jistrict	Geologist, Kamloops Off Confidential: 89.04.06
ASSESSMEN	T REPORT 17263 MINING DIVISION: Kamloops
-ROPERTY:	Red Hill
LOCATION:	LAT 50 38 44 LONG 121 21 46 UTM 10 5611470 615757 NTS 092111W
CLAIM(S):	Add 1, Add 8, Add V, Moly, Moly 2
OPERATOR	S): Rea Gold
UTHOR (S)	: Leishman, D.A.
JEPORT YE	AR: 1988, 80 Pages
COMMODITI	ES
SEARCHED GEOLOGIC	FOR: Copper,Molybdenum/Molybdenite,Silver
SUMMARY:	Minor chalcopyrite and secondary copper mineralization are hosted
	by either metavolcanic rocks which are intruded by subvolcanic calc-
	alkaline stocks or chert horizons intravolcanic with an andesitic flow
<u>ب</u>	and breccia sequence, all of the Upper Triassic Nicola Group.
	Sericitization and pyritization are common with the former and low
JORK	grade chloritization with the latter.
DONE:	Drilling
	ROTD 1835.7 m 9 hole(s)
	SAMP 467 sample(s) ;AU,CU,ZN,MO,AG

_MINFILE: 092INW042

-

and the second s	
ACTION:	

IN WED

2

2 60.

~ [~

2 2

and soil () (F AT 60 2 4

20 2

Drill Report

on the

Red Hill (ADD/MOLY) Property

Kamloops Mining Division, British Columbia

For

Rea Gold Corporation Suite 501,808 Nelson Street P. O. Box 12137, Nelson Square Vancouver, British Columbia V6Z 2H2

Covering:

ADD 1, 2, 3, IV, V, VI, 7, 8, ADD FR., MOLY, MO RED 10 FR., RED 2 FR., RED 3 FR., RED 4 FR. 🗶 🙀

Location:

Work Performed: November 1, 1987 to February 26, 1988 (1) 50° 39 ' North, 121° 22' West (2) N. T. S. 921/11W (3) 18 kilometres south of Cache Creek, B. C

Prepared By:

Douglas A. Leishman, B. Sc. Minorex Consulting Ltd. Suite 511-808 Nelson Street Vancouver, B. C. V6Z 2H2

SUB-RECORDER RECEIVED) APR -6 1988 VANCOUVER, B.C.

February 26, 1988

Summary and Conclusions1Introduction2Location, Access and Physiography2Claims and Ownership4History5Regional Geology6Property Geology61987 Drilling Program7Introduction7Method of Sampling7Laboratory Determinations9Drill Hole Summary9References16		Page No.
Introduction2Location, Access and Physiography2Claims and Ownership4History5Regional Geology6Property Geology61987 Drilling Program7Introduction7Method of Sampling7Laboratory Determinations9Drill Hole Summary9References16	Summary and Conclusions	1
Location, Access and Physiography2Claims and Ownership4History5Regional Geology6Property Geology61987 Drilling Program7Introduction7Method of Sampling7Laboratory Determinations9Drill Hole Summary9References16	Introduction	2
Claims and Ownership4History5Regional Geology6Property Geology61987 Drilling Program7Introduction7Method of Sampling7Laboratory Determinations9Drill Hole Summary9References16	Location, Access and Physiography	2
History5Regional Geology6Property Geology61987 Drilling Program7Introduction7Method of Sampling7Laboratory Determinations9Drill Hole Summary9References16	Claims and Ownership	4
Regional Geology6Property Geology61987 Drilling Program7Introduction7Method of Sampling7Laboratory Determinations9Drill Hole Summary9References16	History	5
Property Geology 6 1987 Drilling Program 7 Introduction 7 Method of Sampling 7 Laboratory Determinations 9 Drill Hole Summary 9 References 16	Regional Geology	6
1987 Drilling Program 7 Introduction 7 Method of Sampling 7 Laboratory Determinations 9 Drill Hole Summary 9 References 16	Property Geology	6
Introduction 7 Method of Sampling 7 Laboratory Determinations 9 Drill Hole Summary 9 References 16	1987 Drilling Program	7
Method of Sampling7Laboratory Determinations9Drill Hole Summary9References16	Introduction	7
Laboratory Determinations 9 Drill Hole Summary 9 References 16	Method of Sampling	7
Drill Hole Summary 9 References 16	Laboratory Determinations	9
References 16	Drill Hole Summary	9
	References	16

List of Tables

Table I	List of Claims	page 4
Table II	Summary Drill Hole Data	page 9
Table III	Summary Drill Hole Intercepts	page 10
	Appendices	

Appendix I	Personnel	page 17
Appendix II	Cost Statement	page 18
Appendix III	Statement of Qualifications	page 19
Appendix IV	Analytical Method	page 20
Appendix V	Analytical Data	page 21
Appendix VI	Drill Logs	after page 21

-

List of Figures

Figure 1	Location Plan	after page 2
Figure 2	Claim Map	after page 4
Figure 3	Regional Geology	after page 6
Figure 4	Compilation and Drill Hole Location Plan	after page 6
Figure 5	Section 8+00S, Hole R87-1	after page 11
Figure 6	Section 12+00S, Hole R87-2	after page 11
Figure 7	Section 4+00S, Hole R87-3	after page 11
Figure 8	Section 12+50S, Hole R87-4	after page 12
Figure 9	Section 10+00S, Hole R87-5	after page 12
Figure 10	Section 4+00S, Hole R87-6, 6A	after page 12
Figure 11	Section 4+00S, Hole R87-7	after page 13
Figure 12	Section 0+50S, Hole R87-8	after page 14
Figure 13	Section 0+00, Hole R87-9	after page 14
Figure 14	Section 4+00S, 1:10,000	after page 14
	Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14	Figure 1Location PlanFigure 2Claim MapFigure 3Regional GeologyFigure 4Compilation and Drill Hole Location PlanFigure 5Section 8+00S, Hole R87-1Figure 6Section 12+00S, Hole R87-2Figure 7Section 4+00S, Hole R87-3Figure 8Section 12+50S, Hole R87-4Figure 9Section 10+00S, Hole R87-5Figure 10Section 4+00S, Hole R87-6, 6AFigure 11Section 4+00S, Hole R87-7Figure 12Section 0+50S, Hole R87-8Figure 13Section 0+00, Hole R87-9Figure 14Section 4+00S, 1:10,000

Summary and Conclusions

During December 4th, 1987 to January 8, 1988 nine rotary percussion drill holes (reverse circulation) totaling 1835.7 metres tested extensive overburden covered areas on the Red Hill property near Ashcroft, B. C. for porphyry copper type mineralization. All holes were vertical and drilled at wide spacings. Results were discouraging and only 2 holes, R87-6 and R87-7 intersected anomalous copper mineralization. Both of these holes were located in an area of thick overburden (up to 114 metres) near the Trans-Canada highway. Drilling in this same area by previous operators had intersected mineralization grading up to 2,700 ppm copper (0.27%) over short intervals.

In the current program the best hole was R87-7 which intersected 1,236 ppm copper from 171 to 204 metres along with 1,694 ppm zinc, 5.7 ppm molybdenum and 2.4 ppm silver. The remainder of the hole was not anomalous. The higher grade intersection was associated with a relatively high pyrite content of 5% compared with 2% for most of the hole. Here the host rock consisted of interbedded rhyolites and andesites with chorite-sericite-quartz-pyrite alteration with minor chalcopyrite mineralization.

All holes except R87-4 and R87-9 intersected Nicola volcanic rocks which consisted mainly of interbedded andesites and rhyolites with lesser sedimentary and intrusive rocks. Holes R87-4 and R87-9 intersected argillites and limestones of the Cache Creek Group. In these rocks the average pyrite content was low, averaging less than 1% compared to an average of 2-3% in the volcanic rocks. With the exception of holes R87-6 and R87-7 which averaged 104 and 230 ppm copper respectively the remaining holes averaged only 44 ppm copper.

In consideration of the results of the current program as well as the results of previous programs, it is concluded that most of the property has little potential for near surface porphyry copper mineralization except in the vicinity of hole R87-7. The relatively high zinc values associated with copper mineralization in this hole suggests this hole is some distance away (either laterally or vertically) from the main copper mineralization. The area south of this hole and south of the property boundary is judged to be the best site for future exploration.

Introduction

This report outlines the work completed on the MOLY and ADD mineral claims by Rea Gold Corporation during the period November 25, 1987 through to February 26, 1988. A reverse circulation drill program consisting of 10 drill holes (including one abandoned) was supervised by the author (D. A. Leishman) and Mr. D. Miller, P. Eng. through Minorex Consulting Ltd. The drilling was contracted to S D S Drilling Ltd. of Calgary, Alberta with drilling commencing on December 4th, 1987 and finishing on January 8th, 1988.

A description of property geology, drill locations, lithology encountered and values obtained from geochemical analyses is included in this report. Notes prepared by D. Miller, P. Eng. related to the summary, conclusions and recommendations were utilized in the report preparation however the author (D. A. Leishman, B.Sc.) accepts full responsibility for the contents herein.

Location, Access and Physiography

The Red Hill mineral property comprises 15 located mineral claims consisting of 54 full size and fractional units. The centre of the claims is located approximately 18 kilometres south of Cache Creek, B. C. The geographic centre of the claims is 50 ° 39' North latitude and 121 °22' West longitude on N. T. S. 92I/11W (see Figures 1 & 2).

The property straddles Highway 1 at a point approximately 8 kilometres south of the Ashcroft road junction. The eastern portion of the claim group may be reached by several good ranch roads while the western portion of the property is accessible via the public Oregon Jack Creek road and numerous ranch roads and trails. Ashcroft Ranch (owned by Wicklow West Holdings of Vancouver) holds land title for part of this land and the grazing licence for most of the remaining ground covered by the claim group.

The Red Hill mineral property is situated within the South Thompson River valley of the Interior Plateau. Elevations within this claim group range from 450 to 850 metres a.s.l. Low rolling hills and benchlands cover most of the claim area. In the lower areas of the claim group much of the

ground is open grasslands with active ranching and grazing. The area immediately to the east of Highway 1 is irrigated from wells located in this field. Grazing areas are vegetated with bunch grass, low shrubs and stands of dryland conifers. On the north facing slopes of the higher elevations there are open forests of pine, hemlock and fir with very little undergrowth.

Bedrock exposures are generally rare with the exception of the steeper side hills and the north trending ridges.

The climate of this area is semi arid and moderate by interior standards. The temperature ranges from -30 degrees to +40 degrees Celcius and precipitation from 20 to 30 centimetres annualy. Exploration may be conducted year round on the Red Hill property.

Claims and Ownership

The Red Hill mineral property consists of 15 located M. G. S. mineral claims, situated within the Kamloops Mining Division. The claim configuration and their relationship to adjoining claims is shown on Figure 2. All of the claims are wholly owned by Rea Gold Corporation, Suite 501 - 808 Nelson Street, Vancouver, B. C. Table I below, summarizes all pertinent claim data.

Name	Record No.	Units	Record Date	Expiry Date
ADD I	2323	2	December 20, 1979	December 20, 1990
ADD 2	2324	4	December 20, 1979	December 20, 1990
ADD 3	2325	1	December 20, 1979	December 20, 1990
ADD IV	2893	4	August 8, 1980	August 8, 1990
ADD V	2894	2	August 8, 1980	August 8, 1990
ADD VI	2895	4	August 21, 1980	August 21,1990
ADD 7	3732	5	July 29, 1981	July 29, 1990
ADD 8	3769	12	August 24, 1981	August 24, 1990
ADD FR.	2828	1	July 18, 1980	July 18, 1990
MOLY 1	1730	9	March 6, 1979	March 6, 1989
MOLY 2	1858	6	May 22, 1979	May 22, 1990
RED 10 FF	R. 5919	1Fr.	October 23, 1984	October 23, 1991
RED 2 FR.	5810	1Fr.	August 7, 1984	August 7, 1988
RED 3 FR.	5811	1Fr.	August 7, 1984	August 7, 1988
RED 4 FR.	5812	1Fr.	August 7, 1984	August 7, 1988

Summary Claim Data Table I

History

The region where the Red Hill mineral property is found has undergone exploration intermittently since the years of the Cariboo Gold Rush in the late 1800's. More recently in the late 1960's and early 1970's a considerable amount of work has been completed by both major and junior resource companies on the nearby Maggie and Guichon Creek batholiths for porphyry copper-molybdenum potential.

The earliest known work completed on the area of the Red Hill claims was by G.C. Krause in 1970 (Hjorleifson, 1984) Percusion drilling confirmed the existence of copper and zinc mineralization in the area where the MOLY 2 claim is now located. Samples taken during this drill program were not analysed for their precious metal content.

In the mid 1970's Noranda Exploration completed extensive geological, geochemical and geophysical surveys over part of the Red Hill property. Their work uncovererd a large copper-zinc-molybdenum soil geochemical anomaly in the area of the present ADD 8 claim. Later Bethlehem Copper extended this anomaly into the present ADD 1 claim area. The area covered by this anomaly was approximately 1.3 by 0.7 kilometres. Because of the lack of definitive drill results and adverse drilling conditions both companies eventually allowed their claims to lapse.

In 1979 Mr. L. W. Reaugh, President of Rea Gold Corporation, acquired the Red Hill property. A control grid was established over much of the property and detailed soil geochemical and geophysical surveying (magnetometer) was completed. This work uncovered several multi-element geochemical anomalies with good geophysical support.

In 1983 this property was joint ventured with Selco-BP. Selco work consisted of geological and geophysical mapping with limited diamond drilling of anomalous areas. In October Selco-BP terminated their options agreement with Rea Gold on this property but retained their interests in the surrounding and adjoining claim groups.

Regional Geology

The Red Hill property is situated within the Intermontane Belt of the Canadian Cordillera. The region west of the South Thompson River is underlain mainly by metamorphosed volcanic and sedimentary strata of the Pennsylvanian to Triassic age Cache Creek Group. These units are in a thrust fault contact with the Nicola Group units of Upper Triassic age which occur in the eastern part of the property. The Nicola Group rocks consists of volcanic units with minor sedimentary horizons (see Figure 3).

The Cache Creek Group includes fine grained sediments, greenstone, chert and minor limestone with most of the rocks having undergone regional metamorphism to greenschist facies. The Nicola Group volcanics consist mainly of flows and volcaniclastic units ranging in composition from andesites to rhyolites. Also included within the Nicola Group are fine grained sedimentary units.

There are also a number of calc-alkaline intrusions which cut the Nicola Group rock. These bodies appear to be subvolcanic equivalent of the Nicola Group and or apophyses of the nearby Guichon Creek batholith.

Property Geology

The property geology as described above is illustrated on Figure 4. The property was mapped by BP-Selco (Gamble) and described in the report by Blanchflower in February 1986. The drilling completed in this program confirmed the mapped geology by Gamble however information was obtained to re-adjust the trace of the Martel Thrust Fault which separates the Cache Creek Group units from the Nicola Volcanics to the east. The sections illustrating the various drill holes have been interpreted using a regional dip towards the west. This corresponds with work by BP-Selco and the regional mapping by Monger et al.

