CORE								1/								$\perp$		Ш	$\prod$	Ш
AT LOW L TO C.A; GREENISH CREY  IN COLOR: GENERALLY LAYERED/  BANDED TO DIFFERENT MINERALS  PREDIMINATING IN BANDS; UP TO  5°10 PY ; 3°10 PØ (UNCOMMON)  TO ALT=:  =7 139.3-139.45 CORE	_ N/3							- 1/		4									$\coprod$	
IN COLOR: GENERALLY LAYERED!  BANDED TO DIFFERENT MURENOLS  PREDIMINATING IN BANDS: UP TO  5°10 PY ; 3°10 PØ (UNCOMMON)  TO ALT  =7 139.3-139.45 CORE	<del></del>							1.7	1						Ш			Ш	$\coprod$	$\coprod$
BANDED TO DIFFERENT MURENOUS  PREDIMINATING IN BANDS: UP TO  5°10 PY; 3°10 PØ (UN COMMON)  TO ALT= :  =7 139.3-139.45 CORE								1										Ш	$\coprod$	Ш
PREDIMENTAL IN BANDS: UP TO  5° 10 PY ; 3° 10 PØ (UN COMMON)  5 ALT = 139.45 CORE							· · · · · · · · · · · · · · · · · · ·	]		$\prod$			$\prod$						$\prod$	$\coprod$
5 % PY ; 3 % PØ (uncommon) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (								$\int$			$\prod /$	$\prod$							Ц	$\coprod$
=> 139.3-139.45 CORE										$\prod$	1	$\prod$	$\prod$	$\int$					Ш	$\coprod$
=> 139.3-139.45 CORE											$\prod_{i}$	$\prod$							$\coprod$	
							=) 139.3-139.45 CORE			$\prod$	V.		4						$\coprod$	$\coprod$
TAKEN AS LITHOLOGICAL IIII			•				•	1	$\prod$	M		[]								
SAMPLE.								7					$\prod$	]					$\prod$	
145	1,4							$\top$	П	$\prod$	П	П	$\prod$	T					$\prod$	$\prod$

**atlar** - acc acc.

PAGE 13 OF 42 PROJECT: ENGINEER HOLE No. 87-102 COMPOSITE TOTAL SULPHIDE INTERVAL gA ASSAY **MINERALIZATION** Au ASSAYS An NUMBER **DESCRIPTION** Db p ppm 130.0- 130.2 0.2 5532 5 tr Fil QSTRS IN ARE.

PAGE	14	<del></del>	OF	42	PROJ	ECT: ENGINEER						HOLE	No.	87	-10.	 ≥	]
	1 .	<del></del> .	т				I		ΔΙ	TERA	TION		Τ,	T	$\neg$		1
DEPTH (METRES)	% Core Recy	LITHOLOGY	STRUCTURE			GEOLOGICAL DESCRIPTION		3	D B	[Z	T	Se E	FRACT			V	•
156 - - - - - - - - -		X		43.6 -	<i>IS4.8</i>	ARGILLITE (CONT.)  (137.0-154.8) CONT.  (144.4-144.6) QSTR: UPLEX  CONTACT (60°TO C.A.; LOWER  CONTACT IRREQUIANC;											
- - - - - - 158	100 %	- DYKE		154.8-	- 158.9	DYKE; ~ DIORITE MED GRAINED TO FINE GRAINED											<del>                                     </del>
- - - -		- GRG		150.0		MATRIX TO FERD PHENO'S; GREEN ISH GREY; MAPICS (HORITIZED, INDISTINCT; FERD SPRITIZED; 2°% DISS PY, Tr. MAGNETITE; CONTACTS @ 80° TO C.A.											
- - -/62 - -		DYKE *		158.9-	-161.4	ARGILLITE  DARK GREY TO BROWNISH-GREY  ALONG CONTACTS TO DYKEE; MINOR  TOTAL IN FRACTURES; BLOCKY;  SCHATCHES EASILY					,						1
- 163 - 163		- ARG *		161.4-		DYKE DIORITE  GREENISH GREY TO LIME  GREENISH GREY TO LIME  GREENISH GREY TO LIME  GREENISH GREY TO LIME  APHON  THE GREENIS MASS & 3090 UP TO  BMM WHITE TO CLEAR-GREY  PHEND'S (FIZED?)	•					1/4					+-+ "-+-+

HOLE No. 87-102 PAGE 15 OF 42 PROJECT: ENGINEER COMPOSITE TOTAL SULPHIDE NTERVAL AS WIDTH **MINERALIZATION** ASSAY ASSAY( ) Au Au NUMBER DESCRIPTION 1/ten 600 ppm 0.2 5533 140 5.5 144,4-144,6 10 Cm OSTR ·004 e 60° to c. A. + i-S:1 HW (SCM) : OSTR HAS 40 90 AND ARG FRAGS UP TO SOM LONG TO BANDS OF WHITE TO GREY STZ GROWING OUTWARD: SMALL WAS ARONG CENTER OF STR.; 1% SX IN W.R. 152.4-152.5 0.1 (534 5 19 tr 8cm Si-Co-Ch1? ATT BAND @ 50° TO C.A. W 5 % DISS PØ

PAGE	16	,	of 4	/2 PRO	JECT: ENG INTER						HOLE	No.	37-	102
			STRUCTURE	1	GEOLOGICAL DESCRIPTION	S		AL D	Ch1	TION	Se	RACT	i	Ep
162	%	Z	STR			A		В	c	D	E	Ξ	1	
- 102		1		161.4-163.0	DYKE (cont.)	H	$oxed{+}$	H	#	$\mathbb{H}$	14)	++	$\ \cdot\ $	
-					-3705 % DISS PICESP TO	$\vdash$	H	H	H	+	++	H		<del>                                      </del>
-					THE PHENO'S COULD BE	$\dashv$	H	H	$\mathcal{H}$	+++	$\mathcal{H}$	+++	HH	121
-					HIGHLY ALT DYKE SIMLAR	H	H	╫	11/	111	f/f	1++	HH	1111
-		スの			TO PREVIOUS ONE CONTACTS IRREGULAR, SPEEK AT ~ 70°	$\vdash$	$\dag \uparrow$	H	$+\mathcal{U}$	H	+4	╂┼	HH	1211
•		70			TROFESTAR STREET AT ~ 10	$\vdash$	$\dag \uparrow$	H	H		+//	+++		
-		1			TO C.A; LOWER AT ~ 30 ° TO	$\vdash$	$\dagger \dagger$	$\dagger \dagger$	11/	111	$\mathcal{H}$	H		1111
•						$\parallel \uparrow$	$\dagger \dagger$	$\dagger\dagger$	M	$\dagger \dagger \dagger$	11	$\dagger\dagger$		1211
						$\parallel$	$\dagger \dagger$	$\parallel$	11/2		扰	##	H	
_1e3		*		163 0-170 1	AKGILLITE		$\sqcap$	$\Pi$	111	$\Box$	111	$\dagger \dagger \dagger$		111
•		- The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the		I	DARKGREY TO MED WER W	$\parallel$	$\dagger \dagger$	$\dagger \dagger$	111	111	111	$\dagger\dagger$		1111
•		-			BLACK LIMM SPECKS; ALTE	T	$\prod$	$\prod$	111	$\Pi$	111			1111
-					TO GREENISH GREY IN		$\Pi$	П	111		111			
					IRREGULAR PATCHES ESPEC-		$\prod$							
•		-		· · · · · · · · · · · · · · · · · · ·	MILY FOR 1.0M BEFORE		$\prod$	$\prod$						
	3	,			LOWER DYKE CONTACT;									
	0	\ <u>\$</u>			MINOR (~2/M) 60.5cm		$\prod$							
•	07	ARG			RSTRS @ MOD TO HIGH L'S TO		$\prod$			$\Pi$				
•					CIA. : 2 % FINERY DISS. PY		$\prod$							
-					TR PB; LICM BENS/BONS		П	П						
•					~ 188m SHOW SOME									
1					SMALL SCALE FOLDING;									
· ~~~														
סקן		X								7				
				170.1-175.1	DYKE DIORITE FEZD									NA
					DYKE DIORITE FEZD									
					- APPLE - GREEN MATRIX (i-									1/2
•					EPID?) IN CLEAR-GREY TO WHITE					Ш				
					PHENO'S UN TO 5 MM LOVA;									141
		W	į		MATRIX APHON PHENO'S ~20%									
•		×			MATRIX APHON, PHEND'S ~20%;									
•		7			DISS. CUBIC PY; HARD TO					1		Ш	Ш	
					FAIRLY EASY TO SCRATCH .					Ш				
_					FAIRLY EASY TO SCRATCH; MINOR 42 MM QT2-STRINGONS	Ш	Ш						Ш	1414
•		1			( CLEAK - GREY); CONTACTS								Ш	
_					CIERK-CREY); CONTROTS C 75° (UPPEX); 60° (Lawer)			П	$\coprod$	Ш			Ш	
_					TO C.A.; 3 SMALL OSTRS					Ш			Ш	
					PEAR LOWER CONTACT		$\prod$						$\prod$	11.
179		V							1/					

AGE 17 OF 42 PROJECT: ENG	INE	EV.							HOLE	No. &	37-102
MINERALIZATION DESCRIPTION	TOTAL	SULPHIDE	INTERVAL	WIDTH	ASSAY NUMBER	% Au pp6	% Ag ppm	%	Au Item		COMPOSITE
		11	<u> </u>	-		ļ			ļ	ļ	
	$\dashv \downarrow$	$\coprod$	-			<u> </u>	ļ			ļ	
	$\dashv$	44	<del> </del> -	-		<u> </u>	ļ			<u> </u>	
	$\dashv$	44	<del> </del> -	ļ		ļ				ļ	
	$\dashv$	+	+			<b> </b>	<b>_</b>				
		$\mathbb{H}$	╄	ļ		<del> </del>	<del>                                     </del>			ļ	
	+	+	+		<u> </u>	<del> </del>					
·	+	+	<del> -</del>	<b></b>		<u> </u>	<del> </del>				
	$\dashv$	$\dagger\dagger$	<del> </del>			1	<b> </b>		<del>                                     </del>	ļ	
	+	+	+			<del> </del>	<del> </del>		<del> </del>		
	-++	+	+	-		<del> </del>	<del>                                     </del>			-	
	$\dashv$	††	T	-		<u> </u>	<del>                                     </del>		<del> </del>	<del>                                     </del>	
		$\dagger\dagger$	<del> </del>						<u> </u>	<u> </u>	
	11	$\dagger \dagger$	<b>†</b>	-		<del>                                     </del>				<u> </u>	
	11	$\prod$	<b>†</b>								
		$\prod$	T								
		П	T								
		$\perp \downarrow$									
	$\perp \downarrow \downarrow$	$\coprod$					ļ		ļ		
	_	$\coprod$	1			ļ	ļ		ļ	ļ	
	$\dashv \downarrow$	$\bot\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	1	<u> </u>			ļ				
	$\dashv$	$+\!\!+\!\!\!+$	<u> </u>			ļ	ļ	ļ	ļ	ļ	
	$\dashv$	$+\!\!+$	+	-		-		<u> </u>	ļ	ļ	
	-	+	<del> </del>	-		<del>                                     </del>	<del> </del>			<u> </u>	
	$\dashv$	+	1-			<u> </u>	ļ	<u> </u>	<u> </u>		
	+	+	+	<u> </u>		<del>                                     </del>	+	-		ļ	
7/17 1740 2 - 6 -	+	H	+	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	EC3.	+	1.10	<del> </del>			
74.7-174.9 3-0.572.0  CM QSTR IN DYRE @50°  TO C.A: BANDED WHITE YOUR QUES UP  TO COM ACROSS: 3% BY  IN W.R.	$\dashv \downarrow$	$\mathcal{H}$	+	0,2	2232	130	1,2	<b> </b>	.601	-	
THE WASTE IN UJRE CESO	-	1	+	-			<del> </del>	<del> </del>	<b> </b>		
CAZY OF ANDERS WHITE Y	<del>,</del>  }	+	+	-		-	<del> </del>		<del> </del>	ļ	<del></del>
TO los sources 3.61	-14	4	+	-		<del> </del>	<del> </del>	<b> </b>		<del> </del>	
THE CONTROL STORY	$\dashv$	++	+	-	<u> </u>	-	-	<u> </u>	<del>                                     </del>	<del> </del>	<u> </u>
IN W.K	+	++	+	-		<del> </del>	+		-		

PAGE	- 1	18	OF L	/12 P	ROJECT: ENGINEER						HOLE	No.	87	·-/0	2
DE	Core Recy	LITHOLOGY	TRUCTURE		GEOLOGICAL DESCRIPTION	S	Τ	LTE	Ch!	TION	Se E	FRACT			
	%	רוו	ST			A	1	В	С	D	E	Z			
175				175.1-20	78 ARGILLITE	Щ	$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	$\coprod$		И	Ш	Ш	Ц	Ш	
_					- DARK GREY TO BLACK; QUITE	II	Щ	44	$\coprod$	Ш	14	111	$\perp \mid$	44	
					MOTTLED IN APPENDANCE : BEDDING	$\mathbf{L}$		Ш	4	144	14	Ш	Ш	Ш	Ш
					GENERALLY INDISTINCT; LICHTER	144	1		11	14	1/4	Ш	Ш	Ш	$\coprod$
					GREY-BROWN ALTO ALONG FRACT	.[4]	14	44,	14	Ш	1/1	Ш	Щ	Щ	$\bot\!\!\!\!\bot$
					URES , STRINGERS AND IRREGULAR		//	Ц				Ш	Ш	$\perp \! \! \! \! \! \! \! \! \! \! \perp$	$\coprod$
					PATCHES; WEAR CRACKLE BAN	U	1/1			elevery of the second		Ш	$\prod$	Ш	Щ
					W BLACK LO. Spen LINES IN DARK	1/1	1				ger and	$\coprod$	Ш	Ш	4
					GREY ROCK , MOD ABUNDANCE OF		<u> </u>	Щ	Ш	Ш		$\coprod$	Ш	4	$\coprod$
_180					GREY Si-Cct-Chi? K? T? SIRS			Ш				$\coprod$	Ц	4	Щ
_,,,,,					\$ AUT BANDS (~2/M, UP TO					3		Ш	Ш	Ш	$\perp \! \! \perp$
					10 cm Across); AT VARYING L'S TO	ļ,					****	$\coprod$		Ш	$\perp \! \! \perp$
					C.A. OCCASSIONAL PURPLISH -	1/								Ш	$\perp \! \! \perp$
	$\uparrow$				BROWN TINGE TO CORE;								Ш	Ш	$\bot\!\!\!\!\bot$
	0	1			MINOR (21/5M) 0.5 TO 7 CM		Ш					Ш		$\perp \! \! \perp$	$\perp \downarrow$
	0				WHITE are + Ce STRS ; CORD	1/			Ш			Ш		Ш	11
	00	RG			HARD (SCRATCHES SCIENTEY) TO		Ш	$\perp \downarrow$		3			Ш	Ш	
	10	W			OCCASSIONALIT VERY HARD; CORF			$\perp \downarrow$	Ш					Ш	Щ
	J	ì			FREQUENTLY IN >20 cm LENGTH	1 1						Ш		Ш	$\perp \! \! \perp$
-185	Ľ	V						$\perp \downarrow$		Ш	141	$\coprod$	$\perp$	Ш	$\coprod$
ره)					(175.1-177.5) horres GREY							Ш	$\perp$	Ш	$\bot\!\!\!\!\bot$
					And TAM-BROWN; M- Si-T-Se?			Ш	Ц			Ш		Ш	$\perp \! \! \perp$
` `					ALTO: 5% DISS PRETE;	1		Ш	,	Ш		Ш	$\perp$	Ш	
					BRAY APPEARANCE TO CORE BUT								$\perp$	Ш	
					LIKELY BUE TO ALTS				Ш				$\perp$	Ш	$\perp \downarrow$
						ť		Ш		i.	À		$\perp$	Ш	
					(181.9.182.2) 7cm OSTR C									Ш	Ш
					3.° 10 C.A.		140							Ш	Ш
											4				
										7.	200				
_190			*				1		•	/	2				
•										2				П	$\prod$
•						1.				4					$\prod$
•					(182.2.182.9) 3 1 TO4 CM QSTA	, [	1,						T		U
					@ ~ 30° to C.A	1	5			,		<b> </b>			$\prod$
						1/1					1	111	1	П	
					(190,6-40.8) 0.5 to 3cm BEDS @ ~70.	†;†		$\dagger \dagger$			1		T		
-					l l	++	F	+	$\dagger \dagger$	$\prod$	111	111	$\top$		
-					Som SED DEF C. SIGNE STONE	+	$  \cdot  $	++	$\dagger \dagger$		†††		$\dagger$	H	
. 100						++	H	+	$\dagger \dagger$	111		+++	+	Ш	
195	1		L	<u> </u>	MICRO-FAULTS; TOPS UPWARDS		ш	لــــــــــــــــــــــــــــــــــــــ		للل	للل			لبلنا	ـــــــــــــــــــــــــــــــــــــــ

AGE	19 OF 42	PROJECT: ENGIN	EE	x				· · ,				HOLE	No.	87-102
	MINERAL	LIZATION RIPTION	TOTAL	ᇤ		INTERVAL	WIDTH	ASSAY NUMBER	% Au ppb	% Ag ppm	%	Au or ten		COMPOSIT
			$\prod$	$\prod$	-	,								
			+	${f H}$	+		$\vdash$					-		
		and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	$\dagger \dagger$	$\dagger \dagger$	+				-					
			$\dagger \dagger$	$\dagger \dagger$	†									
			$\prod$	$\prod$										
			$\prod$	$\prod$										
			$\coprod$	$\coprod$	$\downarrow$							<u> </u>		
<u></u>	·		+	$\coprod$	+				ļ			<del> </del>		
			+	╫	+-	-								
			+	+	+		ļ	•	<b>_</b>			<del> </del>	ļ	
		· ·	+	+	+					<b> </b>		<del> </del>		
	······································	·	+	+	+								<del>                                     </del>	
		and a second second second second second second second second second second second second second second second	#	$\dagger \dagger$	+		ļ							<del>                                     </del>
			1	$\dagger \dagger$	†							1		
			$\prod$	$\prod$										
			$\coprod$	$\coprod$	1				ļ					
			+	#	_	_			ļ	<del> </del>		<del> </del>	-	
	·*		+	$\mathbf{H}$	+	4			<del> </del>	<u> </u>	<u> </u>	<del> </del>	<b> </b>	<b></b>
	<del>y</del>		+	H	+					ļ		<del> </del>	-	
		<u> </u>	+	+	+		-		-			<del> </del>	$\vdash$	
		· · · · · · · · · · · · · · · · · · ·	+	+	+		-		-		<del> </del>	<del> </del>	<b>}</b>	<del>                                     </del>
,			$\dagger \dagger$	$\forall t$	+				<u> </u>	<del>                                     </del>	<b></b>	<del> </del>	<del>                                     </del>	
181.	9-182.2	QSTR + W.R.	1)	廾	†		0.3	5536	400	5.1	<u> </u>	.012		t
70	M OSTR 4	QSTR + W.R.	1						1,0-	1		1		
דינויין	rep grey at	2 : 16 % ARC FRAGS			I									
201	n BAND OF	i py in Hu Sk IN STR WITHIN	]/	4		_								
<u>;</u>	W' MINOR	SX IN STR WITHIN	//	A	1				ļ				ļ	} 1:0m, .01
426	Fracs		14	41	+				ļ	<u> </u>		<u> </u>	ļ	<del>                                     </del>
			$\dashv$	+	+		_		<u> </u>	-	ļ	<del>  _</del>	ļ	
		WH QSTRES	+	$\dashv \downarrow$	+		0.7	5537	480	3.3	<u> </u>	1.013	-	<b>/</b>
^	VARC ; T	RA(E PY	+	+	+						<u> </u>			
		·	$\dashv \dashv$	+	+				ļ	<u> </u>	<u> </u>	<del> </del>	<del> </del>	
			+	$\dashv$	+		-	<del> </del>	<u> </u>	<del> </del>	<del> </del>	<del> </del>	<del> </del>	
			$\dashv \dagger$	$\dashv$	十			<b> </b>	<del>                                     </del>	<del> </del> -	ļ	<del> </del>	╁	

PAGE	20	)	OF 4	42	PRO	ECT: ENGINEER							HOL	E No	o. 8	7-1	02	
DE )	re Recy	LITHOLOGY	STRUCTURE			GEOLOGICAL DESCRIPTION	F		AL	TE	RA1	TION	-    -	ACT	NSITY			
	رد % در	Ė	STRU	Ĩ.				A A	В		<i>n/</i> c	D	E	it.	N.			1
206		1		175,1-	207.8	ARGILLITE (CONT.)	-	1		<u>&gt; </u>	+		H	$\frac{11}{11}$	$\frac{1}{1}$	$\prod$		$\prod$
<del>-</del>						1954m) 3cm 5 - (c - CAK?)					1			$\parallel$				
_						ALTO BAND C LOW & UARTING	-				$\downarrow$	[[]		$\perp \downarrow \downarrow$	$\coprod$	$\coprod$	Щ	-
•						L TO C.A. ; MINER DISS. PO.	+	$\parallel$	$\left\{ \cdot \right\} \left\{ \cdot \right\}$	+	+	HH	  \ \	$\frac{1}{1}$	H	$\frac{1}{1}$	H	#
						(200.2-201.4) i - Si-cc- T Act=;	l						Ш	#			$\parallel$	
-						CORE TON- BROWN: ABNT WHITE	$\downarrow$	-	$\prod$	- -	$\downarrow$	$\coprod$	++	$\coprod$	$\bot\!\!\!\!\!\bot$	$oxed{+}$	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	-
-						TO GREY OTO BONDS / STRES (SO	+	H	Ш	+	+	╫┼	++	$+\!\!\!+$	+	₩.	H	<del>  -</del> -
20Y	H	+				TO 90 % OFTZ AS PEXMISINE	f	H		+	+	HH	HH	+	+	╁┼	+	$H^-$
-						VARYING L'S TO. C. A.	+		#	$\dagger \dagger$	+		$\dagger \dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	H
•					1	VARETON -3 10. C.M.	1		/	$\top$	+	T		$\dagger \dagger$	††	#	$\dagger \dagger$	H
-												12				П		
						(203.4-2043) m-Cc; core							Ш				$\coprod$	
						GREY	1		$A \perp$		$\downarrow$	14	Ш	$\perp \mid$	$\coprod$	Ц.	$\coprod$	$\coprod$
<i>-</i> }		1					1		4	$\perp \mid$	4	$\square$	$\parallel \parallel \parallel$	+	$\prod$	$\coprod$	$\coprod$	1
		86				(204.3-207.0) m-S:-T(?) ALTE	4	4		$\mathbb{H}$	+		$\mathbb{H}$	+	$+\!\!+\!\!\!+$	${\mathbb H}$	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	1
-		D				W- Carb , CORE TAN COLORED.	1		4	+	+	H	H	$+\!\!+\!\!\!+$	+	+	+	#
-206	$\vdash$	_				(~3/m)' 2 % DISS. PY	4		$\mathcal{A}$	+	+	$\mathcal{H}$	HH	+	+	╁┼	${f +}$	╫╴
-						(-23 m) 1 10 0185. Py	1	8	H	+	+	14	$\dag \dag$	+	+	$\dagger \dagger$	${\dagger\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	H
•						(207.0-2078) i-S. Act=;	1	1	7	++	$\dagger$	W	$\dagger \dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	$\dagger$
•						3070 40 % W4, TE TO GREY Q12	ť		M	$\dagger \dagger$	$\dagger$	M	$\dagger \dagger$	$\parallel$	$\dagger \dagger$	$\prod$	11	$\prod$
						AS PERVASINE FLOODING & UP TO YOU	1	1	И	П		M			П	П	$\prod$	$\prod$
•						STRS @ 40 TO 50 ° TO C.A. ; SOME										$\prod$	$\prod$	$\prod$
						STES TO VUGS! ARE PARTS TAN	/		7			1		Ш	Ш		$\coprod$	Щ
						COLORED	$\perp$		U	Ш		$\mathbb{Z}$	Ш	$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	$\coprod$	$\coprod$	$\coprod$	$\coprod$
							4		//	Ш	_	144	Ш	$\coprod$	$\coprod$	$\bot$	$\coprod$	4
<u></u> 207							4		4	$\coprod$	$\downarrow$	14	44	$\dashv$	<del>  </del>	$\coprod$	Ц.	-
				2 07 4	2000	AUGOT VEW (III)	1	1		$\mathbb{H}$	+	+ + +	++	$+\!\!+\!\!\!+$	++	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	H	H
				201.8-	- 208.41	QUARTZ VEIN (1.1M)	1	4	H	+	+	H +	++	+	+	+	H	#
						-CONTACTS PRRECULAR! UPPER	1	1	H	$\dashv$	+	╁┼┼	╫	+	++	+	+	#
		*				@~35° roc. A. ; Lower @~	+	1	1++	+	+	H	++-	+	H	++	+	#
					j	25° TO C.A. SEE DESCRIP.	+	H	H	╂	+	<del>       </del>	H	+	+	++	H	+
						OPPOSITE.	+	H	$\dagger \dagger \dagger$	+	+	HH	$\dagger \dagger \dagger$	+	H	++	+	<b>-</b>
·		8				***************************************	$\dagger$	$\parallel \parallel$		$\dagger \dagger$	$\dagger$	$\dagger \dagger \dagger$	$\dagger \dagger \dagger$	$\parallel$	$\dagger \dagger$	$\parallel$	$\parallel$	$\dagger$
•							†	$\parallel$		$\dagger \dagger$	$\dagger$	$\dagger \dagger \dagger$	†††	$\dagger \dagger$	H	$\dagger \dagger$	††	$\parallel$
- 209								$\prod$	$\prod$	$\parallel$	T	$\Pi \uparrow$		11	$\prod$	$\prod$	$\prod$	П

AGE 21 OF 42 PROJECT: ENGIN	EER							HOLE No	87-102
MINERALIZATION DESCRIPTION	TOTAL	INTERVAL	WIDTH	ASSAY NUMBER	% A u ppb	°% Ад ррт	%	An Ory	COMPOSITE
	$\Pi$						٠, ,		
	111						· · · · · · · · · · · · · · · · · · ·		
	$\Pi\Pi$								
	111								
	111								
	111								
100.2-200.7 i-ALTS ARG +	111		0.5	5538	80	1.1	***************************************	.602	
GREY TO WHITE OSTRS; 201									
QT2 ; <1%/Y									
-01.0-201.2 i-ALTD Sec. +			0.2	5539	10	0.8		tr	
01.0-201.2 i-ALT BAG + BTZ FLOODING/STRS; ~ 50 %	;[[[	П	-						
QTZ	$\prod$	$\prod$					L		
		$\prod$							
		П							
,	$\prod$	$\prod$							
									,
	Ш								
07.0-207.3 i-S: ALT 2:		$\prod$	0.3	5540	140	0.9		.004	])
QSTR: 41% PY									Sa.8m, 00
	$\coprod$	Ц							
207.3-2078 i-S: 40%			0.5	5541	130	0.4		,004	7
S: AS PERMASINE FLOODING:	1' [ [								
OSTRS ; VOCS & PY INSIDE!	12				•				
1% PY OVERALL	1								
•									
.07.8.208.9 (Jy (1.1m)	$\prod$	207.	0.6	5542	35	0.3		100.	)
60 % ANG. ARG. FRAGS UP TO		.	ı						fulm, oo
6CM LOND IN WHITE TO GREY		208	9 0.5	5543	10	0.5		tr	
QTZ; M-VULS, SOME COMMERTE	1 1 1								
X-CUTTING CORE: Tale + Ce + p)									
IN VUCS ON QTZ. rres; <1%		$\prod$							
ly overau									
		<del></del>	<b>———</b>	<del></del>		+	<del> </del>	<del>-1</del>	

PAGE	2	2	OF	42	PRO	ECT: ENGINEER						нс	DLE	No.	3 7-	102	١,
	ે	<u>}</u>	Ä				Т		AL.	TERA	TIOI	<u>,                                     </u>		<b>-</b>		Γ	7
DE, ()	6 Core Re	LITHOLOGY	STRUCTURE			GEOLOGICAL DESCRIPTION		s	۵	Ch	1 7		Se -	FRACT INTENSITY	K		1
205	10			2 40 4	ר בינר	222	+-		8	11	+		E	=	TT	┞	+
				208.7	-232,5	ARGILLITE	H	+	$+\!\!+\!\!\!+$	+++	#	╫	₩	HH		$\parallel$	${\mathbb H}$
						BLACK TO GREY; COMMON (~	H	+	+	+++	+	H	H	$\mathbb{H}$	+	H	H
						1/16 cm) 12 mm TAN BANDS FRACT	H	$\dashv$	+	-{-{-{-}	$+\!\!\!+$	₩	H		++-	₩	Н
						CONTING (T-K?) @ MOD TO HKH L'S	$\dashv \downarrow$	+	4	+++		-	-		+	$ig \parallel$	Н
						TO C.A.; M-INTENSITY OF GENEROU	1 1	$\dashv$	44	+++	#	<del>                                     </del>				-	$oxed{\sqcup}$
						4 3 MM CC STRS, MOSTLY IN FRACT.	44	$\bot \downarrow$	$+\!\!+$	+++	#	Н-	$\prod$	4	+	$\Vdash$	$\coprod$
						COLE MOSTLY SCRATCHES FAMILY BASY.	$\coprod$	$\coprod$	44	444	4	-	-	44	44	$\coprod$	Ц
						> 20 cm LENGTH NOT COMMON: MOSTER	1	2	-1-1	$+\!\!+\!\!\!+\!\!\!\!+$	14	#	$\coprod$	44	#	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	Ц
					-	57.10 cm LENGTHS	$\prod$	+	44	$+\!\!+\!\!\!+\!\!\!\!+$	#		-	$\Box$	#	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	Н
-210	$\square$						$\coprod$	$\coprod$	+	+ + +	$+\!\!\!+$	$\coprod$	H		+	$\coprod$	Н
						(208.9-209.2) m-5:-T? mre.	$\coprod$	$\downarrow \downarrow$	4	$\coprod$	44	$\coprod$	$\coprod$	Щ	$\coprod$	$\coprod$	Ц
						5 cm OSTR	$\coprod$	$\coprod$	$\coprod$	$\coprod$	4	$\prod$			$\bot\!\!\!\!\bot$	$\coprod$	Ц
				·			$\coprod$	Ш	41	Ш	4				4	$\coprod$	Ц
						(217.1-212,4) cont crusur;		$\prod$	7	111			Ц.		$\bot\!\!\!\!\bot$	Ш	Ц
	1	$\hat{\uparrow}$				m-Si-Co-T(?)	14	1	47	Ш	19				$\bot$	_	L
	20	ج					$\coprod$	4	$\perp \downarrow$	444	$\perp \! \! \perp$	Ш			1		L
		かと	7			(213.7-213.9) m-K-T;	Ц.	Ш	$\perp \downarrow$	Ш	1	Ш	<u> </u>	Ш	$\bot\!\!\!\!\bot$	$\coprod$	1
	100	ĭ	ميم			CORE GROUND	Н	$\perp \downarrow$	$\perp \! \! \perp$	Ш	142				721	Ш	$\coprod$
	1	<b>V</b>					$\coprod$	Ш	Щ	111	$\bot\!\!\!\!\!\bot$	Ш	Ш		Ш.	Щ	Ц
-215	Ľ		•			(214.7-216.7) C-S: FLOODING			$\perp \downarrow$	111	$\bot$	Ш			$\bot\!\!\!\!\bot$	Ш	Ц
						! astes; 40% WHITE QTZ IN	$\prod$	4	$\perp \! \! \perp$	Ш	Щ	Ш	Ш	Ш	$\perp \! \! \perp$	Ш	Ц
						UP TO SOM QSTRS CLOW TO	И	4	$\perp \downarrow \downarrow$		Ш		Ш	Ш	$\bot\!\!\!\!\bot$	$\coprod$	Ц
						HIGH L'S TO C.A., CROSQUTTING;		4	Ш	Ш	Ш	Щ	Ц	Ш	$\perp \!\!\! \perp$	$\coprod$	Ц
						ARG FRAGS : VUCS : ALSO ZONES		4	Ш	Ш	$\coprod$	Ш			$\perp \! \! \perp$		Ц
						OF i- S: FLOODING IN ARK;		Ш	Ш		Ш				$\coprod$	Ш	Ц
			~?~			LOW L STRS CUT RY MICRO-			Ш		70					$\coprod$	
						FAULTS WHICH TEND TO BE AT	Ш	$\coprod$	Ш	Ш					$\prod$	Щ	Ц
					<u>_</u>	MOD TO HILH L TO C.A. LOW	$\prod$	$\coprod$	$\prod$		$\prod$			$\coprod \coprod$	Ш	$\coprod$	Ц
						L STRUCTURES PREDIM WATE OVER	$\prod$	$\prod$		$\coprod$	$\prod$						
-220						HKH 2 0~25	$\prod$	$\prod$			$\prod$	$\prod$					
-X40															$\prod$		
						(217.8-218.1) CORE BROKEN;			$\prod$			$\prod$			$\prod$		
		:				m · T · K	77	7	$\cdot \prod$								
							14	7	$\prod$	Ш					$\prod$		П
						(221.3-221.7) i-S: 1 As	$\prod$	П	$\prod$	111	$\prod$	Ш			11		П
						PERMASIVE WHITE TO GREY QTZ;		$\dagger \dagger$	$\dagger \dagger$	111	$\dagger \dagger$	Ш	П	++1	††	П	\ \ \
						ARG APPEARS BRECCIATED BUT	$\dagger \dagger$	$\dagger \dagger$	$\parallel$		#	Ш	Ш		+	$\sqcap$	ΪÌ
			ŀ			MAY JUST BE FRACT. ! ALT "	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	†††	#		Ш	+++	+	H	$  \uparrow  $
			}			2 % YERY FINE GR. PY	$\dagger \dagger$	+	$\dagger \dagger$	<del>       </del>	+	H	H	+++	++	H	H
225			ŀ			10 YEARY FINE GR. FT	++	++	$+\!\!+$	+++	+	H	HH	+++	+	++-	H

GE 23 OF 42 PROJECT: ENGIN	165	- R	•			<b>3</b> ~ · · ·				HOLE	No.	87-102
MINERALIZATION DESCRIPTION	TOTAL	SULPHIDE		INTERVAL	WIDTH	ASSAY NUMBER	% A u ppb	% Ay ppm	%	Au Often		COMPOSITI ASSA
	Ц.,	Щ										
	-		_			<del>,</del>	ļ		1			
and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	$\parallel$		_						<del></del>			
	$\coprod$	Ц.	_				ļ		. ,.			
	-	-	L		-		<u> </u>					
	-		_		-		<u> </u>					
	<u> </u>	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	_				110	1.1		ļ		
	-	H	-				1			<b>  </b>		
	H	H	H				<del> </del>					<u> </u>
	╫	++-	<del> </del>			F	<del>  _</del>		· · · · · · · · · · · · · · · · · · ·	<del>                                     </del>		1
08.9-209.2 m-ALT DARG + SCM QSTR 1 TO-PY	H	-	+	.*	2.3	5544	5	0:4		tr		
+ Scm QSTR 1 Tr-py	╁┼	₩	-				<del> </del>			<b> </b>		<del>                                     </del>
	╫	H	$\vdash$				<del> </del>					
	H	H	+			····	-					
	${\mathbb H}$	+	$\vdash$				-		<del> </del>			<u> </u>
,	╫	H	H				<del> </del>				·	
	H	╁┼	-				<del>                                     </del>					<del>                                     </del>
	${ m H}$	H	$\vdash$				<del> </del>		<del></del>			
;	$\dag \uparrow$	$\dagger \dagger$	<del> </del>				<del>                                     </del>			-		
214.7-216.7 i-S. Frooding	h	$\dagger \dagger$	一									
QSTRS IN ARG.; 1 % PY,  ERY F.G. IN LSMM BANDS S	1	H	t				<del> </del>					
ERY F.G. W SMM BANDS S		H	t		<b> </b>		t3	<del>-</del> ;				
FROITIARS + MINIO WITH VIICS	1	$\dagger \dagger$	t									
214,7-215.2 50 % QT2		Ħ	<b>†</b>	•	0.0	5545	60	06	· · · · · · · · · · · · · · · · · · ·	.002		
215.2 - 215.7 40 % "	7	$\dagger \dagger$	<u> </u>				180			.005		(20m, .003
215.7 - 216.2 30 % "	1		T			5547				.004		1
215.7 - 216.2 30 % " 216.2 - 216.7 40 % "	2	П	T			5548	20			,001		1/
	П	$\prod$	T						***************************************			
						*						
			$\Box$									
	$\prod$	$\prod$										
	$\prod$		Γ									
	$\prod$											
21.3-221.7 i-S: ALT=;	1				0.4	5549	50	1.0		,001		
2% 14	1											
	$\prod$					`						
				•								
	П	П	T									

PAGE	2'		of ^L	/2 PRO	JECT: ENGINEER	٠					н	IOLE	No.	8	77,	10:	2	
								AL	ERA	TION	1		ļ., i	إيّ			1	
DE (METRÉS)	re Re	OLOC	STRUCTURE		GEOLOGICAL DESCRIPTION	5	<b>`</b>	D	CAI	7	-	Se	FRAC	TEN			1	•
ME DE	ပိ %	LITH	STR			1	_	В	C	P		Ε	-	₹	TT	╀	+	_
		1		208.9-2325	ARGILLITE (CONT.)	H	+	H	+++	+	Н	$\mathbb{H}$	╫	H	H	H	H	-
						H	$\dagger$	$\dagger \dagger \dagger$	111	$\dagger\dagger$	H		$\dagger \dagger$	Ħ	$\dagger \dagger$	$\parallel$	$\prod$	
					BLACK BESS & 40° TO C.A.			Ш	Ш				$\prod$	$\prod$	П	Ц	Ц	Ĺ
					COLOR NOT ALWAYS CONTINUOUS			Ш	$\coprod$	$\coprod$		Ш	$\coprod$	Щ	$\dashv \downarrow$	$\coprod$	$\coprod$	F
					IN ONE BED SUGGESTING COLOR	$\coprod$	1	Ш	$+\!\!\!+\!\!\!\!+\!\!\!\!+$	$\coprod$	+	$\left  \cdot \right $	+	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	+	$+\!\!+\!\!\!+$	$\mathbb{H}$	-
					DUE TO, OR AFFECTED BY, POST-	$\coprod$	4	++	++	+	+	H	$+\!\!+$	$\mathcal{H}$	H	+	$\mathbb{H}$	-
		RG			DEPOSITIONAL FACTORS	+	+	+	+	+	+	HH	+	H	H	+	+	ł
		U -			)	+	+	$+\!\!+$	++	+	+		$\dagger \dagger$	$\dagger$	+ + +	$\parallel$	$\dagger$	t
-232					100000000000000000000000000000000000000	+	+	++	H +	++	+	$\dagger \dagger \dagger$	++	$\dagger$	H	+	+	t
				232,3-232	QUARTZ VEIN 0.4M	+	+	+	H +	H	+	$\dagger \dagger \dagger$	$\forall$	T	Ш	$\top$	†	1
					- UPPER CONTACT & 40° TO C.A.;	+	$\dashv$	+	H +	Н	+	+	H	+	H		1	4
		*	1		LOWER & SO . TO C.A.	+	Н	++	H +		$\dagger$	11		T	$\sqcap$		T	
						+	Н		HT			$\dagger \dagger$		T	П			
		>				+	Н		$\dagger\dagger$		T	11	Ш	$\top$	П			
	١.	Q	3			+		H	111	$\top$	T	11			П	П	1	
 }		*	4			7		$\dagger\dagger$	111	17	H	$\top$	П	T	П	П		•
						V		HH	$\dagger \dagger \dagger$	ľ	П	$\top$		П				
			-	1227 2//2	I OCCUPITE	1	1		$\dagger \dagger \dagger$						$\prod$			
_233	3 <b> </b> -	╀	-	K32, 1-293	UNALTE DARKCREY TO BLACE	. ,	1	7	$\prod$	1								_
	1				AUT TO TAN OR MIGHTER CRE	11	1	$\prod$	$\prod$	$\prod$				Ц	Щ	$\coprod$	Ц	Ļ
					~40 % OF INTERVAL ALTE		$\mathbb{Z}$					Ш	$\coprod$	Ц	$\coprod$	$\coprod$	$\prod$	F
					BEDDING @ MOD & TO C.A. WINDS	E	1		Ш	$\coprod$			$\coprod$	$\coprod$	$\coprod$	44	$\perp \downarrow$	-
	1				VISIBLE: MOD ABUNDANCE OF		1		Ш	$\coprod$	,	Ш	Щ	Ц	44	$\coprod$	$\sqcup$	
					UP TO 6 CM QSTRS (~ 3/M)	1	1	$\prod I$		$\perp /$	1	Ш	4	Ц	$\bot\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$\downarrow \downarrow$	4	
					0, 10 0 0.	/			Ш		4	Ш	$\coprod$	Ц	4	$\parallel \parallel$	$\perp$	
		1	5		(232.7-233.0) . w- si-T(?)	_/		1	$\coprod$	Ц	1	Ш	#	$\coprod$	4	+	4	1
		AR			ALT=; Tr-py			1	Ш	_	4	-	4	$\sqcup$	Н	- -	+	1
			·		1			1		4	/	$\sqcup \sqcup$	4	$\sqcup$	$\mathbb{H}$	$\perp$	-	+
<b>—</b> 23	4	+	$\dashv$		(233.0-233.5) 40 % UP TO		1	1			4	$\prod$	$\bot\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	H	+	+	
•					Som asizes @ 20 TO 90 TO	_	4	5		$\dashv$	4	$\square$	$+\!\!\!+\!\!\!\!+$	+	H	+	+	-
					C.B.; m-S: Arg BOTWEENS		11	1		$\dashv$	4	++	+	$\perp$	H	+	+	_
•					MINOR W.R. FRAGS IN STRS.		4	1/		-	<u> </u>	+	+	+	H	+	+	-
-							[ _j ]	1		H	4	+	+	+	H	+	+	_
<b>-</b>					(235.0-235.4) (-5:-7(?)		4	1		H	/	H	$\mathbb{H}$	+	-	+	$\vdash$	_
					CORE LICHT GREY; 5 %		4	1/	$\square$	$\mathbb{H}$	4		H	+	+	+	H	_
-					VERY FINE GRANED PY IN		4	14		- -	4		$\mathbb{H}$	+	+-	$\vdash$	+	_
					IRREGULAR PATCHES		1	1	$\coprod$		4	+1-	Ш	+	+	H	H	-
-	35						Ĭ		Ш			$\coprod$	Ш	$\perp$	Ш	Ш	Ц	

AGE 25 OF 42 PROJECT: ENG	IN EER							HOLE	No.	87-10z
MINERALIZATION DESCRIPTION	TOTAL	INTERVAL	WIDTH	ASSAY NUMBER	% AU PPb	% Ay ppm	%	An sty		COMPOSITE ASSAY
		•								
		-								
		-	-							
		_		· · · · · · · · · · · · · · · · · · ·					······································	<u> </u>
								ļļ		
		-	-	······································						<u> </u>
		-		····						ļ
	-++++	-			ļ			<del> </del>		<u> </u>
		<del></del>								
6/	<del>. (     </del>	<del></del>			<u> </u>					
232,3-232,7 Qv (0.0	4m)	-	0.4	5550	170	12.7		.005	<del></del>	
MILKY TO CLEAR- WHITE QTZ	<i>p</i> s				<b> </b>		<del></del>			
A MATRIX & ANG . TO ROUND		-		4	ļ <u> </u>		-			
UP TO ICM FRAGES: 10%		_				ļ		ļ.,		
ARG. FRACS ; MINOR VUG	<del>\</del>	-								
MINOR DISS PYRITE; TRA	CE				ļ					
TETR.					<u> </u>			1		
		_			<u> </u>					<u> </u>
	<del></del>	-				<u> </u>				<u> </u>
			ļ		-					
		<del>-</del> . ·						<del>                                     </del>		
		-		· · · · · · · · · · · · · · · · · · ·	ļ	ļ		ļ	ļ_,,	,
		<del>-</del> , ;	<b> </b>		<u>                                     </u>	<del> </del>			<u> </u>	
		_	<b></b>		<del> </del>					
***************************************		_	ļ		<u> </u>					
-		-	-		, ·	<del> </del>				
7277777		<del>-</del>			-	A ()		-		
232,7-233.0 ALT = AR	<u>a                                      </u>	•	0.5	4001	6.0	0.8	t 	1.002		•
		-			<del> </del>					
0.22			<u> </u>							
2330 - 2335						00		-		
OSTRS IN ARG; 1% F IN FRAC. IDSS IN ARG	'y []	_	0.5	4002	530	3.7	<u> </u>	0015		
IN FRAC. I DISS IN ARE	·		-			<u> </u>	<u> </u>	ļ		<u> </u>
	-HHH	<del></del>	-		<del> </del>	<u> </u>	<b> </b>	<b></b>		<u> </u>
2005	<del>,     </del>		_		<del> </del>	-	<u> </u>	-		-
235.0-235.4 i-5:-T(?			0.4	4003	30	0.1	<u> </u>	.001		
ALT D ARC; 5 % VE	<b>XY</b>	_			<del> </del>	ļ		<b></b>		<u> </u>
F. G. PY		<del></del>	-		<del> </del>	<b> </b>	<b></b>		<b> </b>	
			1	l	1	1	l		l	1

<u> </u>				42 PR	DECT: ENGINEER							н	OLE	No	. 8	37	-/0	2	
DE H	% Core Recy	LITHOLOGY	STRUCTURE		GEOLOGICAL DESCRIPTION	- 4	<u> </u>	A	LTE	C+/	TION	-	Se E	FRACT	INTENSITY				
238	ľ	23-		232,7-243.	ARGILLITE (CONT.)	//	1	4	П		1			$\parallel$	$\prod$	$\prod$	$\prod$	$\prod$	•
	-				[238.4-238.5] QSTR; O.IM Q 45° TO C.A; WHITE ! CLEAR QTZ; QTZ FRAGS; 1090 W.R. FRAGS; TALL IN FRACTURES;														
-					TO PY IN ARG FLAGS.	// //		/ //										+	
242	2				(237.4-239.9) i-S: CORE  MOTTLED DARK GREY- BLACK: S; PERVASIVE	7													-
_		1986			(242.3-242.5) 3-1046m QSMS; 20 70° TO C.A.; 10 45° TO C.A.; 100 PY BRING BAND ALONG FOR OF LOWER STR.	1													
	6/0/2				(242.5-243.1) 4 % PT, YERY	7		1/2/2											
243	100				F.G. MONE FRACTURES.	E E		4			*								-
<del> </del>	1			243.1-243.	QUARTZ VEIN (0.4M) - CONTACTS @ 30° TO C.A.													#	
		\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\																<u> </u>	
213.	5	*				1		7										#	=-
-				243, S-257.	ARGILLITE  DARK GREY TO MOSTLY BLACK;	1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/					1/4							#	
		ARG			BEDDING OCCASSIONALLY VISIBLE! ~ 15 % PALTOCED TO TAN-	171		1/4			1/1							# 1/2	. ****************************
					BROWN COLOR: WHITE TO TAN SI + CC + T COMMON ON FRACTURES; CORE SCRATCHES > 20 CM PIECES COMMON.			7			#							#	

PAGE 27 OF 42 PROJECT: ENGIN	E	R							HOLE No	87-102
MINERALIZATION DESCRIPTION	TOTAL	SULPHIDE	INTERVAL	WIDTH	ASSAY NUMBER	% Au ppb	% Ag pp^	%	Au Ory /ten	COMPOSITE
			-		· · · · · · · · · · · · · · · · · · ·					
238.4-238.5 OSTR (0.12)			<del>-</del>	0,1	4004	10	0.3		tr	
- SEE DESCRIP. OPPOSITE	#	H	_		ila j	ļ	1			
	H	╂╂╌	_			<u> </u>			<del>  </del>	
and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	$\dagger \dagger$		_							
		П								
239.4-239.9 i-s:, 2%	1	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	-	0.5	4005	170	2.3	·	•005	
DISS. PY	14	╫	<del></del>	-		<u> </u>			<del>  </del>	
	$\dag \dag$	╫	<del>-</del> ,			<del>                                     </del>				
242.3-242.5 QSTRS IN	$\Box$	才	-	0.4	4006	140	2.6		-004	
ARG: 5 % PY DISS W										
ARE IN BAND IN FW	1	4	_			ļ			<u> </u>	
OF LOWER STR.	11	{}	_	-						1.0m,,003
242,5-243.1 4 %	1	壮	-	0.6	4007	15	2.3		.002	<del>-  </del> (
UPRY F.G. PY ALONG FRACT.	1		-	070	1007	62	2.2			_/
	1									
	$\coprod$	-	_			ļ			<u> </u>	
243.1-243.5 QV (0.4m	#	-	-	0.4	4008	250	87.3		.007	
QT 2 + 40 % ARE FRALS; LOVE	+	$\dagger \dagger$	<del> </del>	-					<del>  </del>	
HALF DARKER GREY QTZ \$ 60%		$\dagger \dagger$	<del> -</del>		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
ARG FRAGS : UPPER PART										
SHOWS > SEM QTZ FARAS	$\coprod$	$\coprod$	_	-		<u> </u>				
W LATER QTZ SURROUNDING	╫	H	_	-						
MINOR LOISEM VUES ! L1% DISS PY IN ARE FRACS	$\dag \uparrow$	H								
0733 77 100 141Ch 1-11743	$\dagger \dagger$	H								
		$\prod$								
	$\coprod$	₩.	_						ļ	
	+	<del>     </del>				<u> </u>				
	H	+	-			<del>                                     </del>				
	<del>     </del>	+	-			<del>                                     </del>				
		$\prod$								
		Ш								

		<u> </u>			ECT: ENGINGER	_							140.	0	ソー		2
ا ۾ ر	ò	β¥	RE	•		L		AL.	ERA	TION			<u>}</u>	:			
DE (METRES)	Core R	LITHOLOGY	STRUCTURE		GEOLOGICAL DESCRIPTION		S	D	CA!	7	3	ر د	FRACT				*
244	8		S		00000	لم	77	नं	╫	Н	+	Π̈́	П	$\dagger$	$\forall$	П	$\dagger$
279			٥ <b>ه</b>	243.5 - 257.8	ARGILLITE: (CONT.)	4	4	╫	+++	H	+-	-	H	+	+	H	${\sf H}$
					(244.0-244.2) asTR-PY ZONE	H	$\parallel$	$\dagger \dagger$	$\dagger \dagger \dagger$	H	+	H		$\parallel$		$\dagger \dagger$	$\dagger$
					20 % IRREGULAR < 2 cm QSTRS		$\forall$	11	$\Pi$	$\Pi$	T					$\prod$	П
	.				WEAK BRECCIATION TO PY-S:	$\dagger \dagger$	$\top$	$\parallel$		$\Pi$		$\sqcap$		T		$\prod$	T
					IN MATRIX IN IRREGULAR	H	Н		$\Pi$	$\Pi$	1	$\dagger \dagger$	H	$\parallel$		$\dagger \dagger$	П
İ	ł					П	$\top$	$\top$		111	T	$\Pi$				$\prod$	
					VERY F.G. PY OVERALL	П	$\dagger$	11	111	III	T	$\Pi$		$\parallel$		11	
					Very riginary ordered	П	$\top$	71	111	$\Pi$	T	$\prod$	Ш	$\top$		$\prod$	
					(246.4-246.65) QSTR-PY	П	$\top$	11	111	$\prod$		$\dagger \dagger$	Ш	T		$\prod$	П
-246					20NE W BANDS OF F.G. PY	П	$\top$	$\Pi$	111	$\dagger \dagger$		$\prod$	Ш		П	$\sqcap$	
					UP TO 21M ACROSS (SO 70 M	$\prod$	1	$  \dagger \dagger  $		$\parallel$	$\dagger$	$\prod$		+		$\parallel$	П
						24	1.022	$\Box$	$\dagger \dagger \dagger$	$\dagger \dagger$	T	$\Box$		+		П	
		:			SO 90 ARGI, THEN WEAK BREY	Н	$\top$		+++	††		$\dagger \dagger$	H	1		$\dagger \dagger$	
				:	(20 % QTZ)	H	+	$\Box$	111	T	П	H	III	1		$\top$	
			coati		(10 10 (12)	H	+	H	111	+	$\parallel$	11	H	T		$\dagger$	r
		,			(246.9-247.0) CORE IN	H	$\top$		111	$\dagger \dagger$	T	$\dagger \dagger$		1			١,
ì						Н	$\top$			11	$\dagger \dagger$	$\dagger \dagger$		$\dagger$	Н		Ť
	M	•			LICM BITS; YORY CRUMBLY		2 0		$\dagger\dagger\dagger$	$\dagger \dagger$	H	$\dagger \dagger$	$\dagger\dagger\dagger$	T	H	+	T
	1		A		(247.7-248.1) 10 cm of 40%	И	1	H	111	11	$\dag$	$\dagger \dagger$		$\dagger$	H		T
-248	5		4		•	1/1	H		+++	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$					T
	0	RG			FOLLOWER BY 2050 TO 10 % PT				111	††	$\dagger \dagger$	$\dagger \dagger$	H	T			T
	9	T		•	· · · · · · · · · · · · · · · · · · ·	H	$\forall$		<del>                                      </del>	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	H			T	T
	ا , ا	1			IN PRAFECULAR PATCHES MONG				111	††	$\dag \dag$	$\dagger \dagger$	$H^{-}$	T			
	4	V			FARITURES; THEN 10 CM TO	//	11.		111	$\dagger \dagger$	$\dagger \dagger$	11		T		H	T
					30 9. 6T2; 70 9. ARG TO ~3% PY	+	$\dagger$	Н	111	$\dagger \dagger$	Ħ	11	$\dagger \dagger$	1	T		T
Ì					20 NE CN 45° TO C.A	+	$\parallel \parallel$	Н	+++	++-	H	$\dagger \dagger$	H	$\parallel$	$\dagger \dagger$	-	T
					(248.7-248.9) i-py (2092) m.	T			+++	+	$\dagger \dagger$	$\dagger \dagger$	$\prod$	$\dagger$	H	$\parallel$	t
						$\dagger$	$\vdash$	Н	+++	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$			$\Box$	$\parallel$	T
					S: ALTZ; PY EC IN	$\dagger$			+++	++	H	11	$\dagger \dagger$	H	H	$\parallel$	T
_250	<u> </u>		<del> </del>		IRREGULAR PATCHES	+	$\vdash$	$\mathbf{H}$	+++	++	$\dag \dag$	$\dagger \dagger$	$\dagger \dagger$	H	$\dagger \dagger$		t
					(25, 5, 25, 2)	+	$\vdash$	H	+++	+	$\dagger \dagger$	+	††	H	$\dagger \dagger$		t
					(250.5-250.8) QTZ STE/BRXY			$ar{\Box}$	+++	+	$\dagger \dagger$	+	H	+	H	H	$\dagger$
			20		2000 @ 45° roc. A.	$\forall$		+	+++	+	$\dagger \dagger$	+	+	H	H	$\vdash$	t
			0.0		50 % AKC; 30 % WHITE OTZ;	1	1/1	+	+++	╫	H	++	H	+	+	H	+
					20 9. GREY QTZ , W BANDS TO	+	-	+	+++	╫	H	$+\!\!+$	+	+	H	+	+
					WH. ATZ W CENTER : 3%/0/19	+	-	-	+++	$+\!\!\!+$	H	$+\!\!+$	+	H	+	H	╀
٠,					PRED. IN CREY QTZ	+	$\vdash$	-	+ + +	$+\!\!\!+$	H	$+\!+$	+	H	H	$\vdash$	+
					<u> </u>	1	$oxed{+}$	-		#	$\coprod$	+	#	$oldsymbol{ec{ec{ec{ec{ec{ec{ec{ec{ec{ec$	-	H	+
	1					L				$\perp \! \! \perp$	Ц		Ш	Ц	Ц.	$\coprod$	$\downarrow$

AGE 29 OF 42	PROJECT: ENGI	NEER							HOLE	No. {	37-102
MINERALI DESCRII		TOTAL	INTERVAL	WIDTH	ASSAY NUMBER	% Au ppb	% Яу ррт	%	Au Ot Itan		COMPOSITE
				-		ļ		<del></del>			
144.0-244.2	)		-	02	4009	18:00	3.5	· ··	.005	<del> </del>	
QSTR - P	y Zoni !	1/2	-	0.2	1007	10.0	2.5		.003		
10	90 PY	17/1	-	12	127 67	40 \$ 50		<del></del>			
							- 1				
		$-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	-								
	· · · · · · · · · · · · · · · · · · ·	-++++	-					***			
246.4-246.65	<b>-</b>		-	0.25	4010	130	3.8		.004		
	20NE ; 5%								, , ,		
Py			- <i>'</i>								
	*		_								
			-		·						
		++++	-								
2		++++	•	-				<del></del>			
			-			·					
			•	-		· · · ·					
247.7-248.1			•	0.4	4011	40	2.7		.001		
H. OSTRS IN AR	a : 5% Loca		<del></del>			70	9.				
4. OSTRS IN AR.			-		, , .	, , , , ,					
			•								
			•		•						
248.7-248.9		+HH	•			24					
-2090 F-6	* 4.4			0.2	4012	30	2.2	······································	1000		i
		<del>       </del>	•								<del>(************************************</del>
			_								
250.5 - 250.8	OSTR BENY;		•	0.3	4013	70	1.1		.002		
250.5-250.8 3°	16 py /										
	*										
		4444									
			•								
		4444							[		

PAG	SE .	- 170	30	OF 1	12 PROJECT: ENGINEEX						-	ŀ	IOLE	No.	8	7-	10	2
) Section 1	(METRES)	% Core Recy	LITHOLOGY	STRUCTURE	GEOLOGICAL DESCRIPTION	S	;	AL D	TE	CH	7	-	ے E	FRACT	INTENSITY			
	38	9,	<b>1</b>	-	2435-2578 AKGILLITE (cont.)	Í		Ī		$\check{\prod}$			$ar{\Pi}$					
F							$\prod$	-	Ц	$\prod$	$\prod$	$\prod$	$\coprod$			$\prod$		$\prod$
-		1			255.8 m) BEDOME @ 55° MA.	+	H	+	+	H	╫	H	+	H	H	H	╫	H
<b> </b>			٠,		(256.2-256.6) QSTR						$\parallel$		$\perp$					
[			ARG.		E LOW TO MOD L TO C.A.	$\downarrow$	$\prod$				$\coprod$	$\coprod$	$\prod$	$\coprod$		$\coprod$	$\prod$	$\prod$
F			,		(IRRECULAR) + W.R. " 64  RTZ \$50 % AND ARE. FRAGS;	+	H	+	$oxed{+}$	H	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	H	╫	╫	H	$\dashv$	╫	#
<u> </u>					1 % PY	+	$\dagger \dagger$	$\dagger$	$\dag$	H	$\dag \uparrow$	H	+	$\dag \dag$	H	$\dagger\dagger$	$\parallel$	$\dagger$
	58		*			7					$\prod$						$\prod$	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
	-0		Brx/			*		4		$\prod$	$\parallel$	Н		#	$\coprod$	+	$\coprod$	#
_			8		257.8-174.5 BRXX / ALT VEIN ZONE (SHEAR ZONE A)?)	4	4	+	H	H	H	+	╁	H	H	++	H	+
-			*		VARIABLE UNIT RANGING	1	11	1	H	$\dagger \dagger$	1	$\forall$		$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	$\prod$	$\parallel$
		T %			FROM i- ALT PARE (S: T - Carp!	1		4			K			$\prod$		$\prod$		$\prod$
	- 1	00			Se (?) ) TO BRXX TO ARE CLASTS	4	$\parallel$	4	-		1/	$\mathbb{H}$	+	$\dashv \vdash$	H	$\dashv$	$\parallel$	$\coprod$
$(\ )$	)				IN SI MATRIX TO QUARTZ	7	+	+	H	H	1	$\mathcal{H}$	+	H	H	+	H	1
_	ľ	4			VEINS; 2 TO LOCALLY 20 % DISS  F. L., OCCASSINA ALLY M.G. PY;	7				$\prod$	1			$\dag \uparrow$	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	$\dagger$
_ 2	59				STRUCTURES TEND TO BE			Ż			V			$\prod$		$\prod$	$\prod$	$\prod$
<u></u>	'				@ 25 TO 40 ° TO C.A. BUT	7	$\perp$	<u>4</u> 7	$\parallel$	$\parallel$	1/2	4	$\mathbb{H}$	$\coprod$	$ar{H}$	+	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	#
_			2 %		NOT ALWAYS	1	+	7	H	╫	1/		+	╁┼	H	+	H	+
_			76			1	$\dagger$		$\parallel$	$\dagger \dagger$	1/2			$\parallel$	$\prod$			$\parallel$
_			T			1		j,	П	$\prod$	1	7		$\prod$	П	$\prod$	$\coprod$	$\prod$
_			i			1.	$\mathbb{H}$	7	$\parallel$	-	4	4	$\mathbb{H}$	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	H	+		#
_						4	$\mathbb{H}$		H	╁	1	4	+	+	H	╁	H	+
_						1	Н		$\parallel$	$\parallel$		7		$\parallel$	$\dagger\dagger$	$\dagger \dagger$	$\dagger \dagger$	$\dagger$
 74	60					4						1		$\prod$	$\prod$			$\prod$
— <u>2</u> 0	,						$\perp$		$\prod$	$\coprod$		4	$\mathbb{H}$	$\bot\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$\coprod$	$\coprod$	$\parallel$	#
_						#  - 1 _A	+		H	H	1	4	H	+	H	+	H	#
_						+	+	41	$\parallel$	H	$\mathbf{H}$	4		$\dagger \dagger$	$\dagger\dagger$	$\dagger \dagger$	$\dagger \dagger$	+
			4/4															
<del>-</del> - ,			XAX				$\coprod$			-	$\coprod$	$\prod$			$\prod$	$\coprod$	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	
<del>-</del>	ļ		38.4			1	4	+	H	$\dashv$	H	$\parallel$		+	H	+	H	#
F			200			4		+	H	H	$\dag \uparrow$	+	H	+	H	+	H	#
50	1					1		1		$\prod$	$\prod$	H		$\prod$	$\parallel$	$\prod$	$\prod$	#

AGE 31 OF 42 PROJECT: ENG	INEER				,			HOLE	NO. Ø	7-102
MINERALIZATION DESCRIPTION	TOTAL SULPHIDE	INTERVAL	WIDTH	ASSAY NUMBER	% A U ppb	% 9g ppm	%	Au Olym		COMPOSITE ASSAYS
·									\$ ·	
				78.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1					3	
					(,;				· .	
						. ,			1	
256.2-256.6										
256.2-256.6 QSTR+WR 19.14	3		0.4	4014	165	1.1		.005		
		L								
		$\Gamma$								
7										
257.8-258.3 Siliceous			05	4015	70	0.9		.002		
BRXX IVn: 408ARCE FAM	25.									
METER 60.5 cm . 47 % Ge	EX									
QTZ: 3 % PY IN UP TO	_1//1									
QTZ: 3% PY IN UP TO 3 CM PATCHES: SHARP BU IRRECULAR UPPER CONTROL @ ~ 30° TO C.A.: G.KAD. LOW	7									
IRRECULAR UPPER CONTROL										
e~30° to C.A GLAD. LOW	ex 1				1					
CONTACT										
258.3.260,8 wrom-S.;	$\mathcal{X}$	258.8	o.s	4016	50	2.6		.001		h
m-T; w- Carb: core		<u>L</u>	•							
WEAKLY BRXXE IN PLACES!	/	258.8-	0.5	4017	60	3.9		.002		
MINOR WHITE asTES (~ 1Tr	<u>,  / </u>									
< /cm wine); CORE GREY	- 1111	259.3- 259.8	0.5	4018	130	2.4		.004		12.5m
BLACK: 3 % OPY IN UP				- 1	<u> </u>		ļ <u>'</u>			( C 0.00
TO ICA PATCHES AND	_1411	2598-	0.5	4019	100	2.2		.003		
ALONA FRACTURES	_1/1	1								
		260.5	2.0	.4020	450	2,4		-013		<u> </u>
			<u></u>			·				<b>7</b>
260.8-262.0 mroi-Pexu	SIVE /	260.8-	2.0	4021	110	3.7		.003		1,2,
Si ; i - GREY astes, 41cm @	· 1711									P 6.011
VARIOUS ORIENT S CROSS- CUTT	1 2 3 1	262.0	0.7	4022	550	5.6		.016		1
BRXX JONES = 150% LOS										
MUT PARK FRAKS IN GREY S.										
MATRIX : 2 % DOS PY.										
		Γ								

PAGE	32	_	OF	42	PROJ	ECT: ENGINEER					HOLE	No. 8	7-/	02	
TH (ES)	Recy	_0GY	TURE						TERA	TION	1_	CT ISITY			
DEPTH (METRES)	% Core Recy	LITHOLOGY	STRUCTURE			GEOLOGICAL DESCRIPTION	S A	D	Ch	To	Se	FRA			
262		个		257.8	-274.5	BRXX / ALT = NEIN ZONE (CONT.)	1/2		Ш	И	Ш	Ш	П	П	1
		ر بر بر						Н	$+\!+\!+$	<del> </del>	╫	${\mathbb H}$	-	H	_
		BARE		<u> </u>			<del> </del>	Н	+++	1/2	++	╂╂	╂╁┼	H	_
	}	m- (						H		1	╂╂╂	$H = \frac{1}{2}$	H	H	_
							M		111	1	111	╁╁┢			_
		*					1		$\dagger \dagger \dagger$	111	†††	$\Pi$			
		15-51 ARG.					1		$\dagger \dagger \dagger$			$\prod$			_
		26					1								
		Sem					11/	Ш	Ш		$\coprod$	Ш	Ш	Ш	
263		225-					XX	Ш	$\prod$	$\coprod$	$\coprod$	Ш		Ш	
		2-3	,				1		444	444	111	Ш			_
		*	<u> </u>				1	Ш	444	+ + +	111	Hi		$\parallel \parallel \parallel$	_
							44	Ш	<del>   </del>	+	444	₩	+++	HH	_
	介	8 R.		ļ			<b>W</b>	H	+++	+++	+++	╂┼┼	H +	H	_
Ì	,	.0.					1		╁┼┤	+ + +	+++	╫	H +	H	_
	0	.53					1	H	+++	+++	+++	$\dagger\dagger\dagger$	H +	H	-{
	00	1		<u> </u>			X		+++	+++	111	$\dagger\dagger\dagger$	H	H	_
	2	*	ľ						111	1/1	†††	†††			
264		$\vdash$			i		17/1		111	Й	$\Pi \Pi$	$\prod$			_
	1		<u> </u>				1	Ш	Ш						_
ļ			<u> </u>												
l					1					3			Ш	Ш	L
							11/	Ш	Ш			Ш	Ш	Ш	L
		. 3						Ш		i,	$\perp \downarrow \downarrow \downarrow$	Ш		$\bot \bot \bot$	_
		Some					14		-	1	444	$\coprod$		$\coprod$	-
1	·	20					1/1		$\perp \mid \perp \mid$	9	+++	$\coprod$	H	H +	-
								$\square$	+		+++	$\coprod$	$\Box$	$\mathbb{H}$	_
265			<u> </u>					$\left\{ \cdot \right\}$	+	V.	+ + +	++	H +	H +	_
		4,		ļ			1	H	+	1	+++	+++	H	HH	
		126					1	HH	+	7	++	+++	H	+++	Γ
Ī		20		<b> </b>				H	+++		+++	+++	##	H	_
								$\parallel \parallel \parallel$	+++	1	+++	+++	H +	╁┼┼	_
					<u>i</u>		1	H	+++	Ž	+++	$\dagger \dagger \dagger$	$\dagger \dagger \dagger$	H	-
							1	H	+++	4	<del>       </del>	$\dagger \dagger \dagger$		$\dagger \dagger$	,
				-			14	$  \cdot  $	+++		<del>1</del>	†††		$\dagger \dagger \dagger$	
					<u>-</u> !		1		111	7	<del>       </del>	<del>         </del>		<b> </b>	
266			ł	<b>—</b> —			18t	H	+++	3	111	111	111	$\dagger\dagger$	_

PAGE 33 OF 42	PROJECT: ENGIN	E	r			•				HOLE No	. 87	-102
MINERAL DESCRI		TOTAL	SULPHIDE	INTERVAL	WIDTH	ASSAY NUMBER	, 1	% Ag ppm	%	Au Ot ten	1	OMPOSITE ASSAYS
262,0-262.6		$\prod$	$\prod$	262.0-	0.6	4023	700	8.0		.020	$\Box$	
	LAK WHITE OSTES	Ш	Ц	262.6							$\dashv +$	
REST M- ALT	(S:-7) To	Ш	4	_ }							$-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	
i- ALT & W		$\coprod$	$\perp \mid$	- }							-H	
GREY QTZ	MATRIX: WHITE	$\square$	$\perp$	-							$\longrightarrow$	0.9m, .021
QTZ LATER		H	-	_							$-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	,
OT2 ' 4/	90 PY	$\left  \cdot \right $	+	-	_					-	$\dashv$	
			+	-,,,	_	4004	750	9 1		.022	$-\parallel$	
262.6-262.9	U-S: AS IGEN		${\mathsf H}$	262.7	0,5	4024	730	1.0		.022		
	VERY F.G. DIS		$\parallel$									
PYRITE! CORE	BROKEN_		H	-						1	+	\
262.9-263.3	Sof Coor	H	$\parallel \parallel$	262.9-	0.4	402 5	730	18.3		.021		
TO WHITE QTZ		1	$\parallel$	263.3								
	OO APPERANCE	1%		Γ		-						10m,024
MINOR YULL		1										
, , , , , , , , , , , , , , , , , , , ,												
263.3-263.9	SOMEWHAT			263.3-	0.6	4026	890	4.9		.026	_//	
cess atz	BUT STILL YERY		Ш	263.9			<u> </u>	ļ				
i-S: & ZONAS		4	$\coprod$	<del> </del>			<b>_</b>	<del> </del>				
W Si MATI	eix; 3705%	#	$\coprod$	-			ļ		ļ	-	$\rightarrow$	
DISS PY.		4	11	+			-		<del> </del>			
242.3		+	H	+		44	200	11.0	<del> </del>	,009	+	
263.9-268.7		14	#	264.4	0.5	4027	300	7.0	<del> </del>	1,007	-+	
	S: MATRIX	-KK	4		-		1/4	4.1		.003		
BUT MOSTLY PE	RYASIVE S:	1	21	264.9	0.5	4028	1/6	10	<del> </del>	1.003		3.0m, .00
IRRECUIAR CICO	WIDE STAS	.12	Ħ	264.9.	0.5	4029	320	4.6	-	.009		1
1	OR Tale IN FRACT	11	21	1 26317		102/	120	1				
,	PATCHES AND	1	打	265.9	0.5	4030	390	4.3		.011		
	STAS COXE	1	1					1				
MOTTLED TO		1	7	265.9	0,0	4031	90	3.4		.003		
TEXTURE DUE		17	1									
			$\prod$	266.9	0.5	4032	125	2.6		.004		/
							-					
<i>Y</i>				267.4	0.5	4033	760	3.0		.022		)
												1.84,,0
				16/17	100	4034	1220	3.3		1 1	- 1	<i>[</i> .
		$\dashv$	$\perp$	1267.9	2.0	7039	320	13.3		110		

PAGE	3	4	of l	f2 '	PROJ	ECT: ENGINEER							но	LE	No.	8	7-10	22	] .
DEPTH (METRES)	% Core Recy	LITHOLOGY	STRUCTURE			GEOLOGICAL DESCRIPTION	1	S <b>A</b>	AL D	(	RAT 派/ C	T	-   5	ر و	FRACT			`	
268				257.8 - 27	4.5	BRXX /ALT= VEINZONE (cont.)			П		$\prod$				$\prod$	$\prod$	$\prod$		
-							╁	╟	H	+	$\parallel$					$\parallel$	+	H	+
Ľ																			
					_		$\downarrow$	-		,	N.				$\Box$	4		$\coprod$	-
-					-		-	$\parallel$	H	+	$\vdash$	-	-	+	H	+	+	$\coprod$	+
+		Λ					+	H	H	+	+				++	H	+	H	t
					ij														
269		>									Ц.				$\prod$			$\coprod$	L
'		8			_		$\downarrow$		-		-			$\perp$	4	$\coprod$	$\square$	H	-
-							+			+	Н-				+++	+	+	H	+
-					7		$\dagger$		$\dagger \dagger$	+				$\dagger$	$\dagger \dagger$			$\parallel$	t
		不					/											П	$\prod$
-	١,	4 %			<u> </u>		1		-	+	4		1	4	$\Box$	$\bot$	+	$\coprod$	<u> </u>
-		A LT B AR6			_		1/		-	+	+	-		4	$\mathbb{H}$	$\parallel$	+	H	
-					$\dashv$		1	2	H	+	H	$\prod$	1	4	+	$\dagger$	$\dagger \dagger$	$\dagger\dagger$	$\dagger$
270		* ×					1						1						
		Q STRS I						1				$\coprod$		4	Ш			$\coprod$	1
-		SS 74			$\dashv$		/		H	+		H			$\left  \cdot \right $	+	$\prod$	+	+
-		*					1/		H	+	H	H			H	+	++	+	t
<b> </b>		-917B			i		ŝ												İ
							1						7	Z.		$\prod$		$\prod$	I
-		× ;					1	1	]_	$\perp$		-	12	1				11	+
-							+	+	H	+	+			-	$\mathbb{H}$	+	+	H	+
<b> </b>							+	$\parallel$		+	$\vdash$			+	$\mathbf{H}$	+	+	H	$\dagger$
			<b>;</b>		_†	· · · · · · · · · · · · · · · · · · ·	1												
					$\Box$		$\prod$		П									$\prod$	1
-		Š			-		+	4			4	-		+	+	$\coprod$	$+\!\!+\!\!\!+$	$\prod$	+
-				·	$\dashv$	, , , , , , , , , , , , , , , , , , , ,	+	+	H	+	+	H	H	+	++	+	+	H	+
-		į		. ,	<del>-</del> †		-	$\dashv$		+				+	+	$\parallel$	+	+	1
					Ţ				$\prod$	П					$\prod$	$\prod$	П	$\prod$	1
-		بلا			+		$\perp$	+		$\parallel$		Щ	Ш	$\bot$	4	$\coprod$	$\coprod$		+
272		1					L	$\perp$	Ш	Ш		Ш	Ш	$oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{ol}}}}}}}}}}}}}}}}}}$	Ш	Ш	Ш	Ш	L

			*******************		400 <u>11000000000000000000000000000000000</u>	····		<del></del>	1	· · ·
	PAGE 35 OF 42 PROJECT: ENGIA	1 EER	۷						HOLE	No. 87-102
	) MINERALIZATION DESCRIPTION	TOTAL SULPHIDE	INTERVAL	WIDTH	ASSAY NUMBER	% Au ppb	% A3 ppm	%	Au Str.	COMPOSITE ASSAYS
	168.7 - 269.4 QUARTZ YEIN (0.7m)		268.7- 269.1	0.4	4036	65	0.6		०००	)
	TOTTLED WH TO CREYEN OTZ TO 30 % ARL FRACE; VEIN FRACE TO LATTER OTZ		269.4	0.3	4037	60	1.1		.002	) .017m, .002
	CONTACTS AT ~ 30°TO C.A.;  3 90 PY CONCENTRATED W									
	PATCHES! MININ VUES									
	269.4-269.9 m-Si-T ALTD; MOTTLED TAN BROWN W MOD LICM QSTRS; 110 DISS PY		269.4- 269.9	0.5	4038	100	2.6		,003	
	269.9-270.3 WHITE OSTRS AT MOD TO LOW L TO C.A. (~		269, 9 - 270.3	0.4	4039	440	0.8		,613	1.3m, .010
-	4090); REST ALT PARLY LONG NARROW YUCS AT LOW L TO C.A.; 1% PY		_							
	270.3 - 270.7 C- S:-T  ALTE: MOD ABUNDANCE OF  LICM QSTRS: MINOR PY.		270.3 - 270.7'	0.4	4040	500	1,4		-015	
	270.7-271.9 (JUARTZ VETN (1.2m) -MOTRED MUKY WHITE TO		270.7- 271.3	0.6	4041	50	0.3		-001	1.2m, -002
	IN LATER OTZ; SOME BTZ FARS		271.3	0.6	4042	60	0.3		.002	
	MIDDLE OF VEIN; LIGO BY MIDDLE OF VEIN; LIGO BY MOSTLY IN ARL FRACS; TINOR UP TO ICM YUGS;		<del>-</del>							
	CONTACTS IRRECULAR BUT APPEAR TO BE CHEN LTO C. A.	1 1 1 1								

PAGE	3	36	OF	42	PRO	JECT:							HOL	E No.			
TH (ES)	Recy	-0GY	TURE				F		Al	Т		TION	T -	-	SITY		
DEPTH (METRES)	% Core Recy	LITHOLOGY	STRUCTURE			GEOLOGICAL DESCRIPTION		S	D	- 1	Chi C	T	Se	FRACT	NIEN		'
272		木		257.8	-274.5	BRXX /QLT= / VEIN ZONE (CONT.		Y.	Т	П	ĪĪ		$\dagger \Pi$	$\dagger \Gamma$	$\Pi$		
		OSTR -					1	Z			$\prod$						
		SS 3					1	V.		Ц	Ш	Ш	Ш	Ш			
		*					Ľ	1		Ш	$\coprod$	Ш	Щ	$\perp \! \! \perp$	Ш		
					· · ·		1	4	Ш	Ц	$\coprod$	М		$\coprod$	Ц		
							1/	1	Щ	Ш	Ш	$\coprod$	1/4	$\coprod$	Ц		
						•	1/		Щ	Ц	Ц			$\coprod$			
									Щ	Ш	Щ	1/	1/4	4	$\coprod$		
							1/	4	$\coprod$	Ц	$\coprod$	$\mathcal{A}$		$\coprod$	$\perp$	$  \downarrow \downarrow \downarrow$	$\perp \mid$
-273							$\mathbb{Z}$	4	$\coprod$	$\coprod$	#	44	4	$+\!\!\!\!+$	$oldsymbol{\parallel}$	Щ	$\parallel$
								4	$\coprod$	$\coprod$	$\coprod$		1	$\coprod$	Ц.	Ш	$\parallel$
		1					1	4	$\coprod$	$\coprod$	$\coprod$	12	1/4	#	4	Ш	$\parallel$
		ALTE ARC.			<del></del>	,			-	$\sqcup$	$\coprod$	11/	1/2	#	4		$\dashv$
		36							$\coprod$	$\sqcup$	$\mathbb{H}$	1/2		#			+
ļ	- 1	4					4	4	$\vdash$	$oxed{\sqcup}$	╁			+	$oxed{+}$	$\mathbb{H}$	+1
1	%						Ļ	4	$\vdash$	$oxed{+}$	$\dashv \downarrow$			#	$oxed{+}$	-	+
	00				· · · · · · · · · · · · · · · · · · ·			4	H	$oxed{+}$	$oxed{+}$	1		+	4	$\left  \cdot \right $	+
1							1		╟	H	+	4		₩	$\mathbb{H}$		+
	ļ						+	-	${f H}$	H	H	1		╫	$\mathbb{H}$	H	+
274		-		27/15	2500	NVVE ~	1		H	H	${\mathbb H}$	1		╫	H	H	+
	l			7/4.2	-275.8		1		${\mathbb H}$	Н	++	$\mathcal{H}$	1	╫	+		+
						· TAN · BROWN , i-ALTE			H-	H	╁┼	+4	$\mathcal{A}$	#	H		+
İ	Ī					(T-Se-Py); PATCHES WHERE		-	${\mathbb H}$	${\mathbb H}$	╫	11/	711	#	H	$\left  \cdot \right  \cdot \left  \cdot \right $	+
						UP TO 3 MM FORMER FELD.	+	+	$\vdash$	╫	H	+	44	#	$\vdash$		+
		KE				PHENO'S VISIBLE; CONTACTS		//	$\vdash$	H	H	11/		$\mathcal{H}$	$\vdash$	H	+
İ		DYK				INDISTINCT BUE TO STRONG	14	///	$\vdash$	H	+	H	#	#	+	H	-++
		•			··· ···	ALTO DYKE MAY BE	+	+	+	╫	H	M	H	#	+		+
						SOMEWHAT WIDER; i-PERVASIVE	Н	+	+	-	H			1	+	++	+
	ł	*	-			S: AROUND 275.0-275.2m	1	+	+	H	H	1/1	1/1	+		++	+
-276	$\dashv$	-	·÷			SCM OF 50 % PY AT	H		+	Н	╁	$\mathcal{H}$	111	+		+	+
I						275.4m.	1/1	+		H	H	M	1	+	+	+	+
		1					<del>[</del> //	H	H	H	H	枌	1		+	++	+
	ŀ	ય હ		770	27010	ALT / BACK / VEIN ZONE	$\forall$	+	${\sf H}$	H	H	12	12	H	+	+	+
	ı	78		4,00	~11.7		/		H	H	$\dagger \dagger$	忧	1	++-		++	+ +
į	ľ	a )			<del></del>	CONTINUATION OF EARLIER	Ø	H	+	H	$\dag \uparrow$	1	1	++-	+	+	+
						UNIT BUT INTENSITY DECRESS-	W	H	+	${\dagger}$	H	1	11	++-	+	+	+
İ						INC.	1	+	+	+	$\dag \dag$	12	1	++-	+	+	$\dagger\dagger$
								+	+	H	H	M	1	++	+	+	+
280						<u>-</u>	1/1	$\mathbb{H}$	+	+	H	1//	1	+++	+	++	++

AGE 37 OF 42	PROJECT: ENG	MEEN	<						HOLE No.	87-102
MINERALI DESCRI		TOTAL	INTERVAL	WIDTH	ASSAY NUMBER	% Au ppb	o% Ng ppm	%	Au ot/ /ton	COMPOSITE
						· ;				
271.9- 272.4	i - OSTRES	-1411	27/9-	0.5	4043	130	0.8		-003	1
DECREASING	To MOD OSTAS	121	_							<u> </u>
IN MOTTLED	TAN- GREY	-14/-	-		,	ļ			<b> </b>	
ARG; STRS.		- // -	+			ļ			<u> </u>	
ro C.A ; x	-cur; 5 %	-12/-	+			ļ			<del>  -  </del> -	
DECREASING	TO 1% PY	-141-1	<del> -</del>	<u> </u>		<del>                                     </del>				
0 == // 0 =// .		++++	7.72 .4-	-					<del>                                     </del>	> 2-6m, 0
<u> 272.4 - 274.5</u>	(2) 1 -~ .	++++	272,4-272.9	0.5	7044	10	0.9		100.	++
m-T-Si -Se	-	+ /+	272,9.	0.5	4045		<b> </b> , ,		<del>                                     </del>	
CORE BROWN-T		+#+	273.4	U,S	7045	240	1./		F00.	
GREY PATCIFES		+1/1+	273.4. 273.9	0.0	4.11.	<u></u>	00			
(m. CBxx)			273.9	0/3	7076	50	0.8	<del></del>	100.	
OF C/cm	OSTRS VUES	-121	273.9.	00	4047	280	4 7		.008	
(18 TO 2 CM	Conmon, 2 10	17171	274.5	0,0	1017	1200	0.7		1.008	
IN S: MATE		1/1	<del> </del>			1				
INTRUSIVE L		////	<u>†</u>			<del> </del>				
FRACS (?)	OOKNE MARENS	7111	<u>†</u>						<del>  </del>	
		1111	T			<del>                                     </del>				
<b>\</b>		1								
274.5 - 275	.8 LE;5% PY		274.5-	0.7	4048	160	0.3		.005	1
ALTE DYA	E: 5% PY	12	275.2							7
										1.3m, -00
			275-2- 275-8	0-6	4049	40	8.0		.001	
		1111	L							
		$\perp \downarrow \downarrow \downarrow$	<u> </u>							
		$\perp \downarrow \downarrow \downarrow \downarrow$	<u> </u>	<u> </u>						
			<u> </u>						<u> </u>	
			<del> </del>	<u> </u>		ļ			<u>                                     </u>	
· · · · · · · · · · · · · · · · · · ·		1111	4						<del>                                     </del>	· ·
			<del> </del>	<u> </u>		<u> </u>			1	
		++++	1700-					·		
75.8 - 279.9	wrom-Si;		276.3	05	4050	20	0.4		001	<u> </u>
mro i-T-Se	,	1/2	276.3-			<u> </u>		· · · · · · · · · · · · · · · · · · ·		
TO MOSTLED GR		11/1	276.3-	2.0	4051	50	0.8		.002	
A	IRREZULAR	11/				<u> </u>				
		1 1	1 7 7/L X =	1 ^						
STRS (15 to 2 Minor up to 10	0 % OF CONE		277.3	0,5	4052	120	0.6		.003	

PA	GE		38	OF	42	PRO	ECT: ENCINEER			·		HOL	E No	. 8	7 7-	10:	2
ОЕРТН	(METRES)	% Core Recy	LITHOLOGY	STRUCTURE			GEOLOGICAL DESCRIPTION	S	AL D B	Ch	TION	55	FRACT	INTENSITY			
•	H		ALTE		275.8	?-18J.9	ALT = IBRXX / VEIN ZONE (CONT.										
-	280		*														
-		100 %	BRXX Zone														
	81		200E X														
	82		2008 X WITH X WITH X														