LEGEND

QUATERNA	YR			
PLEIS	TOCENE AN	D AECENT		HOUNT MARTLEY STOCK AND SIMILAR GRANITIC
	Od	Thick drift: alluvium, glaciafluvial and lacustrime deposits, till, colluvium		ROCKS: granodiorite, quartz monzonite
	Qis	Landslide	JAN 1	Diorite, quartz diorite
	PRy	"VALLEY BASALT": wesicular olivine basalt: local acidic to intermediate precis in Coast Numerains only	JKs	Chert-pebble conglomerate; distinguished from ImJg on compositional grounds
TERTIARY			bg L	PENNASK BATHOLITH, DOUGLAS LAKE STOCK AND SIMILAR GRAMITIC ROCKS: granodiorite, /
MIOCE	NE AND PL	IOCENE		quartz monzonite
	MPV	"FLATERU BASALT": besalt, olivine basalt, minor tuff	STHEMURIAN TO	CALLOVIAN
	MPs	Poorly consolidated tuff, breccia, diatomite, sandstone, conglowerate	ImJA	ASHCHOFT FORMATION: argillite, siltstone, sandstone, conglomerate, local, minor,
-			ImJ	LADMER GROUP: argillite. siltstone. sandstone
- Inco	ME(1) AND	Olivine basalt mossibly correlative		and foliated low grade metamorphic equivalents
1	Ty	in part with PRv; minor, local inter-	EARLIEST JURAS	SSIC (7)
	-	mediate volcanics in central part of	b. Le	WILD HORSE BATHOLITH, NICOLA BATHOLITH, PARTS
	1s_		44	GRANITIC ROCKS: GRANDGIDTIE, QUARTS MONSONITE:
	τi	Small intrusions of mainly intermediate composition		the latter has local K-feldspar megacrystic phases
	Tgd	Granodiorite; felsite; in part of Eocene age		
EOCE	NE		TRIASSIC AND (?)	JURASSIC
_	-	sim ones conse, sucht indesite desite should be	LJod. am	GUICHON CREEK BATHOLITH AND SIMILAR GRAMITIC
L	E,	Dreccia, tuff and local intercalated sandstone; conglomerate, shale		(qm (qd)); granodiorite, quartz diorite (gd (qd)) and subordinate diorite (d)
Γ	٤c	"COLDWATER BEDS": arkosic sandstone, conglomerate. shale,local coal seams	TJ d	IRON MASK BATHOLITH AND SIMILAR ALKALINE INTRUSIONS: syenite (s): diorite (d):gobbro (gb
-	_	"HAT CREEK BEDS": sandstone, conglomerate, shale	[gn. s.d]	Alkaline intrusives of uncertain are but
L	E.H	thick coal seams (Mat Creek Coal Formation and contiguous sedimentary strata)	290.0	In part probably coeval with from Mass Batholith: granite (gn); syemite (s); diorite (d); gabbro (gb); ultramafic rocks
	E.	Basalt, andesite, dacite, rhyolite and volcani- clastic rocks, along Fraser River	-	Including picrite and local serpentine (w), undifferentiated (i) Basts of works instance buttonic country.
	L.	Artosic sendstone, coarse conglomerate and shale, along Fraser River	TJdi	digrite, local amphibolite. Possibly metamorphosed Micola Group
_			F	PARTS OF HOUNT LYTTON PLUTONIC COMPLEX: banded
		OF TEPTIARY	TJm	amphibolite and quartcofeldspathic rocks. local mylonite. Possibly metamorphosed Micola
-		Granodiorite with locally abundant septa and	A CONTRACTOR OF	and (7) Cache Creek Groups
KI	(m) bg	slices of metasedimentary rocks probably derived mainly from JKRss and locally from PJBR	V LJ	Plagioclase, augite-plagioclase andesite and(?) basalt: volcaniclastics, local carbonate.
CRETACE	ous			Nicola Group 3 volcanics
T ×	ad am	Granodiorite, quartz monzonite; few or no	KARNIAN AND NO	RIAN
	40.4.	Shale, sandstone, coal	UT.M	MICOLA GROUP: undifferentiated
• 🖵	UKS	FINGSVALE GROUP: basalt, local intercalated	[WT]	HICOLA GROUP: basic to acidic, mainly volcant-
	UKK	volcaniclastics		acidic flows and volcaniclastics: local
ALBIA	AN AND/OR	CENOMANIAN		schistose equivalents mainly along Thompson River valley
	ImKs	Conglowerate and sandstone, derived in large part from chert-rich source terranes, minor	UTNZ	NICOLA GAOUP: carbonate
		Shale with cost moritons	UTHS	NICOLA GROUP: plagioclase, plagioclase-augite intermediate pyroclastic and epiclastic brencia.
	AL AND AL	repurse white course and the defite.		conglomerate, tuff, sandstone, local shale:
	IKSB	rhyolite, intercalated volcaniclastics.		bodies probably feeders to NS volcanics
		sandstone, shale and local conglomerate	ULNA	MICOLA GROUP: aphanitic, pillowed basic flows
	ік јы	JACKASS MOUNTAIN GROUP: sandstone and conglo- merate, derived in large part from granitic and volcanic tource terranes, shale	UTHS	NICOLA GROUP: augite porphyry, augite- plagioclase porphyry volcaniclastic breccia
				and turf; interbedded argillite

JURASSIC AND CRETACEOUS

NEOCOMIAN AND (7) OLDER

NELAY MOUNTAIN GOOUP: armillite, siltstone, sandstone and local conniomerate

RELAT MOUNTAIN GROUP: phyllite, semischist, local conglomerate; foliated low grade metamorphic equivalents of RM1

....

UTN7 NICOLA SROUP: variably foliated diorite. uTp

uT.d.i

UTHE

amphibolite, metasedimentary rocks, probably equivalent to M5, N6; associated with Micola, MIId Horse and Pennask Batholiths "PAVILION BEDS": argillite, siltstone, vol-camic sandstone, local tuff, carbonate. Possibly correlative with HI. diorite, quartzofeldspathic intrusions probably mainly subvolcamic to the Micola Group

MICOLA GROUP: argillite, siltstone, volcanic sandstone, local intercalated tuff. Pocks along Worth Thomoson River contain interbedded thert pebble conglomerate, chert arenite local

carbonate, and minor augite/hornblende porphyry. Northeast of Kamloops, these strata are as old as Hiddle Triassic

PERMIAN TO JURAS	SIC		
PJBRI	BRIDGE RIVER COMPLEX: radiolarian chert, argillite, basalt, pillow basalt, local carbonate, local gabbro; typically disrupted, "Broken formation"	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Limit of outcrop
PJ _{8R2}	BRIDGE RIVER COMPLEX: ultramafic rocks, mainly serpentinite	** ** ** **	Limit of geological mapping
PJ _{BR3}	BRIDGE RIVER COMPLEX: phyllite; quartzose phyllite, foliated greenstone, low-grade, greenschist factes metamorphosed equivalents		Geological boundary (defined, approximate, assumed)
Plane	BRIDGE RIVER COMPLEX: siliceous schist;	<u>د </u>	fault (defined, approximate, assumed, extension beneath drift)
	actinolite schist; local marble; upper green- schist-lower amphibolite metamorphic factes; commonly with abundant concordant and cross- cutting, quartzofeldspathic sills and dykes of late Eocene age		Fault: bar indicates down thrown side: arrow indicates relative movement
PENNSYLVANIAN TO	TRIASSIC	~~~	Thrust fault; "Tayer paralle? fault"; teeth on upper plate
PT cci	CACHE CREEK (OFPLEX: basalt; pillow basalt; diabase; gabbro	•	Diagnostic fossil locality. Refer to
PT CC2	CACHE CREEK COMPLEX: uitramafic rock, mainly serpentimite, local gabbro		table 1, sheet 2
PT cc3	CACHE GREEK COMPLEX: melange, broken formation; radiol.rian chert, chert-argillite matrix contables of both and to strong and limestone.	Δ	Isotopic age (Na). Refer to table 2, sheet 2 K-Ar system:
	chert, greenstone and ultramafic blocks and locally, acid volcanic blocks similar to uL _{Nie}	0	U-Pb system:
PT CC4	CACHE CREEK COMPLEX: In large part MARBLE CANYON FORMATION: massive, poorly-bedded carbonate, local thin-bedded carbonate, argillite- tuff interbeds, local basalt and chert		
PTcc3	CACHE CREEK COMPLEX: radiolarian chert; argiilite- phyllite, minor greenstone, limestone, coherent structure, and only local melange		
PALEOZOIC AND MES	50Z01C		
PMv	Augite porphyry, bladed feldspar purphyry. chlorite schist, meta basalt: lithologically similar to NS volcanics, but higher metamorphic grade and of uncertain are		
PMs	Argillite, phyllite; siltstone, volcanic sandstone, semischist; local carbonate; local volcaniclastics. Contains both Triassic (%c) and Carboniferous (%c)		
₽M	carbonates. Lithologically similar to parts of HRI and 76 but slightly higher metamorphic grade Biotite quartz schist, biotite musCovite schist, garmet biotite schist local [in Coast Hountains], kyanite, sillimanite; protolith age unknown		
	, · · ·	-	

DEVONIAN TO PERMIAN

DP HRI

""ARPER RANCH GROUP": argillite: cherty argillite: siltstone; volcanic and chert grain sandstone; chert pebble conglomerate: volcaniclastics of basic to acid composition; minor carbonate

DPHRZ

Carbonate; where age of carbonate known shown as Carboniferous, Permian (PHR2-CHR2)

-

	LEGEND
5 A	INTRUSIVE - QUARTZ DIORITE
6	INTRUSIVE - DICRITE
4- QP(f1, qss)	VOLCANIC- RHYOLITE QUARTZ PHENOCRYSTS
GFP (fl, ccs)	VOLCANIC - DACITE QUARTZ - FELDSPAR PHENOCRYSTS
2 (t,fl.ccs)	VOLCANIC - ANDESITE (TUFF, FLOW, CHLORITE-CARB SCH)
24 (1)	SEDIMENT - ANDESITE TUFF
1st	SEDIMENT - ARGILLITE, CHERT, LIMESTONE
_??	ASSUMED CONTACT
	PROBABLE CONTACT
· ~ ~ ~ ·	P/% (THRUST 2) FAULT CONTACT
	REA PROPERTY OUTLINE
Sector Sector	OUTCROP
	R040
3	CLAIM POST
NSE	MODIFIED OCT. 1987 BY D.C. MILLER GEOLOGICAL SERVICES
	REA GOLD CORPORATION
	RED HILL PROPERTY
	COMPILATION & DRILL
800 · 1000	HOLE LOCATIONS
DR	AWN BY DRAWN BY DATE NTS. FIGURE 4
TR	ACED BY TRACED BY DATE 92 1/11 W
Sc.	

1987 Drilling Program

Introduction

The drilling was contracted to S D S Drilling Ltd. of Calgary, Alberta. A total of 1,835.7 metres (6,022.6 feet) was drilled in the period from December 4th 1987 thru to January 8, 1988 with a break from December 24th through to December 29th. A total of 9 holes were completed, with one abandoned (R87-6A). These holes were drilled to test geological potential for hidden porphyry copper-molybdenum mineralization as well as in areas of potential massive sulphide mineralization.

Drill sites were selected on the recommendations of Mr. D. Miller, P. Eng. as outlined in his report dated November 3, 1987. Some changes were made in these original site selections by Miller and the author. This was done to accommodate the mobility problems of the rig. This happened on 2 occassions (R87-5 and R87-9) and resulted in the down dip extensions of certain target areas being drilled.

A tabulation of drill holes (location, depth and overburden) appears in Table II.

Method of Sampling

The equipment supplied by S D S Drilling Ltd. included one truck mounted Mayhew drill, one tandem rod truck, one tandem service/water truck and one 4x4 pickup. Drill rods were in 15 foot lengths and the mast was capable of pulling 30' stands of rods.

For the drilling of overburden a standard rotary tricone bit was utilized and upon reaching bedrock the hole would be cased and then continued with a standard downhole hammer bit. Drilling rates would vary from 10 feet to 70 feet per hour depending on ground conditions.

Samples were taken every 3 metres from the top of the overburden/bedrock interface to the bottom of the hole. There were several occasions where drilling changed from dry to wet and consequently some 1.5 metre (5 foot) samples were taken (see logs). A 3 metre sample taken from a 4 1/2" diameter rod weighs approximately 50 kilograms so it was necessary to split this sample down to a more manageable size prior to shipping for geochemical analyses.

Drilled material (chips and powder) from the drill was feed directly into a cyclone mounted on the rod truck and from this cyclone sample material was fed into a triple tier riffle splitter. Dry material would be collected in a 5 gallon plastic bucket and resplit at least once and sometimes twice with a smaller, table mounted, riffle splitter. Wet material was treated in a similar way, however one final split usually provided a sufficient sample of two equal portions. These portions would then be bagged, with one kept at the drill site and the other taken to Kamloops Research and Assay Laboratory in Kamloops where the material was analysed for 5 elements (gold, silver, copper, zinc, and molybdenum) The size of the samples sent for analyses was 4 to 6 pounds.

Logging of the drill chips took place simultaneously as the drilling progressed. First colour and an estimate of percent fragments present was made. The sample would then be washed and panned and a visual description of fragment type, colour and percentages would be noted. Alteration type (ie: limonite, sericite) and minerals identified (particularily sulphides) would also be noted. Though the logging was very subjective, correlation to surface data could be made as well as identifying contacts, main alterations and lithological changes. A brief summary of each drill hole is found below.

Laboratory Determination

All samples were taken to Kamloops Research and Assay Laboratory for analyses. These samples were analysed for 5 elements, Copper, Zinc, Molybdenum, Silver and Gold by Atomic Absorption methods. Values obtained were in parts per million, with the exception of gold (parts per billion). Samples which returned high values (greater than the normal detection limits) were analysed by assay methods. This happened on 4 ocassions only, all from Hole R87-7 (3 intervals for zinc and 1 for copper). Appendix IV describes the actual analytical methods used.

Drill Hole Summary

The tables below outline data for the various drill holes. Also included in this section are brief summarys of each hole drilled.

Hole No	. Location	Depth Ovb.	Total Depth	No. Samples
R87-1	L8+00S, 21+96W	11.6	182.9	55
R87-2	L12+08S, 24+50W	33.8	189.0	52
R87-3	L3+85S, 23+18W	26.5	180.0	51
R87-4	L12+60S, 36+10W	31.7	183.0	50
R87-5	L9+78S, 33+80W	16.3	192.0	59
R87-6A	L3+89S, 14+70W	47.8	47.8	abandoned
R87-6	L3+80S, 14+65W	82.6	192.0	34
R87-7	L4+00S, 10+12W	59.3	255.0	65
R87-8	L0+62S, 12+50W	114.3	210.0	34
R87-9	L0+40S, 28+25W	17.4	204.0	62

Drill Hole Summary Table II

Total Footage drilled is 1,835.7 metres (6,022.56 feet)

Page 9

Hole No.	Intercept (metres)	Gold ppb	Copper ppm	Zinc	Moly ppm	Silver	Pyrite %
R87-1	16.3-182.9	3.6	15	47	4.4	0.05	2
	115.8-137.2	8.6	42	94	21	0.20	2
R87-2	33.8-189.0	3.0	72	75	1.7	0.02	4
R87-3	26.5-180.0	3.7	8	19	5.1	0.03	3
	153.0-159.0	21.5	7	26	71	0.4	4
R87-4	32.3-183.0	3.0	69	107	5.7	0.06	<1
R87-5	16.3-192.0	3.3	54	113	2.7	0.05	2
	147.0-156.0	3.0	210	446	2.0	0.07	1
R87-6	90.5-192.0	3.0	104	209	7.3	0.33	2
	153-177.0	3.0	231	580	26	1.3	4
R87-7	59.7-255	3.3	230	341	2.4	0.48	2
	171-204	5.0	1236	1694	5.7	2.4	5
R87-8	114.3-210.0	4.2	48	125	1.5	0.78	1
R87-9	21.0-204.0	3.0	42	139	6.9	0.14	<1
		Sum	mary Drill H	lole Intere	cepts		
			Table	e Ul			

Hole R87-1 Figure 5 (Section 8+00S)

This hole encountered bedrock at 11.6 metres and was drilled dry to 86.8 metres. Sampling commenced at 16.3 metres. This hole was intended to test an area of extensive overburden cover where geology was unknown.

Alternating bands of Rhyolites and Andesites were encountered from 11.6 through to 134.1 metres. In this interval, pyrite (up to 5%) was encountered with variable amounts of sericite and chlorite alteration. No copper sulphides were seen however malachite was observed once at 76.2 metres. Minor amounts of carbonate and quartz fragments were identified in this section. At 134.1 a contact between the overlying volcanics and a pale coloured felsic intrusive was identified. This section carried noticeably less sulphides than above and no copper mineralization was identified.

Geochemical analyses indicated a sharp increase in base metal content from 115.8 metres to the contact zone. Values up to 40 ppb gold and 43 ppm molybdenum were encountered in this section. This zone is highlighted on Figure 5.

At 150 metre depth it was estimated the hole was making approximately 1 gallon per minute water.

Hole R87-2 Figure 6 (Section 12+00S)

This hole was drilled to a depth of 189.0 metres with bedrock encountered at 33.8 metres. Lithology encountered was similar to that encountered in the upper parts of R87-1 (Nicola volcanics). There was a definite increase in the amount of sulphides (up to 8% in places) over the previous hole however no copper minerals were identified. The lithology within this hole had also undergone increased alteration. Silver and molybdenum values were uniformly low throughout the hole however background values in copper and zinc increased over the previous hole. Minor amounts of calcareous clay was encountered which might be indicative of minor shearing.

Again as the first hole, this hole was drilled to test a previously untested area of thick overburden cover.

Hole R87-3 Figure 7 (Section 4+00S)

This hole was drilled northwest of the previous two drill holes and again was meant to test an area of unknown geology and thick overburden cover. As in the previous holes alternating bands/horizons of andesites and rhyolites were intersected throughout the entire hole (180 metre depth). One anomalous gold value (40 ppb) was encountered from 153-156 metres. Also associated with this interval were higher values in molybdenum and silver. This section also corresponded to an increase in pyrite mineralization.

To accompany a report by D.A. Leishman , B.Sc.