PAGE 39 OF 42 PROJECT: ENGIN	EEK							HOLE	No. 87-10.	٤.
) MINERALIZATION DESCRIPTION	TOTAL	INTERVAL	WIDTH	ASSAY NUMBER	% Au ppb	% Ag pps	%	Ay of ten	1	POSITE SAYS
275.8 - 279.9 (cont.)		277.3-	0.5	4053	20	0.6		-007	)	
S % DISS PY.		277.8- 278.3	0.5	4054	25	0.7		.001		
		278.3-	0.5	4055	26	0.7		.00]	4.1	m,.007
		70.0		4056						
						0.3		4		
		279.3	0.6	4057	30	0.6	-	-001		
2726 20 -		1700		.,		0.5				
SILICIFIED BRXX ZONE:		280-3	0.4	4058	50	2.2		.001	) 0.8r	1,,002
MOTTLED DARK GREY TO		280-3-	04	4059	60	0.4		.002		
BLACK; LICH ANG SILE ARC FROGS IN S. MATRIK;		280-7	0.7	7037	60	0.7		.002		
LOCALY 20 % DISS FINE		+		· · · · · · · · · · · · · · · · · · ·		•				
+0 COARSE GRAMOS PY  (~7% OVERALL)										
280.7-281./ QSTR ZONE 50 % WHITE OSTRES @		281.1	0.4	4060	240	1.1		F00,	-	<del></del>
LOW TO HILM LTO C.A W										
ARL BETWEEN : AS FRACS										
ED IN PATCHES ~ PARAILE	1 1 1 1	_		,						
TO ZONE CONTACTS		Ţ.								
281.1-281.5 W TO M QSTRS;		281.1-	0,4	4061	300	1.0	*****	,009	1.2	m, 1008
STRS < 2cm, VUCGY; 2 %	M	28%5								
DISS PYRITE	7	<u> </u>								
281.5-281.9 ¿-Si/stes;		281.5-	0.4	4062	275	0.8		.008		-
50 % WHITE TO GREY QTZ AS PERVASINE FLOODWA : IRREGUAR		281.9				,				
STAS; 3 % DISS. PY;		_								
VUGAY NERR LOWER CONTACT		<u> </u>	<u>L</u>		<u> </u>					

PAGE	- ·	46	05 4	42	PROJECT: ENGINEER								^-		
PAGE	_				PROJECT: ENGINEER						HOLE				
DEPTH (METRES)	% Core Recy	LITHOLOGY	STRUCTURE		GEOLOGICAL DESCRIPTION	-	Т	AL	ΓERA	TION	7 E	75		V	
	% Cor	LTH	STRU		GLOLOGICAL DESCRIPTION	S		D B	C	Se	E	FRA			
282		个	1	281.9-	319.7 ARGILLITE			11	$\Pi$	12	111	$\dagger \Pi$	$\dagger$	$\top \uparrow$	П
			Ĭ		DARK GREY TO BLACK, ALT		1	#	†††	1	1	Ш	$\dagger \dagger$	+	H
					TURNING TO TAN COLORED!			打	$\dagger\dagger\dagger$	1	1	$\prod$	$\parallel$	††	$\dagger\dagger$
			847		BEDDING RARERY VISIBLE;			#	†††		1	$\dagger \dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$
					CORE GENERALY IN > 10 cm		ľ	#	##	1	12	†††	$\dagger \dagger$	$\dagger \dagger$	$\dag \dag$
					PIECES		T.	什	$\dagger \dagger \dagger$		1	H	$\dagger$	$\dagger \dagger$	$\dag \uparrow$
			1		1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Ħ,	#	$\dagger \dagger \dagger$			H	+	+	$\dag \dagger$
					(281.9-294.4) CORE	H	H	#	H	1	1	+++	$\forall$	++	H
					PATCHY TO MOTTLED W	+	H	廾	$\dagger\dagger$	1	1/2	$\dagger \dagger \dagger$	$\forall \forall$	H	${\dagger}{\dagger}$
2011					50 % TON AUT IN UP TO		ť	1	$\dagger \dagger \dagger$	1	137	Н	$\dagger \dagger$	╁╂	H
294							1	}	H	W	12	HH	$\dagger\dagger$	++	H
					10 CM PATCHES OF COMPLETE		V.	+	+++		1	H	+	╫	H
					TAN MOTTED AUT MIXED	$\dashv \dashv$	+	╫	H +	12	12	HH	++	+	H
					TO BLACK AND ZONES TO	+	1	1	$\mathbf{H}$			HH	+	+	H
			n	٤٠٠٠ }	CATCHE : OLT 15 THE BLACK	+	1	H	H +	1		1	+	╁┼	$\forall$
	ł		12		SPECKS; ALT IS T = Se (?);	+	1	$\mathcal{H}$	H				╫	╁┼	H
		ļ	ړنې	-F?	MINOR ZONES TO OSTRES ! SOME	$\dashv$	+	H	H	H	<del>M</del>	8	H	╫	H
	90		1 1	•	WEAK CARB ALTE; T; CARB	+	1	H	HH	W	1	1	H	╫	Н
	00	R	11	·	on FRACTURES	$\dashv$	1	$\vdash$	H		199	3	H	╁╂╌	$\dashv$
	3	Ø	2		(2044 200 )	+	+	-	₩	1			H	╂┼	$\dashv$
295	$\dashv$		10		1(294.4-295.0) CORE IN SMALL	+	+	$\vdash$	H	17	1	<u> </u>	H	++	$\dashv$
	- }	1			PIECES; M-K	$\dashv$	+	$\vdash$	-	14		H	H	+	${f H}$
						+	+		-	14	193	$\coprod$	H	-	H
					(295.0-2960) m-T-Se ALFC:	4	+	${\mathbb H}$	-	30	}	$\ \cdot\ $	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	#	igwdapped
					CORE MOSTRY TAN	+	+	-			1	$\ \cdot\ $	$\coprod$	11	$\dashv$
	ı		}			$\dashv \downarrow$	$\bot$	-	$\mathbb{H}$			H	$\coprod$	Ш	H
1	ļ				(296.0-296.2) CORE IN SMALL	$\coprod$	1	-	-	1	1		$\coprod$		-
1			-		PIECES ; M-K	$\perp \downarrow$	_		Щ.	1	1/2		$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	-  -	Н
	İ			<del>,</del>		$+\!\!\!+$	1						$\coprod$		$oldsymbol{\perp}$
	ļ		.		(296.2-310.0) AMOUNT OF	$+\!\!\!+\!\!\!\!+$			4	1		11	$\coprod$	Ш	4
2 %	$\dashv$	- -	<del>~</del>	~>	TAN COLORED ALT & CREATRY	4	$\perp$	Ш		12			$\coprod$	Ш	$\perp$
	- [		~7	J-F.>	DECREASED (~20- OF CORE)	$\coprod$	$\perp$	Ш						Ш	$\perp$
- 1					CONCENTRATED ALONG FRACTURES		Ц	Ш	Щ				Ш	Ш	
			1	<del> </del>	AND MOTTLED PATCHES!	11	Ц	Ш	Ш					Ш	$\perp$
			1		102 % PY IN FRACTURES AND	Ш	Ц	$\perp \! \! \! \! \! \perp$	$\coprod $			$\coprod$	Ш	Ш	$\perp$
					OCCASSIONALLY PREELIM	Ш	Ц	$\coprod$	$\coprod'$				Ш		
					PATCHES; QSTKS RARE;		$\prod$								
					OCCASSION AL CALCUTE ON FRACT.		$\prod$	$\prod$							T
					CORE SCRATCHES FRIRLY	$\prod$	П	П		4		TT			T
					EASILY	$\prod$		$\prod$	$\prod$	1			П		1
3/0	١.	VI		-		7	TI	T	111		191 H	11	$\vdash$		$\top$

AGE 41 OF 42 PROJECT: ENGIN	lee	R	-							HOLE I	No. É	37-102
MINERALIZATION DESCRIPTION	TOTAL	JUMO III	SULTINOL	INTERVAL	WIDTH	ASSAY NUMBER	% A u ppb	% Ay ppm	%	Au oe/ ten		COMPOSITE ASSAYS
	$\prod$	$\prod$										
	11	$\prod$	Ц	<b>—</b>								
	4	$\downarrow$	Ц	_				-1				
	#	#	Ц	<b>-</b>						-		
	#	#	$\coprod$	<b>-</b>			ļ				······································	
	#	4	4	<del> -</del>						<del>                                     </del>		
	#	#	$\mu$	<b> -</b> -			ļ		<del></del>			
	#	+	1	<b>-</b>			<b> </b>		<del></del>		<del></del>	
222 2 204 1	+	+'	H	-		11:15	200	1 7	<del></del>			
283.7- 284./	#	╁	H	<del> </del>	04	4063	2000	6.1		•058	<del></del>	
20 % L 2cm KREWINE	#	4'	Н	H			ļ	· .	<del></del>	<del>                                     </del>		
OSTRS IN ARC; VURS; AT	#	+	H	<b>-</b>	-			<u> </u>		$\vdash$		ļ
VARYING L'S TO C.A.; 3% DISS PY IN ARG \$	1	}	H	<u> </u>			-			++		
DISS PY IN ARG. ?	1/2	+	+	F			<del> </del>			-		
WITHIN VOLS.	H	H	H	r			<u> </u>	Ť.		++		
,	#	+	H	r			<del> </del> -			<del> </del>	<del></del>	
	#	t	+	<b>一</b>			<u> </u>			1		
	+	+	H	<b>广</b>	<b> </b>		<u> </u>			1	<del></del>	
name to the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the seco	11	+	H	r		٠.						
	#	1	T									1
	#	T										
	#	+	+				†			1		
	1	1				·	1			1 1		
	$\prod$	T	ľ									
	$\prod$	I									***************************************	
	$\coprod$		$\Gamma$									
	$\prod$		[									
	$\coprod$	$\downarrow$										
	4		⊥′				<u> </u>					
	$\coprod$	1	⊥'	L	<u>.</u>		<u> </u>			1		
	4	1	<u> </u>	_			ļ			1		
	#	1		L						1		
	4	1	<u> </u>	_			<u> </u>			1 1		
305.0- 305.3	Щ,	+		<u> </u>	0.3	4064	60	1.2		.002		<b></b>
10 % WHITE OSTES C	4	4	<u> </u>	<u> </u>	<u> </u>							<u> </u>
VARIOUS L'S TO C.A.; VULS; 7 % PY W ARG	1%	Ä	⊥′	_	<u> </u>		<del> </del>	ļ	<u> </u>	1		
VUGS: 7 % PY W ARG	11	1										

S   D   C   T   Se   E   E   E   E   E   E   E   E   E	PAGE	4:	2_	OF I	H2 PRO	JECT: ENGINEER							но	LE	No.	8	7-	10	١,
315  28.9-319.7 ARCILLITE (CONT.)  (310.0-313.2) TAN ALT  DE CAGASINA TILL IT DISS-  AMERICS; CORE MARDENINA.  (313.2-319.7) CORE DARK  GREY TO BLACK; SHARP FARIT  N.HARD (WILL NOT SCRATCH);  MASSIVE TO VERY FAINTLY  FOLE N DARKEX LINES;  I'/O DISS. CVBIC PY; CC  ON FRACTURES; UNKNOWN  IF HARNESS DUE TO OKIGINAL  CHERTY ARG. OK LATER  ALTC.  319.7 E, O. H.	DEPTH (METRES)	% Core Recy	LITHOLOGY	STRUCTURE		GEOLOGICAL DESCRIPTION		S				7	S	e E	FRACT	IN I ENSI I			
BECRESSING TILL IT DISS.  AMERICS: CORE HARDENING.  (313.2-319.7) CORE DARK  GREY TO BLACK: SHARP FART  V.HARD (WILL NOT SCRATCH);  MASSIVE TO VERY FAINTLY  FOL DORKEX LINES:  1 1/0 DISS. CUBIC PY; CC  ON FRACTURES: UNKNOWN  IF HARNESS DUE TO OKIGMAL  CHPREY ARG. OR LATER  ALTC.  319.7 E, O. H.	310		个		281-9-319;	ARGILLITE (CONT.)		$\prod$		I	П	1							
BECRESSING TILL IT DISS.  AMERICS: CORE HARDENING.  (313.2-319.7) CORE DARK  GREY TO BLACK: SHARP FART  V.HARD (WILL NOT SCRATCH);  MASSIVE TO VERY FAINTLY  FOL DORKEX LINES:  1 1/0 DISS. CUBIC PY; CC  ON FRACTURES: UNKNOWN  IF HARNESS DUE TO OKIGMAL  CHPREY ARG. OR LATER  ALTC.  319.7 E, O. H.						(310.0-313.2) TAN ALTE	H	+	+	H	H			+		1.		H	
315 80 (313.2-319.7) CORE DAKK  GREY TO BLACK SHARP FART  V.HARD (WILL NOT SCRATCH);  MASSIVE TO VERY FAINTLY  FOLE W DARKEX LINES;  1'/O DISS. CUBIC PY; CC  ON FRACTURES; UNKNOWN  IF HARNESS DUE TO OKIGNAL  CHTRY AKG, OK LATER  ALTC.												1			Ш				
AREY TO BLACK SHARP FART  V.HARD (WILL NOT SCRATCH);  MASSIVE TO VERY FAINTLY  FOL W DARKEX LINES;  I'/O DISS. CUBIC PY; CC  ON FKACTUKES; UNKNOWN  IF HARNESS DUF TO OKIGNAL  CHERRY ARG. ON LATER  ALTC.  319.7 E, O. H.						•	$\parallel$		+		$\frac{ \cdot }{ \cdot }$	111821111	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-		-			
MASSIVE TO VERY FAINTLY  MASSIVE TO VERY FAINTLY  FOL W DARKEX LINES'  1'/O DISS. CUBIC PY; CC  ON FRACTURES; UNKNOWN  IF HARNESS DUE TO ORIGINAL  CHERTY ARG. OR LATER  ALTC.  319.7 E, O. H.									1			#			Щ	1			
MASSIVE TO VERY FAINTLY  FOL & DARKEX LINES!  I'/O DISS. CUBIC PY; CC  ON FRACTURES; UNKNOWN  IF HARNESS DUE TO ORIGINAL  CHERTY ARG. OR LATER  AUTCO.  3/9.7 E, O. H.						GREY TO BLACK SHARP FARET		+	+	╫	H	╫		$\vdash$	H	+	$\vdash$	H	
FOL W DARKEX LINES!  1º/O DISS. CUBIC PY; CC  ON FRACTUKES! UNKNOWN  IF HARNESS DUE TO OKIGINAL  CHERTY ARG. OR LATER  ALTC.  3/9.7 E. O. H.	210	%				MASSIVE TO VERY FAINTLY	H	$\parallel$	$\dagger$	$\parallel$	H	#	H		H	$\dagger$	H	$\dagger \dagger$	
1 /0 DISS. CUBIC PY; CC  ON FRACTURES I UNKNOWN  IF HARNESS DUE TO ORIGINAL  CHERTY ARG. OR LATER  ALTC.  319.7 E, O. H.	_313	0	V			FOLEW DORKER LINES!	$\Box$	$\parallel$	1	$\prod$	$\parallel$	$\top$			Ш	$\dagger$		H	
ON FRACTURES I UNKNOWN  IF HARNESS DUE TO OKIGNAL  CHERTY ARG. OR LATER  ALTC.  319.7 E. O. H.		01	V			1 1/0 DISS. CUBIC PY; Cc	П	$\parallel$	1	П	$\parallel$	$\parallel$						П	•
IF HARNESS DUE TO OKIGNAL  CHERTY ARG. OR LATER  ALTC:  319.7 E. O. H.						ON FRACTURES ! UNKNOWN				$\prod$		П							
319.7 E, O. H.			-			IF HARNESS DUE TO ORIGINAL		Ш	1	Ц	$\coprod$	4		Ц	Ш			$\prod$	
319.7 E. O. H.						CHTRY ARG. OR LATER	44	$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	1	Ш	$\coprod$	4		$\perp$	Щ	1		Ц	-
						ALTC.	+	$\dashv$	+	-	$\coprod$	+				4	-	igwdapprox	
						I T	+	$\perp$	+	$oxed{+}$	$\dashv$			+	H	4	$\vdash$	H	
				1	2/05	//	+		+	$oxed{+}$	+	+		-	-	4	H-	H	
320 E.O.A.			<b>V</b>		3/7./	E, O. H.	+	+	+	$\vdash \vdash$	H	+	H	$\vdash$	H	H	H	H	
	<del>-</del> 320	$\vdash$	F.O.4	-		1	+	+	+	-	+	+-		+	Н	+	H	╫	
							$\dagger \dagger$		+	H	H	+		H	H	H	$\vdash$	$\dagger \dagger$	
							$\dagger \dagger$	+	+	$\dagger \dagger$	H	+		H		H	$\parallel$	H	
							$\dagger \dagger$	$\dashv$	T	H	$\dagger\dagger$	$\dagger \dagger$		H	H	$\dagger \dagger$	H	H	
							$\parallel$	$\sqcap$		H	$\dagger \dagger$	$\parallel$						$\prod$	
	•						$\dagger \dagger$	П	1	$\sqcap$	H	11		$\top$		H	П	H	•
						1	$\sqcap$		1	$\Pi$	$\prod$	$\parallel$	П	П	$\prod$				
									1	П	$\prod$	$\top$							٠
							П			П	П								•
											П								
											Ш								
							Ш								Ш	Ц		Ц	
	9						$\coprod$	$\coprod$	$\perp$		Ц		Ш		Ш	$\perp$		Ц	
						<u> </u>	$\prod$	$\coprod$					Ш	$\perp$	Ш			Ц	
							$\perp \downarrow$	$\perp \downarrow$	$\perp$						Ш		-	$\coprod$	-
						<u> </u>	Ц	$\coprod$	$\perp$	Ш	Ш		Ш	$\perp$	Ш		Щ	Ц	
		1 1	:	l . i	I		I		Т	-			11	T	17	1	1	ıΤ	

## ERICKSON GOLD MINING CORP. MINERALS SECTION

## DRILL LOG

	e.
PROJECT	GROUND ELEV.
ENGINEER	817.50
HOLE No. 87-103	293°
LOCATION	DIP _UO F
N 4276.22	=42.5
E 3482.36	TOTAL LENGTH 209.7
LOGGED BY H. SMIT	HORIZONTAL PROJECT
<i>". 3</i>	156.76m
DATE SEPT 25 - 29	VERTICAL PROJECT
	139.23m
CONTRACTOR	ALTERATION SCALE
CONNERS	absent
CORE SIZE	slight
NQ	moderate
DATE STARTED	intense
SEPT 21,1987	TOTAL SULPHIDE SCALE
DATE COMPLETED	TOTAL SULPHIDE SCALE
SEPT 25, 1987	traces only
DIP TESTS DIE AZIMUTH	< 1% 1% - 3%
47.5 -42.5 293° -47.5 293°	3% - 10%
1359 -41.5 2940	> 10%
209.1 - 39.5 298°	1.50519
INTERSECTIONS:	LEGEND
36.7-38.4 QSTRS @ HICH ! LOW L TO GA.;	
e 0.026 02 fr. Au. SPH, ASPS GAL, PY	
41.9-42.35 QV BANDED GREY AND WHITE QTZ;	
@ 0.015 02 /Ten Au.	
56.0-56.9 QV ABNT ARL ERACS; YULS; 5% PY (0.9m) (SHEAR B?)	
128.2-128.6 QY WHITE QTZ; 3% py-asp.	
C 0.00 2 oz /Tor An.	

AGE				т	31 PRO	JECT: ENGINEER			ΑI	<b>T</b> 1	ERA			НО	LE	No.	<i>8</i>	7-	10	2	
DEPTH (METRES)	% Core Recy	LITHOLOGY	STRUCTURE			GEOLOGICAL DESCRIPTION	S	•	D E		Chi	,	T	3	် E	FRACT	INTENSITY				 M
0		小			0-10.0	OVERBURDEN	П	Π	П	П	П	1				Т	П	П	П	П	_
																	$\prod$	$\prod$	$\prod$	$\prod$	_
			$\parallel$	П												Ш				Ш	
			$\prod$		10.0-	ARGILLITE												Ш			_
				Ī		DARK GREY TO BLACK; QUITE MARA											Ш	Ц	$\coprod$	Щ	_
		8	П	П		BUT USUALLY SCRATCHES BEDDING					ŀ			Ш		Ц	Ш	Ш	Щ	Щ	_
		7		П		OCCASSIONALLY VISIBLE BUT NOT	$\prod$				Ш		Ш	Ц		Ц	Ц	Ц	Ш	Ш	_
		П	$\prod$	П		DISTINCTE MOD. L'S TO C.A.	$\coprod$		Ш		Ш		$\coprod$		Ш	Ш	Ц	П	Ш	Ц.	_
			П			2% or Localy 5% Dissory.	Ш		Ц		Ш		$\perp \downarrow$	Ц	Ц	Ц	Ц	Ш	Ш	Щ.	_
15				П		PYRITE IN UT TO IMM SPECKS;	Ш	1	$\coprod$		Ш		$\downarrow \downarrow$	$\perp$	$\parallel$	$\coprod$	$\coprod$	$\coprod$	$\coprod$	#	_
- {0			$\prod$	П		· 1	Ц	$\perp$		L	Ш		$\coprod$	$\perp$	$\coprod$	$\coprod$	$\coprod$	$\coprod$	$\perp \! \! \! \! \! \! \! \! \! \! \perp$	$\coprod$	
		$\prod$	$\prod$	П		FRACTURES: CORE FAIRLY BLOCKY	Ш				Ш	Ц	$\coprod$	$\perp$	Ц	$\coprod$	Щ	$\coprod$	$\coprod$	$\coprod$	_
			$\prod$	П		FRACTIKES CORE FAIRLY BLOCKY	Ш		Ц		Ш				Ц	$\coprod$	$\coprod$	$\coprod$	$\coprod$	1	_
							Ц		$\coprod$	$\downarrow$	Ш	Ц	Ш			$\coprod$	$\coprod$	$\bot \downarrow$	$\coprod$	4	_
						(22.5.22.7) OSTRS; 3 1cm	Ц	$\downarrow$	Ц	1	Ш	Ц	Ш	1		$\coprod$	4	Щ	Ш	$\bot\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	_
	1		$\prod$			DSTR @ 55° TO C. A. ; i-5: 12	Ц	1	Ш	1			Ш	$\downarrow$	Ц	$\coprod$	$\prod$	$\perp$	4	4	-
	1%					W. R. : 5 % BISS. PY W W.R.	Ц	1	Ц	_	Ш		Ш	$\downarrow$		$\coprod$	$\coprod$	$\perp$	$\perp \mid \mid$	1	
	0				·		$\coprod$	$\downarrow$	$\coprod$	1	Щ			1	$\prod$	$\coprod$	44	$\perp$	$\perp$	$\prod$	•
	10	$\prod$				(32.9-33.2) STRS	$\coprod$	1	$\coprod$	1		L		1	Ц	$\coprod$	$\coprod$	4	$\perp$	4	r
- 20		$\prod$	$\prod$			3 1 TO 6 CM CARB- QTZ	$\downarrow \downarrow$	1	$\coprod$	1	$\coprod$	L		1	-	$\coprod$	$\dashv$	+	$\perp$	+	_
- 20		Ш		L		STKS @ 60° TO C.A.	$\bot$	4		1	$\coprod$	L		$\perp$	$\coprod$	$\coprod$	$\bot \downarrow$		$\perp$	+	Г
	V	Ш					11	1	$\prod$	1	$\coprod$	L	Ш	$\coprod$	$\Box$	$\coprod$	$\bot \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	1		$\mathbb{H}$	H
			125	נייו			$\coprod$	_	$\downarrow\downarrow$	$\downarrow$	4	L	Ш	Ц.	$\coprod$	$\downarrow \downarrow$	$\bot$	Ц.	4		H
							$\downarrow \downarrow$	4	$\downarrow \downarrow$	1	4	Ļ	$\coprod$	Ц.	$\coprod$	44	$\perp$	Ц-	-		ŀ
		32					$\perp \mid$	4	44	$\downarrow$	$\coprod$	$\downarrow$	$\coprod$	Ш	$\coprod$	44	$\bot$	Щ		$\mathbb{H}$	ŀ
		Q				(33.2-34.0) M. C. ALTE ; WEAR	Ц	4	Ш	_	$\coprod$	L		Ц.	$\coprod$	$\perp \downarrow$	4	$oldsymbol{\parallel}$	ig	#	ŀ
			$\prod$			PERV. Cc Mod ABUNDANCE OF	$\downarrow \downarrow$	$\downarrow$	11	1	$\coprod$	1	Ц.	-	$\coprod$	$\bot \downarrow$	$\perp \!\!\! \perp$	-	$\coprod$	$\square$	ŀ
						IRREQUER (C ALT STRE , OFTEN TO	$\perp$	$\downarrow$	$\perp \mid$	4	1	_	$\prod$	Ц	$\coprod$	$\perp \mid$	4	$\perp$	$\coprod$	$\mathbb{H}$	+
						A GREENISH F.L. MINERAL (SERIC?);	$\perp \mid$	$\downarrow$	$\coprod$	1	$\prod$	1	$\coprod$	Ш	$\coprod$	$\coprod$	_		$\sqcup$	$\mathbb{H}$	+
-30						5% TO LOCALLY 10% BISS. PYRITE	$\perp \mid$	$\downarrow$	Ш	1	Ш	$\downarrow$	$\coprod$	Щ	$\coprod$	4	$\bot$	Ц	4	Щ	1
- 54			$\prod$				$\perp \downarrow$	$\downarrow$	$\perp \mid$	1	$\coprod$	$\downarrow$	$\coprod$	$\coprod$	$\sqcup$	$\parallel$	$\perp$	$\coprod$		$\square$	ŀ
			$\prod$			(36.2-36.7) m. Si, w-CARR AND	<u> </u>	$\downarrow$	$\prod$	1	$\coprod$	$\downarrow$	$\coprod$	Ц	$\coprod$	$\parallel$		$\coprod$		$ \!\!\mid \!\! \downarrow \!\! \downarrow \!\! \downarrow \!\! \downarrow$	+
				J.	trs	COKE MOTTED GREY-BLACK- WHITE	$\perp \downarrow$	1		4	$\coprod$	1	$\coprod$	$\coprod$	$\coprod$	$\parallel$			-	$  \cdot   \cdot  $	+
						DUE TO PERLYASIVE Si -Ce Truck	$\perp \mid$	$\bot$	1	4	$\coprod$	$\downarrow$	-	$\coprod$	$\coprod$	$\parallel$	1	$\coprod$	$\sqcup$	$\prod$	-
			$\prod$			clay WHITE QSTRES @ 70° TO CA			Ш		$\coprod$	$\downarrow$	$\coprod$	Ц	$\coprod$	Ш	$\perp$	$\coprod$	$\coprod$	Щ	1
			$\prod$	T		3% DISS. PYRITE		$\Box$	$\perp$	Ц	$\coprod$	$\downarrow$	$\coprod$	$\coprod$	$\coprod$	Щ	1	$\coprod$	$\coprod$	Щ.	<u>_</u>
			$\prod$				///	11	10	Ц	$\coprod$	$\downarrow$	Ш	$\coprod$	$\coprod$	Ц	$\perp$	$\coprod$	$\coprod$	Щ	ļ
			$\prod$	T					$oldsymbol{\perp}$		$\coprod$	$\downarrow$	$\coprod$	Ц	$\coprod$	Щ	$\perp$	$\sqcup$	Ц	Ш	1
			11	+							$\prod$			Ц	Ц			$\coprod$	$\coprod$	Ш	1
40			1	+				П	Τ	П	$\Pi$		$\prod$	$\prod$							1

AGE 3 OF 31 PROJECT: ENGINE	ER							HOLE No.	87-103
MINERALIZATION DESCRIPTION	TOTAL	INTERVAL	WIDTH	ASSAY NUMBER	% A v GMT	% Ag ppm	%	Au 02/T	COMPOSITE ASSAYS
	+++	-							
	+++	-			<u> </u>				
	+++	<del> </del>			-				
		İ							
		_							
		+			<del> </del>				
		+							
2.5-22.7		+	0.2	4065	0.17	1.9		0.005	
OSTR IN ARC: 5 % PY	1			, , , ,	10			7,003	:
,	14	1			ļ				
32.9-33.2 CARB-QTZ STAS.	H	+	0.3	400	10.00	, _		0 00	<del> </del>
MILLED CARB GETZ STAS.		<b>†</b>	0.3	4066	0.03	1.5		0.001	
50 TO 60 % MR FABAS IN		I							
stes; LO.Sim stes @	H	+			<del> </del>				
CTRS: 5 % DISS PY IN		+			<b></b>				
ARG.		1							
		Ţ							
33.2-34.0 m-cc ALTE ARG ; S, LOCALLY 10 %, PY		33.2-33.6	0.4	4067	0,08	1.8		0.002	<del></del>
ARE SCOCALLY 10 10, PY		33.6-34.0	0.4	4068	0.16	2.1		0.005	(0.8m,004
					01.5	211		0.005	1/
2. 4. 24	1	<u> </u>	05	4069	0.09	3.9		0.003	
36.2-36.7 ALTE ARG:		+	<b></b>		<del> </del>				
3 10 PY		+.			1				
		<del> </del>							
	Ш								46

PAGE	4		OF	PROJECT: ENGINEER							ŀ	HOL	E N	o. 8	7-	10	3
- (S	ecy	β	JRE.				_	AL.	TER/	TIC	N		⅃.	≱			
DEPTH (METRES)	% Core F	LITHOLOGY	STRUCTURE	GEOLOGICAL DESCRIPTION	N	£		В	c		D	E	FRACT	INTENSITY			•
36.7			\ <u>''</u>	10.0 - ARLILLITE (CONT	-)	Ť	$\forall$	Ť	Ħň	1	T	T	$\forall$	T	П	$\dagger$	T
				THE PLOTE (COTO)	-/	†	$\dagger \dagger$	$\dagger\dagger$	111	71	+	H	$\dagger \dagger$	H	$\parallel$	$\dagger \dagger$	$\dagger$
				(36.7 - 38.4) QSTR	· C	1	$\prod$	11	$\Pi$	$\parallel$	T	Ш	П	$\parallel$	11	11	T
	Ì			10 CM RSTR @		1	Ħ	11	$\Pi$	11	+	Н	$\parallel$	П	$\dagger \dagger$	11	†
				A I to 3 cm QSTR	•	十	$\dagger \dagger$	П	111	$\top$	$\top$	$\Box$	$\sqcap$	$\top$	$\top$	11	1
		!		FW E VERY LOW		+	$\prod$	$\Pi$	$\parallel \parallel \parallel$	$\parallel$			11	11		$\parallel$	T
		1		Runs They	- 764 37 7 00.	1	$\prod$	П	$\prod$	$\prod$	$\top$		T	П	П	$\prod$	1
				RUNS THEY CORES BACK	in (00 2~6		$\prod$	11	Ш	П				П		11	T
		,		STR) @ 37.9 Ans	FOLLOWS DOWN	I	П										
				TILL 38.4m			<u>I</u>	$\prod$								$\prod$	I
-								$\prod$							$\prod$	$\prod$	T
							$\prod$	$\prod$									J
				,			$\prod$				П		$\prod$				
		$\Lambda$														$\prod$	
								Ш	Ш						$\coprod$	Ш	
	ሉ l	L			·										$\coprod$	$\coprod$	
	1	SZZS								Ш				Ш		Ш	
	%	Ś					Ш		Ш				Ш	Ш		Ш	
	00/	В					Ш	Ш					Ш	Ш		Ш	
_ {		IJ		i										Ш	Ш	Ш	1
	1	RL						Ш					Ш			$\coprod$	
	Y	9 1		·				Ш					Ш	Ш	$\perp \! \! \perp$	Ш	
							Ц	Ш	Ш					Ш	11	Ц	
		1						Ш	Ш			Ш	Ш	Ш	$\coprod$	Ш	
		•					Ш	Ш						Ш		Ш	
							Ц	Ш							$\coprod$		
							Ш			$\coprod$				Ш	Ш	Ш	
								Ш		Ш	$\perp$		Ш	Ш	Ш	Ц	_
							$\coprod$			Ш			Щ	Ш		$\coprod$	1
							Ш						Ш	Ш	$\perp \! \! \perp$	$\coprod$	$\perp$
_						$\perp$	Ц	Ц	Ш	Ш	Ц		$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	$\perp \! \! \! \! \! \! \! \! \! \! \perp \! \! \! \! \! \! \! \!$	$\perp \downarrow$	$\coprod$	1
						1	$\coprod$	$\coprod$	Ш	$\coprod$	$\perp \! \! \perp$		$\coprod$	Ш	Щ	$\coprod$	$\perp$
							Щ		Ш	$\coprod$	Ш	Ш	$\coprod$	$\coprod$	$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	$\coprod$	1
						$\perp$	Ц	$\coprod$	Ш	$\coprod$	$\perp \mid$	Ш	$\coprod$	Ш	$\coprod$	Ц	1
							Ц	$\coprod$		$\coprod$	Ш	Ш	Щ	Ш	$\coprod$	$\coprod$	1
									Ш		Ш	Ш	$\prod$	Ш	$\coprod$	$\coprod$	_
							$\coprod$	$\coprod$		$\prod$	$\coprod$	$\perp \! \! \! \! \! \! \! \! \! \! \perp$	$\coprod$	$\coprod$		Ш	$\downarrow$
								Ш			$\coprod$	$\perp \! \! \perp$	Щ	Ш	$\coprod$	Ш	$\perp$
		I					$\coprod$	$\prod$	Ш			$\prod$	$\prod$	$\prod$		Ш	
38.4	- [		[				П	П			<b>1</b>		$\Pi$	11		П	ŀ

AGE 5 OF 31	PROJECT: ENGINE	EK							HOLE No.	. 87-103
MINERAL DESCR		TOTAL	INTERVAL	WIDTH	ASSAY NUMBER	% Au 3**/F	% Ag ppm	%	Au 02/T	COMPOSIT
		╫╁	_							
36.7-36.8 Q	STR @ 65° To		E	0.1	4070	1.86	7.1		0.054	
C.A. MOTTLE	NO WHITE TO	M								
	0°1. Sx (SPH>	14/1	Ŀ							
ASPS GAL > A SI	•	$\mathbb{I}$		ļ		ļ				
cx > CPY . SP	4 COALSE GRAMED	1/1/	<u>_</u>	ļ						
Brown; ASP BA	~OFD F LROIN AND	N/	<u>_</u>							
COANSE CANIN ;	CAL AS DISS	V	<u>k</u>							
XTLS AND BLEZ	S OF XTZS; MINOR	11/1/	<del> </del>			<b> </b>				
SMALL STYLOLIT.		HH	-							
36.8-37.7 0.1	ro 3 cm asra	1//								
EVERY LOW L Y		YW.								
	10 % W. R. FRALS;	M								
45 % Sx , SPH	1 (BROWN) > ASPS	XX	_	<u></u>	-					
GAL > SILVERY GREY				<u></u>		<u> </u>				
SX IN PATCHES	AND COMMSELY	X	1			<b></b>	ļ			
DISSEM. ; W.R.	15 ARG W	1///	1			<u> </u>				
DISSEM. ; W.R. 370 5 % 5x	3 0.5,01	1141				ļ				1 >1:1
(m asnes e q	LEATEN L TO	1111	_			ļ				0.09
A. W SOME SX	COME OFFITHE	1111	<u>_</u>			<u> </u>	<u> </u>	\		62
ONLER STRUCTUR	E	$\coprod$	<u> </u>			ļ	ļi			
36.8- <b>37.</b>	3	$\downarrow\downarrow\downarrow\downarrow\downarrow$	36.8-	0.5	4071	1.97	13.0	0.057		
STR 1 TO 300	7	$\coprod$				ļ				
-	.7 STR COES	4444	37.3-	0.4	4672	0.01	7.5	0.001		
Down FRan	1 TO DISCH GETS	++++	<u>_</u>	<u> </u>		ļ	<u> </u>	ļ	ļļ	
VERY CALCAREOU		$\frac{1}{1}$	+							
37.7-37.1	FAINT ALTS		<u> </u>	0.2	4073	0.63	7.2	0.018		
	Sim Acress To	VVII	-		·	<del> </del>	<b></b>		<del>                                     </del>	
	AT BE STRUCTURE	1 4 4 1	<u> </u>			<b>-</b>		ļ	-	
CORE TOO BROKE	~ TO FFOLLOW 394	444	+				ļ			
		$\downarrow\downarrow\downarrow\downarrow$	<del> </del>	_			<b></b>	<b>}</b>		<del></del>
37.9-38.4 1		1//	<del> </del>	0.5	4074	0.39	15.8	0.011		4
VERY LOW L,	O C. A. ; WH,	K//	<del> -</del>	-		<del> </del>	ļ			
MINOR GREY QT.	2; 10 % Sx	TH.	<b>↓</b> .	<u>·</u>		-	<b> </b>	<del> </del>	<u> </u>	
(ASP>SPH>6A		144	<del> </del> -				<b>}</b>	-		
MINERAL):	STYL OLUTE TO	NN	}	1	1	1	1	1	1	}

PAGE	6		OF .	3/ P	OJECT: ENCINEER				·			ноі	LE	No.	87	-10	3
	Š	ځ	RE						ALT	ERA'	TION				Г	Τ	ヿ
DEPTH (METRES)	% Core Recy	LITHOLOGY	STRUCTURE		GEOLOGICAL DESCRIPTION		S,	,	D B	Chi C	Sc	-	Γ Ε	FRACT			
38				10.0-41.	ARGULITE (CONT.)			П	П	П	Ш	T	П	П	$\prod$	$\top$	П
			ĺ		3.8.4- 38.9			II		$\Pi$	$\prod$	T	$\Pi$	$\dagger \dagger$	$\Pi$	$\top$	H
					7 4/cm cc + QT 2 STR / ALT	·×		П	П	Ш	Ш	П	П	П	$\prod$		$\prod$
					BANDS @ MOD TO HIGH L'S TO C.				П	Ш	Ш	$\Pi$	П	$\Pi$		П	$\Pi$
					UP TO 30% Sx (ASP. SPH -PT)	A ITTEM	7	-	1	$\prod$	Ш	T	$\prod$	П		$\prod$	T
				<del></del>	THEM		//	7	1	$\Pi$	$\Pi$	$\sqcap$	$\dagger$	11	Ш	11	T
							//		И	$\Pi T$	$\Pi$	11	$\Pi$	11		$\top$	T
					38.9-39.7 MINON (ALCONED	יטני	11	17	И	Ш	$\prod$	11	$\parallel$	$\top$		$\top$	T
					- LO.SMM BANDS: 3 TO 5 0/0		4/	7	h	$\Pi$	Ш	$\parallel$	$\top$	$\prod$	Ш	11	T
					DISS 14 " m-Cc, WORK BRY			1		Ш	$\Pi$	T		$\top$	$\prod$	11	1
- 39					LAST 10 cm				$\Pi$	$\Pi$	$\Pi$	11	П	$\Box$	$\Pi$		T
							$\dagger$	1	什		$\prod$	11	$\dagger \dagger$	#		-	T
					39-7-40.0 2 1 RREQUEAR 6	70:20	+	1/	$\dagger$	H	H	$\dagger \dagger$	$\dagger \dagger$	+	H	$\dagger \dagger$	t
					•		+	1/	$\parallel \parallel$	H	H	††	$\dagger \dagger$	++	Ш	+	+
					@ LOW BUT VARTING US		$\top$	1	$\dagger \dagger$	HT	HH	$\dagger \dagger$	$\dagger \dagger$	T	ff	$\dagger \dagger$	†
	0				BUT YARY AS STR WALLS N		+	1	H	$\dagger \dagger \dagger$	$\dagger\dagger\dagger$	H	H	††	ff	++	$\dagger$
	%	· 1				07	+	1		$\dagger\dagger\dagger$	$\Pi$	††	$\dagger \dagger$	$\forall t$		11	1,
	0	S	-		PERMANE; ABOUT SX			17	4	$\dagger\dagger\dagger$	$\dagger\dagger\dagger$	$\dagger\dagger$	$\dagger \dagger$	$\dagger \dagger$	H	+	#
	10	t R	¥ .				+	Н,	$\dag \uparrow$	$\dagger\dagger$	$\dagger\dagger\dagger$	††	$\dagger \dagger$	+	H	++	$\dagger$
		A	<del>1</del> <b>3</b>				+	1	${\mathbb H}$	H	╫	$\dagger\dagger$	+	11	H	+	+
-40	H	1			<del>- i</del>			1		H	$\dagger\dagger\dagger$	$\dagger\dagger$	+	$\dagger \dagger$	H	+	十
							+	H	#	H	$\dagger \dagger \dagger$	++	H	+	H	+	+
					N		+	1	+	H	HH	+	+	╁┼	H	+	+
	1 1				40.0-40.6 10 % OF CORE	4	+	H	╫	╫╫	HH	+	+	+	H	+	+
					HAS PATCHY O-CE! UGHT			1//	-	HH	╂┼┤	+	+	++	H	+	+
	1 1				GREY MINOR ATZ ! MINOR ASA	٠;	+	1/	╫	$\mathbb{H}$	HH	+	+	+	-	+	+
		:	_		5 % PY		1	1	+	╁┼┼	H + H	╫	+	$+\!\!+\!\!\!+$	++-	╌╂╌┼	+
		SERE					4/	1	+	╁┼	+++	╫	+	+	H	+	+
		8	-		40.6-40.8 IRREGULAR UP T		///	1/	╫	$\mathbb{H}$	HH	+	+	+	H	+	+
					Jen astes Mostry E ~3	O TO	$\perp$	-	H		H	$\dashv$	+	++		$\dashv$	+
- 41			<del></del>		C. A : LOWER ONE HAS 2		+	-	-	H	H	$\mathbf{H}$	$\dashv$	$+\!\!+$	HH	$+\!\!+\!\!\!+$	+
					STRUCTURES ~ 90° TO EACH	OTHER	-	-	-	-	HH	+	$\dashv$	$+\!\!+$	H	$+\!\!+\!\!\!+$	+
					IN TERSECTIVE MINOR CC		$\perp$				H	$\dashv$	44	44	Ш	$+\!\!+$	+
							_	igdash	-		$\prod$	$\coprod$	$\downarrow \downarrow$	$\bot\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$\coprod$	$\bot$	+
					40.8-41.9 3 To 5 % DIS	5	$\perp \mid$		Ш		$\coprod$	$\coprod$	$\coprod$	#	Ш	$\coprod$	$\downarrow$
					PY: LIMM SPECKS INCRE	25/4	Ш	Щ	Ш		Ш	$\coprod$	Ц	$\coprod$	Ш	$\coprod$	$\perp$
					IN SIZE TOWARDS LOWER CO-	1	Ш	Ш	Ш	Щ	Ш	$\coprod$	Ц	$\perp \! \! \! \! \! \perp$	Ш	$\coprod$	1
					TO 2 MM; VERY WEAKLY		$\perp \! \! \perp \! \! \! \perp$	Ш	Ш	Ш	Ш	$\prod$	Ш		Ш	$\coprod$	
					CALCAREOUS								$\prod$				
												$\prod$	$\prod$	$\prod$		$\prod$	$\int$
42									Π		ПТ	IT	П	$\prod$		$\Pi$	Γ

÷			ŧ		:				بذ	:	<u>.</u>
PAGE 7 OF 31 PRO	OJECT: ENGINE	er.							HOLE	No. E	37-103
MINERALIZA DESCRIPTI	TION ON	TOTAL	INTERVAL	WIDTH	ASSAY NUMBER	% A U 6m/T	% Ay ppm	%	Au ozh		COMPOSITE ASSAYS
38.4-38.9 0577 ALL., U. Sr IN STRS; 4 % ~ 5 % Sx TOTAL	es In p to 30% py in Rock;			0.5	4075	0.06	2.6		0.002		
•			- - -	· · · · · · · · · · · · · · · · · · ·							
39.7-400 2  OSTRS, ~ 20  IN INTERVAL;  20% Sx, PRE  OF ASP, ALSO  GAL, OTHER S  MINERAL; 3%	600		- - - - - -	0.3	4076	3.21	4.4		0.094		
Torm	2 1 10 3		- - 								
40.0-40.6 C ARG; 5% ASP	C ALTE IN PY, TRACE		- - -	0.6	4077	0.21	3.4		0.006		
HO.6-40.8 QSTA DISS PY IN MINOR ASP IN			- -  -	0.2	4078	1.23	5.0		0.036		
			- - -								
			<del>-</del>								

PAGE	{	3	OF	PROJECT: ENGINEER							ŀ	HOLE	No	. 8	7-	165	?
+ S)	ecy	ξ	RE				A	LTE	RA	TIO	N	,		չ			
DEPTH METRES)	5	20	ΣŢ	GEOLOGICAL DESCRIPTION		5,.	۵		Chi	1 5	æ	T	ACT	S			Y
ME D	% Core Recy	LITHOLOGY	STRUCTURE		"	, V	E	- 1	c	1	D	ε	FRACT	Z		1	
पान	0,	<u></u>	0)	110 122 AUDOTZ VEIN (04C)	Н	T	H	$\dot{H}$	ΤŤ	╁	Т	Ť	H		П	$\dagger$	┰┼
1,0.				41.9-42.35 QUARTZ VEIN (0.45m)	H	+	H	$\dag \dag$	++	╫	+	H	╫	Н	H	╫	${\sf H}$
				· CONTACTS @ 70° TO C. A.	H	十	H	Ħ	$\dagger\dagger$	$\dagger \dagger$	+	HH	$\dagger \dagger$	Ħ	$\dagger\dagger$	$\dagger \dagger$	$\dagger \dagger$
					Н	╁	$\dag \dag$	H	$\dagger\dagger$	+	+		${\sf H}$	H	$\dagger\dagger$	$\dagger \dagger$	$\dagger \dagger$
					H	+	H	H	$\dagger\dagger$	$\dagger \dagger$	T	H	$\dag \dag$	$\dagger\dagger$	††	$\dagger \dagger$	$\dagger\dagger$
					Ħ	+	H	H	H	$\dagger \dagger$	+	H	$\dagger \dagger$	H	$\dagger\dagger$	$\dagger\dagger$	$\dagger \dagger$
	ł				H	$\dagger$	H	tt	$\dagger \dagger$	$\dagger \dagger$	+	$ \dagger \dagger$	$\dagger \dagger$	H	$\dagger\dagger$	$\dagger \dagger$	$\dagger \dagger$
					H	$\dagger$	H	${\sf H}$	$\dagger \dagger$	$\dagger \dagger$	$\dagger$	H	$\dagger \dagger$	Ħ	$\dagger \dagger$	$\dagger \dagger$	#
				1	H	†	Ħ	$\dagger \dagger$	$\dagger \dagger$	#	+		$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	$\dagger\dagger$	$\dagger \dagger$
						+	$I^{\dagger}$	$\dagger \dagger$	$\dagger \dagger$	#	+	$\Pi \uparrow$	$\prod$	$  \uparrow  $	$\prod$	11	$\parallel$
-		$\overline{}$			H	$\dagger$	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	#	†	$\Pi$	11	$\parallel$	11	7†	$\prod$
	İ	<u>حــ</u> ــ			П	$\top$	$\prod$	$\prod$	$\Pi$	$\forall$	1.		T	$\sqcap$	$\Pi$	11	$\top$
		Q		<u> </u>	П	$\top$	H	H	Ħ	T		$\Pi$	T	11	$\dagger \dagger$	$\parallel$	$\dagger$
	İ	,			П		H	П	Ħ		T		$\dag \dag$	11	$\Pi$	$\dagger \dagger$	$\dagger$
					П	$\top$	$\sqcap$	Ħ	$\dagger \dagger$	$\top$	1		П	$\prod$	П	$\prod$	$\top$
					П	1	II	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	T	Ш	T	$\Pi$	$\Pi$	$\dagger \dagger$	T
	Δ,				П	$\top$		$\prod$	Ħ	11	$\top$		$\prod$	$\Pi$	$\prod$	T	T
	T		ļ		П	Ť	H	Ħ	11	11	1		П	$\prod$	11	П	
	10				11	$\top$	$\sqcap$	II	11	T	1		$\prod$	$\prod$	T	Ħ	T
· · · · · · · · · · · · · · · · · · ·	16				П	$\top$	$\sqcap$	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	T		$\Pi$	П	$\prod$	11	T
-42.3s	0	*		42.35-55.8 ARGILLITE	И	7	II	$\prod$	$\prod$	11	1	П	11	П		$\prod$	Т
	1				$\prod$	7	$\sqcap$	$\Pi$	$\prod$	$\parallel$			$\prod$	$\prod$	11	П	П
	1			RALETY VISIBLE ! MOD, INCREASING		7	П	$\prod$	$\sqcap$	П		Ш	$\prod$	П	$\prod$	П	T
				TO i OTZ-CALL STRS (YARY	7		$\Pi$	П	П	$\parallel$			$\prod$	П	П	П	П
				FROM BANDS OF CO ANTO TO	1'	1	П	П	$\prod$		T		$\prod$	П	$\prod$	П	T
				QT2-Co Sms to QTZ stres);	7	1		$\dagger \dagger$	$\Pi$	11	1		$\prod$	$\Pi$	$\prod$	$\prod$	T
				3 TO 5% DISS PY IN UP	I	/	$\sqcap$	II	$\prod$	11			$\Pi$	П	$\prod$	11	1
	Ì	5		TO 2 MM BLERS THRU-OUT; SIRS	И	1	П	$\prod$	$\prod$	77				П	$\sqcap$	$\top$	1
		AR		E MOD TO HILH L'S TO C.A.	1	7		$\Pi$	$\Pi$	$\parallel$	T		$\prod$	П	$\sqcap$	П	1
		1		(42.35-43.5) ~1 4 0.5 cm snet	7	7	П	$\dagger \dagger$	$\dagger \dagger$	T	T	Ш	$\dagger \dagger$	П	11	$\parallel$	$\top$
_43.5	-	十	<del>                                     </del>	10 cm	И	1	M	$\prod$	11	7	T		Ħ	$\prod$	П	$\top$	$\top$
				(43.5-43.9) i-S: AS PERV.	17	1	7	$\prod$	$\dagger \dagger$	W	1		$\dagger \dagger$	$\prod$		$\prod$	П
				WHITE S. AND IRREGULARWH.			ľŤ	$\dagger \dagger$	$\prod$	$\top$	T		$\parallel$	T	$\prod$	$\prod$	П
				STRS ; ~ 20 % w # QTZ; Mine	1	T		$\dagger \dagger$	††	11	1		$\dagger \dagger$		$\parallel \parallel$	11	$\prod$
				(c, Serie & QTZ; 5% /y	H	1	$\prod$		11	$\parallel$	1		$\parallel$	$\prod$	#	$\parallel$	$\prod$
				IN ARL, MOR PY IN QTZ		/	$\dagger \dagger$	††	$\dagger \dagger$	$\parallel$			$\dagger \dagger$	$\dagger \dagger$	#	$\dagger \dagger$	1
				(43.9-48.7) MOD LOSCO		1	H	††	#	$\dagger \dagger$	$\top$	++	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	#	1
	1			STRS DECREASING TO VERY	1	+	$\dagger \dagger$		$\dagger \dagger$	$\dagger \dagger$	1	+ +	$\dagger \dagger$		$\dagger \dagger$	$\dagger \dagger$	#
				MINOR FOR LAST 2 M	1	+	$\parallel \parallel$	H	††	$\dagger \dagger$	$\top$	H	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	$\dagger\dagger$	$\dagger \dagger$
46.0				FINAL FOR (1731 211	1/1	+	H	$\dagger \dagger$	$\dagger\dagger$	#	+	H	$\dagger$	H	$\dagger\dagger$	$\dagger \dagger$	+

AGE 9 OF 3/ PROJECT: ENGI	VEER							HOLE	No. 8	7-103
MINERALIZATION DESCRIPTION	TOTAL SULPHIDE	INTERVAL	WIDTH	ASSAY NUMBER	% Au 9m4	% Ay ppm	%	Au		COMPOSITE ASSAYS
4.9-42.35 QU. (0.45m)										
-VEIN HAS 3 DISTINGT PAR		-		···	\ . ``					
J CONFACTS PARALLER HY IFA	41111	<del>-</del> ,			-					
41.9-42.0 DAK GREY;	+}}+	_		4079	0,26	10	<del></del>	0.006	_	
I CM ARA + LESSER QTZ FAM	5//	-	0.7	,,,,	0,20	1,0		0.006	<del></del> }-	<u> </u>
N SILICEOUS CREY MATRIX		<del>-</del>								
SOME WH QTZ NEAR HW!									$\perp$	
5% DISSEM. PY	12	_			ļ					
42.0-42.2 WH QTZ		<del></del>	0.2	4080	0.02	0.9		0.00)	<del>-</del>	0,45m, 019
5 70% ARG. FRACS; VUI		-		······································	<del> </del>			<u> </u>	-	
WHICH SPLITS CORE AXES  ROWING INSIDE: 2 % DISS					-			<del> </del>	$\dashv$	
PY IN ALL FRAGE		-			<del> </del>				$\neg$	
42,2-42,35 MOTTED DAM			0.15	4081	1.42	6.5		0.041	-	
CLEY 'WH' ARG + DTZ FRAGS	1/									
IN SUGLES EREY INH MATE					ļ <u> </u>					
5 % bas P1	1/11	<del>_</del>			ļ			-		
		-			<del> </del>			-		
									<b></b>	
		_						†I		
		<b>-</b>							.p-#****	7,7,7
		_								
					<u> </u>					
		_			<del> </del>					
	++++	<del></del>	$\vdash$		<del>  -</del> -	ļ <u>.</u>		-		
	<del>-}}}}</del>	<del>-</del>			1			-		
	1.///	<del></del>	04	4082	0.00	20		0.002		
43. S-43.9 U-S: 12		_			1000	2.0		10.002		
13. 5-43.9 i-S: 12 ARG; 5 % PY										
		_								
		<del></del>								
					1	il	1	1		J.
		<del></del>						-		

DACE		10	OF.	31 000	DJECT: ENGINEER						T	HO	F	N^	R >		 03	
PAGE				J) PRO	SECT: 2 / G // V C / C	r												1
DEPTH (METRES)	% Core Recy	LITHOLOGY	STRUCTURE		GEOLOGICAL DESCRIPTION	5	,	ALT D B	C	ATI	ON	S	e	ACT FNSITY			,	*
ME	ပို	LITH	STRL			A		В	c		Đ	6	Ε	E E				
48				42.35-56	ARGILLITE (CONT.)		$\prod$	$\prod$				$\prod$	$\prod$	$\prod$		$\prod$	$\prod$	İ
•					(48.7-52.6) ROCK GREYEX;		$\prod$	$\coprod$			П	П	П	$\prod$	$\coprod$	П	$\prod$	$\prod$
				7	SOME SANDY LAYERS : BEDDING	Ш	Ц	$\perp \! \! \! \! \! \! \! \! \! \! \perp$	Ш	Ц	$\coprod$	Ц	Ш	$\coprod$	Ц	Ц	Ц	1
					YIS BUE IN A FEW PLACES @50 TO	Ц	Ц	11	Ш	Ц	$\coprod$	Ц	11	$\coprod$	$\coprod$	Ц	$\coprod$	$\downarrow$
					C.A.	Ш	Ц	$\coprod$	$\coprod$	Ц	$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	Ц	$\downarrow \downarrow$	$\coprod$	$\coprod$	$\coprod$	$\coprod$	1
							$\coprod$	4	11	Ц	$\coprod$	$\coprod$	$\downarrow \downarrow$	44	$\coprod$	$\coprod$	$\coprod$	1
					(52.6-56.0) i-S: ALTE: ABNT	Ш	Ц	4	Ш	Ц	$\coprod$	$\coprod$	$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	Ш	$\coprod$	Ш	$\coprod$	1
					QSTRS & MOD TO HIGH L'S TO CA	$oxed{\bot}$	Ц	44	#	Ц	$\coprod$	4	Ш	44	$\coprod$	$\coprod$	$\coprod$	1
					(52.6-56.0) i-S: ALT : ABNT QSTRS & MOD TO HIGH I'S TO CA (50° = 10° MOST common); QSTRS			#	#	$\coprod$	$\coprod$	$\coprod$	41	#	11	$\prod$	H	4
-53		1			WHITE IN MINOR CREY QTZ: VULS	W	И	4	#	$\coprod$	$\coprod$	$\coprod$	$\coprod$	$\coprod$	$\coprod$	$\prod$	$\coprod$	4
		V			FAIRLY COMMON TO CREAM COLORED	14	4	4	Ш.	Ц	$\coprod$	$\coprod$	Щ	4	Ц	$\coprod$	$\coprod$	1
•					CARB SOMETIMES WIN ; SOME SERIC	1/1/	14	Щ	$\coprod$	Ц	$\coprod$	Ц	$\perp \mid$	4	Щ	$\coprod$	$\coprod$	4
_					I STR'S; 5 TO LOCALLY 10 %	14/		4	11	Ц	$\coprod$	$\coprod$	$\perp \mid$	41	$\parallel$	41	4	1
					E STR'S; STO LOCALLY 10 %	14/	1	4	44	Ц	$\coprod$	$\coprod$	$\coprod$	$\coprod$	$\coprod$	$\downarrow \downarrow$	$\coprod$	4
					SOME W- CC ALTS; S: MOSTER AS STRS! IRRETULAR PATCHES	14	Ц	4	11	Ц	$\downarrow \downarrow$	$\coprod$	$\perp \downarrow$	$\perp \mid$	$\coprod$	$\coprod$	4	4
_					AS STRS ! IRRETULAR PATCHES	1/	И	44	$\coprod$	Ц	$\coprod$	Ц	$\perp \downarrow \downarrow$	4	4	$\parallel$	4	4
_		个			SOME PERVASIVE FLOODING.	VV	$\prod$	11	$\coprod$	Ц	11	$\coprod$	$\perp \downarrow \downarrow$	$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	$\downarrow \downarrow$	$\perp \mid$	4	j
_		, , ,				И	4	Ш	1	Ц	Щ	Ц	Щ	Щ	Ц	Ш	$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	1
		Q E				IX.	И	Ш	$\coprod$	Ц	Щ	Ц	$\coprod$	$\perp \mid$	$\coprod$	Ш	Щ	$\downarrow$
_54	%	Q "				$\square$	1	$\perp \downarrow \downarrow$	11	Ц	Ш	$\coprod$	Ц	Щ	11	Ш	$\coprod$	1
	8				<u> </u>	И	4	$\perp \downarrow \downarrow$	Ш	Ц	$\coprod$	$\coprod$	Ш	Щ	Ш	Ш	Щ	1
_		V				14	И	Ш	Ш	Ц	Ц	Ц	Щ	$\perp \downarrow$	$\bot$	$\perp \downarrow$	$\coprod$	1
_						$\coprod$	1		$\bot \!\!\! \bot$	Ц	$\coprod$	Ш	$\perp$	Ш	Ш	Ц	$\bot\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	4
_						И	4	Ш	$\bot\!\!\!\!\bot$	Ц	$\coprod$	Щ	Ц	Ш	Ш	$\perp \downarrow$	$\bot\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	1
-						11	И			Ц	$\coprod$	Ш	Ш			Ц	$\coprod$	1
-						$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	$\coprod$			Ш		Ш			Ш	$\perp$		
-						I	И			Ш	Ш	Ш			Ш	Ш	$\coprod$	
-						1/									Ш		Ш	
						Ш,	/										Ш	
-		•				1	И		$\prod$	П		П						
<b></b> 55			·			17	7		$\prod$	П		П						I
-						1/	1				$\prod$	П			$\prod$	$\prod$	$\prod$	$\int$
•						1/1	7	П	$\prod$	П		П			П			1
•						1/	1/		$\prod$	П	$\prod$	$\prod$	П		T	$\prod$	П	1
•						11/	1		$\prod$	$\prod$	$\parallel$	$\prod$	П		$\prod$	$\prod$		1
•					1	1	И		#		$\top$	77	$\top$		11	$\top$	11	- <del> </del>
•						17	1	$  \cdot   \cdot  $	#	$\prod$	#	$\dagger \dagger$	$\top$		$\parallel$	$\parallel \parallel$	$\parallel$	Ï
						11,	H		$\dagger \dagger$	$\dagger \dagger$	††	H	$\dagger$	+	$\dagger \dagger$	$\dagger \dagger$		1
					1	f	И	+	$\dagger \dagger$	$\dagger \dagger$	++	$\dagger \dagger$	+	+	++	$\dagger \dagger$	††	†
					1	†#	7	+++	++	H	++	+	+	+	+	+	+	+

AGE // OF 31 PROJECT: ENGINE	ι .	1		I		%	%	%		87-/03
MINERALIZATION DESCRIPTION	TOTAL	SULPHIDE	INTERVAL	WIDTH	ASSAY NUMBER		As	76	AU 02/T	ASSAYS
	П	П		• •		·	-			
	Ш		<del>-</del>							
	Ш	Ш	<del>-</del> .							
	Ш	Ш			***************************************					
	Ш	Ш				\				
	Щ		_							
2.6-53.0 ~10 % S: AUX	1/2		<del></del>	0.4	4083	0.42	0.8	, , , , , , , , , , , , , , , , , , ,	0.012	
; STRS ; 5 % P7	12		<del></del>			-				
3.0-53.5 40 % QTZ 12 UP	1			2.0	4084	0.61	0.9		0.08	
TO 10 CM STRS: MINOR	W	H							<del>                                     </del>	
STYLOLITES IN STRES; 5 % PY	#	4	· · ·			<b> </b>				
60 6 540	+					1 2				
53.5-54.2 40 % QT2 IN	+/	H		0.7	4085	1.21	2.1		0.035	
DISCONTINUOUS STRS ; IKREE.		H				ļ			-	•
PATCHES , GENERAL PATCHES	H	H	_			19.2			<del>                                     </del>	
Q LOW LTO C.A. CORE	1	H	<del>-</del>		·				<del>                                     </del>	
BECOMING CRUMBLY, BRAY	H		_			<del> </del>			<del>                                     </del>	
LIKE NEAR END OF INTER- 196 ; 5 INCREASING TO 10%	1	H	<del></del>							`
by	17	$\mathbb{H}$	<del></del>						<del>                                     </del>	
	11,	Ш								
54.2-54.7 10 % 672 121	1	Ħ	<del>-</del>	0.0	4086	0 29	1.5		0.008	
1842-54.7 10 % QTZ IN IRKEQUEAR STRS ! PATCHES	1	州		د, ب		12,21	.,,	<del></del>		
5 % 194	IZ.	7	<u> </u>					-		
54.7-55.2 SERIES OF UP				0.5	4087	0.65	2.3		0.019	
TO ICM OSAS @ 60° TO	17/	$\coprod$	<u>-</u>							
C. A. (~ 1/5 cm) 5 % PY		Ш	_							
IN ARG STRS HAVE YULS	$\downarrow \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$		<u> </u>			ļ				
W.R. FRAGS, TI-PY	11/	4		L		<u> </u>				
-	$\coprod$	Ш	<u>_</u>			<u> </u>			<u> </u>	
5.2-56.0 20 % Qiz 1~	$\coprod$		_	0.8	4088	0.63	1.6		0.018	
IRREGUER STRS / PATCHES!	1/	$\mathbb{H}$	_	<b></b>		<del> </del>		<u> </u>	<del>                                     </del>	
NULS Common IN STRS, ONE	1/	Ш	_			<u> </u>				
FILLED & MASSINE PY	1/	44	_	<u> </u>		-				
10 % PY OVERALL	1	4	<u>_</u>	<u></u>		<b> </b>			<b> </b>	
	++	H	H	<u> </u>		<del> </del>		ļ	<del>                                     </del>	
	#	Н-	_	<u> </u>		ļ				
				[	1	i		]	1 1	

100 mm

AGE				31 PRO	JECT: ENGINEER					_		HOL	.E 1	No.	8.	7-/	03	-
METRES)	re Recy	LITHOLOGY	STRUCTURE		GEOLOGICAL DESCRIPTION	Si	T	ALT D	CI	T	ON T	Se		FRACT			١	  -
	% Co		STRU			J' A		В	С		D	E		INTE				
0,0				56.0-56.9	QUARTZ VEIN (0.9m)													
					UPPER CONTACT & 60° TO C.A. : COMBR	Ш	Ц	Щ	Ш	$\perp$	Ш	Ц	Ц	$\coprod$	$\coprod$	Ш	Ц	Ļ
					CENTACT BROKER.		Ш	Щ	Ш	4	Ц	Ц	Ц	Ц	$\coprod$	Щ	Щ	L
						Ш	Ц	Ц	Ш	$\perp$	Ц	Ц	Ц	$\coprod$	$\coprod$	Ш		Ļ
						Ш	Ц	Щ	Ш		Ц	Ц	Ц	Щ	Щ	Ш	Ц	ļ
						Ш	Ц	Ц	Ш	$\perp$	$\coprod$	Ц	Ц	$\coprod$	Щ	Ш	Ш	$\perp$
						Ш	Ц	$\coprod$	Ш	$\perp$	Щ	Ц	Ш	$\coprod$	$\coprod$	$\coprod$		$\downarrow$
							Ц	Щ	Ш	4	Ц	Ц	Ц	$\coprod$	Ц.	Ц	Щ	Ļ
		ح						44	Ш	4	$\coprod$	11	$\coprod$	11	#	11	1	4
	Ш	Q	·				$\coprod$	#	Ш	$\downarrow \downarrow$	$\coprod$	$\coprod$	$\coprod$	$\coprod$	$\coprod$	$\coprod$	$\coprod$	+
		į				Ш	$\coprod$	$\coprod$	Ш	$\downarrow \downarrow$	$\coprod$	$\coprod$	$\coprod$	$\coprod$	$\coprod$	$\coprod$	$\coprod$	1
					<u> </u>	Ш	Щ	Щ	Ш	$\perp$	$\coprod$	$\coprod$	$\coprod$	#		$\coprod$	$\coprod$	1
					l ,		Щ	#	Ш	4	$\coprod$	$\coprod$	$\coprod$	$\downarrow \downarrow$	$\coprod$	$\coprod$		1
							$\coprod$	$\coprod$	-	$\parallel$	$\coprod$	$\coprod$	$\coprod$	#	$\coprod$	$\coprod$	$\coprod$	+
				56.9-	ARGILLITE	-	$\coprod$	$\coprod$	$\coprod$	$\downarrow \downarrow$	$\coprod$		$\prod$	$\coprod$	$\coprod$	$\coprod$		+
					SOMEWHAT YARABLE UNIT WITH		$\coprod$	$\coprod$	$\prod$	4	$\coprod$	$\prod$	$\coprod$	$\coprod$	#	$\coprod$	-	1
					GREY TO BLACK MASSIVE TO		$\prod$	$\coprod$	$\coprod$	$\coprod$	#	$\coprod$	$\coprod$	$+\!\!\!+$	#	-	H	
		$\downarrow$			BEDDED ARE AND MINOR F.G.		Ц	1	Щ	Ц	4	$\coprod$	$\coprod$	$\coprod$	$\bot$	$\coprod$	$\coprod$	1
	%				SST. : BEDDING @ MOD TO	1/	[]	$\coprod$	Щ.	$\sqcup$		$\coprod$	$\coprod$	44	$\coprod$	$\coprod$	$\sqcup$	1
57	6	$\bot$			HICH L'S TO C.A.; #5: + Ce	14/	4	4	Ш	Ц	4	$\coprod$	$\coprod$	44	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$\bot$	$\coprod$	$\downarrow$
	00			 	STRS W- TO M. ABOT; GENERAL		14	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$\coprod$	$\coprod$	$\coprod$	$\coprod$	11	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	+	H	+
					LO.S CM BUT OCCASSIONALLY >1cm			4	11	$\sqcup$	$\coprod$	11	$\downarrow \downarrow$	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$\coprod$	${f \parallel}$	$\coprod$	$\downarrow$
					Cc common on FRACT: 4 %	4	14	$\downarrow \downarrow$	-	$\sqcup$	#	$\coprod$	$\coprod$	$\coprod$	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$\coprod$	$oxed{+}$	$\downarrow$
					PY DAS IN ROCK : ON FRACT.	14/	$\coprod$	4	-	$\sqcup$	$\coprod$	$\coprod$	$\bot \downarrow$	$\coprod$	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$\mathbb{H}$	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$\downarrow$
						14	.	44	$\coprod$	$\coprod$	$\coprod$	$\coprod$	$\coprod$	$\frac{1}{1}$	$\coprod$	$\coprod$	$\coprod$	1
					56-9-57.3 Sil - PYRITE BRAY ARGERT 2	1		4	$\prod$	$\prod$	$\coprod$	$\coprod$	$\coprod$	#	$\coprod$	$\prod$	$\downarrow \downarrow$	+
					ZONE; SOME LICH FRALS DISCOUN	$\forall \not \mid$	1	#	$\coprod$	$\sqcup$	$\coprod$	$\coprod$	$\coprod$	$\bot$	#	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	1
		9			ARLE WA F.C. MATRIX OF	1/		$\mathcal{U}$	$\coprod$	$\coprod$	$\coprod$	$\coprod$	$\downarrow \downarrow$	$\coprod$	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$\coprod$	$oldsymbol{ee}$	+
		8			5: 2014; 10 % L 3cm WH;	1	$\prod$	44	$\coprod$	$\sqcup$	$\coprod$	$\coprod$	$\coprod$	$\downarrow \downarrow$	$\coprod$	$\coprod$	$\coprod$	1
2.8		+ A			GREY OSMS @ 40 TO 60° TO C.A.	$/\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$\coprod$	1	$\coprod$	Ц	$\coprod$	$\coprod$	$\coprod$	$\coprod$	$\coprod$	$\coprod$	${f H}$	1
					~ 20 % PY IN TOTAL	1/		1	-	$\sqcup$	$\coprod$	$\coprod$	$\coprod$	$\coprod$	#	$\coprod$	$\coprod$	$\downarrow$
						1	Ц,	$\mathcal{A}$	$\coprod$	$\sqcup$	$\downarrow \downarrow$	$\coprod$	$\coprod$	$\coprod$	#	$\coprod$	$\coprod$	1
					57.3-60.9 GEEY- TON COLOR;	14	$\coprod$	44	$\coprod$	Ц	$\coprod$	$\coprod$	$\coprod$	$\coprod$	#	$\coprod$	$\sqcup$	+
					ABNT (~1/SCM) LO.SCM OFF-	14		4	$\coprod$	$\coprod$	$\coprod$	$\prod$	$\coprod$	$\coprod$	#	$\coprod$	$\coprod$	$\downarrow$
					WHITE QTZ - CARB (DOL?) STRS @	14/	$\coprod$	11	$\coprod$	$\coprod$	$\coprod$	$\coprod$	$\coprod$	$\downarrow \downarrow$	$\coprod$	$\coprod$	$\coprod$	]
					VARIOUS MOD TO HIGH I'S TO	1/		1	$\prod$	Ц	$\coprod$	$\coprod$	$\coprod$	$\coprod$	$\coprod$	$\coprod$	$\coprod$	<u> </u>
					C.A. " SOME CON SCALE SST BESS;	$ \!\! \!\!  \!\!\!\! \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	Ц	1	$\coprod$	Ц	$\coprod$	Ц	Ш	$\coprod$	$\coprod$	$\coprod$	$\coprod$	1
					SOME BEDS LOOK LIKE TUFF W	• • •			$\coprod$	Ц	$\coprod$	$\coprod$	$\coprod$	$\coprod$	$\coprod$	$\coprod$	Ц	
					LUD TO 1000 FRALE BUT MAY BE	VŁ.	H	4				Ш	$\coprod$	$\coprod$	$\coprod$		Ц	
-9		$\sqrt{ }$			EFFECT OF ALT = . BURNT BIT	177	1 T	1/	$\Pi$	Π	IT	$\prod$	$\prod$	$\prod$	$\prod$			

AGE 13 OF 3/	PROJECT: ENGINE	ER			*				HOLE N	1087-103
MINERAL DESCR		TOTAL SULPHIDE	INTERVAL	WIDTH	ASSAY NUMBER	% Au gm4	% A5 PAN	%	Au .	COMPOSITE
56.0-56.9 Q 40 % INCREASE			56.6.58.5	05	4089	0.04	0.5		0.001	
RATCHES IN GR	QTZ FRAGS,	MM			4090				0.001	0.9m
IN UCCOR PA	ET TO MISRY		_							
LICM IN LOWE	JPY CROWN									
NO AS (NO NO AS): 5 9 NO A FILLING;	6 PY 95		<del> -</del>							
AND STRS A		\$	+							
					,	. 4				
			<u> </u>							
			_							
			<del>                                     </del>							
	·						j			
56.9-57.3	;-S:-PY 1~			0.4	4091	0.68	3.9		0,020	
56.9-57.3 c BRXX & ARG /OT	2 , 20 % PY									
			+							
			+							
M-3		++++	+	-	<del> </del>	<del> </del>	<u> </u>	<del> </del>	<del>  </del>	
		++++	+			<del></del>	<del>                                     </del>		<del>                                     </del>	

PAGE		14	OF	31	PRO	JECT: ENGINEER								ŀ	IOLE	- N	lo.	8 :	7-1	<u>ء</u>	
<u> </u>	Š	ξ	Ä						A	۱Ľ	TEI	RA	TION	1		].	_				1_
DEPTH (METRES)	% Core Recy	LITHOLOGY	STRUCTURE			GEOLOGICAL DESCRIPTION		s:	i	D	7	241	20	ၔ	T		INTENSITY				
	%	LIT	STR					A		В		С	D		Ε	ľ	Z				
60.		-		56.9-		ARGILLITE (CONT.)			Ш			Ц		Ц			Ц	Ш		Ц	Ш
_						60.9-61.2) STR/BAXK ZONE;	$\perp$		Ш			Ш	$\coprod$	Ц	Ш	l	Ц	Ц		Ц	Щ
<b>-</b>		, e	040			UPPER CONTACT & 80° TO C. A; LOWER	1	12	الم								Ш				
-		2	[ A .			C 45° 70 C.A.	1		И		1	П	П	П	П	T	П	Т		П	П
-						13	1	7	1/	1	1		$\prod$	П	$\prod$	T	П			П	$\prod$
-					<del></del>		V	7	Ħ	1	+	H	$\dag \dag$	П	+	†	$\dagger \dagger$	T	$\top$	II	廿
-							$\forall$	4	1	$\forall$	+	H	$\dag \uparrow$	Н	+	t	H	+	$\vdash$	$\Pi$	$\dagger \dagger$
-			}	<u> </u>			+	H	1/	$\dashv$	+	H	╫	H	+	+	H	+	$\dashv$	H	$+\!\!\!+$
_					· · · · · ·	61.2-64,2 SOMEWHAT MOTTERS GREST	- 1	И	H		┿	Н	╫	H	-++	+	Н	+	+	${\mathbb H}$	╁┼╴
_				<b></b>		TO TAN TO BLACK . Trop 40.5 cm	4	4	#	Н	+	$\vdash$	H	Н	H	+	H	+	${\mathbb H}$	H	╁┼╴
-64			<u> </u>			WHITE TO OFF - WHITE SITCARS	1	4	4	Н	+	╀	#	H	H	+	H	+	+	H	++
- ' l				<u></u>		STRS	$\perp$	$\sqcup$	$\parallel$	4	4	$\coprod$	$\coprod$	Ц	$  \downarrow \downarrow \downarrow$	4	$\coprod$	1	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$\dashv$	#
						1		Ш	Ц	Ц	1		Ц	Ц	Ш	1	Ц	1	Ш	Ц	11
_	1					64.2-68.7 GREY TO BLACK;						Ш	$\coprod$			$\perp$	Ц	$\perp$	Ш	Ц	Ш
_						BEDDING COMMENT VISIBLE; Q TO		Ш				Ц	$\coprod$		Ш		Ц	$\perp$	Ш	Ц	Ш
-	10	1	1			30 Mm ARG TO SST BEDS @ HIGH															
nes		V				(80-90) L TO C.A. ; MINOR		П	Т	П		П	$\prod$	Π				I			
_	0	8				1 60.5 cm Si = CARB STR AND PT	1		П		1	$\sqcap$	$\prod$	T		1	П	T		П	T
<del>-</del>	12	lì	Ì	<b></b>				$\sqcap$		П	$\top$	$\dagger \dagger$	#	T		1	$\prod$	T	$\prod$	$\Pi$	
-	1.	V	1			STRS; MINOR CE ON PRACTURES	+	H	+	Н	$\dagger$	$\dag \uparrow$	$\dagger \dagger$	$\dagger$	H	+	H	$\dagger$	$\parallel \parallel$	$\dagger\dagger$	$\dagger \dagger$
-					······································	168.7-72.3 COLE DARKEK MORE	$\dagger$	H	$\dagger$	H	$\dagger$	$\dagger \dagger$	$\dagger \dagger$	$\dagger$		+	$\dagger \dagger$	$\dagger$			$\parallel$
70		_	†			MASSIVE HANDER (BARETY SCRAIG		П	1				$\prod$	Τ		T	П	T	П	П	П
_						Massive (Minder (Bincer Sulvin			T				$\coprod$								
-						72.3 -75.6 MOS ABUNDALLE (~2/M		П	Τ	П		$\prod$	$\prod$			1					
-						OF UP TO 3cm IRREGULAR		П	T			П	П	T		1				$\prod$	
<del></del>						WHITE OTZ STX PATE PATCHES;	T	П	1	П	$\top$	П	$\prod$		Ш	1	П	T		$\prod$	П
_			-					7]	$\dagger$	Н		$\dagger \dagger$	$\dagger \dagger$	1		†	$\Pi$	1	Ħ	П	11
			)			COMPOSED OF SO TO 80 % WH QTZ		H	十	Н	+	$\dagger\dagger$	$\dagger \dagger$	$\dagger$	$\Box$	$\dagger$	$\dagger \dagger$	$\dagger$	$\dagger \dagger$	††	+
						TO ALL SEAMS ILESS AUT ALL		H	+	Н	+	${}^{\dag}$	+	t	H	$\dagger$	$\dagger \dagger$	╁	H	H	++
						WITHIN. : ~1 % PY ASSOC W ALT	17	H	╁	Н	$\vdash$	╁	+	+	Н	+	H	+	H	H	+
····			-	ļ		CORE LIGHTER COLOR THAN LAST	1/	14	+	Н	+	╁	╁┼	╁	HH	+	H	+	$\dashv$	╁	╫
75			ő.			WIEXVAL	1	14	+	Ц	$oldsymbol{+}$	H	#	+	Ш	+	$\dashv$	+	H-	H	╫
_			5	L			4	14	$\bot$	Ц	$\parallel$	$\coprod$	$\coprod$	+		4	$\dashv$	1	$\coprod$	$\coprod$	$+\!\!+\!\!\!+$
			_			75.6-75.9 QTZ ALT=/BRXY	1/	1/	1	Ц	$\coprod$	$\coprod$	#	$\downarrow$	$\coprod$	4	$\coprod$	1	$\coprod$	$\coprod$	#
_				L		CONTACTS @ 60° TO C.A.	1	$\mathbb{Z}$		Ц	$\perp$	Ц	$\coprod$	1	Ш	$\perp$	Ц	$\downarrow$	Ц	$\coprod$	$\downarrow \downarrow$
_						contrars @ 60° to C.A.	<u> </u>		1					$\perp$	Ш			$\perp$	Ш	Ц	$\coprod$
-	1				<del></del>		1		T			$\prod$	$\prod$						$\prod$		
			1				1	1/1		П	1	$\prod$	$\prod$	T	Ш	1	$\prod$	T	П	$\prod$	T.
			K A	<b> </b>			1		オ	H	$  \uparrow  $	$\dagger\dagger$	††	$\dagger$		+	$\dagger \dagger$	†	$\dagger \dagger$	$\dagger \dagger$	17
			0 1				+	H	十	Н	$\dagger$	$\dag \dagger$	††	$\dagger$	HH	$\dagger$	H	$\dagger$	+	$\dagger \dagger$	††
_						1	+	H	4	Н	+	+	$+\!\!+$	+	H	+	H	+	${\mathsf H}$	$\dagger \dagger$	++
			0 0				+	{/	4	Н	dash	++	#	+	H	+	+	+	++	H	++
76			!				$\perp$	Ш		Ц	Ш	Ш	Ш	1	Ш	_	Ш	$\perp$	Ш	Ш	$\perp \perp$

PAGE 15 OF 31 PROJECT:	ENGINEEX						HOLE	No. 87	7-103
MINERALIZATION DESCRIPTION	TOTAL	INTERVAL	ASSAY NUMBER	% Au 9m4		%	Au 02/7		COMPOSITE ASSAYS
(0.9.7/2)	3 =		3 4092	0 0	1.7		0.001		
10.9-61.2 STR BREN		_   6	3 4092	10.07	1. /	· · · · · · · · · · · · · · · · · · ·	0.001		***************************************
ARG, MNOR QTZ FRAGO S: MATRIK; 40 % DEC TO 20 % WH TO GREY 5 % DISSEM. PY	25 12	-		-	,	<u> </u>			
10 20 % WY - CARY	052:	-							
5 % NICEM DY	<u> </u>	-							
0 10 0133811. 77		-		1					
	.	-							
		_							
		_	•						
		_							
		_  _		<u> </u>					
		_							····
		-  -		<u> </u>					· · · · · · · · · · · · · · · · · · ·
		-  -							
		-  -			<b></b>				
		-							
		-		<u> </u>	<b></b>				
		-  -		-					
		-  -		-			<b> </b>		
		-		ļ					
		-  -			<b> </b>		<del>                                     </del>		· · · · · · · · · · · · · · · · · · ·
		-		<del> </del>	<b> </b>				· · · · · · · · · · · · · · · · · · ·
		-  -					<del>                                     </del>		
		-  -	_	1	<b></b>		<del>                                     </del>		
	<del></del>	-  -		+					
75.6-75.9 QTZ per=	ha l		3 4093	N 112	11 1	0.00	<del>                                     </del>		
MOTTLES WH ; GREY QTZ	1 1/ 1 1 1	-	-1073	10,43	11.1	0,013	1		
	1 / 1 1	-		1	<del> </del>	<b> </b>	1		
MTO A BRXY JONE W	a, c . a, . M/11	-  -		<del> </del>	<del></del>		<del>                                     </del>		
ALL VICE Marie 1 19 C.	- 00	_		1	-	}	1	-+	
ARG. KICH MATRUX; 10.50 A. 1.0 SPY BONDS ALD. CONTACT: 5 % 14, 1 ! DISSEM. IN ZONE.	1 1 2 2 2 2	-  -		+	<del> </del>				
(1.1.0 XPY 150~0) ALO.	Can Rank S	-  -		+	<del>                                     </del>	<b></b>	<del>                                     </del>		
	nr 1350/0 1 1 1 1	I	ı	1	1	ł	ı İ	ı	