The section from 82.6 to 86.9 metres appeared to be an intrusive unit (quartz-diorite) with minor pyrite however this unit was not encountered in the sampled section. At 86.9 an assemblage of pale to darker coloured fine grained volcanics with minor amounts of black argillites was encountered. This assemblage continued until 99 metres where the more typical dark green volcanic andesite was encountered. Minor amounts of chalcopyrite were seen in the hole, sometimes associated with cherty fragments. At 156 metres the units change from volcanic andesite gradationally into black argillites with paler coloured siliceous horizons. This unit continued to 177 metres where a more felsic unit was encountered. Several percent pale blue grey quartz fragments/grains were identifed in some of these lower intervals. The hole ended at 192 metres.

This hole contains higher than background values in copper, zinc, molybdenum and silver. The most interesting section is from 153 to 177 metres where values of 231 ppm copper, 580 ppm zinc, 26 ppm molybdenum and 1.3 ppm silver are located. This section also has an increased amount of sulphide material (4% pyrite). Gold values remained low (3ppb), the detection limit of the analytical work (See Figure 14).

Hole R87-7 Figure 11 (Section 4+00S)

This hole was drilled in the center of an irrigated field, very close to previous drilling where low grade copper values had been encountered (Figure 14). This was thought to be the area for the most potential for porphyry copper type mineralization. This hole was visually the most interesting encountered in the drill program and assay values confirmed this.

The entire hole intersected volcanic rhyolite/andesites with a narrow sedimentary horizon from 117 to 150 metres. This hole appeared to be interesting geologically with copper mineralization identifed in a zone from 171 through to 204 metres. An increase in pyrite to 5% was observed in this interval.

Average values of 1,236 ppm copper, 1,694 ppm zinc, 5.7 molybdenum, 2.4 silver and 5 ppb gold were encountered throughout this section. Visually no values were thought to be greater than 1% copper for a 3 metre interval. Geochemical analyses verified this, however some samples in

this interval ran greater than 0.4% zinc and copper.

Three sample intervals in this section returned values above the detection limit for zinc (4,000 ppm) and one for copper (4,000 ppm) These values were found from 171 to 186 metres where zinc from 0.55% to 0.64% was encountered. The best copper value was from 186 to 189 metres where a value 0.46 % copper was obtained. Figure 14 illustrates the relationship of this hole with previous drilling.

Hole R87-8 Figure 12 (Section 0+50S)

This hole was drilled west of the highway and was situated in an area close enough to the previous drill hole to close off any economic possibilities for this area if nothing of interest was located. A total of 129.2 metres of overburden was encountered in this hole. Samples were taken from 114.3 metres to 129.2 of a melange of what is probably a semi-consolidated pebble/gravel conglomerate likely related to a buried stream channel. Bedrock encountered in the hole consisted entirely of units of the Nicola volcanics (andesites). Two zones within the entire section had slightly higher background values in zinc. The zone from 129.2 to 150 metres had values up to 213 ppm zinc and 7.2 ppm silver and the interval of 180 to 210 metres returned a higher background in zinc (values to 614 ppm). This hole encountered substantial amounts of water and would have made a good water well.

Hole R87-9 Figure 13 (Section 0+00)

This hole was spotted after consultation with Miller in an area northwest of a large geochemical and electromagetic anomaly as indicated south of lines 4+00S between 25 and 30 West (See Figure 4). It was spotted in an area of no known geology nor obvious outcrops.

The hole was drilled entirely within units of the Cache Creek Group. The units intersected consisted of slightly calcareous through to very calcareous sedimentary strata. There were several intersections that were very carbonaceous. Sulphide content was always very low (less

-

than 1%). No copper or zinc sulphides were identified in the chips . Lithological contacts were distinguishable mainly by carbon and carbonate content.

A high background in zinc and copper values was found throughout this entire hole. Values up to 440 ppm zinc were found near the bottom of the hole with corresponding high molybdenum values to 49 ppm and slightly anomalous silver values to 1.4 ppm.

Dayles A. Leich mon

Douglas A. Leishman, B. Sc. Consulting Geologist

February 26, 1988 Kamloops, British Columbia

References

Blanchflower, J.D.	Drilling report on the Red Hill (ADD/Moly) Property for Rea Gold Corporation, February 28, 1986
Miller, D. C.	Proposal for Exploration of the Red Hill Property, D. C. Miller
	Geological Services, November 3, 1987
Ministry of Mines and F	Petroleum Resources, Assessment Files
Monger et al.	Geological Survey of Canada, 1984
	Bedrock Geology of Ashcroft Map Area, Open File 980
Selco-BP	Various reports, maps, plans and cross-sections on the Red Hill
	Property Kamloops M. D. private company (Rea Gold) data
	tooo tooo
	1902-1902

Appendices

Appendix I

Personnel

D. A. Leishman, B.Sc. Consulting Geologist

Mr. D. Miller, P. Eng. Consulting Geologist

Mr. Robert Reaugh Sampler

Mr. Roy Stanley Sampler November 16, 1987 through February 26, 1988 39.6 days

November 1, 1987 through February 26, 1988 5 days

December 2, 1987 through Jan. 8, 1988 31 days

December 10, 1987 through Jan. 8, 1988 9.5 days
Appendix II

Cost Statement

Personnel Mr. Robert Reaugh (Minorex Employee) \$5,797.00 31 days at \$187.00 per day (Minorex Employee) Mr. Roy Stanley 9.5 days at \$150.00 per day \$1,425.00 Project Supervisors/Consultants D. A. Leishman, B. Sc., 39.6 days @\$275./day \$10,890.00 November 16, 1987 through Feb. 26, 1988 Mr. D. Miller, P.Eng., 5days @ \$350./day \$1,750.00 Nov. 1, 1987 through February 26, 1988 Total Personnel and Consultants Costs \$19,862.00 Expenses S. D.S. Drilling (Calgary, Alberta) 6,022.6 feet @ \$15.28 per foot \$92,008.00 Geochemical Analysis 467 samples x \$11.15 plus 4 assays 5228.80 Wicklow West Holdings Site preparation/reclamation 5,685.00 37.72 Universal Reproductions Meals and Accomodation 1.853.50 Vehicle Rental and Fuel 3,088.73 Equipment Rental and Supplies 1,912.44 Report Costs/Management Fees 12,967.62 **Total Expense Costs** \$122,781.81 Total Costs Incurred on the Red Hill Project \$142,643.81

Appendix III

Statement of Qualifications Douglas A. Leishman, B.Sc., A.R.S.M. Consulting Geologist

Suite 2-423 First Avenue, Kamloops, B. C.

Mailing Address: P. O. Box 1288 M.P.S., Kamloops, B. C. V2C 6H3 Telephone 604-828-6150

I, DOUGLAS A. LEISHMAN, OF KAMLOOPS, BRITISH COLUMBIA, DO HEREBY CERTIFY THAT:

- I am a self employed Consulting Geologist residing at the above address and was employed by Minorex Consulting Ltd. to supervise the program described within this report.
- (2) I am a graduate of the Northern Alberta Institute of Technology, Exploration Technology (Minerals Option), 1971 Edmonton, Alberta.
- (3) I am a graduate of the Imperial College of Science and Technology, Royal School of Mines, London, England, B.Sc (Hons.) Mining Geology, 1981.
- (4) I am an Associate Member of the Geological Association of Canada and a Member of the Institute of Mining and Metallurgy, London, England.
- (5) I have been actively involved in mineral exploration since 1971.
- I am the author of this report which is based on an exploration program carried out by myself with the assistance of field technicians and consultation with Mr. D. Miller, P. Eng.

Parches A. Leichnyen

Douglas A. Leishman, B.Sc. Consulting Geologist

February 26, 1988 Kamloops, British Columbia

Appendix IV

Analytical Proceedures

Silver, Copper, Zinc and Molybdenum

1. The samples are dried in a geochemical drying oven and then screened through a stainless steel 80 mesh sieve. The minus 80 fraction is reserved for analysis and the plus 80 mesh fraction is discarded.

2. The samples are then weighed into test tubes, nitric acid is added, and they are placed in a hot water bath for thirty minutes. Hydrochloric acid is then added and the samples are digested for a further 90 minutes in the water bath. The samples are then diluted with deionized water.

3. The samples are then mixed to insure homogeneity and are read, upon settling, on a Varian Techtron AA 5 or 475 atomic absorption spectrophotometer. An air-acetylene flame is used for the analysis of silver, copper, zinc and molybdenum.

Gold Method

1. The samples are dried in a geochemical drying oven and then crushed to pass through a stainless steel 100 mesh sieve. The minue 100 fraction is reserved for analysis and the plus 100 mesh fraction is stored.

2. 29.17 grams of sample are weighed, silver added along with flux and the sample is started as a fire assay. After cupelation the bead is dissolved and the samples are then mixed to insure homogeneity and are read, upon settling, on a Varian Techtron AA or 475 atomic absorption spectrophotometer using an air-acetylene flame.

Page 20

Appendix V

Analytical Data

	ASS	SAY LABORATORY	912	LAVAL CRE	SCENT, K	AMLOOPS,	B. C. \	120	5P5	
		LTD.	PHO	NE 372-278	4 - TELE	X 048-83	20 - Ff	ах з	372 1	112
		GEO	CHEMIC	CAL LAB RE	PORT					and take from sing sing sing sing
		MINOREX CONSULTING P.O. BOX 12122	ř.			DATE	DEC	CEMI	BER 1	8, 198
		SUITE #511 - 808 N VANCOUVER, B.C. V6Z 2H2	ELSON	STREET		FILE	ND.	c	3 187	2
RAL	. NO.	IDENTIFICATION	AU	cu	ZN	MO	PAGE AG	1 ,	1 2	
	1	16. 3-21. 3 R87-1	3.0	12.0	55.0	2.0	0.1			
	à	21.3-24.4	3.0	8.0	42.0	8.0	0.0			
	3	24. 4-27. 4	3.0	5.0	55.0	4.0	0.1			
	A	27. 4-30. 5	3.0	5.0	38.0	3.0	0.1			
	5	30.5-33.5	3.0	4.0	31.0	0.0	0.0			
	6	33. 5-36. 6	3.0	5.0	25.0	2.0	0.0			
	7	36.6-39.6	3.0	6.0	31.0	2.0	0.0			
	A	39.6-42.7	3.0	17.0	38.0	1.0	0.0			
	q	42.7-45.7	3.0	6.0	25.0	0.0	0.0			
	10	45.7-48.8	3.0	7.0	37.0	3.0	0.0			
	1.1	48.8-51.8	3.0	8.0	39.0	2.0	0.2			
	12	51.8-54.9	3.0	6.0	40.0	0.0	0.1			
	13	54 9-57 9	3.0	11.0	45.0	1.0	0.0			
	14	57, 9-61, 0	3.0	13.0	47.0	3.0	0.0			
	15	61.0-64.0	3.0	4.0	26.0	2.0	0.0			
	16	54.0-57.1	3.0	11.0	37.0	3.0	0.1			
	17	67.1-70.1	3.0	5.0	28.0	2.0	0.0			
	18	70, 1-73, 2	3.0	6.0	27.0	6.0	0.0			
	19	73.2-76.2	3.0	38.0	38.0	8.0	0.2			
	20	76.2-79.2	3.0	19.0	35.0	4.0	0.1			
	21	79.2-82.3	3.0	7.0	32.0	0.0	0.0			
	22	82, 3-85, 3	3.0	7.0	33.0	1.0	0.0			
	23	85. 3-88. 4	3.0	6.0	29.0	2.0	0.0			
	24	86, 9-88, 4	3.0	7.0	39.0	1.0	0.0			
	25	88. 4-91. 4	3.0	5.0	35.0	1.0	0.0			
	26	91.4-94.5	3.0	6.0	43.0	8.0	0.0			
	27	94. 5-97. 5	3.0	8.0	41.0	1.0	0.0			
	28	97.5-100.6	3.0	14-0	40.0	1.0	0.1			
	29	100,6-103,6	3.0	8.0	43.0	1.0	0.1			
£		107 6-106 7	2.0	E.0	24.0	0.0	0.1			

.

...

RAL	. ND.	FILE NO. G 1872 IDENTIFICATION	AU	CU	ZN	мо	PAGE 2/2 AG
	31	106.7-109.7	3.0	7.0	32.0	0.0	0.0
_	32	109.7-112.8	3.0	7.0	29.0	6.0	0.0
	33	112.8-115.8	3.0	15.0	50.0	8.0	0.0
	34	115.8-118.9	3.0	47.0	108.0	43.0	0.1
	35	118.9-121.9	40.0	44.0	65.0	10.0	0.B
-	36	121.9-125.0	3.0	14.0	58.0	11.0	0.0
	37	125.0-128.0	3.0	11.0	54.0	13.0	0.0
	38	128.0-131.1	3.0	24.0	79.0	36.0	0.1
	39	131.1-134.1	5.0	65.0	76.0	22.0	0.1
	40	134.1-137.2	3.0	92.0	215.0	12.0	0.2
	41	139.0-140.2	3.0	20.0	78.0	4.0	0.0
	42	137.1-140.2	3.0	15.0	73.0	7.0	0.0
	43	140.2-143.3	3.0	11.0	57.0	3.0	0.1
	44	143.3-146.3	3.0	16.0	46.0	0.0	0.0.
	45	146.3-149.4	3.0	20.0	51.0	0.0	0.1
-	46	149.4-152.4	3.0	13.0	40.0	0.0	0.0
	47	152.4-155.5	3.0	18.0	42.0	0.0	0.0
	48	155.5-158.5	3.0	16.0	44.0	0.0	0.0
-	49	158.5-161.5	3.0	31.0	46.0	0.0	0.1
	50	161.5-164.6	3.0	18.0	45.0	0.0	0.0
	51	164.6-167.6	3.0	15.0	47.0	0.0	0.0
-	52	167.6-170.7	3.0	15.0	38.0	0.0	0.0
	53	170.7-173.7	3.0	12.0	41.0	0.0	0.0
	54	173.7-176.8	3.0	9.0	47.0	0.0	0.0
	55	176.8-179.8	3.0	11.0	44.0	0.0	0.0
-	56	179.8-182.9	3.0	16.0	43.0	0.0	0.0
	57	NO SAMPLE NO.	3.0	11.0	41.0	0.0	0.0

IN AU COLUMN 3 INDICATES (SPPB

IN MO COLUMN O INDICATES (1PPM

IN AG COLUMN O INDICATES (. 1PPM

-

1

.

-	KAM	LOOPS RESEARCH	B.C.	CERTIFIE	ED ASSAYE	RS						
-	AS	AY LABORATORY LTD.	912 L PHONE	AVAL CRE 372-278	ESCENT, K 34 - TELE	AMLOOPS, X 048-83;	B.C. (20 - Fr	/20 9X	C 5 37	5P5 72	111	2
•		GEC		AL LAB RE	EPORT					****		
		MINOREX CONSULTING	1			DATE	DEC	E	MBS	ER	18,	1987
		P.O. BOX 12122 SUITE #511-BOB NEL VANCOUVER, B.C. V6Z 2H2	SON STI	REET		FILE	NO.		Gi	87	9	
		PROJECT: P87-26					PAGE	1	1	г		
RA	L NO.	IDENTIFICATION	AU	CU	ZN	MO	AG			2255		
	1	33.8-36.0 R87-2	3.0	210.0	172.0	2.0	0.2					
	2	36.0-39.0	3.0	89.0	137.0	0.0	0.1					
	3	39.0-42.0	3.0	78.0	136.0	1.0	0.0					
	4	42.0-45.0	3.0	115.0	88.0	1.0	0.0					
	5	45.0-48.0	3.0	50.0	81.0	2.0	0.0					
	6	48.0-51.0	3.0	28.0	55.0	2.0	0.0					
	7	51.0-54.0	3.0	8.0	28.0	1.0	0.0					
	8	54.0-57.0	3.0	40.0	44.0	3.0	0.0					<u> </u>
	9	57.0-60.0	3.0	12.0	35.0	1.0	0.0					
	10	60.0-63.0	3.0	7.0	25.0	1.0	0.0					
	11	63.0-66.0	3.0	17.0	75.0	5.0	0.0					
	12	66.0-69.0	3.0	24.0	24.0	5.0	0.0					
1	13	69.0-72.0	3.0	9.0	57.0	10.0	0.0					
	14	72.0-75.0	3.0	17.0	65.0	6.0	0.0					
	15	75.0-78.0	3.0	15.0	48.0	4.0	0.3					
	16	78.0-81.0	3.0	8.0	51.0	5.0	0.0					
	17	81.0-84.0	3.0	18.0	65.0	1.0	0.0					
	18	84.0-87.0	3.0	32.0	38.0	0.0	0.0					
	19	87.0-90.0	3.0	35.0	44.0	0.0	0.0					
	20	90.0-93.0	3.0	21.0	43.0	1.0	0.0					
	21	93.0-96.0	3.0	15.0	64.0	2.0	0.0					
	22	96.0-99.0	3.0	27.0	80.0	1.0	0.0					
	23	99.0-102.0	3.0	61.0	73.0	3.0	0.0					
	24	102.0-105.0	3.0	115.0	55.0	1.0	0.0					
	25	105.0-108.0	3.0	110.0	61.0	0.0	0.0					
	26	108.0-11.0	3.0	71.0	67.0	2.0	0.0					
	27	11.0-114.0	3.0	142.0	59.0	4.0	0.0					
	28	114.0-117.0	3.0	68.0	75.0	5.0	0.0					
	53	117.0-120.0	3.0	97.0	61.0	1.0	0.0					
-	30	120.0-123.0	3.0	96.0	73.0	0.0	0.0					

_RAL	ND.	FILE NO. G1879 IDENTIFICATION	AU	cu	ZN	MO	PAGE 2/2 AG
	31	123.0-125.0	3.0	100.0	100.0	0.0	0.0
	32	125.0-129.0	3.0	64.0	102.0	0.0	0.0
-	33	129.0-132.0	3.0	82.0	115.0	0.0	0.0
	34	132,0-135,0	3.0	43.0	69.0	0.0	0.0
	35	135.0-138.0	3.0	45.0	153.0	8.0	0.0
-	36	138.0-141.0	3.0	95.0	124.0	0.0	0.2
	37	141.0-144.0	3.0	29.0	98.0	0.0	0.0
	38	144.0-147.0	3.0	43.0	82.0	0.0	0.1
	39	147.0-150.0	3.0	98.0	77.0	1.0	0.0
-	40	150.0-153.0	3.0	86.0	83.0	0.0	0.0
	41	153.0-156.0	3.0	82.0	70.0	1.0	0.0
	42	156.0-159.0	3.0	118.0	84.0	0.0	0.0
-	43	159.0-162.0	3.0	116.0	75.0	0.0	0.0
	44	162.0-165.0	3.0	140.0	85.0	0.0	0.0
	45	165.0-168.0	3.0	115.0	58.0	0.0	0.0
-	46	168.0-171.0	3.0	120.0	82.0	0.0	0.0
	47	171.0-174.0	3.0	187.0	72.0	0.0	0.0
	48	174.0-177.0	3.0	125.0	80.0	0.0	0.0
	49	177.0-180.0	3.0	43.0	41.0	2.0	0.0
~	50	180.0-183.0	3.0	124.0	78.0	4.0	0.0
	51	183.0-186.0	3.0	137.0	150.0	1.0	0.0
	52	186.0-189.0	3.0	122.0	75.0	0.0	0.0

IN AU COLUMN 3 INDICATES (SPPB

IN AG COLUMN O INDICATES (. 1PPM

	KAM	LOOPS RESEARCH	B.C.	CERTIFIE	D ASSAYE	RS					
	ASS	LABORATORY	912 L PHONE	AVAL CRE 372-278	SCENT, K 4 - TELE	AMLCOPS, X 048-83	B.C. (20 - Fr	121	C 3	5 P5 72 111	2
		GEO	CHEMICA	L LAB RE	PORT						
		MINOREX CONSULTING				DATE	DE	E	MB	ER 18.	1987
		P.O. BOX 12122									
		SUITE #511-808 NEL VANCOUVER, B.C. V6Z 2H2	SON STR	EET		FILE	NO.		3	1883	
		PROJECT: P87-26					PAGE	1	1	s	
RAL	NO.	IDENTIFICATION	AU	CU	ZN	MO	AG				
1		26.5-30.0 R87-3	3.0	1.0	35.0	0.0	0.0				
à		30.0-33.0	3.0	1.0	26.0	0.0	0.0				
3		33.0-36.0	3.0	1.0	22.0	0.0	0.0				
4		36.0-39.0	3.0	3.0	30.0	1.0	0.0				
5		39.0-42.0	3.0	1.0	24.0	2.0	0.0				
6		42.0-45.0	3.0	52.0	30.0	3.0	0.0				
7		45.0-48.0	3.0	3.0	26.0	3.0	0.0				
.9		48.0-51.0	3.0	6.0	30.0	1.0	0.0				
9		51.0-54.0	3.0	5.0	23.0	2.0	0.0				
1	0	54.0-57.0	3.0	3.0	22.0	1.0	0.0				
1	1	57.0-60.0	3.0	89.0	25.0	3.0	0.0				
1	2	60.0-63.0	3.0	12.0	18.0	2.0	0.0				
1	3	63.0-65.0	3.0	5.0	21.0	1.0	0.0				
1	4	66.0-69.0	3.0	10.0	22.0	1.0	0.0				
1	5	69.0-72.0	3.0	17.0	23.0	2.0	0.0				
1	6	72.0-75.0	3.0	5.0	21.0	2.0	0.0				
1	7	75.0-78.0	3.0	3.0	20.0	2.0	0.0				
1	8	78.0-81.0	3.0	3.0	16.0	1.0	0.0				
1	9	81.0-84.0	3.0	6.0	17.0	3.0	0.0				
a	20	84.0-87.0	3.0	6.0	14.0	3.0	0.0				
2	1	87.0-90.0	3.0	4.0	11.0	1.0	0.0				
2	22	90.0-93.0	3.0	3.0	12.0	4.0	0.0				
2	23	93.0-96.0	3.0	3.0	12.0	3.0	0.0				
a	4	96.0-99.0	3.0	4.0	18.0	11.0	0.0				
a	25	39.0-102.0	3.0	3.0	15.0	7.0	0.0				
3	26	102.0-105.0	3.0	3.0	13.0	2.0	0.0				
a	27	105.0-108.0	3.0	3.0	14.0	1.0	0.0				
a	28	108.0-111.0	3.0	4.0	11.0	2.0	0.0				
3	29	111.0-114.0	3.0	3.0	10.0	1.0	0.0				
3	so	114.0-117.0	3.0	2.0	10.0	1.0	0.0				

can.

RF	AL NO.	FILE NO. G 1883 IDENTIFICATION	AU	cu	ZN	MO	PAGE 2/2 AG
	31	117.0-120.0	3.0	3.0	7.0	1.0	0.0
	32	120.0-123.0	3.0	3.0	16.0	0.0	0.0
-	33	123.0-126.0	3.0	3.0	10.0	1.0	0.0
-	34	126.0-129.0	3.0	2.0	10.0	1.0	0.0
	35	129.0-132.0	3.0	3.0	11.0	0.0	0.0
	36	132.0-135.0	3.0	7.0	13.0	1.0	0.0
	37	135.0-138.0	3.0	4.0	11.0	2.0	0.0
	38	138.0-141.0	3.0	3.0	13.0	2.0	0.0
	39	141.0-144.0	3.0	5.0	15.0	2.0	0.0
-	40	144.0-147.0	3.0	5.0	22.0	1.0	0.0
	41	147.0-150.0	3.0	41.0	43.0	6.0	0.0
	42	150.0-153.0	3.0	7.0	23.0	3.0	0.0
2525	43	153.0-156.0	40.0	9.0	26.0	113.0	0.7
-	44	156.0-159.0	3.0	5.0	25.0	29.0	O. 1
	45	159.0-162.0	3.0	3.0	17.0	5.0	0.0
	46	162.0-165.0	3.0	3.0	16.0	2.0	0.0
	47	165.0-168.0	3.0	4.0	15.0	2.0	0.3
	48	168.0-171.0	3.0	5.0	13.0	1.0	0.0
	49	171.0-174.0	3.0	10.0	23.0	12.0	0.2
	50	174.0-177.0	3.0	15.0	41.0	4.0	0.2
	51	177.0-180.0	3.0	6.0	20.0	4.0	0.1

IN AU COLUMN 3 INDICATES (5PPB IN MO COLUMN O INDICATES (1PPM IN AG COLUMN O INDICATES (.1PPM

Ţ

-	KAM	LOOPS RESEARCH	B.C.	CERTIFIE	D ASSAYE	RS					
-	AS	LABORATORY	912 L PHONE	AVAL CR	ESCENT, K 34 - TELE	AML00PS, X 048-83	B.C. 20 - F	V2C AX	37	12 11	112
		GEO	CHEMIC	AL LAB RE	EPORT						
-											
		MINDREX CONSULTING	l)			DATE	DE	CEN	IBE	R 2:	1987
-		SUITE 511 808 NELS VANCOUVER B.C. V6Z 2H2	ON STR	EET		FILE	NO.		G	1886	
- Rf	AL NO.	PROJECT: P-87-25	AU	cu	ZN	ма	PAGE AG	1	/	1	
	1	32.3-36.0 R87-4	3.0	63.0	77.0	5.0	0.0				
	2	36-39	3.0	72.0	90.0	5.0	0.0				
	3	39-42	3.0	57.0	81.0	5.0	0.0				
	4	42-45	3.0	53.0	85.0	5.0	0.0				
	5	45-48	3.0	28.0	70.0	4.0	0.0				
	6	48-51	3.0	23.0	63.0	10.0	0.0				
-	7	51-54	3.0	30.0	48.0	3.0	0.2				
	в	54-57	3.0	63.0	81.0	3.0	0.3				
	5	57-60	3.0	72.0	82.0	5.0	0.2				
	10	60-63	3.0	45.0	77.0	3.0	0.5				
-	11	63-66	3.0	106.0	74.0	5.0	0.4				
	12	66-69	3.0	241.0	77.0	2.0	0.4				
	13	69-72	3.0	103.0	90.0	1.0	0.2				
-	14	72-75	3.0	58.0	89.0	10.0	0.0				
	15	75-78	3.0	65.0	97.0	9.0	0.2				
	16	78-81	3.0	54.0	84.0	7.0	0.0				
-	17	81-84	3.0	58.0	132.0	6.0	0.0				
	18	84-87	3.0	75.0	105.0	4.0	0.2				
	19	87-90	3.0	72.0	89.0	7.0	0.3				
	20	90-93	3.0	85.0	87.0	4.0	0.2				
-	21	93-96	3.0	62.0	85.0	3.0	0.3				

IN AU COLUMN 3 INDICATES (SPPB

IN AG COLUMN O INDICATES (. 1PPM

_

B.C. CERTIFIED ASSAYERS KAMLOOPS RESEARCH 8 912 LAVAL CRESCENT, KAMLOOPS, B.C. V2C 5P5 ASSAY LABORATORY PHONE 372-2784 - TELEX 048-8320 - FAX 372 1112 LTD. GEOCHEMICAL LAB REPORT MINOREX CONSULTING DATE DECEMBER 30, 1987 P.O. BOX 12122 FILE NO. G 1888 SUITE #511 - 808 NELSON STREET VANCOUVER. B.C. V6Z 2H2 PROJECT: P87-26 PAGE 1 / 3
 IDENTIFICATION
 AU
 CU
 ZN
 MO
 AG

 84-87
 R87-4
 3.0
 82.0
 135.0
 4.0
 0.1

 87-90
 3.0
 78.0
 108.0
 8.0
 0.2

 90-93
 3.0
 87.0
 95.0
 3.0
 0.1

 93-96
 3.0
 61.0
 103.0
 4.0
 0.1

 96-99
 3.0
 83.0
 97.0
 4.0
 0.2

 99-102
 3.0
 56.0
 103.0
 6.0
 0.2

 105-108
 3.0
 48.0
 82.0
 5.0
 0.1

 108-111
 3.0
 50.0
 123.0
 12.0
 0.1

 114-117
 3.0
 65.0
 111.0
 5.0
 0.1

 117-120
 3.0
 71.0
 114.0
 2.0
 0.0

 120-123
 3.0
 62.0
 120.0
 7.0
 0.2

 123-126
 3.0
 108.0
 143.0
 6.0
 0.3

 122-132
 3.0
 "RAL NO. IDENTIFICATION AU CU ZN MO AG 1 2 3 4 5 6 102-105 7 8 105-108 9 108-111 10 111-114 11 114-117 12 117 117-120 120-123 123-126 12 13 14 15 129-132 132-135 16 17 135-138 18
 19
 138-141

 20
 141-144

 21
 144-147

 22
 147-150
19 150-153 153-156 156-159 159-162 23 24 25 26 27 28 165-168 29 30

. . .

.

....

RF	AL NO.	FILE NO. G 1888 IDENTIFICATION	AU	cu	ZN	MO	PAGE 2/3 AG
		174-177 887-4	2.0	75.0	195.0	13.0	
	31	177-180	3.0	84.0	141.0	8.0	0.0
	32	100-103 007-4	3.0	45.0	100.0	5.0	0.0
-	33	16 2-10 007-5	3.0	51.0	79.0	3.0	0.2
	34	10-01	3.0	90.0	54.0	2.0	0.0
	33	21-24	3.0	42.0	71.0	1.0	0.1
_	30	24-27	3.0	43.0	44.0	1.0	0.0
-	30	27-30	3.0	40.0	38.0	2.0	0.0
	39	30-33	3.0	69.0	37.0	1.0	0.0
	40	33-36	3.0	127.0	45.0	1.0	0.0
-	41	36-39	3.0	36.0	34.0	3.0	0.0
	42	39-42	3.0	27.0	32.0	4.0	0.0
	43	42-45	3.0	17.0	30.0	5.0	0.0
-	44	45-48	3.0	21.0	23.0	4.0	0.0
	45	48-51	3.0	9.0	35.0	1.0	0.0
	46	51-54	3.0	26.0	21.0	2.0	0.0
-	47	54-57	3.0	13.0	27.0	2.0	0.0
	48	57-60	3.0	18.0	32.0	4.0	0.0
	49	60-63	3.0	31.0	35.0	3.0	0.0
	50	63-66	3.0	12.0	27.0	2.0	0.0
-	51	66-69	3.0	18.0	37.0	2.0	0.0
	52	69-72	3.0	22.0	23.0	3.0	0.0
	53	72-75	3.0	18.0	34.0	2.0	0.0
-	54	75-78	3.0	9.0	49.0	2.0	0.0
	55	78-81	3.0	7.0	32.0	4.0	0.0
	56	81-84	3.0	21.0	44.0	3.0	0.0
-	57	84-87	3.0	12.0	32.0	2.0	0.0
	58	87-90	3.0	42.0	31.0	3.0	0.0
	59	90-93	3.0	25.0	53.0	3.0	0.0
1	60	93-96	3.0	16.0	54.0	3.0	0.0
-	61	96-99	20.0	12.0	40.0	3.0	0.0
	62	99-102	5.0	36.0	43.0	6.0	0.0
	63	102-105	3.0	14.0	18.0	3.0	0.0
-	64	105-108	3.0	5.0	20.0	2.0	0.0
	65	108-111	3.0	79.0	150.0	5.0	0.2
	66	111-114	3.0	67.0	442.0	10.0	0.2
	67	114-117	3.0	56.0	163.0	5.0	0.2
	68	117-120	3.0	77.0	115.0	4.0	0.1
	69	120-123	3.0	62.0	200.0	3.0	0.2
	70	123-126 R87-5	3.0	63.0	158.0	2.0	0.0

_

1

RA	L NO.	FILE NO. G 1888 IDENTIFICATION	AU	CU	ZN	мо	PAGE 3/3 AG
-	71	126-129 R87-5	3.0	10.0	62.0	3.0	0.0
	72	129-132	3.0	7.0	54.0	3.0	0.1
	73	132-135	3.0	90.0	272.0	4.0	0.2
-	74	135-138	3.0	61.0	112.0	7.0	0.3
	75	138-141	3.0	69.0	140.0	5.0	0.3
	76	141-144	3.0	37.0	106.0	2.0	0.0
-	77	144-147	3.0	33.0	102.0	2.0	0.0
	78	147-150	3.0	266.0	795.0	2.0	0.0
	79	150-153	3.0	230.0	389.0	2.0	0.1
-	80	153-156	3.0	133.0	153.0	2.0	0.1
558	81	156-159	3.0	88.0	61.0	0.0	0.2
	82	159-162	3.0	85.0	146.0	2.0	0.1
	83	162-165	3.0	74.0	83.0	8.0	0.3
-	84	165-168	3.0	97.0	46.0	1.0	0.0
	85	168-171	3.0	91.0	49.0	0.0	0.0
	86	171-174	3.0	81.0	64.0	2.0	0.0
-	87	174-177	3.0	83.0	54.0	1.0	0.0
	88	177-180	3.0	80.0	55.0	2.0	0.0
	89	180-183	3.0	58.0	53.0	1.0	0.1
-	90	183-186	3.0	61.0	58.0	2.0	0.0
10.0	91	186-189	3.0	80.0	57.0	2.0	0.0
	92	189-192	3.0	65.0	64.0	2.0	0.0

. . . .