PA	GE	1	6	OF	31 PR	DJECT: ENGINEER	· .				•		Н	OLE	No	. 8	7-1	103	
	6	ecy	β¥	RE			Γ		Al	LTE	RA	TION	1		Π	>			7 (
DEPTH	(METRES)	Core R	LITHOLOGY	RUCTU		GEOLOGICAL DESCRIPTION	3		D		Chr	7	- [-	Se	FRACT	TENSIT	K		
L	٤	%	-11	ST			1	A	8		С	D		Ε		Z		L	
			T		56.9-128.	2 ARGILLITE (CONT.)	14	4					Ш			Ш			
L						75.9-76.8 Mrs. C-ABUNDANCE OF	Ц	4	Ц	Ц	Ц	Щ	Ц	$\prod$	Ш	Ц	Ц		
_				:		OF IRREDULAR WH QTZ STRS ! PATENTE	1	4	L		Ш		Ц	$\coprod$	Щ	Ц	Ш		Щ
_			i .	İ		CVARIOUS L'S TO C.A. , 3 % PY	4	4	$\perp$		Ц	$\coprod$	Ц	Щ	Щ	Ц	Ц	Ш	Щ
-			V			IN FRACT. 1 DISS. IN ROCK.	4	4		Ц	Ц	$\coprod$	Ц	Ш	$\coprod$	Ц	$\coprod$	Ш	Ц
_			Ž			~15% OF INTOLVER IS WH . QT2.	1	4			Ц	$\coprod$	Ц	Ц	Щ	Ц	Ш		
			α. 				1	1	Ш		Ш	Ш	Ц	Ш	Ц	Ц	Ш		Ш
			<u>k</u>		· · · · · · · · · · · · · · · · · · ·	76.8-83.0 Minon are sms/	14	4		Ш	Ц	$\coprod$	Ш	$\coprod$	1	Ц	$\coprod$	Ш	Ц_
-						ALTE PATCHES CORE BLACK TO	14	_		Ш	Щ	$\coprod$	Ш	4	$\coprod$	$\coprod$	Ц.	$\coprod$	<del>                                     </del>
	17					GLEY' FAILLY HALD; OCCASSIONAL	14	4	4	Ш		Щ.	Ш	4	4	$\coprod$	$\coprod$	Ш	Щ.
-						183.0-84.0 COLE QUITE	Ø		_	Ц		Ц.		11	$\coprod$	Ш	Ш	Ш	Ц.
<u> </u>						183.0-84.0 CORE QUITE	4		1		Щ	$\coprod$	Ц	Ц	Ш	Ц	$\coprod$		$\coprod$
-						BROKEN' ANLULAR LSON PIECE	4	4	1		Щ	$\coprod$	Ц	$\coprod$	$\coprod$	i L	$\coprod$		$\coprod$
-						CC COMMON ON FRACTURES: 10	14	$\bot$	$\bot$		Ц	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$		$\coprod$	$\coprod$	$\coprod$	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	-	1
-						CM OF i-QSTRS FROM 83.9 TO	1/4	4	-	Щ	Ц	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	ig	4	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$\coprod$	$\vdash$	Ш	<del>                                     </del>
-						84.0	14	Щ	+		4	$\coprod$		$\coprod$	#	$\coprod$	#	Ш	<del>                                     </del>
-		%	Λ				$\sqcup$	$\perp$	$\bot$		4	igapha	$\mathbb{H}$	#	#	igaph	#	-	_
-			1			84.0-87.5 CORE M-BROKEN;	H	+	_		4	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	H	+	#	igaph	-	-	$\vdash$
-		100	Ba			MINOR CIEM OSTRS ! WEAK	${\mathbb H}$	+	-		4	igg	H	$\dashv$	#	₩	$\dashv$	H	+
- 8	37					I PERVASIVE CC	H	+	+	H	dash	₩	${\mathbb H}$	$\dashv$	╫	╁╁	+	₩	-
-			6			0 - 6 - 60 - 1	Н	+	+	H	$\perp$	╂┼	╂	+	╁	╂╂	H	-	-
-			V			87.5-87.8 FAULT ZONE	H	+	+		$\perp$	$\dashv$	H	${f H}$	╀	╫	+	-	<del>                                     </del>
-			•			i-K; BROKEN ARL FLAGS;	H	+	+	Н	+	$\vdash$	H	H	H	╫	$\dashv \vdash$	╁┼┤	+
-						5 % WH QTZ FRAGS; W-Ce;	H	+	+		+	${f +}$	$oldsymbol{+}$	H	H	╫	H	H	++-
-						CONTACTS @50° TO C.A.	H	+		Н	+	╫	H	H	₩,	╁╁	H	H	H
-				~~		(27.0. /27.2.	H	+	4		+	-	+	╫	1	H	╫	1-1-1	<b>H</b>
<b>-</b>				~		87.8 - 128.2 GREY TO BLACK;	H	+		$\mathbb{H}$	+	${\mathbb H}$	╫	╫	$\mathbb{R}$	4	+	H	<del>                                     </del>
-						COLOR CHANGE IN RANDS OR	H	+	4		+	╫	H	╁┼	1	1	H	H	<del>                                      </del>
<b>F</b>			ł	ł	******	MARGULAR , BEDDING SOMETIMES	H	+	+	+	+	H	+	H	+	H	H	H	+
<del> </del> 8	8		$\dashv$	<del> </del>		VISIBLE, @ MOD TO HILH (VARYUML)	$\vdash$	+	+	+	+	H	+	H	+	H	H	Н	+
F						L'S to C.A: m-Cc AS LICASTAS	H	+	+	+	+		+	H	+	H	+	H	+
<b> </b>				}		FRACTURE CONTING PAICHES OF	$\vdash$	H	+	++	+	H	+	H	H	H			+
			1	ŀ		LOS TO SOM WH QSTR ! PATCHES.	$\mid + \mid$	$\dagger \dagger$	+	+	+	H	+	H	H	H		H	+
			}	ŀ		1	$\dagger$	$\parallel$	+	+	+	$\ \cdot\ $	+	H	H	H		H	+
			ļ	ŀ		PINOR DISS. PYRITE WEAK FOR ? PAYO TO C.A. IN EARLIER PARTS	+	+	+	+	+	H	$\dagger$	#	$\vdash$	$\dag \uparrow$	H	H	<del>                                      </del>
				ŀ		OF INTERVAL " CORE VALIES IN	+	+	+	+	+		$\dagger$	+	H	$\vdash$		- -	_
F				ŀ		HARDNESS FROM M-TO FAIRLY BUT ALL	$\dagger$	+	+	$\dagger \dagger$	$\dagger$	H	$\dagger$	+	H			+ +	†
				f		SCRATCHES CORE MOSTEY IN 7200	+	$\dagger \dagger$	$\forall$	$\dagger \dagger$	$\dagger$	H	+	-	H	+	H	H	+
12	8			ļ		LENGTHES CORE PIOSICY IN TUCK	$\dagger$	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	+	H	$\dagger$		H	+		H	+
	<u> </u>					<u> </u>			لل			ш		Щ.	لللا	لللا	لىل	$\perp \perp$	

AGE 17 OF 31	PROJECT: ENLIN	EEK						HOLE No.	87-103
	LIZATION	TOTAL SULPHIDE	INTERVAL	WIDTH	ASSAY NUMBER	% A u y~/+	% % Ag ppm	A u 02/7	COMPOSITE
75. 9. 76.8			75.9.	0.4	4094	0.71	4.1	0.022	
QTZ IN AR	2 3 10 17		76.3· _76.9	05	4095	0,42	3.9	0.012	
			 -						
			_						
83.9-84.0 ARG E So CREY GT2; 2	i-05TRS IN TO C.D.; WH TO			0.1	4096	0.03	0.9	0.001	
77-5-87.8 Tr-P	FLT 201E			0.3	4097	0.01	1.0	0.001	
			<u>-</u>						
98,1-98.4 R YARIOUS ( DISS. RY				0.3	4098	0.05	1.5	0,001	
103.1-103.15 P 70° TO C FRAGS ' TR.	10 10 No ARG			0.05	4099	0.03	2.4	0.001	

PAGE	1	g	OF	31	PRO	ECT: ENCIMEER	-				<del></del>		,	HOLE	E N	o. 2	?7	-/(	7.3	
	ç	5≺	RE		-				AL	TE	RA	TIOI	N		Τ	≥				
DEPTH (METRES)	ore R	LITHOLOGY	UCTO			GEOLOGICAL DESCRIPTION	ی	:	D	(	Ch	7	-	Se E	PACT	ENSIT				<b>—</b>
GM □	%	LIT	STR				<b> </b>		В		С	0	,	E	1"	Z		Ì		
128.2		1		128:2	-1286	QUARTZ VEIN (0.4m)	Π	П		Π	П	11	П	П	T	T	П	П	П	T
_				1,2=000		C. A. (IKKERULAN)		$\Pi$	T	П	$\Pi$	$\prod$	Т		$\prod$					Ī
-						C. A. (IRAGELIAA)	П	П	П	П	П	П			П		П		П	Γ
							П	П		П		П							П	Γ
								П	T	П	П	$\prod$					П	П	$\prod$	Γ
-		۷					П	П		П	П	$\Pi$						П	П	T
_		B			·			П		П	П	П							П	Γ
-								П	П		П	П								I
			]									П								Ι
-  2&&				128.6-	184.4	ARGILL ITE		$\prod$	$\prod$		$\prod$	$\prod$			$\prod$		$\prod$	$\prod$		
∡ <b>⊙</b> •₹	П	个				GREY TO BLACK TO OCCUSSIONALLY GREY-	V				$\prod$	I	1		$\int$		$\prod$			
						GREEN (MONE TUFFACENS?) ' MOSTY		<u>'</u> ]]			П	$\mathbf{V}$								I
_						ARE BUT MINOR F.G SST MYS	1	$\prod$			$\prod$	$\mathbb{Z}$								L
_						MINOR MOTTLED LOOKING CONE	X					1								L
_						WHICH MAY BE ALT TUFF;		1				1/	1	Ш					Ц	$\perp$
_						CORE GENERALLY IN > 20cm	1				Ш	1X			Ш		Ш	Ш		$\perp$
_						PIECES ; ARG HARD TO VERLY	1	1				И	L				Ц	Ш	Ш	
<b>-</b>	%					HORD	1	$\coprod$				1/2						Ш	Ш	
_		4										1		Ш				Ш	Ш	
<del></del>	00	Q				128.6-132.0 MOTTLED TON GREY.		$\prod$				$\mathbb{Z}$					Ш	Ц	Ш	$\perp$
<del></del>	7	4				128.6-132.0 MOTTLED TON GREY! POSSIBLE TUFF; m-T; i	X				Ш	1	1	Ш				Ш	Ш	$\perp$
<del>-</del>		4				ALOCA FRACTURES! M- intensity	1	A				X	1	Ш		Ш			Ш	$oldsymbol{\perp}$
-		ž				OF UP TO 4CM QSTRS @ MOD TO	1	1		Ш		$\mathbb{M}$	1	Ш		Ц	Ш	Ш	Ш	$oldsymbol{\perp}$
<del>-</del>		Ö	}			HIGH L'S TO C.A. 2 % PY FINDLY	1//			Ц	Ш	1		Ш		Ш	Ш	Ц	$\coprod$	$\downarrow$
		4				DISSEM. IN ROCK! IN UP TO 21M	X			Ш	Ш	1	1			Ш	Ц	Ц	Ш	
-						PATCHES TO UP TO 70 % PY	1		$\perp$	Ш	Ш			Ш		Ш	Ц	$\coprod$	$\prod$	$\perp$
_						,	Δ				Ш	1/	4	Ш		Ш	Ш	Ш	Ш	$\perp$
_							1	41	$\perp$		Ц	1/2	1				Ц	$\coprod$	Ц	$\downarrow$
_							1			Ш			1	Ш			Ш	Ш	Ш	$oldsymbol{\perp}$
_								1			Ш	1		Ш		Ц	Ш	Ш	Ш	
							1				Ш	1	1				Ш	Ш	Ш	
							1	$\coprod$		Ш					Ш		Ш		Ш	
-							1		$\perp$	Ц	Ш	11	1	Ш	Ц	Ц	Ш	Ц	Ц	$\perp$
<b></b>							X	$\coprod$	$\perp$	Ц	$\coprod$	11		Ш	Ц	Ц			$\coprod$	$\perp$
_							1/	Ш	$\perp$		$\coprod$	$\coprod$		Ш	Ш		Ц	$\coprod$	$\coprod$	$\perp$
		and the second			1			1			Ц	$\coprod$	1	Ш	Ц	$\coprod$	Ц	Ц		
_							1	$\coprod$			Ц	1/2	1	Ш	Ц	$\coprod$	Ц	$\coprod$		I
_							1	$\coprod$				$\prod$	1				$\coprod$	Ш		
_					] 			$\prod$				$\prod$		Ш				$\prod$	$\coprod$	Ţ
- 132							17	П		Π	Π	1					$\prod$	IΤ	$\prod$	

AGE 19 OF 31 PROJECT: ENGINE	TER.				·			HOLE No.	87-103
MINERALIZATION DESCRIPTION	TOTAL SULPHIDE	INTERVAL	WIDTH	ASSAY NUMBER	% Au gm/T	- 1	%	Au 02/4	COMPOSITE
128.2-128.6 QV (0.4m)	И	-	0.4	4100	0.06	2.8		0.002	
MOTTLED WHITE QTZ; 10 % ARC	$\mathcal{L}$	-			/				
FRALS MOSTEY IN LOWER END' SOME	$ \mathcal{X} $	_							
FRACTUREND OF DTZ : CATTER OFZ	X			· · · · · · · · · · · · · · · · · · ·					
Hem VULS: 1% PY; 2%  ASP (?); Sx DISSEM.		***		· · · · · · · · · · · · · · · · · · ·					
Hom VULS: 1% PY; 2%		_		· · · · · · · · · · · · · · · · · · ·					
ASP (?) ; Sx OISSEM.									
	ДЦ.	_							
				<del></del>					
	444								
,				-	i	·			
7									
		<del></del>							
		<del></del>							
128.6-129.2 ALTE TUFF?	ТИТ		0.6	5580	0.02	1.2		0.001	
10 % IRRELUAR MIKED	<b>Y</b> /I								
	17/	_							
GREY OTZ ; OFF WHITE CARB	.1/2/1	<del>-</del>							
	1111	_							
129.2-129.7 15 % WHITE			05	5581	0.01	1.4		0.001	
TO GREY QTZ, TIMOR (ARB	1/1	<del>-</del>	10-2	000,	0.57	7-7		0.007	
STRS @ HIGH L TO C.A. PLUS	1/1	_			<del></del>		· · · · · · ·		
IRREGULAR ALT PATCHES;	1//	<del></del>			<b> </b>				
LOWER STR IS BANDED = QTZ	1//	<del></del>							
CARR LAYERS; 2% F.G. PY	1/1	_	<b></b>		<u> </u>				
CARB LATERS, - 10 F.C. 1	<del>                                      </del>	_			<del> </del>				
130 5-1300 15-120	<del>                                     </del>	<del> -</del>		5582	0 20	22		1000	
130.5-130.8 A STR @ HIGH	1/1/	<b>-</b>	0.3	3382	0,27	2.3	<u></u> -	0.008	
	17/1	-				ļ			
TOIN' MINOR YULS: 3% PY.	14	-	-		<del> </del>	<u> </u>		<del>                                     </del>	
STRS 2 to for wist	+{++	_	-		<del> </del>	<u> </u>		-	
12.1.12.11. 3.0/	++>	-	A 2	FF 60	10 10				
131.1-131.4 30 % KAGE	1/1///	-	03	55 83	10.19	27.1		0.006	
3 % DISS. PY	134	<del> -</del>	-		<del> </del>	<u> </u>	ļ	+	
< 1/1 1/155 AU	rxx	ł	1		1	l	1	1	

PAGE	Ź	Ø	OF .	31 PRO	DECT: ENGINEER						HOLE	No. 8	? フ	10.	3
DEPTH (METRES)	% Core Recy	LITHOLOGY	STRUCTURE		GEOLOGICAL DESCRIPTION		S	D B	Ch C	TION	Se	FRACT			
132.				128-6-184,4	128.6-132.0 ALT BARK/TUFF (cont.)  132.0-133.9 In to 30mm										
– 13¥		1 2572 1 18572 1			BEDS & 45° TO C.A. 'MINOR  LICH QGTRS /ALT = PATCHES' MINOR  ZONES OF M- PERNASIVE (C.  133.9-134.1 QSTR:  10 CM & 66° TO C.A. + W.R.	4									
-135	100 %	ARG >			134.2-134.4 OSTR; @70° TOC,A.										
		4			134.4-136.6 DANK GREY; QUITE  MASSIVE IN APPEARACE; MINDA  2 MM QSTRS; 1-10 CM QSTR  136.6-136.8 QSTR  (ICM Q 40° TO C.A & SCM  ALL. FRAG IN CENTER ON ONE  SIDE										
-137		Q'ratt			1368-137.8 DANK GREY;  MINOR LICM RSTRS  137.8-138.2 QSTRS  4 CM QSTR; Sen ARG;  20cm QSTR @ 45° TO C.A.  (+ W.R.)										

AGE 21 OF 3 / PROJECT: ENGINEE	Z.								HOLE No.	87-103
MINERALIZATION DESCRIPTION	TOTAL	SULPHIDE	INTERVAL	WIDTH	ASSAY NUMBER	% Au 5~/4	% As ppm	%	Au 02/1	COMPOSITE
			-	0.3	<i>dr</i> – 5 – 4					
131.7-132.8 3 UP TO 4cm	1	$\square$	<del></del>	0.3	5584	0.01	3./		0.001	
QSTR @ MOD L TO C.A. W	$\mathcal{A}$				<del></del>	<u> </u>				
LICA OSTES @ LOW 4 TO	1		<u> </u>		<u> </u>					
C.A. Joinente Wron 2: 2%	1/	Ш	***							
DISS PY IN W.R.	1/2									
	Ш		<del></del>							
	Ш									
		Ш	10.00							
	$\coprod$	Ш	<u> </u>							
			<del></del>							
133,9-134,1 QSTR : WHOTE!	17			0.2	5585	0.01	0,9		0.001	
20 % AND ARG FRAGS; MINOR	X									
VULS TO QTZ XTZ GROWTH; Tr-P.	1		<del></del>							
N Vein : 3 % For 2cm	1	П				1				
N VEIN; 3% FOR ZEM N IM IFN (in MEA) MINOR	1	$\prod$	_			1 .				
CARB.	1//		_					<del></del>		
C 4'-5 .			<del>-</del>			1				
34.2-134.4 OSTR ' WHITE			_	0.2	5586	0.02	0.3		0.001	
TEW 10 % WHITE TO PALE	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	-	<u> </u>			ļ			<u> </u>	
ROSE CARB; 10 % Llcmana	#		_						<u> </u>	
FRAGS; OTZ QUITE FROCTUKED W.		$\coprod$	_							
RECEMENTED BY LATER OTZ;	$\coprod$	$\coprod$							ļ <u> </u>	
Te-Py	#	$\dashv$		ļ	ļ	<del> </del>			-	
36.6-136.8 QSTZ WH	H	╁	_	0.2	5587	0.0	07		0.001	
QT2 TO % ROSE CARB!	$\dagger \dagger$	#	-	<u> </u>	<u>-                                   </u>	0.0	1	<del> </del>	0.001	
ninor LI cm Vuls , 20%	$\dagger \dagger$	#	_			1	<b>†</b>	·	<del>                                     </del>	
	#	#	_				<b>†</b>			
GROWING IN THE VILLS.	$\dagger \dagger$	$\dagger \dagger$	_	-		<del> </del>	<del> </del>		<del>                                     </del>	
The man	††	#	<del></del>	-		<del>                                     </del>	<del> </del>			
	+	$\dag \uparrow$	-			<del>                                     </del>	<del> </del>		<del>                                     </del>	
	+	++-	-			<del> </del>	<del> </del>			
	+	╁┼	H	-				<u> </u>	+ +-	
137.8-138.2 (ISTRS.	$\forall$	<del>                                     </del>	<u> </u>	0.4	5588	0.02	14		0.001	
	$\dagger$	$\dagger \dagger$	_	7.7		V.02	<del>  ' ' '</del>	t	0.001	
20 % NACE FRACE : CARB	1/	$\dagger \dagger$	-		<b> </b>	<del> </del>	<del> </del>	<del>                                     </del>	1	
		$\dagger \dagger$			<del>                                     </del>	<u> </u>	<b></b>	V ~*	+	
LATER THAN QTZ; M-ABLNOME, OF UP TO ICM YULS \$ PY	97	††	<del> </del>	<b> </b>		<del>                                     </del>	<b> </b>	<del> </del>	+ +	
				1	T .			;	. 1	1

PAGE	2	2.	OF	31	PR	OJECT: ENGINEER							НС	DLE	No	. 8	7-/	103	
_ 2	gC,	. ₹	Æ						A	LT	ERA	rion				اح		Γ	7_
DEPTH (METRES)	Sore Re	LITHOLOGY	RUCTURE			GEOLOGICAL DESCRIPTION		5	i	)	Chl	т	S	c	RACT	ENSIT			
~ £	%	LIT	ST	ĺ				A		В	С	D		Ε	La.	Z			
138				128.6	- 184.	4 ARGILLITE (CONT.)		T	П	T		Ш			П	П	П	$\prod$	
Γ																		$\prod$	
Γ						138.2-140.1 GREY TO BLACK!			П			Ш				П	$\prod$	П	Π
						A FEW N'GREENSH BANDS C 600			П			П		П	П	П	П	П	
						TO C.A. ASSOC. W LSMM CC-			П			$\prod$		П	П	П		$\prod$	Π
Γ						My Bands			П	П					П	П	П	$\prod$	П
									П	П	$\prod$	Ш			П		П	П	П
<u></u>					••••	140.1-140.4 IRREQUEAR 6/cm			П	П	$\Pi$	Ш	T		П	П	П	$\Pi$	IT
		;				OTZ- CARB STR CLOW LT			П	П		Ш		П	П	П	П	П	П
					·····	C.A: IRREGULAR UP TO 200	1 1		П	$\prod$			T				$\prod$	$\prod$	
140						Cc = ch1 = My PATENES /STRS	F		1		1411	$\prod$	T		П	П	$\prod$	$\prod$	П
		•				OF ALTE & LOW TO MOD L'S	T			П	7/	$\prod$	T	$\sqcap$	$\prod$	П	$\dagger \dagger$	$\prod$	П
						TO C.A. CORE B KOWNISH- GREY		$\sqcap$	1	$\prod$	竹	$\parallel \parallel$	1	$\prod$	$\prod$		$\prod$	$\dagger \dagger$	$\prod$
F					····	AND IATCHY IN APPEARANCE		Т	И	П	7	$\Pi$	1				$\prod$	$\prod$	$\prod$
<u> </u>					<del>,</del>			П	M		71		T			П		П	$\prod$
<u> </u>			'		,	140.4-147.5 BLACK TO			1/1	П	7	$\Pi$	T	П	П	П		$\prod$	
			'			MOTTLED GREY-GREEN DUE TO	T		7	П	//		T			П	$\prod$	$\prod$	Ţ
						Cc = Ch1 I PY = PQ PERVASINE			1		7	H	T	$\prod$		П	$\prod$	$\prod$	
<u> </u>	%	个				ALTS , ~10 % OF CORF ALTS ;			7	П	71	$\prod$	T	П	П	Ħ	$\prod$	$\prod$	$\prod$
<b> </b>		v				(Cc on FRACTURES; Monerales			7	П	/	1	1			Ħ	T	$\prod$	Ħ
147	9	~				OSTRS: 1 % , LOCALLY 2 %			1	$\dagger \dagger$	7/1	$\prod$	T		П	П	$\prod$	$\prod$	
		16-				F. C. Diss. PYRITE 4/0/0 PB			7	П	<del>//                                     </del>	$\Pi$	T		$\prod$	$\Pi$	$\prod$	$\prod$	Π
		4				1.2.		$\top$	1	П	7	111	T			П	$\dagger \dagger$	$\prod$	$\prod$
<b> </b>						147.5-147.7 2 1cm QSTRS			1	П	狙	$\Pi$	1	$\prod$	П	П	$\prod$	$\prod$	П
i i		-				@ 40 re 50 ° TO (.A. ; BETWEEN			1/	П	4		T	П	П	П		П	П
		Ostres				15 i - Cc · Si - Ch! ; - T ? ALTE!	7	1	17	$\Lambda$	1/1/	W	1			П		$\prod$	П
		~				3 % DUS PY ; MOTTLED GREY	1/	7	1	1	1/1		7			П	$\prod$	11	П
<u></u>					-	TO GREENISH - BROWN	1		7	П	11		Τ		П	П	$\prod$	П	
									1	$\Box$	11	$\prod$	T			П	$\prod$	$\prod$	
<b> </b>					·····	147.7 149.6 BLACK =	7	$\top$	1		11	$\prod$	T		$\prod$	П	$\prod$	$\parallel$	
148	$\square$					10 % GREY TO WHITE PArches	1	+	1	$\dagger \dagger$	11	$\dagger \dagger \dagger$	$\dagger$		$\parallel$	Ħ	$\dagger \dagger$	$\dagger$	
						DUE TO W- ME KVASINE Si-Ce	17	1	1	$\parallel$	H	$\dagger \dagger \dagger$	†		$\sqcap$	$\parallel$	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$
_						ALT -: CORE VERY WARD	7		7	$\dagger \dagger$	11		1	$\sqcap$	$\prod$		$\dagger \dagger$	1	$\prod$
						The second second	1		1	$\dagger \dagger$	77		†	$\sqcap$	$\sqcap$		$\dagger \dagger$	$\dagger \dagger$	$\prod$
						149.6-149.8 i CC- QTZ	1	1	1	$\dagger \dagger$	11	<b> </b>	$\top$	$\parallel$	$  \uparrow  $	$\prod$	$\dagger \dagger$	$\dagger \dagger$	
						STRS: LICM @ MOD TO HILLY L'S	7	$\top$	1	$\parallel$	#	†††	†	$\dagger \dagger$	$  \uparrow  $		$\dagger \dagger$	#	†
						TO C.A. 15 % OF INTERVAL IS	[/		17	$\dagger \dagger$	$\dagger \dagger$	111			$\dagger$		$\dagger \dagger$	11	
:		_			<del></del>	STRS REST MOTTLED BLACK TO	1			$\parallel$	$\dagger \dagger$	<b>       </b>	1		$\parallel$	$\ $	$\dagger \dagger$	$\prod$	$\sqcap$
-	1	STREET				TAN CC-S: -T ALTE AKL: 1%PY	, [ ]	///	1	H	$\dagger \dagger$	†††	+	H	$\parallel$	$\dagger \dagger$	$\dagger \dagger$	#	#
150		7				1,011	$\dagger \dagger$	1	H	†"	$\dagger \dagger$	$\dagger \dagger \dagger$	+	$\parallel \parallel$	$\parallel$	$\dagger \dagger$	$\dagger \dagger$	#	
	السلم		1			<u> </u>			ш.	لمد		لمسلسة			ш.	┸	ــلـــــــــــــــــــــــــــــــــــ		

MINERALIZATION DESCRIPTION	TOTAL	INTERVAL	WIDTH	ASSAY NUMBER	% Au gm/r	% Ag ppm	%	Au oz/f	COMPOSIT
	1	- ,	1				ļ		
		-			<del>                                     </del>				
		-							
		~							
	1111	-			1				
to.1-140.4 41cm·QSTR; Cc- py-Ch1 ALT~ · 3 °/6 PY	<del>                                      </del>	-	0.3	5589	0.01	0.9	<b>—</b>	0.001	
py-chi / 21- / - /							ļ		
		****		<u> </u>			<u></u>		
		<b>-</b>							
	$\overline{\Box}$	-							
		-							
		_							
		-	!		-	<b></b>	<del> </del>	-	
		-							
	$\overline{\parallel}$					<u> </u>	ļ		
		-						1	
47.5-147.7 OSTRS + ALTE AKG. 3% PY		_	0.2	5590	0.01	1,2		0.001	
ALTE AKG. 3% PY					-		-	1 77/2	
	$\overline{\Box}$	_							
		-			-			+	
-		_							
	+++++	-			+		<b> </b>	+	
149.6-149.8 CC-QTZ STE	5	_	0.2	5591	0.10	1.2	<del> </del>	0,003	
IN ALTH ALG. 21017	1411		<u> </u>		<del></del>		<b></b>		

PAGE	1	24		OF 3	31	PR	ROJE	JE	ECT	T: ¿	EI	~	61	//	1 6	2ع	22	<u>.</u>															ŀ	101	LE	No	. 8	7	-/	03		
DEPTH (METRES)	, Con Day,	food a local	LITHOLOGY	STRUCTURE				. (	G	SEO	LO	GIO	CA	۸L	DI	ES	SCR	RIP.	TIO	N								S				RAT Chil		S	o	FRACT	INTENSITY					)
150	T				128.6	-184.	.4	1	1	9R	61	LL	217	72	<u>-</u>			(c	01	<b>∪</b> T:	(,						1	П	1	П			I				$\prod$		I	П	<u> </u>	1
150	100 9		1 STRS 1		128.6	-184.		1.	/S //S //S //S //S //S //S //S //S //S	150 150 150 10 150 10 10 10 10 10 10 10 10 10 10 10 10 10	10.2 577 10.2 577 10.2 577 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.	- 100 C	15 CA CA CA CA CA CA CA CA CA CA CA CA CA	56 70 15 6 15 3. 6 72 72 72 73	0	2	8: 40 S: P' S: P' S: P' FA	Co Co	BOOKE CO	SORO ROCK ELM S	SE (COSS.)	10-C	3 AR OC.	2000 100 100 100 100 100 100 100 100 100	General Process	N :																
153    			ابدر				+	19	15	COLARIA	0R1 2 12 12	- 1	PY S	7.	5 , b	~ 50 015.	, °;	ro	BL C. S	10 2-	CA.	2 ; F.R.	m % ac;	Y.	D. E.F.	ime es	_															ú
- 160				-			İ																				-	$\parallel$	-	$\parallel$	$\ $	-	H	+	$\  \ $	+	H	H	+	$\prod$	$\pm$	

4	DESCR		xs +	NOT TOTAL	SULPHIDE	INTERVAL	WIDTH	ASSAY NUMBER	% Au タm/r	٠ ١	%	Au oz hr		COMPOSITE ASSAYS
	.5 186 j	05n 1%.0	xs +			-								
	.5 gec. ;	Q571 1%.P	xs + /			_			<b></b>			1 1	- 1	Mary 1
	gra j	19.0		18			0.3	5572	0.02	0.9		0.001		
153, 4-154 + ALT				$\blacksquare$		<del>-</del>								
153,4-154 + AU														
S3,9-139   + AU						 								
	re A	ec.;	(c S72	2		_	0.6	5593	0.04	1.2		0.001		
						_								
						<b>-</b>								
						_								
159.5-159.7 INTER GROW	v~ LA	TICE OF	QT2 !			<del>-</del> 	0,25	5594	0.08	1.2		0.002		
LONG: M-1 VUGS TO M IN; Minor	SOME ABUNDA	SEVERAL ME 6F	e CM = LICM	-	++-									

	PAGE	2	.6	OF .	31 PRO	JECT: ENGINEER	·					· · · · · · · · · · · · · · · · · · ·	Į,	HOLE	No	s. 8	7-1	03	7.
	DEPTH (METRES)	% Core Recy	LITHOLOGY	STRUCTURE		GEOLOGICAL DESCRIPTION		; ]		TEI					ACT	NSITY			
		တ္ %	LITH	STRU			) A	,	В		C	D	,	Se E	S.	INTE			
L	159				128.6-184.4	ARGILLITE (CONT.)	П	П	П				$\coprod$	$\prod$	$\prod$	$\prod$	$\prod$		
L							Ц	Ш	Ц	Ш	Ц.	$\coprod$	$\coprod$	Щ	$\coprod$	Ц	↓		4
						159.75-160.0 m-Cc-TALTE;	Ш	$\coprod$	$\coprod$	Ш		$\coprod$	$\coprod$	$\perp \! \! \! \! \! \! \! \! \! \perp$	$\coprod$	$\coprod$	$\coprod$	Ш	4
-						CORE MOTTLED TAN-GREY BLACK;	Щ	$\coprod$	$\coprod$	Щ	4	Щ.	Ц	4	#	$\coprod$	Ш.	Ш	4
L						1-100 STR 1 4cm STR OF	Ц.	Ц	Ц	Ш		Ц.	Ш	Щ	$\coprod$	$\coprod$	11		4
-						SIMILAR STYLE TO PREVIOUS STR		Ц	Ц	Щ		Щ	$\coprod$	$\perp \! \! \! \! \! \! \! \! \! \! \perp$	$\coprod$	Ш	Ш.		4
L						1% F.G. PY IN ARG.		$\coprod$	$\coprod$	Ш	1	$\coprod$	Ш	4	$\coprod$	$\coprod$	11	Ш	4
-							Ц.	$\downarrow \downarrow$	4	Ш	4		4	4	$\coprod$	$\coprod$	Ш.		4
F						160.0 - 163.4 m, LOCARLY i-CL =	$\sqcup$		$\mathcal{A}$	$\perp \mid$	$\downarrow$	1	$\square$	4	#	$\coprod$	11		4
_	_160			ļ		T ± S. ± Se(?) = (h/(') qura;	IJ.	Щ	44	$\downarrow \downarrow$	$\bot$	1/2	4	4	$\coprod$	$\coprod$	$\coprod$		
,					***************************************	i-ALTO PLACES APPEAR BRECCIA.	//	11	44	1	4	1	4	44	$\coprod$	$\coprod$	1		
<u>;                                    </u>						TED TO SOME BLACK AKE VALLS		Ш	#	14	4	1/2	4	41	Ш	$\coprod$	Ш		1
_						REMAINING CORE MOTTLES BLACK,			41	A	4	1	$\perp$	4	$\coprod$	11	<del>                                      </del>		4
-						GREY, BROWN-GREEN; MINUR	A,	41	41		4		$\coprod$	44	$\coprod$	$\coprod$		Ш	4
-						LICM BTZ- CARB STRS'	4	11	44		4		$\downarrow \downarrow$	4	$\coprod$	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	44-		+
$\vdash$			. !			1202 % DISS PY; 2 1% PA	4	$\prod$	4	11	4	1	$\coprod$	1	$\coprod$	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	1		+
-						WITHIN i- ALT PATCHES.	1	$\coprod$	44	-14	1	-	$\coprod$	#	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$\mathbb{H}$	+		
-		%	1				4	44	41	1	4	4	$\sqcup$	47	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	++		Н	+
$\vdash$		0	1 ;	2515		163.4-163.5 QSTZ	1	$\prod$	$\mathbb{H}$	$\prod$	1	$\prod$	$\coprod$	#	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$\coprod$	+-	$\sqcup$	+
-	-164	0	<u>8</u>			WHITE OSTR & SO TO C.P.	-	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	+	+	+	₩.	${\color{red} H}$	$+\!\!+$	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$\coprod$	+-	Н	+-
-	:	0/	4				$oxed{+}$	H	+	+	+	H	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$+\!\!+$	$\dashv \vdash$	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	+		+
-			J			(2.6.4	H	+	+	+	+	╁	$\coprod$	$+\!\!+$	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	-		+
F			V			163.5-174.8 BLACK W LESSER	$oxed{+}$	H	+	+	+	H	$\coprod$	$+\!\!+$	H	╫	$+\!\!+\!\!\!-$		+
-						GREY ARG; MINOR LYNTER	$oxed{+}$	$\coprod$	$\dashv$	+	+	₩.	$\mathbb{H}$	$+\!\!+$	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$\dashv \vdash$		+
-						CC + Chi +T ALT ; BEDDING	igwdapprox	$\coprod$	+	+	+	H	$\coprod$	$\dashv \downarrow$	╁	₩	4	4	+
F					<del></del>	OCCASSIONALY VISIBLE ( MOD L'S	-	$\coprod$	$\prod$	$\parallel$	+	igapha	${f H}$	$+\!\!+\!\!\!+$	H	H	₩.		+
-						TO C.A.; Co + PY ON FRACTURES;	-	H	+	+	-	-	${\color{red} {oldsymbol{arphi}}}$	$+\!\!+$	#	₩	+		+
-						1 TO 2 % DISS. PYRITE THRU	$\mathbb{H}$	++	+	$\mathbb{H}$	+	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	ightarrow	$+\!\!\!+$	$oxed{+}$	₩	++	Н	+
-				.		0UT.		$\vdash$	$\mathbb{H}$	$\mathbb{H}$	+	$oxed{+}$	ightarrow	$+\!\!+$	₩	$\dashv$			+
-	_ 174						$\vdash$	$\coprod$	+	$\mathbb{H}$	+	H	$oldsymbol{ee}$	$+\!\!\!+$	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$oxed{+}$	-	$\mathbb{H}$	-
-						174.8- 175.7	-	$\mathbb{H}$	+	$\mathbb{H}$	+	-	${f H}$	$+\!\!+$	H	H	-		+
$\vdash$				-		i- Co ALT OF HATE THE CORE,	-	H	+	+	+	$\vdash$	${\mathbb H}$	$+\!\!\!+$	$oxed{+}$	${\mathbb H}$	-		+
-				-		PATEN GREY-WHITE ALTO W BLACK	$\vdash \vdash$	$\dashv$	+	+	+	H-	H	$+\!\!+$	╁┼	╫	+-	+	+
$\vdash$				}	<del></del>	UNALTE	-	+		+	+	$\vdash$	H	$+\!\!+$	H	H	$\mathbb{H}$	$\sqcup$	+
F				}		17.57 191111	+	;	#	$\dashv \downarrow$	+	#	arphi	++	$\dashv \vdash$	₩	H	$\dashv$	1
-				ļ		175.7-1844 BLACK TO MINOR	$\vdash$		44	+	+	$\vdash$	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	++	$\dashv$	₩	H	+1	
-				}		GREY; MINOL CC-(-Ch1:1-5)	$\vdash$	+{:	11	+	+	$\vdash$	H	$+\!\!+\!\!\!+$	H	H	HH	+	+
-			}	}	· · · · · · · · · · · · · · · · · · ·	ALT = PATCHES; 41 % DISS PY	-	1	11	+	+	-	H	$+\!\!\!+$	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	+-	H	$\dashv$	+
-	ا م ـــ م			-		WEAK FOL &   BEDDING SOMETITIES	-	H	#	$+\!\!+$	+	-	H	$+\!\!\!+$	H	H	H	+	+
	176					YISIBLE.	$\perp$	Ш	Ц	Щ			Ц	Ш	Ш	Ш	Щ	$\perp \downarrow$	

....

AGE 27 OF 31 PROJECT: ENG	INEER							HOLE	No. 87	7-103
MINERALIZATION DESCRIPTION	TOTAL	INTERVAL	WIDTH	ASSAY NUMBER		% Ay ppm	%	Au 02/T		COMPOSIT ASSAYS
		1.								
159.75-160.0 BLT & ARG + ASTRS ; 1 % PY		<del>-</del>	0.25	5595	0.01	<i>l. j</i>		0.001		
						-				
		-								
		<u> </u>	<u></u>							
	1111	T						i I		
1/3 1/-1/35 DETH (D)			0.1	5591	0.20	10		0.00		
163,4-163,5 QSTR(0.1,1 WHITE QTZ W MINGEL	u)		0.1	5596	0.20	0.9		0,006		
163,4-163,5 QSTR (O.1,1) WHITE QTZ W MINOR CO	n)		0.1	5596	0.20	0.9		0,066		
163.4-163.5 QSTR (O.1, WHITE QTZ W MINDE CI	17) 140		0.1	5596	0.20	0.9		0,006		
163.4-163.5 QSTR(0.1, white QTZ we mimore as 1 TALE; NO VISIBLE SX	449		0.1	5596	0.20	0.9		0,006		
163.4-163.5 QSTR (0.11 WHITE QTZ OF MINDER SX	17) 445		0.1	5596	0.20	0.9		0,006		
163.4-163.5 QSTR (0.1,1 WHITE QTZ W MINDLE TALL; NO VISIBLE SX	449		0.1	5596	0.20	0.9		0,006		
163.4-163.5 QSTR (O.1, white QTZ we minde Co TALL; NO VISIBLE SX	448		0.1	5596	0.20	0.9		0,006		
163.4-163.5 QSTR(0.1, WHITE QTZ TO MINDE CO	449		0.1	5596	0.20	0.9		0,006		
163,4-163,5 QSTR(0.1,1 WHITE QTZ W MINDER  TALL; NO VISIBLE SX	~) 449		0.1	5596	0.20	0.9		0,006		
163.4-163.5 QSTR(0.1, WHITE QTZ W MINDLE SX	449		0.1	5596	0.20	0.9		0,006		
163.4-163.5 OSTRO.1. WHITE QTZ W MINORCO	449		0.1	5596	0.20	0.9		0,006		
163.4-163.5 QSTR(0.1, WHITE QTZ W MINDLE SX TALL; NO VISIBLE SX	17) 449		0.1	5596	0.20	0.9		0,006		
163.4-163.5 QSTR(O.1, WHITE QTZ W MINDLE SX TALL; NO VISIBLE SX	449		0.1	5596	0.20	0.9		0,006		
163.4-163.5 QSTR (O.1, WHITE QTZ W MINDLE SX  TALL; NO VISIBLE SX	1) deg		0.1	5596	0.20	0.9		0,006		
163.4-163.5 OSTROLLI WHITE QTZ W MINDLE SX TALL; NO VISIBLE SX	449		0.1	5596	0.20	0.9		0,006		
163.4-163.5 QSTR(O.1, WHITE QTZ W MINDLE SX TALL; NO VISIBLE SX	17) 449		0.1	5596	0.20	0.9		0,006		
163.4-163.5 QSTR(0.11, WHITE QTZ IN MINORCO	449		0.1	5596	0.20	0.9		0,006		

PA	.GE	2	8	OF :	3/	PRO	JECT: ENGINEER						ŀ	IOLE	N	o. E	37	-10	23	
PTH	(METRES)	re Recy	LITHOLOGY	STRUCTURE			GEOLOGICAL DESCRIPTION				Chi			_	ACT	NSITY			(	
8	(ME	% Cº	HE I	STRU			<b>,</b>	S	<u>.</u>	<i>В</i>	C	D		<del>ا ا</del> 56	E	INTE				
-					128.0	6 - 184.4	ARCILLITE (cont.)	$\prod$		+		H								
							(175.7-184.4) (CONT.)			$\coprod$			Ц	$\bot\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$\coprod$	1				L
L							4/% DISSEM. F.G. PT; CONE	$\sqcup$	$\coprod$	$+\!\!\!+\!\!\!\!+$	$\coprod$	#	Ц	4	$\prod$	$\downarrow$	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	₩.	-	-
L							HARD BECOMENEY HARD	Н	$\coprod$	+	+++	#	Н	$+\!\!\!+$	$\  \ $	+	-	#	H	<b>-</b>
-							NEAR LOWER CONTACT			$\frac{1}{1}$										
F			RG.		194 4.	. IQU C	DYKE			$\prod$						-	$\parallel$	H		-
<b>-</b>			C		, 61.7	10.10	BARK GREY & UT TO 3MM	H	$\forall$	$\forall f$	$\dagger \dagger \dagger$	$\dagger \dagger$	Н	$\dagger \dagger$	$\dagger \dagger$		$\parallel$	Ħ		t
1	84	$\vdash$	+		<b></b>		The way summing ( Eura?).	$\dagger \dagger$	$\parallel$	$\dagger \dagger$	†††	$\dagger \dagger$	H	11	$\dagger \dagger$	+	$\dagger$	$\parallel$	$\parallel$	
				ļ	<u> </u>		LIGHT GREY PHENO'S (FERD?):  PHENO'S NIO % ; GLAND MASS  APHANITIC; CONTACTS P  30° TO C.A.; CORE VERY	H	$\parallel$	+	<del>   </del>	$\dagger \dagger$	Н	††	$\dagger \dagger$	+	$\parallel$	$\dag \uparrow$	$\parallel$	t
							APHANITIC: CONTACTS P	$\prod$	$\parallel$	$\dagger \dagger$	<del>       </del>	$\dagger \dagger$	$\ $	11	$\parallel$		$\parallel$	$\prod$		T
1		Δ					30° TO C.A. CORE YPRY	$\prod$			111	11	П	$\top$	$\parallel$	1				T
		1	*				HARD.	П		П			П							
			1.2	ľ		· · · · · · · · · · · · · · · · · · ·														Γ
		9	DYKI												Ш		Ц	Ц.	Ш	) Venezane
		0	2		184.9	-200.0	ARGILLITE			Ш		$\coprod$			Ц		Ц	Ц	Ш	
		00/	J				BLACK WITH MINOR LIGHTER					$\coprod$	Ц		Ц		Ц		Ц	Ļ
	82	/					AREAS TO PERVASIVE CC : LOS		Ш	$\perp \! \! \perp$	$\coprod$	$\perp$	Ц	Ш	Ц	4	$\coprod$	$\coprod$	$\coprod$	<u> </u>
	ده	1					LIGHTER FOR LAST IM OF	Ш	$\perp$	Ш	111	$\coprod$	Ц	$\perp \downarrow \downarrow$	Ш	4		Щ		₽
							INTERVAL; BEDONG FOR	Ц	Ц	$\perp \downarrow \downarrow$	$\coprod$	Ш.	Ц	$\perp \! \! \perp$	Ш	1		$\prod$	$\coprod$	₽.
							SOMETMES WEAKLY VISIBLE C	$\sqcup$	$\perp \mid$	11	$\coprod$	#	Ц	4	Ц	1	$\coprod$	$\coprod$	$\coprod$	₽
							PY . MINOR CC ON FRACTURES;	$\sqcup$	$\coprod$	$\dashv$	$+\!\!+\!\!\!+$	#	Н	44	$\bot$		$\sqcup$	$\coprod$	$\coprod$	+
_							PY . MINOR CC ON FRACTURES;	$\prod$	$\perp$	$\perp \downarrow$	+++	$\bot$	Ц	44	$\parallel$	4	H	$\coprod$	$\dashv$	$\perp$
			رب	ļ			CORE YELY HALD TO EXREME		$\perp$	$\dashv \downarrow$	+++		H	$+\!\!+\!\!\!+$	$\mathbb{H}$	4	H	╁╂.	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	-
-			ARG				HARD ALONG LOWER CONTACT.	$\ \cdot\ $												$\perp$
F			.		Och c	Jus	NVUE - A					$\prod$		$\prod$	$\prod$				$\prod$	
-	200		*	<del> </del>	<i>LUU -</i> U	-2012	DYKE DIORITE	H	+	++	$\mathbf{H}$	$\dagger \dagger$	H	+	$\dagger$	$\dagger$	$\dag \uparrow$	$\dagger \dagger$	$\dagger$	$\vdash$
-							MED GRAINES GREY 30%	H	+	+	11	#	$\dagger \dagger$	什	$\dagger \dagger$	$\dagger$	$\dagger \dagger$	$\parallel$		†
-							UP TO 4 MM W-SERITIZED FEZD		+	++		$\dagger \dagger$	H	H	H	+	$\dag \uparrow$	$\parallel \parallel$		<u> </u>
			1.			<del></del>	MINOR OTO IN MATRIX: 2 to 3 %		$\parallel$	+	1/1	$\dagger \dagger$	H	///	$\parallel$	+	$\parallel$	$\dagger \dagger$	$\parallel$	T
	į		<b>K</b>				F.G. DISSBY SILVER COLUMBIN		$\parallel$	+	11/	$\dagger \dagger$		泔	$\parallel$	T				<b>†</b>
			DYKE						$\parallel$	$\top$	团	$\dagger \dagger$	Ħ	绀	$\dagger \dagger$	T		$\prod$		<del> -</del> 
							FRACTURES ', CONTACTS C	$\dagger \dagger$	$\parallel$	+	1//			71	$\parallel$	1	$\parallel$	$\prod$		
							80° TO C. A.	$\prod$	$\parallel$	$\parallel$	1	$\parallel$	П	71	$\parallel$					T
								П	П		14	$\prod$		4	$\prod$					Ι
	s 4							$\prod$	$\prod$		14			4	$\prod$	$\int$				

HOLE No. 87-103 PAGE 29 OF 31 PROJECT: ENGINEER % COMPOSITE TOTAL SULPHIDE INTERVAL WIDTH **MINERALIZATION** ASSAY **ASSAYS** NUMBER **DESCRIPTION** 

						PRO	JECT: ENGINEER							HOI	E I	No.	87	-10	3
DEPTH	(METRES)	Core Recy	LITHOLOGY	STRUCTURE			GEOLOGICAL DESCRIPTION			A	LTE	RAT	TION			FRACT			7
	204	%	<u> </u>	- IS		2	000000	_	A	8	1	С	D	E		Z	7-	<u> </u>	$\perp$
<b> </b>	·		П	-	207.2	-/09.7	ARGILLITE	Н	4	4	Н	$\perp$	Ш	#	11	$\prod$	11	$\coprod$	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
<b> </b>							BLACK MASSIVE, VERY HARD.	H	+	+		+	$\mathbb{H}$	+	H	$\square$	$+\!\!+\!\!\!+$	$\coprod$	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
F					<u> </u>		MINOR PATCHES OF PERVASIVE	Н	+	+	$\mathbb{H}$	+		#	-		+	#	#
<b>-</b>							Cc ± S. ALTA ; 1% DESS PY	Н	+	+	H	+	H	#	H	HH	$+\!\!+\!\!\!+$	$\coprod$	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
上							THRU-OUT,	H	$\mathbb{H}$	+	+	+	$\mathbb{H}$	#	H	Ш	$+\!\!+\!\!\!+$	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	#
r		_		2strs			70 C Q 2021 TVD (1	Н	$\dashv \dashv$	+	$\mathbb{H}$	+H	H	++	-	H	$+\!\!\!+$	#	#
1		?		\			206.9-207.1 TWO -1 cm, ONE 5 cm OTC- CE STRES @ 3500	Н	$\mathbb{H}$	+	$\dashv$	+	+	++	H	HH	+	+	#
		%					45° 73 CO: 5000 500	Н	+	+	+	H	H	+	+	Н	++	-	H
Γ,		0	7 KG.				So % are France I Was a	Н	+	H	╫	+	+	++	+	H	+	++-	+
	07	01	4				45° TO C.A; SCM ONE IS SO % ARE FRAGE VUES TO QTZ XTZS IN UPPER len	$\dashv$	+	H	╫	╫	H	H	+	H	╫	H	+
		v	1				one	$\forall$	+	+	+	${}^{\rm H}$	+	H	+	H	╁┼	H	+
1							,	$\forall$	+	+	╫	++	╫	H	+		╫	H	+
								+	$\forall$	H	+	H	++	H	+	++	+	Н	+
	1				20	9.7	E.O.H.	+	+	H	+	H	$\dagger \dagger$	HH	+	+++	+	Н	+
								+	+	+	$\dagger \dagger$	$\dagger\dagger$	+	+++	+	+	${+}$	H	+
		'	V			1		+	$\dagger \dagger$	$\dagger \dagger$	$\dagger\dagger$	$\dagger \dagger$	H	HH	+	+	+	H	+
	1		ź					$\dagger$	$\dagger \dagger$	$\dagger\dagger$	$\dagger \dagger$	H	$\dagger \dagger$	H	+	+	$\dagger \dagger$	H	•
			اه	Ī				$\dagger$	$\dagger \dagger$	H	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$		H	+	+		+
_2	ın		ai			1		+	$\dagger \dagger$	††	$\dagger \dagger$	††	$\dagger \dagger$	H	+	$+\!\!\!+$	+	H	+
						1		+	$\dagger$	††	$\dagger \dagger$	$\dag \dag$	$\dagger \dagger$	H	$\dagger \dagger$	H	H	H	+
								†	††	††	$\dagger \dagger$	Н	$\dagger \dagger$	H	++	+	+	H	+
								$\dagger$	$\dagger \dagger$	$\dagger\dagger$	$\dagger \dagger$	H	$\dagger \dagger$	H	$\dagger \dagger$	+	$\vdash$	+	+
								$\dagger$	$\dagger \dagger$	$\dagger\dagger$	$\dagger$	$\dagger \dagger$	H	H	$\dagger\dagger$	+	H	H	+
				Γ				$\dagger$	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	H	$\dagger \dagger$	+	+	H	+
				Γ					$\dagger \dagger$	H	$\dagger \dagger$	$\dag \uparrow$	$\dag$		$\dagger \dagger$	+		++	+
						1		$\dagger$	$\parallel$	$\dagger \dagger$	$\dagger \dagger$	H	$\dagger \dagger$		H	††	H	++	+
						_		T	$\prod$	H	$\dagger \dagger$	H		$\forall t$	$\dagger \dagger$	$\dagger \dagger$		$\dagger \dagger$	+
								Ť	$\parallel$	$\parallel$	$\dagger$			++	††			$\dagger \dagger$	+
	L					į		$\dagger$	$\dagger \dagger$		$\dagger$			+	††	++		++	+
								T	$\parallel$		††		Н	++	$\dagger \dagger$	H	+	+	+
_								+						++	$\dagger \dagger$	H	++	+	+
								1		$\parallel$	$\parallel$		H	+	$\dagger \dagger$	$\dagger \dagger \dagger$	+	$\dagger \dagger$	+
										$\top$		$\forall$	$\square$	11	$\dag \uparrow$	$\dagger \dagger \dagger$	+	H	T
								$\dagger$		+	$\parallel \parallel$	$\parallel$		++	#		+	++	+
_								Н		+	H	+	+	++	H	H	+	++	+
_								$\parallel$		+	H	+	+	++	H	†††	++	1	لتعطي
_									+		H	+	+	++	$\dag \uparrow$	$\dagger \dagger \dagger$	+	++	<b>†</b>
_						1	·	H	$\dagger \dagger$	$\dagger$	+++	$\dagger \dagger$	$\dagger \dagger$	#	H	H	+	#	-
		$\perp$	$\perp$					$\dagger \dagger$	$\dagger \dagger$	$\dagger$	+	$\dagger \dagger$	++	+	H	H	$\dagger \dagger$	+	_

	PAGE 3/OF '3/ PROJECT: ENCI	wê	EK	د						HOLE	No. 8	7-103
	MINERALIZATION DESCRIPTION	TOTAL	SULPHIDE	INTERVAL	WIDTH	ASSAY NUMBER	% Au gmH	% Ag pem	%	Au 024		COMPOSITE ASSAYS
		$\Pi$	$\prod$									
		$\Pi$	$\prod$	_								
		$\Pi$	П	_								
		П	$\prod$									
	206.9-207.1 QTZ-CARB	7	$\prod$		0.2	5597	0.02	1.0		0.001		
	STRS IN ARC.		П									
		$\Pi$	П									
		$\prod$	П									
		$\prod$	$\prod$									
•		$\prod$	$\prod$									
		#	$\dagger \dagger$									
		11	$\dagger \dagger$	_								
		††	11								·	
		††	$\dagger \dagger$									
		+	††	<u> </u>								
		+	$\dagger \dagger$	<del> -</del>						<del>                                     </del>		
ĺ		$\dagger\dagger$	$\dagger \dagger$	<del> </del>			<del> </del>			<del> </del>		
		+	╁┼	<del> -</del>	<b> </b>	······	+					
		++	+	<del> -</del>	-		-			-		
		╁	+		-	<del></del>	+			-		
		+	+	-			<u> </u>			-		
ŀ		+	$oldsymbol{+}$	<b>_</b>	<u> </u>		<u> </u>		·			
ŀ		+	+	_	-		-			-		
		+	++	-			ļ	<u> </u>		<u> </u>		
		+	#	<del> </del>						-		
ŀ		44	4	<u> </u>	ļ		<u> </u>					
ŀ		$\downarrow \downarrow$	$\coprod$	<b>L</b>			<b> </b>					
		4	1	_			1			1		
		4	1	<u></u>					L			
		4	Ц.									
		$\perp \! \! \perp$	$\perp \perp$									
		$\coprod$	$\coprod$				<u>                                     </u>	l				
			$\prod_{i=1}^{n}$	L								
ĺ												
		$\prod$	$\prod$									
t		11	11	T								
ĺ		+	$\dagger \dagger$	<u> </u>						1		
ŀ		+	++	<u> </u>			<b>†</b>			1	<del></del>	
ŀ		++	$\dagger \dagger$	+		<b> </b>	+			<del> </del>		
I		+	+	<del> -</del>	-	ļ	<b></b>		ļ	ļ	ļ	

PAGE	·		OF	PRO	JECT:						丄	HOL	E N	ło.	<del></del>			
DEPTH (METRES)	% Core Recy	LITHOLOGY	STRUCTURE		GEOLOGICAL DESCRIPTION		T	ALT	ER/	ATIO	ON			INTENSITY				
O W	ن % د	Ë	STR			A		В	С		D	Ε	l	Z				
_						П									$\prod$			
-						$\vdash$	$\parallel$	ig	$\coprod$	H	-	$  \dots  $	+	H	$\coprod$	+	+	#
-					1	-	H	H	H	H	H	Н	+	H	H	H	$\perp$	+
-				 		H	H	$\dag \dag$	H	+	H		+	H	$\dag \dag$	+	+	+
-						H	$\dag \uparrow$	$\dagger\dagger$	H	H	H	H	$\dagger$	$\dagger \dagger$	$\parallel$	$\dagger \dagger$	+	+
<b> </b> -							$\parallel$	$\dagger \dagger$	#	$\parallel$	$\parallel \parallel$		†	П	$\parallel$	$\parallel$		1
				 											$\prod$			
L							$\prod$	$\prod$	$\coprod$			Ш	$\int$	$\coprod$	$\prod$	$\coprod$		
	Ш			 	-	-	$\coprod$	$\coprod$	Щ,	$\coprod$			4	$\coprod$	$\prod$	$\coprod$	$\perp$	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
_		•		 		$\coprod$	$\coprod$	$\coprod$	$\coprod$	-	-		$\downarrow$	$\coprod$	$\coprod$	$\bot \downarrow$	+	4
F				 	 	$\vdash$		+	H	-	-	$  \downarrow \downarrow  $	+	H	H	+	+	+
-				 	<u> </u>	H	H	╁		$\vdash$	$\vdash$		+	$\dashv$	H	+	+	+
						H	H	$\dag \uparrow$	H	H	$\vdash$	Н	+	H	H	+1	+	+
<del></del> :				 		H	$\parallel$	$\dagger \dagger$	$\dagger \dagger$	H	$\dagger \dagger$		$\dagger$	$\dagger \dagger$	$\dagger \dagger$	††	+	$\dagger$
<del>-</del>				 	1	H		††	$\dagger \dagger$	H	$\dagger \dagger$		$\dagger$	$\dagger \dagger$	$\parallel$	$\dagger \dagger$	+	†
_				 		$\prod$		$\parallel$			$\prod$		1	$\Pi$	11		1	-
								$\prod$		Ц						Ш	_	
_				 		$\coprod$		4					1	$\coprod$	$\downarrow \downarrow$	$\perp$	1	4
-						$\vdash$	Ш	11	Ц.		$\coprod$		$\downarrow$	H	$\ \cdot\ $	-	-	
-				 		igapha	-	$\prod$	-	H	$\vdash$		+	H	$\coprod$	+i	$\perp$	H
				 	1	-	╁	╫	-	H	H		+	╁┼	$\mathbb{H}$	+	+	-
_				 		$\vdash$	${f H}$	╫	+-	${\mathbb H}$	+	H	+	+	H	+	+	-
_				 		+	+	$\dag \uparrow$	++	H	H	H	+	H	H	+1	+-	+
_				 		+	†	#	-	H	H	H	$\dagger$	$\dagger \dagger$	$\dagger \dagger$	+	+	#
<b></b>						$\parallel \parallel$	$\dagger \dagger$	#	$\prod$	$  \uparrow  $	$\parallel \parallel$	H	$\dagger$	$\parallel$	$\dagger \dagger$	$\parallel$	-	$\parallel$
_		Ì		 			$\parallel$	$\dagger \dagger$					$\dagger$		$\prod$			
	П																Ī	
								$\prod$					I		$\prod$	$\prod$		
_				 			$\coprod$	$\prod$			$\coprod$	Ш	$\perp$	$\coprod$	$\coprod$	$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	_	
 				 				$\coprod$					$\downarrow$	$\prod$	$\coprod$	$\bot \downarrow$	_	4
_				 <del></del>				$\coprod$	$\coprod$	4	-		1		$\parallel$	$\dashv$	+	#
				 			$\coprod$	$\coprod$	$\square$	$\perp$			$\bot$		$\dashv$	+	+	4
_		ł		 			H	#	H	+	+	+	+	H	$\dashv$	+	+	$H^{-}$
_		ł		 	1		H	╁┼	H	-		H	+	H	H	╢	+	#
_		ļ		 		H	H	H	H	+	$\vdash$	H	+	H	H	+	+	+
L	ıl	- 1	- 1			1	11		$\mathbf{I} + \mathbf{I}$				1	i I	1	1 1	1	ı I

## ERICKSON GOLD MINING CORP. MINERALS SECTION

## DRILL LOG

PROJECT	
ENGINEER	GROUND ELEV.
	817.50 m
HOLE No. 87-104	BEARING
87-704	2 95°
LOCATION	DIP
1) (107) 72	
N 4276.22	-59.0
£ 3482.36	TOTAL LENGTH
	99.7
LOGGED BY	HORIZONTAL PROJECT
H.SMIT	1
	51.56
OCT 1/87 TO OCT 3/87	VERTICAL PROJECT
001 1181 - 001 3/81	85.33
CONTRACTOR	-05.05
	ALTERATION SCALE
CONNERS	
ı	absent
CORE SIZE	slight
NQ	moderate
DATE STARTED	intense
1	<del>                                      </del>
SEPT 25, 1987	TOTAL SULPHIDE SCALE
DATE COMPLETED	T
SEPT 27, 1987	traces only
DIP TESTS DIP AZIMUTH	<b></b>   ∅
41.8 -59 295°	1% - 3%
1	3% - 10%
99.7 -58.5 296°	> 10%
	1999
COMMENTS	LEGEND
MAJOR INTES	
1111000 11012	
49.3-50.2 QSTR / SIL BRXX (0.9m)	
C 0.179 02/ton Am. 4% py	
,	
67.4-69.0 QSTR /SIL BRXX/SILE ZONE	
	7
CO.005 02/ton Au. 2 % py	
1	
	1

PAGE				i	PRO	ECT: ENGINEER							но	LE	No.	8	フ-	10	4
DEPTH (METRES)	ore Recy	HOLOGY	UCTURE			GEOLOGICAL DESCRIPTION		<u> </u>	D	TER		T	S	c	RACT	ENSIT			
<u>ي</u> ج	%	Ę	STR	ļ			4	١.	В	0	:	D		Ε		Z			
- 0		1	Ш	0-	7.1	OVER BURDEN	П	1		$\prod$	Ц		$\prod$	$\prod$				$\prod$	
-		-   1	Ш	ļ			H	+	Ш	#	Н	$\mathbf{H}$	$\mathbb{H}$	$\mathbb{H}$	$\perp$	+	H	${f H}$	$\mathbb{H}$
- :	}	18	H	70-	1193	ARGILLITE	╫	+	H	+	Н	H	H	+	+	+	╫	H	$\mathbb{H}$
-		0	HH	210-	7 1.0		H	$\dagger$	H	+	Н	+	H	+		H	H	+	+
-		1	$\Box$			BUT OCCASSION ALLY BODDING	H	$\dagger$	$\dagger \dagger \dagger$	$\dagger \dagger$	Н	H	$\dagger \dagger$	+		H	$\dagger \dagger$	$\dagger \dagger$	
-						VISIBLE & MOD & TO C.A.;	$\prod$	†	$\Box$	$\dagger \dagger$	H		H	$\top$		I	$\prod$	$\dagger \dagger$	T
	%	*				CORE QUITE HARD, SOMEWHAT	$\prod$						$\parallel$						
				,		BLOCKY BUT > 10 cm PIECES											$\prod$		$\prod$
	So					COMMON: MINOR BANDS OF	Ц		Ш	$\coprod$	Ц		Ш			Ц			Ш
						i- Ce Ice STRS, MOSTEY &	Ц			$\coprod$	Ц						Ш	Ш	
_						LOW L TO C.A : L'EM WIDE;	Ц		Ш	$\perp \!\!\! \perp$	Ц	Ш	Ш		Ш	Ц	Ш	Ц	
_		Ш	Ш			CO ON FRACTURES: 3%	Ц		Ш	$\coprod$	Ц	Ш	Ш			Ц	Ш	Ш	Щ
-		Щ.	Ш	ļ		VERY F.G. PY THRUOUT	Ц	1		4	Ц	Ш	$\perp$		Ш	$\coprod$	$\coprod$	11	Щ.
-		_	Ш	ļ			$\sqcup$	1	$\Box$	4	Ш		Ш		$\parallel$		H	$\coprod$	#
-				ļ		(7.0-10.1) CORE RECOVERY 50 90 'SONE GROUND CORE	$\coprod$	+	$\square$	4	H		Н	<u> </u>  -	$\Vdash$		Н.	#	H
-		<u> </u>	Ш			50 % SONE GROUND CONE	$\sqcup$	+	$\left\{ \cdot \right\}$	+	H	Ш	$\perp$	-	$\vdash$	H	${\mathbb H}$	${f H}$	
-		-#	Ш				H	+	++	$+\!\!+\!\!\!+$	$\vdash$	$\mathbb{H}$	$\mathbb{H}$	+	╀	H	₩	H	₩
-		Z	$\mathbb{H}$	-		29.9-30.0 QSTR (0.1m)	H	+	Н	+	$\vdash$	Н	+	+	H	H	${f +}$	+	$\mathbf{H}$
-30	_	ASTA	H			WH QSTR W 10 % NETOLE-	H	+	++	+	$\vdash$	H	+	+	╫	H	${}^{\dag}$	$+\!\!+$	+
-		1	H			LIKE CE XIZS @ 50° TO C.A.	Н	+	H	+	+	H	+	+	H	+	++	$\dagger \dagger$	+
-	. 6	AR	H			MINOR BY ALUNG CONTACTS	H	+	H	+	+		+	$\parallel$	H	H	$\dagger \dagger$	$\dagger \dagger$	#
	%	1	HH			Un 11 411 1. C C: 1 15 8	H	+		++	+		+	H	H	H	$\dagger \dagger$	H	#
<del>-</del>	00	+	H	-		OF CORE IS PATCHY GREY DUE	$\dagger\dagger$	$\dagger$		++	+	H	$\dagger$	+	$\parallel$	H	$\dagger \dagger$	$\dagger\dagger$	#
- 40	-		HH			TO PERVOSIVE CC; S % DISSCONT.	$\dagger\dagger$	$\dagger$	++	+	t		$\dagger$	$\vdash$	$\parallel$	$\dagger \dagger$	$\dagger \dagger$	$\dagger\dagger$	#
-		+		+		QTZ PATCHES; STILL 3%	$\dagger\dagger$	$\dagger$			$\dagger$	$\Box$	T	$\vdash$	$\parallel$	$\parallel$	††	#	#
-		111				biss. Py.	1/	$\dagger$	7		$\dagger$		+		$\parallel$		$\dagger\dagger$	H	1
-				1		0/35 /,	И	+	1		T		+				$\prod$	$\parallel$	#
-						41.6-41.9 i-S:-GALT=	1/1	1	M		T				$\prod$	П	П	$\prod$	$\prod$
-41						PORVASINE S: CE RESULTS IN	1/1		1/[						$\prod$	П	$\prod$	$\prod$	$\prod$
-						50 % OF CORE BEING GREY TO	1//		/							П	П		$\prod$
-			$\prod$			WHITE IN MOTTLED PATCHES	1//										$\prod$	$\prod$	$\prod$
_						GENERALLY CLOW L TO C.A.	1/		$V_{A}$								$\prod$	$\coprod$	
_						3 % AY, DISSEM : IN FRACT.			1/							$\prod$	$\prod$	$\coprod$	
- -							V	T	//	$\prod$			$\int$		$\prod$	$\prod$		$\coprod$	$\prod_{i=1}^{n}$
_		Ш				41.9- 42.6 W-S:-(c; 10% GRET TO WH PATCHES; 3%	11	1	1	ИI		Ш			$\coprod$	$\coprod$	$\prod$	$\coprod$	1
_						GREY TO WH PATCHES! 3%	14	1	$\mathcal{W}$	Ш	L	Ш	$\perp$	Ш	$\coprod$	$\coprod$	$\coprod$	Щ	$\coprod$
		Ш				D65. PY.		1	11	Ш		Ш		Щ	$\coprod$	Ц	$\coprod$	$\coprod$	$\coprod$
42									1/1						$\coprod$			Ш	

AGE 3 OF 15 PROJECT: ENG	INE	2	4		. · · ·	N. 4. 44			HOLE	No.	87-104
MINERALIZATION DESCRIPTION	TOTAL	SULPHIDE	INTERVAL	WIDTH	ASSAY NUMBER	% Au 3m/t	% Ag ppm	%	Au 0=H		COMPOSITE ASSAYS
			-								
	#	Ш	-			· .				<u></u>	
	$+\!\!+$	$\mathbb{H}$	-	ļ					-		
	╫	Н	_	-					11	····	<del> </del>
	╁	H	_	-	·			ļ		<del></del>	
	$\dagger \dagger$	$  \uparrow \uparrow  $	-							·	<del> </del>
	11									···········	1.
			-			-					
	$\prod$	Щ									
	$\perp \! \! \! \! \! \! \! \! \! \! \perp$	Ш	<del></del>						<b> </b>		
	4									· · · · · · · · · · · · · · · · · · ·	<b></b>
	$+\!\!+\!\!\!+$	$\frac{1}{1}$				<b></b>		<b></b>			<u> </u>
	$+\!\!+\!\!\!+$	H					ļ				
	+	$\left\{ \cdot \right\}$	••••	ļ		-	<b></b>	<b> </b>		<del></del>	<del> </del>
	+	H					<del> </del>	l			
· · · · · · · · · · · · · · · · · · ·	+		_			1	<b></b>				
29.9-30.0 QSTR (0.10)	1			0.1	5598	0.13	19		0.064		
29.9-30.0 QSTR (0.1m)	12								7.00		
	Ш	Ш	<del></del>								
	$\bot \!\!\! \bot$	Ш	_	ļ		ļ		ļ			
	$+\!\!+$	H	_	-		ļ	ļ	ļ	-		<u> </u>
	$+\!\!+$	$\mathbb{H}$	<del>_</del>	<b></b>		<del> </del>	<del> </del>	<del> </del>			
	+	$\mathbb{H}$	_			<del> </del>	<b>_</b>	<u> </u>			
	+	Ш	-	ļ		1	<del> </del>	<del> </del>			
	11										
4.6-41.9 i-Cc-S: pete	1			0.3	5599	0,02	1.5		0,001		
H.6-41.9 i-Cc-S: pete ARC; 3% PY	$\mathcal{U}$		<del>-</del>								
	$\prod$	Ш		ļ		<u> </u>					
	- -	Ш				-	<u> </u>	ļ			
	+	Ш			<b></b>		ļ		-		
	+	H	<del>_</del>		-	<del> </del>	-				
419-106 14 6:0:	$+\!\!+\!\!\!+$	H	-		FC	-	1.0		-		
41.9-42.6 (w. sce; 3 % PY	12	$\mathbb{H}$	_	0.7	5600	0.03	1.5		0.001		
5 10 7	1/2	H		-	<u> </u>	<del> </del>	<del> </del>	<del> </del>	<del> </del>		
		++-	<del> -</del>	-		+	<del> </del>	<del> </del>	<del> </del>		+

PAGE	4	_	OF	15	PRO	ECT: ENGINEER					Ţ,	OLE	No.	87	7-10	4	
DEPTH (METRES)	% Core Recy	LITHOLOGY	STRUCTURE			GEOLOGICAL DESCRIPTION	S	ALT D B	C	./ 7	N	Se	FRACT	III ENGILI			
42		不	0,		49.3	ARGILLITE (CONT.)	1	П			T	П				П	#
- - - - - - - - - -	x %	ARG.				42.6-43.7 i-Si, m-Cc.  8-SRS / QTZ PATCHES & SO % OF  CORE IS GREY TO WHITE; STRS  IMAGRICAR & LOW TO MOD L'S  TO C.A.; 5 % DISSEM. PY;  TO KIZWE GRAPHITE; LOWER  CONTROL OF INTERVAL P  25° TO C.A.  43.2-49.3 RHYTHMIC I TO  10 MM BEDS: C 80° TO C.A.  DECREASING TO 45° TO C.A.  IN LOWER PART OF INTERVAL;  MINOR SLUMP FOLDS & MINOR  QTZ-CARB STRS; CORE  MOD. HARD.	1										
- - - - - -	001 →	200E *		49.3	50.2	QTZ STR /SILE BRXX ZONE (0.9m) -CONTACTS OF ZONE E 55° (UPPER); 40 (LOWER)											
- 50		C GSTR / BRXX															

PAGE 5 OF 15	PROJECT: ENGIA	EE	<b>*</b>							HOLE N	10. 87-104
MINERAL DESCR		TOTAL	SULPHIDE	INTERVAL	WIDTH	ASSAY NUMBER	% Au g~h	% Ay Arm	%	Au 024	COMPOSITE
		Ш							: "		
42.6-43.2 W ARG; 5					0.6	5240	0,37	2. 2		0,011	
				- · ·					-		
				 		:					
				- · - ·							
7				1							
				- -							
	2. STR / SILE BRXX			49.3-	0.5	5241	9.35	9.5		0.273	
60° TO C.A. (			4	- -428-							0.9m Q
FRACS! VULS	STRS HAVE WR.	1 1/1	1	_50.2	0.4	5242	2.10	3.2		0.061	
Tems to BE 4/cm TO Sca	WIDE			<b>-</b>							
AND ARG + GR		1				***************************************					
MATRIX TO U ARG; YERY	- Sile FRACTURE	14	1								
TO CORE; 4 %	F. G. DISS	1/2		-		****					
CUT EARLIER	BRXX			 							
				_							
Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie	,	H	+	<del></del>			-				

PAGE	(	S	OF	5	PRO	ECT: ENGINEER								HOL	.Е	No.	8	7-/	104	7
DEPTH (METRES)	Core Recy	LITHOLOGY	STRUCTURE			GEOLOGICAL DESCRIPTION	L	S	A	LTE	C	ATIO	N	Se		RACT		-		┦. <b>ጕ</b>
	%	5	<del> </del>				۱,	A	Ε	3	С	$\perp$	D	E		- 2				
- 50		677	-	50.2-	67,4	ARGILLITE	П			П	$\prod$	$\prod$	I	$\prod$		$\prod$				
-						MED. TO DARK GLEY; BEDDED	Н	4	1	Ц	Ц	4	$\perp$	$\coprod$	Ц	11	$\coprod$		Ш	Щ
-						IN IMM TO 2CM BEDS;	Ц	4	1	$\coprod$	Ц	$\coprod$	1	Ц	$\coprod$	$\coprod$	$\coprod$	Ш	Ш	4
-						FOLD TO LIMM TO YMM DAKK	$\sqcup$	Ш	4	Ц	$\coprod$	$\coprod$	$\downarrow$	Ц	$\coprod$	$\coprod$	Щ		Ш	4
-						GREY TO BLACK SPECKS WITHIN	$\sqcup$	$\parallel$	4	Н	$\coprod$	$\coprod$	+	$\coprod$	$\coprod$	$\coprod$	$\coprod$	$\perp$	Ш	$\bot$
-						LICHTER MATTELY (UP TO 30%	H	$\mathbb{H}$	+	H	$\coprod$	$\parallel$	+		$\coprod$	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$\parallel$		Ш	+
-						OF ROCK BARK SPECKS ! MOSTLY	H	$\mathbb{H}$	$\downarrow$	${f H}$	H	$+\!\!\!+\!\!\!\!+$	+		H	$\coprod$	+	$\bot$	H	+
-						10 70 20 %); BEDDING &	Н	+	+	H	H	$+\!\!+\!\!\!+$	+	H	H	╫	+	+	H	+
-						FOR - LTO C.A. CHANCE INDIC-	Н	+	+	H	Н	+	+	╁┼	H	+	H	+	H	+
54	-					ATING FOLDING POST DEVELOPMENT		+	+	H	Н	+	+	H	Н	H	+	+	H	+
-						OF FOL ~ (BEDDING, FOL PARALER);	H	+	+	H	H	$+\!\!+$	+	H	H	₩	H	+	H	+
<b> </b>						W-CL THRU-OUT , MINOR LICM	Н	+	+	H	H	+	+	${\mathbb H}$	H	H	+	+	H	+
-						QSTKS " MINOR CC ON FRACTURES!	Н	+	+	H	H	+	+	H	Н	╁	H	+	H	+
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1 TO 3 DISS PYRITE; GENERALY	Н	+	+	╫	$\dagger \dagger$	+	+	H	H	╫	H	+	+	+
<b>.</b>	<b> </b>					SCRATCHES EASILY : >20 CM	H	+	+	╁┼	H	${\dagger}{\dagger}$	+	$\vdash$	+	+	$\dagger \dagger$	+	+	+
<u> </u>				· · · · · · · · · · · · · · · · · · ·	<del></del> i	PIECES NOT VERY CONMON	H	$\dagger \dagger$	+		H	$\dagger \dagger$	+	H	H	H	H	+	+	+
	60	^			i	THE CES NOT VERY CONTACT	H	$\forall$	$\dagger$	H		H	+	+	H	H	H	+	+	~
	0	1				50.2-50.4 2CM RSTR @	H	$\dagger \dagger$			H	$\dagger \dagger$	+	+	+	H	$\dagger\dagger$	+	+	+
5.8	01	n	ı		1	50° TO C.B. MINON QTZ - CARB	H	H	+	$\parallel$	H	$\dagger \dagger$		$\dagger$	+	$\dagger \dagger$	H	$\dagger \dagger$	+	+
,,	7	9			1	PATCHES : 5 % PY ; FOL =	H	$\dagger \dagger$	$\dagger$		Ħ	#	$\dagger$	$\top$	H	$\prod$	††	$\dagger \dagger$	+	十
Γ	4		Ì	······································		NOT VERY VISIBLE : FW TO	П	$\dagger \dagger$	1		$\dagger \dagger$	11	H	$\top$		П	$\dagger \dagger$	$\top$	#	十
		1	Ī			ABOVE ZONE,		$\Pi$	T		П	11	П	1		$\dagger \dagger$	T	$\top$	$\top$	+
						NA.	П	11	T		$\prod$	$\dagger \dagger$	П	$\top$		$\prod$	П	$\forall$	$\top$	十
		l				52.0) BEDDING & SO TO CA	П	П		T	П	П	П			$\prod$	П	П	П	T
			[			52.3) 2cm BAND OF CRUMRY MY	П	П			П	П	П		П	П	П	П	$\prod$	T
						C 450 ro C.A.						П	П			П	П	$\prod$		T
						53.5) BEODING @ 25° TOC.A.							П					$\prod$		Τ
						54.5) BEDDING @ 10°70c.A.	X											$\prod$	$\prod$	Ι
51		4			- !		1										П			Τ
_		53				58.8-59.3 STR ZONE	1												$\coprod$	Γ
		8				20% QTZ STRS W UP TO 20%	1	1	1										$\coprod$	I
		4			i	CARB WIN STRS & STRS @ MOD 4 TO	X		$\mathbb{I}$	Ш		Ш	Ц							I
_						C.A. ABRUPTLY PINCH : SWEEL		$\coprod'$					$\coprod$					$\coprod$	$\prod$	
_						ALONG FRACTURES: IM TO 6 CM IN		Ш	Ш				Ц					$\coprod$	$\prod$	
_					<del></del>	WIOTH: WR. FRAGS: MINOR WAS &			П				Ц					$\coprod$		
_			-			CC WITHIN: 2 % BY MOSTY IN MG,			$\coprod$				$\prod$					$\coprod$	$\coprod$	Ī
_						MINOR IN STRES		$\coprod$	Ш				Ш	Ш				$\coprod$	$\coprod$	
			-				1	Ш	$\coprod$	Ш			Щ	$\prod$			$\prod$	Щ	$\coprod$	
ေ							$\perp$	Ш	Ц	Ш		Щ	Ш	Ш	Ш		Ц	Ц	Ш	L

GE 7 OF 15 PROJECT: ENGIN	IEER							HOLE	No.	87-104
MINERALIZATION DESCRIPTION	TOTAL	INTERVAL	WIDTH		% Au g~4	% Ay pp~	%	Au 02/T		COMPOSIT ASSAYS
		<del></del>								·
		<del>-</del>			<u> </u>					
	++++	_				·				
	++++	<b></b>			<del> </del>		<del> </del>			
		_								
		<b>-</b>								
<u> </u>		-								
		_								
							- <del></del>			
	+++	_			<del> </del>			ļ		
0 2-50 4 057		_	02	5243	0 10	1.1		0,006		1
0,2-50.4 QSTR IN m-ALT = ARL IS % A			0,2	0273	0,/4	7 + 5		0,006	<del></del>	
77. 70. 77. 77.	1/2									
		_								
		<u> </u>	<u> </u>		ļ					
	+++	_	-						<u> </u>	
	++++	-	<u> </u>		<del> </del>					
		_							<del>-</del>	
	$\bot \downarrow \downarrow \downarrow \downarrow$	_	ļ	<u> </u>	<del></del>	<b></b>	<del></del>			
		_								
-08.502		_		1-21	0 ./					
58.8-59.3 STR ZONE 2 % PY			0.5	5244	0.06	0.5		0.002		
58.8-59.3 STR ZONE 2%PY			0.5	5244	0.06	0.5		0.002		
			0.5	5244	0.06	0.5		0.002		
			0.5	5244	0.06	0.5		0.002		
			0.5	5244	0.06	0.5		0.002		
			0.5	5244	0.06	0.5		0.00>		

.

4		8	OF	15	PROJ	ECT: ENGINEER							HOL	E۱	No.	8	`フ-	109	
DEPTH (METRES)	6 Core Recy	LITHOLOGY	STRUCTURE			GEOLOGICAL DESCRIPTION	_ <u> </u>	S	AL'	C			<u>ج</u>	2	FRACT				
41	%	1	S	50.	0-67.4	AKGILLITE (cont.)	Ϊ́		ΤÎ	Ħ	H	Ť		d	Π	$\dagger$			十
- 66 	₹ °6	9 KG		50,-		AKGICLITE (cont.)  (1.5m) BEDDING & 80° TO C.A.  (4.5m) BEDDING & SO & TO C.A.  (4.5m) BEDDING & SO & TO C.A.  (6.1-66.5 STR 20NE  15% CORE WH QSTRS &  GREY QTZ MATRIX BRECCIS; STRS  & MOD & HUGH & ITO C.A. 0.5  TO S CM WIDE: 3% DISS PY  IN AR6.  (6.5-67.0 MINOR QSTRS  (7.0-67.4 MOD QSTRS &  VARYING & TO C.A: ~10 % DE  CORE IS OTZ W & O.S. STRS:  PIINOR YULS; W-CC W ARG;  5% DISS PY IN ARC.													
67 - - - - - - - - - - - - - - - - - - -	001->	Qv/Bexx/S11= 20NE *		67.4-	69.0	QU BRXX SILD DONE (1.6m) MIXED ARC FRAS IN QTD AND UBAN i-Sil ARG; 20NE C NYSO TO C.A.													