IN AU COLUMN 3 INDICATES (SPPB

IN MO COLUMN O INDICATES (1PPM

IN AG COLUMN O INDICATES (.1PPM

	HB	LTD.	FORY	912 PHON	LAVAL CR E 372-27	ESCENT, M 84 - TELE	(AMLOOPS, EX 048-83)	8.C. 9 20 - Fi	AX AX	37	2 11	12
			GI	EOCHEMIC	AL LAB R	EPORT						
		MINOREX CO		NG			DATE	JA	NUA	RY	5,	1988
6		P.O. BOX : SUITE #51:	12122	NELSON	STREET		FILE	NO.		G	1890)
		VANCOUVER, V6Z 2H2	B.C.									
ROI	NO	IDENTIFIC		80	CU	ZN	MO	PAGE	1	/ :	2	
											-	
	1	90.5-93	R87-6	3.0	27.0	73.0	5.0	0.1				
1	2	93-96		3.0	26.0	122.0	1.0	0.0				
	3	96-99	34	3.0	52.0	114.0	1.0	0.1				
13	4	99-102		3.0	77.0	121.0	0.0	0.3				
	5	102-105		3.0	64.0	85.0	0.0	0.1				
1	6	105-108		3.0	60.0	78.0	0.0	0.0				
	7	108-111		3.0	56.0	136.0	0.0	0.0				
	8	111-114		3.0	27.0	68.0	0.0	0.1				
	9	114-117		3.0	28.0	66.0	1.0	0.2				
	10	117-120		3.0	97.0	66.0	0.0	0.3				
	11	120-123		3.0	96.0	55.0	0.0	0.2				
	12	123-126		3.0	55.0	57.0	0.0	0.0				
	13	126-129		3.0	201.0	156.0	1.0	0.5				
	14	129-132		3.0	134.0	81.0	0.0	0.2				
	15	132-135		3.0	85.0	60.0	6.0	0.5				
	16	135-138		3.0	73.0	78.0	7.0	0.2				
	17	138-141		3.0	47.0	62.0	0.0	0.0				
	18	141-144		3.0	62.0	64.0	0.0	0.1				
	19	144-147		3.0	58.0	56.0	0.0	0.1				
	20	147-150		3.0	76.0	89.0	0.0	0.2				
	21	150-153		3.0	76.0	106.0	0.0	0.2				
	22	153-156		3.0	190.0	142.0	3.0	0.6				
	23	156-159		3.0	102.0	447.0	27.0	0.6				
	24	159-162		3.0	84.0	301.0	26.0	1.4				
	25	162-165		3.0	121.0	718.0	90.0	5.5				
	26	165-168		3.0	354.0	1246.0	37.0	1.8				
	27	168-171		3.0	362.0	727.0	17.0	1.4				
	28	171-174		3.0	245.0	530.0	6.0	0.9				
	29	174-177		3.0	393.0	528.0	2.0	1.1				
	30	177-180	R87-6	3.0	47.0	133.0	1.0	0.3				

.

•	KAMLOOPS A	RESEARCH	& ASSAY	LABORA	TORY LTD.			
RAL NO.	FILE NO. IDENTIFIC	G 1890 ATION	AU	си	ZN	MO	PAGE AG	5/5
31	180-183	R87-6	3.0	26.0	112.0	9.0	0.1	
32	186-189		3.0	10.0	111.0	0.0	0.1	
- 33	189-192	R87-6	3.0	13.0	66.0	0.0	0.2	

IN AU COLUMN 3 INDICATES (SPPB

IN MO COLUMN O INDICATES (1PPM

IN AG COLUMN O INDICATES (.1PPM

-

	KAM	LOOPS RESEARCH	OPS RESEARCH B.C. CERTIFIED ASSAYERS								
	AS	SAY LABORATORY	912 L PHONE	AVAL CRE 372-278	SCENT, K 4 - TELE	AML00PS, X 048-83	B.C. V 20 - FF	120	37	iP5 72 11	12
•											
		G	EDCHEMICA	L LAB RE	PORT						
									220		
		P.O. BOX 12122	NG			DATE	JAN	UA	RY	8.	1988
•		SUITE 511, 808 N VANCOUVER, B.C. V6Z 6H3	ELSON STR	EET		FILE	NO.		G	1891	
2		PROJECT P87-26					DARE	1	,	2	
RA	AL NO.	IDENTIFICATION	AU	CU	ZN	мо	AG	-	<u>.</u>	-	
	1	59.7-63 87-7	3.0	29.0	35.0	1.0	0.0				
	3	63-66	3.0	35.0	64.0	2.0	0.2				
	3	66-69	3.0	36.0	86.0	1.0	0.0				
	4	69-72	3.0	66.0	52.0	1.0	0.0				
	5	72-75	3.0	31.0	26.0	1.0	0.0				
	6	75-78	3.0	25.0	17.0	0.0	0.0				
	7	78-81	3.0	21.0	30.0	2.0	0.0				
	8	81-84	3.0	25.0	81.0	. 0.0	0.0				
	9	84-87	3.0	26.0	39.0	3.0	0.0				
	10	87-90	3.0	20.0	14.0	1.0	0.0				
	11	90-93	3.0	24.0	42.0	2.0	0.0				
	12	93-96	3.0	12.0	23.0	1.0	0.0				
	13	96-99	3.0	8.0	31.0	0.0	0.0				
	14	99-102	3.0	4.0	43.0	3.0	0.0				
	15	102-105	3.0	40.0	40.0	1.0	0.0				
	16	105-108	3.0	44.0	59.0	1.0	0.0				
5	17	108-111	3.0	46.0	71.0	5.0	0.1				
	18	111-114	3.0	13.0	50.0	3.0	0.0				
	19	114-117	3.0	4.0	50.0	1.0	0.0				
	20	117-120	3.0	2.0	34.0	2.0	0.0				
	21	120-123	3.0	3.0	37.0	0.0	0.0				
	55	123-126	3.0	2.0	39.0	0.0	0.0				
	53	126-129	3.0	4.0	63.0	1.0	0.0				
	24	129-132	3.0	3.0	37.0	0.0	0.0				
	25	132-135	3.0	5.0	40.0	5.0	0.0				
	26	135-138	3.0	2.0	35.0	1.0	0.0				
6	27	138-141	3.0	1.0	32.0	0.0	0.0				
	28	141-144	3.0	1.0	39.0	0.0	0.0				
	29	144-147	3.0	1.0	34.0	0.0	0.0				
	30	147-150 87-7	3.0	2.0	38.0	0.0	0.2				

-

.* *

R	L NO.	FILE NO. G 1891 IDENTIFICATION	AU	cu	ZN	MO	PAGE 2/2 AG
	31	150-153 87-7	3.0	5.0	60.0	2.0	0.0
	32	153-156	3.0	3.0	51.0	0.0	0.0
-	33	156-159	3.0	3.0	52.0	0.0	0.0
-	34	159-162	3.0	4.0	35.0	2.0	0.2
	35	162-165	3.0	55.0	58.0	3.0	0.1
	36	165-168	3.0	31.0	41.0	3.0	0.5
-	37	168-171	3.0	83.0	131.0	5.0	0.6
	38	171-174	3.0	1105.0	4000.0	2.0	2.5
	39	174-177	3.0	1382.0	1620.0	2.0	3.0
-	40	177-180	3.0	628.0	1171.0	3.0	2.1
	41	180-183	3.0	792.0	1988.0	9.0	2.6
	42	183-186A	3.0	676.0	4000.0	7.0	3.1
-	43	183-186B	5.0	758.0	4000.0	7.0	3.2
-	44	186-189	25.0	4000.0	2520.0	9.0	5.5
	45	189-192	3.0	1285.0	1113.0	6.0	1.9
	46	192-195	3.0	2640.0	1720.0	11.0	3.0
-	47	195-198	3.0	502.0	172.0	7.0	1.1
	48	198-201	3.0	295.0	196.0	4.0	1.2
	49	201-204	3.0	207.0	138.0	3.0	0.6
-	50	204-207	3.0	78.0	131.0	3.0	0.2
	51	207-210	3.0	109.0	180.0	5.0	0.2
	52	210-213	5.0	66.0	216.0	4.0	0.2
	53	213-216	3.0	82.0	150.0	2.0	0.2
-	54	216-219	3.0	67.0	173.0	2.0	0.1
	55	219-222	3.0	70.0	168.0	4.0	0.4
	56	222-225	3.0	16.0	124.0	5.0	0.3
-	57	225-228	3.0	18.0	60.0	2.0	0.4
	58	228-231	3.0	21.0	92.0	5.0	0.2
	59	231-234	3.0	15.0	81.0	1.0	0.2
-	60	234-237	3.0	15.0	60.0	1.0	0.1
	61	237-240	3.0	18.0	91.0	1.0	0.0
	62	240-243	3.0	13.0	65.0	0.0	0.0
	63	243-246	3.0	12.0	61.0	0.0	0.0
-	64	246-249	3.0	41.0	83.0	1.0	0.1
	65	249-252	3.0	13.0	45.0	4.0	0.0
	66	252-255 87-7	3.0	10.0	57.0	3.0	0.0

IN AU COLUMN 3 INDICATES (SPPB

IN CU COLUMN 4000 INDICATES > 4000PPM

IN ZN COLUMN 4000 INDICATES > 4000PPM

IN MO COLUMN O INDICATES (1PPM

IN AG COLUMN O INDICATES (. 1PPM

Member Canadian Testing Association		912 - 1 LAVA PHONE: (C CERT	L CRESCENT - KA V2C 5P5 504) 372-2784 - TEL	MLOOPS, B. EX: 048-8320 ASSAY	с.			META	LLURGIST	S
70 <u>M</u>	inorex Consulting			93			Certifi	icate No.	G 1891	_
P	.0. Box 12122	u2		0 15 0 1	D97 26		Date	Janu	ary 14.	1988
3 II	creby certify that the for	ollowing are the result	s of assays made	by us upor	the herein c	lescribed		S	amples	
Kral No	Marked	Zn	Cu							
		percent	percent							-
1. 2. 3. 4.	171-174 183-186A 183-186B 186-189	.64 .58 .55 	 .46							
			2.4							

unless otherwise arranged.

.

Registered Assayer, Province of British Columbia 11

	KAM	OOPS RESEARCH	в.с.	B.C. CERTIFIED ASSAYERS							
	0.00	&			CODENT V	OMI 0000		90 50	05		
	HSS	I TD	A - TELE	X 048-83	20 - FA	X 37	2 11	12			
		LID.	PHONE	- ore-ere	34 ICEE	A 040 00		A 9/1			
		GE		AL LAB RE							
		MINOREY CONSULTIN	6			DOTE	TON	ILARY	15.	198	
		P. O. BOX 12122	-								
2		SUITE 4511-808 NE	SON STA	REET		FILE	NO.	G	1893		
		VANCOUVER. B.C.				100.000		-			
		VEZ 2H2									
3		PROJECT: P87-26									
							PAGE	1/1	2		
RAL	NO.	IDENTIFICATION	AU	CU	ZN	мо	AG				
	1	114.3-117.3 R87	-8								
			5.0	41.0	92.0	1.0	0.0				
	2	117.3-118.9	10.0	36.0	79.0	2.0	0.0				
	3	118.9-121.9	20.0	40.0	85.0	5.0	O. 1				
	4	121.9-125	15.0	42.0	92.0	5.0	0.2				
	5	125-126.8	5.0	40.0	110.0	2.0	0.1				
	6	126.8-128	3.0	69.0	98.0	5.0	0.1				
	7	128-129.2	3.0	43.0	94.0	1.0	0.0				
	8	129.2-131	3.0	30.0	76.0	1.0	0.0				
	9	132.6-135	3.0	75.0	213.0	3.0	7.2				
-	10	135-138	3.0	33.0	120.0	1.0	1.7				
	11	138-141	3.0	26.0	115.0	0.0	1.6				
	12	141-144	3.0	72.0	122.0	0.0	0.8				
	13	144-147	3.0	52.0	134.0	0.0	0.9				
	14	147-150	3.0	18.0	123.0	0.0	0.5				
	15	150-153	3.0	32.0	77.0	0.0	0.7				
	16	153-156	3.0	30.0	12.0	0.0	0.3				
	17	156-159	3.0	34.0	107.0	0.0	0.5				
	18	123-165	3.0	15.0	68.0	1.0	0.3				
	19	162-165	3.0	30.0	54.0	1.0	0.3				
	20	160-171	3.0	175 0	70.0	0.0	0.2				
	22	100-1/1	3.0	109.0	79.0	3.0	0.5				
	22	174-177	3.0	104.0	62.0	1.0	0.1				
	24	177-180	3.0	84.0	79.0	1.0	0.1				
	05	100-183	3.0	78.0	119.0	2.0	0.2				
	26	197-195	3.0	30.0	172.0	2.0	0.2				
	07	100-100	3.0	7.0	122.0	2.0	0.4				
	20	100-100	3.0	27 0	186.0	2.0	0.4				
	29	192-195	3.0	60.0	227.0	2.0	0.4				
			2.0	46.0	614 0	2.0	0.7				

-

KAMLOOPS	RESEARCH	8	ASSA	LABORATORY	LTD.
	GEOCHEMICA	AL.	LAB F	REPORT	

RF	IL NO.	FILE NO. G 1893 IDENTIFICATION	AU	cu	ZN	мо	PAGE 2/2 AG
-	31	198-201	3.0	41.0	141.0	2.0	0.6
	32	201-204	3.0	35.0	158.0	2.0	0.2
	33	204-207	3.0	49.0	134.0	3.0	0.9
-	34	207-210	3.0	106.0	131.0	6.0	2.1

- IN AU COLUMN 3 INDICATE (SPPB

IN MO COLUMN O INDICATES (1PPM

IN AG COLUMN O INDICATES (.1PPM

	KAM	LOOPS RESEARCH	в.с.	B.C. CERTIFIED ASSAYERS						
	ASS	SAY LABORATORY	912 PHON	LAVAL CRE	B.C. V	2C 5P5 X 372 11:	12			
•										
		GE		AL LAB RE	EPORT					
		MINOREX CONSULTING	G LTD.			DATE	I JAN	UARY 15.	1988	
		SUITE #511 - 808 / VANCOUVER, B.C. V6Z 2H2	NELSON	STREET		FILE	. NO.	G 1894		
4	2	PROJECT: P87-26					PAGE	1/2		
RAL	NO.	IDENTIFICATION	AU	cu	ZN	MO	AG			
999	1	21-24 R87-9	3.0	81.0	113.0	4.0	0.0	8196-224-		
	2	24-27	3.0	99.0	248.0	3.0	0.0			
	3	27-30	3.0	100.0	254.0	3.0	0.2			
	4	30-33	3.0	83.0	83.0	1.0	0.0			
	5	33-36	3.0	94.0	84.0	3.0	0.1			
	6	36-39	3.0	83.0	97.0	2.0	0.1			
	7	39-42	3.0	8.0	110.0	3.0	0.0			
	8	42-45	3.0	18.0	120.0	2.0	0.0			
	Э	45-48	3.0	6.0	115.0	1.0	0.0			
	10	48-51	3.0	4.0	112.0	1.0	0.0			
	11	51-54	3.0	10.0	121.0	5.0	0.0			
	12	54-57	3.0	17.0	133.0	2.0	0.0			
	13	57-60	3.0	24.0	133.0	1.0	0.0			
	14	60-63	3.0	17.0	132.0	1.0	0.0			
	15	63-66	3.0	30.0	138.0	2.0	0.0			
	16	66-69	3.0	34.0	156.0	13.0	0.6			
	17	69-72	3.0	11.0	93.0	3.0	0.0			
	18	72-75	3.0	8.0	102.0	2.0	0.0			
	19	75-78	3.0	45.0	94.0	3.0	0.1			
	50	78-81	3.0	67.0	87.0	3.0	0.0			
	21	81-84	3.0	52.0	81.0	3.0	0.1			
	22	84-87	3.0	5.0	96.0	0.0	0.0			
	23	87-30	3.0	2.0	84.0	0.0	0.0			
	24	90-93	3.0	1.0	89.0	0.0	0.0			
	20	32-36	3.0	11.0	86.0	0.0	0.0			
	07	36-33	3.0	24.0	94.0	0.0	0.0			
	20	102-105	3.0	3.0	90.0	0.0	0.0			
	20	105-109	3.0	5.0	86.0	0.0	0.0			
	20	108-111	3.0	14.0	34.0	0.0	0.0			
	30	100-111	3.0	14.0	30.0	0.0	0.0			