AGE 9 OF 15	PROJECT: ENGI	NEE	R			.•				HOLE	No. S	87-104
MINERALI: DESCRIF		TOTAL	SULPHIDE	INTERVAL	WIDTH	ASSAY NUMBER	% Au gm/4	1	<b>%</b>	Au 02/4		COMPOSITE ASSAYS
			П	-								
				_		~						
		444	$\coprod$				ļ		· · · · · · · · · · · · · · · · · · ·	ļl		
		444	$\coprod$	_							·····	ļ
		+	$\mathbb{H}$	-	4		0.4					
66.1-66.5	STR Zong	+##	H	- <del>*</del> * * * * * * * * * * * * * * * * * *	0.4	5245	0,06	0.8		0.002		
	3 % P1	-111	H			i 	ļ		<u></u>		<del></del>	
		111	$\dagger \dagger$	<u>.</u>		<b>~</b> •	1	1	<u> </u>	1		<del> </del>
		111	††	<del></del>			<del>                                     </del>			1 1		
		111	$\parallel$	<del>,</del>					]			
		<del>         </del>	$\dagger \dagger$			·	1			1	······································	
				<del>-</del>								
			Ш									
67.0-67.4	MOD QSTRUS!		4	<del>.</del>	0.4	5246	0.12	1.3		0.004		
ARG HOST:	5 % PY	-144	4	<del></del>		· · · · · · · · · · · · · · · · · · ·	<b> </b>	ļ	ļ	ļ		<u> </u>
		+++	$\mathbb{H}$	<del></del>			ļ	ļ	ļ	<del> </del>		
		-+++	+		ļ	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	ļ	ļ		· · · · · · · · · · · · · · · · · · ·	<u> </u>
	**************************************	+++	+	<del>                                     </del>	<u> </u>		<del>                                     </del>	ļ	<del> </del>			<del> </del>
7.4-69.0		+	+					<del> </del>	<del> </del>		<del></del>	
My lagged SUE	74.15	+	+	_			<del> </del>	<del>                                     </del>	<b>†</b>	1		
67.4-68.2 6	0 % Aug Aag	1/	$\dagger$	67.4-	0.4	5247	014	10	<del>                                     </del>	0.004		<u> </u>
FRAGS ; 25 % G	PPY QTE: 15%	1/1		67.8		<u> </u>	10	1,0		1		
WHITE OFZ !				67.8-	0.4	5248	0.19	1.8		0.006		
PATCHY WHITE I	THINK CANS,			- 68.2								
PATCHY WHITE TO TIMES WIN CRES	1 QTZ: 2% PT	14										
DISS IN ARG.			4				<u> </u>					<u> </u>
68.2- <i>68</i> .7	VEXY i-SIL	1/4		- 68.2 68.7	0.5	5249	0.16	2.8	ļ	0.005		1.6m,0.005
ARL; GREY							<u> </u>			<u> </u>		<del>  </del>
PATCHES; ABNT		<u> </u>	+	_	ļ		<del> </del>	ļ	<b> </b>			<b></b>
1 10 0155 14		1//	++	68.7-	-	<b>F</b>	10.41	1/	<u> </u>	$\perp$		<del>  </del>
68.7-69.0 5	O TO WHOTE QTZ	1/	+	- 68.7- - 69.0	0.5	5250	0.11	1.6		0.003		<del> </del>
50 % GREY OTZ			+	_	-		-	1	ļ	-		
WEAK BANNE	7 % VEXLY		+	_	-		<del>                                     </del>	<del> </del>	<del> </del>	-		<del> </del>
F. G. PY.		+++	+	_		1	+	<del> </del>		<del> </del>		<del> </del>
			+	<del>                                     </del>	<u> </u>			<del> </del>	-	<b>†</b>		<del>                                     </del>
		1 1	1	ı	1	1	1	1	}	1 1	ì	1

PAGE	1	0	OF	15 PR	OJECT: ENGINEER						HOLE	No.	8	7-1	04	
DEPTH (METRES)	ore Recy	ITHOLOGY	STRUCTURE		GEOLOGICAL DESCRIPTION	S	Т	AL1	CM	TION	Se	RACT			e	
□ ₹	% Core	LIT	STR			A		В	С	D	Ε	T 2				
69				69.0-99,	ARGILLITE (SOME POSSIBLE TUFF)	/		И	Ш	$\mathcal{L}$	И	Ш	$\prod$	$\coprod$		
					- VARIABLE OFTON PATCHY LOOKING		$\parallel$		Ш	$\mathcal{A}$	17	$\coprod$	#	$\coprod$	$\coprod$	$\perp$
_					UNIT: MOSTLY BROWNISH - CREY WITH	14	$\parallel \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	4	$\coprod$	14		$\coprod$	$\coprod$	$\coprod$	-	<u> </u>
L					MINOR DAKK GREY GRADING TO	A	Ц,	4	$\coprod$	14	W	$\coprod$	H	$\coprod$	╁	+
-					GREY TO BLACK IN LATER PART	4	1/		##-	W.	1	H	$\dashv \vdash$	$\dashv \downarrow$	++	╀
-					OF UNIT; BROWNISH COZOR MAY	4	11;	14	+++	11/	1	HH	+	+	H	╁
-					BE OUF TO ALT & AS IN AKED	H	1	11	+++	1		HH	+	$+\!\!+\!\!\!+$	H	+
_					WHICH IS MORE GREY-BLACK STILL	$\vdash$		H	+++	<del>     </del>		+++	+	+	╫	+
-	Ϊ.				GET BROWNER COLOR ALONG FRACTINES	1 1	4	H	++	<del> } </del>	H	H	$\mathbb{H}$	+	${\dagger}$	+
70	F			•	VARIES FROM MASSIVE POSSIBLE TUFF	$\vdash$	1	#	+++			+++	H	+	H	+
-					TO THINLY BE ODED ARG.; OFTEN	$\vdash$	1	H	+++		+	H	H	+	${\sf H}$	╁
<u> </u>			}		BEDDING DISTRUYED BY ALTS .	${\mathbb H}$		+	++			╂┼┼	+	+	+	+
-				<del>4,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</del>	(T-Se-(MB ALTS?)	$\vdash$		H	+++			$\dagger \dagger \dagger$	+	+	H	+
-					(a) (a) (a) (a) (a) (a) (a) (a) (a) (a)	十	1	+	H			$\dagger\dagger\dagger$	$\dagger\dagger$	+	$\dagger \dagger$	+
-					69.0-69.6 PERVASIVELY ALTE;	${\dagger}$	1	1	+++		+	$\dagger\dagger\dagger$	H	$\dagger \dagger$	$\dagger \dagger$	t
F	1	1			(T-Se-D-S:?); CORE MOTTERD	H	1	#	$\dagger \dagger \dagger$	17	1/1	+++	$\dagger \dagger$	††	H	ţ
F	60	1			IN GREY TO FAN TO BROWN; FAIRLY	H	1	#	$\dag \dag \dag$	1		$\dagger\dagger\dagger$	$\dagger \dagger$	$\dagger \dagger$	H	
<b> </b>	0	S			SOFT EXCEPT FOR PATCHES OF	$\dag \uparrow$	1				И	$\dagger\dagger\dagger$	11	$\dagger \dagger$	$\dagger \dagger$	†
<b>-</b>	0	W			I -S: MUNO-FRACTURES IN	ff	7	#	1	17	1/1	$\Pi$	$\parallel$	#	$\prod$	†
<del>-72</del>		4			1% FG. PY IN UP TO ICM		1	1	$\dagger \dagger \dagger$		1	$\dagger \dagger \dagger$	$\Pi$	#	$\prod$	$\top$
-	1				PATCHES	$\sqcap$	1	1	$\dag \dag \dag$	1	ZI		$\top$	11	П	T
Ī		J	•		Threnes.	$\prod$		1	$\Pi$	团			П			T
	l	V			69,6- 77.0 MOSTEY BROWN GREN	$\prod$		7		1		$\prod$				Ι
-					TAN & SOME GREY PATCHES	П	1	$\prod$	$\prod$	7						I
					AND STREAKS (WIDE PERKOSINE		1	Ä		9						L
					T-Se-D?) · MOSTRY MASSINE		8								$\coprod$	$\perp$
<u> </u>					BUT BEDDING VISIBLE IN								Ш		$\coprod$	
		·			SOME PLACES, PSP. IS LATTER		19	$\coprod$	Ш	6				Ш	$\coprod$	$\perp$
76					PARTS OF INTERVAL, BEDDING		1		Ш				Ш		$\coprod$	
					CHILH L'TO C.A.; MINOR				Ш			Ш	$\perp \! \! \! \! \! \! \! \! \! \! \perp$	$\coprod$	$\coprod$	$\perp$
				-	LICM GREY TO WHITE OSTES	<u>                                     </u>						Ш	$\perp \! \! \! \! \! \! \! \! \! \! \perp$	$\coprod$	$\coprod$	$\perp$
					@ MOD TO LOW L'S TO C.P.		1	$\prod$	Ш	1		$\coprod$	$\prod$	$\bot \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	$\coprod$	$\perp$
L					1% PY, DISSEM; IN UP TO	$\coprod$	3		$\coprod$				$\coprod$	$\coprod$	$\coprod$	1
(a ma			Ò		ICM PATCHES		بال	$\coprod$	$\coprod$		1	$\coprod$	$\coprod$	$\coprod$	$\downarrow \downarrow$	1
1					<u> </u>	<i>///</i>		1	$\coprod$		8	Ш	$\coprod$	$\coprod$		, <b>.</b>
~					77.0-77.6 PATCHI GREY TO WHITE			11	$\coprod$		141	$\prod$	$\perp \mid$	$\coprod$	$\coprod$	Ĭ
`					QTZ MAKES UP 20% OF CORE	M		1	$\coprod$			Ш	Ш	$\perp \downarrow$		1
: : :					REST BROWN-GREY	Щ	$\coprod$	$\coprod$	$\coprod$	$\coprod$	$\coprod$	Ш	$\coprod$	$\coprod$	$\coprod$	1
78					·	Ш							Ш			L

	GE 11 OF 15 PROJECT: ENGI	NE	12	R			4.94.1	١٠٠٠			HOLE	No.	87-104
	MINERALIZATION DESCRIPTION	TOTAL	SULPHIDE		INTERVAL	WIDTH	ASSAY NUMBER	9% Au gmlt	% Ag ppm	%	Au		COMPOSITI
		$\prod$	$\prod$	$ar{L}$									
		$\parallel$	#	‡									
		$\coprod$		$\pm$									
		$\prod$	$\prod$	F									
<u> </u>			$\parallel$	ļ	•								
		$\coprod$	$\coprod$	$\perp$					-				
		$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$\prod$	$\downarrow$									
		$\parallel$	$\parallel$	‡									
6	9.0-69.6 ATT ARC.	1	H	+		0.6	18101	0.02	0.6	<u></u>	0.00		
	9.0-69.6 ALTE ARG;	13	$\prod$	Ŧ					77.0				
		$\parallel$	$\parallel$	1									
			$\prod$	+									
		П	TT	Τ				T					
		+	$\dagger \dagger$	+									<u> </u>
				+									
				++++									
				+ + + + + + + + + + + + + + + + + + + +									
		3 4											
		38.5											
		***											
		***************************************											
	77.0-77.6 GTZ FLCODINA IN ARG: 3 % PY DISSEM: IN PArcites	X .					18102				0.00)		

### GEOLOGICAL DESCRIPTION   S. D. C.M. T. S. D. C.M. T. S. D. C.M. T. S. D. C.M. T. S. D. C.M. T. S. D. C.M. T. S. D. C.M. T. S. D. C.M. T. S. D. C.M. T. S. D. C.M. T. S. D. C.M. T. S. D. C.M. T. S. D. C.M. T. S. D. C.M. T. S. D. C.M. T. S. D. C.M. T. S. D. C. S. S. M. S. C. D. E. T. S. D. S. M. S. C. D. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S.	PAGE	- /2	2	OF	15	PRO	IECT: ENGINEER		••					Н	OLE	N	o. {	37·	-10	4	,
\$ \$9.0-99.7 ARGULITE (CONT)  77.6-79.1 \$0 % BLOCK;  \$5 % ARWAY GREY; ARWAYE  COLOR RIGHT FLACTURES;  (W-T-SC-D WERRY); MINDER  \$: CATCHES  77.1-77.8 M TO ! - CARRENTE  \$: CATCHES  77.1-77.8 M TO ! - CARRENTE  \$: CATCHES  10	тн RES)	Recy	LOGY	TURE			CEOLOGICAL DESCRIPTION	$\vdash$							<u>ه</u>	15	SITY		T		
77.6-79.1 SO 20 BLOCK;  57.6-79.1 SO 20 BLOCK;  50.20 BLOWN CREEN; ADMINISE  COLOR PLANT CREEN; ADMINISE  (W.T-SC DO WERME?); MINOR  S: PATCHES  77.1-79.8 M TO 1 - PARCHINE  77.1-79.8 M TO 1 - PARCHINE  S: RESULTS IN MOTTEED  BLOWN CLEEN; WITH THE " NOOLO TO  WHITE GRZ PLEEDING 3"/6 PY  DISSET! IN A HIMM SIRE; ONE  110 30 - STR OD ASP R VS' TO  (AR ADMIL PLANT WAST INTON 1);  S: PATCHES; S LICH W. BROWN 1);  S: PATCHES; S LICH W. BROWN 1);  SS: PATCHES; S LICH W. BROWN 1);  SS: PATCHES; S LICH W. BROWN 1);  SS: PATCHES; S LICH W. BROWN 1);  SS: PATCHES; S LICH W. BROWN 1);  SS: PATCHES; S LICH W. BROWN 1);  SS: PATCHES; S LICH W. BROWN 1);  SS: PATCHES; S LICH W. BROWN 1);  SS: PATCHES; S LICH W. BROWN 1);  SS: PATCHES; S LICH W. BROWN 1);  SS: PATCHES; S LICH W. BROWN 1);  SS: PATCHES; S LICH W. BROWN 1);  SS: PATCHES; S LICH W. BROWN 1);  SS: PATCHES; S LICH W. BROWN 1);  SS: PATCHES; S LICH W. BROWN 1);  SS: PATCHES; S LICH W. BROWN 1);  SS: PATCHES; S LICH W. BROWN 1);  SS: PATCHES; S LICH W. BROWN 1);  SS: PATCHES; S LICH W. BROWN 1);  SS: PATCHES; S LICH W. BROWN 1);  SS: PATCHES; S LICH W. BROWN 1);  SS: PATCHES; S LICH W. BROWN 1);  SS: PATCHES; S LICH W. BROWN 1);  SS: PATCHES; S LICH W. BROWN 1);  SS: PATCHES; S LICH W. BROWN 1);  SS: PATCHES; S LICH W. BROWN 1);  SS: PATCHES; S LICH W. BROWN 1);  SS: PATCHES; S LICH W. BROWN 1);  SS: PATCHES; S LICH W. BROWN 1);  SS: PATCHES; S LICH W. BROWN 1);  SS: PATCHES; S LICH W. BROWN 1);  SS: PATCHES; S LICH W. BROWN 1);  SS: PATCHES; S LICH W. BROWN 1);  SS: PATCHES; S LICH W. BROWN 1);  SS: PATCHES; S LICH W. BROWN 1);  SS: PATCHES; S LICH W. BROWN 1);  SS: PATCHES; S LICH W. BROWN 1);  SS: PATCHES; S LICH W. BROWN 1);  SS: PATCHES; S LICH W. BROWN 1);  SS: PATCHES; S LICH W. BROWN 1);  SS: PATCHES; S LICH W. BROWN 1);  SS: PATCHES; S LICH W. BROWN 1);  SS: PATCHES; S LICH W. BROWN 1);  SS: PATCHES; S LICH W. BROWN 1);  SS: PATCHES; PATCHES IN MINOR 1);  SS: PATCHES; PATCHES IN MINOR 1);  SS: PATCHES; PATCHES IN MINOR 1);  SS: PATCHES; PATCHES IN MINOR 1);	DEP (MET	% Core	онтіл	STRUC			GEOLOGICAL DESCRIPTION		) <u>A</u>	'	υ B	Ch	/ (	,	E	FRA	INTE			,	
SO 9. GROWN - GROV : SARWATEK  COLOR ALEMA PRACTURES;  (W-T-SC-D extens); MINDA  S: CATCHES  77.1-78.8 M TO i - LERENSWE  S: RESULTS IN MOTTER  BROWN-LESY INHITE: N 200-7,  WHITE GTZ PLOODING; 3% ON  ITS 30 M STR OF ASP & 45° TO  ITS 30 M STR OF ASP & 45° TO  (APT AND PRACTURES; MINDA  S: MATCHES; S LICH DETES!  GREY AND PROPERTY  SCH ; 2 % CY  WHITE; MON STR SE STR;  STR.S & MOO TO HEAD & TO SHOW  IRREDUAR WALLS  83  83  83  83  83  83  83  83  83  8	- -				69.0-	- 99.7	ARGILLITE (CONT.)				1									$\perp$	L
COLOR ALONG FRACTURES;  (W-T-SC-D OCERALS); PHINDS  S: CATCHES  S: CATCHES  77.1-78 M TO I - CORNASING  S: RESOURS IN MOTTEED  BECOMMERCEN'S INDITE: NOTE 1  WHITE GTZ PLEADING, 3 % BY  IN 3 mm STR OD ASP B '65" TO  IN 3 mm STR OD ASP B '65" TO  GAST AND FRACTURES! MINDS  S: MATCHES; S & ICM DETES!  GE SO TO 60" TO C.A TO MINDS  SIM ; 2 % BY  WHITE; THOODING TO  1888-83.0 Mili-S: FLOODING TO  1888-83.0 Mili-S: FLOODING TO  1888-83.0 Mili-S: FLOODING TO  1888-83.0 Mili-S: FLOODING TO  1888-83.0 Mili-S: FLOODING TO  1888-83.0 Mili-S: FLOODING TO  1888-83.0 Mili-S: FLOODING TO  1888-83.0 Mili-S: FLOODING TO  1888-83.0 Mili-S: FLOODING TO  1888-83.0 Mili-S: FLOODING TO  1888-83.0 Mili-S: FLOODING TO  1888-83.0 Mili-S: FLOODING TO  1888-83.0 Mili-S: FLOODING TO  1888-83.0 Mili-S: FLOODING TO  1888-83.0 Mili-S: FLOODING TO  1888-83.0 Mili-S: FLOODING TO  1888-83.0 Mili-S: FLOODING TO  1888-83.0 Mili-S: FLOODING TO  1888-83.0 Mili-S: FLOODING TO  1888-83.0 Mili-S: FLOODING TO  1888-83.0 Mili-S: FLOODING TO  1888-83.0 Mili-S: FLOODING TO  1888-83.0 Mili-S: FLOODING TO  1888-83.0 Mili-S: FLOODING TO  1888-83.0 Mili-S: FLOODING TO  1888-83.0 Mili-S: FLOODING TO  1888-83.0 Mili-S: FLOODING TO  1888-83.0 Mili-S: FLOODING TO  1888-83.0 Mili-S: FLOODING TO  1888-83.0 Mili-S: FLOODING TO  1888-83.0 Mili-S: FLOODING TO  1888-83.0 Mili-S: FLOODING TO  1888-83.0 Mili-S: FLOODING TO  1888-83.0 Mili-S: FLOODING TO  1888-83.0 Mili-S: FLOODING TO  1888-83.0 Mili-S: FLOODING TO  1888-83.0 Mili-S: FLOODING TO  1888-83.0 Mili-S: FLOODING TO  1888-83.0 Mili-S: FLOODING TO  1888-83.0 Mili-S: FLOODING TO  1888-83.0 Mili-S: FLOODING TO  1888-83.0 Mili-S: FLOODING TO  1888-83.0 Mili-S: FLOODING TO  1888-83.0 Mili-S: FLOODING TO  1888-83.0 Mili-S: FLOODING TO  1888-83.0 Mili-S: FLOODING TO  1888-83.0 Mili-S: FLOODING TO  1888-83.0 Mili-S: FLOODING TO  1888-83.0 Mili-S: FLOODING TO  1888-83.0 Mili-S: FLOODING TO  1888-83.0 Mili-S: FLOODING TO  1888-83.0 Mili-S: FLOODING TO  1888-83.0 Mili-S: FLOODING TO  1888-83.0 Mili-S: FLOODING TO  1888-83.	_						•	+	+	$\frac{1}{2}$	+				1	$\parallel$			$\mathbb{H}$	+	-
(W-T-SC-D ONERMOS); MINNER  S: CATCHES  17.1-71.8 m To i - CENTREW  S.: RESCUTS IN MOTTREW  S.: RESCUTS IN MOTTREW  BROWN-LREY I WHITE: NOOF IN  WHITE GITZ FLEEDMA: 3% ON IN  INSERT! IN LIMM STRS; ONE  IT 30 - STR ID ASE & US TO  C.A.  177.8-80.8 BLACK TO BROWN-  GREY AND FRONTINGS! MINNER  S: LAPTHES: S L ICH DESERS!  C SO TO 60° TO C.A. TO MINNER  STR.: 2 % MY  WHITE; THOMAS STRS TO STR;  STRS & MAG TO HER L TO CO.;  IRREGULAR WALLS  83.0-87.0 BLACK TO SCIENT  MENNIN - CREY (YEAR W-T-SC-D)  MINNER L ICH QSTRS: L ICH  CC STRS.	_									1			1		4	$\prod$		Ш			
	_							Ш		1/1	$\perp$	Ш	1	Ш	1/2	Ц		Ш	Ш	Ц	
S: RESULTS IN MOTTER  BROWN-LREY INTITE : N 20% )  WHITE BY PREDICK 3 1/0 PY  DISSETY! IN A IMM STRS: ON A  ITO 3-1 M STR OF ASE & 48° TO  C. A.  179.8-80.8 BLACK TO BROWN-  S: MATCHES! MINOR II.  S: MATCHES! MINOR II.  S: MATCHES! MINOR II.  S: MATCHES! S & Kom estas 4  C SO TO 60° TO C. A TO MINOR II.  SMH: 2 1/0 PY  WHITE; MINOR STRS 5 SEN;  STRS & MOO TO HIGH L TO CA;  IRRECULAR WAYNS  83.0-87.0 BLACK TO SCHOOL  MOUNTE! - CARY (YEAR W. T-50.0)  MINOR & KOM OSTES; & Kom  C STRS	-						<del></del> -	Ш		1	1		1/4	$\bot \!\!\! \downarrow$	4	$\downarrow \downarrow$	$oldsymbol{\perp}$			$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	Ļ
S: RESULTS IN MOTTER  BROWN-LREY INTITE : N 20% )  WHITE BY PREDICK 3 1/0 PY  DISSETY! IN A IMM STRS: ON A  ITO 3-1 M STR OF ASE & 48° TO  C. A.  179.8-80.8 BLACK TO BROWN-  S: MATCHES! MINOR II.  S: MATCHES! MINOR II.  S: MATCHES! MINOR II.  S: MATCHES! S & Kom estas 4  C SO TO 60° TO C. A TO MINOR II.  SMH: 2 1/0 PY  WHITE; MINOR STRS 5 SEN;  STRS & MOO TO HIGH L TO CA;  IRRECULAR WAYNS  83.0-87.0 BLACK TO SCHOOL  MOUNTE! - CARY (YEAR W. T-50.0)  MINOR & KOM OSTES; & Kom  C STRS	_				·			+	+	₩	+	H		+	//	$\dashv$	+	H	H	$\vdash$	├
BROWN-LRBY INFITE 100 70 10 10 10 10 10 10 10 10 10 10 10 10 10	_								+	1/	+	H		+	1	H	+	H	H	H	<del> </del>
WHITE GTZ PLOODING 3% PY  DISSETY IN LIMIN STRS: ONE  ITA 30 - STR OD ASP & YE TO  C.A.  TARS-80.8 BLACK TO BROWN-  GREY AND FRONT WAS I THINK  S: PATCHES: S LICH QUERS II  C SO TO 60 TO C.A. TO MINOR  SPH; 2 % PY  WHITE; THINK STRS TO STH;  STRS & MOQ TO HIGH L TO C.A.;  IRREDUAR WAYS  MANUEL - CREY (VERY W-T-S-D)  MINOR L ICH QSTRS ! LICH  C. STRS  C. STRS	<b>—79</b>							+		1	$\dagger$	H	1	$\dagger \dagger$	1	$\dagger \dagger$	+	H	H	$\dagger$	十
DISSETT   W   Imm STRS   ONE	-				<u> </u>					#	$\dagger$	H	1	$\parallel$	//	$\dagger \dagger$	$\top$	П	Н		<b> </b>
170 3 mm 57% OF 050 Q 45° TO	_						DISSERY IN LIMM STEEL ONE.	17		挧	†	$\prod$	1/2	$\parallel$	1	#	+	П		П	T
GO TO TO THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE	-						1 TO 3 mm STR OF ASP @ 450 TO		1	19			1/4		1					$\prod$	
GRET A DEL FRANCTICUS : MINOR   S: MATCHES: S L ICM QSTRS   S C STRONG S S C STRONG S S C STRONG S S C STRONG S S C STRONG S STRONG S STRONG S STRONG S STRONG S STRONG S STRONG S STRONG S STRONG S STRONG S STRONG S STRONG S STRONG S STRONG S STRONG S STRONG S STRONG S STRONG S STRONG S STRONG S STRONG S STRONG S STRONG S STRONG S S S S S S S S S S S S S S S S S S S	_		,					14	4	Ш		Ш		Ш	$\perp \! \! \perp$	$\coprod$				Ц	$\perp$
GRET A DEL FRANCTICUS : MINOR   S: MATCHES: S L ICM QSTRS   S C STRONG S S C STRONG S S C STRONG S S C STRONG S S C STRONG S STRONG S STRONG S STRONG S STRONG S STRONG S STRONG S STRONG S STRONG S STRONG S STRONG S STRONG S STRONG S STRONG S STRONG S STRONG S STRONG S STRONG S STRONG S STRONG S STRONG S STRONG S STRONG S STRONG S S S S S S S S S S S S S S S S S S S	_	$  \uparrow  $						4		$\coprod$			$\perp \mid$	Ш	4	$\coprod$	$\perp$	$\coprod$		$\coprod$	1
S: MATCHES: S & ICM OSPAS WAR IN CONTROL TO SPAN : 2 % PY WAR IN SPAN : 2 % PY WAR IN SPAN : 2 % PY WAR IN SPAN : 2 % PY CODING TO WHITE : MINOR STRS TO SPAN : STRS & MOO TO HIGH & TO C.A.; IN IRREGULAR WALLS  83.0-87.0 BLACK TO SUGAR  REGIONALLY - CREY (YERY W-T-SC-D?)  MINOR & ICM OSTRS : (ICM  CC STRS	_	0				1	79.8-80.8 BLACK W BROWN-	Ľ/	8	$\bot\!\!\!\!\!\bot$	$\downarrow$	Ш	$\parallel$	$\perp \downarrow$	4	$\bot$	$\perp$	oxdapprox		Ц,	.1 U⊯
S: MATCHES: S & ICM OSPAS WAR IN CONTROL TO SPAN : 2 % PY WAR IN SPAN : 2 % PY WAR IN SPAN : 2 % PY WAR IN SPAN : 2 % PY CODING TO WHITE : MINOR STRS TO SPAN : STRS & MOO TO HIGH & TO C.A.; IN IRREGULAR WALLS  83.0-87.0 BLACK TO SUGAR  REGIONALLY - CREY (YERY W-T-SC-D?)  MINOR & ICM OSTRS : (ICM  CC STRS	_	8	1				GROI AME FRACTURES! MINER	1/		$\coprod$	1	Ш	$\dashv$	$\coprod$	$\bot\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$\downarrow \downarrow$		$\vdash$	igdot	ig	-
83.0-87.0 BIRCK TO SCIENTY  SEWMISH - GREY (YEARY W-T-SE-B!)  MINDE < ICM GSTRS : CICM  STRS & COMMINICAL COMMINICAL  RESENTANT WALLS	-	0			<u> </u>		S: PATCHES! S L ICM OSTAS	1/		$\coprod$	+	H	+	$\dashv \downarrow$	+	44	$\mathbb{H}$	-	H	$\dashv$	+
83.0-87.0 BIACK TO SCIENTY  SROWMSH - GREY (YEAR W-T-SC-D)  MINDE < 1cm @ STRS ; < 1cm  CC STRS	-81	0	2 R		ļ		C 50 ro 60° TO C.A TO MINOR	1	4	$\mathbb{H}$	+	$\mathbb{H}$	+	+	+	$\mathcal{H}$	+	${f H}$	H	$\vdash$	+
83.0-87.0 BLACK TO SCIENTY  SECULAR WALLS  83.0-87.0 BLACK TO SCIENTY  SECULAR L'ESTES 'C ICM  RECOUNTE - GREY (YERY W-T-SC-D')  MINOR C ICM GSTRS 'C ICM  CC STRS	-	,	4				SPH; 2 % PY	+7		+	+	H	+	+	+	+	+	${\sf H}$	H	${}$	+
83.0-87.0 BIRCK TO SCIENTY  Seemish - Crey (Year w-T-Se-D)  MINDE & ICA OSTES : < ICA  Cc STES	_	$\bigvee$	V					1	A	+	+	H	H	+	++	+	+	+	H	H	+
83.0-87.0 BIRCK TO SCIENTY  Seemish - Crey (Year w-T-Se-D)  MINDE & ICA OSTES : < ICA  Cc STES							80.8-83.0 ms in Si Flances W	T	1/		T	$\prod$			П	T	П	$\sqcap$	$\dagger \dagger$	П	Ť , ·
WHITE: MINOR STRS & SPH; ASTRS & MOO TO HIGH L TO GA.;  IRRECULAR WALLS  83.0-87.0 BIACK TO SCIENT  SROWNISH - GREY (YERY W-T-SE-D?)  MINOR < ICM QSTRS : < ICM  Cc STRS	_							7/		$\prod$	T	$\prod$				T	П	П	П	П	T
STRS & MOO TO HIGH L TO CA.; III,  IRRECULAR WAUS  83.0-87.0 BLACK TO SCIENTY  SROWMSH - GREY (VERY W-T-SC-D?)  MINDE < ICM QSTRS : < ICM  Cc STRS	_						WHITE . MINOR STRS TO SPH:	17		П	T	$\prod$				T				$\prod$	
B3.0-87.0 BIACK TO SCIENT  BEOWNISH - GREY (VERY W-T-SE-D?)  MINDE < ICM QSTRS : < ICM  Cc STRS	-						STRS & MOD TO HIGH L TO COA.	1	Z							$oldsymbol{\mathbb{T}}$		Ш		П	L
83.0-87.0 BIACK TO SCIENCY  BROWNISH - GREY (VERY W-7-SE-D?)  MINOR < ICM OSTRS : < ICM  Cc STRS	_						IRRECULAR WAUS	/		1	1	Ш	Ш	Ш	Ш		Ц	$\coprod$	Ц	Ц	$\perp$
83.0-87.0 BIACK TO SCIENCY  BROWNISH - GREY (VERY W-7-SE-D?)  MINOR < ICM OSTRS : < ICM  Cc STRS	[_							$\mathbb{Z}$			1			Щ	$\perp \mid$	1	$\coprod$	$\coprod$	Ц	$\coprod$	_
83.0-87.0 BIACK TO SCIENCY  BROWNISH - GREY (VERY W-7-SE-D?)  MINOR < ICM OSTRS : < ICM  Cc STRS	83			<u> </u>					14		1	$\coprod$	Ш	Щ	$\prod$	4	ot	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$\coprod$	$\coprod$	<del> </del>
BROWNISH - GREY (YERY W-T-SE-B?)  MINDE < ICM QSTRS : < ICM  Cc STRS								+	$\sqcup$	$\coprod$	1	-	$  \downarrow \downarrow  $	$\bot$	$\coprod$	4	$oldsymbol{arphi}$	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$oldsymbol{\parallel}$	$\coprod$	+․
BROWNISH - GREY (YERY W-T-SE-B?)  MINDE < ICM QSTRS : < ICM  Cc STRS	_			ļ				+	H	$\prod$	+	H	$  \cdot   \cdot  $	+	+	#	$oldsymbol{+}$	#	$\dashv$	$oldsymbol{ec{ec{H}}}$	+
BROWNISH - GREY (YERY W-T-SE-B?)  MINDE < ICM QSTRS : < ICM  Cc STRS	_						0	+		+	+	H	H	+	+	+	H	+	$oldsymbol{+}$	H	+
MINDE LICH OSTES : (len)  Ce STES	_			<u> </u>					$\left  \cdot \right $	+	+	H	H	+	+	+	${\it H}$	+	H	H	+
Cc Sines	_								H	H	+	H	$\mathbb{H}$	+	+	+	$\vdash$	${}$	H	${\dagger}$	+
	_							+	H	+	+	$\mathbb{H}$	+   +	+	+	+	$\vdash$	${f +}$	+	${\sf H}$	~
-	_			1	<b></b>		ce spes	+	H	+	+	$\dagger \dagger \dagger$		+	+	+	$\vdash$	$\dag \uparrow$	H	$\dagger \dagger$	†
	-							+	H	+	+	$\dagger \dagger \dagger$		$\forall$	+	+	$\dag \uparrow$	$\dag \uparrow$	$\dagger \dagger$	H	†
<b>Y7</b>	87				<b> </b>			$\dagger$	H	$\parallel$	$\dagger$	H		$\forall \exists$	++	+	H		$  \uparrow  $	$\parallel$	†

										S - 4.4
MINERALIZATION DESCRIPTION	1	ш	INTERVAL	WIDTH	ASSAY NUMBER	% Au gm4	% Ay ppm	%	Au oztr	8 7-/08 COMPOSITE ASSAYS
			_							
	╫	H	-							
	$\dagger \dagger$	H	_			1				
		$\parallel$								
	$\prod$	П								
	$\coprod$	$\coprod$	_			ļ			<u> </u>	
791-798	Η,	╁┼	-	06	18103	0.56	23		0.016	
79.1-79.8 5: FLOODING IN ARC; 390 PY; 21% AFP;	1	#	-	0.8	18103	0.36	2,3		0.016	
1 TO 3 MM ASP STR & 45° TO CA.	1/	1								
	$\prod$									
	$\bot$	$\coprod$	_			-			<u> </u>	
	+	╫	-			ļ				
	H	H	+	-		-				
79.8-80.8	$\dagger\dagger$	$\dagger \dagger$	†	10	18104	0.21	6.7		0.006	
MINOR ZICM QSTRS WITH			Ī							
DISS PY ! REDOISH - BROW~	$\prod$	$\prod$								
SPH (10 % WITHIN STRS);	$+\!\!+$	#	<del> </del>			<del> </del>			-	
DISSOM PY IN ARC; 2 % PY	4	H	+						1	
MINOR SPH OYERALL	+	H	+	-		<del> </del>			+	
80-8-81.3 C-S: PATCHY	$\dagger \dagger$	$\dagger \dagger$	+	0.5	18105	1.70	6.8		0.050	
WHITE S: FLOODING 5 %										
PY DISSON : IN PATCHES!	$\coprod$	$\coprod$	<u> </u>	ļ		<u> </u>			<b>_</b>	
4/% REDDISH - BROWN SPH	+	$\mathbf{H}$	+	-		-			-	
IN WHITE ASTES	H	H	+	00	18106	036	C /		0.011	
81.3.82.1 m. S: ; 3 % PY 24/cm STRS & MINOR SAM		$\dagger \dagger$	†	0.8	1878	0.50	3.1	~	0.07	
82.1-83.0 m-S: 2%				0.9	18107	0.02	1.4		0.001	
PY.; Tr - SPH.	$\coprod$	$\coprod$	_							
-	- -	$\prod$	+	<u> </u>		-				
	+	+	+	-		-				
	+	+	+		-	-			-	
	+	++	+						1-1	
		$\downarrow \downarrow$	_		ļ					

PAGE		14	OF	PRO	JECT: ENGINEER						1	IOLE	No	. 8	? 7-	10		
DEPTH (METRES)	Core Recy	LITHOLOGY	STRUCTURE		GEOLOGICAL DESCRIPTION	S		ALT b	CM	1 7	N	se	FRACT	TENSITY			7	<b>(</b>
87	%		S	C~ 0.		A	1	B	C	0		E	<del>                                     </del>	<u> </u>	11	<del> </del>	┿	
-				69.0-99.7	ARGILLITÉ (cont.	4	#	₩	HH	$+\!\!\!+$	H	$+\!\!+$	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	H	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	-
F					27.4 80 5	1	H	╫	HH	+	H	╫	╫	Н	H	╫	╫	-
F					87.0 - 90.5 M TO i - PERVASIVE	1	H	╫	╂╂╁	╫	H	+	╫	Н	${f H}$	#	╫	-
<b> </b>					Si 1 15 To 30% OF CORE	1	H	╫	HH	+	H	$+\!\!+$	${\mathbb H}$	H	╫	+	╫	-
F					PATCHY WHITE (UP TO SCM	1	H	${\mathbb H}$	╫	╂	${\mathbb H}$	+	H	╁┼	+	╫	╫	-
<u> </u>					IRRELUIAN PATCHES): 3%	1	什	$\dag \uparrow$	Hf	+	H	+	${ m H}$	$\dagger\dagger$	H	${\dagger\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$\dagger \dagger$	-
<b>F</b>					CLEY TO BROWN GREY ITAN!	1	H	╫	$\dag \dag$	+	$\dagger \dagger$	+	$\dagger \dagger$	$\dag \dag$	$\dagger\dagger$	#	H	-
r					INTERVAL P. ~ 40 TO SO° TO C.A.	1	什	$\dagger \dagger$	fff	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	$\dagger\dagger$	$\dagger\dagger$	$\dagger \dagger$	Ħ	-
					10 30 10 019	1	7	$\parallel$	$\Pi \uparrow$	$\dagger \dagger$	$\dagger \dagger$	11	††	$\dagger \dagger$	$\dagger \dagger$	$\dagger$	$\dagger \dagger$	-
90						1		$\prod$	$\Pi$	$\dagger \dagger$	$\dagger \dagger$	11	T	Ħ	$\dagger \dagger$	$\dagger$	$\dagger \dagger$	_
						1	r	$\Pi$	Ħ	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	††	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	-
						1	7	$\dagger \dagger$	111	$\dagger \dagger$	$\Pi$	11	$\dagger \dagger$	+	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	-
						1/			$\prod$	11	$\prod$	11	$\parallel$	$\Pi$	$\prod$	$\dagger \dagger$	$\parallel$	-
					90.5-90,8 CORE W 1 ro 3cm	4/	7		Ш		$\prod$	11	$\Pi$	П	$\prod$	T	$\prod$	-
			BKN		SOMEWHAT ROMDED PIECES; 10 %	K		П		7	T		П	П		П	П	•
	8	- 1	t safe		WHITE ATZ ; S % PY; CORE TAN	1				1/1	1	<u>'</u>	П	П			***	تونيلا
		个	_ ,. \		) //	1				/							$\prod$	_
	00,	હ			90.8- 91.5 CORE MOD BROKEN	4										$\prod$		_
_91		V			BROWNISH - GREY ITOM: 10%	Ζ.				1				$\prod$		$\prod$	$\prod$	_
L		4			WH. QTZ W UP TO 3cm PATCHES	1	Ш	Ш	Ш	1		4	Ш	Ш	$\coprod$	$\coprod$	Щ	_
_		J			AND LICH IRREGULAR STRS!	1			Ш	1/4	Ц	1	$\coprod$	Ц		$\coprod$	Ц	_
_		*			3 % PY.			Ш	Ш		Ш		$\coprod$	Ц	$\coprod$	$\coprod$	Щ	_
_								Щ	Ш	$\coprod$	$\coprod$	4	$\coprod$	$\coprod$	$\prod$	$\coprod$	$\coprod$	_
_				····	91.5-93.0 CORE BECOMING					$\coprod$	Ц	11	$\coprod$	Ш	$\coprod$	$\coprod$	$\coprod$	_
_					INCKEASINGLY GREY - BLACK;		$\perp$	$\coprod$		$\coprod$	$\coprod$	#	$\coprod$	$\coprod$	Ц	11	$\coprod$	_
_					MINOR WHITE QTZ PATCHES!		4	-		4	$\coprod$	44	$\coprod$	$\coprod$	1	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	-
_			-		MINOR CC ON PRACTURES	-	1	$\coprod$		$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$\coprod$	$+\!\!+$	$oxed{\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$\coprod$	#	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	-
_			-				+	$\coprod$		+	H	$+\!\!+\!\!\!+$	#	-	-	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	₩	-
93			<del> </del>	i	93.0-99.7 CORE DARK GREY		-	-	H	#	$\coprod$	+	1	$oldsymbol{\parallel}$	+	#	H	
-			-		TO BLACK; 10 % WHITE PATCHES	4	4	$\vdash$	H	+	H	+	-		++	#	H	-
-			}		DUE TO QTZ-C FLOODING ; To	4	1/	$\vdash$	$\mathbb{H}$	+	$oxed{+}$	#	$\vdash$	-	$\dashv$	#	#	-
			+		OF CC TO S: [NCREASES DAWN	#	1	$\vdash$	++	#	H	+	-	$\mathbb{H}$	$\dashv$	igoplus	H	-
-			}		INTERVAL! LI TO PY : MOSTRY W QTZ-CC FLOODING: CORE MOD HAND TO HAND: FAIRLY BROKEN	1	╁	-	++	+	H	+		H	++	+	+	-
-			}		W UTZ-CC FLOODING CORE	A	7	-	++	#	H	+	H	$\dashv$	+	#	Н	
<u> </u>			}		MOD HALD TO HARD . FAIRLY BROKEN	<del>//  </del>	1	H	++	+	-	+	H	$\dashv$	H	#	-	-
-			-		IN UPPER PART TO UNBROKEN	#	+	H	+	-	H	-	H	$\mathbb{H}$	+	${f H}$	H	•
			F	1	IN LOWER PART	41	1	H	+	+	H	++-	H	+	+	+	$oldsymbol{+}$	-
- ,	ļ	H.a.	-	997	E. O. H.	$+\!\!+\!\!\!+$	+	H	++	$+\!\!+\!\!\!-$	H	++-	Ш	+	+	+	+	•
100				. / / /	E, U, M,	Ш		Ш	Щ	Ш	Ц	للل	Ш	L			Ш	

PAGE 15 OF 15 PROJECT: ENGI	NEER							HOLE No	. 87-104
MINERALIZATION DESCRIPTION	TOTAL	INTERVAL	widтн	ASSAY NUMBER	% Au gm/ _T		%	Au 02/4	COMPOSITE
		-							
87.0-87.7 15 % WHITE		-	0.7	/8/08	0.16	1,1	······································	0.005	
87.7-88.5 30 % WHOTE		-	0.8	18109	1.53	7.6		0.045	
SCM STRS! 4 % PY		<u> </u>							
3% PY		<del>-</del>			0.60			0.018	
89.2-89.9 20% QTZ: 5 % PY 'TRACE - SPH.			0.7	18/1/	0.66	4.2		0.019	
5 % PY : TRACE - SPH.  89.9- 90.5 3 % QT2: 3 % PY ; TRACE - SPH.			0-6	18112	0.73	5.8		0.021	
90.5-90.8 BAKN CORE;		<del>-</del> -	0.3	18113	1.55	73.4		0.045	
90.8.91.5 10 90WH W72	~ //		0.7	18114	0.20	4.5		0.006	
ARG', 3 % PY		<del>-</del>							
,									
		_							
		_				<i>.</i>			
96.6-97,0 25% OF		_	0,4	18115	0.14	1.8		0,004	•
INTERVAL IS WH RTZIN  INREGULAR PATCHES; STAS!  1º/0 PY; W-PERVASIPE CO		_							
1 10 PY " W- PERV ASIVE CO		_							

.

PAGE			OF	PROJECT:							н	IOLE	E N	No.					]
- (S	ecy	GΥ	RE			,	۱Ľ	TER	AT	ION	i		$\int_{\cdot}$	2	<u>-</u> T		T		7
DEPTH (METRES)	% Core Recy	LITHOLOGY	STRUCTURE	GEOLOGICAL DESCRIPTION						. ••			FOAGT	INTENCT	E175			¥	T
	%		ST		A	L,	В	Ļ	:	D	$\perp$	E	$\downarrow$	2	1		╧	<del>, , ,</del>	┵
-						Ц	1	4		Ш	Ц	44	1	Ц	1	Ц	1	Ц	1
-						Ц	4	#			$\coprod$	$\coprod$	$\downarrow$	$\coprod$	$\downarrow$	igert	$\downarrow$	$\coprod$	$\downarrow$
-				·		Ц	4	Ц.			Ц	$\coprod$	4	$\sqcup$	$\downarrow$	$\coprod$	4	Ц	$\downarrow$
-						Ц	4	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$			Н	$\coprod$	1	$\sqcup$	4	$\coprod$	4	$\sqcup$	$\downarrow$
•						Ц	4	$\coprod$	Н	$\perp$	Ц	#	4	Н	4	H	+	igert	4
						Ц	4	$\coprod$	Н	$\perp$	Ц	$\coprod$	╀	Н	$\downarrow$	igert	$\downarrow$	H	$\downarrow$
				· · · · · · · · · · · · · · · · · · ·		$\sqcup$	4	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	Ц	$\bot$	$\coprod$	$\coprod$	$\downarrow$	$\sqcup$	+	$\coprod$	4	$\sqcup$	+
						$\sqcup$	+	#	H	$\mathbb{H}$	H	$\coprod$	+	H	$\downarrow$	otag	+	$\dashv$	+
						ert	+	#	Н	$\mathbb{H}$	H	H	+	H	+	H	+	H	+
- <b>-</b>	$\vdash \downarrow$					$\dashv$	+	#	H	$\mathbb{H}$	H	$+\!\!\!+$	+	H	+	H	+	H	+
						$\sqcup$	+	$\coprod$	Н	$\Box$	Н	$\dashv$	+	$\coprod$	$\downarrow$	${f H}$	+	H	$\downarrow$
						Ц	+	#	Н	$\mathbb{H}$	$\coprod$	#	+	H	+	$\coprod$	+	arpropto	+
						-	$\downarrow$	#	Н	+	H	+	$\perp$	H	+	H	+	$oxed{H}$	4
						$\dashv$	+	+	Н	+	H	${\mathbb H}$	+	H	+	H	+	H	$\frac{1}{1}$
						$\dashv$	+	+	Н	+	H	##	+	Н	+	${\mathbb H}$	+	$\dashv$	+
						$\dashv$	+	H	Н	+	$\mathbb{H}$	H	+	H	+	$\mathbb{H}$	+	H	+
		-				4	+	╫	Н	+	Н	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	1	H	+	H	+	H	به
						$\dashv$	+	╫	Н	- -	Н	$^{+}$	+	H	+	H	+	H	+
		,				$\dashv$	+	₩	Н		$\mathbb{H}$	H	+	H	+	$\dashv$	+	H	+
_	$\vdash$			<u> </u>		$\dashv$	+	╂┼	Н	$\dashv$	H	$+\!\!+$	+	H	+	₩	+	$\dashv$	+
						$\dashv$	+	₩	Н	+	H	╫	+	H	╀	$oldsymbol{H}$	+	${f H}$	+
		-				4	+	₩	Н	$\dashv$	$\mathbb{H}$	H	+	Н	+	$oxed{H}$	+	H	+
			ļ			$\dashv$	+	₩	Н	+	H	H	+	H	+	₩	+	dash	+
						+	+	+	Н	+	H	$\dashv \vdash$	+	H	+	₩	+	${f H}$	+
						4	+	#	Н	+	$\prod$	$\dashv \vdash$	$\perp$	H	+	H	+	H	+
						4	+	-	H		$\dashv$	$\dashv \downarrow$	$\mathbb{H}$	Н	$\downarrow$	H	-   .		+
		•				+	+	+	Н	+	$\dashv$	$+\!\!+$	$\mathbb{H}$	${\mathbb H}$	+	$oldsymbol{ec{ec{ec{ec{ec{ec{ec{ec{ec{ec$	4	H	+
			-			+	+	+	ert	+	$\mathbb{H}$	+	H	$\mathbb{H}$	+	$\dashv$	+	$\dashv$	+
		}	}			+	+	+	Н	$\dashv$	$\parallel$	$\dashv \downarrow$	$\mathbb{H}$	-	+	ert	#	H	+
	$\vdash$					+	+	₩	Н	+	4	#	$\mathbb{H}$	$\dashv$	+	$\dashv$	4	H	$\downarrow$
		1	ŀ			4	+	#	Н	+	4	+	$\mathbb{H}$	$\dashv$	+	₩	+	$\vdash$	+
		ļ	-			+	+	₩	Н	$\dashv$	+	$\mathbb{H}$	Н	$\sqcup$	$\bot$	H	+	$\dashv$	+
		}	}			+	+	H	$\dashv$	- -	+	#	H	$\dashv$	+	$\dashv$	$\dashv$	$\dashv$	+
			}			+	+	#	4	+	+	#	H	1	+	otag	+	-	+
		į	}			4	-	#	4	+	+	$\coprod$	$\coprod$	$\dashv$	4	$\dashv$	$\parallel$	$\dashv$	4
			}	•		4	+	-	4	44	+	$\coprod$	$\coprod$	4	$\downarrow \downarrow$	${oldsymbol{\parallel}}$	$\downarrow \downarrow$	4	
			ļ			+	+		4	$\coprod$	+	igoplus	$\coprod$	+	+	H	$\bot$	$\dashv$	+
						4	$\downarrow$	$\coprod$	4	$\coprod$	4	$\coprod$	$\coprod$	4	$\coprod$	$\boldsymbol{\mu}$	$\coprod$	+	1
			- }	<u> </u>		$\downarrow$	$\downarrow$		4	$\coprod$	4	$\coprod$	$\coprod$	4	$\downarrow \downarrow$	4	$\parallel$	$ \downarrow $	+
		- 1	1			1				$\perp$	1	11						П	

## ERICKSON GOLD MINING CORP. MINERALS SECTION

## DRILL LOG

Diffee Coo	
PROJECT ENGINEER	GROUND ELEV.
	797, 20
HOLE No. 87-105	BEARING 104 °
LOCATION	DIP
N 4528,20	-44.00
E 3368.30	
E 3360.10	TOTAL LENGTH
	142.0m.
LOGGED BY	HORIZONTAL PROJECT
H. SMIT	103.24m
DATE	VERTICAL PROJECT
OCT 3/87	97.48m
CONTRACTOR	11.18m.
CONTRACTOR	ALTERATION SCALE
CONNERS	11,1
	absent
	slight
CORE SIZE	
N Q	moderate
DATE STARTED	intense
SEPT 28 187	<del>                                      </del>
	TOTAL SULPHIDE SCALE
DATE COMPLETED SEPT 30/87	traces only
3211 30787	
DIP TESTS DIP AZIMUTH	1%
17.1 UNREADASIE 20.1 -44 104°	1% - 3%
- 40 5 4070	3% - 10%
142.0 -42.5 107	> 10%
COMMENTS	LEGEND
MAJOR INT MS	
9.7-10.2 QV WHITE + GREY QTZ, MINOR CARB!	
(0.5m) 41% py ! CONTACTS @25° TO C. A.	
@ 0.002 ozlan Au	
^	
21.3-22.6 QV WHITE RTZ WABNI ARG. FRAUS;	
(1.3m) 1 % 17 , m. war voes;	
@ 0.006 ozlten Am. Contacts & 30 rol. A.	

PAGE	2		OF	15	PROJ	ECT: ENGINEER							но	LE	No.	8	7-10	S	
DEPTH (METRES)	% Core Recy	LITHOLOGY	STRUCTURE			GEOLOGICAL DESCRIPTION		Si A	1.	C	AT Al	7	3	, હ	FRACT			7	
0		n		0-3	3.3	OVERBURDEN		I	Ш	$\prod$		$\prod$		$\prod$	$\prod$	$\prod$		$\prod$	_
							$\coprod$	4	Ш	$\coprod$	$\coprod$	$\coprod$	$\coprod$	4	$\coprod$	#	Ш	$\coprod$	_
· :			Ш				$\sqcup$	4	$\coprod$	+	$\sqcup$	$\mathbb{H}$	$\mathbb{H}$	+	$\coprod$	H	$\coprod$	+	-
_		X		3.3-	9.7	ARGILL ITE	$\mathbb{H}$	+	H	$+\!\!\!+$	Н	+	+	+	+	${\mathbb H}$	+	+	-
<u>`</u>		Y	Н	<del> </del>		BLACK; MASSIVE : MINOR CO	$\mathbb{H}$	+	+++	₩	Н	+	H	+	+	H	+	+	-
		╫	H			ON RUSTY WEATHERING FRACTURE	#	+	Н	╫	Н	+	+	+	+	$\dagger \dagger$	+	+	-
-		╫	H	-	····	CORE HARD	+	+	H	$\dagger \dagger$	H		$\dagger \dagger$	+	+	$\dagger\dagger$	$\dagger \dagger$	+	-
-	$\chi$	*	H	<b>-</b>		(3.3-7.9) BROKEN, BLOCKY CORE; 80 % RECOVERY; 100%	T	$\dagger$	H	$\dagger \dagger$	H	$\parallel \parallel$	H	+		$\dagger\dagger$	$\dagger \dagger$	$\parallel$	-
-		-   -	H			RECOVERY AFTER	T	$\dagger$	11.	$\dagger \dagger$	Ħ		$\dagger$		П	#	$\dagger \dagger$		<del>-</del>
<del></del>	0					140 0000 1 111 1212.		$\sqcap$		$\top$	T		$\top$			$\prod$	$\prod$		
<u> </u>	8					84-8.9 QST25 :	T	П	$\prod$		T								
<u> </u>	0	$\parallel$				8.4-8.9 QSTRS; 10 cm OSTR @ 20° TO C.A; 2cm QSTR @ 15° TO C.A.;										$\coprod$	$\prod$		_
	$\infty$					2cm QSTR @ 15° TO C.A. ;											$\coprod$	Ш	_
			$\prod$			BUT OPPOSITE DIRZ AS 10cm			Ш	Щ		Ш	$\perp$	$\perp$	Ш	Ц	11	Ш	_
		Ш	Ш			ONE; WHITE QTZ TO MINOR	1	Ц	$\coprod$	$\coprod$	_		$\perp$			4	$\bot \bot$		_
		4	Ш		1	ORANGE - BROWN WEATHER ING FACE	4		11	Ш	1		1	1		$\parallel$	+	Щ	التنديدينا
L	*	4	Ш	ļ		CARB; W. R. IS SILIC IFIED ARG	:	$\sqcup$	44	Ш	_	Ш	$\perp$	$\Vdash$		41	++	Ш	_
						2 90 PY IN ARC	4/		++-		ļ.,	Ш	+	-	$\ \cdot\ $	$\dashv$	++		-
-9	4	1 2		-			1	1	+	H	+	H	+	H	Н	+	+		-
-		-   -	$\coprod$	-		9.4-9.7 m- PEXMSNE S:	+	Н	╁	H	+	$\mathbb{H}$	+	Н	Н	$\mathbb{H}$	++	+	-
-			HH	ļ		ARL GREY	+	H	+	H	+	╫	$\vdash$	H		+	+		$\vdash$
-			HH	-		the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	╁	H	++	H	+	H	H	H	H	+	+	+	┢
-		╫	HH	97	G -	QUARTZ VEIN (O.Sm)	1	$ \cdot $	+	H	$\dagger$	$\parallel$	H	$\dagger \dagger$	H		+	$\dagger \dagger$	<b>†</b>
-		├╫╴	+++	1.7	10.7	CONTACTS @ 25°TOC.B.	1	//	+		$\dagger$	H	+	$\dagger$	$\dagger \dagger$			$\dagger \dagger$	
	%	Ш	+++	+		(UNTACTS & 15 10C.7)	1	И	+	Ш	$\dagger$	$\parallel$		$\dagger \dagger$			$\top$	$\dagger \dagger$	Ι
F	0	H	+++	-			$\dagger$	M	$\dagger \dagger$		$\dagger$	$\dagger \dagger$	+	H	$\prod$	T	††	$\prod$	
<b> </b>	0/	HH	†††	+			T	$\prod$	$\dagger \dagger$		$\dagger$	$\prod$		$\prod$			$\prod$		
<u> </u>		村	†††	1			1	П	11		1			$\prod$					
10	1	Ø	†††					П	11	Ш	1								
<b> </b>		Hit	$\dagger \dagger \dagger$	1															
_		M	111												$\prod$		$\prod$		
		$\prod$	$\prod$	10.2	21.3	ARGILLITE			$\prod$					$\prod$				$\prod$	ļ.
						BLACK TO BARK GREY ! MASSIVE TO	0	Ц		Ш		Щ	$\coprod$	$\coprod$	Щ	Ш	$\coprod$	$\coprod$	1
						OCCASSIONALLY BEDDING WEAKLY		Ц	$\coprod$	Ш	$\downarrow$	$\coprod$	Щ	$\coprod$	$\coprod$	Ш	$\coprod$		
						VISIBLE @ LOW & TO C.A; W-PER	V		4	Ш	1	$\coprod$	$\coprod$	$\coprod$	$\coprod$	Щ	$\prod$	$\coprod$	
						CE THRU-OUT; 1TO 2 % YEARY FG. PY	4	Ц	$\coprod$	Ш		$\coprod$	$\coprod$	$\coprod$	$\coprod$	-	$\coprod$	$\coprod$	1
		Щ	Ш			THRU-OUT; MOD. OSTRES: CONE	$\perp$	Ц	4	$\coprod$	1	$\coprod$	$\coprod$	$\coprod$	#	-	$\coprod$	#	+
			Ш			SCRATCHES EASILY			Ш	Ш		Ш.		Ш	Ш		Ш	Ш	

AGE 3 OF 15 PROJECT: ENGIN	VE	ER							HOLE N	lo. 87-105
MINERALIZATION DESCRIPTION	TOTAL	SULPHIDE	INTERVAL	WIDTH	ASSAY NUMBER	% Au gm/T	% Ag ppm	%	Au	COMPOSIT
	$\prod$	П	-							
	+		-			-			-	
	+	╫	_			-		7 ;		
	$\dagger \dagger$	H	_							
		$\coprod$								
	$\prod$	$\coprod$	_	_	• • • • • • • • • • • • • • • • • • • •	<u> </u>				
	+	+	-			<del> </del>			-	
	+	H	<u> </u>	-	**************************************	-			+-+	
	$\dagger \dagger$	$\dagger \dagger$	_							
8.4-8.9 OSTRS IN ARG				0.5	18116	0.02	1.1		0.001	
2 % PY	1	4				ļ			-	
the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	$\dashv$	+	_						+-+	
	+	╫	-			<del> </del>	<del> </del>		$+\cdots+$	
,	+	$\dagger \dagger$	<u> </u>			1			1 1	
		$\prod$	Ī							
								<u> </u>	1	
	$\dashv \downarrow$	Н,	<del> </del>	1		+	4 0	-	1000	
9.4-9.7 m-S: WARE;	- 1/	#	+	0.5	18117	0.20	7.0	<del>                                     </del>	0.006	
2 76 /4	1	+	-				1			
			Ī							
9.7-10.2 QY (0.5m) 75% MOTTED WHITE AND LESSER GREY QTZ; 20% AND ARG FRAGS; 5% O-B, WER CARR, MOSTEY MONG FRACTURE MINOR LICM VULS; 4/% DISS. PY	A	$\coprod$	1	0.5	8118	0.06	7,3		0.002	
75 % MOTTLED WHITE AND	-19	+	+		<u> </u>	-	<del> </del>	<del> </del>	+	
LESSER GREY OTZ; 20 16 4NA		,++	+	-	<del>                                     </del>	_	<del> </del>	<del> </del>	+	
CARR MOSTLY BLOWL EARCTURE	g. /	;	<b>†</b>							
MINOR LICH VULS . 4/%										
DISS. PY			1		ļ	_	<del> </del>	-		
	-	H	+	_			-	-	+	
	-H	H	+	-		-	<del> </del>	-	+	
	$\dashv$		+	-	<del> </del>	+	<del> </del>	1	1	
			T							
			I							
		Ш	1	-		_	<u> </u>	<del>                                     </del>	4	
		Ш								

PAGE	4		OF	15 PR	DJECT: ENGINEER					••••		н	DLE	No.	87	7-/	05
- 6	ŝ	β	RE					Al	TE	RA	TION	1		>	Π	T	
DEPTH (METRES)	% Core Recy	LITHOLOGY	STRUCTURE		GEOLOGICAL DESCRIPTION	3	· .	D		Ch!	7 D	-	Se -	FRACT INTENSITY	K		7
10	0,		S	14 2 212	(0.00)	H		T	+		U	+		<del>  -</del>	╁	$\dashv$	
				10,2-21,3	ARGILLITE (CONT.)	H	+	+	H	H	╫	+	╫	H	╫	$\vdash$	H
-					10.6-11.0 m-S: AS PERVASINE	H	+	+	H	H	H	$\vdash$	$\dag \uparrow$	HH	$\dag \uparrow$	$\dagger \dagger$	H
					GREY OF Z FLOODING 6/CM	1/	T	$\dashv$	ÌÌ	П	H	+	H		H	╁╁	HH
-					GREY TO WHITE QSTRS Q LOW	W	H	+	H	╫	H	╁	╫	H	╫	H	╂╂╂
-					1 4 TO C.A. ; MINORYUES TO CC	/	11	+	H	H	H	+	H		╫	H	H
-					WITHIN	H	H	+	H	╫	HH	+	$\vdash$	$\mathbb{H}$	╫	H	H
- 🔍		1			11 7 - 13 / 65 - 745	1	4		H	$\vdash$	НН	+	$\vdash$	H	H	H	HH
-	٧.				111.3-13.6 QSTKS @ VEXY 20W	1	M	+	H	${\mathbb H}$	${\mathbb H}$	╁	╁┼╌	H	H	H	H
- •					L TO 25° TO C.A. WHITE;	1/0		+	$\vdash$	H	Н	+	$\vdash$		H	${\sf H}$	
<del>-</del> 12	$\vdash$				LESSER GREY QTZ T UP TO 10%	1	4	+	$\vdash$	+	HH	+	+	H +	+	${+}$	$\mathbb{H}$
-					CARB; ARL HOST IS BLACK;	1		+	$\vdash$	╁	H	+	H	$\mathbb{H}$	$oxed{+}$	H	$\mathbb{H}$
-					W-Ce 1 to 2 % DISS PY	14		4		${\mathbb H}$	H	+	Ш	$\mathbb{H}$	$oxed{+}$	H	$\mathbb{H}$
-		5			<del>                                     </del>	1	4	+		$\vdash$	H	+	1	$\mathbb{H}$	$oxed{+}$	$oxed{+}$	Н
-		Ţ			<u> </u>	M.	#	+		-	H	+		+	H	H	- -
-		જ.				1	$\mathcal{H}$	+	Н	H	H	+		$\mathbb{H}$	1	$\vdash$	H
					1		A	+	$\mathbb{H}$	$\Vdash$	HH	+	Н	4	$\Vdash$	H	Ш
-	4	N			1	1	4	$\perp$		-	H	4		$+\!\!+\!\!\!+$	-	-	1
		J.W.	-			1	1	$\bot$			Ш	1	Ш	$\perp \downarrow \downarrow$	-		
-	2	v				Ш	$\coprod$	Ц			$\prod$	1	Щ	44	Ш	$oxed{\bot}$	Ш
14	0	2		<del></del>	1	$\sqcup$	$\coprod$	4			$\coprod$	1		4	$\coprod$	-	
-	01	T			17.0-17.1 M-K, CONE BROKEN		+	+				╀	H	$+\!\!+$	$\Vdash$		
<del>-</del> :			i		17.3-17.8 QSTRS	$\dag \dagger$	+	+		+		$\dagger$	H		H	-	
•	V				· 10 (M FOLLOWED BY A	$\dagger \dagger$	$\prod$		Н			T	Ш	11		T	
<b>'</b> .					3 cm Osta @ 15 to 20° to		$\parallel$	П				1					
					C.A. : STRS MIKED WH !	H	$\dagger \dagger$	$\parallel$		$\dagger$	HH			$\Box$		$\dagger$	
• ,		}	~~		GREY arz ; i-sil ARG; ARG	,,,	<u> </u>	11	+	+		$\dagger$		11	ma		+++
•					AS DISCONTINUOUS LETSES RATHER		44	$\dagger \dagger$	$\forall$	+	H	+		$\dagger \dagger$			11
			ı	· · · · · · · · · · · · · · · · · · ·		$\vdash$	$\dagger\dagger$	+	+	+	HH	+		++	Н	+	
		ł	ŀ		THAN TRUE FRACE : 3 % DISS.	$\vdash$	H	$\dagger \dagger$	+	$\perp$	HH	+		+	H	+	11
-19			<del> </del>		1 7 9 .	$\vdash$	H	+	+	+	H	+	<b>-</b>	+		+	+
					19 0-19 4 19 19 19 19 19 19 19 19 19 19 19 19 19		$\dagger$	+	$\forall$	+	H	+	+	++		+	+
		1	ŀ		19,0-19,4 IRKEAULAR <170	4	H	+	+	+-	HH	H		+		+	+
•			ŀ		3 cm aspes C 5'ro 20'ro	1	#	+	+	+	H	H	+	+	H	+	++
.		}	ŀ		C. A; COMPRISE 20 % OF	4	11	+	+	+	H +	+	H	+	H	+	+
					INTERVAL; ABNT ARG FRANS	$\vdash$	+	+	$\dashv$	+	$\mathbb{H}$	+	+	++	H	+	+
.			}		WIDTHS OF STRS CHANGE	+	+	╫	+	+-	H +	╂┤	++	++	H	+	+,`
			}		ABRUBTZY; 2 % DISSPY.	+	H	+	+	+	$\mathbb{H}$	+	+	+	$\mathbb{H}$	+	++
			}		,	+	H	+	+	+	H	H	+	+	H	- -	+
			}			1	$\coprod$	$\prod$	$\blacksquare$	+	H	$\dashv$	+	44	+	+	$+\!\!\!+$
20						$\perp$	Ц	Ш	$\perp \perp$		Ш	Ш	Ш			Ш	

-----

AGE S OF 15 PROJECT: ENGIN	IEEK							HOLE No	s. 8.7-10 <i>5</i>
MINERALIZATION DESCRIPTION	TOTAL	INTERVAL	WIDTH	ASSAY NUMBER	% Au gm/t		%	Au 02/7	COMPOSITE ASSAYS
O.G-11.0 OSTRS/FLOODING IN  ARG: 1 % DISS. PY	ž	_	0.4	1849	0.27	2.7		0.008	
ARG; t % DISS. PY	8	+							
\$		+	-						
1.3-11.9 0.5 TO 1.0 CM DSTR ~ PARAMET C.A : 15% DISS			0.6	18120	0.01	0.8		0.001	
CORE)		+		3 3					
1.9-12.5 40 90 WHITE QTZ IN IMM 70 5 CM (\$5775)		+	0.6	18121	0.01	1.3		0.001	
STRS X-CUT EACH OTHER , 2% PY MOSTRY IN ARG. HOST 2.5-13.6 20 90 IMM TO	19	+	1.1	18122	0.01	0.9		0.001	
2cm QSTRS @ YEAY LOW L TO 15 ° TO C.A. , 3 % PY									
IN ARG. HOST.									
72 10 00 00	$\prod$	+	0.0	18/23	0.02	14		0.001	
7.3-17.8 QSTRS IN ARG ; 39. PY			<i>V•3</i>	18723	0.03	1,7		0.007	
		+							
		+							
9,0-19.4 QSTRS IN			0.4	18124	0.01	2.0		0.001	
ARL ; 2 % PY	111	+							

PAG	E	6		OF	15	PRO	ECT: ENGINEER							H	IOLE	No	. 8	7-	10	5
DEPTH	METRES)	Core Recy	-LITHOLOGY	STRUCTURE			GEOLOGICAL DESCRIPTION		<u> </u>	A	LT	Ch!	TIOI	N -	Se	FRACT	TENSITY			7
		8	<del></del>	ST				L	<u> </u>	4	3	С	10	<u> </u>	Ε	Ļ	Z		<u> </u>	
_ 2	١				10.2	-21.3	ARGILLITE (CONT.)	Ц	1	11	П	4	4	$\coprod$	4	Ш	$\coprod$	$\coprod$	4	Ш.
-							20,3-20.8 /cm OSTR ~ // ro	Н	+	H	H	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$\mathbb{H}$	$+\!\!+\!\!\!+$	$\coprod$	$\coprod$	$\dashv \downarrow$	$+\!\!+$	#
-	ı	ļ					CIA. OFFSET BY NUMBEROUS (~	Н	+	$oxed{\sqcup}$	$\coprod$	$\dashv$	#	$\mathbb{H}$	+	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$\coprod$	$\dashv \vdash$	+	#
-							1/CM) MICKOFAUTS @ HIGH CTO	Н	+	H	₩	${f H}$	+	H	#	₩	H	H	₩	₩
_							C.A. , ABUT F.C. Py , STR;	Н	$\perp$	H	H	$\dashv$	#	$\mathbb{H}$	$+\!\!+$	${\mathbb H}$	H	+	╫	╫
			50				W.R. IS i -S: / ARG; ARG	Н	+	H	H	₩	╫	H	$+\!\!\!+$	╁	H	+	╫	₩
<del>-</del>			7				GREY & SOME BLACK, ESP ANOVA	Н	+	H	$oldsymbol{H}$	${f H}$	+	H	+ +	H	H	+	╫	╫
_	ı		•				FRACTURES.	Ы	1	H	Н	${}^{\rm H}$	$^{\rm H}$	H	$+\!\!\!+$	+	H	+	╫	╁┼
-							2.0.2.2.1.6.1	1	4	#	╁╁	+	╫	${\rm H}$	$+\!\!+\!\!\!+$	╁	H	╫	++	H
-1	ı  -	$\dashv$				<u> </u>	20.8-21.3 i-S: 1 COET	H	$\mathscr{X}$	#	╁	++	╫	${\sf H}$	$+\!\!+$	$\dag \uparrow$	H	++	╁┼	+
-		1					TAN-LAEY TO BLACK;	Н	4	╫	+	╫	╫	+	$\dashv +$	${}^{+}$	+	${\mathbb H}$	$+\!\!+$	++-
<b>-</b>						1	3 CM QSTR & 35° TO C.A;	H	4	#	╁	H	+	H	++	${\dagger}{\dagger}$	H	H	+	++
		+	*				FOLLOWED - BY SEVERAL UP TO Irm	H	4	${\mathbb H}$	H	${}^{\dag}$	+	H	+	$\dagger \dagger$	$\dagger \dagger$	++	╁┼	H
<b>-</b>							asms @ 5 to 35° to C.A. (Stres	Н	+	$\dagger \dagger$	$\dagger\dagger$	$\dagger\dagger$	$\dagger \dagger$	$\dagger \dagger$	++	$\dagger \dagger$	H	$\dagger\dagger$	$\dagger \dagger$	+
i							CHARLE BIR = X-CUT	$\vdash$	+	$\dagger\dagger$	╁╂	$\dagger\dagger$	$\dagger \dagger$	$\dagger \dagger$	++	H	H	$\dagger\dagger$	$\dagger \dagger$	#
F		-			<u> </u>			Н	_	$\dagger\dagger$	╁╅	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	+	$\dagger \dagger$	$\dagger \dagger$	H	$\dagger \dagger$	+
-		%			213	-226	QUARTZ VEIN (1.3 M)	Н		$\dagger \dagger$	$\dagger \dagger$	$\dagger\dagger$	$\dagger \dagger$	$\parallel$	$\dagger \dagger$	Ħ	$\dagger \dagger$		$\dagger \dagger$	
-		0	<b>\</b>		2112	-~0	- UMBER CONTACT VARIABLE; INCREASE	$\prod$		$\dagger \dagger$	H	$\dagger \dagger$	$\dagger \dagger$	$\parallel \parallel$	11	Ħ	$\dagger \dagger$	$\top$	$\dagger \dagger$	#
<u>ا</u>	<u> </u>	2	Ś				OF MOD TO LOW L STRES OVER 10CM;	1 1	1	${\dagger}{\dagger}$	$\prod$	$\dagger \dagger$	#	$\dagger \dagger$	11	Ħ	$\prod$	11	$\top$	
1	2	寸	1			-	LOWER CONTRET @ 30° TO C.A.			$\prod$	$\prod$	$\prod$	$\prod$	П	11	Ħ	$\prod$			
<u> </u>										$\Pi$	$\prod$	П	T	$\prod$		П	$\prod$	$\prod$		$\prod$
r								П	1	$\prod$	П	$\Pi$	$\prod$	П		$\prod$	$\prod$	$\prod$	$\top$	$\prod$
_								П		Ħ	П	T	T	П	$\prod$	$\Pi$	$\prod$	П	$\prod$	П
<del>                                     </del>	ł									П	П	П	П	$\prod$	$\prod$	$\prod$	$\prod$		$\prod$	П
_		İ						П	1	П	$\prod$	$\prod$	$\prod$	$\prod$	$\sqcap$	$\prod$	П		$\prod$	$\prod$
_		ľ	1	,				И	7	1	П	$\prod$	T	Ħ	$\top$	П		$\prod$	11	$\prod$
				'	22.6-1	142.0	ARGILLITE	1/		7	$\prod$	$\prod$	$\prod$		$\prod$	П	П		$\prod$	Π.
_		Ì					DARK-GREY TO BLACK; MASSIVE	1	7	1/	П	$\prod$	$\prod$	П	$\prod$	П	П			П
١,٠	_ /	1					TO THINLY BEDDED; W. PERYASINE	7)	7	1/1	П	П	$\prod$	П	$\sqcap$		П			П
-2	<b>خ</b> را			•			Cc , F.G. DISSEM M COMMON;				$\prod$	$\prod$		$\prod$		$\prod$	$\prod$			$\prod$
Γ							CORE MOD HARD TO HARD; Mon	1	7	1/1	$\prod$	$\prod$	$\prod$	$\prod$	$\prod$	$\prod$		П		$\prod$
Γ			1			!	LENGTHS COMMON.	1	1	1/1	$\prod$	$\prod$		$\prod$	$\prod$	$\prod$		$\prod$	$\prod$	
Γ			ARC						1		П	$\prod$	$\prod$	$\prod$	$\prod$		$\prod$			П
	.	ľ	C S	ĺ	•		22,6-39.0			1			$\prod$		$\prod$	$\prod$	$\prod$		$\prod$	
			, [				50 % OF CORE HAS 0.5 TO		,				$\prod$		$\prod$					
				Ì			4 CM OTZ-CARB STRS @		$\int$			$\prod$	$\prod$	$\prod$	$\prod$	$\prod$			$\prod$	
							4 CM OTZ-CARB STRS @ 5 TO 30, RARBY > 30° TO	[/]	T		$\prod$	$\prod$	$\prod$	$\prod$	$\prod$	$\prod$	$\prod$		$\prod$	
				Ī		i 1	C.A. WEAR PERPOSINE Co; 2703, LOCALLY 5% VERX F. G. CY			1		$\prod$	$\prod$	$\prod$	$\prod$	$\prod$		$\prod$	$\prod$	$\prod$
			W				2 TO 3, LICALLY 5% VERX F. G. PY		1		$\prod$	$\prod$	$\prod$	$\prod$	$\prod$	П	П	$\prod$	$\prod$	

GE 7 OF 15 PROJECT: ENGINE	EEX	:							HOLE No.	87-105
MINERALIZATION DESCRIPTION	TOTAL	SULTHIUE	INTERVAL	WIDTH	ASSAY NUMBER	% Au gm/ _T	% Ag ppm	%	Au 02/7	COMPOSITI ASSAYS
	$\prod$	T.		2.6	10126	A 00	1,		0.001	
Lyoca. w such; 4 %ory	#	士	-	د.ن	18125	0.02	1.6		0.00	
	$\mathbb{H}$	#							-	
	++	H			<u> </u>					
	$\prod$	#	-							
	##	#					<b>/</b> :			
20.8-21.3 QSTRS IN AME.	棋	井	· /	0.5	18126	0.02	1.2		0.001	
2 % Py	14	#	- '							
•	+++	#	_ !							
	#	#	· ,							
1.3-22.6 Qy (1.3m)	#	#	21.3- -21.7	0.4	18127	0.04	0.8		0.001	<del> )</del>
50 % WHITE QTZ; 50 %. ARG. FRAGS; FRAGS ARE		廿	21.7-	0.5	18128	0.39	1.4		0.011	1.3m, .006
LO.Sem TO SEVERAL IN;	$\frac{1}{1}$	$\prod$								
LARGE FRAGS HAVE ABOUT X-CUTTING WHITE OSTRES	#	+	- 22.6	0.7	18129	0.20	1.8		0.006	<del>-  </del>
WHICH ORIGINATE FROM THE	扣	$\prod$	_							
VEIN MATERIAL AROUND THE	#	#								
FRAGS: MINOR LICM YULS  D RTZ XTZS GROWNE IN;		+	-				<u> </u>	<u> </u>		
1 % DISS PY.	7	$\prod$	_					ļ		
	+++	+	-	-		1	-	<b> </b>	+	
	丗	#	<u>-</u>							
	+++	#	_							
	+	#					<b> </b>			
	$\prod$	$\prod$	<del>-</del>							
	+++	H	_	<u> </u>					-	
	1	廿								
24.1-24.6	$\overline{\parallel}$	$\mathbb{H}$	<del>-</del>	0.5	18130	0.08	1.7		0.002	
A 4 cm ONE @ 30° TO C.A.	1/ 1/1	H		-		-				
26.1-26.3 2 CM QSTR	1/2	Щ	<u> </u>	0.1	18131	2.40	2.1	<u>                                     </u>	0.070	
@ 30° TO C. A.	1/1	Ш						1		

PAGE	8		OF	15 PRO	JECT: ENGINEER							HOL	EN	No.	8	フ-	/05	-
DEPTH (METRES)	% Core Recy	LITHOLOGY	STRUCTURE		GEOLOGICAL DESCRIPTION	S	Т	AL'	C	AT LI	T D	1		FRACT			١	
17	•	_		22.6-142.0	ARGILLITE (CONT.)	1	/	1	П	П				П	П	П	П	
					22.6-39.0 (cont.)	1/2			П	П		$\prod$		Ц	Ц		П	I
					- STRS ARE MIXED GROY WHITE	1	1	Ц	4	Ц	Ш	Ш	$\parallel$	$\coprod$	11	41	Щ	$\downarrow$
					QTZ = Cc; UPTO 5 % PY TRACES.	//	1	$\coprod$	4	Ш		11-	Ц	#	$\coprod$	$\coprod$	$\coprod$	+
_					QTZ = Cc; UPTO 5 % PY, TRACES.	1	1	4	$\coprod$	$\coprod$	$\Box$	#	$\coprod$	H	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$\coprod$	H	+
_					<u> </u>	<b>Y</b>		4	+	$\mathbb{H}$	$\mathbb{H}$	#	H	H	H	+	H	+
-						<b>//</b> ,	1	H	+	+	+	╫	H	╫	H	+	$\dashv \vdash$	+
-						1	1	H	+	$\mathbb{H}$	++	╫	Н	++	H	+	H	+
-						#	1	$\dagger \dagger$	$\dagger\dagger$	+	H	$\dagger \dagger$	H	H	$\dagger \dagger$	+	$\dagger \dagger$	+
<u> </u>	$\vdash$					Ψ,	1	H	$\dagger \dagger$	$\dagger \dagger$	H	$\dagger \dagger$	$\dagger \dagger$	††	$\dagger \dagger$	$\forall$	$\dagger \dagger$	$\top$
_						14	1	H	$\dagger \dagger$	$\dagger$	H	$\dagger \dagger$	H	$\dagger \dagger$	$\dagger \dagger$	+	$\dagger$	+
					1	1	1	Ħ	$\dagger \dagger$	T	Н	11		$\dagger$	$\parallel$	$\Box$	T	T
-						1		1				$\top$						
-						7	1											
_	4					1	1				Ш	Ш	Ц	$\coprod$	Ш	Ц	$\perp$	Ц.
	ŀ				1	1		1	Ш		Ш	$\coprod$	Ц	$\perp$	Ц	Ш	1	
	20					1	Щ		Ш	$\perp$	Ш	4	Ц	11	4	Щ		I
	00	77				$/\!\!/$		41	$\perp \mid$	$\perp$	Ш	4	Ц	44	$\perp$	$\perp$	_	$\perp$
_31	11	4				1//		4	$\mathbb{H}$	$\perp$		$\coprod$	$\coprod$	4	$\mathbb{H}$	+	+	+
L ,	4	2				1	110	Я	$\parallel$	$\bot$	-	$\mathbf{H}$	H	+	$\mathbb{H}$	+	+	+
_		1				1	{	4	+	+	H	+	H	+	+	+	+	H
_		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				14	1	$\mathcal{H}$	+	+	H	H	H	+	+		+	${\sf H}$
L		•			<u> </u>	1/1/	113	H	+	+	H		H	+	+	+	+	${f H}$
-						₩	4	H	+	+	H	H	H	+	+	+	+	+
-						1	1		+	+	$\mathbb{H}$	H	H	+	+	-	+	$\dagger$
-						1/	4	H	+	+	H		$\dagger \dagger$	+	+		$\dagger$	十
<b>-</b>						Η,	1		+	+	H		H	+	T		$\dagger$	$\parallel$
_						1	1 1			$\top$	$\parallel$		$\parallel$		$\top$			П
-33	-	<u> </u>				1/				$\top$					1			$\top$
<b>-</b>						17					$\sqcap$		П					П
_		'				17												$\prod$
-						1/	1								$\int$			$\coprod$
-						1							Ш					$\coprod$
								1	Щ			Ш	Ц	Ш	1	Ш	$\coprod$	<del>استار</del> 1 ,
						1	$\prod$		Ш			Ш	Ц	Ш	1		$\parallel$	$\prod$
						1/			Ш		$\coprod$	$\prod$	$\downarrow \downarrow$	$\parallel$	$\perp$	-	$\coprod$	4
					1	1/	$\coprod$	9	Щ		$\coprod$		Щ	Ш		-	$\coprod$	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
37						П	Ц	$\perp$	Ш		Ш	Ш				Ш	Ш	Ш

PAGE 9 OF	PROJECT: ENGIN	EER							HOLE	No.	87-105
MINERAL DESCR		TOTAL	INTERVAL	WIDTH	ASSAY NUMBER	% Au g=/T		%	AU 02/T		COMPOSITE
774- 18/	/ - 2	Щ		1./	/813Z	0.09	17		0.403		
27.0 - 28.1 QTZ-(ARB STR				107	1813 <	0.01	11/	<del></del>	0.403		
ABNT W.R. LENS,			<u></u>								
28.7-29.3	Nurrerous		+	0.6	18133	0.02	1,6		0.001		
	STRES @ VARIOUS		_			ļ					
WISE UP 30 %	(0.5 To lem	<del>  []  </del>	+								
MANE UP 30 %	OF LONE : RTZ		t								
Mixen a Cc											
30,1-31,0	1 70 2 cm QTZ-		_	0.9	18134	0,02	1.5		0.001		
MAB STRE OF	5°70 C.19. ₩	12	<u> </u>								
4/cm STRS CO			<del> </del>			ļ			<u> </u>		
HIGH L'S WHICH		1/1	<del>}-</del> -				-	• • • • • • • • • • • • • • • • • • • •			
CASHES?)	2 % TENSION	1/1	+	-							
GASHES !	3 70 79	111	+								<u> </u>
31,4-31,9 IR	KEGULAR WH	1111	†	0.5	18135	0.12	1.6		0.009		
	f Orz-Ce Spes										
MAKE UP SO	% of cont;										
3 % PY		4444	1								
20 // 20 >		++++	+		~ _					· ———	
32, 4-32,7	LOUS-LIKE < ICA	<del> </del>	+	0.3	18136	0.02	1.1		0.001		
	os° to cont		+	-		-		······································	<del>├</del>		<u> </u>
COMME OFF	N TYPEDSTRS	19/1	+		:	-	<del>  -</del>	<del></del>			
	SIDE '2 %ry	1//1	†						<del>                                     </del>		
	7	1111				<del> </del>					
33, 4 -33. 7	ICM QSTRS			0.3	18/37	0.10	1.4	****	0.003		
@ LOW - TO C	A, SPLAY										
Join M.	NON DISS SP4		_								
3 % PY		1111	_								
35.9.36,4	MIVED PARK	++++	+	00	18138	0 00	12	······································	0.001		
WH QSTKS @		<del>                                     </del>	+	\square \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdo	10138	2.03	17	<del></del>	0.001		
IRREGULAN Q		<del>                                     </del>				1					
	<u> </u>	+-+-	+		<del></del>	+	<del> </del>		<del>  </del>		<del> </del>

PAGE			OF	12 P	ROJECT: ENGINEER								IOLE	N	o. {	7	-/0	2
T $\widehat{S}$	Š	ξ	JRE			L		Α	LTE	RA.	TIO	٧_,		┨╻	.⊥			
DEPTH (METRES)	ě R	IOLO	] 턴		GEOLOGICAL DESCRIPTION		(	1	ا د	Chi	1	-	Se	200	ENSI			•
ME DE	ပ္ပြ	LITHOLOGY	STRUCTURE				A		3	С.,,	0		E		IN			
38	Ů			22.6-14.	O ARGILLITE (CONT.)		/			П								
					22.6-39.0 (CONT.)	/	I	Ш		Ш	$\coprod$	Ц						
							X)		Ш	Ш			Ш			Ш		
						1												
						7	N	П										
			-			Τ,	7	1	7		$\prod$	П						
						1	17	11	7]		$\prod$	П	$\sqcap$			П		
						T	V	$\prod$	1	$\top$	$\parallel$	П	П		П	П		
					39.0-51.6 ALTE ZONE		1	1	7]	П	$\Pi$	П	$\prod$			П		
					i-ALTE BLACK ARG; i-Co,		17		1	$\prod$	$\prod$	П		T		П		
-40	Н		<u> </u>		PATCHES OF U-S. RESULT IN PATCH		1	$\prod$	7]	$\prod$	$\prod$	П	$\sqcap$	T		П		
					BLACK WHITE (40 %) i - GRAPHIT	_	M	11	打	$\dagger \dagger$	$\dagger \dagger$	Ħ	$\top$	1				П
					ALONG FRACT: K- KICK ZONES; EST		И,	11,	1	#	#	T	$\forall$	T		$\prod$		
				-	45.4.45.8 WHERE ALLHARZ	1	M	††,	1		$\parallel$			T				
					RUBBLE W CLAY MATRIX;	1		11	7	11	T			5				
	\ \				OVEROU ~ 10 % QTZ IN IRREQUIR		1	И	I	$\dagger \dagger$	$\dagger \dagger$			Ť	$\sqcap$		$\prod$	
	14	个			PATCHES UP TO SEVERA CA WIDE		7	11	I	$\parallel$	$\dagger \dagger$			T		$\prod$		Π,
	2	7			AND IRCTURAL DISCONTINUOUS ST	1 /	1	7	Ή	$\dagger \dagger$	T	T		1	П	$\prod$		П
	0	9RG			TO CC @ MOSTRY LOW L'S TO CA;		7			$\top$	$\parallel$			Ť			П	
	1	4			I CO IN PATCHOS STRES TO GTZ	1	1	1		1	11	T		T			П	
45		1,	<del>                                     </del>		AND PERVASIVE THRU-OUT.	7	//	17	1		$\dagger \dagger$	T		T			П	П
	7	7				٦,	/	11	H		$\top$	T		T	II		$\prod$	$\prod$
					5° TO 25° TO (.A ; WHITE GOLAGE	ال	//	И	7	$\dagger \dagger$	$\dagger \dagger$	$\dagger$	Ш	十		$\prod$	T	H
					OTZ: Co PATCHES ISTES GENERAL		//	1	1	$\parallel$	$\dagger \dagger$	$\dagger$	Ш	†	$\prod$	$\dag \uparrow$	$\parallel$	Ħ
					•	- 1	17	1		$\dagger \dagger$	$\dagger \dagger$	T		1	IT			$\prod$
					@ Low i's to c.A. ; i - Amounts	1	//	H	力	$\dagger \dagger$	$\dagger$	+	Ш	$\top$		H		$\parallel$
					OF MM SIZE DISCONTINUOUS STRS	+	17	H	1	:	$\dagger \dagger$	T		T	$\dagger \dagger$	$\parallel$		††
					2 % DISS. F.G. PY. UPPER		H	11	1	$\dagger \dagger$	$\dagger \dagger$	T	H	†	$\parallel$	H	$\prod$	H
					CONTRACT OF INTERNAL CRADATION	1	//	1	1		$\dagger \dagger$	$\dagger$		†	$\parallel$	$\dag \dag$	$\dagger \dagger$	$\prod$
				<u> </u>	W PREVIOUS INTERVAL, LOWER	+	1	11	1	+	$\dagger \dagger$	T		†	H	$\dagger \dagger$	$\dagger \dagger$	H
50	-		<del> </del>		CONTACT DISTINCT C 25° TO C.A	•	₩	17	1	$\dagger$	$\dagger \dagger$	t	Н	$\dagger$	$\dag \uparrow$	$\dag \dag$	$\dagger \dagger$	$\dag \uparrow$
					CIA CHE PION INC	+	1	47	11	++	$\dagger \dagger$	+		$\dagger$	$\dagger \dagger$	+	$\dagger \dagger$	$\dagger \dagger$
					51.6-64.6 BLACK LESSER	+	$\forall$	+	+	+	$\dagger\dagger$	+	H	$\dagger$	$\dag \uparrow$	$\dagger \dagger$	tt	H
			1	·	DARK CREY ARG; MASSIVE TO	+	+	+	+	+	$\dagger\dagger$	+		+	$\dagger \dagger$	$\dagger \dagger$	$\parallel \parallel$	$\dagger \dagger$
				<u></u>	THINKY BEDDED TO BEDDING	+	H	+	+	+	+	+	$\ \cdot\ $	+	+	╁┼	+	H
		ŀ		<u> </u>	@ 15 to 30° TO (. A; m. Co	+	$\forall$	+	+	+	+	+	H	+	+	+	H	$\dagger \dagger$
					DECREASING AFTER 2 M TO	+	H	+	+	+	+	+	┞┼┤	+	H	╁┼	+	H
					W TO VERY W. CC; MINOR	+	++	+	+	+	+	+	H	+	+	H	H	H
					LICM QTZ. CC STRS; 2 %	+	++	+	+	+	+	+	$\left  \cdot \right $	+	+	╁┼	${f H}$	╁
				<u></u>	VERY F. C. PY.	+	+	H	+	+	$+\!\!+$	+	$\left\{ \cdot \right\}$	+	╁┼	+	╫	₩
60		L		<u></u>			Ш	Ш	Ш	$\perp \perp$	$\perp \perp$	$\perp$	Ш	$\perp$	Ш	$\coprod$	$\sqcup$	Ш

IGE    OF /S   PROJECT: ENGI	NE	EX							HOLE No.	87-105
MINERALIZATION DESCRIPTION	TOTAL	SULPHIDE	INTERVAL	WIDTH	ASSAY NUMBER	% Au 9"4	% Ag PPM	%	Au ozh	COMPOSITE ASSAYS
			_							
18.3 -38.6 DISCONTINUOUS	Ш	Ш	<del></del>	0.3	18139	0.02.	1.2		0.001	
STRS @ HIGH TO LOW L'S	Ш	Ш	<b></b>							
40 C.A + 2 K-CUTTING	Ш	Щ								
Icm STRS@ 30° 160° to			_		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		
C.A: INTERVAL 10 STRS;	Ш	Ц.								
4% DISS PY TR -SPH.		Ш								
	Ш	Ш								
	$\coprod$									
9.0-51.6 ALT PARE!	$\prod$			<u> </u>						
FAULT ZONE (?) SAMPLED	Щ	Щ	L		****					
IN IM INTERVALS		Ц	_							
	$\prod$									
39.0-40.0	Ш	Ш		1.0	18140	0,02	0.7		0.001	
40.0 - 41.0			L		18141	0.02	1		0.001	
41.0 - 42.0				40	181 42	0.12	11		0,004	
42.0 - 43.0						0.03			0.001	7.0m, 0.603
43.0 - 44.0	$\prod$	$\prod$			18144	0,12			0.004	
44.0 - 45.0	$\prod$	П	-	,		0.08	1		0.002	
45.0 - 46.0	$\prod$	П			181 46	0.17	***********		0.005	7
- 46.0-47.0		П				1.85			0.054	
47.0-48.0	П	П			181 48		0.7		0.001	
48.0-49.6	H	$\dagger \dagger$	_		3	0.04			0.001	
49.0-50.0	11	$\parallel$	T		181 50	0.04	1		0.001	4.6m, 0.001
50.0-51.0	11		T		18151	1	0.8		0.001	
51.0 - 51.6	$\dagger \dagger$	$\dagger \dagger$	<b>_</b>		18152	0.02			0.001	1)
3// 3//	$\dagger \dagger$	$\dagger \dagger$	<b>†</b>	100	10.74	02			1	
	#	$\dagger \dagger$	Τ			<b>1</b>				
	††	$\dagger \dagger$	T			1				
	#	$\dagger \dagger$	<b>†</b>			1			<del>                                     </del>	
	#	#	<del>                                     </del>			<b>†</b>	<u> </u>		<del>                                     </del>	
	#	††	<b>†</b>			<b>†</b>	<u> </u>			
	$\dagger \dagger$	††	t		<del>                                     </del>	<del>                                     </del>	<del>                                     </del>	<u> </u>	1:-1-	
	$\dagger \dagger$	+	<b>†</b>		<b> </b>	<del> </del>	<del> </del>	<b> </b>		
	++	H	<del> -</del>	-	<del> </del>	<b> </b>	<del> </del>	<del> </del>		
	+	+	<del> -</del>	-		<del> </del>	<del> </del>		<del>                                     </del>	
	+	╁┼	+	-		<del> </del>	<u> </u>	<del> </del>	<del>                                     </del>	
	+-	₩	+-	-	<del> </del>	<del> </del>		<del> </del>	<del>                                     </del>	
	#	+	<del> -</del>	-	<u> </u>	<del> </del>		ļ	<del>                                     </del>	
			}	1		1		1		•

PAGE	- 1	2	OF	15	PRO	ECT: ENGINEER						ŀ	IOLE	No.	8	7-	105	3
DEPTH (METRES)	re Recy	LITHOLOGY	STRUCTURE			GEOLOGICAL DESCRIPTION	. 5	;		Chi			Se	RACT				
æ æ	ပိ %	LITH	STRL				A		В	С	D		E	L 5				
64				22.6	-142.0	ARGILLITE (CONT.)	H	H	$\parallel$	+++	H	$\prod$	+		-	╂	-	H
						64.6 - 65.1 30 % WHITE			$\prod$			$\prod$			-			Ц
						RSTRS & MINOR CARB; IMM TO	ig	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$\mathbf{H}$	+++	${f H}$	H	+	HH	╀	╁	$\vdash$	H
						2cm w100 . @50 70 300 70 C.A.	-	$\coprod$	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$\coprod$	#	Ц		HH	+	-	-	$\vdash$
						MINOR DISSEM. PY WITHIN STOS		$\coprod$	$\downarrow \downarrow$	Ш	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	Ц	4	Ш	$\bot$	$\coprod$	-	Ц
		7				3 % WITHIN ARG.	1/2	41	Щ	$\coprod$	Щ	Ц	Ш	Ш	$\bot$		Ц.	L
							1/2	14	$\perp \! \! \! \! \! \! \! \! \! \! \perp$	Ш	Щ	Ц	Щ	Ш	1	Ш		$\downarrow$
•		5				65.1-65.4 (DSTR (0.3M)	1	$\mathbb{H}$	Ш		$\coprod$	Ц		Ш	1		Щ	L
<b>/-</b> -		X				- CONTACTS @ 45 TO 50 ° TO	X	I	Ш	Ш	Ш			Ш	$\perp$	Ш	Ш	$\downarrow$
-65	T	14 Q				C.A.	1	N	$\prod$									
		1					$\sqcap$	$\prod$	$\prod$	$\prod$	$\prod$	Τ		Ш		П	П	Γ
				-		1	$\dagger \dagger$	Ħ	11	111	††	1				$\sqcap$	IT	T
		ا کے					H	$\dagger \dagger$	+	111	$\dagger \dagger$	t	H	H	$\top$	$\dagger \dagger$	H	t
	1	NO					H	+	++	+++	+	+		H	+	$\dagger \dagger$	$\dagger \dagger$	†
	10	1 1	-				╁	+	+	+++	++	+	HH	H	H	++	H	+
	6,	2	ļ				╀	+	+	+++	+	+	$\mathbb{H}$	-	+	++	╁	+
	0	6					$\dashv$	$\dashv$	+		+	+	H	╂╫	$\vdash$	╫	${f H}$	+
	17					65.4-142.0 MASSINE TO BEODED	$\coprod$	$\square$	$\perp \downarrow$	411		┿	$\square$	++	H	+	$\dashv \vdash$	+
	V	W				ARGILLITE; BEDDING AT LOW 2'S	Ш	Ц	$\sqcup \sqcup$	-111	$\downarrow \downarrow$	$\bot$	$\coprod$	#	$\sqcup$	$\bot \downarrow$	$oxed{\bot}$	+
2.23_						TO ALMOST II C.A. (Some	Ц	Щ	Ш		$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	$\perp$	Ш	Ш.	$\coprod$	$\coprod$	$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	4
	Г					MASSIVE LOOKING MAY BEDUE	Ш		Ш	$\perp \! \! \perp \! \! \perp$	$\coprod$		Ш	$\coprod$	Ц	11	Ш	1
						TO BRILLING DOWN ONE BED;					Ш			Ш	Ц	$\coprod$		
						YAKIES FROM INDESCRIPT F.G.												
						BLACK TO DARK GETY TO BLACK	TT	T			П		Ш		П	П	П	1
						•	Ħ				$\top$		Ш	$\Pi$	П	$\prod$	П	1
				-		SPECES (FROMEME UP TO 3MM)	$\dagger \dagger$	$\top$		+++	$\dagger \dagger$	$\dagger$	$\dagger\dagger\dagger$	$\dagger \dagger$	П	11	#	7
						IN FISH-SCARE - LIKE PATTERN	H	+	H	+	+	+	<del>       </del>	+	H	††	††	+
						SAMPE @ 77.9- 78.0	${}$	+	H	+	+	+	+++	+	H	$\dagger\dagger$	$\dag \dag$	+
						TAKEN AS LITHUZOGICAL EXAMILE	+	+	H	+	+	+	+++	+	H	+	++	+
						CORE HARD; >20 (M CENETHS	$\dashv$	+	Ш	$+\!\!+\!\!\!+\!\!\!+$	+	+	╂╂	╫	H	+ +	+	4
- 80		<u> </u>	<u> </u>			COMMON: W- PERMASINE CC	$\dashv$	$\perp$	Ш	+	$\dashv$	$\downarrow$	+++	++	H	$+\!\!+$	╁┼	4
- Ou						Connon; MINON & D.S.CM ESTES	$\coprod$	_	Ш	$\coprod$	$\perp \mid \perp \mid$	$\downarrow$	$\coprod$	44	ig	#	$\coprod$	4
						+ (c STRS @ 5 TO 40° TO COP)	1	$\perp$	Ш	Ш	$\perp \downarrow \downarrow$	4	Ш	4	Ц	$\downarrow \downarrow$	$\coprod$	4
						CE ON FRACT URES , 2 TO	Ш		Ш		Ш	$\perp$	Ш	Ш	Ц	$\coprod$	$\coprod$	$\rfloor$
			1			LOCALLY S % F.G. TO MED.	$\prod$						Ш	Ш		$\coprod$	Ш	
						CRANED PY THRU-OUT	$\prod$					T	$\prod$	$\prod$	$\prod$	$\prod$	$\prod$	
				<b> </b>		MINOR ICM ; LARGER STRS	$\dagger \dagger$	$\dagger$				T	$\prod$	11	$\prod$	$\prod$	$\prod$	1
			Ì	<b></b>			$\dagger \dagger$	+			$\parallel$	+	111	11	$\prod$	$\dagger \dagger$	$\prod$	7
						(NOTED IN MINEROL & PAGE	$\dagger\dagger$	+			+	+	$\dagger \dagger \dagger$	+	$\dagger \dagger$	#	$\dagger\dagger$	+
						1	+	+	$\vdash$		+	+	+++	+	+	$+\!\!+$	H	+
				ļ			++	+	-		+	+	++	+	H	++	+	+
100							$\perp$		Ш	Ш		$\perp$	Ш	Ш	Ц	Ш	Ш	ل

PAGE 13 OF 15 PROJECT: ENGIN	EER							HOLE N	lo. 87-105
MINERALIZATION DESCRIPTION	TOTAL	INTERVAL	WIDTH	ASSAY NUMBER	% Au gm/r		%	Au	COMPOSIT
		-							
64.6-65.1 OSTRS IN ARG! 3 % PY		<del>-</del>	0.5	18153	0,08	1.4		0.002	
					٠.				
65.1-65.4 QSTX		<del>-</del>	0.3	18154	0.06	1.2		0.002	
WEAR BANDING IT 1-0 SCM LAYERS OF GREY QTZ; WHAT		<del></del>							
: GREY arz; 30 % i-ALTE		<del>-</del> <del>-</del>							
ANG FRANS (BLACK) CONCERNT		_			ļ	,			
IN BANDS & LARY OTZ;	1/2	_						1	
2 % DISSEM. PY MOSTEY	1//	·	<u> </u>					<del>                                     </del>	
WITHIN ARG FRAGS		<del>_</del>							
		<u> </u>							
		<del>-</del>			<u> </u>	1			
72.1 - 72.4 D.5 TO 2cm			0.3	18155	0.03	1.3		0,001	
QSTR @ 10° TO C.A ; 4%	1//			<del></del>		!			
DISS PY: 10 % Se?	111	<u>_</u>	-			·			
82.5-82.7 5090 (ner !		<del>-</del>	0.2	18156	0.02	2,3		0.001	
LESSER WHITE QT2 + CC			-		<b>_</b>	ļ <u>-</u>			
660° TO C.A. IN O.S TO	+				<del> </del>	<u>· · ·                                  </u>			
4cm STRS : KKORWAR		<del></del>			<del> </del>				
FLOODING; 3 % PY		<del></del>			<del> </del>				
35.5 - 85.9		_	0.4	18157	0.17	1.9		0.005	
2 CM QSTRO 10° TO C.A.;		<del></del>							
WEAK BONDONG IN WHITE		_							
QTZ : DAKKER CANBON	//	_							
KICH BANDS: 7 %. PY		_			ļ				
87.1-87.3		_	0.0	18158	0.02	1.8		0.001	
A 6. CM AND A 3. CM QSTK		· -							
@ 60° TO C.A ; WHITE WALLE ; 3% PY IN	14	_			ļ	ļ			
W ARE FRAGE 3 YOPY IN	HAH	_	<u> </u>						
ARL W.R. FREGS	$M \perp$		1	L	1	1			

è

PAGE		14		OF	15	PRO	OJE	CT:	E	N	G 1.	ne	حج	e															F	IOL	E M	lo.	8	フィ	105	
DEPTH (METRES)	% Case Dans	Casualos ev	LI I HULUGI	STRUCTURE				GE	OLO	OGI	ICA	LD	ES	CR	IPT	ЮN	l						S		AL D B	TE	RAT C4/ C	101	X .	Se E	- 0	INTENSITY	k			
- -		1			22.	6-142	ra	_/	9R 6	616	LL.	172	12.6		(	co	ノナ. ・シケ	<u>.</u>					T			1			$\prod$		7			$\prod$		F
_							Ì	(11	18.	4 -	118	2.6	<u>.</u>		F	901	LT	2	e~.	<u></u>	;					1										I
				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				Ca	. <u>(</u>	3 R I	к <i>к</i> 3	υ 		OR	w T	; ,		EX.	V4. Cc	SLU	E.		1/1	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \		1							//	41		
_	1								<u>م</u> ج:	6	0 '	° 7 0	, ,	(. /: FR.	9 <u>.</u>	; 3	; -, т слу	PG	gr 1	131 131	514 3~1	<u>E</u>				1					1					_
_ 119	6						1														· ·		1			$\frac{1}{4}$					1					+
_	0,1	APC	3		14	2.0	 		E		0.	. /4	<u>. </u>													-		 -			$\frac{1}{1}$					+
-		Q					1																			1					1					+
-							-																+			+		-			-					+
_				ļ			1																			+					1					
- 142	-						- -																-			+		+			+		 			+
_	Ε.	0. H.					1				*****												+		$\frac{1}{1}$	+					1					+
-							 												-							1	+	 	+		+					+
-							1																+			+					+					+
-							‡																			†			\parallel		1					
	-	-	-				+																			1		#	H	+	1				\parallel	
							<u> </u>																+			1	#		\prod		1					+
-				}			1				,										-		1		\prod	1	H		\prod		1					
_				1			+																								1					
							† †																-			1										T
																										1	\prod									

AGE 15 OF 15	PROJECT:		· · · · ·		τ		Υ	Т	<u> </u>	<u></u> '	-		87-105
MINERAL DESCR			TOTAL	SULPHIDE	INTERVAL	WIDTH	ASSAY NUMBER	% Au gm/ ₄	% Ay 19.pm	%	Au 02/T		COMPOSITE ASSAYS
			P	#									
00 U- 118 6	EMOT	3.NE	\prod	F	_	0.7	18159	0.03	112		0.001		
8.4-118.6 % PY	- Hur.		1	#			10101	0.00	100		0.00.		
			#	#	-			<u> </u>					
			T	H	F								
			#		_				<u> </u>				
	-		#!	+	-						-		
			#	\parallel	_								
			\coprod	\parallel									
			 	#	F								
		·.	\prod	#	_								
			#	H	+	<u> </u>							
			\prod	H	_								
			#	\parallel	<u> </u>								
	v- algaly		+	#	-	-			<u></u>				***************************************
			#	\parallel	<u> </u>	<u> </u>							
			+	H	+	<u> </u>			 	<u> </u>	+		
			#	H	F						1		
			\parallel	廿	_				ļ!				
			#	+	+			1					
			#	#	_								
			+	+	-								
			#	#	 								
	<u> </u>		#	4	 	<u> </u>			<u> </u> '		1		

PAGE			OF		PRO	JECT:						F	HOLE	. No	 >.			
TH (SES)	Recy	LOGY	TURE					1	ALT	ER/	TIO	N		5	SITY		Γ	7
DEPTH (METRES)	% Core Recy	LITHOLOGY	STRUCTURE	. •		GEOLOGICAL DESCRIPTION	A		В	С		,	Ε	FRACT	INTEN			-
	Ť								Ī	Ш	T		Ī	T	Π	П	T	十
_										Ш			\prod	\prod		\prod	\prod	\prod
_								\coprod	_	Ш	\coprod	\coprod	$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	\prod	\coprod	\coprod	$\!$	\coprod
-			<u> </u>					-	\Vdash		$+\!\!+\!\!\!+$	$\parallel \parallel$	$+\!\!\!+$	$\!$	\coprod	$\dashv \downarrow$	$\!$	$\!$
-					·			-	-	H	$+\!\!+\!\!\!+$	$+\!\!+\!\!\!+$	+	H	H	+	₩	╫
-	-			,			-	H	H	H	+	+	+	╁	╫	+	${f H}$	╫
_								H	H	H	$\dagger \dagger$	\dashv	+	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	廿	卄
-							\top	\parallel	\parallel		$\dagger \dagger$	\parallel	11	H	$\dagger \dagger$	††	$\dagger \dagger$	\parallel
											\prod					\coprod		
															Ш			
										Ш	\prod	\prod	\prod		\coprod	\prod	\coprod	\coprod
									_		\coprod	\prod	$\bot\!\!\!\!\bot$	\prod	$\downarrow \downarrow$	\coprod	$\!$	\coprod
-								-	4	$\left \cdot \right $	+	\mathbb{H}	+	${f H}$	\coprod	$\dashv \downarrow$	$\!$	H
-					<u></u>			-	\vdash	H	+	+	+	${\mathbb H}$	${f +}$	╁╫	#-	${f H}$
-		,			· 		+	H	\vdash	H	+	H	++	H	H	H	╁	H
						<u> </u>	+	-	+		$\dagger \dagger$	+	+	H	${}^{\dag}$	$\dagger \dagger$	H	K
											$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	H	#	$\dagger \dagger$	廾	$\dag \uparrow$
-								\top	\top		$\dagger \dagger$	$\dagger \dagger$	1		\prod	$\dagger \dagger$	\prod	$\dagger \dagger$
_															\prod		\prod	
-														Ц	Ц	\coprod	\coprod	Ш
_											$\perp \mid \downarrow$	\coprod	11	\coprod	\coprod	\prod	\coprod	\coprod
-								4			\parallel	\mathcal{H}	$+\!\!+\!\!\!+$	\coprod	$\!$	#	$\!$	#
-					•		-	1	H-		$+\!\!+\!\!\!+$	+	$+\!\!+$	H	\coprod	++	oxplus	-
-								4	+		+	+	$+\!\!+$	H	H	+	╁╁.	╫
-			. [1			+	+	H	+	+	+	H	H	+	#	+
-								+	+	╫	$\dag \uparrow$	H	+	$\dag \uparrow$	+	++	$\dag \uparrow$	H
					 !		+	+	+	+	$\dagger \dagger$	H	\forall	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	#	#
	П		-					+	1		††	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	#	\parallel
_											\prod	\prod	\prod				\prod	
_																		
<u>.</u>									$oxed{L}$		\prod	\coprod		\prod	\prod		\prod	\prod
_											\coprod	\coprod	$\perp \! \! \! \! \! \! \! \! \! \! \perp$	\prod	\coprod	1	Ш	Щ
-							$\downarrow \downarrow$			\prod	$\bot\!$	\coprod	4	\coprod	\coprod	\coprod	-	L '.
-			}					\parallel	\dashv		#	\coprod	#	#	\coprod	#	-	-
			-				\dashv	\parallel	+	H	#	\coprod	+	-	igg	-	ig	-
-			ļ				+	+	+	+	H	+	+	H	H	H	- -	H
	oxdot		1				Ш	Ш	Ш		Ш	Ш	Ш	Ш	\coprod		\coprod	ıL

ERICKSON GOLD MINING CORP. MINERALS SECTION

DRILL LOG

PROJECT ENGINEER	GROUND ELEV.
	704,10
HOLE No. 87-106	BEARING 102°
LOCATION N 3962.90 E 2926.80 LOGGED BY	TOTAL LENGTH 331.3 m
H. SMT	HORIZONTAL PROJECT 223.69 m
DATE OCT 8/87	VERTICAL PROJECT 244,34m
CONTRACTOR CONNERS CORE SIZE	ALTERATION SCALE absent slight
N Q	moderate
DATE STARTED OCT 1/87	intense
DATE COMPLETED OCT 8/87 DIP TESTS DIP AZMOTH DEPTM DIP AZMOTH 17.1m -48° 102° 276.1m -46.5 110° 78.8m -48.5° 101° 331.0m -46.5° 113° 181.7m -47.5° 106°	TOTAL SULPHIDE SCALE traces only < 1% 1% - 3% 3% - 10% > 10%
COMMENTS MAJOR INTERSECTIONS	LEGEND
91.4-93.0 QV/STR ZONE WHITE QTZ & (1.6m) PYKE AND ARG Q 0.004 02 TonAu. FRAGS; MINOR PY; Tr - CPY => DOUBLE DECKER VEIN	

PAGE	2	`	OF		18	F	RO	ECT: ENGINEER	···			•				Н	OLE	No). {	37	-10	6	
DEPTH (METRES)	% Core Recy	ITHOLOGY	TRUCTURE					GEOLOGICAL DESCRIPTION		ح		ALT D	ER	AT	ION	- :	SC E	RACT	ENSITY			(
<u> </u>	%	두	STF	+						A		В	C		D		Ε		Z				
- °		8		H	0-	1,5		OVERBURDEN		Ц	Ц	1	\coprod	Ц	$\bot \!\!\! \bot$	1		Ц	Ш	Ц		\perp	
_		*	Н	H					H	H	\parallel	+	₩	H	+	+	₩	╂	H	+	+H	+	╀
_		*		H	, ,	-[0	и	ARGILLITE (+ SST)	H	H	\mathbb{H}	+	H	Н	+	╀	╁┼	H	H	+	+	+	╀
-			H	\dagger	1,3	30	. 1	/// G // C // C S 5/)	H	H	H	+	H	Н	+	╁	╁╁	H	+	+	+	+	╁
-			Н		·			" MITA TO DAY CASY TO MAKE		H	H	+	H	H	+	\dagger	$\dagger \dagger$	H	H	H	+	+	
-			Ш	\dagger				CHERRY ARGILLITE, ARGILLITE AND		\parallel	\dagger	\dagger	H	H	$\dagger\dagger$	\dagger	$\dagger \dagger$	H	H	\parallel	\dagger	+	t
				T				LESSEX F.G. SST: BEDDING SOMETIME	+	H	Ħ	\dagger	\parallel	H	\parallel	\dagger	H	\prod	\prod	$\dagger \dagger$	\top	+	t
								VISIGLE @ 20 TO C.A. ; BEDS IMM				T	\parallel	П	\top	1	\prod	\prod	П	\prod	T	†	T
Ţ								TO 10'S OF CM IN THICKNESS;			\prod					T	\prod	\prod		\prod		Ī	Γ
- 3								SOME RIPUP CLASTS, PLAME STRUCTURE	Ţ		П			П	П	T	\prod	П	П				Γ
	-							GRADED BEDDING ; CORE YERY									П	П					
		Ш	Ш					HARD TO EXTREMELY HARD : SLICHTLY			Ц												
		Ш		1				BLOCKY BUT FREQUENT > 20cm	Ц	Ц	\coprod	\perp		Ц	\coprod		Ш		Ш	\coprod	Ш	1	\perp
		₩.		\downarrow		····		LENETHS; FRACTURES AT MOD TO	$oxed{oxed}$		\coprod	1		Ц	\coprod	1	Ц	Ц	\coprod	$\perp \mid$			
_		-#-		4				HILH L'S TO C.A; MINDE CON	\sqcup		\coprod	1	\coprod	Ц	$\perp \downarrow$	1	\coprod		\coprod	\coprod	Ц	1	1
_	17	₩-		\downarrow			1	FRACTURES; MINOR (41/2M) OF	H	1	\parallel	+	-	Н	\sqcup	4	\coprod	\prod	\sqcup	4-4	4	+	
-	60			+				UP TO ICM BANDS OF i-CC	Н	4	\coprod	+	$\!$	Н	$\dashv \downarrow$	+		\coprod	\coprod	\coprod	4	+	\perp
-	90			+				MTZ + Chi? + PØ + Cry C	\sqcup		H	-	-	H	+	+	\vdash	₩	H	+	+	+	+
10	\vdash	╫		+				MID. TO LOW L TO C.A.; TEND TI	Н	4	H	+	${f H}$	Н	$\dashv \downarrow$	+	╫	H	$\dashv \dashv$	+		+	\vdash
	1	╫		+				BE IRREGULAR IN WISTH AND DISCONT		4	+	-	-	H	+	+	╂┼	H	H	+	+	+	╁
~		+		+				INVOUS , UP TO 10 % P& WITHIN	Н	\dashv	H	_	\vdash	H	+	+	₩	H	H	+	+	+	╁
-		B	H	+				THE BANDS of 6 CPY; ONLY MINOR	Н	\dashv	+	+	╁	Н	+	+	╫	H	+	+	+	+	\vdash
		1		+	·	····		Py + Cry OVERAL; MINOR YERY FG.	H	\dashv	H	+	H	H	+	+	╁┼	H	H	+	+	+	\vdash
		+		+			\dashv	DISSEM. PT. GOME CREENISH - GREY BEOS (MORE TUFE?)	H	+	H	+	╂┼╴	H	+	+	H	H	H	+	+	+	\vdash
-		+	H	\dagger			\dashv	ARTY BEOS (MORE PUFF!)	Н	\dagger	H	+	H	H	+	\dagger	H	H	H	+	+	+	┢
				\dagger			—i	7.6 m) Icm BAND of i-Ce W	H		H	+	\parallel		$\dagger \dagger$	\dagger	H	H	H	11	+	\dagger	t
				\dagger				10 % Pd: 1% CPY P 30° >6	Н	\dagger	$\dagger \dagger$	+	H	$\dagger \dagger$	$\dagger \dagger$	\dagger	$\dagger \dagger$	H	$\dagger \dagger$	$\dagger \dagger$	\parallel	+	t
				1				CA TO OFFSHOOT @ HILH LTO	П	+	\prod	T		I	T	T	Π	\parallel	\prod	\top	\top		T
15				1				CA; ABNT STREAKY GREEN	П	\top	H	T			Π	†	Ħ		\prod	$\dagger \dagger$	\top		T
			\Box	T	_			(CHL?) · SAMPLE TAKEN		1	$\ $	T	\sqcap		11	T		$\ $		\prod		T	
_							;	AS LITHOLOGICAL GAMPLE								Ţ			\prod				
_				floor							\prod					I							
								24.2m) RIPUP CLOSTS I FLAME			\prod	I				\int							
-		\prod		\int				STRUCTURES INDICATE TOPS DRC			\prod								\prod	\prod		I	J
_		Щ						DOWN HOLE; BEDDING @ 200 TOCA.	Ц	\int	Ц			\coprod	П				\prod	\prod	\prod	\prod	L
_		Ш	$\perp \! \! \perp$	\perp			_	,	Ш		Ц								Ш			\perp	
		$\parallel \parallel$	\prod	_			_¦		Ц	\downarrow	Ц		Ш	Ц	\coprod	\perp	\coprod	\coprod	\coprod	\coprod	\coprod	1	
20									Ц		Ш	\perp	Ш	Ц		\perp	Ш		Ш	Ш	Ш		

HOLE No. 8 7-106 PAGE 3 OF 18 PROJECT: ENGINEER % COMPOSITE TOTAL SULPHIDE INTERVAL WIDTH **MINERALIZATION ASSAY ASSAYS** NUMBER **DESCRIPTION**

PAGE				18	PRO	JECT: ENGINEER							ноі	LE	No.	8	7-1	06	
DEPTH (METRES)	% Core Recy	LITHOLOGY	STRUCTURE			GEOLOGICAL DESCRIPTION		S				TON	S	0)	FRACT	INTENSIT			
76			000	1,5-5	8,4	ARGILLITE (+ SST) (com)	14	U	11/10	4			\prod						
-					·	26.0-26.5	+	\vdash	H	H	╫	HH	+	+	+	H	${\mathbb H}$	╁┼	+
-							\dagger	H	H	+	${\sf H}$	╫	+	+		+	H	$\parallel \parallel$	+
 						2 TO 6 CM WIDE ZONES @ 20 TO 30° TO C.A TO AKG FLAGS IN SILL	2	H	$\dagger \dagger$	\dagger	H	H	$\dagger \dagger$	H	+	\dagger	$\dag \uparrow$	H	H
	l				······································	GREY MATKIX IT PANT GREEN-	T	H	$\dagger \dagger$	$\dag \uparrow$	H	$\parallel \parallel \parallel$	$\dagger \dagger$	T	\top	\dagger	$\dagger \dagger$	H	
F						GREY PATCHES; WISMY LINES;		H	\dagger	T	$\dagger \dagger$	$\dagger \dagger \dagger$	$\dagger \dagger$	T	\top	Ħ	\prod	\parallel	H
<u> </u>						BOOS BETWEEN ME FRACTURES	T	\sqcap		Ħ	H	111	$\dagger \dagger$	Ħ	\top	†	Π	IT	
F						e HIGH L TO BKXX 20-ES TO	T	П		T		111	11	П	П	T			
_39		-				ABUT GREEN (CHI?) IN BETWEEN													
37						(TENSION FRACT?), M-CC; TKALES			П				П						
Γ						DISS. F.L. PT : APPEARS TO BE			8	1									
[.		للهوجة دراج				DISS. F.L. PY : APPEARS TO BE													
		-							8			Ш							
		ane branches				39.6-44.2 Wnim-cc; m-CHL(?);			1/2	9		Ш						Ц	
		4				CHL (?) IS GROON TO GREEN GREY:			4	4	4	Ш	\coprod	\coprod	Ш			Ш	
L		• [STREAMY TO PATENT; ALTERS ~ 25 %			1			Ш	\coprod	Ц	$\perp \mid$		Ш	Ш	
	6	•				OF CORE; (c PERMOSINE; ALONG			1		4	\coprod	\coprod	Ш	Ш	1	\coprod		
	100	ARG				FRACTURES; 4 1% DISS Pd;	L		1		4	\coprod	\coprod	Ц	Ц	\perp			4
44		T				niver up to 21m (c stas @		Ш	1	1		\coprod	$\bot\!\!\!\!\!\bot$	\sqcup	Ш	\downarrow	-	4	
_ `						LOW L TO LA; CORE STILL	$oxed{oxed}$	4	1	Ź	4	\Box	\coprod	Ц	Щ	4	-	Щ.	Ц.
_		-				EXTREMELY HARD.		4	4	Į.	1	$\downarrow\downarrow\downarrow$	$\bot\!$	Ц	\perp	4	-	\sqcup	4
_		4							1//	11	\coprod	\coprod	4	\sqcup	\bot	4	-	\sqcup	4
_						44.2-44.3 CARB STR.	L	\perp	2	-4	\sqcup	\coprod	4	\bot	\bot	4	igaph	Ц.	-
_	1	-				0.05 m @ 30° TO C.A.		4	 	1	-	\coprod	#	\sqcup	$\perp \mid$	1	-	-	#
_							\vdash	4		4	\coprod	HH	44	\coprod	\dashv	Ц	╁╁.	. .↓.	4
<u></u>							\perp	\perp		1/2	H	HH	+	\coprod	\dashv	1	-	\vdash	4
-							\sqcup	-		1/2	$oxed{+}$	\prod	\coprod	\coprod	+	+	\vdash	Щ.	+
-							\sqcup	-	//	1/1	4	$\lVert \cdot \rVert$	\dashv	H	+	+	H	-	+
45	\vdash	4-	· ·				\sqcup	-	4		$oxed{+}$	HH	$\!$	\sqcup	+	+	-	$oxed{+}$	 - -
<u> </u>						44.3-45.0 W-Ch1(?).Ce;	\sqcup	+		+	-	+++	+	$\ \cdot \ $	+	+	H	 	+
-						MINON P. D. TR-CMY	Н	+	Н	+	Ц.	╂┼┤	+	\coprod	+	+		+	+
-							+	+	\mathbb{H}	+	\vdash	H	++	igert	\dashv	+	-	+	+
ļ-				cali	//	7 / // - ^	Н	+	\mathbb{H}	+	\dashv	H	+	\dashv	+	+	-	+	H-
F				<u> </u>	60.4	DYKE - DIOKITE	H	+	Н	+	+	HH	+	H	+	+	H	+	+
<u> </u>						20 % UP to 2mm WHITE TO	H	+	H	+	+	HH	╁┼	╁	+	+	H	+-	<u>_</u>
-						PALE GREEN FELD ANENDS ; 25 %		+	H	+	+	╂┼┼	H	H	+	+	H	+	+
-		<u> </u>				4/MM GREEN-BLACK MARIES; M	H	+	H	+	+	HH	╫	H	+	+	H	+-	+
H .		BYKEX				F. L. GREY GREEN MATRIX;	H	+	Н	+	+	HH	++	H	+	+	H	+	+
60	Щ	V	l				Ш		Ш	Ш	┸	Ш		Ц	Ш	┸	نــلــا	Ц.	Ш_

AGE 5 OF 18 PROJECT: ENGINE	يع	X							HOLE	No.	87-106
MINERALIZATION DESCRIPTION	TOTAL	SULPHIDE	INTERVAL	WIDTH	ASSAY NUMBER	% Au gm/t		%	Au 02/4		COMPOSITE ASSAYS
			_	-							
26.0-26.5			-	0.5	18160	0.10	1.0		0.003		
BAN ZONE ; SEE					271 10.00	ļ		ļ	ļ	ļ	
BKW ZONE ; SEE DESCRIP. DPPOSITE; THEY			_	ļ					-		
			- -								
			-								
	\vdash			-							
	H	H	_			-			-		
	H		_	 							
			-								
	ig		_	-					<u> </u>		
	H	H									
	$\parallel \parallel$					1					
							ļ				
	\coprod		_			ļ		ļ		ļ	
44 2 44 3	\vdash	\mathbb{H}	_			0.4	4 =	<u> </u>			
44.2-44.3 CARB STK+W.R. BANDEU (c + DOL(?);	-		_	0,1	18161	0.09	0.5		0.001		
OUTER LAYERS WHITE TO ALTE											
O-B WEATHERING NO VISIBLE	\coprod	Ш	-	ļ							
D-B WEATHERING! NO VISIBLE	$\!$		-	<u> </u>		ļ	<u> </u>		<u> </u>		
5 K	\dashv	Н	_	-	<u> </u>	ļ	-		 	ļ	
	╫	H		·	1	ļ	 	 	 	<u> </u>	
	+	H	_			<u> </u>	ļ				
	+					 			 	 	
· · · · · · · · · · · · · · · · · · ·	$\dag \uparrow$		_			-	 	 	 	 	
	+	H	_			-	 	 	1		
	††		-			 	 		 	<u> </u>	
			-				 		<u> </u>		
	$\dagger \dagger$		_			1	†	1	 	1	
	$\dagger \dagger$		_		1	+	 	 	+	†	
	+	++-	_	-		-	-	 	 	 	

PAGE		<u> </u>	OF	18	PRO	JECT: ENGINEER						Н	IOLE	No.	8	7-	10	5
_	Š	<u>}</u>	끭		•				ALT	ERA	TION	I		?	-			7
DEPTH (METRES)	ore Re	LITHOLOGY	STRUCTURE			GEOLOGICAL DESCRIPTION	S		۵	Chi	7		Se	FRACT	ENSI			
	%	LI	STF				A		8	С	D		Ε		≥			\perp
59				58.4	-60.4	DYKE (CONT.)	П	П				П	\prod		П			
						1º/0 DISS. PT; 41º/0 DISS.												
						MAGNETITE , CORE YEXY HARD;												
						WEEK CONTACT IKKELWAR C				\prod		П			П	П		П
		lu				LOW LTO C.A; LOWER CONTAGE			П			П	П	П			П	П
 -		X				e 35° ro C. A			\prod			П	\prod		П		\prod	Π
_		Q							П		П	П	\top		П			Π
-		į.						\prod	П		\prod				П	\prod	П	П
Γ		ī {		60.4	- 89.9	ARGILLITE (+ SST)	П	П	П	\prod	П				П			\prod
					_ <u>u ** *_</u>						\prod							
60		×				GREY TO BLACK TO SOMETIMES		\prod	\prod			\prod				\prod	\prod	
						GREEN AKG CHEKTY AKL TO LESSER	П	\prod	\prod			\prod				\prod		\prod
	3					MASSIVE UP TO METER SCALE F.6.					\prod							
						SST / SOME TUFF? BENS; BEDDING				Ш						\coprod		\coprod
						@ 15° to 25° TO CA. , AKG. BEDDED =		Ш	Ш		Ш	Ц		Ш	Ш	Ц		Ш
	:					IMM TO CON SCALE BEDS TO MASSIVE;		\coprod		Ш		Ц	$\perp \downarrow$		Ш	Ц	\coprod	\coprod
						CORE EXTREMELY HARD; FRACTURES		Ц			Ш		Ш	\coprod			\coprod	, Lum
	6					@ MOD TO HIGH LTO C.A: TRACES		Ш	Ш	Ш	Ш		11	Ц	Ш	Ш	\coprod	
	00	,				TO LOCALLY 2 % DISSEM. 174;		\coprod	\coprod	Ш	\coprod	Ц	1	Ш		1	\prod	1
_65	1	R G				VERY MINOR UN TO ICM BANDS TO	Ш	Ц	\coprod	\coprod	$\perp \!\!\! \perp$	Ц	4	-	\coprod	$\downarrow \downarrow$	\coprod	₩-
L		Ø				i-CC ALT SOME RIP-UP CLASIS	Ш	\coprod	\coprod		1	\prod	$\perp \downarrow \downarrow$	-	\coprod	\coprod	11	Щ.
_						IN SST LAYERS: TOPS INDICATED		\coprod	\coprod	\Box	1		$\perp \downarrow \downarrow$	\coprod	\coprod	$\downarrow \downarrow$	\coprod	4
						DOWN HOLE		\prod	\coprod	\coprod	4		$\perp \downarrow \downarrow$	\coprod	\coprod	$\downarrow \downarrow$	\coprod	4
							<u> </u>	\coprod	\coprod	$\downarrow\downarrow\downarrow$	\bot	\sqcup		\coprod	ig	\bot	$\!$	#
						65.2-68.0 (SILL?) GRET TO GREEN-	\prod	1	11	\coprod	44-	\sqcup		-	\coprod	\coprod	\coprod	
		1			·	GREY MASSINE SST BED OR	-	-	\bot	\prod	4	Ц		\coprod	\prod	+	1	-
_		i i				POSSIBLY A F.G. DIORITE	-	+	igapha	+++	+	\sqcup	++	\prod	\dashv	+	$\!$	+
		i i				SILL	igapha	┼┼-	\dashv	H	+	\sqcup	\mathbf{H}	\vdash	ightarrow	+	$\dashv \vdash$	+
_	×						\vdash		$\!$	+++	+	H	+	₩	H	$\dashv \downarrow$	$\dashv \vdash$	++-
<u>70</u>	\parallel	<u> </u>	~~			69.5-72.3 MAJOR FAULT	\vdash	#	#	+++	+	H	++	+	H	+	╁┼	++-
<u></u>	80		~~			70 % CORE RECOVERY; BROKEN	H	1	#	+++	+-	H	++	H	H	++	+	++
_	70		2			ANG TO RIUNDED CORE; RUCTY	-	Н,	#	+++	+	H	+	H	\mathbb{H}	++	+	+
<u></u>			~			FRACTURES; MINOR CC ON	+	₩.	4	+++	+-	H	+	╫	H	+	H	+
-			\sim			FRACT ; (71.9-72.0) ANG	+	1 1/3	14.	1	+	+	+	+	H	+	+	+
-	个		.~	1		ARG FRACE UP TO 4 CM IN A	+	#	$\dashv \vdash$	+++	+	H	+	H	H	$+\!\!+$	+	++-
_	20					B.B WEATHERING CARB MATRIX	+	++	++	+++	+	H	++	H	H	++	+	+
_	00					7227/6	+	+	+	+++	+	H	++	H	H	++	$\dag \dagger$	+
_	1					72.3-76.5 MASSNE F.C.	++	++	+	+++	+	H	+	+	H	+	+	+
-		1				GREY GREEN SST ON POSSIBLE	++	++	╫	+++	+-	H	+	+	H	+	+	++
75	W	$\sqrt{}$	L	<u> </u>		F 6. DIORITE SILL	Ш				Ш.	Ш	$\perp \perp$		Ш	11	LL	4

AGE 7 OF 18 PROJECT: ENG	<i>™</i> 6	6 M	-		•				HOLE	No. S	7-106
MINERALIZATION DESCRIPTION	TOTAL	SULPHIDE	INTERVAL	WIDTH	ASSAY NUMBER	% Au 3~4	% Ay ppm	%	Au 02/1	-	COMPOSITE ASSAYS
			-								
		$\{\}\}$							l		
	+	+++	-					:			
	+	+++		<u> </u>							
	+	$\dagger\dagger\dagger$	-								
	$\top\!$	†††									
			_ _								
	\coprod	Ш	· 								
	$\perp \downarrow \downarrow$	\coprod									
	\bot		_			ļ					
	$\dashv \downarrow$	$\ \cdot\ $	_								
	$\dashv +$	+	-	-							
	+	+	_			ļ					
	11	+ + +	_			 			 		
			•••							-,	
											
	$\perp \downarrow \downarrow$										
	$\perp \downarrow \downarrow$	Ш		ļ							
	\dashv	++				ļ					
	$\dashv \downarrow$	+		-						,	
	+	H	_	-							
	+	111	-	 						 ··	
			_								
			_								
			_			ļ					
7/ 0	\dashv	$\ \cdot\ $				ļ					
71.9-72.0 BRXX: (ARB	+	++		0.1	18162	0.05	0.8		0,001		
MATRIX; IT. DISS PT IN FAAR	5	H				-					
	+	++									
	+	+							† – †		
	+	++-	_			<u> </u>					
	+	++1	_	-	 	†	 		1		

PAGE	8	7	OF	18	PROJ	ECT: ENGINEER						H	IOLE	No.	8	7-/	26	
DEPTH (METRES)	6 Core Recy	LITHOLOGY	STRUCTURE			GEOLOGICAL DESCRIPTION	S	T	ALT D B	Chi C	TION	Y	Se E	FRACT	IN LENSI I			
90	<u>* </u>	7	S	090	aud	DYKE		T	Ť	$\dagger \uparrow \uparrow$	T	П	П				П	巾
				87.9-	71,7	DIRE DIONITT DO CHAY	\parallel	H	$\dagger \dagger$	H	$\dagger \dagger$	H	++	H	\top		$\dagger \dagger$	十
		190				GREEN TO LO. SAM SPECKS; MINOR	T	$\dagger \dagger$	$\dagger \dagger$	Π	$\dagger \dagger$	\prod	\top	\prod				П
		W				GREEN W 20.5 MM SPECKS & MINOR	$\dag \uparrow$	$\dagger \dagger$	$\dag \dag$	$\dagger\dagger\dagger$	$\dagger \dagger$	$\dagger \dagger$		H	+	\top		H
ĺ		DYKE				CARB ON FRACTURES ; MINOR DISSEN	H	$\parallel \parallel$	††	$\dagger\dagger\dagger$	$\dagger \dagger$	H					T	Ħ
		9				PYRITE	$\dagger \dagger$	$\dag \uparrow$	$\dagger \dagger$	$\dagger \dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	++	$\dagger \dagger$	1	Ш	\top	H
	ł	1			i		H	$\dagger \dagger$	$\dagger \dagger$	+++	$\dagger \dagger$	Н	H	H	\parallel		+	H
		*		G 11 0		QUARTZ VEIN / STR ZONE(1.6 m)	+	$\dagger \dagger$	H	$\dagger\dagger\dagger$	$\dagger \dagger$	Н		$\dagger \dagger$				Н
				41.4-93	3.0 1	QUARIZ VEIN I STIC ZONE(1.674)		$\dagger \dagger$	$\dagger \dagger$	+++	$\dagger \dagger$	\dagger	H	$\dagger \dagger$	\parallel		+	H
						- UPPER CONTROL 20° TO C.A.	$\dag \uparrow$	$\dagger \dagger$	H	 	$\dagger \dagger$	\dagger	H +	$\dagger \dagger$	$\parallel \parallel$	III	\top	$\dagger \dagger$
-92						LIWEX CONTACT @ 50° TO C. A.	H	$\dagger \dagger$	††	+++	$+\!\!\!+$	+		$\dagger \dagger$	H		+	T
		:					+	+	+	+++	$+\!\!\!+$	+	H +	+	H		+	+
	ļ				1		++	╫	++	+++	$+\!\!+$	+	HH	+	-	H	+	+
					I		++	+	+	+++	+	+	++	++	H	H	+	H
							\vdash	H	${\mathbb H}$	+	+	+	+++	+	\vdash		+	\dagger
	1						╁┼	+	++	+	+	+		++	+	H	+	+
	20	. .					+	++	\mathbb{H}	+	$+\!\!+$	+	H	+	H	\vdash	+	+
	٥				i		++	\dashv	+	+	+	\dotplus	+++	╁┼	+	+-	-	-
	5	1					+	11	\dashv	$+\!\!+\!\!\!+\!\!\!\!+$	+	-	++	#	$oldsymbol{ec{ec{ec{ec{ec{ec{ec{ec{ec{ec$	++	H	+
	1	i					╁╂-	\coprod	$\downarrow \downarrow$		$+\!\!+\!\!\!+$	\downarrow	H	++	-	\vdash	-	+
	7						++	4	+	44	$\dashv \downarrow$	+	H	+	H	++	H	+
		>					11	\coprod	\coprod	\bot	\dashv	\downarrow	\sqcup	++	\coprod	\dashv	H	+
		Q					$\bot \downarrow$	\coprod	4	4	4	-	\sqcup	4	$oxed{+}$	11	-	+
							$\perp \! \! \perp$	$\perp \downarrow$	$\downarrow \downarrow$	$\perp \! \! \perp$	\coprod	1		$\bot\!\!\!\!\bot$	4	\coprod	-	\downarrow
					`		$\perp \downarrow$	$\perp \downarrow$	Ш			1	$\downarrow\downarrow\downarrow$	11	\prod		\prod	\downarrow
:		:						\coprod	$\perp \mid$	Ш.	$\perp \downarrow \downarrow$		\coprod	44	\coprod	Ш.	\coprod	\downarrow
								\coprod	$\perp \perp$	$\perp \! \! \! \! \! \! \! \! \perp$			\coprod	\coprod	\coprod	\coprod		1
								Ш						Ш	\coprod	\coprod		\downarrow
								Ш							\coprod	\perp	\coprod	1
		i												Ш				_
		1					\prod											
	-		 	 			\prod		\sqcap	\prod					\prod		\prod	
							\prod					T			\prod			
							11	\prod						\prod				
		1	İ				\parallel	11				1		\parallel	\prod			T
							++	$\dagger \dagger$		1		+	TT	11	$\dagger \dagger$		\prod	T
						1	++	++	$\dagger \dagger$			\dagger	111	††	$\dagger \dagger$	\parallel		1
				<u> </u>			+	++		++	H	\dagger	$\dagger \dagger$	††	$\dagger \dagger$	#	$\dagger \dagger$	1
							+	+	+	++		+	++	$\dagger \dagger$	$\dagger \dagger$	+†	$\dagger\dagger$	+
-						1	+	+	+	++-	H	+	++-	+	H	++	$\dag \uparrow$	+
-				<u></u>			++	+	+	++	H	+	++-	+	+	++	++	+
93	<u> </u>	1	<u> </u>	<u> </u>					Ш	Ш	Ш			11	11		atlas	1

AGE 9 OF 18 PROJECT: ENGIN	EE	K							HOLE	No.	37-106
MINERALIZATION DESCRIPTION	TOTAL	SULPHIDE	INTERVAL	WIDTH	ASSAY NUMBER	% Au 3~H	% Ay ppm	%	Au 02H		COMPOSITE ASSAYS
91.4-93.0 QV STR ZONE 91.4-91.9 QV @ 20° TO C.A; -WHITE QTZ W 30% DYKE AND LESSER ARG FROGS; MUDA	//			0.5	18/63	0,06	1.8		0.062		
UP TO ICM GREEN-BLACK RICH BANDS (CHIZIN QTZ): L10 % (ARB; DYKE FARAS CHLOKITIZED; MINOR DISS. PY IN FRALS; TRACE DISS. CPY.	//		- - - - -								
91.9-92.1 - BAND OF DIORITE DYKE 92.1-92.4 QV/STX C			- 		18164				0.001		
MINOR CARB; MINOR DISSEM.			- - -		18165	0.07	<i>U. J.</i>		0.002		1.6m, 004
924-928 (- QSTRS; ABNT LICM RSTRS @ YAKING L'S TO GA.; ~ 30 % OF INTERVAL IS QTZ; MINOR DISSEM PY.			- - - - -	0.4	18166	0.32	3.4		0.009		
92.8-93.0 QSTR C 50° TO C.A.; WHITE OTZ TO 40 % BANDS OF i-ALT W.R. (DISCONTINUOUS); CHL IN EUR; MINOR PY; MINOR CARB			- - -	0,2	18167	0.06	0.4		0.60 2		

PAGE	10)	OF	19 PROJECT: ENGINEER							I	HOL	.E	No.	8	7-	10	6
DEPTH (METRES)	e Recy	LOGY	STRUCTURE	GEOLOGICAL DESCRIPTION				TE	RA	TIO	N	c_		ACT	VSITY			
	% Cor	LITHOLOGY	STRUC	GLOLOGICAL DESCRIPTION) A		D B		C	1 7)	2G		FR/	INTE			
93		\		93.0-312,0 ARGILLITE	П	\prod												
_				GREY TO BLACK AND LESSER CREEN	Ш	Ш	1	Ц	\coprod	\coprod	1	Ц	Ц	\perp	Ц	$\perp \downarrow$		
_				ARGILLITE CHEXTY ARG MINOR	Ц	\coprod		Ц	Ц	\coprod	\perp	Ш	Ш		Ц	Ш		
-				CHERT, MINOR F.G. SST; BEDS	Ш	Ш		Ц	Ц	\coprod		Ц	Ц		Ц	Ш		Ш
•				MM TO IM SIALE; BEDDING C		Ш	\perp	Ц	Ц	Ш			Ц	\perp	Ц			
				20 TO 30 TO L.A. AT BECK OF	\coprod	Ц	\downarrow	Ц	Ц	$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	\perp		Ц	\perp	Ц	\coprod		
				INTEXAN BUT VARIES DOWN HOLE	Ц	\coprod	\perp	Ц	Ц	Щ	1	Ш	Ц	_		$\perp \downarrow$		
-				CORE VERY HAND TO EXTREMENT	\coprod	\parallel	1		\coprod	$\perp \!\!\! \perp$	1	Щ	$\downarrow \downarrow$	\perp	\coprod	$\downarrow \downarrow$	1	
-				HARD: MINDR, LOCALLY MOD	Ш		1	Ц	\coprod	$\perp \!\!\! \perp$	1	Щ	$\downarrow \downarrow$	1	\coprod	$\perp \downarrow$	1	Ш
				LICM TO LOCA BONDS AND	\coprod	\coprod	\downarrow	\prod	\parallel	\coprod	1	\coprod		\downarrow	\coprod	$\downarrow \downarrow$	1	
-		;		PATCHES OF PERVISIVE SIT	\coprod	\coprod	1	Ц	\coprod	\coprod	1	\coprod	$\downarrow \downarrow$	_	\coprod	$\downarrow \downarrow$	1	
_		RG		Cet Chi (?) + PY + PO - GREY	Ш	\coprod	1	Ц	\coprod	\coprod	\perp	Ш		_		$\perp \mid$		
_		Q		TO GREENISH-GREY COLOR; MINOR	\coprod	\coprod	1	Ц	\coprod	\coprod		\coprod	\prod	\perp	11	\coprod		$\perp \parallel$
		į		LAYERS (KEDS) HAVE BROWNEH	\coprod	\parallel	1	\sqcup	\coprod	\parallel	1	╽.	$\downarrow \downarrow$	+	\prod	$\downarrow \downarrow$	\perp	
٠,						4	1	\perp	\sqcup	\parallel	1	\coprod	\sqcup	\downarrow	\coprod	\sqcup	_	
				SHEEN => PEKNASINE BIOTITE?	\coprod	\bot	1	\coprod	44	\parallel	1	\coprod	\sqcup	_	\coprod	+		
				FRACTURES AT MOD TO LOW	$\parallel \parallel$	$\downarrow \downarrow$	1	\sqcup	\coprod	\parallel	\downarrow		\sqcup	-	\prod	\coprod	\downarrow	
-	1			2'S TO (.A	\parallel	4	\downarrow	$oxed{\perp}$	\dashv	$\perp \mid$	\downarrow	igwdapper	$\downarrow \downarrow$	+	\prod	\dashv	+	\sqcup
-	9				$\!$	\bot	+	\coprod	\coprod	\bot	4	$\!$	$\ \ $	\downarrow	$ar{ert}$	+	\bot	Н
107		*		106.9-107.4 106.9-107.4 SILL	$\dashv +$	╫	+		+	$+\!\!\!+$	+	dash	\coprod	+	$\!$	+-	+	Н-
-	0 /-	7715		DAKK GREY MATRIX TO 20 %	\mathbb{H}	+	+	$oxed{oldsymbol{ec{ec{ec{ec{ec{ec{ec{ec{ec{ec$	H	+	+	$oxed{+}$	+	+	H	+	+	\mathbb{H}
-	1	*		UP TO 4MM LONG FEED LATHES	-	\coprod	+	H	H	+	+	$oxed{+}$	\parallel	+	H	+	+	
				(WHITE); CONTACTS @ 30° TO	\vdash	+	+	H	H	+	\dotplus	╁┼	\mathbb{H}	\perp	\parallel	+	+	
-				C. A.	$\dashv \downarrow$	+	+	$oxed{+}$	\coprod	+	+	$\dashv +$	H	\dashv	\mathbb{H}	+	+	
					\coprod	+	+	H	++	+	\downarrow	H	\prod	+	H	\mathbb{H}	+	
				108.6-108 8 i- PERMASIVE S.	$\dashv \downarrow$	$\dashv \downarrow$	+	\sqcup	H	+	+	$\!$	\mathbb{H}	+	ightarrow	+	- -	
•		ı	}	m-Ch!? 'a-Cc; CORE	$\dashv \downarrow$	+	+	H	$\dashv \dashv$	+	\downarrow	╁	\dashv	+	H	+	+	-
				MOTTLED GREY - WHITE;	1//				$\frac{1}{2}$	+	+	$oxed{+}$	H	+	\dashv	+	+	
		S		3 % DISSEM. PY; AUTO C	// /	44	4		44	+	+	╂	+	+	H	+	+	\mathbb{H}
109		8	<u>.</u>	LOW L TO GA.	H	+	+	H	$oldsymbol{ec{ec{ec{ec{ec{ec{ec{ec{ec{ec$	+	-	H	H	+	H	+	+	\sqcup
-		4			+	\dashv	+	H	\coprod	\dashv	+	$oldsymbol{ec{ec{H}}}$	H	+	H	+	+	\Box
_				113.6-115.5 m. Si- (c. Ch1).	$\!$	+	+-	H	H	+	+	\vdash	H	+	H	\parallel	\perp	Н
-				PY ALTE AS PATCHES AND	$\dashv \vdash$	+	+	H	\dashv	+	+	H	\dashv	+	H	+	+	Ш
-				BANDS OF C. ALT - ~20%	#	+	+	H	\dashv	+	+	\dashv	H	+	H	\dashv	+	Н
-				OF INTERVAL ALT & TRACE	\coprod	+	+	1	\dashv	+	+-	$\dashv \vdash$	$\ $	\perp	H	+	+	H
-				DISS - CPY TO ALT BEDDING	 	+	-	1	 	+	+	-	\dashv	+	H	+-	+	4
-				~ow @ 50 70 60 '70 C.A.	14	+	1	-	14	\parallel	+	igdash	\sqcup	+	\coprod	+1	\downarrow	Ш
-					11	4	1		4	$+\!\!\!+$	\downarrow	\coprod	\prod	-	$\ \ $	\parallel	+	$ \bot $
-		Addition only have			4		1	H	14	\parallel	+	-	\sqcup	+	\prod	+	+	
(15		\vee			W		ľ		14									

AGE // OF /8 PROJECT: ENG	INEZ	R							HOLE N	lo. 87-106
MINERALIZATION DESCRIPTION	TOTAL	SULPHIDE	INTERVAL	WIDTH	ASSAY NUMBER	% Au gm/t	% Ag ppm	%	AU ozh	COMPOSIT
		\prod	-							
			-							
		П	-							
		\prod	•							
			_							
			_							
	- 11	\prod	_							
						<u> </u>				
	11	\dagger				†				
		\parallel				1				
	-	$\dagger \dagger$	_							
		\parallel								
***************************************	$\neg + \uparrow$	$\dagger \dagger$	-			 	-			
	-++	$\dag \uparrow$	_	-		 			-	
		H				 				
	-H	H				 			 -	
		H	-	-		 				
	-H	H	-			 				
	-++	H	-	-		 -				
		+	-	-	<u> </u>	 				
10/1425		_	_	100					-	
08.6-108.8 AUT AKA; 3°/0 M	1/	+	-	0.1	18168	0.02	0.8		0.001	
3 /6 /7	-17	+	-	-		 			-	
	$\dashv +$	╫	<u> </u>	<u> </u>		 				
	$\dashv +$	+				 		-		
	\dashv	-	_			 	ļ		 	
		H		 		ļ	-		-	
		-				ļ				
		#	-			_	_			
	-11	11								
	$\perp \downarrow \downarrow$	\coprod				<u> </u>				
	- 11		l		-					
	$-\downarrow\downarrow$	Ц.		-	 	·				
			_							

PAGE	12	2	OF /	18	PROJ	ECT: ENGINEER							F	IOLI	E N	lo. d	87-	10	6
	Ş		R E						AL	TE	RA	TIO	¥			۲		T	
DEPTH (METRES)	ore Re	LITHOLOGY	STRUCTURE			GEOLOGICAL DESCRIPTION		S	D	.	Chl	7	-	Sc	TOVO	LENSIT			
	%		STR				4	4	8		С	D		Ε		Z			
125		•		93.0 - 3	312,0	ARGILLITE (CONT.)													
-			FOLD NOSE			,		Ш	\perp	Ш		\coprod	Ц				Ш		Ш
_			NOSE			127.0) FOLD NOSE; BEDDING	Ц			Ш		Ш		Ш			Ш		
						IN CORE MAKES FOLD AROUND	Ц	Ш		Ш		Ш	Ц			Ш	Ш		Ш
_						5 cm NOSE W i- CC - Ch1?-PX-PQ		Ш					Ш			Ц			Ш
						ALTE STEEP C.P. L'S	Ц	Ш		Ц	Ц		Ц		\perp	Ц			Ш
						10 cm BEFORE NOSE; MOD	Ш		Ш		Ц		Ц		\perp	Ц	Ц		Ш
_						AFTER SHOWING ASYMPTRICAL						Ш	Ш	Ц	\perp	Ш		Ш	
					<u> </u>	FORDING.	[4	4	4	Ц	4	Ш	Ш		\perp	Ц.	Ш		
_13S								4	1	Ш		\coprod	Ц		_	Ш	\coprod	Ш	\coprod
.,,,,						132.8-144.8 m. S: # Cc = Ch/?	1	4	1	Ľ	1	Ш	Ш	Ш	\perp	\coprod		Ц	
						PY + po in PATCHES; BANAS;	1		1	Ц,							Ц		
_					, I	SOME BANDS PARALLER BEDDING	Цľ	4	X,	Ш	4	Ш			\perp	Ц	\coprod		
-						LAST 20 cm HAS . 3 % PM	14			Ц.	4	$\perp \!\!\! \perp$			\perp	Ц			\coprod
						DISSEM. MONE STES OF MITE	14	4	1	Ц.		\coprod				-	Ш		$\downarrow \downarrow$
	\ <u>`</u>					WHICH ARE & ICM WIDE;	14		1		Ц	$\bot\!\!\!\!\!\bot$			1	\coprod	\coprod	\coprod	\coprod
_]				1	BEDDWA @ 507065° TO (.A.;			L j			$\perp \mid \perp$							
	00	1				ARG Al on TO KALEY 10 CM	14	4	1			$\downarrow \downarrow$	1		\perp	\coprod		\coprod	Ц.
_	00	८				BEDS.		4				$\bot\!$			\perp		\coprod	\coprod	\coprod
_145		X	<u> </u>			<u> </u>		4	14	\coprod	1	\bot	-	4	-	\coprod	\coprod	\coprod	\dashv
	1	O.				144,8-155.0 DARK GREY TO BLACK	\square	-		\coprod	\prod	$\bot\!\!\!\!\!\bot$	_	\perp	4	\sqcup	\prod	\sqcup	\dashv
_		4				ONLY MINOR ALT SECTIONS;	$\downarrow \downarrow$	_		Ш	\coprod	\coprod	4	-		\coprod	$\dashv \downarrow$	\sqcup	#
						BEDDING NOT AS DISTINCT	$\downarrow \downarrow$	_		-	\sqcup	\coprod	_		\sqcup	\prod	\coprod	\sqcup	+
						AS MOST OF UNIT; BEDDING	\sqcup		\sqcup	\dashv	$\parallel \parallel$	\bot	+	-		igwedge	igoplus	H	$+\!+$
-						VISIBLE IS P MOD TO HIGH LTO	\prod	_	\coprod	\coprod	ig	\perp	+	-	H	$\!$	+	\coprod	igapha
_						C.A. (VARIES)	\prod	\downarrow	\coprod	\prod	\sqcup	4	1	H		H	11	↓	++
							\dashv	-	Ц.	$\dashv \downarrow$	\coprod	+	_		\vdash	\dashv	igwedge	\dashv	$+\!\!+$
						155.0-173.0 RHYTHMICALLY BANDED	$\parallel \parallel$	-	-	\dashv	H	+	+	-		\dashv	$\dashv \vdash$	H	igoplus
						IN MOSTLY ITO 3 CM BEDS YMAY	$\parallel \parallel$	- -	Ц.	\coprod	H	+	-	Ц.		\dashv	$\!$	\sqcup	\coprod
155					; 	FROM BLACK TO GREEN TO GREEN	11	-	\sqcup	$\downarrow \downarrow$	\sqcup	4	1			\coprod	\bot	\perp	$\downarrow \downarrow$
						GREY TO BLOWNISH -BLACK (BI?)	11		\vdash	$\bot \downarrow$	\sqcup	\parallel	-			\coprod	\coprod	\prod	\coprod
•					<u> </u>	IN COLOR : BEDDING MOSTZY	$\downarrow \downarrow$	-		\coprod	H	+	+	-	H	H	#	H	+
_					i	@ MOD LTO C.A. " MINOR	$\downarrow \downarrow$	+	\sqcup	$\downarrow \downarrow$	\sqcup	+	-	\Vdash	-	#	\dashv	H	#
_						S; ±(c = (h1 = Py = Py AUC	\sqcup	4		\prod	\sqcup	+	-		-	$\downarrow \downarrow$	#	₩.	#
_			1				$\downarrow \downarrow$	_		igert	\coprod	+	1	1	\coprod	\coprod	4	\coprod	#
<u>.</u>						173.0-176.0 BEDDING DIS RUPTED;	$\downarrow \downarrow$	_	\coprod	\coprod	\sqcup	4	1		\prod	$\downarrow \downarrow$	\prod	\sqcup	1
						M. S. 3 CC + Ch1? + FY ; ~ 20% of		-	\coprod	\prod	\coprod	$\downarrow \downarrow$	\perp		\sqcup		#	$\downarrow \downarrow$	#
_						CORE HOS PARCOES RANDS OF ACTUAL	\coprod	1	\coprod	\coprod	\coprod	\bot	1		\coprod	11	1	\coprod	\coprod
					<u> </u>	ALT B. POSSIBLE FOLD NOSE.		4	<u> </u>	\coprod		\coprod	1	<u> </u>		11	\coprod	11	#
175			FOLDI	r4 ?			12	/	$ 1\rangle$	11	M								il

***** *** ****

HOLE No. 87-106 PAGE 13 OF 18 PROJECT: ENGINEER COMPOSITE TOTAL SULPHIDE INTERVAL WIDTH **MINERALIZATION** ASSAY **ASSAYS** NUMBER **DESCRIPTION**

PAGE	14		of /8	PROJECT: ENGINEER],	10LE	No.	2	7-	108	,
DEPTH (METRES)	% Core Recy	LITHOLOGY	STRUCTURE	GEOLOGICAL DESCRIPTION		S		AL' D B	Ch	1 1	N	Se	FRACT	INTENSITY			7
175	8.		07	930-3120 ARGILLITE (con))		\dagger	Ī	\forall	1	T	Ī	T	T	П	T	П
				7,10,120,12				\prod									
				176.0-263.6 RHYTHAIL BEDDO	~ C												
				25 TO 40 ° TO C.A; CORE DARK									\prod				
				TO BLACK TO BROWN - BLACK													
				ESTREMENY HARD (HORWE								Ш	\coprod				
				FRACT. CHOW TO HKHL'S	•		\prod	\prod	+	\prod	\perp			-			L
				1203.0-225.4 BEDDING LESS	SDATING	1		\prod		\top			\top		П		
2.				OFTEN BROKEN " DISTOR?			\prod		\prod								
200				MAY BE ORIGINAL SED. O	_			П					П				
				POSSIBLY DUTE TO FOLD!				П					П				
				BEDDING & SO TO C. A.			\prod										
				@ 20° TO C, A @ 216. S									Ш				
ĺ				COLE STALL EXT. HARD:	/								\coprod	Ш			L
	4			HUE COMMON.		Ш	Ш			Ш		Ш	Ш	Ш	Ш	Ц	1
	0	1					Ш	\coprod		$\perp \parallel$		Ш	Ш	Ц			1
	0	5		225.4-226.2 mroi (c	- S: -Ch/?			\coprod		\perp			4	Ц			\downarrow
	100	8		AUT - GRENENISH CHL	PERMASH	+	\coprod	\coprod	Ш	$\perp \mid$	\perp		\coprod	Ц	4		1
-225		1		ALONG CONTACTS OF ZONE;		Н	\coprod	\prod	+	$\perp \mid$	1		\coprod	\prod	1	4	-
		1		PENIASIVE IN PATCHES TH	RU-BUT	₩.	\coprod	\prod	44	\parallel	-		4	\coprod	H	\parallel	1
	V	•		LET GREYISH - WHITE PERY	. ALTS	-		Н	\perp	\mathbb{H}	-		+	\coprod	+	-	\perp
				E ANALLAR PIECES OF L	WALT	12	1/	$\frac{4}{4}$			+	H	+	$oxed{+}$	+-	H	+
				IARLIN BETWEEN : 2	10 0155	X	#	\mathcal{A}	X	4	+	H	+	H	+	-	+
				Py ; CONTRIES OF ZONE	<u> </u>	1		\mathcal{A}	1	\mathbb{H}	-	H	+	H	H	-	+
				150 (UPPER) 4, 450 (LOWN	TO (ST	12	#	14	11/	\mathbb{H}	+	$\left \cdot \right \cdot \left \cdot \right $	+	H	+	1	+
				C. A.		+	+	+	+	+	+	H	+	H	H	\vdash	+
						H	╁	+	+		+	H	+	H	+	H	+
				126.2-284.5 BEDDING		+	+	+	+	+	+		+	H	H	H	+
-227	_			TO occassionary distinc		++	╫	+	++	+	+	HH	+	H	+	H	+
				MOD TO LOW (MOSTLY 30 TO'S	34/10	+	+	+	++-	+	+	HH	++	H	+		+
				C.A: ~10% of cone	HAS	++	++	H	++-	+	+	H	+	$\dagger \dagger$	+	+	+
				PATCHY OR BANDOD (IN L)		$\dagger \dagger$	$\dagger \dagger$	H	++	+	+	H	+	H	+	\parallel	+
				20cm zovos) CE Sit Co		+	$\dagger \dagger$	H	++	+	+	$\parallel \parallel \parallel$	+	$\dagger \dagger$	$\dagger \dagger$	H	+
			-	RTSKS (DESCRIBED) IN A	1 JAN UOUS	+	$\dagger \dagger$	$\dagger \dagger$	++-	+		$ \cdot \cdot $	+	H	+		+
				1 .		++	$\dagger \dagger$	$\dagger \dagger$	+++	+	+	+ +	+	$\dagger \dagger$	$\dagger \dagger$	\parallel	+
				PAGE): CORE YERY TOE	KIRCHEO!	++	$\dagger \dagger$	H	+++	+		H	$\dagger \dagger$	$\dagger\dagger$	+	+	+
				HARD, BROWNISH (B:) HUE	3/16	+	$\dagger \dagger$	H	+++	+	+	H	+	++	H	$\parallel \parallel$	+
			-	COMMON		++	+	H	++-	+	+	H	+	$\dagger \dagger$	+	H	+

PAGE 15 OF 18 PROJECT: ENGINEER HOLE No. 87-106 % COMPOSITE TOTAL SULPHIDE INTERVAL WIDTH **MINERALIZATION** ASSAY Au Ay **ASSAYS** Au NUMBER **DESCRIPTION** galt pom 02/1 225.4.226.2 ALTE AKK: 0.8 18169 0.01 1.1 0.00 2 % Py 2 30.6- 230.8 0.2 18170 0.01 1.0 0.001 i-S: ; w-Chl, cc ; core MOTTLED GREY I GREENISH PATEMES; O.SIM QSTR @ 350 TO C.A : 2%14 264 7-264.8 0 Scm Cc STE 0.1 18171 0.04 1.0 0.001 @ 30° to CA to i- 5:- Ce IN HW' BLXX APPERGRANGE TO HW! Tr-Ry

PAGE	1	6	OF	18	PROJ	ECT: ENGINEER						HOL	E.	No.	8	7-/	06	
	Recy	3≺	RE							ERAT								
DEPTH (METRES)	% Core Re	THOLOGY	TRUCTURE			GEOLOGICAL DESCRIPTION	S		D	CYI	7	Se	ا -	FRACT				
	%	רוז	STF				A		В	С	D	E		<u> </u>		_		
284				93.0	-312.0	ARGILLITE (CONT.)		Ц	Ш	\coprod	Ш	Ш	Ц	Ц	Ш	Ш	Ц	
-						226.2-284.5 (cont.)	Ш	Ц	Ц	Ш	Ш	\coprod	Ц	4	\coprod	$\perp \mid$	Ц	4
_									Ц	\coprod	Ш	Ш	Ц	Ц	Щ	\perp	Ш	\perp
-	1 1							Ш	Ц		Ш	Ш	Ц	Щ	\coprod	Ш		1
_		:						Ш	Щ	Ш	Щ	Ш	\coprod	\coprod	Ш			\downarrow
-							12	11	1	Ш	14	21	Ш	\coprod	$\perp \mid$	Ш	Ш	1
-								11	W	111	11/	41	\coprod		Ш			Ш
-								1		411	ľW	11	\prod	\coprod	Ш			
-						284.5-285.5 0.5 70 2cm		1	1/1	111	14	41	Ш	\coprod	Ш			Ш
_						Ce STKW W. R. FRAGE COTS	1.	1/	M		Ш	11	Ш	$\perp \downarrow$				
— 2 85						i- Si-Co-T ALTA ARC;		И	1	\coprod	\coprod		\coprod					Ш
-						ATT = PATENY & GREY BLACK			X		114	\coprod						
-					1	(un mer.) : Tam (i-T) PATCHES	1/2	1					Ш					
-						THIS ALT = E MODTO HIGH L'S	\mathcal{U}	Z					Ш					
•						TO C.A. WHILE CO STRE	14	X	X	$4 \coprod$								
-						VERY LOW & FOC. A.												
-	T	4						П										
_	60					285.5- 309.7 DARK GKOT												1
-	0	RG				BLACK ARL IN SUME BHOWN												
- 241	07	A				HUE: ONLY WAY MINOR AGO		П										
286		V			1	(Si±(c±(L)) PAYLHES: BEOS												Ш
_	1	V				Mm TO COM IN SCORE . BEDDING L												\coprod
-			•			TO (. R. VARIES . @ 200 47 286	4											\coprod
						@ 40°AT 292m; C 5° AT 2961	2										Ш	Ц
-						@ 40° AT 302m ; BEDDING												
-						BECOMES LESS DISTINCT AT												\coprod
-						END OF INTERVAL' 0,570											Ш	\coprod
-						1.00m OSTR @ 60° TO C.A							\perp		\perp			\coprod
	1					AT 299.2 m . PI, PO ALONG							L				Ш	\coprod
						HW CONTACT			4									
 3/(1									
-			İ			309.7-312.0 C-Si-Cc-Bi?	:14											
-						CORE MOTTERS LIGHT GREY TO				1								
_			1			BLACK :- PERVASIVE S. + Cc : BROWNE	u		1	\prod								\coprod
-						LIMM PATCHES DUE TO PEXMINE	\prod		M	\coprod								Ш
						B: (?) > SAMME TAKEN 309.8.301.	9											
						FOR LITHOLDGICAL SAMPLE;							\int			\prod	\prod	
						3 % DISS PY; c/0/2 DISSELY.	17	71								\prod		\prod
_						PØ, CORE VARIES FROM	11	\prod									П	
- 312						EASILY SCRATCIPED TO VERT HARD	1	4/1	1/									П

MINERALIZATION DESCRIPTION DES	AGE 17 OF 18 PROJECT: ENGIR	1	C T		1		T	r		HOLE	10. 8	7-106
STR P VERY LAW & TO C. P. WILL FRACE WITHIN; ABOUT LEVISS OF G. IN ARE IN NEW, 77-PY 284.5-285.5 C. STR. T. i. SCT. // 285.0 PLY; < 10/10 PB 100.00 100.		TOTAL	SULPHIDE	INTERVAL	WIDTH		1		%	1 . 1		COMPOSITE ASSAYS
13 (2) (2) (2) (2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4				-	0.7	18172	0.02	1,4		0.0oj		
284.5-285.5 CC STR.T (-S:-CC-T) 285.0 286.0 286	LENSES OF CO IN ARC IN			- -								
309. 9 - 312.0 (307) // 310.4 0.5 18175 0.01 0.9 0.001 ARC: 3 70 PY 2196 // 310.4 0.8176 0.02 0.6 0.001	284.5-285.5			285.0						0.001		
309. 9 - 312.0 i sore // 309.4. ARC: 3 70 PY 219/2 // 310.4 P 9 311.4 // 10 18176 0.02 0.6 0.001 (21m. 0.00)	PY; < 10/0 PØ			_ 285.5 _	0.5	18179	0.02	0.9		0.001		
309. 9 - 312.0 i sere / 309.4. 0.5 18175 0.01 0.9 0.001 ARC: 3 70 PY 219/2 // 310.4 Pg 311.4 /0 18176 0.02 0.6 0.001 (24m, 0x				- 								
				- -		•						
				-								
				-								
				- 								
	309. 9 - 312.0 i ALTS			- -309.4 -310.4	0.5	18175	0,0	0.9		0.003		
	ARL', 3 % Py 61%						1	1 1		0.001		21m, 00

PAGE	18	}	OF	18	PROJ	ECT: ENGINEER							н	OLE	No	. 8	² 7-	10	6
	Š	GΥ	RE						Αl	TE	RA ⁻	TION	ł			∠			
DEPTH (METRES)	Core R	LITHOLOGY	STRUCTURE			GEOLOGICAL DESCRIPTION		٤	D	(C41	7	-	Se	FRACT	TENSI			
- 	%	7	ST				Ļ	A	8	1	C	D	4	Ε	┞-	=	т т	Ļ	\dashv
312 -		^		312.0	-3243	DYKE FLD PPY ~ DIDRITE		Ц	\coprod	Ц	\coprod	\coprod	Ц	\coprod	\coprod	Ц	11	\coprod	\coprod
_						40 % UP TO SMM FEW PRENS	1	Ц	Щ	Ц	Ц	1	\sqcup	\coprod	\coprod	Ц	$\!$	\perp	$\!$
_					- !	IN APHANITIC GREY MATKIN'	L		Ц	Ш	Ш	\coprod	Ш	\coprod	Ц	\coprod	\coprod	11	\coprod
-						3 % DISSEM MY TRACE MAGNETITE	Ŀ	Ц	Ш	Ц	Ш	\coprod	Ш	\coprod	Щ	\coprod	\coprod	\coprod	11
_				<u> </u>		MINOR CO ON FRACTURES, FRACT.		Ц	Ц	Ш	Ц	Ш	Ш	Ц	Ш	Ц	Ц		Щ
						@ MOD L TO C, A . UPPER CONTACT	L		Ш		Ц	\coprod	Ш	Ш	Ш	Ш	Ш	Ц.	Ц
						e 5 to 25° to c.A.; LOWER					Ш		Ш	Ш	Ш	Ш			Ш
_					Į	CONTACT IKAGURAK BUT @ HILH & TOC.A.		Ц	Ш	Ш		Ш	Ш			Ш	\coprod	Ш	Ш
						312.0-312.3 CONTACT KINS				Щ					Ш			Ш	Ш
- 313						THRU COKE							\coprod	\coprod	\coprod	Ш	\coprod		\coprod
— JIJ						3/2.5-3/3,0 ARG. LOUS; UPPER			\prod								\prod		
•					1	CONTACT @ 30° LOWER @ 10 YOCA	Ţ		П	П		П		П	\prod				\prod
-		E		· · · · · · · · · · · · · · · · · · ·	1	3172-318.2 DYKE GREENSH			П		П	\prod			П	П	\prod	П	\prod
-		YK				GREY; FAINT MAPIC (CHORITZE		П	П			П	П			\prod	\prod		\prod
-		Q				PHENOS VISIBLE ; MAY BE		П	П				П	П	П		\prod		П
-	V	1				DIFFERENT DYKE WIN OTHER	T	П								П	11	П	\prod
-					j	OR SCIENTLY DEFERENT TEXTURE						Π	П	\prod		\prod	$\dagger \dagger$		
-	100				j	CONTACTS OF INTERVAL NOT	1		\prod	\parallel			\prod	$\dagger \dagger$	\parallel	\prod	\prod	\prod	1
-	1					PRESERVED.	+		H			$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	H	\dagger	$\parallel \parallel$	$\dagger \dagger$
-						rx esexvep.	+	$\dagger \dagger$	H	$\dag \dag$	$\dagger \dagger$	\dagger	\parallel	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	+	H	$\dagger \dagger$
_324	<u> </u>						+	$\dagger \dagger$	\dag	\dagger	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	$\dagger\dagger$	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$
-		X		2011	2212	ARGILLITE	\dagger	H	H	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	$\parallel \parallel$	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$
•				324.3	-30/2		+	$\dag \uparrow$	$\dagger \dagger$	$\dagger \dagger$	$\dag \uparrow$	+	$\dagger \dagger$	$\dagger\dagger$	$\dagger \dagger$	$\dagger\dagger$	+ +	$\dagger \dagger$	$\dagger\dagger$
-					<u> </u>	BEDDED, MISTEY ITO 3cm, RAKERY	\dagger	$\dag \uparrow$	╫	H	H	\dagger	H	+	$\dagger \dagger$	H		$\dagger \dagger$	$\dagger \dagger$
-						>10 cm BFOS; BFODING 30 TO 400	+	$\dagger \dagger$	$\dagger \dagger$	$\dag \dag$	H	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	+	$\dagger \dagger$	$\dagger \dagger$
-						TO C.A; BIACK TO BARK GAEY TO	+	H	H	${\mathbb H}$	H	\parallel	H	H	$\dag \uparrow$	H	+	$\dag \dag$	$\dagger \dagger$
-		S				BROWNSH HUE (B: ?) EXTREMELY	+	+	╫	H	╁╂	╁┼	╫	╫	H	H	++	1+	H
-		AR			I	NARD : HORN FEZSED; FRACTURES	+	H	H	H	+	+	╁┼	H	╁	+	╁┼	╁┼	++
-						AT MOD L'TO C.A. ; MINOR F.G.	+	H	+	╫	\vdash	+	H	H	H	+	╫	+	+
-		.				SST BEDS; YERY MINOR Co	+	\vdash	H	╁┼	H	H	H	H	╫	╁╂	++	+	H
_330			<u> </u>			ON FRACTURES; VERY MINOR UP TO ICM S: £ Cc ± PY± Pg	+	\vdash	H	Н	\vdash	+-	H	H	+	╁╂	#-	+	╁
-							+	H	H	$oxed{+}$	-	+	╁╂	\dashv	H	H	++	\vdash	$+\!\!+$
-						ALT & BANDS @ MOD & TO C.A.	+	-		\mathbb{H}	\vdash	+	+-	+	H	H	+	\vdash	$\dashv \downarrow$
-		- N			·····		+	1	\vdash	H	╁	\perp	-	+	\coprod	H	++	H	+
-		E. O.H					\downarrow	H	#	\coprod	-	#	₩.	\dashv	$\!$	$oxed{+}$	#	#	\coprod
_				331.	3	E. O. H.	\downarrow	\sqcup	\coprod	-	-		\coprod	\coprod	#	$\!$	\bot	-	\dashv
							\downarrow		-		1	\coprod		\coprod	\coprod	\coprod	#	\prod	1
_			'				_			\coprod			\coprod	\coprod	\coprod	\coprod		\perp	#
-							\perp	\coprod	\coprod	Ц		Ш	Ц	\coprod	Щ	\coprod	\coprod	\coprod	\coprod
_					1				Ш	Ш	Ш	\coprod	Ц	\coprod	Ш	Ц		Ш	\coprod
335																			

ERICKSON GOLD MINING CORP.

MINERALS SECTION

DRILL LOG

PROJECT ENGINEER	GROUND ELEV.
	773,40
HOLE No. 87- /07	BEARING 103°
LOCATION	DIP
N 4565.30	-44.
E 3254.42	TOTAL LENGTH 196.9m
LOGGED BY H. SMIT	HORIZONTAL PROJECT
DATE OCT 10/87 - OCT 14/87	VERTICAL PROJECT 1 36.78m
CONTRACTOR	ALTERATION SCALE
CONNERS	absent
CORE SIZE	slight
$\mathcal{N} \mathcal{Q}$	moderate
DATE STARTED OCT 9/87	intense
DATE COMPLETED	TOTAL SULPHIDE SCALE
OCT 11/87	traces only
DIP TESTS 01° A2104 32.3 -44° 103° 120-7 -44° 109° 196.9 -44° 110°	< 1% 1% - 3% 3% - 10% > 10%
COMMENTS MAJOR INTERSECTIONS!	LEGEND
172.1-173.8 QY @30° TO C.A.; WHITEH (1.7m) (1.7m) (20.002 02/ton An. FRALS; 2% PY	
179.6-183.8 QSTR/QV/SIL= ZONE MIXED YEINS/STAS (4.2m) UP TO 300M + SIL+ARG; 3 TO 5% @0.020 02/T Au PY; CONTACT OF ZONE @25° TO CA. TO 0.3m @0.188	
(1.2m) GO % WHITE TO GLASSY GTZ; (1.2m) 40 % ARG FRAGS! MODERATE VURS; (0.001 02/Ton Au 3 % PY ; CONTACTS @ 20°TO CA.	