-

	-	
	-	

*

		ET:	-	ID GI	00	A A A A A A A A A A A A A A A A A A A	CPURI			DOGE 2/2
RAL	. NO.	IDE	ENTI	FICATIO	NN	AU	CU	ZN	мо	AG
	31	1	11-	-114		3.0	3.0	93.0	0.0	0.0
	32	1	114-	-117		3.0	16.0	96.0	0.0	0.0
-	33	1	117-	-120		3.0	5.0	80.0	0.0	0.0
	34	1	120-	-123		3.0	45.0	95.0	2.0	0.0
	35 123-126					3.0	63.0	85.0	2.0	0.0
1.00	36	1	126-	-129		3.0	65.0	82.0	1.0	0.0
-	37	;	129-	-132		3.0	66.0	111.0	2.0	0.0
	38		132-	-135		3.0	42.0	226.0	27.0	0.5
	39	1	135-	-138		3.0	11.0	189.0	10.0	0.1
-	40	4	138-	-141		3.0	10.0	99.0	9.0	0.2
	41		141-	-144		3.0	14.0	129.0	7.0	0.1
	42		144-	-147		3.0	7.0	125.0	3.0	0.0
-	43	3	147-	-150		3.0	6.0	99.0	3.0	0.0
	44	1	150-	-153		3.0	57.0	82.0	2.0	0.0
	45	- i	153-	-156		3.0	68.0	80.0	2.0	0.0
	46		156-	-159		3.0	61.0	72.0	1.0	0.0
-	47		159-	-162		3.0	53.0	68.0	1.0	0.0
	48		162-	-165		3.0	59.0	65.0	1.0	0.0
	49		165-	-168		3.0	61.0	83.0	2.0	0.0
-	50		168-	-171		. 3. 0	64.0	87.0	1.0	0.0
	51	171-174				3.0	70.0	149.0	2.0	0.0
	52		174.	-177		3.0	61.0	83.0	1.0	0.0
-	53		177-	-180		3.0	64.0	66.0	2.0	0.0
-	54		180-	-183		3.0	113.0	365.0	31.0	1.0
	55	1	183-	-186		3.0	80.0	402.0	40.0	0.6
	56	1	186.	-189		3.0	74.0	295.0	25.0	0.2
-	57	4	189.	-192		3.0	40.0	80.0	9.0	0.0
	58	2	192.	-195		3.0	56.0	304.0	38.0	0.9
	59		195.	-198		3.0	82.0	371.0	49.0	1.4
_	60		198.	-201		3.0	100.0	435.0	47.0	1.1
	61	-	201.	-204		3.0	96.0	442.0	40.0	1.2
	91		-01	204		1	50.0	446.0		
-		IN	AU	COLUMN	3	INDICATES	(SPPB	35		
-		IN	MO	COLUMN	0	INDICATES	(1PPM			
-		IN	AG	COLUMN	0	INDICATES	(.1PPM			
-										

Appendix VI

Drill Logs

9

Hole R87-1 L21+96W 8+00S Depth 182.9 metres Start Dec.4, 1987 Finish Dec. 7, 1987

From	To	Colour	Description
0.0	11.6	Hole is dri Overburden	lled dry to approximately 86.8 metres
11.6	18.3	Bedrock	Volcanic Rhyolite (with lesser Andesites) Cased to 18.3, Pale grey volcanic, 2-3% py

Alternating bands of Rhyolites and Andesites from 11.6 through to 134.1 metres, up to 5% pyrite in places with variable amounts of sericite and chlorite alteration, no copper sulphides seen, pyrite is the only sulphide mineral identified. No noticeable amounts of magnetic or carbonate minerals. Malachite observed once (76.2 metres)

18.3	21.3	Pale Grey	light coloured volcanic, minor sericite, 1% py
21.3	24.4		as above, 40% qtz./felsic with sericite, 60% pale
			green fragments, similar to above
24.4	27.4		primarily pale green vol. as above, minor chl. and ser.
	12500.000		1-2% pyrite
27.4	30.5		as above
30.5	33.5	•	as above, slight increase pyrite
33.5	36.6	-	as above
36.6	39.6	•	as above, increased alteration and pyrite
39.6	42.7		pale green volcanic, increased alteration, 3% pyrite
42.7	45.7	(*)	similar to above, paler fragments
45.7	48.8		as above, increased pyrite (3%)
48.8	51.8	11 🖤 1	similar to above, minor quartz, sericite, chlorite
51.8	54.9		as above, increasing green fragments, 3% pyrite
54.9	57.9	•	unit change, increased chlorite alteration
57.9	61.0		pale grey, white fragments, sericitic, 1% pyrite
61.0	64.0		similar to above
64.0	67.1	•	similar to above, trace clay minerals/alteration
67.1	70.1		as above 1-2% pyrite
70.1	73.2	•	as above, 30% white fragments, 70% pale grey green,
1. J.			1% pyrite
73.2	76.2		as above, more siliceous?
76.2	79.2	•	similar to above, increased oreen fragments, increased
147-1413	MARKER		alteration, sericite and chlorite, 2% pyrite, trace mal.
79.2	82.3		paler coloured than above, less alteration, 1% pyrite
82.3	85.3		similar to above, increased ovrite
85.3	88.4		similar to above, first 5' dry, last 5' wet, two 5'
			samples taken here
			Hole drilled wet from 86.8 metres onwards
88.4	91.4		pale oreen fragments, increased alteration (chlorite)
			and pyrite
91.4	94.5		as above, more chloritic, 3-4% pyrite
94.5	97.5	•	similar to above
97.5	100.6		slightly paler colour, less alteration and sulphides
100.6	103.1		70% arey areen fragments, 30% pale arey, 2%
			pyrite, less alteration
103.1	106.7	*	pale coloured greys and greens, sericitic, 4% sulphide
106.7	109.7		as above. 38 pyrite
109.7	112.8		similar to above, pale coloured fragments, minor clay
			alteration with chlorite and sericite

Hole 87-1 continued

4

112.8	115.8		similar to above, trace pyrite, minor chlorite and sericite with 20% light coloured fragments (quartz and feldener)
115.8	118.9		as showe 30% light coloured fragments
118.9	121.9		as showe 20% light coloured 80% arey areen
			coarse purite to 5mm
121.9	125.0		similar to above, 90% arey areen fragments, 2% py
125.0	128.0		similar to above
128.0	131.1		similar to above, slight oxide with lighter coloured
12010			framents
131.1	134.1		10% white, 30% beine white (oxidized), 60% areen.
			chlorite alteration with 2-3% pyrite
Contac	t Zone.	Volcanic to Intrusiv	
134.1	137.2		paler coloured(arey) fragments, sericitic with 1-2%
			nvrite
137.2	139.0	Grev	as above, no chlorite alteration, less sericite
139.0	140.2		as above, dry sample, slightly oxidized light coloured
	1.1.1		fragments, trace pyrite
140.2	143.3		as above, very siliceous, 1% pyrite, minor oxide, dry
143.3	146.3		mafles more visible, up to 5% (non magnetic), dry
			drilled wet to bottom of the hole
146.3	149.4	Grey/White	light coloured fragments, grey and white, 5%
			mailes, trace epidote, 1% pyrite
			Hole is making water (estimate 1 gallon per minute)
149.4	152.4		as above
152.4	155.5	•	as above, increase in mafic minerals (8%), slight
			oxide tinge to lighter coloured fragments (pink brown)
155.5	158.5	•	similar to above
158.5	161.5		as above, trace chlorite
161.5	164.6		as above, less oxide tinge, mafics (hornblendes?)
164.6	167.6		similar to above
167.6	170.7		as above with 5% pale green alteration mineral, minor
			carbonate (5%), first time noticed in hole.
170.7	173.7		as above with minor hematite-stain
173.7	176.8	•	as above, trace only pyrite
176.8	179.8		as above
179.8	182.9		as above
0.0019	1000		
182.9		End of Hole (60	00') December 7, approximately 6:00 P.M.

Hole ends in an intrusive, this unit is siliceous with very minor alteration, never more than 2% sulphides (pyrite) and no indications of copper mineralization.

Hele Ri Depth	87-2 189.0 metres	L124	+08S	22+20W Start Dec. 9, 1987 Finish Dec. 11,1987
From	Te	Colo	ur	Description
0.0	33.8			Overburden, Cased to 36.6
33.8	36.0	Dark	Green	Volcanic, Andesite? minor chlorite and epidote alteration, trace oxide, no carbonate, 3-5% pyrite
74.0	70.0			with 5-0% quartz fragments
36.0	39.0	Cont	act Zor	as above, similar alteration, 10-12% quartz material
39.0	42.0	Pale	Green	Grey green colours, Rhyolite? sericite alteration, similar quartz vein material, 2-3% sulphides, trace oxides
42.0	45.0	• •		similar to above, sericite and clay alteration, 5-7% subbides
45.0	48.0	• •		similar to above, talc and sericite alteration, slippery feel to chips
48.0	51.0	• •		as above with increase in quartz to 50-60%, trace carbonate, 3-5% pyrite
51.0	54.0	• •		similar to above, probably a quartz sericite schist
54.0	57.0	• •		as above
57.0	60.0			similar to above, paler colour, 3-4% pyrite
60.0	63.0			similar to above
63.0	66.0	Pale	White	with grey green tinge, more siliceous than previous? slightly oxidized with 5% dark green volcanic fragments
66.0	69.0			similar to above 3-48 nurite
69.0	72.0	Pale	Green	fragments slightly darker coloured, increased alteration, 58 quartz fragments
72.0	75.0	•	•	as above, increased quartz (10-20%) 3% dark grey orean chert?
75.0	78.0	s.e.i		as above, less quartz, pale grey green schist, with taic and sericite alteration
78.0	81.0	•	•	similar to above, 10% guartz, 2-4% pyrite
81.0	84.0	•	•	similar to previous, 5% pyrite
84.0	87.0	•	٠	as above, slightly paler coloured, increased alteration?
87.0	90.0		•	as above, 5-8% guartz fragments, 5% pyrite
90.0	93.0	•	•	as above
93.0	96.0	Dark	Green	Andesite, 50% dark green fragments and 30% paler coloured felsic fragments, high pyrite content (20-30%), dark mud seen in mid sample may indicate a semi massive band of sulphides, 5-8% white quartz fragments
96.0	99.0	Dark	Green	Andesite, similar to above, less sulphides (10%), 5-8% quartz fragments
99.0	102.0	•	•	as above, 5-7% quartz fragments, trace epidote & chlorite, 5-7% quartz
102.0	105.0			as previous
105.0	108.0	•		as previous, 8-10% pyrite
108.0	111.0	•	•	similar to above, seems to be increase in alteration minerals, trace carbonate
111.0	114.0	•	•	as above. 10% pyrite. hit semi-massive quartz-carbonate vein at approximately 113.0 metres, probably up to 1 metre thick. Vein carries up to 10% disseminated pyrite similar to bost unit

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

114.0	117.0		•	similar to above, up to 30% vein material, 10% pyrite
117.0	120.0		•	as above, 10% vein material, host unit is paler
				coloured than previous, talc and sericite alteration
120.0	123.0			as above, less quartz-carbonate vein material (10%)
	122200			7-8% avrite
123.0	126.0			as shove 5% ovrite
126.0	129.0			as above 108 vein material 58 suinhides
120.0	123.4			Contact Zone Andesite back into a Dhualite?
120.0	132.0			408 pale white fragments 508 green 28 purite
132.0	135.0	Dala	white	758 note white falsic fragments 108 dank green
102.0	100.0	Fais	HIILO	freements with 39 punits
175.0	138.0	Grau	White	cimilar to show increase in dank green volcanics
100.0	100.0	OLOY	WINCO	trace carbonate 28 anau quartz 38 punite
				Contact Zone anadational from Obvolite to an Andeoite
138.0	141.0	Geau	Green	258 pala coloured fragments 758 dark arou aroan
100.0	141.0	OLEA	OFCEN	ZJA pale coloured fragments, 75A dark grey green,
141.0	144.0	Dank	Cases	59 white quarte freements 3-59 numite
147.0	144.0	Uark	OFEEN	SA white quartz inagments, 5-5% pyrite
147.0	150.0			as above
150.0	155.0			as above
155.0	150.0			as above, increase in pyrite (3-0%)
156.0	159.0			similar to above, nowever mud takes on greener
				colour, increase in chlorite alteration?
159.0	162.0			as above, 5-8% finely disseminated pyrite
162.0	165.0	1	24	as above, however epidote alteration is becoming
		1		noticeable, previously it was very rare
165.0	168.0			as above
168.0	171.0	•		similar to above, fragments darker grey green, darker
				coloured fragments have higher sulphide content than
				previous, epidote still visible
171.0	174.0	•	•	Fragments are paler coloured than previous, minor
				carbonate alteration
174.0	177.0			hit hematitic clay, fault or shear zone? host rock as
				above, slightly calcareous
				Contact Zone, Andesite into Rhyolite?
177.0	180.0	Pale	Grey/Green	Pale coloured Siliceous horizon, pinkish mud, 90% pale
				coloured fragments, 5% pyrite, trace
				quartz/carbonate veins
		_		Gradational back into an Andesite
180.0	183.0	Dark	Green	darker coloured fragments, similar to previous zones,
				5% pyrite
183.0	186.0	1.5		as above
186.0	189.0	0.00	3 9 0	as above

End of Hole 189.0 metres (620')

The stratigraphy in this hole was similar to that encountered in the upper parts of R87-1, however the units in this hele appear to have undergone greater alteration (ie: sericite, talc, epidote). Generally there appears to be more sulphides in this hole (pyrite only). The hole was drilled wet. No economic minerals were seen in this hele.

-

Hole Ri Depth	R87-3 th 180 metres		+855 23+10	BW Start Dec. 12/87 Finish Dec. 14/87
From	Te	Cel	lour	Description
0.0	26.5			Overburden, gravel last metre
				Volcanic Rhvolite
26.5	30.0	Pal	e grey/green	Pale grey/green light coloured fragments, massive rhyolite? sample is a grab sample due to splitting problems (dry/wet sample)
30.0	33.0		•	as above, sericite and talc, minor chlorite, 1% ovrite.
33.0	36.0			as above, similar alteration, 5% dark oney quartz?
36.0	39.0			as above
39.0	42.0	•	•	as above, increase in platey minerals, hole drilled dry to 42 metres then wet.
42.0	45.0		•	as above, increased alteration, corresponding increase in pyrite to 3%, drilled wet to end of hole.
45.0	48.0			as above, pale green with quartz fragments, up to 5-8% pyrite, increased alteration minerals (sericite and taic)
48.0	51.0	•		as above, less alteration, less sulphides
51.0	54.0			as above, pale green fragments, 1-2% sulphides
54.0	57.0	•	•	as above, again noticeable increase in alteration with corresponding increase in sulphides
57.0	60.0	•	•	first metre similar to above, remainder increased alteration, dark grey mud possibly indicating sulphide rich zone, slight HCI reaction, 5% pyrite
60.0	63.0	•	-	similar to above, trace calcareous, 3% ovrite
63.0	66.0	•	•	as above, 3% pyrite
oradatio	nal contact from	n rhvo	lite throught	to more andesitic unit
66.0	69.0	gre	y/green	as above, slightly darker green colour, increased alteration, 3-4% pyrite
69.0	72.0	•		as above, definite increase in alteration, le: chlorite
72.0	75.0			as above
75.0	78.0	•		similar to above, 3% pyrite
78.0	81.0	•	•	similar to above, slightly darker (increased alteration) than previous, 2% pyrite, trace carbonate
gradatio	onal contact zone	to vo	Icanic Rhyolit	Ø
81.0	84.0	•	•	pale grey green fragments, 3% pyrite, trace white quartz, sericite and slight HCI reaction
84.0	87.0	•	•	as above, approximately 5% fragments with increased alteration have up to 10% ovrite
87.0	90.0			similar to above
90.0	93.0	•	·	as above, increase chlorite alteration (greener colour to fragments), sericite. 3-4% pyrite
93.0	96.0	-		Pale grey green fragments, as above 2% pyrite
96.0	99.0			as above
99.0	102.0	•	•	similar to above, but paler coloured, 30% fragments have green tinge, with up to 5% disseminated pyrite
102.0	105.0	•	•	as above
105.0	108.0	•	1811 N	as above
108.0	111.0	•	•	paler coloured than previous, increased sericite

Ř.

111.0	114.0	gre	y/white	pale grey fragments, 2% pyrite, with sericite
114.0	117.0			as above, 1-2% pyrite
117.0	120.0	•		as above, grey tinge to fines, increased pyrite
120.0	123.0	•		similar to above, slight increase in chlorite alteration on 10% of fragments
123.0	126.0	•	•	pale grey fragments, 5% pyrite, chlorite more noticeable
126.0	129.0	•	-	pale white, 5% ovrite
129.0	132.0	•		similar to above
132.0	135.0			as above
135.0	138.0	•	•	similar to above, grey fragments, definite sericite
138.0	141.0		•	colour change, greener, increased alteration, 2-3%
141.0	144.0			as above, arey areen fragments
144.0	147.0	•	•	definite increased alteration, increased chlorite, 5% white quartz, 5% pyrite
147.0	150.0	•	•	similar to above, 10% fragments very chloritic, 15% white guartz, 5-7% sulphide content
150.0	153.0	•	•	changing, 20% chloritic, remaining fragments grey white colour, 5% pyrite
153.0	156.0	•	(• .)	Pale white grey fragments, 5% darker coloured (higher sulphide content), 3% overall sulphide content.
156.0	159.0	1996	•	similar to above, 20% grey fragmentals, 30% greenish tinge (volcanic andesite, chloritic?) with 1% pyrite, 50% pale coloured fragments waith sericite and talc alteration
159.0	162.0	•		increased green fragments, similar pyrite, there is a gradational contact here
		Co	ntact Zone	Rhvolite to an Andesite
162.0	165.0	-		green fragments awith some sericite and talc alteration, 2% pyrite
165.0	168.0		•	as above, 2% pyrite, faintly calcareous
168.0	171.0		-	as above
		C	ontact Zone.	back into a volcanic Rhvolite
171.0	174.0			30% greenish fragments, remainder grey, increased sericite alteration, 5% sulphides
174.0	177.0			back into an Andesite, 3-4% pyrite
177.0	180.0		•	similar to above, 38 pyrite, 4-58 white quartz
	100.0			annual as another are blitted i one unues dam ar

End of Hole 180.0 metres (591 feet)

.