												Т					
PAGE				22	PRO	JECT: ENGINEER	·					1		No.		7-/0	,フ
DEPTH (METRES)	Core Recy	LITHOLOGY	STRUCTURE			GEOLOGICAL DESCRIPTION	5	;	D	Chi	7	N -	Se	FRACT			,
	8			ļ			4	`	В	С	D		Ε	Z			-
0			41	0-3	6	OVER BURDEN	$\perp \downarrow$			\coprod	\coprod	\coprod	\coprod	Ш	\coprod		\downarrow
		#	-	ļ			\mathbb{H}	\dashv	\mathbb{H}	+++	${f H}$	H	╫	H +	╂	H	+
			++	26	170 1	ARCHITT	${\mathbb H}$	+	\mathbb{H}	╁╁┼	+	H	+	HH	H	$\left\{ \cdot \right\}$	+
	70%	+	++	3.6-	1/1.	ARGILLITE	$\dag \dag$	+	H	╁╁┼	+	H	++	HH	$\dag \uparrow$	$\left \cdot \right \left \cdot \right $	+
		-	++			DARK GREY TO MOSTLY BLACK.	$\dagger \dagger$	+	H	+++	$\dagger \dagger$	H	+	H	H	$\parallel \parallel$	\dagger
						BEDDED TO MOSTEY LICATO 3CM	††	+		$\dagger\dagger$	$\dagger \dagger$	H	$\dagger \dagger$	HI	$\dagger \dagger$	H	+
		\parallel	++			LOCALLY 5 % F.G. PY ADONG	$\dagger \dagger$	+		†††	$\dagger \dagger$	H	11				1
		\parallel			******	FRACTURES! ALONG BEDDING COMMEN	\prod	\top		111	\dagger	\prod	$\dagger \dagger$	111	\prod		1
		\parallel				AND DISSEM WITHIN BEDS! MON	\prod				\prod	\prod	\top		\prod		1
10		\parallel				ABUNDANCE OF MOSTRY CO.SCM	П			\prod			П	\prod		Ш	
		\parallel		<u> </u>		COSTRS, GENERALLY @ LOW L	\prod	\top		Π	T	П					
						TO C.A. (~3 TO 8/M); Can		T		\prod	T	\prod				П	1
						FRACTURES! CONE MOD.											
						HARD (SCRATCHES); MINOR			Ш			Ш			\coprod		
		Ш				BANDS PARCHOS OF i-CC AS	\coprod			Ш	\coprod		11	Ш	\coprod		
	1	Ш				PERYASIVE ALT : WEAR					$\perp \!\!\! \perp$	Ш	1	\coprod	\coprod		
		Ш	Ш			PERY. Co Common; FRACTURES	$\downarrow \downarrow$			\coprod	$\downarrow \downarrow$	$\downarrow \downarrow$	$\perp \downarrow \downarrow$		\coprod		Ц
	60	4			· · · · · · · · · · · · · · · · · · ·	RUSTY TILL ~14.0 M	11				$\downarrow \downarrow$	$\downarrow \downarrow$	$\perp \downarrow$	\coprod	igwdapper		H
15	0	X	4	<u> </u>			11			444	$+\!\!\!+$	$\downarrow \downarrow$	+	111	\coprod	\square	\vdash
		#				3.6-4.9 70% CORE RECOVERS	$\downarrow \downarrow$	_			$\dashv \downarrow$	+	44	+++	\coprod		Н
				<u> </u>		100 90 AFTER U-LESS NOTES	$\downarrow \downarrow$	-		111	44	$\downarrow \downarrow$		++	#		Н
		$-\!$	4			CORE RUBLY.	\coprod	1		111	44	+	+	111	ig	-	\vdash
		- -	44			9.0) BEDDING E5° 70 1.A.	+	+	\dashv	+++	$+\!\!+$	+	4+	+++	$\dashv +$		H
			++	-			+	+		+ + +	$+\!\!+$	+	+	++	H	+	H
				ļ	J	10.9-11.1 /cm Ce STR @	+	+		+++	$+\!\!+$	\coprod	$\dashv \dagger$	+++	+	\mathbf{H}	Н
		╫	\mathbb{H}			10 ° TO C.A. ; MINOR W. R. FRAGS;	+	+		+ + +	+		+	+++	╁┼		\dashv
		╫	H	ļ <u>-</u>		5% By in STR, 3% in	+	+		+++	+	+	++	H	${\mathbb H}$	┼╂╌	H
		+	H			INTERVAL STR CUTS BEDDING	+	+	+++	+	+	+1	+	H	${}^{\dag \uparrow}$		\vdash
-20		╫	++			40. 2.0	++	+	++	+++	+	+	++	+++	\forall	++	H
			++	ļ		11.5 m BEDDING C 35° TO C.A. 13.0 m " VERY LOW < TO	+	+	H	+++	+	+	+	+++	\forall	++	
		╢	+	<u> </u>			+	+	$\dagger\dagger$	+++	+	+	++	+++	H	╁╂╌	\vdash
			H			15.0m BEDDING 60° TO C. A.	+	+	H	+++	$\dagger \dagger$	$\dagger \dagger$	++		††	\prod	
		+	++			12.00 BEDDING & SO TO CA.	$\dagger \dagger$	+		+++	$\dagger \dagger$	+	+	†††	#	$\dagger \dagger$	П
		╫	H			27,00 " C 45° 70 C.A.	\forall	+			+	$\dagger \dagger$	+	+++	$\dagger \dagger$	$\dagger \dagger$	$ \cdot $
		$+ \parallel -$	++			29.00 BEDDING INKEGLIAIR /	$\dagger \dagger$	+		†††	\parallel	\parallel		$\dagger \dagger \dagger$	$\dagger \dagger$	\prod	
		+		<u> </u>		DISTOINTED	$\dagger \dagger$	+		111	$\dagger \dagger$	\dagger	11		$\dagger \dagger$	$\dagger \dagger$	$ \uparrow $
				†		1 13 Juinieu	$\dagger \dagger$	+		+++	$\dagger \dagger$	\parallel	+	111	\parallel		
25			H	<u> </u>			$\dagger \dagger$	+	† † †	+++	††	+	+	111	$\dag \uparrow$	11	+

PAGE 3 OF 22 PROJECT: ENG	INEEK	, -	,						HOLE	No. 2	87-107
MINERALIZATION DESCRIPTION	TOTAL	SULPHIDE	INTERVAL	WIDTH	ASSAY NUMBER	% Au gm/r	% Ag ppm	%	Au oztr		COMPOSITE ASSAYS
		\prod		 							
		耳									
		#	-			-					
		╫	-	-		<u> </u>			-		
	-+++	+							-		
		$\dagger \dagger$	-								
		廿	-								
		\prod	• -								
	-++	$\downarrow \downarrow$	_								
	-+++	igapha	-			-					<u> </u>
	-++	igoplus	-	-							<u> </u>
		+	<u>.</u>	-							
9.000	111	$\dagger \dagger$	-								
			.								
		\prod	_								
		\coprod	-			<u> </u>					<u> </u>
		\coprod	-								
		++	_	-							
		+				-					
		+	-	-					<u> </u>		
		1	-								
		\prod	- -								
10.9-11.1 Cc STR; 3 % PY		$\downarrow \downarrow$		0.2	18178	0.02	1,0		0.001		
3 % PY	-14	#	-	-		ļ	ļ				
	-++	+	-								
		++		-			-				
		++		-		 	-				
		$\dagger \dagger$	~						 		
		11	-								
			_								
		\prod	-								
		\coprod	_				<u> </u>				
	-	4	_			ļ	-				
				1							1
		77	_		1	1	1	T	1	I	1

PAGE		4	OF	22	PROJ	ECT: ENGINEER							HOLE	No.	8	^ァ	10	7
	Š	չ	Æ						AL	TER/	ATIC	ON			حاح			7
DEPTH (METRES)	ore Re	LITHOLOGY	STRUCTURE			GEOLOGICAL DESCRIPTION	5	;-	۵	Ch	, -	T	Se E	RACT	ENSI			Ť
Ξ	%	L:	STR				A		В	С		D	Ε		Z			
30,0		-		3.6-	172.1	ARGILLITE (CONT)		П	\prod	П				\prod				
-							\dashv	H	H	+	Н	+	HH	+	╁	H	+	H
-				<u></u>	i	30.0) BEDDING IS BECOMING	$oxed{\perp}$	$\!$	\mathbf{H}			-	H	₩-	$oxed{\parallel}$	H	+	${f H}$
_						LESS DISTINCT; ARG			\coprod		Ш	Н	\coprod	\coprod	Н	-	4	${f H}$
-						ALMOST ENTIREZY BLACK;		\prod	\coprod	11	Ш	Ш	\prod	4	Н	1	4	$\!$
						ABIT HARDER BUT MOSTRY	Ц.	Ш	\coprod	$\bot\!\!\!\!\bot$			Ш	\coprod	Ц	Ц.	1	\sqcup
_						STILL SCRATCHOS! CC	Щ	\coprod	Щ	\coprod		Ц	\coprod	\coprod	Ц	\bot	4	Ц
_						STRS ONLY MINOR INTENSITY	Щ	Ц	Ш	\coprod	Ш	Ц	\coprod	1	Ш	Ш.		\coprod
_						(2 TO 4 /M); STILL 2 TO 3 %		Ц	\coprod	\bot				\coprod	Ц	\sqcup		Ц
11.				<u> </u>		DISSEM PY	Ц	Ш	Ш	\coprod			Ш	\coprod	Ц	Ш		Ц
- 40									Ш	Ш		Ш	Ш		Ш			Ш
						31.55-31.6 Sem QSTK												Ш
•						C 50 ° TO C.A.		H	П									
									П	П								
						38.5 BEDDING ALMOST II C.A.		П	П									
						38.5 BEDDING ALMOST // C.A. 39.0 " @ 10° TO C.A.		\prod	\parallel	\prod	П			П	П			П
	7					7		\parallel	\prod	\parallel				П	П		П	П
•						53.6-57.9 m.Cc; Cc AS LIGHT			\parallel	T		П	\prod	T	П			1
	00	1				,	$\parallel \parallel$	\prod		11			\prod	\top	II	11		П
	00	9				CREY POTCHES AND ROMOS OF i-	$\dag \uparrow$	$\dagger \dagger$	11	$\dagger \dagger$	$\dagger \dagger$	\parallel	$\dagger \dagger \dagger$	$\dagger \dagger$	11	11		П
_ 50	1	AR				PERVASIVE (c (~20% OF EARE); 176	$\dagger \dagger$	\forall	$\dagger \dagger$	1	$\dagger \dagger$		$\dagger\dagger\dagger$	#	$\dagger \dagger$	$\dagger \dagger$		П
	1	1				INCREASING TO 3 % DESEM PT;	$\dagger \dagger$	$\dagger \dagger$	+	+	H	H	H	++	H	H	\parallel	Н
		*		ļ		MINOR OSTAS IN LAST 0.2M	\parallel	\parallel	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$		$\dagger \dagger$	$\dagger \dagger$		\parallel	\parallel
						57.9.58.3 i-Si, w-Cc; S: AS			7					\prod				
						IRREGULAR PATCHES AND UP TO	Ц	Ц	44	\perp		Ц	\coprod	$\bot\!\!\!\!\bot$	Ш	$\perp \! \! \! \! \! \perp$	Ш	Ц
						3 cm QSTRS @ MOD LTD C.A.	Ш	Ш	41	$\perp \! \! \perp$	Ш		\coprod	$\perp \!\!\! \perp$	Ш	11	\prod	Ц
						4 % 14 DISSEM AND IN UP TO		Ш	44			Ш		\coprod	Ц		\coprod	
						Ica PATCHES.		Ц	M		Ш			Ш	Ц	Ш	Ц	Ц
•							14/	44							Ш			
						58.3-59.1 m. Cc ; CORE MOTTLED		Ti										
60			<u> </u>			GREY! STACK DUE TO PERMASTRE	\prod		\prod		П	П		П	П			
						Ce	П	\prod						П				
							\prod	\prod	\sqcap	11	П	\prod	111	\sqcap	\prod	11	П	П
•						59,1-640 CORE BLACK MINOR	 	$\dagger \dagger$	\dagger	11	$ \uparrow $	\prod		11		\prod	\prod	П
•							\prod		+	††		††	† † †	1	$\dagger \dagger$	#	\prod	П
-	-					Co STRS UP TO 1cm @	+	++		+	++	$\dagger \dagger$	+++	+	H	#	1	H
	-			-		HIGH TO LOW L'S TO C.A; /ro	H	+	+	+	+	$\dagger \dagger$	+++	+	+	$\dagger \dagger$	H	_
		-				2 % DISSEM PY.	H	+	+	+	++	H	+++	$+\!\!+$	H	+		\dagger
-							+	+	+	+	+	+	+++	+	H	+	+	H
							H	++	+	+	+	H	+++	+	H	+	H	H
フ。		1	1							11		11	\perp	1				ĺ

AGE 5 OF 22 PROJECT: ENGI	NEE	e						HOLE No	o.87-107
MINERALIZATION DESCRIPTION	TOTAL	INTERVAL	WIDTH	ASSAY NUMBER	% Au gmh	% Ag ppm	%	Au 02/T	COMPOSIT
		+							
	-HH	+			 -				
				* .		ļ			
		_							
		+							
		_	<u> </u>		}	ļ			
		_		-					
31.55 - 31.60 QSTR;			0.05	18179	0.01	1.6		0.00/	
WHITE QTZ TO MINOR CE;					ļ	ļ			
SLIPS, BLACK EINES (CAPACITE		<u> </u>			-				
RICH! PARQUET CONTACT	5-13	+			-				
31.55-31.60 QSTR; WHITE QTZ & MINOR CC; SCIPS, BIRCK EINES (CRAPHITE RICK?) PARQUET CONTROTE 2 1/0PY CONCENTRATED & GRAPH?	1/1	 							
		_							
		 	-		-	<u> </u>	 		
		 -					-		
		 	<u> </u>	<u></u>	 	<u> </u>			
57.9-58.3 1-5: ALT ARC	· //		0.4	18180	0.04	1.1	0.00)		
4-1. 14					<u> </u>				
		<u> </u>			 		ļ		
		+			-	<u> </u>			
	.								
		<u></u>							
·		+	-		-				
	-++	 	-		 	ļ. <u>.</u>			
		 			+				
					1	†	 		
	1 1 3		1	I	1		i	1 1	1

	اج			22 PROJECT: ENGINEER												` フ・		5
DEPTH (METRES)	% Core Rec	LITHOLOG	STRUCTURE	GEOLOGICAL DESCRIPTION		5;		ALT	CA	AT	ION	- 3	îe	FRACT	I ENSI I	K		
64				3.6-172.1 ARGILLITE (CONT.)	_	Â		'n		Н	Ť	+	-	П	+		Т	-
			h~~	E CONT.	+	+	$\pm i$	4	H	H	+	+	\mathbb{H}	+	1	124	H	_
				64.0-65.8 MTOilc; i-K(FAU		+	\forall	7	Н	H	+	H	+	+	+	-	+	_
				ZONES " M-CC AS PERSASINE		+	H	4	HH	+	+	+	+	+	+	+	+	-
-						+	1/	4	H	+	+	H	+	+	+	+	+	_
			2	L'S TO C.A AND TREELUAR WITH		+	1/4	4	Н	\dashv	+	H	+	+	+	+	+	+
			124	PATCHES: i-K FROM 64.25		+	1	4	H	+	+	H	$\dashv \dagger$	+	7	COP	+	+
				64.30 And 65.1 70 65.3 m (C45		+	1	7	H	+	++	+	+	+	+	-	+	+
1				TO C.A.); 1 to 2 % Dissom Py	. +	+	1		HH	+	$\dagger\dagger$	H	+	++	H	+	+	+
			Ī	10 2.6.) 1 10 2 10 0135011 19	+	+	H	4	H	\dagger	+	H	+	$\forall \vdash$	H	+	+	+
66				65.8-125.2 BLACK TO MINOR	++	\dagger	Н	+	+	\dagger	$\dagger \dagger$	${}^{\dag}$	\forall	+	+	+	+	+
						+	H	\forall	+	+	+	H	++	+	H	+	+	+
İ	Ì		t	DARK GREY BEDS; BEDSING	+	+	H	+	+	+	+	H	╫	+	+	+	+-	+
			t	INDISTINCT TO FAINT; @	$\dashv \dagger$	+	H	H	+	+	+	+	+	╫	H	+	+-	+
			Ī	MINOR PATCHES OF PERMASINE	++	+	H	+	+	+	+	${\mathbb H}$	+	++	H	+	+	ł
	1		t		+	+	H	H	+	+	H	${\mathbb H}$	++	++	H	$\dashv \dagger$	+	+
	1			CC: CORE MOD. TO FAIRLY HARD	+	+	H	H	+	+	\vdash	H	++	╂╂╌	H	\dashv	+	1
,	(0)	1	-	(STILL SCRATCHES SOME); FRACTURES	+	+	H	+	+	+	+	H	+	╁╂╴	+	+	+	+
1		1	F	@ 1414H TO MOD I'S TO C.A.;	++	+	H	+	${}$	+	+	╁┼	\prod	++	H	+	+	Ŧ
	00	BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB	H	LI TO LOCALUI 3 % DISSETT.	++	\mathbb{H}	\vdash	++	+	+	\vdash	H	H	++	H	\dashv	$\dashv \dashv$	+
98	7	U		Py n (NOK UP TO Jem Co	++	H	\vdash	++	+	+	-	H	╁┼	+-	+	+	H	F
	V		}	57RS (+ MINOR 072)	+	\mathbb{H}	\vdash	H	+	+	\vdash	H	╁	-	dash	+	\dashv	-
		٧	F	(98.6-98.75) i-cc, w-k;	++	+	\dashv	H	++	\downarrow	+	H	H	\square	H	+	H	H
		ŀ	22	WEAR BAXK; \$50 TO (A.;	++	+	///		+-	+	H-	igwdapped	$oxed{+}$	++	120	\coprod	\dashv	L
		Ì	-	WEAK FAULT!	##	\mathbb{H}	1		++	\downarrow	H	\coprod	$\!$	\square		\prod	\coprod	L
		İ			++	\coprod	+	H	\coprod	\perp	-		┼┼		H	\prod	\coprod	_
			-		++	H	-	++	₩.	\coprod		-	\coprod	Ш	H			_
		}	-		+	\prod	+	Н	11	$\downarrow \downarrow$		4	\prod	Ш	\parallel	4	\coprod	_
			-		$\downarrow \downarrow$	\coprod	+		4	\coprod			Ц.		1	\coprod	\coprod	
			-		44	\sqcup	4	\prod		\prod	\perp	\perp				11	Ц	
100 -	+	\dashv	+		44	\coprod	4	\coprod		Ц	\perp	\perp		Ш	\perp		Ц	
			-		-	\coprod	\perp			\prod	Ш	\perp			1		Ц	
		-	-		-	\coprod	\downarrow			\coprod	\coprod	\perp	Ш	$\perp \mid$	1		\coprod	
			\vdash	125.2-126.4 M-K: in 120 2cm	11	\prod				Ц	$\downarrow \downarrow$	$\perp \downarrow$	Ш	\coprod	1		Ц	_
			-	BANDS @ LOW LTO (B (570150)	11	\prod			Ц.	\coprod	\coprod	$\perp \downarrow$		\coprod			Ц	_
			-	Some to ALC + QTZ FAGES (FAULT		Ц	\perp		_	Ц	$\perp \mid$	Ш	Ш			Ц	Ц	
			-	zone): wrom . Perensine (c.	\coprod	Ц	Ш		Ш	Ц	Ш	Ш]
			-	2% DOSSEM PY: CORE SOFT		\perp	Ш			Ц	\prod			\prod			\int	ا
				AND BROKEN													T	1
- 1	1	100	\sim 1	!			/			IT	П	П	Π	\Box	П		T	1

AGE 7 OF 22 PROJECT: ENGIN	VEER							HOLE N	o. 87-107
MINERALIZATION DESCRIPTION	TOTAL	INTERVAL	WIDTH	ASSAY NUMBER	% Au gm/4	% Ag ppm	%	Au 02/ 1	COMPOSITE
64.2-64.4 i-le in Arg, Scm of i-K (Faver); Ce AS lem STAS AND IRLEGUEAR WHIR PATENTES; 196 M			0.2	18181	0.01	1.3		6.001	
72.8-73.0 /ro 2cm Ce 5me C 20° ro c. g ; W. K. FKoss;		- - - - -	0.2	18182	0.01	1.4		0.001	
3 % PY ALONE CONFACTS		- - - -							
98.6.98.75 (- CC: BRAY. POSSIBLE FRUIT: 2 % VORY FG. Py 116.1-116.3 /cm Cc STR P LOW, VARYING CTO CA: MYNO.		- - -		18184				0.001	
GREEN MINEXPL (PREHNITE?). 1°/0 PY IN W.R, NO PY IN STR		- - - -							
125.2-125.5 m-K, 072 FRAGS IN WK FART CLOW C TO C A: 270 PY 125.5 - 126.4 BANDS OF		- - -		18185				0.001	
A-K-Ce aiz Fraces in		-							

PAGE		8	OF	22	PRO	ECT: ENGINEER							нс	LE	No.	87	7-10	7	
	Ç	<u>}</u>	끭						AL	TER	AT	ION			>	$\cdot \Gamma$			7
DEPTH (METRES)	ore Re	LITHOLOGY	STRUCTURE			GEOLOGICAL DESCRIPTION	5.		D	C	1./	7		Se	FRACT				, V
_ ₹) %	LIT	STR				A		В	(c	D		Ε	_ =		İ		l
126	Ť			3 6-	172.1	ARGILLITE (CONT.)	Π	П	П	T	Т	П	T	П		П	П	П	Ť
				J. v	,	77.10.22.72		$\dagger \dagger$	$\dagger \dagger$	11	T		1	T	11	\prod	$\top \!$	Π	1
						126.4-129.4 F.C. SST BEDS	1.	П	\parallel	11	П		T			П	\prod	П	T
						C VENCY LOW LTO CA . MED	H	$\dagger \dagger$	$\dagger \dagger$	11	T		T	\parallel		\prod	11	\prod	1
						CARY RIPER DAY ANTHORNE	H	$\dagger \dagger$	$\dagger \dagger$	+	\top		1	$\dagger \dagger$		\prod	11	Π	†
				<u> </u>		MINOR < 0.5 CM CC STRS	$\dagger \dagger$	\prod	$\dagger \dagger$	#			T	\prod	H	$\dagger \dagger$		\prod	T
						MINOR CO.S EN C. STRS	H	$\dagger \dagger$	\parallel	++	\dagger		t	什		$\dagger \dagger$	+	\Box	1
						10011 1000	H	H	+	+	+	H	+	H		$\dagger \dagger$	+	$\dagger \dagger$	1
				ļ		129.4-129.8 c- Cc-QTZ STRS		\prod	·/ .	+	+	H	+	$\dagger \dagger$	HH	$\dagger\dagger$	\forall	$\dagger\dagger$	+
					-	MA TO ICM WHITE CC - OTZ STRS	<i>////</i>	M	44	4	+	H	\dagger	H	H	$\dagger \dagger$	+	$\dagger\dagger$	+
-130	-		ļ			CLOW LTO C.A. W.A. FRAGE	1	\mathcal{H}	$\frac{4}{1}$	+	+	H	+	╁┼╴	H^{\dagger}	$\dagger\dagger$	+	+	+
						STRS HORSETPOLL AND COMPET	A		#	$+\!\!+$	+	H	+	\vdash		+	+	H	+
						TOTHERS; 2 % VETEY F.C. PY	14	\mathcal{H}	44	$+\!\!+$	+	\mathbb{H}	+	+	H	+	+	+	$\frac{1}{1}$
							<i> </i>	4		$+\!\!+$	+		+	╁┼	$\left\{ +\right\}$	+	+	+	1
						129.8-138.2 M.O, LOCALLY i.	1		4	+	+	H	+	++	H	+	$\dashv \dashv$	+	-
	1	_				(c- ary stres @ Low ro	LL	Ш	15	$+\!\!+\!\!\!+$	₽	$\parallel \parallel \parallel$	+	+	H	+	+	+	\dashv
	%	个				MOD L'S TO C.A. MOSTRY ITO	14	4	4	-##	+		+	-	\mathbb{H}	+	+	+	-
		છ				MOD L'S TO C.A. MOSTRY ITO 4 MA WIDE; RPRECY UP TO ICM	W	4	4	\dashv			+	-	$\left\{ \cdot \right\} \left\{ \cdot \right\}$	+		+	
	0	AR				PYRITE UP TO 30 % IN STRES! 3 % OVERALL; OCCASSIONAL W-	4	4	4	- -	\perp		4	\coprod	\Box	\perp	$-\!$	+	4
	i	~				PYRITE UP TO 30 10 IN STRES!	V/	4	4	$\perp \downarrow$	4		\perp	\coprod	$\sqcup \sqcup$	\bot	$\perp \downarrow \downarrow$	$\downarrow \downarrow$	
- 138	V					3 % OVERALL ; OCCASSIONAL W-	1	Щ	4		1		4	\coprod	$\bot \downarrow \bot$	+		\perp	
1-0		V				CO PERLYASINE W CORE; CORE	A		4	$\perp \downarrow \downarrow$	ļ	Ш	Ц.	1	\square		\perp		Ц
						SCRATICHES	14			$\perp \downarrow \downarrow$	_	Ш		\coprod				Ш	Ц
							1			Ш	1		Ц	\coprod	Ш	Ш	Ш	\perp	
								4	Ma					Ш		Ш			
		1													Ш				
													Ш	Ш	Ш				
		372				138.2-138.5 QSTR (0.3m)													
		લ				@ 35° TO C.A.									Ш				
		,					\prod				T								
138-5		×	1			·	1	7	/		\top		П	\sqcap		T		T	
							1/	1	/										
						1	M	1		$ \uparrow \uparrow $	+			\prod	\prod	\top			
							1	1		$ \uparrow \uparrow $	\dagger	\prod	+	$\dagger \dagger$				1	
							1/1	1	H		+	H	\parallel	$\dagger \dagger$	\prod	\dagger		\top	
						1	1/1	7		H	+		H	++	H	+		+	H
						120 5 120 2 -	1	4	/	H	+	H	H	+	+++	+		+	-
•				 		138.5-138.8 m- QTZ To MINON	+	+	4	H	+	H	H	++	$\dagger \dagger \dagger$	+		+	H
•						(c STRS @ 30 TO C.A.;	++	4	14	H	+	H	+	+	╁┼┤	-	\Box	+	H
-						60. Smm W.DE	H	+	\vdash	$ \downarrow \downarrow $	+	-	-	\dashv	++	+		-	Н
139	1			1				\perp	Ш	Ш	L	Ш		\coprod					

AGE 9 OF 22	PROJECT: ENGIN	IEER							HOLE No.	87-107
	LIZATION RIPTION	TOTAL	INTERVAL	WIDTH	ASSAY NUMBER	% Au 9m/ _T	% Ag ppm	%	AU 02/T	COMPOSITE ASSAYS
· · · · · · · · · · · · · · · · · · ·										
		++++	+							
2 9.4 - 129.8	Cc - QTZ srzs 2% 11		<u>-</u>	0.4	18187	0.01	1.2		0.001	
IN ARC.;	? % P1		 - -							
			+							
	m - instensity	V A B 1	<u></u>	09	18188	6.10	1.3		0.003	
136.8-137.2 Some minor	i - Cc OTZ STA	25		0.4	18189	0.34	2.0		0.010	
Song w.n. F.	2 m-11.072		+	1.0	18190	0.20	1.8		0.006	
	OSTR (0.3. HAS DARK GRE	17111	 - -	0.3	18191	0.24	2.4		0.007	
i-S: MATRIX FRAGE " REST	T ABNT ARG	-	+	À						
BROKEN MI	NOR COST.		+							
VINE IN LOW			+							
	m-072 STRS! WR		+	0.5	18192	0.31	2,5		0.009	

PAGE	1	0 .	OF	22 PRO	JECT: ENGINEER							н	OLE	No.	8	7-	10	7
DEPTH (METRES)	6 Core Recy	LITHOLOGY	STRUCTURE		GEOLOGICAL DESCRIPTION	3	<u>,</u>	Σ) (RAT Chi	TION	-[Se E	FRACT	NTENSITY			
138	6		S	36.1721	ARGULITE (COLD)		+	В		Ť	D	+	$\dot{\mathbb{T}}$		- 	ΙT	\vdash	┰┼
138	90 →	^	4.90 4.00	3.6 - 172.1	ARGILLITE (CONT.) 138.8-144.4 CORE MOD. BRIKER (MOSTLY LIOCH PIECES): CC-PY ON FRACTURES (3% PY OVER OLD) 1703cm S.LE BRAX ZONES E LOW MALE TO C.A FROM 141.3 TO 141.8 144.4-146.3 MOD ABONDANCE OF ATZ-(ARB STRSE YARIOUS L'S TO CA.; MOSTLY MM SCME, SOME 1 TO 3cm													
	001 ->	ARG																
156					146.3-154.4 BLACK MINOR GREYS BEDDING C 20° TO C.A. MINOR OCCASSIONALLY i - QSTRS; STRS C MOS TO HIGH L TO CA; MOSTRY MM SCALES KAKELY TO BEM; MAIN CTR ZONES DESCRIBED ON MINERAL. PACE: 1703% PY			<i>1</i> /1										

AGE // OF 22 PROJECT: ENGIN	EZ	R							HOLE	No. 87-1	07
MINERALIZATION DESCRIPTION	TOTAL	SULPHIDE	INTERVAL	WIDTH	ASSAY NUMBER	% Au gmh	-	%	Au 02/T		POSITE
			_								
	-	\mathbb{H}	-			-					
	+	\mathbb{H}	••	ļ		ļ					
	+	H	-	 				 -			
	╁┼	H	-	-							
41.3-141.8 SILZ BRAY ZONES			-	05	18193	0.15	2 2		0,004		
NARG ! IT 3 CM WIDE C	1/	H	-	10,5	18/15	0.75	<i>∡,</i> ≺		0,009		
LOW FOCA COMPASE 30?	:1/		-								**********
OF CORE; GREY I MONOR WH	1/1/										
012 ARA FRAGS + 5 TO 10%			_								
PY	\prod	Ш	_								
	\coprod							······			
144.4-145.2 Mas 1703 MM	1		_	0.8	18/94	0.17	3.4		0.005		····
QT)-(ARB STRS (~1/SCM) e	#	44		-	 						
MOD TO HIGH L'S TO C. A. ONE	$+ \rlap/ \nu$	H	_	-							
35M STR TO ABOUT ARE FRANS	1/	H	-	-							
(UP TO 50%) TO STRS; 5%PY	1/	H	***	<u> </u>							· · · · · · · ·
(OF 10 3010) W 3115, 310FT	11	f	-	 							
45.2-145.8 5 100 3 cm Q5 ms	1/		_	0.6	18195	0.49	4.3		0.014		
e LOW LTO C.A. WHITE ATZ &	W.		_								
PREGULAR WALLS; W.R. FRALS;	1/		_ _								
MINOR CICM YULS: TALC, MINOR	1//	111	-			ļ					
GLOPNISH MINERAL (SOKICITE?)	\mathcal{A}	H	_			ļ					
ALONG FRACTURES IN W.R.	#	$\left\{ \right\} \left\{ \right\}$	-	-		 			 		
3 10 PY IN W. R. AND GLOWE	#	╁┼╂	-	-		-			 		··· ·
STR CONTACTS	#	H		-					1		
145.8-146.3 2 1702 CM STRS;	+	† † †		A.C	18196	022	2 1		0.006		·
Mod 170 2-man STRS : 3 % PY;	1			4-3	,,,,,	10.27	3.1	·	0.008		
STAS AT VANIONE & TO C.B	1										
			-								
· ·	1		 -								
	1	\prod				<u> </u>			11		
49.1-149.3 2 cm Q57x	1/	H		0.2	18197	0.23	2.1		0.007		
CARB MINOR VULS: 2% PI	#	H				-					
CARB MINOR VULS: 2 10 PY	14	\Box				-					·

					JECT: ENGINEER	Т		A1.	TER	AT10			Т	T	? 7.	Г	_
METRES)	re Rec	LITHOLOGY	STRUCTURE		GEOLOGICAL DESCRIPTION	5	$\overline{\cdot}$	D	CA		<u>~</u>	T	RACT	ENSITY			١
ME C	တ္ %	LIT	STRU			A		В	c		D	E	1	Z			
154				3.6-172.1	ARGILLITE (CONT.)	/	\prod	П					\prod			\prod	I
					146.3-154.4 (cont.)	14	Ц	Щ	\coprod	Ш		Ш	11	\coprod	11	\coprod	1
						4	Ц	\coprod	Ш	Ш		Ш	\coprod	Ц	11	\coprod	1
						12	Ц	Ш	11		\perp	Ш	Ц.	Ц	Ш	\coprod	\downarrow
							Ш	Ш	Ш			Ш	Ш	Ц		Ц	1
						1		Ш	Ш			Ш	Ш	Ш		Ш	
						g											
						И	П	П	П								
			,			И	П	\prod									
اررجي				-			\prod	\prod					\prod				
154						V	П	\prod	\prod				\prod	Π			T
		:				1	$\dagger \dagger$	\parallel	1		\top	\prod	\parallel		\parallel	\prod	1
					154.4-155.3 STR ZONE (0.9m)	V	Ħ	#	#		\top		11			\prod	†
					MM ro (M SCALE OTZ-CE-MINK	E-71	††	11	\dagger	111				$\dagger \dagger$	$\dagger \dagger$	\parallel	
						1	H	M	\top				††	\prod	11	П	1
					Til sins @ 20 to 30° to C.A.;	1/	1		$\dagger \dagger$			ИТ	$\dagger \dagger$	$\dagger\dagger$	11	$\dagger\dagger$	†
	个				CORE VERY BROKEN 1ST HALF		1	#	11		-	1/1	11	$\dagger \dagger$	H	$\dagger \dagger$	1.
	\o	1			OF INTERVAL.		/	1	++		\top	1/1	$\dagger \dagger$	H	††	H	Ť
	0	ঙ				1/	1	\mathcal{A}	+	H	+	1/1	$\dagger \dagger$	$\dagger \dagger$	+	$\dagger \dagger$	+
	00	AR				X	/		+	H	+	M	+	+	++	+	\dagger
155					I	1	Н	\mathcal{H}	+	H	\vdash	M	+	$\dagger\dagger$	++	$\dagger\dagger$	+
	4	1				4/	И	\mathcal{H}	++	+-	\vdash	1/1	+	$\dagger \dagger$	+	$\dagger\dagger$	+
						1/	H	4	$+\!\!+$	++	,		++	++	++	+	+
					1	X	+4	4	╂┼	+-		M	+	++	++	+	+
							╁╂	+	$+\!\!+$	++		+++	$+\!\!\!+$	+	++	+	+
						11	$oldsymbol{H}$	+	+	╁╁	H	╁╁╁	+	+	+	╫	+
						4	+	-+-	+	++	+	╁┼┼	++	H	++	+	+
						H	++	+	$+\!\!+\!\!\!+$	++		H	$+\!+$	++	+	+	+
						4	\dashv	-+-	$+\!\!+\!\!\!+$	-	-	H	+	╫	++	H	+
						14	$\parallel \parallel$	\perp	$+\!\!\!+$	╁-		\Box	+	$\!$	++	\dashv	+
-156			<u></u>			1/1	$\downarrow \downarrow$	4	$\bot\!\!\!\!\!\bot$	-				\coprod	4	#	+
120						11	$\downarrow \downarrow$	$\perp \mid$	\coprod	Ц.		\square	44	\coprod	$\downarrow \downarrow$	\bot	+
						$\bot \bot$	$\perp \downarrow$	$\downarrow\downarrow$	4	╽	\perp	$\sqcup \sqcup$	$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	$\downarrow \downarrow$	\bot	$\downarrow \downarrow$	\downarrow
					155.3-156.5 MINOR asTXS.		\sqcup	$\perp \downarrow$	$\perp \! \! \perp$		\sqcup	\coprod	\coprod	\coprod	$\downarrow \downarrow$	$\downarrow \downarrow$	1
	1				3 cm BAND to 20 % U 155 cm	1	Ц	$\perp \! \! \perp$	$\bot \bot$	\coprod	\coprod	\coprod	$\bot\!$	\coprod	\coprod	$\downarrow \downarrow$	4
					py @ 10° TO (.A.	1							\coprod	\coprod	$\perp \! \! \! \! \! \! \! \! \! \! \perp$	$\perp \! \! \perp$	1
											Ш	Ш	$\perp \! \! \perp$	\coprod		Ш	1
					156.5 - 156 7 3cm QSTR @				\prod								
					20 "TO C.A. : 170 Sum STRS	IT	П			\prod			_ ⊺	\prod			
	1				IN FW: 3°10 Pt in ACC	\top	\top	71	\top			Π	\top	П	T	TT	1

ntine . 255 8444

AGE 3 OF 22 PROJECT: ENGIN	IEEX								HOLE No.	87-107
MINERALIZATION DESCRIPTION	TOTAL	SULPHIDE	INTERVAL	WIDTH	ASSAY NUMBER	% Av gm/h	% A5 ppm	%	Au 02/T	COMPOSITE
151.8-152-0 3cm BAND	$\perp \downarrow \downarrow \downarrow$			0.2	18198	0.62	1.3		0,18	
OF i-S:- Carb - T @ 20 -0 30 °		Ш								
70 c.A.; 5 % vocy F.G. PY	1 1 1									
153.3.153.5 2cm QSTR @				0.2	18199	0.29	1.2		0.008	
HIGH, YARYING L'S TOCA		4							<u> </u>	
i ITOSMA QSTRS IN W.R	$\perp \downarrow \downarrow \downarrow$	Щ.								
AROUND: MINOR YURS WOT.	2	1								
KTIS! 3 % PY DISSEM IN WI	<u> </u>	4	-							
: IN 62mm STRS		+								
154.4-154.9 QTZ-CARB . TALE				0.5	18 200	0.10	127,8		0.003	
STRS; BROKEN CONE BUT	1/1/									
APPEARS TO BE 1 TO SCA	1/2	Ш								
STRS @ 20'ro 30° ro C. A as	1/1									
BREN ALL BETWEEN;										
ABNT ARG FRAGS IN STRO										
STRS MOTTLED GREY TO WHITE	- 1/66									
TO INTERMINED OTZ : CC &			_							
T none FRANCINES; 3% PY										
FINERY DISSON : IN A 4 cm										
PATCH OF i-Py		H								
154.9.1553 2nm To Sm		#		0.4	18201	0.41	5.8		0,012	
STRS & A GEM STR AT	11	4								
THEREOFTE INTERVAL!	11/	#				ļ				
ABUT FRACE IN LARREN	-12	4				<u> </u>			1	
DRG: IN HIM PART OF	11/	11				ļ				
ARC I IN HIM PART OF	12/	11	-			<u> </u>	ļ			
STR.	+	ightarrow		ļ						
	+	++		<u> </u>						
	-	-		-						
156.5-156.7 QSTR 1~		\parallel		0.2	18202	0.26	1.4		0.008	
ARL , 3%										
,		IT					1			

PAGE		-		22	PRO	ECT: ENGINEER						1	HOLE	No	. 8	7-	107	,
DEPTH (METRES)	, Core Recy	LITHOLOGY	TRUCTURE			GEOLOGICAL DESCRIPTION	5	;	D D	C	ATIC	ON Se	T	FRACT	NTENSITY			1
156	8		.S	3.6-	172,1	ARGILLITE (CONT.)	╁	\dagger	П				E	T	<u>-</u>	П		Н
-							\prod		\prod	\prod				\prod	\prod		\perp	\prod
-						156.7-157.0 m mon 65725		H	H	+		H	$\left\{ \cdot \right\}$	++	H		+	Н
• •						157.0.158.6 MOD QTZ + CM				\parallel					\prod			
-						+ T STRS; @ 15 TO 60° TO C. A	\mathcal{U}	\prod		\coprod			14	\bot	\coprod		_	L
_						(LANGER INTS TONS TO BE @	<i>X</i>		4	44		4		-	\coprod			
- .						LOWER is) My SCATE TO	1//		#	+		_	14	+	\coprod		+	H
-						3 cm IN WIDTH; MINNE YURS	₩	1	#	+		-	4	+	$\!$	H	+	H
158						ARE FARES IN COM SCREE ONTO	14	1	#	+		+		+	H	H	+	H
-							#	+	#	+	H	H	P H	+	+		+	H
-							++	++	+	╫	H	H	HH	+	+	+	-	H
•						1771 1136	++	+	+	+	+		H	+	$\dagger \dagger$		-	-
-						158.6-163.6 MOSTLY BLACK, BEDDING	+	$\dagger\dagger$	H	+ +	H	H		$\dag \uparrow$	$\dagger\dagger$	++	+	-
-						PLON LTO (A. SOMETIMES VISIBLE')	+	Ħ	$\dagger\dagger$	++	$\dagger \dagger$		$\dagger \dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	T	\dagger	t
-	T					STR : 2 % DISSEM PY: MINOR	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	††	\parallel		111	\prod	$\dagger \dagger$			T
-	90	•				(c + PY ON FRACTURES.	$\dagger \dagger$	П	11	11					\prod			T
-	9	1			· · · · · · · · · · · · · · · · · · ·		11	\prod		11				\parallel	\prod			
- /63	00	5 X	·			163.6-164.3 OSTRS: Bomos	11	\prod	\prod									
<u></u> /65	F	A				OF i-S: ; 7 % PY : MOSRY				\prod								
	1	J				@ Low L TO C.B.								\prod	Ш			L
-								\coprod	Ш	$\perp \! \! \perp$	Ш	Ц		Ш	\coprod	\coprod		ļ
_							11	\mathbb{A}	\coprod	$\perp \! \! \perp$	Щ		$\downarrow\downarrow\downarrow$	\coprod	$\downarrow \downarrow$	$\perp \! \! \perp$		\downarrow
_							1/	X	Ш	Ш			\coprod	4	$\downarrow \downarrow$	$\bot\!\!\!\!\bot$		1
_							\mathcal{X}	4	$\downarrow \downarrow$	$\perp \downarrow \downarrow$	Ш	\sqcup		\coprod	\coprod	4		1
_							1		44	$+\!\!\!+$	-	Н	$\downarrow\downarrow\downarrow$	$\bot\!$	+	11	-	-
							1	\prod		44	\prod	\dashv	444	\coprod	$\bot \downarrow$	-	\vdash	1
_							A	\coprod	\dashv	+		H	$\downarrow \downarrow \downarrow$	\coprod	$\dashv \downarrow$	+ +	-	\downarrow
165			<u> </u>				1	44	\dashv	+	igwdapper	\sqcup	H	$+\!\!+$	$\dashv \downarrow$	+-	-	+
.						164.3-169.8 MINON STRS' CORE	#	+	+	+	++	H	++	$+\!\!+$	+	+	-	+
-						BLACK TO GREY & BLACK SPEEDS;	#	+	+	+	+	H	+++	+	H	+	\parallel	+
-						WHERE YISIBLE BEDDING IS @ 10 TO	-{}	+	+	+	+	H	++	+	+	+	\vdash	+
-						20° TO C.A. 2 % DISSEM PY		+	+	+	H	H	+++	$+\!\!+$	H	++	+	+
-						A YOM STR OCCURS @ 164.7 m	14	++	+	+	++	H	+++	+	+	+	+	+
-							#	+	+	$+\!\!+$	H	$\dag \uparrow$	+++	$+\!\!+$	++	+	\parallel	+
-								+	+	+	$\dag \dag$	H	$\dagger \dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	++	+	+
-				<u></u> .			1	++	+	+	╁╂	$\dagger \dagger$	$\dagger \dagger \dagger$	+	H	++	+	+
- 176	1						1	+	+	+	++	$\dagger \dagger$	╁┼╅	$\dagger \dagger$	$\dag \dag$	++-	+	\dagger

.....

ş

AGE 15 OF 22	PROJECT: ENG	INEER							HOLE No.	87-107
MINERAL DESCR		TOTAL	INTERVAL	WIDTH	ASSAY NUMBER	% Au g~/ _T	% Ag ppm	%	Au 0=4	COMPOSITE ASSAYS
IN ARG : AL	and STR com		0	2.7	/8203	0.37	1.4		0.011	
157.7-158.6 IN ARC; 4" IN ROLL; IN	10 % STKS			9,9	18204	0.75	2.0		0.022	
161.10-161.15 C 80° TO C.A FRAGS; 17. P.	50 TORRE		6).os	18205	0.44	2.2		0,013	
163.6 - 163.95 QGTR @ 20'7 STMS @ VARIOUS DISSEM PY	ocat masa	10	_ 0	.35	18206	0.63	1.9		0.018	
163.95-164,30 QTZ IN STRS OF i-ALT=; ! IN PATCHES O PY TO CACTER	7% /Y DISS	5	a	2.35	18207	0.41	3.3		0.012	
164.70 - 164.75 70° TOC.A.; W DT2', ABNT ARG	HITE TO GREY		2.	.e.s	18208	0.23	1.6		0.007	
THORE WHYS	•	17 17 1 1 1								

PAGE				22 PR	OJECT: ENGINEER							н	OLE	No	.8	` フ-	10	7	
DEPTH (METRES)	ore Recy	LITHOLOGY	UCTURE		GEOLOGICAL DESCRIPTION		S		Т	-	Se	Т	T	FRACT	ENSITY				
<u>Σ</u>	%	LIT	STR			/	A	8		С	D		E	"	Ξ				
170		1	1	3.6-172.1	ARGILLITE (CONT.)]	1	<u> </u>							\prod				Ī
						H	4	\Vdash	$oxed{\bot}$	$\!$	₩	H	\mathbb{H}	₩	$oxed{+}$	++	\coprod	+	ļ
					169.8- 17B.4 QSTKS @	14	χ	$oxed{\!$	-	\coprod	#	\coprod	\mathbb{H}	$\!$	\mathbb{H}	\bot	$\!$	+	ļ
					10 TO 30° TO C.A PLUS PATCHES	1	4	\mathbb{H}	$oxed{+}$	$\!$	₩-	\coprod	+	#	${f H}$	${f \parallel}$	$\!$	$+\!$	╀
					or i-s.	4	+	-	igwdapper	\coprod	#	Н	+	$\!$	\coprod	+	$\!$	\dashv	ł
						1	+	Н-	H	\coprod	╀	${f H}$	$+\!\!+\!\!\!+$	$oxed{+}$	H	+	H	+	ł
						44	-	4	$oxed{+}$	$oxed{+}$	$\!$	Н	\dashv	#	H	++	\coprod	\dashv	ļ
						4	1	4	$oxed{oxed}$	igwdapprox	-	H	+	$\!$	H	+	\coprod	\mathbb{H}	ł
					170.4-171.4 MINOR STRS; ABAT (700 10 10) DISSEM Py.	4	+		H	$oxed{+}$	#	H	+	$\!$	\prod	H	H	\dashv	ł
- 171					ABAT (700 10 10) DISSEM PY.	$\downarrow \downarrow$	\perp		\coprod	\coprod	\coprod	\coprod	$\!$	₩	\coprod	\dashv	\dashv	4	ļ
		Ġ				14	1.			Ш	11	Ц	\coprod	\coprod	\coprod	\coprod	\coprod	$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	1
		JR.			171.4-172.1 RSTR @ VERY LOW	И			Ш	Ц	\coprod	Ц	Ц		Ц	\coprod	\coprod	Ш	
		T.			171.4-172.1 QSTR @ VERY LOW LOW CO.A; 7000 9 PY 10-S.	4				Ц	Ц.		\coprod	Ц	11	\coprod	\coprod	Ш	1
									Ш	Ш		Ш	\coprod	\coprod	\coprod	\coprod			-
												Ш	\coprod		Ш	Ш			
											Ш			Ш	Ш	Ш		\perp	
	1					\mathbb{R}^{\prime}											Ш		
	2					\mathbb{Z}	\mathcal{I}												
	0						A				П		П	П	П	П	П		
1	01	!			1	\overline{A}	π		П	П		П		\prod	П		П		
-172	,						1			П		П	\prod	\prod	П	П	\prod		-
		`		172 1-173 8	QUARTZ VEIN (1.7m)	П					\prod			\prod	\prod	\prod	\prod	T	-
				112,1 175.0	UPPER CONTRACT IR REGULAR;	††	+	+	H	$\dagger \dagger$	#	$\dagger \dagger$	††	$\dagger \dagger$	\prod	$\dagger \dagger$	\prod	\top	1
					Lower @ 30° TO C.B.	$\dagger \dagger$	\dagger	\dagger	H	$\dagger \dagger$	$\dagger \dagger$		$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	Ħ	\top	1
					1 2000 50 70 2.79.	$\dagger \dagger$	+	\top	H	\parallel	$\dagger \dagger$	$\dagger \dagger$	$\dagger\dagger$	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	\dagger	
						+	+	+	+	\parallel	$\dagger \dagger$	H	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	+	$\dagger\dagger$	+	
						+	+	+	\vdash	+	H	H	${}^{\dag}$	\parallel	H	$\dagger\dagger$	+	-	•
						+	+	+	H	H	H	H	++	H	H	+	$\dagger\dagger$	+	
		· >				+	+	+	\vdash	\vdash	+	H	+	H	H	H	╫	+	-
		á				+	+	+	H	+		H	$+\!\!+$	+	╁┼	+	H	+	-
- 173		-	-			+	+	-	-	\vdash	+	H	H	H	╁╁	$\dashv \vdash$	H	+	
						\mathbb{H}	+	-	-	H		H	+	H	H	+	H	+	-
					,	+	+		-	-			+	H	$oxed{H}$	${f H}$	\coprod	4	1
				b ass	1	\parallel	\parallel	-	\sqcup	\coprod	-	\parallel	\dashv	#	\coprod	\dashv	\coprod	\sqcup	1
				<u>1738-179.6</u>	ARGILLITE	\coprod	$\perp \mid$		\coprod	-	\coprod	\coprod	$\downarrow \downarrow$	#	\coprod	#	\coprod	\bot	1
					BLACK TO MINOR GREY LAYERS;	\coprod	$\perp \mid$	\perp	Ш	Ц		Ц	\coprod	#	\coprod	\coprod	\coprod	$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	1
					BEDDING @ 10 7020° TO C. B. UCLASS-	\coprod	$\perp \! \! \! \! \! \! \! \! \! \! \perp$			Ц	Ш	Ц	\coprod	\coprod	Ш	\coprod	Ц	<u>L</u>	ς,
					IONALLY VEIBLE; SILD, MOD STRS		\coprod			Ш	Ш	\coprod		\coprod	\coprod	\coprod	Ш	Ш	ļ
					BY UPPER : LOW CONTROLS OF												Ш		
					INTERVAL, MINOR STES TORU REST	\prod							\prod	\prod	\prod	\prod	\prod		
174				· · · · · · · · · · · · · · · · · · ·		П	П	П		П	П	T	П	П	П	П	П	\Box	ſ

AGE 17 OF 22 PROJECT: ENGI	WEZ3	C						HOLE No.	87-107
MINERALIZATION DESCRIPTION	TOTAL	INTERVAL	WIDTH	ASSAY NUMBER	% Au gm/ ₄		%	Au 024	COMPOSITE ASSAYS
		_							
69.8-170.4 30 % QSTRS CLOW LTOC.D + PATCHES OF			0.6	18209	0.45	1.6		0.013	
O-S: 7 % PY DISSEM IN ARL ! IN STRS IN GREY QTZ									
71.4-172.1 & 4 Imm STRS GIVE STOCKWORK TEXTURE;			<i>0.</i> 7	18210	0.62	1.5		0.018	
MOSTRY @ VERY LOW L TO C.A: DNE IRACGURAR ICM QTZ STR; 7 TO 10% DISSEM BY; IN DISCONTINU-	1 (1)								
GRAIN TO VENT E. GRAIN									
72,1-173.8 (DV (1.7m)	1 1 / 1	172.1-	0.4	18211	0.08	0.6		0.002	
SO % GREY TO MOSTEY WHITE QTZ MINOR CARB. : SO 90 i-S: ARC IN ANGULAR FRAGS	141		0.5	18212				0.001	12 (0)
and UP TO 20cm BLOCKS TO 25 TRS WITHIN WHICH HAVE				18213				0.004	1.7m, .002
BEEN X-CUT BY LATER STRS! TIMOR YUGS IN LATER WHITE TRS; 2 % DISSEM PY		173.8	0.4	18214	0.04	0.5		0.001	
IN THE ARE PORTION		 							
		_							

PAGE	/	8	OF (22 PF	OJECT: ENGINEER							Н	OLE	No.	. 8	7	10;	7
- $\widehat{\omega}$	ecy	β	E E					A	LTE	RA	ΓΙΟΙ	N			>			7
PTF	e R	OLO	D CT		GEOLOGICAL DESCRIPTION		ςi	٥		11	ر	T		ACT	S			V
DEPTH (METRES)	% Core Recy	LITHOLOGY	STRUCTURE				4 4	£		C.	20		T	FR	N T			
173		,		173.8-179	6 ARGILLITE (CONT.)		T	I				\prod	\prod	\prod	\prod			I
		<u> </u>			STRS MISTEY AT LOW L'TO	$\downarrow \downarrow$	1	Ц			Ш	Ш	Ш		Ц		Ш	\perp
		1,		<u></u>	C.A; 3 to 7 % Py Dissers i	A	1					Ш	Ш		Ш		Ш	
**					in spres.	1	1								Ш		Ш	
					173.8-174-6 MO OSTRES;						Ш	Ш	Ш		Ш		Ш	\perp
					m. PERMISINES:	И			Ш		Ш	Ш						
-																	Ш	\perp
					174.6-179.0 MINOR STRS 139%					\perp		Ц			Ш		Ш	
-					ا ۲				Ш			\coprod			Ш		\coprod	$oldsymbol{ol}}}}}}}}}}}}}}}}}}$
178					179.0-179.6 MOD STRS; 3% P)	1												
.,	[2			,						$\prod_{i=1}^{n}$		$\prod_{i=1}^{n}$			\coprod		
_		AR			14		\prod				\prod	\prod	\prod				П	T
						Ø						П						T
						.//											П	T
·				179.6-183.8	QTZ STR/VN/ SILD ZONE (4,2	M												T
					MIXED VNS ISTRS UP TO BOCA	1/1				T								T
•					(CORE LEWATH, MUCH LESS TRUE WIOTH)	1 / 1/						П		П				+
•					C-SILP ARE AND ARE TO ABOUT	1/											\prod	4
•		*			SMALL PATCHES AND DISCONTINUOUS	11		T		\top		П					\prod	T
180			İ		15TRS OF WIZ: ~40% WHITE	11						\prod	П	П			П	T
-180					+ LESSER GAEY RTZ INALL; CONTACTS	Π							\prod		П		\prod	T
•		٦			OF THE ZONE @ ~ 25° TO (.A;	11				T		П					П	T
		200	İ		WITHIN THE ZONE STREIMS							Ħ					П	T
•		7			MOSTEY @ LOW LTO C.A. BUT	11				T		П					\prod	T
•		47			MOD TO HIGH L'S ALSO FOUND:	\prod						П	\prod					T
·		SIL			SMS X-CUT, SMAY AND JIM;	T				T		П	П				\prod	T
•			l		VUES COMMON IN BTZ +125 IN	11							\prod					T
,		>/			YUGS : MINOR BEUSH T? - Se? W					T	П	\prod	П				\prod	T
'		_	Ì		SMALL PATCHES; 3 TO 5 % PY DISSETT	T			\parallel	T						11	\prod	T
		STIK	Ī		IN ARE PORTION ; IN PATCHES												\parallel	T
182			-		OF FINE TO MED LARIN PY				Ħ	1					1		11	†
-		2			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11	\parallel	\top	\parallel	\dagger							$\dagger \dagger$	+
•		2	}		1	11	$\dagger \dagger$	$\dagger \dagger$	+	+	\vdash	-		$ \cdot \cdot $	\dagger	$\dagger \dagger$	#	+
			ŀ			$\dagger \dagger$	$\dagger \dagger$	\dagger	\parallel	\dagger	\parallel	$\parallel \parallel$		+	\top	++	$\dagger \dagger$	+
•						$\dagger \dagger$	$\dagger \dagger$	+	+	\dagger	+	-		H	\dagger	+	++	+
			}		!	++	$\dagger \dagger$	+	+	+		+	H	++	+	++	++	+
			}			+	H	+	+	+	+	+	H	+	+	+	++	7
			}	·		+	+	+	+	+	+	+	H	+	+	+	++	+
			}		1	++	H	+	++	+	+	+	\mathbb{H}	H	+	+	+	+
184	+	¥	}			+	H	+	+	+	+	+	H	H	+	+	++	+
107								11		11							11	i

PAGE 19 OF 22 PRO	OJECT: ENGINE	EER							HOLE No.	87-107
MINERALIZA DESCRIPTIO		TOTAL SULPHIDE	INTERVAL	WIDTH	ASSAY NUMBER	% Au gm/h	e/o Ag ppm	%	A v 02/T	COMPOSITE ASSAYS
			-							
	· · · · · · · · · · · · · · · · · · ·		-		·	,	;			
173.8-174.6 6c	M QSTR P			0.8	18215	0.06	1.6		0,012	
20 TO C.A+ <	Icm asires!									
7 % PY		1741	_							
		H + H				<u></u>				
79.0- 179.6 M	ion sizes:			0.6	18216	0.03	1.6		0.001	
CLOW TOMOD 2;	,	1/2								
To lan wise ;	3 % py		_							
			_			ļ				
179.6-1838 QT2	Some lundous	HHH						· · · · · · · · · · · · · · · · · · ·		
20NE (4,3										
179.6-180.1 70			_	0.5	18217	0.08	1.2		0.002	
3 % 19					— ¥ _ /					
180.1- 180.4	5 % QTZ;			0.3	18218	6.45	1.4		0.188	
m-SILE ARG			·	-		<u> </u>				
180.4-181.0 70	1 /0 072'			0.6	18219	0,17	0.6		0.005	
ABOUT YULS; S? LEAST 4 EPISODE	OPY; AT					-				
			- \							
1810-181.4 201		1 124		24	18220	224	1 7		0 0 0	
STRS, REST PER	_	P 8.71 1 1		0.7	10220	0.20	1. 1		0.006	
181.4-181.8 510	BREETING		-	0.4	18221	0.17	0.7	-	0.005	
to E.STR = ARG	BETWEEN;		_							
4 1/0 PY				ļ		ļ				
181.8-182.4 6-5:	-			0.6	18222	0.23	2.5		0.007	4.2m
GREY = ARC + QTZ F.	•									1 0.020
GREY TO WHITE STRS		HH								
MOSTRY ONE O.S.			_	-						
ELO FO (A) MA										
182.4-182.7 Qv				0.3	18223	0.01	2.7		0.001	++
TO BOT ANG FR		ИШ			,,,,,	0,01	~ / /		3.00	
		IIII	_							11
IN ARG.		<u>KILLI</u>			<u> </u>	1				1 /

PAGE	2	0	OF (22 PROJECT: ENGINEER						н	OLE	No	s. 8	7	-10	7	
TH RES)	Recy	LOGY	TURE	GEOLOGICAL DESCRIPTION				Ch			7	ACT	NSITY			1	· •
DEPTH (METRES)	% Core	LITHOLOGY	STRUC			Á	В	Ch C	D		ε	R	INTE				
183		Ē		179.6-183.8 QTZ STR/VN /SILE ZONE (CONT.													_
- -		1V2 200				1				\prod	+	+	$\frac{1}{1}$		$\frac{1}{1}$	$\frac{1}{1}$	
-		57K				+											- -
		Q72		1838-192.5 ARGILLITE						$\prod_{i=1}^{n}$							
•		*		BLACK TO MINOR GREY ANG +	, Z								+			+	L
184	_			25° TO C.A. SCRATCHES EASILY	14							+				+	
				DICASSIONALLY MOD QSTRS: MINOR						+						+	F
_				CC IN LICH STRES! < 1CM PAYENGS AND ON FRACTURES	4					+		+					
				183.8-184.7 CORE MOTTE	://					+							+
				Low i's TO C.A.; 3 % DISS. PY		h				-							1
-				184.7-185./ Two 2003 cm	4/		$\frac{1}{1}$			+							
185 -			-	QSTRS @ 15 025 10 C.A; i-	4					+					$\frac{1}{1}$		+
<u>-</u>		ARG		S: BETWEEN; 3 % DISS PY IN	\perp	7	#			+	\prod				$\frac{1}{1}$		+
-				185.8-186.0 2cm OSTR @ 20° TOL. A 190.4-190.6 2cm GREY + WILL						+			+				+
-				NERT FLARIN PY IN STR						+							+
-				CONSTRUTED ALONG WALLS: 17				$\frac{1}{1}$			$\frac{1}{1}$	\parallel					1
- /9 0			-	IN ARG	+						\prod						1
-				192.5-193.7 QUARTZ VEIN (1.2m)		b											+
-				CONTACTS @ 20° TO C.A.	+	+					++	+	\parallel	+	#		+
-		*	-		+						\parallel	\prod	\parallel	$\frac{1}{1}$	\parallel		+
<i>-</i>		2							+		+	$\frac{ }{ }$			+		1
_					1			+++			+				\prod		H
194		14	1_				Ш	Ш		Ц					لمل	las .	

AGE 2/ OF 22 PROJECT: ENGIA	IEEK							HOLE No.	87-107
MINERALIZATION DESCRIPTION	TOTAL	INTERVAL	WIDTH	ASSAY NUMBER	% Au gm/t	% Ag ppm	%	Au	COMPOSITE
183.3-183.8 50% wave QTZ			0.5	18225	0,17	1.2		0.005	
MOTTLED WHITE ; BLACK DUE TO									
ARL FRAS : TIMOR LICA YUL	5 :	L					!		
3 % PY				•					7
		<u> </u>							
	1111	†						1 1	
		<u> </u>							
		<u>†</u>		·	†				
	- 	 		L	1			†	
		+	-		-			 	
		+	-		-	 		 	
		+			-				
		 -			 			 	
	-HH	 -			ļ				
183.8 - 184.7 W-S:, MINOR	<u>- </u>	╄-	0.9	18226	0.03	1.6		0.001	
aspes in man; 3 % PY	_1/4/1	-			ļ				
_									
		L			_				
184.7-185.1 OSTRS IN			0.4	18227	0.19	1.1		0.006	
ARL , WHOTE IT MNON GREY	1/4								
QTZ' 3 % PY IN W.R.	$\mathcal{I}_{\mathcal{I}}$	T							
		<u> </u>							
85.8-186.0 OSTR IN ARE; 201	., //	<u> </u>	0.2	18232	207	17		0.002	
70.4-190.6 QSTR 1~	11/1	<u>†</u>		18 228				0.017	
	-M	†	V. Z	.0 2-5	10.07	J. Z		10.01	
ARG : S°C. PY IN STR'	1/2	 			 			 	-
) TO WER ALC		+			-	ļ		-	
		+	-		 	1		 	
		+	ļ		 	<u> </u>		 	
		 	-		 	_			
100 - 10 - 1	$\overline{}$	+	<u> </u>		1.		 		
1925-193.7 QV (1.2m)		192,5-	0.4	18229	6.64	0.5	 	0.001	
60% WHITE TO GLASSY,		<u> </u>	 					 	
MINOR GREY QTZ: 40%		, a > •			<u> </u>	ļ	<u></u>		
ARG FRAGS; QTZ FRAGS WI	7711	1933	0.4	18230	0.01	0.6		0.001	1.2m, .00
			i						
3 % PY MOSTEY IN ARG		193.3-	0.4	18231	0.01	0.9		0.001	1/
TRACS ; MINOR - GREY					1				
QTZ	1111	1			†	<u> </u>		1	
<u> </u>		+	 	 	+	 		+	

PAGE		-	OF		PRO	JECT: ENGINEER							н	DLE	No	. 8	7-	-10	7
TH RES)	e Recy	LOGY	TURE			CEOLOGICAL DECEDIDATION		_	Al	TE	RA [*]	TIOI	1		5	SITY			1
DEPTH (METRES)	% Cor	LITHOLOGY	STRUC			GEOLOGICAL DESCRIPTION	5	A	D	-	C)	7 0	- '	E Se	FRA	INTEN			
- 193 -		*800		193.7	7-196.9	ARGILLITE												\prod	\prod
-		*	}			DARK GREY TO BLACK WORK	Ш	Ц				\coprod	Ц	Ц	Щ	Ц	11	\coprod	\coprod
_				ļ		BEDDING & 20 TO 30 TO CA;	\coprod	Ц				Щ	Щ	Ц	11	Ц	11	\coprod	Щ
						CORE FAIRLY HALD; MINOR	$\perp \downarrow$	41	1	_		\coprod		Ц	\coprod	Ц	Ш	\coprod	\coprod
						(c ON FRACTURES; <1 %,	11	$\perp \downarrow$	_		\perp	╽	Ш	Ц	\coprod	\coprod		\coprod	\coprod
						LOCALLY 2 % DISSEM.	$\perp \downarrow$	11	\perp			\coprod	Щ.	Ц	\coprod	Ц	\coprod	\coprod	\coprod
		ARG				PYRITE	$\bot\!\!\!\bot$	$\perp \mid$	\downarrow		Ц	Ц.		Ц	\coprod	Ц	44	\coprod	$\downarrow \downarrow$
		C					11	41	\perp		1	4		Ц	\coprod	\coprod		$\downarrow \downarrow$	\coprod
		1					\coprod	\parallel	1	4	4	\parallel	-		-	\coprod	\coprod	#	\coprod
196				196	. 9	E O. H.	+	\parallel	_	4	-	#	Ц.	\sqcup		\sqcup		#	\coprod
							\bot	\coprod	1		_	$\!$		\prod	1	\prod	$\!$	$\!$	\coprod
_							$\bot \bot$	\prod	1	Ц.		\coprod	Щ		Ш	Ц	\coprod	\coprod	Щ
							$\perp \downarrow$	$\perp \mid$			1	\coprod				11		\coprod	\coprod
_		E.0, H.					$\downarrow \downarrow$	\coprod	1			\coprod	_		\coprod		1	\coprod	$\downarrow \downarrow$
_					<u>.</u>	<u> </u>	$\bot\!\!\!\!\bot$	$\perp \mid$				Ш			\coprod		1	\coprod	\coprod
_						•	$\perp \downarrow$	\prod		Ш	\perp	\coprod		Ш	\coprod	Ш	Ц	\coprod	$\downarrow \downarrow$
_					····-		11	\coprod				\prod			\coprod	Ц	Ш	\coprod	
							Ш	Ш		Ш		\coprod			Ш		Ц	Ц	\coprod
												\coprod			Ш				Ш
199											\perp	Ш		Ш	Ц			\coprod	\coprod
,															Ш			\coprod	
_																			
-															П	П	П	П	П
-								П								П		П	\prod
-												Ħ			\prod	П		П	\prod
-							$\dagger \dagger$	\prod			\top	\prod			\parallel	Π	11	\prod	\prod
-							$\dagger \dagger$	$\dagger \dagger$			\top	T			П		$\dagger \dagger$	11	\prod
-							11	$\dagger \dagger$	+		T	11-			\parallel		$\dagger \dagger$	$\dagger \dagger$	#
-							$\dagger \dagger$	$\dagger \dagger$		\top	\top	H	\top		f		\prod	$\dagger \dagger$	\prod
-							$\dagger \dagger$	$\dagger \dagger$	\top		\dagger		+			$\parallel \parallel$	H	$\dag \uparrow$	$\dagger \dagger$
							++	$\forall \dagger$	+	+	+	 	+		H	+	H	$\dag \uparrow$	$\dagger \dagger$
							++	$\dagger\dagger$		\forall	+	\vdash	+	+	H	+	H	H	+
_			,		1		++	$\dagger \dagger$	+	+	+	+	+	\vdash	-	+	+	H	H
-			}				+	+	+	+	+	+	+	+	H	+	+	+	+
-							+	+	+	+	+		+	+	H	+	H	+	++
-					i		╁┼	++	+	+	+	H	\dashv	+	H	+	+	+	H
-							++	H	+	+	\dotplus	H	+	+	H	+	+	\dashv	-
-			}				+	+	+	+	+	H	+	-	H	+	-	╁	H
-							+	+	+	+	+	$ \cdot $	+	\perp	H	4	+	#	igwedge
- !			}				#	\prod	\prod	\parallel	+	H	+	\perp	\coprod	+	#-	4	#
	Ш							Ш	Ш	Ш	\perp	Ш	\coprod	\perp		\perp	\coprod_{-}	Ц	Ш

ERICKSON GOLD MINING CORP.

MINERALS SECTION

DRILL LOG

PROJECT	T charms of the
ENGINEER	GROUND ELEV. 803.57
HOLE No.	DEADING
87-108	BEARING 296
LOCATION	DIP
N 4191.30	- 49.5
E 3411.30	TOTAL LENGTH
31	187.8m.
LOGGED BY H. SMIT	HORIZONTAL PROJECT
η. 37-171	124.83 m.
DATE OCT 14/87 - OCT 18/87	VERTICAL PROJECT
04, 7,7,6,7 = 00. 10.01	140.27m
CONTRACTOR	ALTERATION SCALE
CONNERS	
	absent
	- slight
CORE SIZE NQ	
	moderate
DATE STARTED	intense
OCT 13/87	TOTAL SULPHIDE SCALE
DATE COMPLETED	Total of the second
OCT 15/87	traces only
DIP TESTS OIF AZIOUTH	-
323 -49.5 296°	1% - 3%
32.3 -49.5 296° 108.5 -48° 286° 181.7 -47 298°	3%-10%
181.7 - 47 298°	> 10%
COMMENTS	LEGEND
INTERSECTIONS!	
21.4-22,6 DYKE /STR ZONE	
(1,2m)	
0.007 ozlen Au60% FELS PRY DYRE: 40%	
	`
VUAS TO RTY XTES; 5% PY	
· 37 KE	
62.2-63.8 QSTR ZONE	
1.6m, 0.001 oz /son gold	
3	

PAGE	-	?	OF	25	PRO	ECT: ENGINEER		 -					1					108]
_ @	ecy	ζ	RE				T		Ai	TE	RA	rioi	N		;	-			1
DEPTH (METRES)	a R	OL0	CTU			GEOLOGICAL DESCRIPTION		S:	,	Ţ.	01	7	_ ,	ç Ç	ACT		V		·
DE (ME	ა გ	LITHOLOGY	STRL					J,	E		C.	0	,	E	FRACT	2			
0		И	П	_	6.4	OVER BURDEN	h	Т	П	T	П	T	T^{\dagger}	П	\Box	\dagger	П	П	十
_				1	<u>~</u>	- Ve 1 \ D 0 7 \ DC 1 \	H	\top	$\dagger \dagger$	H	$\parallel \parallel$	$\dagger \dagger$	$\dagger \dagger$	\parallel	H	\dagger	$\dagger \dagger$	H	\dagger
_							П	\dagger	$\dagger \dagger$	H		$\dag \dag$	$\dagger \dagger$	\vdash	\Box	\dagger	H	H	\dagger
_		A	$\parallel \parallel$	6.4-	/3.2	ARGILLITE	H	\dagger	\parallel		H	$\dagger \dagger$	$\dag \uparrow$	-	Ш	\dagger	$\dagger \dagger$	H	\dagger
_		0				MOTTLEY BLACK, GREY & GREY-	П	1	H		\parallel	$\dagger \dagger$	$\dagger \dagger$	\prod	Ш	1			†
						GREEN : W- S:- Ce-T-Se?;	П				\prod	\prod	Π	П	Π	T	\prod		T
_						OCCASSIONAL i + S: + Cc , SOME PATEN				П		Ħ	\prod			T			T
_	人	X				OF BROWNSH HUE (B.): BEDDING	7	1	7			7		\prod		1			T
_						MASKEN BY ALT -: CORE MOD. TO	7		1		П	\prod				T			T
						ENTREMENT HARD; CORE RECOVERY	1/1		11	П	\prod			П	\prod	T			1
/0	Ш		П		***************************************	100 % > 20 cm LENGTHS Commons				П			1/2			1	\prod		Ť
_						FRACTURES RUSTY WEATHERWAY		\top			$\dagger \dagger$	1	1	$\dagger \dagger$		1	$\dagger \dagger$		T
			H			41% DISS PYRITE		\dashv	\parallel	$\dagger \dagger$	$\dagger \dagger$	╫		\parallel		\dagger	++		\dagger
-						1 16 DISS TIRLITE	V_{A}		$\dagger \dagger$	 	$\dagger \dagger$	\parallel				+	$\dagger \dagger$		+
_				<u> </u>		10.6-11.0 8cm OSTR@ 20° TO	\forall		1		$\dagger \dagger$	H	H		11		11		†
-			H				1/1			$\dagger \dagger$	$\dagger \dagger$	\forall			T		$\dagger \dagger$	$\dagger \dagger \dagger$	†
-			H	1		C.A; 4cm of m-K in Hw;	1/2	7	11		$\dagger \dagger$		11			13	da		+
			HH	1		FW i- 5: " STR HAS 40 % ARE	1/2	#		$\parallel \parallel$	$\dagger \dagger$	Ħ		$\dagger \dagger$	H		++		4
-	60		- -	 		FLAGS: LENSES: LIº/ BISSEM		4		H	$\dagger \dagger$		+	$\dagger \dagger$	+		++		\dagger
_	0		++	 		PYRITE	\forall	4		H	++		H	+	+	\parallel	++	H	\dagger
 11	10			-		11.6-11.9 BRXX ZONE;	1			$\dag \dag$	$\dagger \dagger$		1	$\dagger \dagger$	$\dagger \dagger$		$\dagger \dagger$		†
_		9		1		ARG , ALT PARG AND DYKE?		Н		$\dagger \dagger$	$\dagger \dagger$		+	$\parallel \parallel$	1		++	$\dagger\dagger\dagger$	+
_		X		+			1		H	+	+	1		+	++	H	++	$\dagger\dagger\dagger$	+
_		R			· · · · · · · · · · · · · · · · · · ·	FRAGS IN W-CC BROWNSH-	1/	\vdash		H	+	1		+	+	H	++	HH	+
-			H	-		CREY MATKIX; FRAGS SUB-ROUNDED		\vdash		H	+	1	+13	+	+	H	++	$\left\{ \cdot \right\}$	+
				-		UPTO 20m ALROSS; CONTACTS	+	\vdash	H	++	H	H	+	+	+	H	++		+
		╌╫╌	+	-		OF ZONE WOISTINCT BUT APPEAR	1 6 3	\vdash		+	H	4	+		+-	H	+	$H + \frac{1}{2}$	+
_		$\left + \right \left + \right $	4	7		TO BE @ FAIRLY LOW LTO C. A.;	$\frac{1}{A}$		\mathbb{H}	++	\dashv		++	+	++	H	+	H	+
		-	10	4		3 %. FINE DISSEM. PYRITE;	4	H		H	+	-	++:	+	+	H	+	HH	+
			4	2		TRACE PØ	1	H	#	++	+	\dashv	+	$oxed{+}$	+	H	#	HH	+
12	\vdash		\square		10.0		7 3	4		\sqcup	\dashv	14	+	\dashv	╁┼	Н	++	H	4
		-	\sqcup	13.2	- 15.9	DYKE (FLO. PPY)	ļ.,		\dashv	11	4	4	#	#	₩.	$ \cdot $	+-	HH	+
_		Щ.	\mathbb{H}	-		40 % WHITE TO PAIS GREEN	1	\perp		\coprod	$\downarrow \downarrow$	4	$\bot \downarrow$	4.	+	\prod	+	\square	4
_	.		$\sqcup \downarrow$			FERD PHENOS UP TO 4MM LONG	ف		4	\coprod	$\bot \downarrow$	4	11-		$\downarrow \downarrow$		4	\Box	4
		Щ	\coprod			IN A GREY TO LIME GREEN MATRIX			$\downarrow\downarrow$	\prod	11	\coprod	1/	1	#	\sqcup	#		4
			Ш	ļ		CONTACTS @ 20° TOC. A; CORE	1		$\perp \downarrow$	\coprod	\coprod	\prod	$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$		\coprod	Ц	\coprod		\downarrow
		17	\coprod	1		VERY HARD: 3 % PY, DISSEM!	1	Ш	\coprod	\coprod	\coprod	\coprod	$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$		\coprod		\coprod	\coprod	٠.
,		*	Ш	 	· · · · · · · · · · · · · · · · · · ·	IN IMM STRS; FRACTURES (\perp		\coprod		\coprod	\coprod	$\parallel \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	igsqcut	\coprod	\prod	\coprod	Ш	Ţ
_		47				HIGH TO MOD. 1'S TO C.A						\coprod	$\perp \!\!\! \perp \!\!\! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	\coprod	\coprod		\coprod	Ш	
													$\coprod V$	\coprod			\coprod	Ш	
- 16		14	$\coprod I$							\prod	\prod	\prod		1		\prod			

PAGE 3 OF 25 PROJECT: ENGIN	EER			•					HOLE	No.	87-108
MINERALIZATION DESCRIPTION	TOTAL	SULPHIDE	INTERVAL	WIDTH	ASSAY NUMBER	% Au g~/r	% Ag ppm	%	Au 02 H		COMPOSITE ASSAYS
		$\frac{1}{1}$	-					•			
		\prod	-								
			-								
		$\frac{1}{1}$	-								
		$\frac{1}{1}$	- -								
			_								
		+	_								
in 6-160 GST2 in Add'		$\frac{1}{1}$	-	04	18233	0.21	12		0.006		
6.6-11.0 GSTR IN ARL;			-	0.7	10233	0,21	د ۱۰		0.006		
			<u>-</u>								
			-								
11.6-11.9 BRXX ZONE:			 -	0.3	18234	0.01	1.3		0,001		
			-								
			-								
			-		,						
			_								
		#	- -								
		$\frac{1}{1}$									
			_								
											

AGE	4		OF	25 PROJECT: ENGINEER								HOLI	E N	o. 8	77-	108	8
	5	<u></u>	w					AL'	TER	AT	ION			≻			
DEPTH (METRES)	Core Re	LITHOLOGY	STRUCTURE	GEOLOGICAL DESCRIPTION		S.	•	۵	C	41	Ť	Se	FRACT	TENSIT			*
_ ₹	%	=	ST			A		В	1.9		D	E	1	=		ļ.,	_
14		不		13.2-15.9 DYKE (cont.)			IJ.	Ш	Ш		Ш	Λ	Ш	Ш	Ц	Ш	1
				14.1-14.3 4cm Cc- RTZ		<u> </u>		4	Ш			M	Ш	Ц	\coprod	Ш	L
				STR FOLLOWED BY ISOM OF	r	1/		M	Ш	Ш			Ш	Ш	\coprod	Ц	
			İ	C-S: ALL W PATCHES OF DYA	1	M	ď		Ш			//			\coprod	\coprod	1
						7	Π	7								Ш	
				OUTSIDE : AROND MINOR AKG			П					4			\coprod		
				FRAS TO CC 1~ SIDE; <19				П	П								
				The state of the s				П	П			4					
												4					
				15.9-21.4 ARGILLITE			П	\prod		T		1/4			\prod	\prod	
15	 	+			≥ ,	T	Π	П	П	T		1/1				П	
				DARK GREY TO GREENISH GRE		1	$\dagger \dagger$		\parallel	T	Ш	1/1	П		\top	\prod	1
						\dagger	Ħ	\dagger	††	T				+	\top	11	
		1		i- AUT IN UPPER ! LOWER PAR		+	$\dagger \dagger$		11	+	Ш				\top	\parallel	
		YKE		OF UNIT, by - ALTE AFTHERY		\dagger	$\dagger \dagger$	$\dagger \dagger$	\top	\dagger	\Box				\top	T	
		/ Q		ALTE IS CC = S; = GREEN		+	H	\dagger	$\exists \exists$	\dagger					\Box		_
		1		(T-Se?) FROM DYKES : ALT = TENT		+	$\dagger \dagger$	+	+	+					++	$\dagger \dagger$	
				TO BE PATCHY; IN MIDDLE		+	╁	+	+	+	H	$\forall h$	H			\dagger	
	0			INTERVAL DISTORTED BEDDING C		+	╁╅	+	+	+		4	H		-++	+	_
	00/	1		LOW &'S (S TO 20" TO C.A.), (1	kn	1	$\forall \uparrow$	/ >	H	+	λ	1	H	\vdash	+	+	
16		1	 	BFOS CORE HARD TO VERY H	MAKE	4	H	\mathcal{A}	+	1	\mathcal{H}	1	igwedge	H	+	+	H
				6190 PY SOME KEDDISH-BRO		1	\mathbb{H}	4	H	+	₩	1	╫	\vdash	+	+	_
				MINERAL IN i- ALT PATCHE	<u>'S</u>	4	+	+		+	14	H//	╫	H		+	
				(B: ?)		4		1		+	 //	HX.	H	\vdash		+	L
				15.9-17.0 i-ALT = to		4		+		-	W	4	$\!$	+	-	+	H
				Cc + S. + GREEN FLOODING FROM	1	4		- '		+	<i>W</i>		H	₩		+	_
				DYNE		4				+	1		+	igwdapped	-	- -	-
		9		17.0- 17.4 i-SitCc;		14		1		-	$\parallel /$	4			-	+	L
		AR		CORE MOTRED WEET ; BLA	9CK			4/		\downarrow	4	Щ.		-	-	+	_
										4	W	4		\vdash	-	+	_
17			<u> </u>	17.0-19.6 W- TO OCCCASSIM	wreed			1		_	1/	مرز		\coprod	-	\perp	_
• • 7				· M- ALTE		1	<i>X</i> /	1	4	_	И_		\coprod	\coprod	-	\perp	ļ
								4		_	14	11	$\bot \bot$	\coprod		\perp	
				19.6-21.4 m- 70 i-	ce;			1	Ш	\perp	11		\coprod	\coprod	Щ	\perp	
				MINOR UP TO ICM OSTA							\coprod		Ш	\coprod			L
				(+ MINON REDDSH - BROWN MIN									Ш	\coprod			
				Azona contacts) C YARYING		1/ 2							\prod				
				TO C.A.									\prod	\prod			
						付	\parallel				1		\prod	IT			
		U				Ø		7	1		H	11		\prod			
22	i	<u>v</u>	1				+	+		$ \uparrow $	$\dagger \dagger$		$\dagger \dagger$	11	11	1	

AGE 5 OF 25 PROJECT: EN 6/	ΝE	EX	• -						HOLE No.	87-108
MINERALIZATION DESCRIPTION	TOTAL	SULPHIDE	INTERVAL	WIDTH	ASSAY NUMBER	% Au gm/ ₄	% Ay ppm	%	Au 02/1	COMPOSITE
	\prod									
14.1-14.3 QTZ-Cc STR + SiARL WITHIN DYKE; L1%M	1			02	18235	0,23	1.8		0.007	
,	$\!$	igwedge	-							
	${\dagger}{\dagger}$	\parallel	 	 		<u> </u>				
	\prod	\prod	-	-		ļ				
	++	+	-	-		ļ				
	$\dagger \dagger$	$\dagger \dagger$	<u> </u>							

	\parallel									
	$\dashv \downarrow$	╁	+	-						
	$\dagger \dagger$	+	+							
			Ţ							
	\coprod	\coprod				ļ				
	$\dashv \downarrow$	+	-					4-711		
	$\dagger \dagger$	$\dagger \dagger$	_							
	$\dagger \dagger$	1.	+				 			
		\prod								
5.9-17.0 ALT BRG!			 	<i>1.1</i>	18236	0.08	1.4		0.002	
17.0-17.4 ALTO ARCI	+	+	-	0.4	18237	0 04	1.1		0.001	
17.0-17.4 ALTO ARG'	1					1 ,0 /				
	\prod	#	<u> </u>			<u> </u>				
	+	H		-						
	+	+				 				
9.6-21.4 ATD ARG;		#	20.5	0.9	18238	0.02	1.7		0.001	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	#	$\dagger \dagger$	20.5-	0.9	18239	0.03	1.3		0.001	
	\prod	\prod	 	-						
	+	+	+			 				
	+	$+\!\!+$	+	<u> </u>		-	ļ		-	

PAGE	(<u> </u>	OF	25 PR	DJECT: ENGINEER		••					ноі	E	No.	8	フー	108	
DEPTH (METRES)	re Recy	LITHOLOGY	STRUCTURE		GEOLOGICAL DESCRIPTION	S	;				TION	S	<u> </u>	RACT	ENSILY			7
DE (ME	ပိ %	LITH	STRL			Α		В		С	D		=	L !	Z			
21		\uparrow		21.4-22.6	DYKE STR ZONE	4	Ц	11			Ш		L	Ш			\parallel	\prod
					60. % DYKE: 40 % K-CUTTING	4	\coprod	4	4	\coprod	4	1	+	Н-	H	$\!$	H	${f H}$
		1			1 to 25 cm QSTRS; DYKE IS		\coprod	Д	1	\coprod		14	-	Ц-	\prod	$oxed{+}$	\coprod	$\!$
		ও			GREEN-GREY FEZD-PPY W	4	\coprod	И	4	\coprod	Щ	1/1	\downarrow	Н-	H	-	$\!$	H
		AR			UP TO YMM FERD PHENOS IN A	1	Щ	14		\coprod	[]	14	+	igwdapprox	H	H	\coprod	\prod
					F. GRAM MATRIX! UP TO 5 %	4	\coprod	4	4			14	4	\vdash	\sqcup	\dashv	$\!$	\coprod
					DISSEM PY GIVES SPECKLED	1	$\perp \downarrow$	14	4	\coprod	1/		- -	1	igert	\coprod		\prod
		*			LOOK TO MATRIX; UPPER	4	\coprod	4	4	\sqcup	1		+	-	H	\dashv	\coprod	\mathbf{H}
			,		CONTACT IRREQUERK & 10 ro						\prod	1	_	-	\prod	╁╂	\coprod	$\dashv \downarrow$
-					20° TO C.A. ! LOWER IS A	14			\perp	Ш	\coprod	1	4-	igert	\coprod	$\downarrow \downarrow$	\bot	\bot
					asme.	1	Ш	Ш	\perp	Ц	Ш	1		Ц.	\coprod	\coprod	\coprod	\sqcup
					STRS ARE WHITE OTZ W	1	1		Ц.		1	Ш	\perp		Ц	$\perp \downarrow$	\coprod	44
					MINOR WHITE TO POLE KOSE (ARE	160	4			Ш	1		\perp	\coprod	\sqcup	Ш	\bot	
		J			VUGS TO S: XTZS common; DYKE	1	\mathbb{I}		Ш	Ц	Ш			\coprod	П	11	\coprod	1
		ĺ			FRAGS + MINOR ARE FRAGS IN	14	\mathbb{L}			Ш				Ш	Ш	\coprod	Ш	_
	11	ે			STRS . LAST STR HAS FAIR	1			Ш						Ш	Ц	\prod	
		N			NUMBER OF ARE FRAS; STES	[4].										Ш	Ш	
	%				VARIABLE IN ORIGINATION BUT	4			П	П							Ш	
		X			TEND TO BE & MOD TO HIGH		7								\prod			
_	101	STS			16,2 LO C'U DAKE LENOZ LO	1	1			П								
-22	-				BE ABIT LUATER GLOK	1	1				\prod			П				
	11,	4			DIRFUTLY ASTACENT STRS' ONLY					\prod				\prod	П		П	
	*	X			MINER PY IN STRS WITHE				$\dagger \dagger$	\prod	1			П	\prod		П	
		XQ				1			\prod	$\dagger \dagger$				$\dagger \dagger$	$\dagger \dagger$	\prod		T
,					THE FRAGS.	1	1		$\dagger \dagger$	$\dagger \dagger$	\top		\sqcap	\prod	\Box		\dagger	\top
					LOWER CONTRET IS A STR		\parallel	\dag	$\dagger\dagger$	$\dagger\dagger$	$\dagger \dagger$		H	$\dagger\dagger$	$\dagger \dagger$	\dagger		1
					e 40 roso ro c.A.	1	#	\vdash	$\dagger \dagger$	+	+	H	H	$\dagger \dagger$	$\dagger\dagger$	+	++	+
						1	#	\dashv	$\dagger\dagger$	$\dagger \dagger$	+	17	H	$\dagger\dagger$	$\dagger \dagger$	$\dagger \dagger$	+	\dagger
				0		14	#	\dag	+	+	++	1/2	H	$\dagger \dagger$	+	+	+	\dagger
-				22, 6-59,	ARGILLITE	14	#	╁┼	H	╫	+	1/2	\vdash	${\mathbb H}$	+	+	+	+
		₩.	ļ		DAKK GREY TO BLACK EXCONT	1/	4	\vdash	╁┼	+	++	$+\frac{1}{2}$	H	╁	+	$\dashv \vdash$	+	+
					WHERE ALTE; MASSIVE TO		#	\vdash	$oldsymbol{ec{ec{ec{ec{ec{ec{ec{ec{ec{ec$	++	++	+4/2	-	╁┼	+	+	+	+
	-	1			BENDING WEARLY VISIBLE; HARD	1	7	7	$\parallel \downarrow$	\forall	+	1		++	+	\dashv	+	+
		1			TO VERY HARD; FRACTURES	4	4	4	+	44	4	\mathbb{H}	- -	+	+	+	+	+
_					C MOD TO HIGH I'S TO C.A.	1/4	4	4	\coprod	4	-1/	+	-	$\downarrow \downarrow$	+	+	+	+
_	1					4	4	14	\coprod	41	1//	4		#	\parallel	\dashv	+	+
	İ	BA			22.6-23.0 20 % ove to 3 cm	11	1	14	\coprod'		14	11	<u> </u>	\perp	$\perp \mid$	+	4	4
-		R			QSTRS & 1700 TO HIGH L'S TO CA		4	//	\prod		4	#		4	$\perp \mid$	$\downarrow \downarrow$	4	+
-					ARG MOTTLED GREY-GREEN TO	1//			\coprod	11	14	\coprod		11	Ш	\coprod	$\perp \! \! \perp$	
-					GROY (m-T-Ch1?), w-(c; 41?			1	Ш	1	\mathcal{L}			Ц	\perp		$\perp \! \! \perp$	
- 23					PY					1	\mathbb{W}	1						

AGE 7 OF 25 PROJECT: ENGINO	EEK	2							HOLE	No. 8	7-108
		<u>س</u>	٦			%	%	%			COMPOSITE
MINERALIZATION	TAL	SULPHIDE	NTERVAL	WIDTH	ASSAY NUMBER	Au	Ay		Au		ASSAYS
DESCRIPTION	2	SUL	N H H	¥	NUMBER	gmlT	PPm		02/4		
21.4-22.6 DYKE ISTR ZONE	+-	П									
21.4-21.9 20 % STRS	1	1	-	25	18240	0.20	0.4		0.006		1
21.9-22.2 80% size;	X			1		0,10	' '	· · · · · · · · · · · · · · · · · · ·	0.003		\$ 112m, 007
OYKE MOSTER AS FROMS	1	\prod	·								(
22.2-22,6 40% sms	1			0.4	18242	0.40	0.5		0.012		
	$\perp \downarrow$	11	_			<u> </u>					
	$\bot\!$	Ц.	_			ļ			ļ		
	$\bot\!$	$\bot\!$	<u> </u>			ļ					
	+	\prod	 				 		 		
	$\downarrow \downarrow$	\coprod	_	<u> </u>		ļ	<u> </u>				
	$+\!\!+$	\coprod	1			ļ			 		
	$+\!\!\!+$	\bot	1	ļ		ļ			ļ		
	\coprod	+	<u> </u>			ļ					
	$+\!\!+$	+	 			 					
	++	+	+			<u> </u>			ļ		
	++	+	+	<u> </u>							
	++	H	+			ļ			-		
	+	+	-				<u> </u>		 		
	+	+	 			-			-		
	+	+	+			 	<u> </u>	 	-		
	$+\!\!+$	╫	-	<u> </u>		ļ			 		
	+	+	+	<u> </u>		-		ļ			
	+	$\dagger \dagger$	 -			 	-		-	<u> </u>	
	+	$\dagger \dagger$	-	\vdash		 	 		-		
	+	+	-			 		 	-		
	+	++	 	 		1	 	 			
	$\dagger\dagger$	††	†	-		 	 	 			
	$\dagger \dagger$	$\dagger \dagger$	†			<u> </u>	 		 		
·	#	$\dagger \dagger$					 	 	†		
	$\dagger \dagger$	\parallel	<u> </u>	-	5	1		 	†		
	$\dagger \dagger$	#	T			<u> </u>		 	<u> </u>		
	††	$\dagger \dagger$				<u> </u>	 		 		
***************************************	#	$\dagger \dagger$	<u> </u>			 	 			 	
22.6-23.0 NSTRS 1.1	廿	++	<u> </u>	0.4	18243	0.74	1.4	 -	0.007		
22,6-23.0 QSTRS IN ALTE ARG; L10/0 PM	1/2	$\dagger \dagger$	<u> </u>	<i>V. 1</i>	7.0273	10.27	1.7	 	0.007		
17- 1104 - 1011	11	$\dagger \dagger$	<u> </u>				 				
	$\dagger \dagger$	††	+				1				
	+	$\dagger \dagger$	†				 		1	 	<u> </u>

k

PAGE		E	OF	S PROJECT: ENGINEER		· · · · · · · ·	-					HOL	EN	lo. 8	7-,	108	,
+ (3	ecy	چ	R E				A	LTI	ER	ATI	ON		T	>	_	Γ	ヿ
PT	5	20	OT.	GEOLOGICAL DESCRIPTION		S			<u></u>	T	_	T c.		VSIT	K		
DEPTH (METRES)	ပိ	LITHOLOGY	STRUCTURE			ے ۵		В	ر م		,	Se	. <u>4</u>	NTE	17	`	7
23	Ť			22.6-59.0 ARGILLITE (CONT.)	╁	Ϋ́	Н		T	+	П	╁╴	\dashv		TT	\vdash	┽
-				12.0 S 1.0 17 R W OCTIVE (CONF.)	+	H	H	+	+	H	H	H	\mathbb{H}	+	${\mathbb H}$	╫	${f H}$
•				23.0-24.7 ALL DAKK GREY FO	+	$\dagger \dagger$	H	$\dagger \dagger$	+	H	H	${\sf H}$	H	+	$\dagger \dagger$	H	$\dagger \dagger$
•				BLACK! MINOR LICH OSTES	+	H	H	$\dagger \dagger$	\dagger	$\dagger \dagger$	H	$\dagger \dagger$	+	\dashv	++	$\parallel \parallel$	$\dag \uparrow$
_					\dagger	\dagger	H	$\dagger \dagger$	\dagger	\dagger		H	\parallel	H	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$
				24.7.249 0.1m OSTRE	1		П	#	Ħ	\dagger	H	\parallel		\parallel	$\dagger \dagger$	\parallel	$\dagger \dagger$
				60° TO C.P. PLUS 2 4/cm		\prod		\prod	T				\parallel	\parallel	11	-	\prod
		ļ		QSTRS; WH QTZ + MINOR									П				П
		No.		FRAGE; 1% PY IN ARG.	7												П
25																	\prod
				249.25.6 ARG DARKGES				\coprod								\prod	
			ļ	TO BEACK TO MUCH LIGHT	\perp												
				GREY i-le AND PATENTS	L			\coprod	Ц			Ш					
				OF BROWNISH - GREY AUT =	\perp	A	1	\coprod		Ш	Ц	Ш	\coprod	Ш	\coprod	Ш	Ц
			-	(T-Se?); TRACEPO DISSON.	\mathcal{L}	И	1	\coprod		\perp		Ш	$\perp \mid$	$\perp \mid$	\coprod	Ш	Ц
			-		1	1	1	\coprod	Ц	\perp	4	Ш	$\perp \mid$	\coprod	$\bot\!\!\!\!\bot$		\coprod
	7.		-	25.6-26.6 i-QSTRS @	1	4	1	4		\perp	1		\coprod	\coprod	44		1
	90	1	+	MOD TO HIGH C TO C.A.	4	44		\prod	\prod		\perp			\coprod	₩.		
	0	S	-	STRS ARE WH QTZ W MINON	1		4	11		4			1/1	\coprod	-		H
_27	9	AR		(ARB; Mura C Icm VULS; ARE	4 1		$\frac{1}{4}$	igwedge	H	-//	4	$\left \cdot \right $	#	$\dashv \downarrow$	++		$oldsymbol{+}$
	$ \downarrow $	1	ŀ	FRAGS common' ARG W.R. 15	+-		4	$oxed{+}$	H				//	+	+		${f H}$
		1	-	BROWNSH-GREY. MINOR DISS.	+	\mathbb{H}	4	╁┼	H		+		#	H	-		${f H}$
			-	PY AND PY IN QTZ STRS	+	+	#	+	H	1	+	$\left \cdot \right $	$\frac{1}{4}$	$+\!\!+$	++		+
			+	2(/ 22	+	+	#	++-	H	#	+	H	₩	\mathbf{H}	-		+
			-	26.6.33.0 CORE BECOMES	-		\parallel	╫	H		+	H	\parallel	+	++		+
			-	BLOCKERSONELY DAKK GREYN	4		-	H	H	-	+	H		H	++-	++	+
			-	BLACK FROM LIGHT GREY /	+	+	╫	\vdash	H	╫	+	+	1	++	H	H	+
				IS WEAR CE - T - K(?) - Se(?)		+	╫	H	+		+	++	#	++			+
_32		1	T	#Cc # T # K ON FRACTURES;	$\dagger \dagger$	+	+	$\dagger \dagger$	\parallel	\parallel	+	+		††	$\dagger \dagger$	+	+
- 32			+	MINON Clan astres MINOR DISS	$\forall \dagger$		#	+	H		\forall	+ +	H	$\dagger \dagger$	H	+	+
İ	İ			PY. 'CORE SCRATCHES EASILY	+	+	+		+	H	+	$\dagger \dagger$	H	$\dagger \dagger$		+	+
				Land School Cas Ensity	$\dagger \dagger$	+	+		\dagger	$\dagger \dagger$	+	+	$\dag \uparrow$	$\dagger \dagger$		+	+
				33.0-44.4 ARG BLACK TO	++	+	+		+	$\dagger\dagger$	+	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	H	+	+
				DARK GREY' MINOR LIGHTER	$\dagger \dagger$	$\dagger \dagger$	T	$ \uparrow $	+	$\dagger \dagger$	\parallel	$\dagger \dagger$	$\dagger \dagger$	††	$ \cdot $	$\dagger \dagger$	+
İ				PATCORES OF i-Cc (= Pd)	$\dagger \dagger$	$\dagger \dagger$	+	Н	\dagger	$\dagger\dagger$	$\dagger \dagger$	#	$\dagger \dagger$	#		$\dagger \dagger$	+
İ				MINOR LICM (c STRS; CON	$\dagger \dagger$	$\dagger \dagger$	\parallel	$ \cdot $	+	††	+	+	$\dagger \dagger$	#		+	_
				FRACTURES; CORE VERY HARD		$\dagger \dagger$	\parallel		\dagger	#	$\dagger \dagger$	$\dagger \dagger$	11	H		+	\dagger
				BEDDING (, TO KMA) DISTORTED,	\prod	#	$\dagger \dagger$		\dagger	$\dagger \dagger$	++	#	#	$\parallel \parallel$		++	+
42				Q VARIOUS L'S PE C.A.	††	+	$\dagger \dagger$	11	\dagger	$\dagger \dagger$	$\dagger \dagger$	++	+	H	H	+	+

AGE 9 OF 25 PROJECT: ENG	INEER						HOLE No.	87-108
MINERALIZATION DESCRIPTION	TOTAL SULPHIDE	INTERVAL	ASSAY NUMBER	% Au 5"/ _T	% Ag ppm	%	Au 12/T	COMPOSIT
		-						
24.7-24.9 QSTKS IN ARL; 1 16/4 IN ARA		0	2 /8244	0.18	0.7		0.005	
25.6-26.2 50% arz; 40% ARG IN 1 TO 30 cm 57RS; 41% PY		0	6 18245	0.05	0.9		0,001	
26.2-26.6 30% 072 in 1 70 3 cm STRS 1 1%	, / / / / / / / / / / / / / / / / / / /	0 .	4 18246	0. 63	1.6		0.001	
27.6-27.8 ISON BOOK PLUS In Ion aspes on FW.: NINITE BTZ + APPL FADES: 417 PY : C 45° TO C.A.	[7]	0	2 18264	0.20	0.6		0.006	·
PY C 45° TO C.A.		-						

PAGE				25 PRO	DJECT: ENGINEER							1	IOLE			7-/	108	,
DEPTH (METRES)	% Core Recy	LITHOLOGY	STRUCTURE		GEOLOGICAL DESCRIPTION		S,	. 1	ALT) B	Ch	TIO	V	Se E	FRACT	1 1 2 1 2 1		`	7
44				22.6-59.0	ARGILLITE (CONT.)	İ	\prod	\parallel	Ĭ	Ĭ	Ĭ		Ì				\prod	
					444 4 7 6	+		$\parallel \parallel$	\coprod	++	₩.	\parallel	\coprod		+	$+\!\!+\!\!\!+$	\prod	-
					5 cm QSTRS1 emos ro	╁	H	H	+	+	╫	H	+		H	+	+	-
					Low L TO C.A. ARG MED.	1	d	\parallel		H	\prod		$\dagger \dagger$		$\dagger \dagger$	\parallel	$\dagger \dagger$	-
					TO DARK GREY : WERY W-											\parallel	$\dagger \dagger$	
					PERVASINE Ce	1//		\parallel				Ц				\prod		1
						1	4	\prod	\coprod	\coprod	-	\prod	4		+	$\downarrow \downarrow$	-	1
		,			·	-14	4	H	$oldsymbol{H}$	╫	H	H	+	H	$\!$	+	$oxed{+}$	-
.45				· · · · · · · · · · · · · · · · · · ·		1	A	$\dagger \dagger$	H	╫	H	\vdash	+	\mathbf{H}	${f H}$	+	H	-
					1	1	1	$\dagger \dagger$	$\dagger \dagger$	H		+	+	$\dashv \dagger$	H	+	+	4
						1	4	\prod	\prod	$\dagger \dagger$		\dagger	\prod	+	\prod	$\dagger \dagger$	\parallel	
					45.9-49.5 DARK GREY TO BLACK'										\prod			1
			}		BEDDING @ LOW L TO C. A BY			Ц	Ш						П			1
			}		46.cm; @ 80° TO C.A. BY 48.5m;	-	-	\prod	\prod	#		1		\coprod	\coprod	$\bot \bot$		1
	1		-		MINOR PATCHES OF i-Ce;	\prod		H	$\parallel \parallel$	\coprod		\downarrow	\square	+		$\bot \downarrow$		-!
1	%	1			CORE EXPRENELY HARD	H	+-	H	H	\coprod	H	+		\parallel	H	+	-	+
	00	RG	f		49.5-49.7 QTZ-CC STX (0.2)	$\forall \dagger$	+	H	+	╁┼-		+	+H	+	H	+		1
	1	0			· CONTACTS @ 70° TO C.A.	1	\dagger	$\dagger \dagger$	$\dagger \dagger$			\dagger	$\dagger\dagger\dagger$	$\dagger \dagger$	H	$\dagger \dagger$		1
].	\downarrow	4			W.R. FRAG. WITHIN IMUE				\prod			\top			\prod	\prod		t
			-		GREENISH - GREY MTS (T-Ch)?)				Ц			1						1
			-			+	+	H	H			+	$\left\{ \cdot\right\} \left\{ \cdot\right\}$		$\ \cdot\ $	1		+
		7	-			\dashv	+	H	+	\mathbb{H}	+	+	H	+	\parallel	+		ł
		K 575 4				H	+	H	H	H	+	+-		+	H	╁╂.		ł
		-			49.7-50.6 DARK GREY TO	$\dagger \dagger$	+	\parallel	$\dagger \dagger$		+			+	H			ŀ
					BLACK ARC BESSING						\prod	\dagger						-
50	_		-		HIGH L TO C.A.													r
			-															
			-		50.6.50.9 4 1 xe 3 cm	\coprod	\parallel	1	Ц		++	\coprod					\prod	L
			-		C. P.; ARG MOTTLED TO GONDED	\parallel	\parallel	+	\vdash		#	$\ \cdot\ $	\dashv	\prod	4		\parallel	ŀ
		ļ	-		And Morneon Greet	-	$\dashv \downarrow$	+		+	+	H	\dashv	\square	-	$ \downarrow \downarrow $	+	-
			-	-	3 1/0 0/55 PY IN ARC (MAYOF	H	H		+	+	$+\!\!+$	H	+	\prod	+	+	+	-
			 		SOMEWHAT TUFFACFOUS?	1/1	+		+	$\downarrow \downarrow$	+	H	+	$\left\{ \cdot \right\} \left\{ \cdot \right\}$	+		+	
					it must . or. wiles? ;)	H/	H				+	H	+	++	+	- -	+	
						#		1	1	1	++	H	++	H	+	+	+	-
51						4	1+	1	+	4+	++	H	++		+	++	+	_

AGE // OF 25 PROJECT: ENGIN	EER								HOLE N	o. 87-108
MINERALIZATION DESCRIPTION	TOTAL	SULPHIDE	INTERVAL	wіртн	ASSAY NUMBER	% AU g~/T		%	Au 02/T	COMPOSITE
4.4-44.5 4cm (c-lrz 572 @ 30° TO C.A; 50% W. R. FRAGS; 6170 PY IN ARG.				0.1	18247	0.02	0.8		0.001	
15.6-45.9 3 1 70 5 mg asrnes e 45 70 60 ro c.p.			- -	0.3	18248	0.01	0.9		0.001	
2 % PY IN ARG.			- -				:			
			- -							
19.5-49.7 BTZ-Cc STZ:			- - -	0.3	18249	0.20	09		0.006	
PALE ROSE CARB' BONDS TO	$\frac{1}{2}$		 -	-	162 7 7	0.20	0.7		0.006	
GROWN KTLS OF (C; QTZ; VUSS TO CO; QTZ XTZS; MINOR PY IN VUGS			- - -							
			- -							
50.6-50.9 QSTRS; 3%				0.3	18250	0.06	2.8		0.002	
5 TRS; TR - CPY IN STRS			-							
			- 							
		\prod	-							

SE 13 OF 25 PROJECT: ENGIN	NEEK							HOLE N	No. 87-108
MINERALIZATION DESCRIPTION	TOTAL	SULPHIDE	WIDTH	ASSAY NUMBER	% Au gm/t	% A g rem	%	AU 02/T	COMPOSI
	皿	廿一							
	\prod	\prod					<u> </u>	1	
		#		 	1	\longmapsto	-	++	
	+++	#		1			-	+	
	+++	+			+	-			
		\dagger							
		П							
		4		·.	,	·	 	1	
	+	+	-					+-+	
		++		-		 	-	+ +	
	-+++	++			+			+++	
		+	- <u></u>						
		\prod	!		<u> </u>	'		1 1	
		++	'		-	 '	-	+	
		+			-		 	+-+	
		+			+	 	-	+ + +	
		#			 			1 1	
				<u></u>	-	ļ	ļ	1	
		#		-	-		-	++	
	-++	+	-		+			+	
		#	ļi		-	-	+	+++	
		#			+				
		<u> </u>							
0.0-60.4 ATP ARL;			0.4	18251	0.01	1.0	·	0.001	
L 1º/0 P1					 			1	
	+		ļ		+	-	 	++	
		+	-			-	-	+-+	
	\rightarrow	+			-	-	+	+	
			-				-	+	
						+			
						†		+ +	

PA	GE 13 OF 25 PROJECT: ENGIN	EER							<u> </u>	HOLE	No.	87-108
!	MINERALIZATION DESCRIPTION		SULPHIDE	INTERVAL	WIDTH	ASSAY NUMBER	% Au gmh	% Ag rem	%	AU 02/T		COMPOSITE
		\prod								,		
		$+\!\!+\!\!\!+$		_								
		-	H	-	ļ		32	7)				
				_		,						
		$\dashv \downarrow$	igoplus	_		` i						
		+	 			ν, γ	3 10	•				
		山				•						
		$\perp \downarrow \downarrow$	\coprod	_							ļ	
			\parallel	_			ļ					
			H	_			 		<u> </u>			
	<u> </u>	$\dashv \dagger$	$\dagger \dagger$	-								
		\prod										
<u>. </u>		$\perp \mid \perp$	1	<u> </u>			ļ					
		$+\!\!+$	H	-	-							i.e
		-	H		-		1 1			 		
		_	1	_	<u> </u>		<u> </u>			<u> </u>		
		$\dashv \vdash$	H	-			<u> </u>	ļ		<u> </u>		
		+	H	-			<u> </u>	 		 		
	T-10-10-10-10-10-10-10-10-10-10-10-10-10-	$\downarrow\downarrow$	\coprod									
		$\dashv \downarrow$	#	_			ļ					
_	60.0-60.4 ALT BARL;	\dashv	H		a u	18251	101	10		0.001		
	41°/0P1	13	\parallel	-	0,7	10231	0.01	7.0		07007		
_												
		\perp	\coprod	<u> </u>	<u> </u>							
		\dashv	#	_						<u> </u>		
<u> </u>		+	+	-	-		1		<u> </u>	 		
			Н.	├	-	.	4		 	<u> </u>	L	

PAGE **	\ 1	4	,	<u>L</u> S	PRO	JECT: ENCINEER			٠					HOLE	No. 8	37-	108
	% Core Recy	LITHOLOGY	STRUCTURE			GEOLOGICAL DESC	RIPTION		\ \ A	_		Ch/		Se	FRACT		
60	¥	in.		60.0-	. 147.8	ARGILLITE	(cons.)						\prod				
						60.4-61.2 BLACK ARE C.A. 1 1%	j BEDDINA USSETA. PY.	@ 50° 70									
						61.2-61.5 6 QSTR : ALTO											
						15 STR ;	PALLER BEDAM	ral As									
- 61		RSTR, 1			•	i- TAN (T ALWA FRACTO	-Se?) BAND	5 ;	4	/					1		
3	^ %	· ↑				61.5-62.2 m LILM STRS FLOODING & BE BY S. & W	AND PERVAS	IVE							<i>M</i>		
	100	ARG				62.2 - 62,5											
.62	↓	OTAN +	•			CONTACTS (1								
		ñ				62.5- 63.8 m.to	<i>i.</i> 05 = 5 ()	/>-									
63						SCARE, SEVERAN PER 20cm): S: W-Cc HIGH L'S TO C.A.	MM - SCALE	- צארנצ	\mathcal{I}								
						HIGH L'S TO C.A.	; 17, LOCALLY	2%									
			-			f3 g- (C 2											
			-			63.8-65.2 A BLACK; W-CO	TOTTED CREY	wa e	#	1	H		╁┼┤	+	+ + +		

AGE 15 OF 25 PROJECT: ENGINE	ER.								HOLE	No. 87	7-108
MINERALIZATION DESCRIPTION	TOTAL	SULPHIDE	INTERVAL	WIDTH	ASSAY NUMBER	% Au gm/r	% Ag PPM	%	Au 02H	C	OMPOSITE ASSAYS
		$\bot\!$	_						 -		
	\mathbb{H}	+	-						 		
	+	+	-								
		+	-								
		+	-								
61.2 - 61.5 i-ALT ARG +		11	_	03	18252	0.05	0.5		0.001		· · · · · · · · · · · · · · · · · · ·
O.IM QSTR GSTR HAS	7	\parallel	· -	2.2		7,03					
30 % ARE FRACE ALIENER "			_								
TO CONTACTS: MINOR CARB.	4	\prod	<u> </u>				<u> </u>				
/ CM BAND IN CENTER W	4	\coprod	_								
BRIGHT GREEN ALONG CONTACTS (MARI?): 1 % PY IN ARG		$\perp \downarrow \downarrow$									
(MARI?); / VIPY IN ARG	4	+									
1.6	+	\dashv									
1. S-62.2 ALT PARC; L1°/0 PY	\mathcal{A}	+		0.7	18253	0.04	1.8		0.001		
21 70 29	7			-		 			-		
		+									
		$\dagger \dagger$	_								
62.2-62.5 QSTR				0.3	18254	0.03	0.8		0.001	1	\
20 CM OF MOTTLED WHITE	1										
LESSER GREY at 2 FOLLOWED			_								
BY 10 cm OF VERY i-Acry											
STRINGERED AKE; MINOR	1		_								
CARS; MINOR Clem VULS.	1					<u> </u>					<u>L </u>
1 % F. G. PY = ARG.		+		<u> </u>		<u> </u>			-		71.6 m,
2 (/2 0	\mathbb{H}	+	_	-		0.00	/ 2				0.001 02
2.5-62.8 i-05 ms IN		++		0.3	18255	0.02	1,2		0.001		1
ARG; 1 1/0 PY	7	+	···•	105	18256	0.01	12		2 241		
1,00 2 % PY		$\dagger \dagger$		0.83	18236	0.01	1,2		0.001		
3.65-63.80 OSTR (0.15M)		$\dagger \dagger$		0.15	18157	0.00	0.7		0.001	- 17	
BANDED WHITE ! WHITE "GREY;		11	 _		<u> </u>	0.03				+	
CONTACTS @ 50° TO CA : MINIC			_		· · · · · · · · · · · · · · · · · · ·						
MM SIZE ARL FRALS; TRACE											
P1.			-								
		\prod									
				ĺ							
	$\sqcup \sqcup$	++	_			 	_		├		 -

.2

PAGE	1	6	OF	25	PROJ	ECT: ENGINEER							Į,	HOL	ΞN	lo.	8	7-/	08	
<u>.</u>	اي	3≺	Ä				T				ERA					7		T		
DEPTH (METRES)	ore Re	LITHOLOGY	STRUCTURE			GEOLOGICAL DESCRIPTION	-	5		D	Ch C	/ 7	_	Se	TOAG	TENSIT			,	
_ \S	8	=	STF					A		В	C	1)	Ε	_	Z				
65	П			60.0	-147.8	ARGILLITE (CONT.)	T									П		П	П	T
		G.S	ra	77.5			7	70	4		7		T				П	П	П	Ī
						65.2-653 OSTR (0.1m)	T	П	7											Ī
						WH. QTZ & 10 TO APLE FRAGS;	Ī								$oxed{I}$					I
						VUES TO QT2 XTS : VERY FINE					7							Ц		
						PY CONTROLS & 60° TOC.A.												Ш	Ш	
											4									
						65.3-67.8 BLACK TO MOTTED					A									
						GREY WI MING GREEN DUE TO					4						Ш	Ш		
(-,						PERVASIVE CC-ChI(?) => W-CC-					A							Ш		
- 67	П				-1	Chi (?) OVERPLE; MINOR LICY					M									
						Cc STRS; 1 arz- Cc STR C									T		П			
						66.7m.	T	\prod		\sqcap		\top	T		T		П	\prod		
						00,771			1	IT	\mathbf{M}	\parallel	\dagger					\prod	\prod	_
						67.8-116.8 DARK GREY		\sqcap	7			11	\top				П			_
						TO BLOOK A46' 5 % 11/4700	1		ť	H	И	11	T		T				$\dagger \dagger$	-
						TO BLACK ARE; 5 % LICHTER			ť,	\dagger	14	$\dagger \dagger$	\dagger		\top			$\dagger \dagger$	\parallel	-
	1)					GREY DUE TO PERMASIVE CC;	1		Ź	H	#/	1	\dagger		\top			\parallel	$\dagger \dagger$	
	3	1				MINOR TO 190 DISSEM PY;	+		∱		H	\dagger	+		Ť			$\dagger \dagger$	\top	-
	00	46				BEDDING MASSIVE TO MM TO	+	+	+	H	++	$\dagger \dagger$	\dagger		十		H	$\dag \dag$	$\dagger \dagger$	-
- 68	H	<u>x</u>		 	1	3 cm SCALE RHYTHMA BEDS;	+	H	+	H	$\dagger\dagger\dagger$	+	+	HH	\dagger	-		$\dagger \dagger$	$\dagger \dagger$	-
	₩	V		ļ		EVARIOUS L'S TO C.A. SOMETIME	5	+	+	H	+++	\dashv	+	H	+	\dag	H	$\dagger \dagger$	$\dagger \dagger$	
						DISTORTED , MINOR CICM CC.	+		+	+	+++	+	+	H	+	H	H	H	+	-
						STRS; (c ON FRACTURES;	+	+	+	${\mathbb H}$	H	+	+	H	+	╁	H	\forall	++	-
						CORE HARD BUT MOST STILL	+	+	-	H	++	\dashv	+	H	+	\vdash	H	+	+	_
						SCRATCHES.	+	+	+	H	++	-H	+	++	+	H	H	${+}{+}$	╁┼	_
						(70.0-70.8) 2cm BAND	+	+	+	H	+	+	+	H	+	╁┼	-	+	++	_
						OF i-CC-K @ Sro 10° ro	4	+	+	\vdash	+	+	\perp		+	+	\mathbb{H}	\dashv	+	_
						C. A.	\perp	4	-	H		+	+	$ \cdot $	+	\dashv	H	\dashv	$\dashv +$	_
						72 m) BEDDING @ 20 +0 C.A	<u>'. </u>		\perp		$+\!\!\!\!\!+\!\!\!\!\!\!\!+$	\perp	+		\bot	igert	\coprod	\dashv	-	_
_ 88			<u> </u>			74.5m) " "25 roc.A. 82.5m) " "65° roc.A.		\perp	\perp	Ц	$\bot \bot$	$\perp \downarrow \downarrow$	\downarrow	\Box	_	\coprod	\coprod	\sqcup	$\perp \downarrow$	_
		٠,				82.5n) " "65° ro c.A.	١,	The state of	(3.)	Ц		\perp	\perp		4		\sqcup	\coprod	$\downarrow \downarrow$	_
		97.	23			85.0m KINK FOLDS IN BESSI	v C			Ц.	Ш	\parallel	4-		4		Ш	\coprod	$\downarrow \downarrow$	_
						i-le For 30 cm.	1			\coprod		4			_	\prod	\coprod	\coprod	$\downarrow \downarrow$	
						88.1m) BEDDING @55° TOC.A.	\perp			\coprod	Ш	$\perp \downarrow \downarrow$	\perp		\perp	Щ	\coprod	\coprod	\coprod	
						(89.1-89.25) i-OSTRE E						Ш		Ш		Ш	Ц	\coprod	\coprod	
						MOD TO HIGH L'S TO C.A. ; i-S:	_								\perp	\coprod			\coprod	_
			•			Cc ARG BETWEEN				[]	\prod					\prod	\prod			_
							T				\prod	П	T				\prod		IT	_
			1			Bom) BONNING @ 70° TO CA.	\top		\top			11	T	[П	\prod	\prod		_
97						93.0m) BEDDING @ 70° TO C.A. 96.0m) "80°""	+		\top		111	\parallel	+	Ш	\top	1	11		11	

AGE 17 OF 25 PROJECT: ENGIN	EE	æ							HOLE No	87-108
MINERALIZATION DESCRIPTION	TOTAL	SULPHIDE	INTERVAL	WIDTH	ASSAY NUMBER	% Au gm/t		%	AU	COMPOSITI
			-			0	11.2			
5,2-65.3 QSTR 0.1m -MININ PI IN VUES	7		_	0.1	18258	0.01	4.3		0.001	
			- -							
66.70-66.75 QTZ-CUSTA @ 60° TO C. A WHITE PATE				0.05	18259	0.01	0.9		0.001	
TO CO IN CONTER! NO VISIBLE			_							
	\parallel									
	#									
			· ·							
			_							
			-							
			-							
			- -							
17.1-89.25 ASTR ZONE				0.15	18260	0 22	09		0.001	
17.1-89.25 QSTR ZONE 40 % WHITE OSTRS @ 35 TO 70 TO C.A; Tr-PY					v2 b V	0.02			0.0-7	
	\prod		_							

PAGE				25 PROJECT: ENCINEEX												?7-		2
DEPTH (METRES)	6 Core Recy	LITHOLOGY	TRUCTURE	GEOLOGICAL DESCRIPTION		S		ALT D	C	AT 41	T	S	e	FRACT	TENSITY	K		7
100	+8		S	(a Ward a second	+	A	4	В	H	7	D	-	E	-	=	П	╀	_
				60.0-147.8 ARGILLITE (CONT.)	\perp	Ц	\coprod	4	\coprod	Ц	\perp	\prod	1	Ш	Ш	\sqcup		-
•	İ			678-116.8 (cont)	\perp	Н	\coprod	-	₩	Н	\perp	+	+	$\!$	${f H}$	$oldsymbol{ec{ec{ec{ec{ec{ec{ec{ec{ec{ec$	\coprod	-
•				103 M) BEDDING & 50° TO C.A.	-		\coprod	1	\coprod	Ц	$\perp \mid$	$\bot \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	4	\coprod	\coprod	\coprod		-
				105.4m) CORE TAPERED; UNDER-	\perp	Ц	\coprod	1	Ц.	Ц	44	$\perp \mid$	\perp	Щ	Ц		-	Щ
				SIZED , NO APPRIENT	\sqcup	Ш	\parallel	\perp	Ш	Ц	$\perp \mid \cdot \mid$	$\perp \mid$	\perp	Ц.		\coprod	\coprod	Ц.
		}	}	REDSON IN CORE	Ц	Ц	Щ	1	\coprod	Ц	\perp	Ш		\perp	Ц		\coprod	
				106,0 m) BEDDING @ 45° TO C.A.			Ц	\perp	Ц		Ш	Ш		Ш	Ш		\coprod	Ц.
				109.0m) " "45° TO CA:	Ш	Ц	\coprod	_		Ц	11		ļ.,		Ш	Ш	Ш	Щ
				CORE RIBBED.	Ц	Ц	$\perp \mid$	\perp			$\perp \downarrow$		\perp		Ш	Ш	\coprod	
_110				112.0ml BEDOWN & 50° TOC. A.	Ш		Ш	\perp	Ц	Ш	11				Ц		Ш	
				115.5~ " " 50" " " ;	Ш	Ц	Ш		Ц			Ш					Ш	
				NOT VERY DISTINCT														
																П	П	
				116.8- 117.0 i-K; COLE MUSA														
				(FAULT 20NG) C30 TOC.A														
				117.0-120.1 M-roi- S:-Cc-			П			П								
	1	1	~	Ch/? ; coré VERY MOTTED			П				\prod	\prod			٠,			Π
	0,	- 1		TO PATCHY BLACK, GREY, WHITE,	Z	7		Λ	1	П	П							,
	00	ARG	Ī	GREEN-GREY DUE TO PERMOSINE		7	1/2	1	1		\prod	\prod	\Box		\top			
12.0	0	`	Γ	ALT COLE QUITE BROKEN:	1	1	1	1	1		\prod	$\dagger \dagger$	11					
120		,		1 % DISSEM. PYRITE		7	Ħ	T			$\dagger \dagger$	Ħ	$\dagger \dagger$					\top
	4	*	Ī			1	Π	T			\parallel	$\dagger \dagger$	\parallel	T			\prod	十
			. [120.1-1308 DARK GREY TO	П	1	$\dagger \dagger$	П			$\dagger \dagger$	11	$\dagger \dagger$				Ħ	\dagger
				BLACK : MINDE ZONES OF	$\dagger \dagger$	+	$\dagger\dagger$	\top	+	Ħ	$\dagger \dagger$	11	$\dagger \dagger$		\top		$\dagger \dagger$	
			T	PERYASINE CC' (C ON FRACTIME		T	\prod	П			H	$\dagger \dagger$	$\dagger \dagger$	\top			\prod	\top
		ĺ	-		$\dagger \dagger$	\dagger	$\dagger \dagger$	\parallel		\dashv	$\dagger\dagger$	$\dagger\dagger$	+	+	+		H	+
		}	F	<10% DISSETT PYROTE; BEDDING	H	+	$\dagger\dagger$	+	+	+	+	$\dagger \dagger$	+	+	+		+-	+
		ł		FREQUENTLY INDISTINCT;	H	+	$\dagger \dagger$	H		\dagger	$\dagger \dagger$	$\dagger \dagger$	+		+	\vdash	\vdash	+
			F	CORE FAIRLY BLOCKY	H	+	$\dagger \dagger$	+	+	+	$\dagger\dagger$	+	H	+	+	+	H	+
			+	122-7m) BEDDING C 50° 70 CA.	H	+	H	H	+	+	+	H	+	+	+	+	\vdash	+
- 130				129 m) " " 20° roc. B		+	777	+	+	+	\coprod	++	+	+	+	+	H	+
	1	+	-	(130.3-130.8) w-Ce AS	4	4	//	\forall		٠,	4	H	$oxed{H}$	+	4		-	+
			F	PERYASINE FLEODING MINNE OSTRS	4	A	1/	4	4	+		H	+	+	1/			+
	'	1	-		1	4	1	#	4	1	4	$\dashv \downarrow$	$\dashv \downarrow$	\parallel	- /	-	-	+
	%	1	3574	130.8-135.6 ALT ZONE.	4	#	1	A	<u>*</u>	1	1	igoplus	\prod	+		+	-	+
	S]	-	BLOCKY TO CHUMBLY CORF;	4	4		1		-	+	\coprod	\prod	+		\dashv		+ .
i	8		-	85 % RECOVERY; CORE	1	1		\prod	$\bot \downarrow$	-	\prod	\coprod	\prod	$\downarrow \downarrow$		\bot		. '
		ļ	_	MOTTERD GREY - WHITE -BLACK		1	\coprod	\prod	$\downarrow \downarrow$	\downarrow	\coprod	\coprod	\coprod	\coprod	$\downarrow \downarrow$	$\perp \downarrow$		4
				m to i - (c - Sijatom - Ti	1	1	\coprod	Ш	\coprod	1	\coprod	\coprod	Ц	\coprod	$\perp \mid$	Ш		
			-	W-Chl? , W-K & CORE HARD				Ц	\coprod	\downarrow	\coprod	\coprod	Ш					
140	4			WHERE i-S: PATCHES SOFT WHERE														

PAGE 19 OF 25 PROJECT: ENGIN	(EE	K							HOLE	No. 8	7-108
MINERALIZATION DESCRIPTION	TOTAL	SULPHIDE	INTERVAL	WIDTH	ASSAY NUMBER	% Au 5~/T	% Ag ppm	%	Au ozti		COMPOSITE ASSAYS
	\prod		_								
	#		· -								
	+	╫	- -						-		
	╫	╫	-								
	$\dagger \dagger$	╫									
	$\dagger \dagger$	$\dagger \dagger$									
	4	\coprod		<u> </u>		ļ					
	$\downarrow \downarrow$	11	_			<u> </u>					
	$\downarrow \downarrow$	#	_	<u></u>		ļ					
	+	+	_	ļ		-					
	+	+	-			 					
	++	+	-			 					
	$\dagger \dagger$	\parallel				1				-	
17.0-117.6 C. SCe-Chi	.17	$\dagger \dagger$	<u> </u>	0.6	18261	0.01	1.5		2.001	1.	
117.0-117.6 i. S(o-Chi	1						1.5				* · · · · · · · · · · · · · · · · · · ·
	\coprod	Ш				ļ					
	$\downarrow \downarrow$	\coprod	_						<u> </u>		
	\coprod	\bot	<u> </u>	<u> </u>		<u> </u>					
	+	╫	-	-		-			-	·	
	+	+	 -	-		 	 				
	$\dagger \dagger$	+	<u> </u>								
	$\dagger \dagger$	11	†			†					
	4	\coprod				ļ	<u></u>		<u> </u>		
	+	#	-	<u> </u>		-	ļ		 		
	+	#-	-			 	 				
	+	+	-			1	 				
	+	+	-			 	-				
	++	+	+	-					+		
	+	+	-	-		-			 		
	$\dagger \dagger$	+	+						 		
	+	+				1		 	1		
	++	++	 	}	 	+	 	 	╁──┤		

PAGE	ĵ	20	OF	25	PRO	ECT: ENGINEER							HOL	E N	o. 8	'フ-/	108	,
DEPTH (METRES)	re Recy	LITHOLOGY	STRUCTURE			GEOLOGICAL DESCRIPTION	-	5				TION	Sc	 ₽C1	NSITY	ĸ		`
	°C %	LITH	STRU					, Д	В		С	D	E	E C	INTE	4		
134	$ \uparrow \rangle$			60.0-	147.8	ARGILLITE (CONT.)	A	1	\mathcal{L}			1		Ш				
						130.8-135.6 (cont.)	14	4	\mathcal{L}		\perp	3/	Ш	Ш			Ц	\downarrow
						T-CE-KPREDOMINATE: 1% PY			\mathcal{X}	И		21	Ш	Ш	Ш		Ш	1
						IN IRREQUEAR BANDS OF J-PY	1	4	M	И		[3]		Ш	Щ		Ш	\perp
						& DISSEM ; MINOR PG'CC-T	1		M			121		Ш	Щ			\perp
						ON FRACTURES, OSTR @ 34.7m			1	13		11					Ш	
								1						Ш		1		
	1						X	1	M	1		20				$1 \perp$	Ш	
	60						1	1	M	1/4					Ш	1	Ц	
_135	4					•						1		\coprod			Ц	\perp
	000					-						1						
									1	114		1				\prod		
							1/2	π	7/		T			\prod			П	T
							1	1	M		T							
								A				1						T
						135.6 -136.8 Mroi-K jm-Ce;	1	1	\mathcal{M}	И	T	1	Ш	\prod		1		T
-	*		~ ~		!	CORE MUSH TO CHIPS ; BLACK	1 [M									T,
		1	~2			UPPER CONTACT OF INTERVAL			7		T	Ш						T
	¥.	V	6			@ 25° TO C.A.; Lower Contract		Ť	//		1		\prod					1
72.C		8	\frac{2}{2}				\parallel		\mathcal{I}		\top	111	\prod	\Box	1			T
_136		D	70			(135.6-135.9) i-K, cone	\top		M		T		Ш				П	T
		1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				$\dagger \dagger$	\dagger	17		\dagger			\square	T			Ť
		¥	~@	<u> </u>		(135.9-136-8) / 703cm	$\dagger \dagger$	+		\dagger	\dagger	$\dagger\dagger\dagger$	H		-	1		†
			~\rac{1}{3}			BANDS OF i-K & VERY LOW	H	+			\dagger	H	††					†
	%		(Co.)	, ,			$\dagger\dagger$	\dagger	1		\dagger	\Box	†††		+			t
	٥					US TO C.A. ; REST W-K, IN	+	+	7		+	\prod	$\dagger \dagger \dagger$	+	++	1	H	†
	2		~			SMALL PIECES	$\dagger \dagger$	+	4	+	+	$\dagger\dagger\dagger$	++	+	++	#	1	+
	İ		~ ~			17.66 .29.0	++	+		+	+	HH	H	$\forall i$	+	#	$\dagger \dagger$	+
			~ ~			136.8-137.9 m-Cc, w-K-T;	H	+	1		+	H	7,1	+			H	\dagger
						CORETANT POTES GREV W	+	+	\mathscr{H}	,	+-	H		+	+	1	H	+
-137						ABAT BREGULAR LICM (c STR	2	+			+	H	1			4	\parallel	\dagger
						137.9-143.7 DARK GREY TO BLACK						Ш			\prod		\prod	1
						MININ LEHT GREY GE MATCHES	44	+	Ш	41	+	\prod	++	\dashv	$\dashv \downarrow$	#		\downarrow
						14/m) BEDDING @ 25° TOCA		1	Ш	$\perp \downarrow \downarrow$	\perp	\prod	$\parallel \parallel$	$\perp \mid$	\coprod	\coprod	\coprod	\downarrow
						1435m) " "50" roc. A.	\coprod		Ш	\coprod	\perp	\coprod		Ц	\coprod	$\bot\!\!\!\!\bot$	\coprod	\downarrow
			· -				\coprod		Ш	$\perp \mid$	\perp	Ш		Щ	\coprod		Ц	1
			3~			143.7-143.9 i-K, m.C.; COLE			114			Ш		Ш		11/12		\perp
						MUSH; @ 30° TOC. A.	\prod											
						,				\prod				\prod				I
147							\prod	\top		\prod	T		Ш	77	\prod	\prod	П	T

ntine . oss acc

AGE 21 OF 25 PROJECT: ENGINE	ZEX	2							HOLE	No.	87-108
MINERALIZATION DESCRIPTION	TOTAL	SULPHIDE	INTERVAL	WIDTH	ASSAY NUMBER	% Au gm4	% Ag .ppm	%	AU 02/7		COMPOSITE ASSAYS
34.7-135.2 QSTR :				0.5	18262	152	38		0.044		
10 CM QSTR & 15° TO C.A.			_	0.5	18202	1.52	370		0.099		
INOR CARB +Tale; 3 % PY,	1		_								
WERY FINE GRAIN IN PATCHES WITHIN THE STR! IN THE			_								
1253 1361 W.R.	//		_	0 "	19313		0.5		0.0		
35.2 - 135.6 m-S: -(c- T-Chi? ALT ARG' 1°/0 PY, MINDA PY				<i>U.</i> 4	18263	0.81	2,0		0.001		
, 10,11,											
			_								
		+	_								
			_								
								:			
			_							,	
		+									
		++	_								

PAGE	2	?2	OF (25	PROJ	ECT: ENGINEER						ŀ	HOLE	: No	s. 8	>7	10	8
TH RES)	Recy	LOGY	TURE			CEOLOGICAL DESCRIPTION				ERA			<u></u>	ļ Į	NSITY			
DEPTH (METRES)	% Core	LITHOLOGY	STRUCTURE			GEOLOGICAL DESCRIPTION	3	ŝ	D B	CA	0	,	E ?c	FR/	INTE			
144 -		^		60.0	- 147.8	ARGILLITE (CONT.)	$\frac{1}{1}$								$\frac{1}{1}$			
-						143-9-147.8 DALIC GREY TO BLACK W 10 % OF CORE LIGHT!												
-						GREY-GREEN TO GREY DUE TO					\coprod			\prod	$\parallel \parallel$	11	\prod	\prod
-		RG				i-Provasive 5: = Cc = Ch1?;	+	+	+	\mathbb{H}	H	+	+	H	+	+	+	+
		6				Minor PO To AUTE; CORE	+	+	$+\!\!\!+$	+++	+	H	H	H	+	+	+	+
•		ı				FAINTLY VISIBLE & MOUTOLOW	+	+	$\dagger \dagger$	+++	$\dagger \dagger$	\dagger	H	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	\parallel	$\dagger \dagger$
		*		<u> </u>		L'S TO C. A.			#	111	\parallel	T		\parallel	\Box	\parallel	\parallel	\parallel
-148							T	1	\parallel	\prod	\prod	T		\prod		П		\prod
							T				1							
•				147.8-	151.8	DYKE DIORITE												
•						-MED GAAMED 1 30 % UP 70					\coprod			\coprod	$\perp \mid$		$\perp \mid$	\coprod
						4mm Foro exernos; 20 % UP TO	$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$		$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$		\coprod	1		\coprod	$\perp \downarrow$	\perp	\prod	$\bot \!\!\! \downarrow$
						3 mm CHORITIZED MARIES;		Ш	$\perp \downarrow$		\coprod	1		\coprod	41	\perp	$\downarrow \downarrow$	$\perp \downarrow$
					 	FINE LADINED GREY MATRIX;	$\perp \downarrow \downarrow$			111	\coprod	-	Ш	\perp	\perp	\perp	4	ļ,
		١,,				1 To 3 % UISSEM PY : CONTROL	5	\perp		$\downarrow\downarrow\downarrow$	\coprod	\downarrow	$\ \cdot\ $	\coprod	\Box	+	\coprod	+
,	Ì	YKE				@ HLH LTO C.B. 1 py- Co	\dashv	4	$\perp \downarrow \downarrow$	444	\coprod	+	H	+	4	+	$+\!\!+\!\!\!+$	+
_ 150	_			<u> </u>		ON FRACTURES	$\dashv \downarrow$	+	+	+++	+	+	H	+		+	+	+
•		2				150.6-150.8 (-S:- Cc, m.a	4	-	\mathbb{H}		\mathbb{H}	+	H	+	+	+	+	+
•						ALT = PATCH; MOTTLED GREY		+	+	+++	+	-	$\left\{ \cdot \right\} \left\{ \cdot \right\}$	+	+	+	-H	\dashv
-						2 % DISSEM. PY: 1% DISSEM	1//	//			+	+	H	+	+	+	+	+
-				-		Pd.	11	4/	""	444	+	+	H	+	+	+	+	+
				-				+	+	+++	+	+	H	+	+	+	+	+
				10.0		OPCIII ITE	+	+	+	+++	+	+	H	+	+	+	-	++
•				151.8-	187.8	ARGILLITE	+	+	\mathbb{H}	+++	+	+		+	+	+	\dashv	\forall
						DARK GREY TO BLACK ; BEDDAN	4	+			+	\dagger	III		+		$\dashv \dagger$	\top
•		*	1			MOSTLY FAINT TO INDISTINCT	7	λ		M	\dagger	+	$\dagger\dagger\dagger$		+		††	\parallel
<u> — 152</u>	-	+	 	 		OCCASSIONARY DISTINCT , CORE	1	1	7	М	\dagger	1	111				++	\parallel
-						VERY HARD! 5 % OF CORE	-1/	1		M	\top	T		\parallel				\prod
-						+ (113 AIZ= : WINDE BY E		1		1	\top	1	Ш	\parallel				\prod
-		AG.				HAS PATCHES OF WOO & CC'S + (61? AUT = : MINOR PY TO ALTO: VERY MINOR DISSEM.	14	1	1	12								
-		Œ			<u> </u>	THEY DUT : MINING CO ON				\prod				\prod				
-						FRACT URES						I						T
-						151.8-152.7 CORE				\coprod								\coprod
-					!	MOTTED TON- GREY, no - Cc -Chi	2				\prod	\int						
_						-S: CORE SOMEWING CRUMBLY		I										\prod
- 154		V							Ш				Ш					

PAGE 23 OF 25 PROJECT: ENGI	NEE	<u> </u>							HOLE	No.	87-108
MINERALIZATION DESCRIPTION	TOTAL	SULPHIDE	INTERVAL	WIDTH	ASSAY NUMBER	% Au gm/T	% Ag ppm	%	Au 02/7		COMPOSI ASSAYS
		П									
	$\dashv \downarrow$		-			ļ					
	-H	H	- '			<u> </u>	· ·		ļ		
	\dashv	H	-								
		H	-			 					
		$\dagger \dagger \dagger$									
	$\perp \downarrow \downarrow$	\prod									
		H	-								
		$\left \cdot \right $	_	<u> </u>		 					
		H	·-··	<u> </u>		 					
	-H	H		ļ		-					
	$\dashv \vdash$		~-								
	1		_								
			-								
		$ \downarrow \downarrow $	_								
150 6-150 0	+	++			·C/C						
150.6-150.8 AT-2 DYKE,		+		0.2	18265	0.04	0.7		6.001		
. 1014	-14	+	-								
		$\parallel \parallel$	-								
			-								
		\prod	-								
	-	$\bot\!$	-								
	-H	$+\!\!+$	-		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
	+++	+	-								
	+++	+									·
		$\dagger \dagger$	-								
	111	††	-						-+		
		\prod	- 								
		\prod	_								
	\prod	\prod	_								
			-								
			-								
	111	1.1	1	- 1	1	- 1	1				

PAGE		21	1	OF	25	PRO	JECT: ENGINEER .					· · · · · · · · · · · · · · · · · · ·	 -	н	OLI	E No	o. 8	?7	-/0	8
- 20	3		چ	STRUCTURE						AI	TE	RA	TIOI	V		T	>		\top	7
DEPTH (METRES)	٥		۲٥	5TC			GEOLOGICAL DESCRIPTION	Γ	<u> </u>	٥		<u>ユ</u>		H	(lo	٥٦	VSIT			~
	3		Ĭ	Š			SECTIONAL PEDOMI HOM		_	-	1				_	FR	ITE			
164	<u>k</u>	١,	듸	S				\bot	A	8	1	C	Ļ	1	Ε	1	=	Ļ		_
L "67		\	`		151.8	-187,8	ARGILLITE (CONT.)	\perp	Ц	Ц	Ц	Ц	Ш	Ц	Ш	Щ	\perp	Ш		
L	\parallel						156 m) BEDDING @ 40° TO C. A.	1	Ш	Ш	Ц	Ц	\coprod	Ц	Ш	Щ	L	Ш		Ш
								1	Ц	Ш		Ц	Ш	Ц	Ш	\coprod		Ш		\coprod
							164.8-164.95 QSTR;		Ш	Ш		Ш	Ш	Ц	Ш		\perp	Ш		Ш
L							6cm @ 60° 70 C. A', 5° 16 PM		Ш		Ш	Ш	Ш	Ц	Ш	Ш	\perp			
							IN HOW : CONCENTRATED IN ARK					Ц	Ш	Ц						
L							STR IS WHITE QTZ PLUS MINON						Ш	Ш						
							Cc, T 10 % W. R. FRANS.		Ш							Ш				
L	\parallel		OSTR			·			Ш		Ш			Ш		Ш				
-165		\coprod					164.95 - 165.45 mroi-Cc	·ŀ		1/2	\coprod		Ш	Ш	Ш					
							BANDS OF i-CC 2mm to kin	- 1							\prod					
							WIDE IN WION CO BUTWEEN	- 1					\prod	\prod		\prod	\int			
							(POSSIBLY FOLLOWING BODDING			1	\prod		П							
							· e 45° TO C. A BN AVERAGE BO			X										
							OFTEN IRREDULAR ; 1%			1	1									
Γ	6						DISSEM PY TRACE PO						\prod	П						
Γ	Ι,	1	MRG										П			\prod				
	3						169.4m) BEDDING EYS "TO CA						П	\prod						
		1						Ϊ					\prod	\sqcap	11	\prod	\top		\top	
166			1				170-187.8 WEAK FOL= @	1				IT	$\dagger \dagger$	11	Π	11	\top			
166		\prod				***************************************	~30'TO C.D. OUTLINED BY			П			Π		T	П				
			1				LO. SMM DISCONTINUOUS BLACK	T					\prod	П						
Γ	\parallel						LINES IN DARK GREY MATRIX!						\prod	\prod						
Γ				ļ			APPEARS TO BE N PARALLER													
							REDDING; MINOR CETCHES:													
							ALTE PATURES; LIº/O LOCALLY	T						\prod		\prod	П			
							2 % DISSEM PY	T					\prod		\prod	\prod	П			
														П		\prod				
Γ		Westerner						T					\prod			\prod				
T ,		No. of Lot	1		187	7,8	E.O.H.	T		П			\prod	\prod	\prod	\prod	\prod			
186		Ż						\top				1	\prod	\prod	11	\prod	\top		\top	1
		E	н. о.	Ì				1		П		\top	$\dagger \dagger$	\prod	11	††	\top			11
				f				\top	1	\sqcap		+	\parallel		\prod	\prod	\parallel			71
				ļ				\dagger		\sqcap	П		\prod		$\dagger \dagger$	\parallel	\parallel		\top	\top
 				}				T			\prod	+	\parallel	$ \uparrow $	11	#	\parallel			11
								+		\dagger		\dagger	$\dagger \dagger$		††	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$		- -
				Ì				+		+		\dagger	#		††	#	$\dagger \dagger$	+	\parallel	1
_				ł		-		+	+	+		+	#	\parallel	$\dagger\dagger$	$\dagger \dagger$	H	+	+	廿
 				-				+	+	+	+	+	H	H	$\dagger\dagger$	+	+	+	+	++
-				F				+	+	+	+	+	+-	H	$\dagger\dagger$	$+\!\!+$	H	+	+	+
1 200		1_						Т.	لــــــــــــــــــــــــــــــــــــــ		Ш	\perp	Ц_	Ш			Ш	$\perp \perp \perp$		

AGE 25 OF 25 PROJECT: EN	ILINEER				HOLE No.	87-108
MINERALIZATION DESCRIPTION	TOTAL	INTERVAL		Ag Ag H PPM	Au 024-	COMPOSITE ASSAYS
14.8-164.95 QSTR , 14.8-164.95 QSTR , 14.8-164.95 QSTR ,	.e.;	0.15	18266 0.7	75 4.4	0.022	
TRACE IN STR						
164.95 -165.45 Ava		0.5	18167 0.1	10 1.1	0.003	
ARL; 1º10 PY, Tr- PO						
		-				
		-				
		-				
		-				
		-				
		-				
			 		 	

PAGE			OF		PROJ	ECT:					۲	OLE	No.				
IPT -	re scy	-	<u> </u>			GEOLOGICAL DESCRIPTION		AL.	TESA	TIO	N	admir inica	FRACT INTENSITY			•	1
DEPT	% Core	LITHOL	STRUCT			· · · · · · · · · · · · · · · · · · ·	4	В	C	,	,	E	PR				
	4	ā,						\prod			\prod	П			П		Î
							\perp	\prod	\coprod	$\bot\!$	\coprod	+		\coprod			+
					i			\mathbb{H}	$\frac{1}{1}$	#	$\downarrow \downarrow$	1		$\!$	H		+
							 +	\mathbb{H}		+	\coprod		H	╫	H	\Box	+
		ı				- 1112	 +	+	+++	+	+	+	H	╫	H	-	ł
							+	+	+++	╫	+	+	H	H	H	+	ł
							+	+	+++	+	+	++	H	$\dagger \dagger$	H		ł
							 +	\parallel	†††	$\dagger \dagger$	H	+	111	$\dagger \dagger$	$\dagger \dagger$	+	1
							\prod	\prod	 	\parallel	††			\prod			1
•							П				\prod			\prod			1
																	I
							\perp		\coprod	4	$\perp \downarrow$	\perp		\prod	\coprod		1
							 4	\coprod	\square	4	+	4		\coprod	H	-	+
							 +	+	+	$+\!\!+\!\!\!+$	+			H	-	-	1
	1						+	+		+	+	+		H	H	4	4
							+	+	+++	+	${\mathbb H}$	+		H	H	-	+
							 +	+	+++	+	$\dashv \dagger$	+		\forall	H	+	ł
-							+	+	+++	$\dagger \dagger$	$+ \dagger$	++		$\dagger \dagger$	$\dagger \dagger$	+	t
							\dagger	+		\dagger	$\dagger \dagger$			$\dagger \dagger$	$\dagger \dagger$	\vdash	t
								++	$\dagger \dagger \dagger$	††	††	1		\parallel	\prod		t
					j			\top		\parallel	\prod						1
																	I
										1							
										Ш	Ш			Ш			1
							\prod	$\perp \downarrow$		\coprod	\coprod						1
							\parallel	$\downarrow \downarrow$	+++	\parallel	$\downarrow \downarrow$	\bot	H	\coprod	\coprod	-	+
-							 \dashv	+	$\ \cdot\ $	\parallel	\coprod	+	H	#	-	-	+
							\parallel	+	++	+	+	+	\mathbb{H}	#	++		+
							+	$+\!\!+$	+++	$+\!\!+$	H	+	$\mathbb{H}+$	H	-	-	+
							+	+	+++	╫	+	++	H +	+	H	+	+
				: 			+	+	$\frac{1}{1}$	+	H	+	H+	H	H	+	+
							+	+	$\dagger \dagger \dagger$	+	H	+	++	H	+		1
							 $\dagger \dagger$	††	$\dagger\dagger\dagger$	$\dagger \dagger$	$\dagger \dagger$	††		1		-	ı
			Ì				$\dagger \dagger$	††	† † †	#	††	11		\parallel			1
					1		\parallel	11	111	$\dagger \dagger$				I^+			1
	Ì		Ì				TT	11	\prod	\prod	П			\prod			T

APPENDIX B ANALYTICAL RESULTS

MIN-EN LABORATORIES LTD.

Specialists in Mineral Environments 705 West 15th Street North Vancouver, B.C. Canada V7M 1%2

P''''E: (604)980-5814 DR (604)988-4524

TELEX: VIA USA 7601067 UC

Analytical Report

Company:	TOTAL	ERICKSON	RESOURCES
Project:	ENGINE	ER	
Attentio	ın : HAN9	SMIT	

File:7-1386 Date:SEPT 29/87 Type:ROCK GEOCHEM

Date Samples Received :SEPT 19/87 Samples Submitted by :HANS SMIT	
Report on	ples ples
Copies sent to: 1. TOTAL ERICKSON RESOURCES, NORTH VANCOUVER, B.C. 2. 3.	
Samples: Sieved to mesh Ground to mesh80	
Prepared samples stored:X discarded:rejects stored:X discarded:	
Methods of analysis:	
31 ELEMENT TRACE ICP.	•

AU-WET.A.A.

Remarks

GUECT NO: ENGINEES TENTION: HANS SMIT				15TH ST., (604)990-5		(4) 988-45		# TYPE 90	CK SEDCHE	9740 + M	SEPT 2	
ANTRES IN SOM : FRAITONI SHAD SULL	46	AL	A5	R	\$A	0E	81	ÇA	5.6	CO	CU	FE
MATORS IS NEW T		32550	<u>7/5</u> 	31	(66)	1,3	7	100480	1.0	8	5.4	35850
7 : 5	1.2	29020	13	30	212	1.8	.	74970	, q	9	98	50740
rso Ess	2.0	27710	43	26	277	5,4	ţ	101470	1.7	7	35	36070
7	1.7	34160	25	33	579	1.3	2	92760	٠ė	6	29	28740
718	.8	10140	235	10	110	.7	}	5270	1.4	?	16	19750
719	7.4	17880	167	79	155	1,4	2	4120	1.4	11	85	37500
720	1.3	7440	576	P	64	.7	<u> </u>	1370	2.7	ά	50	21110
721	7.3	9050	143	11	715	.7	1	1730	8.	8	67	23260
722	2.9	9180	92	9	37	.6	1	1480	.5	6	40	17360
723	.4	1600	35	}	10	,2	j	260	.3	1	4	5980
724	3.2	4970	155		38		1	669	.8	7	32	16310
7.25	2.4	5580	76	6	70	.4	1	690	.5	3	38	14300
775	1.5	13110	171	13	82	.4	;	1190	, q	7	80	10030
9727 3727	. 6	16200	135	18	82	.9	ţ	830	.8	10	87	29170
728	1.9	10670	337	13	80°	1.4	1	2530	1.7	3	6	48510
729	30.9	4510	750	9	37	.9		2050	8.5	2	5	29860
,, ₂ , 5730	1.5	9270	400	10	121	. 6	i	2180	1,9	2	5	19570
731	1.4	11140	715	13	137	1,2	1	2436	3.4	2	6	39250
3732	1.3	11350	311	16	50	2.1	2	7440	1.9	5	13	70380
i733	.5	5540	193	7	111	.5	1	4980	1.1	5	29	13270
734	1.7	12000	67	18	93	1,0	}	27180	1.1	7	37	56490
573 5	1.7	9240	376	14	85	1.3	ţ	55300	2.1	6	\$2	36396
9736	.5	8400	95	12	149	.7	1	1850	. è	3	24	2229(
5737	1.0	9290	134	11	248	.5	1	1130	.8	3	24	1381
7:3 8	.9	3490	878	2	129	.7	į	230	3.8	2	14	8446
739	1.8	8940	395	10	187	.7	1	1200	7.0	5	45	21050
57 4 0	.4	3640	302	2	231	.2	1	370	1.4	1	13	598
57 41	2.9	11610	154	14	153	, 9	ţ	1470	, ņ	6	50	27249
J1 71	.9	2070	559	1	16	.7	4	430	2.3	. 1	5	574
343	.6	3170	535	2	95	.2	į	140	2.3	3	9	558(
3744	<u></u> 4	4780	911	5	42	.2	j	2210	4.2	1	8	469
5745	. 4	4690	534	7	24	.1	ţ	390	2,4	1	5	433
5746	.9	13100	675	16	137	.8	ş	1320	3.1	6	58	2185
57 4 7	1.2	12030	113	15	116	1.0	į	1590	.8	6	59	7971
57 4 9	1.6	13310	76	18	209	1.6	}	1550	, 9	6	56	5283
3749 5749	206.1	5060	138	5	104	. 4			, 9	2	40	1717
5750	17.2	4690	366	4	244	.3	1	960	1.8	2	22	689
5801	1.3	4450	997	5	201	.3	1	700	4.8	2	24	98 9
5602	2.1	6660	474	9	261	1.1	!	1730	2.5	7	59	3797
5803	1.9	9160	458	12	197	1.5	ţ	2100	2.5	7	57	4993
<u>5604</u>	1.9	5310	1712	5	190	. ś	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	950	7.7	3	27	2084
5605	1.9	8470	571	19	187	1.1		1 2630	3.0	5	49	3474
5606	1.2	7610	317	10	131	1.0	!	6740	2.1	4	37	3099
5607	2.2	8790	873	10	369	.7		1 1030	4.7	5	44	229
5608	2.0	5690	1255	7	171	.9	;	1 1230	5.8	3	18	2879
5409	4.0	8960	108	14	217	1.7		1 1450	3.9	4	47	5983
5610	4.5	8460	663	10	297	.6		1 570	3.5	4	39	176
5611	2.3	9980	184	15	4()4	,9		1 1080	2.0	5	49	2543
5612	2.7	5950	400	10	301	.7		530	2.8	4	38	240
5613	2.5	3850	1134	5	197	.4		1 380	5.3	3	21	1340
5614	2.3	3870	1827	7	179	,4		1 390	8.7	3	20	130
3615	5.6	2580	2585	3	70	.5		340	11.9	3	13	158
5616	4.6	690	472	17	21	.2		1 50	2.1	1	Ś	71
		1400	967	1	37	.3		1 120	4.3	2	10	105
5617 	6.0 14.6	1990	785 985	i	82	.3		7 160	4,4	2	17	91
5619	33.4	1370	914	<u>1</u> -	44	<u>-::</u> <u>-</u>		1 80	4.7	1	12	90
		1840	482	1	76	.3		1 100	2,1	2	12	100
5620 5431	4.4 53.1	1840	938	2	157	.6		1 90	4,4	1	14	207
5621			1275	3	156	.5		1 220	5.6	2	15	156
5622	13.3	3700	1113	'n.	321	.5		1 440	9,8	5	20	167

COMPANY: PATAL EXEC PROJECT NO: ENGINE	(R		765 WEST	157H ST							NG: 7-1398	
ATTENTION: SAME SM	[T			(504) 980-9		5041988-4	574	+ TYPE A(ock seach	Ed to DA	REISEPT 39	. 198
(VALUES IN PPM)				33	#0	NA.	% <u>;</u>	ē	PB	89	SF	TH
5754	3479	3.5	13116	1437	5	2716	26	1170	25	5	297	
5715	3740	38	15519	582	å	850	39	549	76	ĝ	63	1
	2890	44	18750	(900)	3	740	14	540	58	5	184	ŝ
571.5	5420	36	14690	1091	3	480	12	510	30	4	150	1
5710	3730		5140	:30	3	50	8	240	31	30		!
5719	5570	15	6340	218	3	50	40	620	41	53	23	3
5720	2970	4	1920	147	1	20	21	300	18	34	6	
5721	2009	5	776	25		20	37	340	19	66	38	1
5722	1620	5	590	28	}	10	28	370	19	47	27	•
5727	230		99 	47		10	7	70	8		4	
5724	910	ζ.	360	4 (3	10	59	200	12	7 7	14	1
5725	1410	4 5	430	80	2	10	24	190	14	77	31	1
5728	3766	8	949 1354	28	8	20	₹º	260	20	38	71	1
5727	2700	12	1756	174	3.	20	54	210	27	34	247	1
5728	2140	5	<u>92</u> 0			10		690	10	47	114	
57 9 9	1400 0450	2	700	45	1	10	1	396	15	94	31	*
5730 5774	2450 2574	3	910	44	1	10	i	290	14	44	27	1
5731 5732	2530 2920	q q	960 7040	22	7	10	1	520	()	80	37	3.
5733			3840	177	i -	10	7	1050	21	43	22	1
5734	2400	4	3589	179		70	24	430	<u>37</u>	21	19	
573 4 5735	3600 2790	<u>9</u> 10	13970	935	7	30 40	32	670	3å	29	98	1
5736		10	9780 MAAA	864	2	40	27	410	34	51	281	1
5737	2820	3	1400	85	1	70	5	260	19	40	59	1
5738	29 70 (150	4	910	59 87	2	30	\$0 ·	316	19	46	61	}
5739	3190	<u>-</u>	326 1140	46	4	10	<u>10</u>	80	12	<u>72</u>	44	
5749	1140	5	380	96	2	70	26	390	14	56	112	1
5741	3350	ų ų	350 1130	51 74	3	10 29	- 8 32	60 470	7	25	31	3
2	440	?	350	89	3	10		460	16	116	60	٤ .
3743	560	3	270	37	4	10	11	4() 20	11	1093	26	3
5744	690		990	35	4	10	~	<u>30</u> 40	<u>&</u> 	654	24	
5745	680	5	360	33	3	10	3	40	33	275	27	1
5746	3350	13	1760	9.4 9.4	5 5	30	39	360	16	23 40	18 93	;
5747	2950	14	2970	150	5	26						
5748	3540	10	3340	215	1	4()	31 25	400 460	17 19	25 41	69 88	1
5749	1590	<u>:</u>	1400	134	<u>;</u>	10	19	110	<u>37</u>	106	35	
5759	1530	7	540	80	2	10	15	100	13	40	55 55	š
5501	1470	2	990	94	4	10	11	120	11	46	33 77	!
5602	2460	3	2990	214	6	10	41	600	24	56	174	1
5603	3450	5	6900	315	1	39	34	570	30	39 4		;
5694	1950		2020	174		10	15	249	17	125	<u>52</u>	
5405	3080	5	2880	259		30	31	410		83	53 32	1
5606	2620	5	6720	304	7	20	23	480	18 20	3 9	52 41	!
5607	3340	3	1200	50	1	20	29	460 300	20 18	100 24	152	1
5608	2250	2	750	75	1	10	10	290	13	141	68	1
5609	2000		1360	74		10	15	280	17	1164	128	
5610	3030	3	1020	71	2	10	26	200 210	13	6571	121	1
5611	3450	4	2730	150	5	30	74 34	450	13	950	314	1
5617	2150	3	1180	95	,, 4	30	26	230	14	1763	314 166	, j
5613	1480	2	540	97	}	10	ió	130	17	6305	83	i 1
5614	1370		510	51	<u>?</u>	10	51	150	19	1878	121	
5615	1020	į	380	55	3	10	15	90	11	3013	79	1 ,
5616	280	1	120	52	1	20	8	20	7	2718		<u> </u>
5617	670	,	190	77	2	10	15	20 50	10	589	14	} 1
619	840	,	250	93	2	10	20	50 60	10	257 257	38 51	1
5619	510	i	180	50		10	10	40	<u>-4</u>	855	27	<u>i</u>
5620	810	1	230	126	2	10	19	50	17	3445	31	, ,
5621	630	1	250	80	7	10	12	100	11	164	43	ş
5622	1300	7	490	71	1	10	16	110	13	121	78	•
5623	1740	3	930	65	2	10	27	200	13	151	120	ž 7
					~~						V 4 K	

18.6

CONFRY: ROTAL ERROYSSM RESMURCES

TRONGS FIR SBAL WHERE

MACTORSIA PAGE : OF D

44()

ţ

Sapeline Contact from	roger fra.	5.5										
⇒63601 HO: ENGINEE	Į\$		195 4667	1579 57	MGRIB PAR	elouver. (N.C. VIII	170			NASA PERANGS	
-TTENTION: HAMP SHI	Ţ			15041996-5	814 (P 18	() 4) 989 - 4 <u>5</u>		* TYPE 80			TE:SEPT 19	· 2
WALDES IN PEN	Š,	Li	KG.	MW.	M O	NA	AI	p	P 9	52	38	IH.
5624	1679		975	49	7	10	15	176	17	118	122	1
5025	(40)	2	უწტ	90	7	1÷	19	120	12	94	102	1
557	450	2	(49	53	7	10	7	20	ć	10	7	į
56	1396	3	290	28	<u>;</u>	10	5	20	2	ą	10	1
5629	936	<u> </u>	200	74	1	10	4	70	7	16		
5679	1340	1	250	43	7	10	8	40	5	13	23	ţ
5630	520	š	130	35	1	10	À	20	5	8	12	i
563)	390	1	120	63	1	20	9	20	8	7	11	į
5632	776	1	230	47	2	16	8	60	8	26	29	1
5633	590	7	70ú	49		10	<u> </u>	20	4	13	20	1
5634	360	j	170	49	7	10	8	9≬	11	45	ų į	į
5635	2116	4	650	80	2	01	ą	330	15	115	170	1
5636	1680	ý	(420	704	7	łó	5	300	19	127	59	1
5637	1200	Ģ	1436	424	\$	40	2	460	13	157	176	1
5638	1050	6	1360	321	2	19	10	330	17	198	124	1
5639	2040	3	1440	104	7	10	15	230	25	101	35	1
5646	3070	5	3090	169	;	20	10	620	25	97	58	1
5541	2390	2	1400	77	1	20	11	320	19	212	47	ě,
5642	1280	2	570	56	1	10	ઇ	320	16	374	67	\$
5843	1190	22	590		2	10	4	110	14	321	30	
5844	770	2	520	58	2	10	Β	60	13	315	23	1
5645	1550	2	1550	135	1	10	17	200	21	1330	53	3
5546	780	才	1510	145	3	19	9	180	21	2091	40	i
5647	576	4	190	35	5	10	é	4(1	11	80	9	į
5548	470	1	140	45	9	10	11	30	11	35	8	
5549	1550	!	400	47	16	19	7	50	19	58	20	3
5650	55Q	2	220	7.3	2	10	Įû	30	3	45	11	1
5501	849	2	430	88	7	10	9	50	8	59	10	3
· ·	2220	4	2870	129	2	20 .	21	240	17	67	54	1
3003	2026	18	8180	203	11	20	18	290	22	56	23	<u>i</u> _
5504	1400	10	4670	78	4	30	ક	150	19	47	12	1
5505	2030	13	6750	135	1	100	13	270	10	98	18	i
5506	2190	18	5630	174	3	90	32	300	20	9	11	1
5507	2500	11	11810	338	2	40	34	630	31	49	73	Š
5508	2.020	7	10650	413	7	30		230	29	74	60	
5509	1960	10	9080	290	7	50	18	240	25	38	87	<u>(</u>
5510	2390	9	4970	149	8	30	15	340	18	42	46	1
5511	2360	74	6760	254	7	50	15	270	20	38	45	1
5512	2700	17	4400	205	5	40	12	230	14	14	23	i
5513	2760	13	3840	234	4	40	13	230		.76	24	<u>i</u>
5514	1940	13	3400	144	ģ	30	- 11	210	15	19	24	1
5515	2620	23	5290	310	Ţ	60	20	320	17	43	35	1

	and the state of		11,71,71	LA NHĐĐ J	Wr harish:				ş i	KETYFELL PAGE 3 OF S
FROJESS MO: ENGINEER ATTENTION: HAMS EXIT		795 WES	T 15TH ST.	, NORTH V	/AMCOUVER. B.C	. 978				FILE NO: 7-1386R/93+4
-110011000 0000 0011 1741053 (N 990)			(604)990) 	-5814 <u>OR</u>	1604)988-4524			ROCK GEGE	CHEM +	DATE:SEPT 29, 1987
2	7 U 7	44 44	6A	SN			/U-66ā			
5425	1 10.5	44	1	1		270	390			
5.36 5.38	1 2.1	7	į	1		282	340			
	1 2.0	5		1		350	ΙĐ			
	4 1.8	3 (i	1	1		217	2			
5679	7.3	9	<u>1</u>			735	15			
5600	1 1.6	5	i	! !		253	5			
9633	7 1.7	£ 3	1			268 240	<u>.</u>			
5632	3 2.9	15	1	,		319 ana	5			
5433	2 2.3	8	, ,			290 324	180			
5674	4 7.8	<u>-</u>	·i	<u>-</u>		314 330	30			
5250 5250	1 12.2	135	}	1		224	100			
5372	1 10,4	80	į	,		236 236	370 790			
5637	1 20.3	71	i	1		. op 177				
583 8	1 14.0	5i	?	,		124	1500 2100			
5,559	1 11.9	<u></u> 34		<u>-</u>	~~~~~~~~~~~	97	2166 380			
5849	1 15.6	91	1	î		104	ло <i>и</i> 99			
5641	9.8	47	1	•		93 -	190			
5.647	5.0	40		,		. 65 253	170			
5.543	4,7	24	•	í		57	280			
3844	4,3	17			~~~~~~~~~~~~	80	230			
5645	1 10.3	50	}	Î		.50 !56	400			
5646	1 6.3	40	3	1		.so 39	1100			
5647	1 3.8	8	ì	1		26	620			
5840	5.6	7	i	1		50	100			
	4.6	16	1	1		57 57	370			
5650	1 4,6	12	1	į		82	300			
	1 4.3	11	1	1		49	700			
55.62	1 21.1	59	i	t i		37	1060			
	17.2	45	1	i		43	1030			
	2 9.8	41	1	!	1 1	99	400			
	16.4	45	<u> </u>	1	i i	28	670			
	7 70.1	47	1	1	1 11	71	20			
5507	3 51.4	190	2	1	1	76	45			
	3 36.9	109	2	1		78	520			
	3 71.5	57	<u> </u>	(79	670			
	3 18.7	56	<u> </u>	<u>ŧ</u>		97	260			
	1 21.3	58	1	1	1 12		290			
	17.5	39	1	1		81	60			
CC/1	2 16.5	46	1	1		36	140			
~~.~	10.9	32	1	1	~	72	50			
	1 25.4	53	1	1		33	750			
5514	34.4	57	ĺ	1		12	230			

MIN-EN LABORATORIES LTD.

Specialists in Mineral Environments 705 West 15th Street Morth Vancouver, B.C. Canada V7M 172

3 () 1007) 100 0017 00 1007) 100 102;	
(604)980-5814 BR (604)988-4524	TELEX:VIA USA 7601067 UC

TELEX: VIA USA 7601067 UC

经多

e =

Analytical Report

Company: TOTAL ERICKSON RESOURCES Project: ENGINEER Attention: HANS SMIT

File:7-1403 Date:SEPT 29/87 Type:SOIL GEOCHEM

		:SEPT 22/87 :HANS SMIT			
Report on	************	e n n n o e n e n e n e n e n e n e n e	DCKS	Assay	Sampl
Copies se		ERICKSON RESOURCE	ES, NORTH VANCOUVER, B.	E.	
Samples:	Sieved to me	eh80	Ground to mesh	80	
Upare6	samples store rejects store	Dagger, en Xanga. Dagger	discarded: discarded:	и и п. ч. н. е. е. е. е. е. е. е. е. е. е. е. е. е.	
Methods c	of analysis:				
4 4	IG – FLAMELESS AS – VAPOR GEN AU – WET.A.A. SI ELEMENT TRA	ERATED, A. A.			

Remarks

MIN-EN LARS ICP REPORT

(ACT:F31) PAGE 1 BF 3

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 FILE NO: 7-1403R/P1 PROJECT NO: ENGINEER DATE: SEPT 29, 1987 (604)980-5814 BR (604)988-4524 * TYPE ROCK SEOCHEN * ATTENTION: HANS SMIT CO CU BE BI CA FΕ AL BA CD AS AS (VALUES IN PPH) 1.7 1.7 i 1.1 1.0 1.5 1.2 .8 1.0 .8 1.1 1.4 1.2 1.3 2.8 1.0 ĩ j 4.4 .3 , 4 δ 1.8 .2 .2 .9 8.1 1.1 1.3 į 1.6 1.5 1.0 į .3 .3 ī 1.0 1.4 1.1 1.5 q 1.0 Í 1.6 . 8 1.4 2.6 2.2 1.3 2.6 2.7 3.3 1.1 1.2 .8 1.7 2.7 . 5.5 1.0 1.7 1.0 1.9

NIN-EN LARS ICP REPORT 705 WEST 15TH ST., NORTH VANCOUVER, R.C. V7M 1T2 (ACT:F31) PAGE 2 OF 3 FILE MO: 7-14039/91

WIN THE STATE THE	MODN NESCE	311000		77277 6	*** *********							
PROJECT NO: ENGINEE	ER		705 WEST	15TH ST.	, NORTH	VANCOUVER,	B.C. Y7M	1172			FILE NO: 7-	1403R/P
TIENTION: HANS SMI	1			(604) 980-	-5814 OR	(604)988-	4524	* TYPE	ROCK GEOCHEM	ŧ	DATE: SEPT	29, 1987
(VALUES IN PPH)	K	LI	M 6	州	MO	NA	MI	p	PB	88	SR	TH
5517	2800	31	13040	784	3	150	15	490	49	15	76	1
5518	4920	31	10370	305	3	110	38	540	22	10	28	1
5519	2920	24	9190	219	11	90	27	400	24	5	29	1
5520	4100	36	16750	451	3	130	27	690	24	8	65	1
5521	3560	32	13180	413	4	50	24	560	22	12	59	i
5522	1010	ś	2440	76	9	10	10	100	15	15	11	1
5523	520	3	1740	53	6	20	7	40	18	8	8	1
5524	2240	16	6370	154	22	100	17	320	22	26	18	3
5525	3270	30	9870	282	5	160	24	570	26	9	27	1
5526	530	á	2200	68	3	30	7	90	14	6	14	1
5527	2250	20	10810	388	18	110	20	320	30	6	73	1
5 528	2670	20	8400	218	19	90	22	360	20	9	25	1
5529	4680	47	14740	307	9	340	50	490	37	12	20	1
5530	3570	11	6500	228	2	50	23	360	20	230	17	1
5531	2380	9	3310	451	2	30	20	510	18	56	22	1
5532	3190	30	9850	982	3	50	22	480	39	32	94	i
55 33	2410	12	11780	247	2	50	24	300	2 9	40	64	1
5534	3620	38	13000	837	. 3	1930	24	490	25	19	100	1

PROJECT NO: ENGINEER

MIN-EN LABS ICP REPORT

(ACT:F31) PAGE 3 BF 3 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 FILE NO: 7-1403R/P1

(604)980-5814 OR (604)988-4514 * TYPE ROCK GEOCHEM * DATE: SEPT 29, 1987 ATTENTION: HANS SMIT AU-PPR ZN SN (VALUES IN PPN) 31.4 $\bar{2}$ ī į 44.8 35.1 £ 47.6 į 42.5 15.8 12.3 į ţ 33.8 į Ś ţ 37.0 į 15.1 47.1 55.2 \$ 77.9 į 24.5 18.3 35.5 23.8 į į \$ 81.2

MIN-EN LABORATORIES LTD.