Hele R87-4 L 12+605,36+10W Depth 183metres

Start Dec.15/87 Finish Dec.16/87

This hele appeared to have been collared in units of the Cache Creek group of rocks. The entire intersection in this drill hole consisted of a very dark grey carbonaceous sediment with variable amounts of quartz-carbonate vein? material. Limestones made up narrow intersections within the hole. Sulphides (pyrite only) varied from trace amounts up to 2% maximun. The unit was more calcareous when lighter coloured intervals were intersected. No economic mineralization was seen in this hole.

From	To	Colour	Description
0.0	31.7	Overburden	
			Carbonaceous siltsones and fine grained sedimentary units with variable amounts of calcareous material
31.7	32.3	bedrock	
32.3	36.0	Grey black	less than 10% sample left after screening, fines are black, very carbonaceous, coarse fragments consist of
			quartz-carbonate fragments, some felsic (with clay alteration), trace only pyrite, and the entire unit appears to be very faintly calcareous
36.0	39.0		as above, 2% quartz vein material, trace ovrite
39.0	42.0		similar to above 4-68 white fragments
42.0	45.0		se shove
45.0	48.0	•••	as above, 5% white quartz carbonate, slightly
		525 545	calcareous
48.0	51.0	100	as above, trace pyrite
51.0	54.0		as above, 5-8% white fragments (quartz-carbonate), slightly calcareous
54.0	57.0		similar to above, white and grey fragments, trace pyrite
			very gradational colour change from dark grey to lighter grey takes place over the above interval
57.0	60.0	• •	coarse fragments etc. appear to be as above
60.0	63.0	• •	similar to previous, 5% grey white fragments, more calcareous than darker coloured unit.
63.0	66.0		as above
66.0	69.0		as above 1% ovrite
00.0	03.0		more carbonaceous, unit becomes darker coloured
69.0	72.0		similar to previous, 2% white fragments, 5-7% dark grey fragments with trace of pyrite
72.0	75.0	•••	as above, 5% fragments, trace pyrite, slightly calcareous
75.0	78.0		as above
78.0	81.0		as ahove
70.0	01.0	a unit of a month	colour change to slightly
			lighter colour
81.0	84.0		as above, with increased lighter coloured fragments
84.0	87.0	• •	as above, 5% fragments, vary from white to dark
			grey, slightly calcareous with trace of pyrite
87.0	90.0		as above, 5-7% grey and white fragments
90.0	93.0	• •	as above, slightly calcareous, trace pyrite
93.0	96.0	• •	similar to above, 5% dark grey fragments, 1% white quartz veins, trace pyrite only

00 0											
99.V	102.0		•	85	above						
102.0	105.0	•		85	above, s	slightly	darker	colour.	18	pyrite	
105.0	108.0			85	above						
108.0	111.0	•	•	85	above						
111.0	114.0	•		ver	y dark th trace	powde pyrite	r, 2-3	8 quarta	z-car	bonate fragments	
114.0	117.0	•		85	above						
117.0	120.0	•	•	85	above						
120.0	123.0	1.0	•	sim wit	hilar to th less t	above han 1%	, dark	black,	38	quartz-carbonate	
123.0	126.0	•	•	sin	nilar to	above	0.000				
126.0	129.0			sin	nilar to :	above					
129.0	132.0	gre	y black	85	above						
132.0	135.0			-	•						
135.0	138.0		. *		•						
138.0	141.0			•	•						
141.0	144.0	2 .		•	•						
144.0	147.0		0.00	•	-						
147.0	150.0	٠	•		•						
150.0	153.0		-	•	•			6			
153.0	156.0		-	•							
156.0	159.0		-	•	•						
159.0	162.0				•						
162.0	165.0			•	•						
165.0	168.0			٠	•						
168.0	171.0				•						
171.0	174.0	•	-	•	•						
174.0	177.0		•	•	•						
177.0	180.0	1.00		-	•						
180.0	183.0	ligi	nter grey	mo	re calca	reous	than pr	revious			

End of Hole 183 metres (600 feet)

This hole was drilled dry.

Hole R87-5 L9+785,33+80 Depth 192 metres				0W Start Dec.17/87 Finish Dec.18/87
From	Тө	Colour		Description
0.0	16.3	Ove	rburden	
16.7	10.0	Ded	rock at 16.3	Voicanic Rhyolite
10.0	10.0	Paie	green	alteration, 1-2% pyrite with minor quartz, this unit
18.0	21.0	•	•	similar to above, trace epidote alteration, 1-2 ovrite, 2% quartz vein material
21.0	24.0	•		as above, slight increase in pyrite, coarser
24.0	27.0		5 .	as above, trace epidote, minor quartz fragments
27.0	30.0	•		as above, pale green volcanic fragments, slight calcareous, 1-2% disseminated pyrite
30.0	33.0		3 • 1	as above
33.0	36.0			similar to above, 2% pyrite, minor sericite
36.0	39.0	Pale	e white	10% green volcanic fragments, 70% fragments gr white, non calcareous with sericite alteration, 1-2 pyrite
39.0	42.0	•	•	as previous, up to 10% quartz vein material, tra calcareous material
42.0	45.0	Pale	grey	grey white fragments (Rhyolite), 2% pyrite
45.0	48.0			as above, 3-4% pyrite, trace quartz vein material
48.0	51.0	•	•	as above, sericite and clay alteration on gr fragments, with minor pyrite Colour change to greener coloured fragments, Volca
Rhyolit	to an Andesite	1.		
51.0	54.0	•		3-4 % pyrite with green tinge to fragments
54.0	57.0	0.2	•	as above, gradational contact to paler colour fragments
57.0	60.0			grey fragments, with minor clay, 3-4% pyrite
60.0	63.0			as above
63.0	66.0			as above
66.0	69.0			pale grey white, pyrite as above
69.0	72.0	0		talc and sericite with less pyrite than previous
72.0	75.0		1	as above
79.0	78.0			as above, 4% pyrite
/0.0	01.0	101		Contact. unit becomes darker green
81.0	84.0	Gre	y green	increase in pyrite content (5-7%)
84.0	87.0			as above
87.0	90.0			similar to above, with slight clay alteration
90.0	95.0			as above
4440	96.0			as above
06.0	102.0			as above
96.0	1020			Contact to more siliceous unit
96.0 99.0	102.0			
96.0 99.0 102.0	105.0	Pale	e white	slightly altered, 3-5% pyrite

				Contact to more calcareous unit (colour change to dark
				grey, slightly carbonaceous?) Black Carbonaceous
				Limestone
108.0	111.0	Dark g	rey	70% dark grey fragments, graphitic with
				approximately 30% white fragments, slightly
				calcareous, 1% pyrite
111.0	114.0	•		100% dark grey carbonaceous fragments, with
				sericite or graphite alteration, 1% pyrite, calcareous
114.0	117.0			as above, with increase to 2% pyrite
117.0	120.0		•	as above
120.0	123.0	-		as above, 1% pyrite
123.0	126.0	Pale g	rey	less calcareous, 1% pyrite
				sharp contact to more siliceous unit
126.0	129.0	Pale w	rhite	non calcareous, white siliceous fragments, 1% pyrite
129.0	132.0		•	similar to above, minor clay and sericite alteration,
				1% pyrite
1.200	_			Contact to volanic unit. distinct colour change.
				Andesite?
132.0	135.0	Grey	reen	70% fragments green Andesite (chloritic), with 2-3%
				pyrite, remaining fragments pale grey colour
135.0	138.0	Grey	white	paler coloured fragments than previous, 1-2% pyrite
138.0	141.0	•		similar to above
	and the second second			better defined contact, more chloritic
				Volcanic Andesite
141.0	144.0	Dark g	reen	calcareous, chloritic, trace only pyrite
144.0	147.0			as above, 3% quartz vein, trace only pyrite
147.0	150.0			as above, 5% quartz vein, 2% pyrite
150.0	153.0	•	•	as above
* 153.0	156.0			as above, chloritic, 1% pyrite, 2% quartz vein with
				pyrite, trace chalcopyrite in quartz vein
156.0	159.0		-	similar to above
159.0	162.0	•		similar to above, paler green colour, calcareous
162.0	165.0	1.0		similar to above, 1% pyrite
165.0	168.0	•	•	as above
168.0	171.0	•		as above
171.0	174.0	•		as above, chloritic and calcareous, 1% pyrite
174.0	177.0	•	•	as above,
177.0	180.0	•		• •
180.0	183.0		-	• •
183.0	186.0	Green		Green volcanic andesite, calcareous, 1% pyrite, 5%
No.	Constant and			quartz vein
186.0	189.0	•		as above
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

End of Hole 192 metres (630 feet)

The units encountered in this hole were usually slightly calcareous. Chalcopyrite was positively identified in one sample. The overall stratigraphy probably alternated from sediments (carbonaceous limestones and fine grained siltstones/sandstones) through to volcanic units (andesites/rhyolites).

1

Hele Ri Depth	87-6 192 metres	L3+805,144 (630')	65W Start Dec.19/87 Finish Dec.23/87
From	То	Colour	Description
0.0	82.6	Overburden	
82.6	91.4	bedrock, no sa examined from minor pyrite sampled section Hole drilled dr	imples (hole is cased to 86.9m or 285), screened sample n 82.6 to 86.9 appears to be a guartz-diorite unit with however this intrusive unit was not encountered in the on below. y to 96 metres Alternation assemblace of pale to darker coloured.
		finely cryst	alline. Volcanics with minor amounts of black
91.4	93.0	Beige/grey	white to pale coloured fragments, coarser coloured fragments melange of greenish volcanics and white calcareous limestone with sericite and graphite alteration, 2% pyrite, approximately 10% fragments are black with disseminated pyrite and slightly calcareous.
93.0	96.0	Pale green	mainly greenish fragments, 1% pyrite, trace Cpy?, slightly calcareous, minor epidote alteration, Andesite?
96.0	99.0	Pale green	green volcanic fragments, slightly calcareous, 5% quartz vein, trace to 1% pyrite with epidote and chlorite alteration
0.00	102.0	Dark oreen	Volcanic Andesite similar to above with increased alteration, epidote and
	102.0	buik gi oon	chlorite
102.0	105.0		similar to above, trace to 1% pyrite, darker green (increased chlorite alteration), 3% quartz veins, trace manganese alteration
105.0	108.0	• •	as above, increased alteration
108.0	111.0	•	similar to above, less quartz vein, 2% pyrite
111.0	114.0	• •	similar to above, pale green fragments, 2% pyrite slightly calcareous, 5% quartz vein
114.0	117.0		as above, 10% quartz carbonate vein material, 3% pyrite and slightly calcareous
117.0	120.0	• •	darker than above fragments, 5% vein material
120.0	123.0	• •	as above, chloritic, trace pyrite, <1% vein material
123.0	126.0	1.0	as above, trace pyrite, chlorite alteration
126.0	129.0		as above, 1% pyrite, 1% quartz-carbonate veir material, minor epidote
129.0	132.0	• •	slightly darker grey, chloritic, trace pyrite and quartz vein
132.0	135.0	• •	similar to above
135.0	138.0	• •	similar to above, with 5% gray chert with pyrite
138.0	141 0	Dark green	chloritic, trace pyrite
141.0	144.0		similar to above, massive volcanic, pale green colour
1440	147.0		urace pyrite, slightly calcareous
144.0	147.0		similar to above, trace pyrite and quartz vein
147.0	150.0	0.1	Similar to above, trace black argillite
150.0	153.0	Pale green	similar to above, trace only quartz vein and argillite
153.0	156.0	22	similar to above, with 10% siliceous unit (grey/white

-	-		_	Contact Zone, volcanic Andesite gradational into black
				argillite with paler coloured (siliceous) horizons
156.0	159.0			melange of volcanic andesite and black argillite (5%
		1.00		pyrite), with 10% pale coloured siliceous material
159.0	162.0		- C	30% black argillite, with remainder of sample pale
				coloured with up to 5% pyrite, this material is slightly
162.0	165.0			calcareous
102.0	100.0			as this material drills soft, black carbonaceous
				material also floats, 3-4% pyrite with arollite, 2%
				white carbonate (vein material)
165.0	168.0	•	•	70% black argillite, 30% grey white siliceous
				material, with sericite and slightly calcareous, up to
N. 52-15	1000000	abe	-	3-4% pyrite
168.0	171.0			30% black arglilite, 50% grey siliceous, and 10%
				whitish calcareous material, up to 5% pyrite with
171.0	1740			3-4% quartz carbonate vein material
174.0	177.0			Similar to above with increased (OOA) arginite
174.0	177.5			Contact Zone andilite changes into a paler coloured
				volcanic? Rhvolite
177.0	180.0	Pale	white	pale coloured fragments with 1-2% pyrite, calcareous
180.0	183.0		•	pale green to grey fragments, very fine grained with
				up to 10% quartz-carbonate material, faintly
				calcareous with 3% blue grey quartz, 3-4% pyrite
		140		with previous quartz, minor sericite alteration
183.0	186.0			similar to above, with up to 5% blue grey quartz,
104 0	100.0			possible trace chalcopyrite with quartz
100.0	109.0			nost unit as above, no blue quartz, 1% pyrite, faintly
189.0	192.0			similar to show slight greenish tinge
109.0	172.0			anniai to aboro, anynt yr oonian tinyo
	156.0 159.0 162.0 165.0 168.0 171.0 174.0 177.0 180.0 183.0 186.0 189.0	156.0 159.0 159.0 162.0 162.0 165.0 165.0 168.0 168.0 171.0 171.0 174.0 177.0 180.0 183.0 183.0 186.0 189.0 189.0 192.0	156.0 159.0 - 159.0 162.0 - 162.0 165.0 - 165.0 168.0 - 165.0 168.0 - 168.0 171.0 - 171.0 174.0 - 177.0 180.0 - 180.0 183.0 Pale v 183.0 186.0 - 189.0 192.0 -	156.0 159.0 - - 159.0 162.0 - - 162.0 165.0 - - 165.0 168.0 - - 165.0 168.0 - - 165.0 168.0 - - 165.0 168.0 - - 168.0 171.0 - - 171.0 174.0 - - 177.0 180.0 - - 183.0 186.0 - - 186.0 189.0 - - 189.0 192.0 - -

End of Hole 192 metres (630 feet)
Hele R87-7	L4+005,10+12W		
Depth 255 metres	(837 feet)		

Start Dec.29/87 Finish Jan. 3/88

This hele intersects volcanic rhyolite/andesites with pessible sedimentary? unit. Copper mineralization was identified in the interval between 171 and 195 metres.