Specialists in Mineral Environments 705 West 15th Street North Vancouver, B.C. Canada V7M 1T2

1-110A100A FOLA	DR (604)988-4524	i
;1004)700-3014	UN 1004170074324	ł

TELEX: VIA USA 7601067 UC

Analytical Report

Company:TOTAL ERICKSON RESOURCES Project:ENGINEER Attention:H.SMIT	File:7-1585 Date:OCT 17/8 Type:ROCK GEO		
		4	
Date Samples Received :OCT 9/87 Samples Submitted by :H.SMIT		,	
Report on		Samples	
* 11 * 21 * 21 * 21 * 21 * 21 * 21 * 21	Assay	Samples	
Copies sent to: 1. TOTAL ERICKSON RESOURCES, NORTH VANCOUVER, 2. 3.	B.C.		
Samples: Sieved to mesh Ground to mesh	100		
Prepared samples stored:X discarded: rejects stored:X discarded:			
Methods of analysis: AU-WET;31 ELEMENT TRACE ICF			

Remarks

PROJECT NO: ENGINEER

MIN-EN LABS ICP REPORT

705 WEST 15TH ST.. NORTH VANCOUVER, B.C. V7M 1T2

(ACT:F31) PAGE 1 DF 3 FILE NO: 7-1585/P1+2

1 1

1.2

(ACT:F31) PAGE 2 DF 3 MIN-EN LABS ICP REPORT 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 PROJECT NO: ENGINEER FILE NO: 7-1585/P1+2

	rmugeli mu: embincen Attention. II emit			/VJ MCDI		. AUR IN 4 AUR IN 4				ROCK GEOC		C NO: /-!.		
!	ATTENTION: H.SMIT					-5814 DR (NA		* 11rc '	PB	SB	DATE: OCT 1		
	(VALUES IN PPH)	-157A	<u>LI</u>		MN	MO	~	<u>IN</u>					TH.	-
	5535	1570	3	3400	62	2	10	í 76	40	51 70	9	18	i	
_	5536	1230	10	5860	209	6	10	35	400	30	71	17	1	
	5537	1630	15	7800	179	3	10	45	430	36 77	92	22	1	
	5538	1580	23	9680	707	2	10	16	440	37	12	89 470	1	
	5539	1450	17	11400	843	i	20	<u> 13</u> 32	610	36	<u>6</u>	130 25		-
	5540	1970	4	3160	324	10	20		370	23	26		i	
	5541	970	2	1 5 50	175	9	10	16	160	19	34	18	i	
	5542	1220	4	2720	334	7	10	23	290	25 24	13	18	1	
	5543	1980	5	4070	318	8	10	29	370	26	10	20	1	
	_5544 _=================================	2890	7	7870	535	4	60	39	480	32	10	40	<u>ì</u>	
	5545	1810	4	1420	133	4	10	22	220	21	35	46	1	
	5546	1930	4	2050	162	4	10	30	290 700	23	45	87	1	
	5547	1560	4	2910	151	10	10	29	300	23	41	45	1	
	5548	1640	10	6430	487	7	10	26	370	29	18	22	1	
	5549	1200	3_	1110	110	3	10	19	170	18	55	<u>55</u>		-
	5550	790	4	960	77	3	10	7	80	14	22	13	į	
	4001	2500	6	3090	180	i	20	25	460	32	23	43	1	
	4002	1350	5	2500	215	2	10	9	440	28	78	28	1	
	4003	370	4	1550	91	1	10	1	640	34	70	31	3	:
	4004	880	<u>i</u>	950	52	<u>2</u>	10	3	40	<u>?</u>	8	18		_
	4005	1420	1	1990	92	1	10	11	250	18	1233	12	1	
	4006	1510	4	8760	253	1	10	22	390	37	112	22	1	
	4007	2310	4	5490	129	1	10	26	410	33	136B	28	1	
	4008	1020	3	5810	120	3	10	16	160	19	504	30	[
	4007	2160	12	8580	171	l	<u>10</u>	34	<u> </u>	39	170	27	2	_
	4010	2340	3	3330	101	Ġ	10	41	510	33	121	17	1	
A	4011	2340	4	8450	269	5	20	31	500	40	38	44	i	
	4012	2020	4	4770	215	1	10	9	640	35	64	26	1	
	4013	1400	2	6670	189	12	10	14	270	26	31	28	1	
	4014	1640	5	5990	240	<u>i</u>	20	28	330	<u> 29</u>	93	25	<u>1</u>	_
	4015	2020	7	4750	134	4	10	23	320	31	83	54	1	
	4016	4300	6	6980	211	21	20	58	830	39	<u> 40</u>	75	1	
	4017	4520	5	5840	185	2	20	42	640	37	93	61	1	
	4018	5190	Ć -	5810	173	3	30	58	690	33	98	98 • 4 4	ì	
	4019	4270	5	5310	163		<u> 20</u>	45	<u> </u>	29	625	160	<u>ļ</u>	-
	4020 4021	2440 2330	7	6270 28 50	227 110	2 3	10 10	44 37	410	34 24	993	124	ì	
	4022	2300	3 5	2000 5000	277	3	10	37 34	370 400	24 29	1403	69 * : 7	i	
	4023	1990	4	3230	179	3	10	30 30	3 0 0	47 24	1565 757	163	1	
	4024	1560		750	39		10	23	300 150	15		155	1	
	4025	1240	· <u>2</u>	560	<u>27</u>	<u>2</u> 3	<u>10</u>	<u>23</u>	<u>130</u>	<u>1</u> 2 14	190 220	<u>113</u> 51		
	4025	1710	2	900	48 58	3	10	33	150	14	1759	93	1	
	4027	3110	i	1410	16	i	10	3 4	400	19	506	73 258	1	
	4028	2970	1	1430	15	2	10	5 1	280	16 28	288	258 189	1	
	4029	2490	2	1180	37	3	10	41	220	21	1029	187	1	
	4930	2060	· - - 4	1460	<u></u>	<u>-</u>	10	26	<u>210</u>	28	569	155	<u>-</u> -	-
	4031	2120	2	1260	18	2	10	20	270	27	257	180	í	
	4032	2180	2	1140	21	i	10	32	220	20	148	195	ì	
	4033	2120	2	930	48	2	10	38	190	18	1663	184	1	
	4034	2300	2	960	45	3	20	23	290	21	1395	120		
•	4035	2530	· <u>-</u>	910	33	4	10	 39	<u>270</u> 200	<u>22</u> 22	394	1 2 <u>°</u>		-
	4038	630	1	300	47	5	10	9	30	13	32	13	1	
	4037	1730	2	930	61	4	10	21	160	18	32 29	2.5 84	į	
Ì	4038	2450	4	3730	230	3	10	44	320	29	47 34	226	:	
	4039	1120	2	510	53	4	10	11	120	13	58	60	1	
	4040	- 1120	-	1860	<u>67</u>	<u>-</u>	<u>10</u>	· 11	<u>120</u>	<u></u> 26	<u>Je</u> 74	<u>60</u> 152	<u>1</u> i	-
	4041	1130	2	400	24	2	10	3	40	13	20	21	<u>1</u> {	
	4042	1110	1	370	32	2	10	7	70	12	33	27	;	
	4043	2380	4	2730	197	14	20	15	260	21	29	113	÷	
	4044	3870	В	5090	382	á	40	5í	560	25	15	151	;	
		•	-	- · ·									•	

COMPANY: TOTAL ERICKSON RESOURCES HIN-EN LABS ICP REPORT (ACT:F31) PAGE 3 OF 3 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7H 1T2 PROJECT NO: ENGINEER FILE NO: 7-1585/P1+2

PROJECT NO: ENGINEER		705 WEST		NORTH VAI					FILE NO: 7-1585/F1+2
ATTENTION: H.SMIT				5814 OR (8				ROCK GEOCHEN *	DATE: DCT 17, 1987
	U V	ZN	- GA	SN	₩	CR	AU-PPB		
	1 1.2	115	i	i	i	129	30		
A	1 34.0	220	1	1	1	142	400		
5537	1 18.0	107	i	i	1	113	480		
	5 19.5	66	1	i	1	30	80		
	6 19.3	86	1	. <u>1</u>	<u> </u>	B3	10		
	2 19.9	86	1	i	i	114	140		
1 7,4 11	i 13.1	47	1	i	1	180	130		
5542	1 22.0	61	1	i	1	131	35		
2	1 29.2	70	1	1	1	161	10		
.5544	2 37.5	80	11	<u> </u>	1	118	5		
. 8545	1 14.4	74	i	i	1	125	60		
J5546	2 16.9	75	i	i	i	121	180		
55 4 7	1 17.0	66	i	i	1	155	150		
5548	1 26.6	77	1	i	i	124	20		
-5549	i 15.1	116	1	1	1	158	50		
~_~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1 3.6	31	<u>`</u>	1	1	185	170		
	2 17.6	98	1	1	1	67	60		
4002	1 11.5	63	i	1	1	145	530		
	5 10.2	86	1	1	1	112	30		
4004	1 2.0	10	1	1	i	171	10		
	1 5.7	54	<u>-</u> 1	<u>-</u>	<u>-</u>	152	170		
	2 22.2	140	1	1	1	78	140		
4007	1 20.2	107	i	1	1	105	6 5		
	1 15.9	93	1	i	4	160	250		
	3 24.7	184	i	i	1	79	180		
	2 28.3	<u>241</u>	<u>i</u>	·	-	115	130		
+2/4	2 20.3 3 21.8	104	1	1	1	75	40		
•	2 23.7	308	í	i t	,	79 79	30		
	3 10.0	3Va 51	1	I .	i	121	70		
4014	1 20.6	99	i		1				
~				· -		136	165		
	1 30.4		1	i	1	184	70		
	1 87.8	624	1	1	2	71	50		
	2 40.9	130	1	2	1	103	40		
	1 46.3	127	1	1	1	77	130		
	1 44.5	130				94	100		
	1 42.9 2 28.3	115	i	1	1	144	450		
		116	1	1	1	147	110		
		132	1	1	1	152	550 700		
•		100	1	1	1	199	700		
<u></u>		44				171	750		
	1 11.5	29	1	1	i	251	730		
	1 20.4	33	1	1	1	210	890		
	1 26.1	76	i	1	i	140	300		
	3 33.6	91	1	i	1	124	110		
4029	1 33.2	97	<u>2</u>	<u>i</u>	<u>;</u>	125	320		
	1 24.6	165	1	i	1	134	3 9 0		
	2 24.2	240	2	1	1	120	90		
4032	1 21.1	62	i	i	1	136	125		
4033	1 24.2	51	ì	i.	1	197	760		
4034	1 18.2	98	<u>i</u>	· <u>-</u>	<u>i</u>	84	320		
Andrews.	1 18.4	120	1	1	1	97	790		
	1 2.8	16	1	1	i	125	65		
and the state of t	1 14.8	61	1	1	1	152	60		
	1 45.8	123	1	i	1	113	100		
4039	1 7.8	33	i		1	158	440		
	1 23.2	74	1	i	1	124	500		
	1 3.3	18	i	į	i	172	50		
** ***	1 4.4	27	i	1	1	221	6 0		
4043	1 25.2	60	i	i	1	134	130		
4044	1 49.1	93	1	i	1	84	25		

1.2

1.2

7.3

MIN-EN LABS ICP REPORT

(ACT:F31) PAGE 1 OF 3

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 PROJECT NO: ENGINEER FILE NO: 7-1585/P3 * TYPE ROCK BEOCHEM * (604)980-5814 OR (604)989-4524 ATTENTION: H.SMIT DATE: OCT 17. 1987 A5 BA BE CA CD CD (VALUES IN PPM) BI CU FE AS B 8.7 1.1 ī .8 1.3 2.8 .7 .9 11.3 i .7 7.7 .3 .8 1.9 1.5 ž .4 .7 .4 Ś .9 3.8 .8 į .5 5.4 .6 í i .6 1.0 L .7 .9 **B**50 .7 $\bar{2}$.7 1.1 . i .3 . 9 į .3 .3 . 6 .4 2.2 1.8 . į . 4 .9 1.6 18.3 1.4 1.1 1.0 1.2 В í 6.4 .8 .9 5.0 -6.7 1.5 32.4

COMPANY: TOTAL ERICKSON RESDURCES PROJECT NO: ENGINEER

MIN-EN LABS ICP REPORT

705 MEST 15TH ST., NORTH VANCOUVER, B.C. V7N 1T2

(ACT:F31) PAGE 2 DF 3 FILE ND: 7-1585/P3

PROJECT NO	: ENGINEER			705 WEST	15TH ST.	, NORTH	VANCOUVER,	B.C. V/H	HZ			FILE NUI	/-1989/49
ATTENTION:					(604) 980	-5814 DR	(604) 988-	4524	+ TYPE	ROCK SEDC			17, 1987
(VALUES I		K	LI	HG	MN	MO	NA	NI	<u> </u>	PB	58	SR	TH
4045		3060	10	4800	346	10	30	17	700	36	34	60	1
4046		2930	9	5410	460	5	20	29	830	31	17	284	1
4047		2730	6	3190	286	12	10	20	300	24	41	253	1
4048		2430	5	2180	229	7	10	1	620	21	42	157	1
4049		2520	77	2460	371	3_	10	<u> </u>	1220	29	49	489	<u> </u>
4050		2180	3	810	64	2	10	31	240	20	148	203	1
4051		2060	2	680	31	5	10	28	220	24	62	127	1
4052		2310	3	920	47	6	10	32	140	18	47	73	1
4053		3650	5	1730	116	2	30	48	190	20	49	73	1
4054		3430	4	1260	104	8	20	44	210	24	43	95	
4055		2230	2	730	36	2	10	25	220	21	73	104	1
4056		3070	5	1440	147	1	20	40	340	27	69	182	i
4057		3750	5	840	16	2	40	36	370	17	65	217	ì
4058		1680	3	710	18	2	10	6	220	22	91	157	1
4059		2250	4	1060	95	6	10	25	280	20	35	<u> 262</u>	
4060		1560	2	810	79	15	10	9	170	26	99	89	1
4061		3390	5	3450	290	3	30	39	440	27	56	200	1
4062		2190	3	1610	122	5	10	20	240	16	60	140	1
4063		2530	. 3	2830	205	2	20	32	360	48	133		i
4064		3040	4	3950	379	10	30	43	340	27	33	B6	1

ī

i

i

10.6

18.1

9.6

32.4

17.0

19.9

31.5

i

i

MIN-EN LABS ICP REPORT

AS MEET 15TH OT MODITH CAMPAGNED D.C. UTM 1T

(ACT:F31) PAGE 3 OF 3

PROJECT NO: ENGINEER			705 WEST	15TH ST.,	NORTH \	ANCOUVER,	B.C. V7M	iT2		FILE NO: 7-1585/P3
ATTENTION: H. SMIT				(604) 980-	5814 OR	(604) 988-	4524	* TYPE	ROCK GEDCHEM *	DATE: DCT 17, 1987
(VALUES IN PPM)	U	V	ZN	6A	SN	₩	CR	AU-PPB		
4045	2	30.5	85	i	i	i	82	240		
4046	3	47.5	97	1	1	1	88	50		
≠4047	i	29.3	90	i	i	1	119	280		
4048	1	21.0	86	1	i	1	106	140		
<u> 4049 </u>	<u> </u>	31.8	136	<u>i</u>	1	í	45	40		
4050	2	18.3	103	i	i	1	97	20		
<u>/</u> 4051	2	15.8	101	1	1	· 1	79	50		
4052	i	13.5	60	i	i	1	86	120		
4053	i	25.3	84	i	í	i	66	20		
4054	<u>i</u>	25.4	109	1	i	1	90	25		
∮ 4055	1	12.9	112	1	i	1	84	20		
4054	i	29.7	109	i	1	1	74	10		
4057	2	22.2	89	1	i	1	106	30		

i

į

i

Specialists in Mineral Environments 705 West 15th Street North Vancouver, B.C. Canada V7N 1T2

- ONE: (604) 980-5814 OR (604) 988-4524

TELEX: VIA USA 7601067 UC

Analytical Report

Company: TOTAL ERICKSON RESOURCES Project: ENGINEER Attention: MANS SMIT

31 ELEMENT TRACE ICP.

File:7-1558
Date:OCT 10/87
Type:ROCK ASSAY

Date Samples Received : DCT 6/87 Samples Submitted by : HANS SMIT	
Report on Geochem Sample	95
, мыграниствопастилиствичествопроправлительная пислинания с	
areararranaarranaarran 550	=
и оже ч и пе и ч и ч и ч и ч и ч и ч и ч и ч и ч и	
Copies sent to: 1. TOTAL ERICKSON RESOURCES, NORTH VANCOUVER, B.C. 2. 3.	
Samples: Sieved to mesh Bround to mesh150	
repared samples stored:X discarded:	
Methods of analysis:	
AU - FIRE ASSAY.	

Remarks

Specialists in Mineral Environments 705 West 15th Street North Vancouver, B.C. Canada V7M 1T2

"4E: (604)980-5814 DR (604)988-4524

TELEX: VIA USA 7601067 UC

Certificate of ASSAY

Company: TOTAL ERICKSON

Project: ENGINEER Attention: H. SMIT File:7-1558/P1 Date:OCT 10/87 Type:ROCK ASSAY

We hereby certify the following results for samples submitted.

Sample	AU	AU	
Number	GZTONNE	OZ/TON	
/4065	0.17	0.005	
4066	0.03	0.001	
4067	0.08	0.002	
4068	0.16	0.005	
4069	0.09	0.003	
4076	1.86°	0.054	
4071	1.77	6.057	
4072	0.01	6.001	
4073	0.63	6.018	
4074	0.37	6.011	
75	0.04	0,002	
14076	3.21	0,094	
4077	0.11	0,006	
4078	1.23	0,036	
7079	0.20	0,007	
7080 7081 4081 4082 4083 4084	0.02 1.12 6.08 6.12 6.31	0.001 0.041 0.002 0.012 0.013	
4085	A.DA	0.035	
4086	O.T2	0.008	
4087	O.U5	0.019	
4088	O.SU	0.018	
4088	O.O4	0.001	
4090 4091 4090 4090 4063 4064	0.01 0.02 0.01 0.40 0.77	0,001 0,020 0,001 0,013 0,022	•

Certificate Los

MINNER LASZRATORIES LTD.

204 1 17 B

Specialists in Mineral Environments 705 West 15th Street North Vancouver, B.C. Canada V7M 1T2

E: (604)980-5814 OR (604)988-4524

TELEX: VIA USA 7601067 UC '

Certificate of ASSAY

Company: TOTAL ERICKSON Project: ENGINEER Attention: H. SMIT

File:7-1558/P2 Date:OCT 10/87 Type:ROCK ASSAY

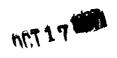
We hereby dertify the following results for samples submitted.

Sumple Number	AU GZTONNE	AU NOT\30
4095	0.42	0.012
4096	0.03	0.001
4007	0.01	0.001
4098	0.09	0.001
4099	0.03	0.001
4100	0.06	0.002
5580	0.02	0.001
5581	0.01	0.001
5592	0.29	0.008
_5583	0.19	0.006
34	0.01	0.001
5585	0.01	0.001
3096	\circ, \circ	0.001
5587	0.01	0.001
5500	0.02	0.001
3089	0.01	0.001
5590	0.01	0.001
5591	0.10	0.003
5592 5592	0.02	0.001
0593	0.04	0.001
II594	0.08	6,002
UESE	0.01	0.001
3976	0.70	0.000
5597	$\phi_* \phi_{\mathbb{Z}}$	0.001
3598	0.13	0.004

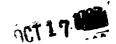
Sertified by

MIN ED SENEROPERS LA

MIN-EN LABS ICP REPORT


(ACT:F31) PAGE 1 OF 3 FILE NO: 7-1558R/P1+2

MIN-EN LAKS ICP REPORT


PROJECT NO: ENGINEER 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 172

(ACT:F31) PAGE 2 OF 3 FILE NO: 7-1558R/P1+2

MIN-EN LABS ICP REPORT

(ACT:F31) PAGE 3 DF 3 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7N 1T2 PROJECT NO: ENGINEER FILE NO: 7-15588/P1+2

Specialists in Mineral Environments 705 West 15th Street North Vancouver, B.C. Canada V7M 132

YONE: (604)980-5814 DR (604)988-4524

TELEX: VIA USA 7601067 UC

Analytical Report

Company: TOTAL ERICKSON Project: Attention:	RESOURCES	File:7-1578 Date:OCT 14/87 Type:ROCK ASSAY				
Date Samples Received Samples Submitted by						
•		•				
		Assay Samples				
Copies sent to: 1. TOTAL E 2. 3.	FRICKSON RESOURCES, NORTH VANCOUVER, I	3.C.				
Samples: Sieved to mes	sh Ground to mesh -15	50				
	d:X discarded:					
Methods of analysis:						
AU-FIRE ASSAY. 31 ELEMENT TRAC	CE ICP.					

Remarks

Specialists in Mineral Environments 705 West 15th Street North Vancouver, B.C. Canada V7M 1T2

PHONE: (604)980-5814 DR (604)988-4524

TELEX: VIA USA 7601067 UC

Certificate of ASSAY

Company: TOTAL ERICKSON RESOURCES Project: Attention:

File:7-1578/P1 Date:OCT 13/87 Type:ROCK ASSAY

He hereby certify the following results for samples submitted.

Sample	AU	AU	
Number	G/TONNE	OZ/TON	
5240	.37	0.011	
5241	9.35	0.273	
5242	2.10	0.061	
5243	.19	0.006	
5244	.06	0.002	
5245 5246 5247 5248 5249	.06 .12 .14 .19	0.002 0.004 0.004 0.006 0.005	
5250 (1)9 (2)0 E19101 E18102	.11 .02 .03 .02	0.003 0.001 0.001 0.001 0.001	
E18103	.56	0.016	
E18104	.21	0.006	
E18105	1.70	0.050	
/E18106	.36	0.011	
E18107	.02	0.001	
E18108	.16	0.005	
E18109	1.53	0.045	
E18110	.60	0.018	
E18111	.66	0.019	
E18112	.73	0.021	
E18113	1.55	0.045	
E18114	.20	0.006	
E18115	.14	0.004	
E18116	.02	0.001	
E18117	.20	0.006	

Certified by_

MIN-EN ABORATORIES LTD.

Specialists in Hineral Environments 705 West 15th Street North Vancouver, B.C. Canada V7M 1T2

PHONE: (604) 980-5814 DR (604) 988-4524

TELEX: VIA USA 7601067 UC

Certificate of ASSAY

Company: TOTAL ERICKSON RESOURCES

Project: Attention: File:7-1578/P2 Date:OCT 13/87 Type:ROCK ASSAY

We hereby certify the following results for samples submitted.

Sample	AU	AU	
Number	G/TONNE	OZ/TON	
VE18118	.06	0.002	
E18119	.27	0.008	
E18120	.01	0.001	
E18121	.01	0.001	
E18122	.01	0.001	
E18123	.03	0.001	
E1 812 4	.01	0.001	
E18125	.02	0.001	
E18126	.02	0.001	
E18127	.04	0.001	i e
	• VT	·····	
E18128	.39	0.011	•
3129 [']	.20	0.006	
3130	.08	0.002	
<u>E1</u> 8131	2.40	0.070	
E18132	. 09	0.003	
E18133	.02	0.001	
E18134	.02	0.001	
E18135	.12	0.004	
E18136	.02	0.001	
E18137	.10	0.003	

E18138	.03	0.001	
E18139	.02	0.001	
E18140	.02	0.001	
/ E18141	.02	0.001	•
E18142	.12	0.004	
ήE18143	.03	0.001	
E18144	.12	0.004	•
/E18145	.08	0.002	
E18146	. 17	0.005	
E18147	1.85	0.054	

Certified by_

MIN-EN LOBORATORIES LTD.

Specialists in Mineral Environments 705 West 15th Street North Vancouver, B.C. Canada V7M 1T2

PHONE: (604) 980-5814 OR (604) 988-4524

TELEX: VIA USA 7601067 UC

Certificate of ASSAY

Company: TOTAL ERICKSON Project: Attention:

File:7-1578/P3 Date:OCT 13/87 Type:ROCK ASSAY

We hereby certify the following results for samples submitted.

Sample Number	AU G/TONNE	AU OZ/TON
PRANTA CI	wz rwinia.	
E18148	.05	0.001
E18149 /	.04	0.001
E18150	.04	0.001
E18151	.02	0.001
E18152	.02	0.001
CICIA	• 5241	
E18153	.08	0.002
E18154	.06	0.002
E18155	.03	0.001
E18156	.02	0.001
E18157	.17	0.001
CIOIM	/	
E18158	.02	0.001
F'9159 /	.03	0.001
Silinana atil	# · · · · · · · · · · · · · · · · · · ·	W. W. W. W.
		,
der tim von fan der stop mer app von als die fan tit wij det yn von oat tijd om yn op, app ap fan tely tid fin de tim mit dit yn da		· • • • • • • • • · · · · · · · ·

Certified by__

MIN-EN LEGORATORIES LTD.

COMPANY: TOTAL ERICKSON RESOURCES PROJECT NO:

SIDIAT

20770

MIN-EN LABS ICP REPORT

(ACT:F31) PAGE 1 DF 3 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 FILE NO: 7-1578/P1+2

	ATTENTION:			, vo aco.	(604)9	80-5B14 OR	{604}98B-4		* TYPE	ROCK BEDO		DATE: OCT	
	(VALUES IN PPM)	AG	AL	AS	В		BE	B.		CD	CO	CU	FE
	5240	2.2	7300	992	Ь	63	1.3	_~~~~	1 9860	14.4	- 7	70	39270
	5241	9.5	2430	2308	1	34	1.0		1 2540	22.2	4	25	32070
	5242	3.2	2050	3251	1	30	1.0		1 1270	29.3	3	21	34080
•	5243	1.1	6590	473	7	92	1.9		2 2560	5.9	9	59	59120
	5244	.5	12440	340	9	65	1.3		1 6930	4.7	7	55	38940
_	₇ 5245	.8	5330	108	4	88	1.0		1 1680	2.2	7	59	31440
	5246	1.3	7550	113	9	102	1.4		1 2150	2.7	9	75	45100
	5247	1.0	3150	107	1	44	.8		1 1300	1.6	5	33	24320
	ົ 5248	1.8	3950	135	1	50	.8		1 1220	2.7	5	40	26150
	5249	2.8	2350	178	i	29	.4		i 540	2.3	3	23	12620
	5250	1.6	2570	200	1	30	.6		1 530	2.0	3	13	21020
1	√ 5599	1.5	16420	7	15	86	1.5		1 72030	2.1	2	29	47240
	L5600	1.5	18770	74	16	130	1.5		1 33480	2.0	. 7	51	42130
	E18101	.6	4060	302	1	55	1.0		1 2510	3.8	9	110	32130
	E18102	.6	6000	81	5	67	1.6	:	1 6170	2.9	9	91	51940
4.	E18103	2.3	10700	2223	12	88	1.6	******	1 20680	21.6	9	84	47220
/	E18104	6.7	11720	252	13	86	1.6		2 12290	7.2	ç	137	46850
· 7	E18105	6.8	6480	2920	9	69	2.0	1	1 12140	30.6	7	75	65300
7	E18106	5.i	9790	283	10	65	1.6		1 11440	4.9	7	81	49290
٠	E18107	1.4	12650	68	13	100	1.5		2 1 8220	3.0	8	101	46920
	E18108	1.1	14830	426 .	12	79	1.3		1 29330	5.1	8	89	39150
	E18109	7.6	11690	4702	10	65	1.2		1 21190	47.3	7	147	37910
	E19110	5.4	17230	1819	15	83	1.5	2	2 30700	18.0	8	71	44890
	E18111	4.2	16590	2282	14	97	1.5		2 50080	22.2	6	72	41870
	E18112	5.8	12520	2865	ii	75	1.3		1 21550	27.2	9	95	38770
	E18113	73.4	16170	2609	18	85	2.6		7 3190	32.2	11	791	84030
	E18114:	4.5	16080	214	15	96	1.7	;	1 8610	5.2	11	117	52460
	EH8115	1.8	18380	44	16	103	1.5	7	3 29230	2.3	9	78	42490
	E18116	1.1	3660	172	1	101	.7		1 1420	2.4	4	45	22310
	E18117	4.0	4040	262	2	112	.7		1 2120	3.4	6	52	23840
	E18418	7.3	2080	105	i	66	. 4	1	1 10910	2.5	2	12	11760
4.	E18119	2.7	6470	422	6	305	1.i	į	1 3380	4.9	6	54	33010
	E18120	.8	10270	66	12	374	1.6	1	10360	2.4	6	54	46480
i	E18121	1.3	5 510	39	5	148	1.3		1 65600	2.9	3	23	32570
4	E18122	.9	13520	51	15	208	1.5	j	32620	2.5	6	65	41110
Ď	E18123	1.4	11240	155	9		1.3		42250	2.8	7	61	39610
سد	E18124	2.0	18970	24	18	116	1.7		2 36170	1.9	9	79	50160
į	E18125	1.6	5140	67	3	74	1.0		13100	2.0	5	55	28980
Ĺ	E18126	1.2	654 0	52	5	236	.9		1 2690	.7	6	11	28400
	E18127 E18128	8	4320	80	<u></u>	180	<u></u>		2960	1.2	<u>4</u>	24	19260
1	`E18129	1.4	2370	350	1	84	.5		3550	3.6	3	41	16410
	E18130	1.7	2900	265 57	1	62	.7		15020	3.1	3	25	21160
	E18131	2.1	18440 18100	57 21	16 14	142 98	1.6 1.4		1 38820	2.5	9	93	46140
٠	E18132	1.7	15840	51	13	70 85			2 10740	2.2	8	194	40370
	E18133	1.6	14200	47	15	120	1.4			3.5	7	79	40310
į	E18134	1.5	16360	70 70	16	113	1.4			2.5 2.7	8	84	40960
1	E18135	1.6	12320	6B	12	123	1.4	2		3.5	8	91 54	42740
	E18136	1.1	24990	10	25	190	1.8		1 38750	2.3	6 10	54 99	39670 50730
	E18137	1.4	17230	25	20	214	1.8	7		3.9	9	109	52000
	E18138	1.2	18280	48	15	94	1.3	<u>-</u>		2.6	- 7	<u>107</u> 58	38 5 80
γ, -	E18139	1.2	19560	36	17	134	1.7	_	i 35370 i 25400	2.8	10	90	50900 50900
1	E1B140	.7	24650	14	25	253	1.7	i		2.0	10	90 9 2	30900 48560
المناف	E18141	1.1	23430	87	23	189	1.7		17530	2.0	10	72 94	50310
	E18142	1.1	20580	151	20	196	1.7	1	29790	3.2	10	6 8	48890
	E18143		24420	40	25	160	1. 7			3.2	<u>.</u>	83	51870
	E18144	1.3	22430	 85	21	132	1.5	-	1 48130	1.9	7	59	45B20
	E18145	1.1	24230	108	24	145	1.4		48450	2.7	é	77	40440
`		1.1	16610	154	15	121	1.2		1 16630	2.9	7	57	36410
	5.5.1.7	-						•			,	.	WW 14V

77500

	COMPANY: TOTAL	ERICKSON RESOUR	CES	TAC UCST			ICP REPORT	5 A 1174	440		(ACT:		2 OF 3
	PROJECT NO:			/05 WES1			VANCOUVER,			DOOK GEOG		E NO: 7-15	
	ATTENTION: (VALUES IN PPM	K	LI	M6	HN	/-0814 UK KO	(604) 988-4 NA	1024 NI	* 117E	ROCK GEOCH	SB	DATE: OCT 1	
	5240	2030	<u></u> -	4870	285	9	30	<u>RI</u> 19	450	116	16	SR 63	TH 1
	, 5241	1180	2	1690	68	41	10	- 10	250	28	43	22	1
	5242	970	1	1100	84	9	10	9	180	17	47	11	1
	5243	2970	2	2450	524	1	30	19	470	24	15	9	1
	5244	2260	13	10300	321	i	20	22	570	23	46	60	1
	5245	2200		2050	147	<u>-</u> -	20	21	370	17	27	24	· <u>i</u> -
	5246	2850	6	2910	208	2	30	24	480	19	40	23	1
	5247	1340	3	1890	200	5	10	15	300	14	30	15	1
	5248	1830	3	2050	155	3	10	15	280	16	37	16	1
	5249	1100	1	680	75	i	10	12	130	10	95	8	1
	5250	1330	1	350	23	37	10	9	150	17	17	8	1
	55 9 9	1410	15	16500	893	2	10	1	540	35	13	264	1
	5600	3090	17	12090	591	8	30	15	690	35	11	89	i
	E18101	1670	2	1960	416	1	10	32	490	21	33	22	1
	E18102	1480	7	8560	403	i	- 30	30	510	29	35	34	1
	E18103	2470	12	13600	505	i	40	25	540	55	40	44	i
	E18104	2610	12	11430	445	i	40	26	460	382	86	33	1
	E18105	2010	6	7970	360	3	30	22	550	715	153	30	1
	E18106	2510	9	10140	667	1	40	18	540	73	64	33	i
	E18107	3000	11	12450	451	<u> </u>	50	28	580	37	25	38	<u>i</u>
	E18108	2890	15	9230	493	5	30	26	620	37	17	179	1
	E18109	2270	12	7940	369	2	30	19	410	667	57	45	1
	E18110	2800	21	11770	477	i	30	23	500	46	24	77	1
	E18111	2220	18	13960	670	1	20	14	390	48	19	143	i
	E18112	2400	13	8810	412		30	24	470	39	22	74	<u>i</u>
	E18113	2980	17	10200	607	i	30	29	670	3180	71	25	1
	E18114-	3470	14	7850	390	2	40	36	620	71	39	30	1
	E18115	3780	24	11730	336	i	600	23	640	36	13	98	1
	E18116	1450	3	1320	111	7	20	13	190	20	25	46	1
	E18117	1820	1	1200	30		20	15	280	18	59	<u>5i</u>	<u>1</u> _
	E18118	790	2	5720	120	i	30	5	110	13	28	58	1
	E18119	2160	á	3790	120	2	50	18	390	19	62	254	1
	E18120 E18121	3180 1800	9 5	8850 19010	352 1164	1	80	16 7	45 0	24	15	211	1
	E18122	3 0 00	14	12860	669	3	40 70	14	240 49 0	32 25	4 3	179	1
	E18123	2640	14	7630	625	<u>3</u>		<u>14</u> 21	500	<u>23</u>	<u>-3</u> 11	158 244	<u>1</u>
	E18124	3290	21	11070	692	1	80	21 26	520	27	11	201	1
	E18125	1840	3	5840	272	18	40	18	400	21	22	57	1
	E18126	2260	5	3670	114	14	40	22	420	20	16	175	1
	E18127	1600	4	3030	91	23	20	15	240	15	11	144	1
	E18128	1130	1	2480	46	23	20	10	140	14	16	40	i
	E18129	1200	1	7840	232	7	20	9	160	19	31	71	1
	E18130	2 90 0	22	12750	762	3	90	26	570	31	8	152	1
	E18131	2490	24	12090	363	1	110	24	450	24	6	47	1
	E18132	2140	21	12280	870	5	50	20	610	28	7	156	i
	E18133	2620	16	10780	1256	2	50	22	460	33	10	244	1
	E18134	2060	16	12760	802	2	60	22	540	32	8	193	i
	E18135	2480	11	15040	1197	2	50	17	880	36	12	277	i
	E18136	4540	25	15630	775	1	100	22	630	22	10	120	i
	E18137	3340	13	13210	905	1	100	26	670	34	12	195	i
	E18138	1780	20	14830	726	i	90	18	500	28	2	231	1
	E18139	2490	23	13330	503	2	130	29	620	29	12	114	1
	E18140	3690	23	13960	452	1	80	28	710	20	3	92	1
W.	FIRIAL	7700	75	12410	540	₹	40	70	400	20	L	05	1

E18141

E18142

E18143

E18144

E18145

E18146

E10187

23

15020

605

<u>2</u>

i

í۵

20

262

95

COMPANY: TOTAL ERICKSON RESOURCES PROJECT NO:

510147

AC O

MIN-EN LABS ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

(ACT:F31) PAGE 3 DF 3

FILE NO: 7-1578/P1+2

PRUJECI NU:		703 WEST		II., NUKIH VANCUUV		
ATTENTION:				80-5814 DR (604)9		* TYPE ROCK GEOCHEM * DATE: DCT 13, 1987
	<u> </u>	ZN	6A		W CR	
	26.4	650	1	. 1	2 66	
 	1 11.9	75	1	1	1 97	
5242	9.4	114	i	i	1 118	
5243	1 18.7	163	1	1	1 53	
5244	38.8	9 B	1	. 1	2 75	
5245	22.3	97	1		1 90	
	1 24.9	125	1	1	1 57	
5247	1 13.3	64	i	· ·	1 111	
5248	1 12.9	78	1	_	1 101	
5249	8.0	37	1	· -	1 166	
	1 15.5	<u>57</u>	<u>†</u>		1 136	***************************************
			-	-		
	4 12.4	153	2		2 30	
	30.1	113	1		2 19	
	1 16.5	116	1		1 58	
	24.2	117	1		i 54	
	39.7	151	i		2 45	
	2 28.6	647	1		2 32	
E1B105	3 22.4	568	2	2	2 50	
E18106	1 31.2	187	1	1	2 52	
E18107	31.7	117	i	i	2 28	
	3 40.3	149	<u>-</u>		2 41	
	28.1	498	1		2 68	
E18110		125	1		2 41	
	5 40.9	269	2		2 40	
E18112	27.0	127	1		2 46	
			<u>:</u> 2			***************************************
		1300			3 68	
	2 41.1	300	1		2 70	
	54.5	157	1		2 59	
	1 13.B	64	1		1 105	
	7.9	80	1		1 81	
	5.4	22	1	i	126	
	19.7	71	1	1	1 99	
E18120	36.5	100	i	1	2 82	
E18121	2 23.1	41	3	5 1	1 54	
E1B122	37.9	89	3	2	2 67	
E1B123	29.6	92	1	í	2 61	
E18124	3 51.5	125	1		2 48	
E18125	22.0	81	1	i	i 83	
	2 28.6	66	1	. 1	1 102	
E18127	18.5	47	i		1 109	
	10.9	30	<u>:</u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1 129	**************************************
	3 10.6	31	1	•	1 112	
E18130		131	1		2 39	
E18131			2			
	53.6	114				
	49.7	<u>i7i</u>	<u>1</u>		2 37	
	34.1	116	i		2 33	
	35.8	126	4		2 40	
E18135		149	4		2 32	
	7 48.3	132	4		3 29	
	55.9	294	4		2 33	
E1813B 4	44.6	80	3	2	2 31	
E18139	50.5	137	1		2 54	
	52.5	133	1		3 57	
	47.8	140	1		3 58	
	44.0	131	3		3 38 2 38	
E18143		125	<u>2</u> 2		3 53	
	2 44. 6	80	2			
					2 66	
		88 77	1		2 43	
E18146	1 33.3	73 oo	1	<u>i</u>	2 112	
- 12 1 H 7	y ac ⊃	00	,	7	. / /	

MIN-EN LABS ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7H 1T2

(ACT:F31) PAGE 1 OF 3

PROJECT NO: FILE NO: 7-1578/P3 ATTENTION: (604)980-5814 OR (604)988-4524 * TYPE ROCK GEOCHEN * DATE: OCT 13, 1987 (VALUES IN PPM) AG AL BE BI CA BA CD CO CU AS ₿ FE .7 17 2 147 1.9 1.9 E18148 23990 55 25240 105 11 55120 E18149 1.0 23930 29 18 1.8 2 2.6 9 141 37070 85 51960 E18150 1.2 23750 40 17 180 1.8 3 35530 2.5 10 87 53570 E18151 .8 22570 16 171 i 33880 1.5 8 11 1.6 81 47240 E18152 1.1 18660 26 13 391 1.7 1 59520 2.3 8 76 48850 5 E18153 1.4 12940 38 117 1.4 1 14800 2.5 9 67 41960 1.2 3 E18154 3890 31 1 59 .5 1 13950 1.0 11 13840 E18155 1.3 21500 63 12 92 1.7 2 58880 2.5 9 94 50080 E1815& 2.3 22000 58 13 127 1.8 i 24670 2.7 10 139 52090 E18157 E18158/ 1.9 231 123 25760 16 106940 5.4 1.6 1 7 78 47260 ī B 1.8 17990 31 9 121 1.4 16980 2.1 76 41680 E18159 2 1.3 30580 4 20 131 1.7 64690 1.5 10 91 46240

MIN-EN LABS ICP REPORT

(ACT:F31) PAGE 2 OF 3

PROJECT NO: 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7N 1T2 FILE NO: 7-1578/P3 * TYPE ROCK GEOCHEM * (604)980-5814 DR (604)988-4524 ATTENTION: DATE: OCT 13, 1987 SB (VALUES IN PPH) ĹĪ MG MN NA P TH MO NI PB SR E18148 ī E18149 E18150 E18151 E18152 í E18153 E18154 E18155 E18154 23 <u>2</u> 1 E18157 E18158 35B E18159

MIN-EN LABS ICP REPORT

UTH-EN THRE ITS MELNUI

(ACT:F31) PAGE 3 OF 3

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 FILE NO: 7-1578/P3 PROJECT NO: ATTENTION: (604)980-5814 OR (604)988-4524 * TYPE ROCK GEOCHEN * DATE: DCT 13, 1987 (VALUES IN PPM) V GA Ū ZN SN CR 2 2 2 3 E18148 59.9 142 52 5 2 2 2 56 E18149 41.7 119 E18150 2 148 3 3 3 47 46.9 2 2 2 52 E18151 46.2 131 E18152 5 47.7 126 2 2 46 2 2 2 59.4 123 62 E18153 ī E18154 2 27.9 35 1 i 1 171 50.1 2 2 3 38 E18155 4 158 E18156 2 60.7 147 1 3 2 74 37 3 E18157 97.7 197 2 2 2 E18158 76.2 119 141 2 2 3 37 E18159 i 61.2 113

Specialists in Mineral Environments

705 West 15th Street North Vancouver, B.C. Canada V7M 1T2

PHONE: (604) 980-5814 OR (604) 986-4524

TELEX: VIA USA 7601067 UC

Analytical Report

Company: TOTAL ERICKSON REBOURCES Project: ENGINEER Attention: H. SMIT

File:7-1672 Date: OCT 26/87 Type:ROCK ASSAY

•	oles Received Submitted by		
Report or		and constant and an analysis of the contract o	n Samples
	E 10 to to to to to to to to to to to to to	, , , , , , , , , , , , , , , , , , ,	Samples
Dopies se		RICKSON RESOURCES, WORTH VANCOUVER, B.C.	
Samples:	Sleved to med	h .//	
Prepared		nissulesi Xvasa di adardadi assenta assessa di adardadi. Carelesi Xvasa di adardadi perbesa di adara di alaman.	
Methods o	•	AU-FIRE 31 FIENEWO TRACE ICE	

Remarks

Specialists in Mineral Environments 705 West 15th Street North Vancouver, B.C. Canada V7# 172

E:(604)980-5814 DR (604)988-4524

TELEX: VIA USA 7601067 UC

<u>Certificate of ASSAY</u>

Company:TOTAL ERICKSON RESOURCES Project:ENGINEER Attention:H.SMIT File:7-1672/P1 Date:OCT 26/87 Type:ROCK ASSAY

We hereby certify the following results for samples submitted.

Sample	AU	AU	
Number	G/TONNE	OZ/TON	
5386 5387 5388 5389 5390	.06 .04 .02 .05	0.002 0.001 0.001 0.001 0.001	VA BU PROMU MESES
5371 5372 5373 E18160 E18161	.03 1.62 1.37 .10 .04	0.001 0.047 = 0.040 = 0.003 0.001) Description of the second of
0.8162 E18163 E18164 E19165 E18166	.05 .04 .04 .07	0.001 0.002 0.001 0.002 0.009	
E18167	.06	0.002	
E18168	.02	0.001	
E18169	.01	0.001	
E18170	.01	0.001	
E18171	.04	0.001	
E18172	.02	0.001	
E18175	.03	0.001	
E18174	.02	0.001	
E18175	.01	0.001	
E18176	.02	0.001	
E18177	.01	0.001	
- E18178	.02	0.001	
- E18179	.01	0.001	
- E18180	.04	0.001	

Certified by

MIN-EN LOSORATORIES LTD.

COMPANY: TOTAL ERICKSON RESOURCES
PROJECT ND: ENGINEER

NIN-EN LABS ICP REPORT
TOTAL ERICKSON RESOURCES
PROJECT ND: ENGINEER

NIN-EN LABS ICP REPORT
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURCES
TOTAL ERICKSON RESOURC

	PROJECT ND: ENGINEER	}		705 WEST	15TH ST.	, NORTH V	ANCOUVER,	B.C. V7M	1T2			FILE NO	3: 7-1 <i>6</i> 72
	ATTENTION: H.SMIT				(604) 980	-5814 OR	(604)988-4	524	# TYPE	ROCK SEOC	HEM #	DATE: OCT	26, 1987
	(VALUES IN PPM)	AG	AL	AS	Ð	BA	BE	BI	CA	CD	CO	CU	FE
	53 86	1.6	4620	85	1	37	.4	1	820	1.3	2	75	13500
	53 87	1.3	4920	67	i	37	.4	i	620	.8	1	42	13810
j.	53 88	2.5	5200	61	1	35	.5	1	270	.3	1	115	14590
	53 89	. 7	5630	124	i	52	.5	Ź	710	1.2	1	56	13660
	53 90	.3	620	15	1	8	.2	3	590	. 1	1	46	5120
	53 91	.3	4360	27	1	45	. 4	2	690	.8	2	58	11690
	53 92	25.2	2670	24	1	352	. 4	7	9540	18.0	2	369	10940
	53 93	2.4	5690	3637	1	32	. É	i	31850	32.3	2	19	16380
	E181 60	1.0	22050	61	19	52	.8	Ė	47790	1.4	9	30	18090
	E181 61	.5	44930	3	30	19	.9	1	118610	. 1	6	24	20550
	E181 62	.8	17490	452	14	80	1.4	1	81230	3.6	5	29	35650
:	E181 63	1.8	4550	316	i	42	.5	i	25580	3.6	2	24	11930
í	E181 64	.6	9690	59	6	75	1.0	1	7990	2.1	6	63	27720
	E181 65	.7	6380	152	1	52	.7	í	4940	2.1	4	56	18690
	E181 66	3.4	13020	1150	8	47	1.2	ii	3200	11.0	7	224	32936
_	E181 67	. 4	7770	96	4	23	. 9	1	6770	2.0	3	63	24640
	UZ181 48	.8	28360	4	20	451	1.2	2	46520	. 6	7	76	34500
	· Æ181 69	1.1	38420	6	26	845	1.2	2	75040	•7	9	6 5	31270
	£181 70	1.0	27150	7	18	80	1.5	2	48570	1.8	Ŷ	50	43470
	- E181 71	1.0	18710	74	11	49	1.0	i	122610	.2	5	37	24220
1	E181 72	1.4	29180	42	22	37	1.6	1	76380	3.2	11	49	47550
- 1	E181 73	.9	21280	125	12	23	1.1	2	122310	3.1	7	45	32450
i	E181 74	.9	24940	87	15	24	1.2	2	96500	3.0	7	43	37480
ĺ	E181 75	.9	45000	14	33	94	2.3	2	22600	16.6	9	81	69220
1	E181 76 ·	.6	36770	37	56	117	1.9	2	11040	4.5	11	94	56720
-	_E181_77	.6	34770	41	27	103	2.0	1	20040	3.8	10	70	60430
	E191 78	1.0	28690	65	27	118	2.1	2	53970	2.3	11	91	51330
	E181 79	1.6	3240	42	1	26	Ţ	1	212220	.3	2	Ą	10840
	∠E181 90	1,1	12170	367	6	45	1.3	1	77640	5.0	5	56	38540

COMPANY: TOTAL ERICKSON RESOURCES MIN-EN LABS ICP REPORT

PROJECT NO: ENGINEER 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 FILE NO: 7-1672 ATTENTION: H.SMIT (604)980-5814 DR (604)988-4524 * TYPE ROCK BEOCHEM * DATE: DCT 26, 1987 (VALUES IN PPM) ĦG MN MO P LI ΝA NI PB SB SR TH 53 B6 53 87 Ą 53 88 53 89 ĺ 53 90 53 91 $\frac{3}{3}$ 53 92 į 53 93 Ь E181 60 E181 61 **B**220 E181 62 E181 63 ą E181 64 ĺ E181 65 ĺ E181 66 E181 67 ī E181 98 E181 49 E181 70 E181 71 i E191 72 E181 73 E191 74 i E181 75 E181 76 .<u>i</u> 1 E181 77 E181 78 E181 79 E181 80

(ACT:F31) PAGE 2 OF 3

PROJECT NO: ENGINEER

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

MIN-EN LABS ICP REPORT (ACT:F31) PAGE 3 OF 3 FILE NO: 7-1672

ATTENTION: H.SMIT				(604) 980-	5814 OR	(604)988	-4524	* TYPE ROCK GEOCHEM * DATE: OCT 26, 1987
(VALUES IN PPM)	Ü	٧	ZN	6A	SN	H	CR	
53 86	1	32.7	44	i	i	1	154	
53 87	i	33.1	37	1	1	i	193	
, 53 88	1	46.2	33	1	i	1	176	
53 89	1	52.9	29	i	i	1	227	
53 90	1	6.5	11	i	1	1	235	
53 91	1	39.9	73	1	1	i	256	
53 92	1	5.3	508	1	1	10	142	
53 93	3	51.2	50	1	1	1	122	
E181 60	2	49.5	84	1	i	2	62	
E181 61	4	55.0	49	1	2	J	44	
E181 62	i	21.4	54	1	2	2	31	
E181 <i>6</i> 3	1	74.1	37	1	i	1	166	
E181 64	i	58.0	53	İ	1	i	175	
E181 45	i	52.6	40	1	į	1	223	
E181 66	<u> </u>	92.3	59	i	2	2	151	
E181 67	1	81.5	46	1	i	i	166	
E181 48	5	52.2	57	1	1	3	92	
E181 69	3	63.6	117	1	3	2	66	
E181 70	í	53.8	71	2	i	3	26	
E181 71	7	26.3	78	2	2	2	3	
E181 72	1	110.3	119	2	1	3	74	
E181 73	ý	53.2	203	2	i	2	17	
E181 74	4	50.6	134	i	2	2	19	
E181 75	ĺ	90.4	1304	3	4	5	66	
E181 76	1	89.6	257	1	4	4	72	
E181 77	1	64.7	345	Ţ	Ą	4	53	
E181 78	2	62.5	132	2	2	3	25	
E181 79	3	13.1	24	1	Í	1	26	
E181 80	1	24.0	107	2	2	2	45	

Specialists in Mineral Environments

705 West 15th Street North Vancouver, B.C. Canada V7M 1T2

NE: (604)980-5814 BR (604)988-4524

TELEX: VIA USA 7601067 UC

Analytical Report

Company: TOTAL	ERICKSON	RESOURCES
Project:		
Attention:		

File:7-1708
Date:OCT 28/87
Type:ROCK ASSAY

Date Samples Received :OCT Samples Submitted by :	7 22/87	
	Seochem Sa	mples
		mples
Copies sent to: 1. TOTAL ERICK 2. 3.	GON RESOURCES. NORTH VANCOUVER, B.C.	٠.
Samples: Sieved to mesh	Ground to mesh150	
	X discarded:	
Methods of analysis:		
31 ELEMENT TRACE TO AU - FIRE ASSAY.	op.	

Remarks

MOV 3 987

Specialists in Mineral Environments 705 West 15th Street North Vancouver, B.C. Canada V7M 172

THONE: (604) 980-5814 DR (604) 988-4524

TELEX: VIA USA 7601067 UC

Certificate of ASSAY

Company: TOTAL ERICKSON RESOURCES Project: Attention: File:7-1708/P1 Date:OCT 28/87 Type:ROCK ASSAY

<u>We hereby certify</u> the following results for samples submitted.

Sample	AU	AU	
Number	G/TONNE	OZ/TON	
E 18181	.01	0.001	
E 18182	.01	0.001	
E 18183	.01	0.001	
E 18184	.02	0.001	
E 18185	.01	0.001	
E 18186	.07	0.002	
E 18187	.01	0.001	
E 18188	.10	0.003	
E 18189	.34	0.010	
E 18170	.20	0.006	
E 18191	.24	0.007	
- 8192	.31	0.009	
- 18193	.15	0.004	
E 18194	.17	0.005	
E 18195	.49	C.014	
E 18196 E 18197 E 18198 E 18199 E 18200	.22 .25 .42 .29	0.006 0.007 0.018 0.008 0.003	
E 18201 E 18202 E 18203 E 18204 E 18205	.41 .26 .37 .75	0.012 0.008 0.011 0.022 0.013	
E 18206	.63	0.018	
E 18207	.41	0.012	
E 18208	.23	0.007	
E 18209	.45	0.013	
E 18210	.62	0.018	

Certified by

MIN-EN LAWRATORIES LTD.

Specialists in Mineral Environments 705 Nest 15th Street North Vancouver, B.C. Canada V7M 1T2

PHONE: (604) 980-5814 OR (604) 988-4524

TELEX: VIA USA 7601067 UC

Certificate of ASSAY

Company: TOTAL ERICKSON RESOURCES

Project: Attention: File:7-1708/P2 Date:OCT 28/87 Type:ROCK ASSAY

We hereby certify the following results for samples submitted.

Sample Number	AU G/TONNE	AU OZ/TON	
E 18211 E 18212 E 18213 _E 18214 E 18215	.08 .03 .12 .04 .06	0.002 0.001 0.004 0.001 0.002	
E 18216 E 18217 E 18218 E 18219 E 18220		0.001 0.002 0.188 0.005 0.004	
E 18221 - '8222' - 18223 - E 18224 - E 18225	.17 .23 .01 .18	0.005 0.007 0.001 0.005 0.005	
E 18226 E 18227 E 18228 E 18227 E 18230	.03 .19 .59 .04 .01	0.001 0.006 0.017 0.001 0.001	
E 18231 E 18232 E 18233 E 18234 E 18235	.01 .07 .21 .01	0.001 0.002 0.004 0.001 0.007	
E 1 82 36	.03	0.002	

Certified by_

MIN-EN ABORATORIES LTD.

COMPANY: TOTAL ERICKSON RESOURCES

MIN-EN LABS ICP REPORT

(ACT:F31) PAGE 1 OF 3

PROJECT NO: 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 172

FILE NO: 7-1708

	PROJECT NO:	ENILKOUM NE	Lauunuca	705 WEST			JE NGEUN! NNCOHVER. 1				(HL)		: 7-1708
	ATTENTION:			TVG MEDI			(604) 798-4:			ROCK GEOC	HFM ±		
	VALUES IN PP	1) AG	AL	AS	В	BA	BE	BI	CA	CD	CO	CU	FE
	E 18181	1.3	17640	12	19	125	1,4	1	80140	8	<u>-</u> -	<u>-</u> 58	42130
	E 18182	1.4	21260	16	23	196	1.6	1	97010	2.0	8	5 4	48890
	E 18183	1.7	28090	9	24	175	2.0	2	109730	1.8	6	54	60530
	E 18184	1.4	31230	1	32	148	1.6	1	77950	. 9	8	79	47430
	E 18185	1.2	19800	60	23	130	2.2	2	30480	2.7	8	71	60650
	E 18186	1.2	18010	120	19	97	1.3	-	12470	.9	<u>-</u> -	<u>: :</u>	36450
	E 18187	1.2	13550	36	14	118	1.5	1	25070	3.5	8	67	43790
	E 18188	1.3	18720	69	19	118	1.6	1	25160	2.2	9	85	48050
- [E 18189	2.0	11580	261	10	101	1.2	i	30370	3.2	8	64	36150
- [E 18190	1.8	12020	131	11	95	1.5	1	10870	2.7	9	78	43880
Y	E 18191	2.4	5050	22 9	1	44	 ,7	<u>-</u>	6780	2,7	3	27	20870
-	E 18192	2.3	17990	211	17	141	1.5	1	3030	3.6	12	111	46490
•	E 18193	2.2	13520	52	16	107	1.9	1	9210	1.1	7	72	64250
	E 19194	3.4	20950	96	21	138	1.9	2	3430	2.1	11	88	57790
	E 18195	4.3	9300	306	8	64	1.1	1	1870	3.6	5	42	33390
	E 18196	3,1	10290	176	11	82	1.3	<u> </u>	2900	2.4	<u>-</u> - 8	75	41480
	E <u>1</u> 8197	2.1	12680	154	12	78	1.0	-	3130	1.3	9	66	29350
`	E 18198	1.3	11870	103	12	102	2.1	†	3460	2.1	5	30	72250
	E 18199	1.2	7250	307	5	74	1.2	\$	2240	3.3	. 8	74	40690
	E 18200	127.8	6030	107	3	137	.8	1	40050	.9	5	42	25370
	E 18201	5.8	7310	336	<u>-</u>	79	1.2	-	1350	2,9	<u>-</u> -	 70	41620
	E 18202	<u> </u>	9460	225	9	96	1.2	1	2180	2.5	8	75	40000
-	E 18203	1.4	7750	500	7	97	1.5	1	2570	5.5	9	69	50640
	E 18204	2.0	10720	1214	11	122	1.6	1	6630	10.7	10	97	49010
	E 18205	2.2	15290	462	12	102	. 8	1	5 9 00	4.3	5	60	22610
	E 18206	1.9	14010	784	<u></u> 12	100	1.5	-	4530	7,6	<u>-</u> -		47460
	E 18207	3.3	11000	534	9	83	1.3	1	7630	6.7	7	60	38080
,	E 18208	1.6	11340	365	9	169	1.1	•	23230	4,9	3	38	34410
1	E 18209	1.6	7330	534	5	72	1,1	1	5150	5.0	7	59	33250
	E 18210	1.5	81 9 0	578	7	81	1.2	1	2110	5.9	7	75	37650
	E 18211	.6	3410	<u>4</u> 2	·	43	 .3	<u>-</u>	<u>5511</u>	1.1	<u>-</u> 2	13	6830
	E 18212	, <u>A</u>	2950	32	1	44	.3	1	6630	. 8	1	4	5740
	E 18213	1.7	8000	126	6	153	,9	1	12350	3.1	5	10	24530
	E 18214	.5	3910	30	1	65	, 4	1	1260	. 2	3	5	11680
	E 10215	1.6	11380	247	11	127		1	2400	3.5	9	69	46040
	E 18216	1.6	12340	249	12	110	1.5	<u>-</u>	2140	2.1	- -	<u> 55</u>	46720
	E 18217	1.2	5210	148	2	46	.7	1	890	. 9	5	ĺŝ	31700
	E 18218	1.4	8920	268	8	:03	1.3	1	1530	3,0	9	77	39590
	E 18219	. 6	3080	217	1	38	.7	1	860	1.9	Ş	32	20680
	E 18220	1.2	8150	387	6	80	1.0	1	1410	3.2	7	57	31860
	E 18221	.7	4510	429	1	38	, A	1	610	3.2	3	73	13330
	E 18222	2.5	7420	455	5	60	t + t	1	1200	3.6	6	47	35580
	E 18223	.7	1670	75	1	17	.3	2 3.	630	.5	2	7	8380
_	Ε 18224	. 8	5690	252	F-3	58	.8	1	3160	2.6	5	20	25330
	E 18225	1.2	7610	325	6	65	1.1	1	6650	3.5	6	24	31620
	E 18726	1.6	13160	256	15	143	1,8		9530	3. 7	10	98	53420
	E 18227	1.1	12850	198	13	128	1.0)	6080	2.8	7	£ 1	294 30
	E 1 8 228	3.2	19460	522	20	272	1.6	1	1 (1941)	5.6	8	72	4 ₀ 250
	E 18229	.5	7170	144	5	63	.6	1	1040	1.3	Ş	£;	17339
	E 18230	.6	1870	5ò	ĺ			2	740	1.0	2	10	60:00
	E 18231	.9	3350	46	1	25	.7]	i610	,5	4	17	3279
	E 18232	1.7	5110	267	3	138	1.3	1	39900	5.4	<u>u</u>	45	31100
~	E 18722	1.3	14840	1149	14	106	1.2	4	10440	10.3	5	£ <u>£</u>	32340
J	€ 18234		20150	35	19	204	1.6	1	21670	1.8	3	75	43760
-	E 18235	1.5	;7 9 00	159	14	£4	1.2		64470	5.5	5	10	33170
,	E 18236	1 4	20060	745	71	:50	1.5	7	41660	4.1	··		37800
												-	

TENTION: VALUES IN PPM) 18181 18182	К			(604) 980-	5014 NO :	LIALIDAN SI					FILE NO:	
19181	K						524	¥ (YPE)	ROCK GEOCI	HEM #	DATE: OCT 2	8, 198
		LI_	M6	MN	MO	NA	NI.	Р	PB	SB	SR	TH
19197	2900	27	10050	923	2	50	18	350	30	18	195	1
. 14142	2710	37	12500	1167	1	120	18	520	33	6	214	1
18183	1620	59	22330	1184	1	50	8	660	34	4	208	1
18184	5090	39	15030	613	1	220	17	540	23	1	130	1
18185	4830	19	16450	505	1	60	18	530	26	7	72	1
19186	5070	13	9900	363	1	50	21	480	14	16	39	<u>-</u>
18187	4210	10	15200	708	1	80	22	59 0	28	12	81	1
18188	5180	12	9890	660	1	50	24	630	24	17	73	1
18189	3530	11	8140	615	1	40	25	5 20	26	33	79	1
18170	4100	6	8410	476	1	50	27	610	27	32	60	1
18191	1930	<u>-</u> 2	4090	153	<u>-</u>	<u>3</u> 0	<u></u> /	190	 12	40	37 37	
18192	6090	8	5 75 0	291	2	40	33	590	19	53	37 124	1
18193	4440	9	5750 5790	688	4							1
18174	7370	10		338	-	40 / A	15	520	2 3	38	22	į.
			6470		2	60 70	28	680	16	53	21	1
. <u>18195</u> - 1 868/	3060	<u>-</u>	3350	242		<u>30</u>	13	<u>360</u>	<u> 17</u>	<u>62</u> -	18	
18196	3 7 90	<u> </u>	4020	249	1	30	24	490	21	50	18	1
18197	3470	7	2630	386	1	40	21	630	13	29	10	1
18198	3960	8	6260	1258	2	4 0	5	760	20	22	39	1
18199	2620	5	1840	208	1	30	26	5 50	15	19	25	Ţ
18200	1870	3	1100	216	1	30	24	200	16	157	21	1
18201	2650	2	870	30	1	40	21	280	16	99	14	÷
18702	3310	8	3230	321	ĺ	30	33	470	17	32	19	<u> </u>
18203	3270	4	3040	228	1	40	29	490	19	26	12	1
18204	4210	5	4670	303	1	50	34	540	27	38	23	į
18205	4190	! 1	7270	195	<u>.</u>	70	22	270	14	55	21	1
18206	5970	2	3450	46	2	50	<u>-</u> 27	590	20	<u>21</u>	26	<u>-</u>
18207	4060	5	6450	99	4	30	26	400	21	37	31	†
1 8 208	2170	14	8900	268	1	30	ç	3720	18	18	217	1
18209	2850	4	4830	96	6	30	19	510	20	27	35	1
18210	3670	3	2770	69	4	30	25	450	20	32	16	i i
18211	1350	<u>-</u> 3	3800	67	:	<u></u> 20		140	<u></u> 14	<u>24</u> - 8	<u></u> 37	
18212	1080	3	5150	57	<u>.</u> Ç	60		90				1
18213	2 9 30	4	8730	138	7		7		15	4	39	1
18214					ن • ت	30	17	250 430	22	16	126	1
	1640	2	1630	54	17	20	10	130	13	7	34	1
18215	4630	<u>5</u>	4330	132	30	40	<u>28</u>	510	22	23	36	<u>_</u>
18216	4540	12	3710	324	4	40	24	560	22	20	121	1
18217	2340	2	1480	160	42	20	18	220	20	12	17	ž
18218	3740	Ė,	2320	131	Zi	40	31	4 20	21	20	27	į
18219	1610	1	1060	72 • ·	4	20	15	220	13	13	10	1
18220	3380	<u>+</u>	1900	<u>91</u>	<u>_</u>	20	17	380	18	33	43	i
18221	1930	1	690	39	3	20	10	170	8	28	11	7
18222	3000	2	1790	63	Ĺ	30	21	320	17	41	29	1
18223	810	1	560	29	21	10	7	90	13	7	4	1
18224	2470	3	2690	90	9	20	15	280	18	16	ίδ	1
18225	3150	4	4260	217	21	4()	20	620	20	: b	24	1
18726	4920	9	8030	505	!	59	27	510	25	20	36	·
18227	4670	11	5480	211	3	50	22	470	17	13	66	1
18228	4930	17	9220	405	frank	60	18	530	23	56	36	1
18229	2420	5	2130	114	4	20	18	220	13	18	45	
19230	690	2	550	ði	<u>-</u> 1	30	9	60	8	9	17	:
18231	1730	<u>-</u>	840		<u>-</u>	20	12	170	<u>-</u> 10	<u>-</u> 7	<u>1/</u> 19	
1823?	2300	2	19640	274	2	30	17	410				1
18233	2300 3310	17	9080						30 an	14	116	1
18234				356 447	28	120	22 20	520 770	28	18	43	-
	5480	17	11570	467	2	(0)	29	640	36	2	45	1
16235	2710 5170	<u>26</u> 16	12710 10730	1204 888	4 9	70 169	23 32	400 11 9 0	24 33	<u>13</u> 3	303	1

PROJECT NO:

MIN-EN LABS ICP REPORT (ACT:F31) PAGE 3 OF 3 703 WEST 15TH ST., NORTH VANCOUVER. B.C. V7M 1T2 FILE NO: 7-1708

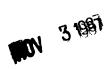
Specialists in Mineral Environments

705 West 15th Street North Vancouver, B.C. Canada V7M 132

NE: (604)980-5814 BR (604)988-4524

TELEX: VIA USA 7601067 UC

Analytical Report


Company: TOTAL ERICKSON RESOURCES Project: ENGINEER Attention: HANS SMIT

AU-FIRE ASSAY.

File: 7-1740 Date: OCT 29/87 Type:ROCK ASSAY

Date Samples Received : OCT 26/87 Samples Submitted by : HANS SMIT	
Report on	
Copies sent to: 1. TOTAL ERICKSON RESOURCES, NORTH VANCOUVER, B.C. 2. 3.	
Samples: Sieved to mesh Bround to mesh150	
repared samples stored:X discarded:	
Methods of analysis:	
RI FLEMENT TRACE TOP.	

Remarks

Specialists in Hineral Environments 705 West 15th Street North Vancouver, B.C. Canada V7M 172

TELEX: VIA USA 7601067 UC

Certificate of ASSAY

Company: TOTAL ERICKSON RESOURCES

Project: ENGINEER Attention: HANS SMIT File:7-1740/P1 Date:OCT 29/87 Type:ROCK ASSAY

We hereby certify the following results for samples submitted.

Sample	AU	AU
Mustber	G/TONNE	OZ/TON
E18237	,04	0,001
E18238	.02	0.001
E18239	.03	0.001
E18240	. 20	0.006
E18241	.10	0.003
E18242	.40	0.012
TE18243	.24	0.007
C18244	. 18	0.005
E18245	.05	0.001
E18346	• ০ ব	0.001
8247	, O2	0.001
E18248	.01	0.001
E18249	, 20	0.006
E18250	.06	0.002
E18251	, Oi	0.001
E 18252	,05	0.001
F18253	, O4	0.001
C18254	. 03	0.001
E18255	.02	0.001
E18256	1 O L	0.001
£18257	.05	0.001
E18258	.oi	0.001
E18259	, Q <u>1</u>	0.001
E38260	.02	0.001
H18263	.01	0.001
E18262	1.52	0.044
F18263	.01	0.001
_E48264	. 20	0.006
E18246	, (i) 41.	0.001
\$18/266	.75	0.022
and and a second a		

Certified by

MIN-EN LABORATORIES LTD.

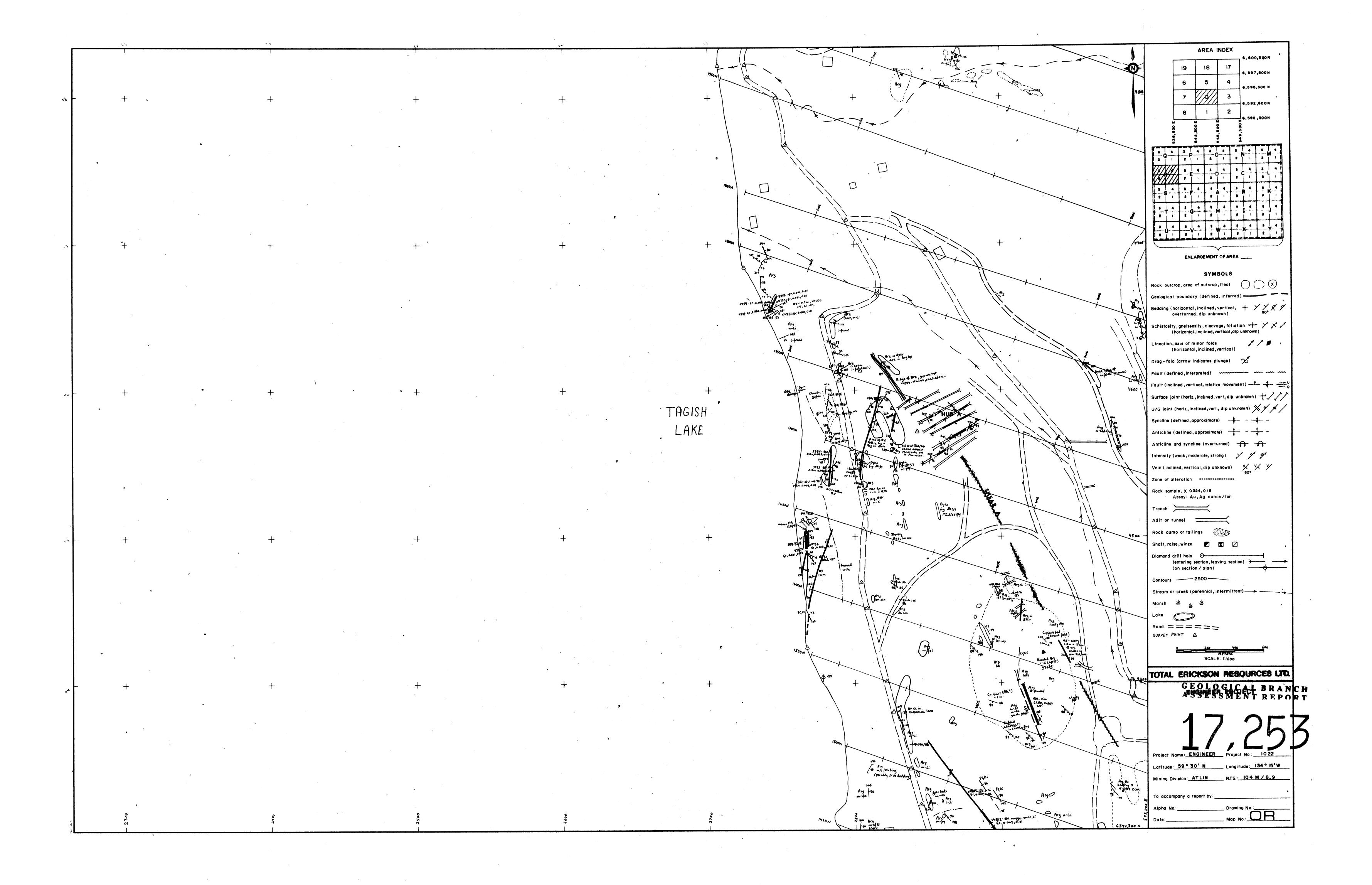
COMPANY: TOTAL ERICKSON RESOURCES MIN-EN LABS ICP REPORT

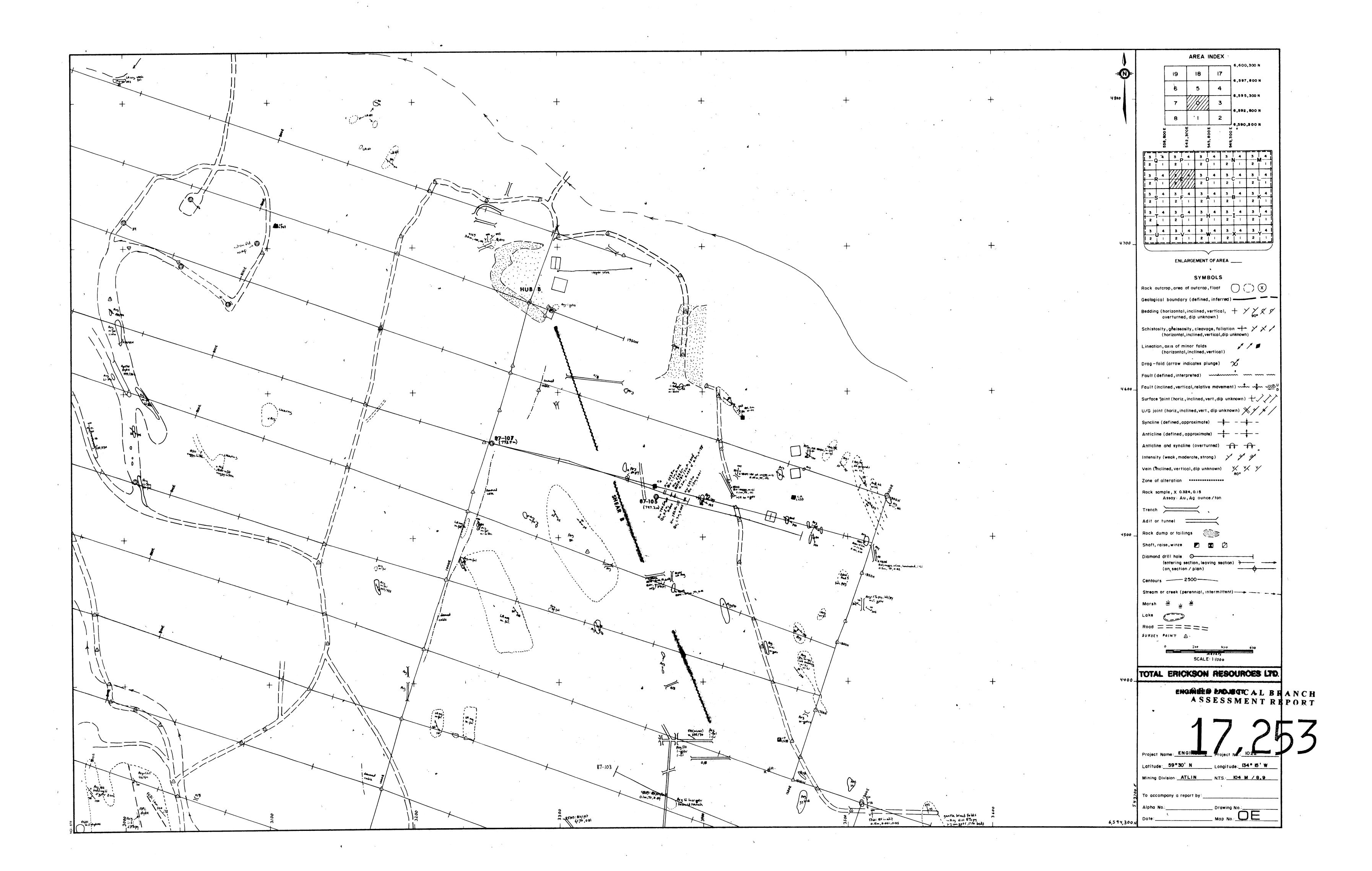
(ACT:F31) PAGE 1 OF 3 PROJECT NO: ENGINEER 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 FILE NO: 7-1740R/P1+2 ATTENTION: HANS SMIT (604)980-5814 DR (604)988-4524 * TYPE ROCK GEOCHEM * DATE: OCT 29, 1987 (VALUES IN PPM) B BA BE AG AL AS CA CD CO ČŪ FE 1.1 1.3 E18237 2.6 E18238 1.7 2.4 1.0 į E18239 1.3 1.5 3.0 E18240 . 4 .8 į 4.9 E18241 .3 .3 3.5 E18242 .5 ,5 10.4 _E18243 1.4 1.2 8.7 E18244 .7 1.1 5.1 Ą į E18245 ,9 Ą .7 1.7 E18246 1.2 1.6 2.7 E18247 1.6 .8 1.0 E18248 .9 1.3 1,3 .9 E18249 , Å 3.0 į E1,8250 2.8 1.4 2.7 ₹18251 1.0 1.3 2.6 E18252 ,5 1.2 2.9 E18253 1.8 1.5 2.7 .8 E18254 Ą .6 2.8 E18255 1.2 1.5 3,1 E18256 1.2 1.5 3.7 E18257 .7 . 4 1.1 E18258 .9 4.3 4.2 E18259 .9 .3 . 2 £1,8260 . 9 .8 1.3 EX8261 1.5 1.5 Ą 1.3 _£18262 3.8 .9 22.3 Ę E48263 .5 1.5 1.7 - 518264 Ą .6 .7 ć, 3.6 £18265 .7 1.2 1.3 E18266 4.4 .9 12.3 27370_ E18267 1.1 1.3 .8 Ď 25.5 Ė .7 2.2 147.5 .5 81.8 129:0 3.7 Links .3 7.5 11.3 .8 .2 0

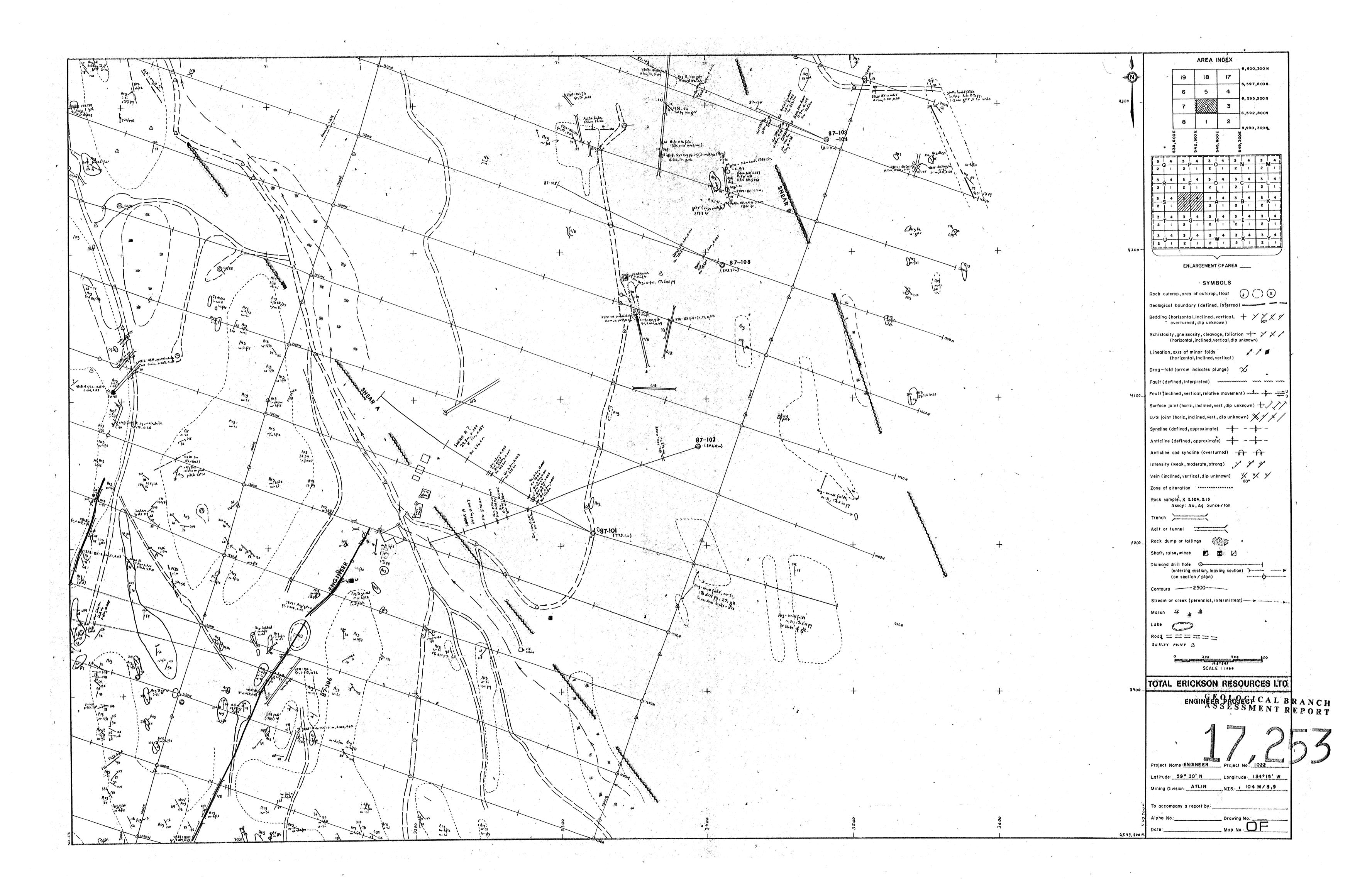
NOT ENG-INDER

PROJECT NO: ENGINEER

MIN-EN LABS ICP REPORT


(ACT:F31) PAGE 2 OF 3 705 WEST 15TH ST.. NORTH VANCOUVER, B.C. V7M 1T2 FILE NO: 7-1740R/P1+2


ATTENTION: HANS SMIT (604)980-5814 DR (604)988-4524 * TYPE ROCK GEOCHEM * DATE: OCT 29, 1987 ŦĦ_ MO (VALUES IN PPM) LI M6 MN NΑ NI PB SR Ë18237 E18238 ų E18239 E18240 E18241 $\frac{2}{2}$ Ą Ą E18242 E18243 E18244 i E18245 4.04 E18246 E18247 E18248 E18249 į E18250 E18251 E18252 E18253 E18254 E18255 E18256 Ā E18257 E18258 į E18259 į E18260 E18761 £ ő £18262 E18263 E18264 Ç E18265 E19266 E18267 į 7.......


COMPANY: TOTAL ERICKSON	RESOURCES		MIN-E	N LABS ICP	REPORT			(ACT:F31) PAGE 3 OF 3
PROJECT NO: ENGINEER		705 WEST	15TH ST.,	NORTH VAN	COUVER, B		172	FILE ND: 7-1740R/P1+2
ATTENTION: HANS SMIT				581 4 O R (6		24	≭ TYPE ROCK 6	EOCHEM * DATE: DCT 29, 1987
(VALUES IN PPM)	U V	ZN	6A	SN	¥	CR		
E18237	1 59.9	132	2	2	1	44		
E18238	1 76.8	163	2	1	1	6		
E18239	1 84.2	179	1	2	1	36		
E18240	1 14.8	93	2	1	1	85		
E18241	1 8.2	39	<u>j</u>	1	1	155		
E18242	1 4.5	20	1	i	1	82		
E18243	1 62.8	104	1	2	1	53		
E18244	1 27.9	61	2	1	1	109		
E18245	1 45.9	48	1	. 1	1	114		
E18246 -	1 90.0	87	1	1	1	44		
E18247	1 42.7	69	<u>-</u>	1	1	j		
E18248	1 100.4	89	2	2	1	54		
E18249	1 13.1	18	<u>1</u>	İ	<u> </u>	44		
E18250	1 70.3	148	1	2	1	38		
E18251	1 103.6	137	2	3	1	29		
E18252	1 84.5	147	<u>_</u>	<u>1</u>	<u>i</u>	40		
E18253	1 131.0	159	4	3	1	30		
E18254	1 58.2	118	1	1	1	122		
E18255	1 128.7	130	- 2	2	1	40		
E18256	2 107.4	150	÷ 1	2	<u>i</u>	41		
E18257	1 45.2	29	1	1	1	163	.=~ - ~	
E18258	1 15.9	.33	1	1	1	142		
E18259	1 33.7	17	1	1	1	252		
E18260	2 34.1	47	1	1	1	44		
E18261	3 86.0	129	2	İ.	1	33		
E18262	1 16.3	61	1	1	1	63		
E18263	2 27.3	110	1	2	1.	15		
E18264	1 35.3	59	i	1	1	109		
E19265	2 56.2	146	1	2	1	15		
E18266	1 11.5	65	1	1	1	65		
E18267	5 26.1	105	2	3	1	2		*
5394	1 10.5	53	4	į	4	134		
5375	1 3.8	5219	<u>i</u>	Ĺ	ų.	110		
5396	1,9	694	i	1	i	136		
5397	1 .8	Ų I	i	1	ţ	130		

TON. STORAGE REGIONAL TO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		•	•			Ary str	AREA INDEX Seeds 190 19
MACE TO SERVICE AND THE SERVI	- +	+	+	+	+	My Ary Ary Ary	ABIZ: 8V 115/90 305 50; By Grand By April 2: 80 115/90 305 50; By Grand By April 2: 80 115/90 305 50; By April 2: 80 115/90 305 50; By April 2: 80 115/90 305 50; By April 2: 80 115/90 805 500; By April 2: 80 115/90 805 50; By April 2: 80 115/90 8
TOTAL MICROSON FISCOURGE LTD. No. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10					•		Ary Ary Ary Nature
TOTAL MICROSON FISCOURGE LTD. No. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10	•	•		· · · · · · · · · · · · · · · · · · ·		Arg LH	Mary July 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
THE CONTROL OF STATE				,		So Ars Mis writes Te py	OF40: OF
THE CONTROL OF STATE					\	346 Arg -76 M-14615 -78 M-14615 -78 M-14615 -78 M-1461 (F.(-Di-3) // 88015 800144	
TOTAL DISCONS REGIONOS IN THE STATE OF THE S	+	+	+	· +	+	1.0m, 6.03, 0.48 y	HIS COMMITTED OF AN INC. S. S. S. S. S. S. S. S. S. S. S. S. S.
TOTAL DECEMBER RECORDER LEGISLATION AND AND AND AND AND AND AND AND AND AN						46 146 46 46 46 46 46 46 46 46 46 46 46 46 4	\\ \^ns\\\
TOTAL CHANGE MEDICAL CONTROL OF THE PARTY OF	•			TAG	SH	150	overfurned, dip unknown) Schistosity, gneissosity, cleavage, foliation + / /
TOTAL ENCISION RESOURCES UT 17.25				•		1300N	Lineation, axis of minor folds (horizontal, inclined, vertical)
TOTAL DESCRIPTION OF THE PROPERTY OF THE PROPE	+	· · · +	· +	+	+ .	+	Ars so 122 150 1
TOTAL DESCRIPTION AND ADDRESS LATER AND ADDRESS	• ·	•				1250M	Ars Syncline (defined, approximate) Ars Syncline (defined, approximate)
TOTAL ENCORPOR RESOURCES LT TOTAL ENCORPOR R							Anticline (defined, approximate) Anticline and syncline (overturned)
TOTAL GRICKON RESOURCES LITTLE OF THE PARTY						•	Zone of alteration Rock sample, X 0.324, 0.15
TOTAL ERRORSON RESOURCES IT Self-time was assessed by the first and the	* .					1200M	Transh Transh
TOTAL ERICSSON RESOURCES LT A SEES MENT REPORT CONTRACTOR OF THE PROPERTY OF	- +	+	+ ·	+	+	+	Shaft, raise, winze
TOTAL EMCRESON RESOURCES LITT C SUPPLY HOLD BY AND THE PROPERTY OF THE PROPER	•				·	"SON	(on section / plan) (on section / plan) (on section / plan)
TOTAL ERICKSON RESOURCES LTT C SOURCE MADE BRANCH A STEE THE MADE THROUGH THE PRANCH THROUGH THE PRANCH THROUGH THE PRANCH THROUGH THE PRANCH THROUG						205	Marsh <u>#</u> Lake Lake
To see the second of the secon	•	•		1	•		
ASSESSMENT REPO	- +	+	+	+	+	+	GEOLOGICA
Total Control	5						ASSESSMENT REP
Figure 1 Name and Project No. 1002. Capture 1 Name and Project No. 1002. Capture 1 Name and	•					/ora	10 30) Co Co Co Co Co Co Co Co Co Co Co Co Co
152 m-hfts							FGDi trend 155 Latitude: 59° 30' N Longitude: 134° 15' W FGDi trend 155 Latitude: 59° 30' N Longitude: 134° 15' W
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3,00			300	7 4 2 7 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 0	350 10 152 m-hfts inharbed 51st/firs 58 Arg m-hfts Drawing No.: Drawing No.: Date: Map No.: Date:
	•	·			<u> </u>		(503800 N

•