From	To	Colour	Description
0.0	59.3	Overburden	
			Volcanic, Andesite?
59.3	63.0	Beige white	Pale beige fragments, bleached volcanic, trace chlorite, epidote, <1% quartz fragments, slightly calcareous with 1-2% pyrite
63.0	66.0	Grey Green	unit as above, non bleached, dark green fragments (very fine grained) with $5-10\%$ black mafics, chlorite and manganese alteration on larger fragments, pale yellow carbonate mineral associated with quartz vein material 5% white quartz fragments $1-2\%$ coarse pyrite,
66.0	69.0	Grey Green	similar to above, some coarse fragments kept as representative samples, increase in quartz-carbonate vein material, minor pyrite, coarse material with quartz/carbonate veining indicates possible stockworks
69.0	72.0	•	similar to above but bleached to paler colours, increased alteration, pyrite and epidote, up to 5% quartz vein material Volcanic andesite changes to more rhyolitic material
72.0	75.0	Pale grey/green	possible lithology change, some chlorite
75.0	78.0	Belge green	with quartz, epidote, pyrite, chlorite, and trace malachite (chalcocite?), 1% sulphides only
78.0	81.0	beige white	fragments as above with similar alteration
81.0	84.0	grey green	Volcanic rhyolite, epidote and chlorite alteration, 2-3% rose hued feldspars? with white quartz vein material, 2% pyrite
84.0	87.0	grey green	as above, slightly calcareous
87.0	90.0		as above
90.0	93.0	• •	minor chlorite and epidote alteration with <1% pyrite
93.0	96.0	pale white	similar to above
96.0	99.0		simiar to previous, quartz eyes? in larger pale coloured fragments, minor alteration as above, good HCI reaction
99.0	102.0		as above
102.0	105.0		similar to above, alteration and pyrite with 2% quartz vein material distinct alteration change
105.0	108.0	Grey green	20% fragments grey green, 10% pink (hematatic) siliceous fragments, remainder as above, very calcareous
108.0	111.0	Pinkish grey	5-8% fragments have hematitic alteration, calcareous, $3-4\%$ white guartz vein, $1-2\%$ pyrite
111.0	114.0	• •	increased quartz vein material (8%) , 10% fragments have pinkish hue, 1-2% pyrite, possible silver sulphide?
114.0	117.0	pale grey	less hematite and quartz vein material, sericite is noticeable, minor pyrite, 5% dark grey fragments

			This unit below appears to be very siliceous
117.0	120.0	pinkish grey	40% fragments are pinkish, with minor sericite and chlorite, trace only pyrite
120.0	123.0	• •	majority fragments are pink coloured, trace only chlorite and hematite alteration associated with sheared fragments, minor sericite and pyrite, slightly calcareous
123.0	126.0	pink + green	with hematite chlorite and sericite, trace only pyrite and epidote
126.0	129.0	pink + green	similar to above, 40% fragments are pinkish, 30% are greenish (chloritic), slightly calcareous with trace pyrite
129.0	132.0	pink	mainly pink coloured fragments, very fine grained sandstone, trace only pyrite, remainder fragments dark grey green (chloritic andesite), 3% quartz vein material, non calcareous
132.0	135.0	pink	90% pink coloured fragments, as above, very slight HCI reaction
135.0	138.0	pink	as above, trace only pyrite and quartz vein material
138.0	141.0	pink grey	50% fragments are pink, remainder area grey green, hematite and chlorite alteration, trace only pyrite
141.0	144.0	pink	90% fragments are pinkish coloured, trace only chlorite and pyrite, non calcareous
144.0	147.0	pink	as above, trace only pyrite
147.0	150.0	pink + green	green volcanics are chloritic, trace only pyrite Change from sandstone? to volcanic unit (Andesite and Divolite)
150.0	153.0	grey green	30% fragments are very chloritic, slightly calcareous remaining fragments are neutral grey colours, <5% pinkish fragments
153.0	156.0	grey green	similar to above, with coarser fragments dark greer (chloritic andesites) with neutral grey (more rhyolitic forming the remaining sample, trace only pyrite with 5% white quartz vein material
156.0	159.0	grey green	Andesite, chloritic, similar to above
159.0	162.0	green grey	as above, trace pyrite, 5% quartz vein material
162.0	165.0	green grey	similar to above, 5% fragments have hematite alteration, increased chlorite alteration, trace pyrite
165.0	168.0	green grey	similar to above, minor chlorite alteration, 2% pyrite slightly calcareous
168.0	171.0	green grey	as above, noticeable sericite alteration, 3% pyrite same rock type as above however definite increase in alteration
171.0	174.0*	green grey	increased chlorite and sericite alteration, 5-7% white quartz vein material, up to 10% sulphides with possible chalcopyrite
174.0	177.0*	green grey	similar to above, increased alteration with less quarta veining, similar amount of sulphide material
177.0	180.0*		similar to above, moderately calcareous, 3-4% quart

180.0	183.0*	pale green	similar to above however paler coloured (less chorite alteration), increased sericite alteration, increased sulphides (to 12%) with distinct malachite (<.5%) and possible chalcopyrite
183.0	186.0*	pale grey/green	as above, trace malachite, less sulphides (5%) possible trace chalcopyrite
186.0	189.0*	• •	as above, with increased sulphides to 10%, 5% quartz vein material, with possible trace chalcopyrite
189.0	192.0*	• •	similar to above, sericitic with up to 15% sulphides
192.0	195.0*		pale grey green fragments with high pyrite content (8%), very fine crystalline pyrite, finely disseminated, 3-5% white quartz vein (no sulphides), minor sericite and chlorite alteration, trace chalcopyrite, slightly calcareous
195.0	198.0	• •	similar to above with approximately 5-8% dark chloritic altered fragments with increased sulphides, Trace to 0.3% chalcopyrite, 5-6% sulphides
198.0	201.0	• •	similar to above, trace chalcopyrite, 3-4% white quartz vein with disseminated pyrite, slightly
201.0	204.0	•••	similar to above, dark green, increased chlorite, similar amount pyrite with trace chalcopyrite, 1% white quartz vein.
204.0	207.0	dark green	similar to above, less sulphides (,5%), trace cpy
207.0	210.0	dark green	as above, 3-4% pyrite, with sericite
210.0	213.0	dark green	as above, with 30% quartz vein, $2\text{-}3\%$ pyrite in host volcanic, chlorite and sericite alteration
213.0	216.0	dark green	host volcanic as above with 70% quartz vein material, half of quartz material has finely disseminated sulphides, remainder nil. Host volcanic is very dark green with chlortie and sericite, 3-4% pyrite with trace chalcopyrite
216.0	219.0	dark green	host as above with chlorite and sericite with 40-50% quartz vein, trace oxide on quartz fragments, 5% pyrite in host unit
219.0	222.0	pale green	pale coloured volcanic, 5% pyrite, no copper minerals, trace only quartz vein, with chlorite and sericite alteration
222.0	225.0	medium green	sericite and chlorite alteration, 3-5% pyrite with 10% quartz vain material (no sulphides in quartz vain)
225.0	228.0	medium green	medium green coloured fine grained volcanic, as above, minor chlorite and sericite alteration, no quartz vein material

228.0	231.0	medium green	volcanic unit as above, 3-5% pyrite, trace chalcopyrite, 5% grey white quartz vein material
231.0	234.0	medium green	as above, chlorite and sericite, 3% pyrite, 3% quartz vein
234.0	237.0	medium green	as above, 5% quartz vein, 3-5% pyrite
237.0	240.0	medium green	volcancic host with 50% pale white quartz feldspar vein material, 5-10% very fine disseminated pyrite in vein material
240.0	243.0	medium green	as above, 10% quartz vein material with pyrite, remainder volcanic host has sericite and chlorite alteration
243.0	246.0	medium green	as above, with 5% quartz vein material, possible chalcopyrite, 3-4% pyrite
246.0	249.0	medium green	host volcanic as previous with up to 10% quartz vein material
249.0	252.0	medium green	as above, less quartz vein material (3%), less than 2% pyrite
252.0	255.0	medium green	as above, noticeable decrease in sulphide content (1%), with chlorite and sericite alteration
End of t	tole 255 metres	(837 feet)	

Hole R87-8

Hole R87-8 L0+625,12+50W Depth 210 metres (690 feet) Start Jan. 3/88 Finish Jan. 7/88

This hole was drilled with mud and did not enter bedrock until 435. Large volumes of water were encountered at the 230' level. From 114.3 to approximatley 129.2 metres a consolidated gravel? or conglomerate was encountered that probably unconformably overlies units of massive Andesites which belong to the Nicola volcanics. These volcanic units have undergone minimal alteration and rarely have greater than 2% pyrite. Traces of chalcopyrite were identified in the section from 183 metres through to 198 metres. This section also has a small amount of hematite alteration (up to 5% of the fragments exhibit this alteration).

In general this hole exhibits little alteration with minor amounts of sulphides and little lithological change. No economic values are expected from this hole.

From To

Description

Colour

0.0 114.3 Overburden, sand, till, boulders and gravels, complete melange of overburden types, from 114.3 to 129.2 samples were taken, it appeared the unit intersected was a consolidated gravel/pebble size conglomerate

114.3	117.3	Multicolour	Melange of multicoloured sedimentary and volcanic gravel and probably boulder sized fragments, includes up to 5% oxidized fragments and up to 5% white quartz pebbles
117.3	118.9	••	Melange, similar to above, approximatley 10% rounded fragments
118.9	121.9		Similar to above
121.9	125.0	••	Melange as above with approximately 50% rounded fragments
125.0	126.8	•••	Similar to above, 50% fragments pale to darker green volcanic fragments
126.8	128.0		Similar to above, possible turquoise? on quartz fragment
128.0	129.2		Similar to above with up to 10% pale green cherty fragments that may represent possible bedrock?
		Bedrock	Volcanic Andesite
129.2	132.6	Medium green	massive, very finely crystalline volanic unit with up to 10% black mafics
132.6	135.0	Pale green	90% green fragments with minor sericite alteration, trace epidote, non magnetic, <1% pyrite, non calcareous with a trace of white quartz vein material
135.0	138.0	• •	Similar to above, very homogenous volcanic unit, 3% guartz material however this section is calcareous.
138.0	141.0	•••	as above, grey green groundmass, clay alteration, with dark green mafics with slight chlorite alteration, trace pyrite with minor HCI reaction
141.0	144.0	• •	as previous, trace only pyrite, slightly calcareous, trace guartz and epidote
144.0	147.0	• •	as above, trace only pyrite, quartz vein with slight HCl reaction
147.0	150.0	• •	Similar to above
150.0	153.0		Similar to above
153.0	156.0	Medium green	Similar to above, trace only pyrite, trace epidote,

156.0	159.0	· · · · · · · · · · · · · · · · · · ·	as above, increase in chlorite and epidote alteration
159.0	162.0	• •	as above, massive with chlorite, epidote, trace quartz
162.0	165.0		as above
165.0	168.0		as above
168.0	171.0		Similar to show increase in nurite to 12 more
100.0	171.0		calcareous
171.0	174.0		Similar to above, increased chlorite alteration
174.0	177.0	Dark green	Massive andesite as above, increased chlorite alteration with up to 1% pyrite
177.0	180.0	• •	as above
180.0	183.0	Paler green	10% quartz vein material, increased sulphides to 2% with possible trace chalcopyrite, more calcareous than previous
183.0	186.0	• •	Similar to above, less sulphides, similar alteration of epidote and chlorite with moderate HCI reaction, trace hematite alteration
186.0	189.0	Dark green	Similar to above, darker green colour, 5% hematite alteration, 1% pyrite with trace chalcopyrite
189.0	192.0	• •	Similar to above, increased hematite alteration, 5-8% white coloured quartz/feldspar fragments, 1% pyrite, trace chalcopyrite on guartz fragment
192.0	195.0		Similar to above, less alteration, less quartz/feldspar fragments
195.0	198.0	• •	as above, 1% pyrite, minor chlorite and epidote alteration
198.0	201.0	• •	massives green andesite, 5% pale grey green serictic fragments, this section is calcareous
201.0	204.0	• •	similar to above, with up to 10% pale coloured fragments, 1% pyrite
204.0	207.0	• •	Similar to above, 3-4% quartz fragments, trace pyrite, epidote
207.0	210.0	• •	massive dark green volcanic andesite, chloritic, with 5-88 quartz fragments, 1-28 pyrite

End of Hole 210 metres (690 feet)

Hele R87-9 L0+405,28+25W Depth 204 metres (670')

Calana

Start Jan. 7/88 Finish Jan. 8/88

This hole has been drilled through units of the Cache Creek Group. The units drilled were slightly calcareous through to very calcareous sedimentary units of the Cache Creek Group. There are several intersections that are extremely carbonaceous, such that actual coking qualities might be investigated. Sulphide content was always low (usually less than 1% total). No copper of zinc sulphides were identified in the chips. Lithological contacts were distinguishable mainly by carbon content (black colour) or reaction to HCl acid. The hole was drilled dry. The strata was damp near the bottom of the hole which did cause a slight tightening of the rods upon completion of the hole.

Description

		Coloci	best iperon
0.0	17.4	Overburden	
			Pale coloured, fine grained sedimentary units
17.4	21.0	medium grey	25% fragments melange of boulders, remaining pale grey white with 10% dark grey graphitic fragments, weakly calcaneous with up to 1% overtee
21.0	24.0	• •	very calcareous, 5% dark grey, 5% white, 80% grey fragments, 1% pyrite
24.0	27.0	pale grey/white	calcareous, 95% grey fragments, 5% white, 1%
27.0	30.0		as above
30.0	33.0		similar to show slight increase in nurite (28)
33.0	36.0	• •	highly calcareous, 3-4% pyrite, similar to previous, 60% fragments are grey graphitic, 5-8% white dolomitic? fragments
36.0	39.0		good HCI reaction, slight green tinge to fragments
39.0	42.0	medium grey	30% pale grey fragments, 65% white to pale grey, 5%
42.0	45.0	• •	similar to above, moderate calcareous reaction, trace
45.0	48.0	pale grey/white	moderate HCI reaction, 90% pale light grey fragments,
48.0	510		cimilar to show 208 dark areu fragmente
40.0	51.0	madium annu	Similar to above, 20% dark grey fragments
51.0	54.0	meaium grey	fine grey white, sericitic, 3% pyrite
54.0	57.0	•	60% dark grey fragments, 40% lighter coloured, poor HCl reaction
57.0	60.0	pale grey/white	90% grey white fragments, 10% dark grey (carbonaceous) trace only pyrite poorly calcareous
60.0	63.0		similar to shove, increase in carbonaceous fragments
63.0	66.0	med/dark grey	70% dark grey, 20% greenish tinge, 10% white, trace
66.0	69.0	dark grey	similar to above, moderately calcareous, 3-4% pyrite,
60.0	72.0		similar to show trace only nurite low HCI reaction
72.0	75.0	0001	similar to above
72.0	75.0	grey	unit becomes calcareous
75.0	78.0	pale grey	70% fragments pale tan/grey colour, 20% grey/green, 10% white, 1% pyrite, highly calcareous limestone
78.0	81.0		as above
81.0	84.0		similar to above

				fragments
84.0	87.0	pale g	rey/white	pale green fragments, slightly calcareous, trace pyrite
87.0	90.0	-	•	similar to above
90.0	93.0		•	similar to above
93.0	96.0		•	90% pale green fragments, 5% grev, 5% white
96.0	99.0	•		similar to above, trace only pyrite
0.00	102.0	nale or	AV	100% nale green fragments, moderate HCL reaction
	102.0	base å	•,	trace only pyrite
102.0	105.0		•	similar to above
105.0	108.0		•	95% nale green fragments trace only quart
100.0	100.0			fragments trace purite
108.0	1110			70% nele green 20% nele white 10% grey trac
100.0	111.0			white good UC) reaction
	1140			pyrite, good not reaction
111.0	114.0			poor HCI reaction, similar to above
114.0	117.0			similar to above, more calcareous, trace pyrite
117.0	120.0	1.42	5	60% pale green , 25% grey white (sericite) with 15
1. anar				dark grey, carbonaceous with less than 1% pyrite
120.0	123.0	pale gr	.eA	40% fragments have pale green tinge, 60% tan gre
				colour, trace yellow oxide on tan coloured fragments
123.0	126.0p	pale g	rey/white	90% tan fragments, 5% black carbonaceous, 5
				white, slightly calcareous, trace only pyrite
126.0	129.0	•	•	similar to above, except very calcareous
129.0	132.0		•	as above, slightly calcareous
132.0	135.0	dark g	rey	60% fragments black, 20% dark grey, unit i
		10000000		calcareous, 3% pyrite
135.0	138.0	med/d	ark orev	40-60% whites, 40% medium grey fragments, 12
				ovrite, poor HCI, trace oxide material
138.0	141.0			as previous
141.0	144.0	-		increased arey fragments, poor HCI reaction, (1)
	111.0			nvrite
144.0	147.0			85% fragments medium arey coloured fragments, 5%
				white quartz? fragments
147.0	150.0	-		moderate to low calcareous 80% nale are
147.0	100.0			framente 208 white/arev less than 18 purite
				unit changes to limestane halow
150.0	157.0			958 anew areas coloured freements 108 white 5
130.0	155.0			osa grey green coloured tragments, toa white, sa
157 0	154.0			dark grey with less than 1% pyrite
155.0	156.0		1.00	similar to above
156.0	159.0	pale g	rey/tan	pale grey/tan green tragments, <2% white
				calcareous, with less than 1% pyrite
159.0	162.0	1000		similar to above
162.0	165.0			similar to above
165.0	168.0	•	1.00	tan coloured fragments, slightly damp, with up to 5
				clay, very calcareous
168.0	171.0	2.27		as above with clay, calcareous
171.0	174.0			70% grey green fragments with 1% pyrite
174.0	177.0	grey	green	very calcareous, similar to above
	180.0			80% medium grey fragments, 20% pale grey, highl
177.0				

 $\{^{i}$

180.0	183.0	black	50% very black, 50% grey, moderately to highly
			calcareous, 1% pyrite
183.0	186.0	•	80% black fragments, as above
186.0	189.0	•	as above
189.0	192.0	medium grey	similar to above, low calcareous reaction
192.0	195.0	black	90% fragments very black, 10% white, 1% pyrite, greasy brown graphite? floats when washed, moderately calcareous
195.0	198.0	•	similar to above
198.0	201.0	•	similar as previous
201.0	204.0		similar to above, moderately calcareous, 1% pyrite

ŝ,

End of Hole 204 metres (670 feet)

- -