Off Confidential: 89.03.11 _istrict Geologist, Nelson ASSESSMENT REPORT 17265 MINING DIVISION: Slocan Maurier Creek-PBX **PROPERTY:** 49 53 42 LONG 117 16 47 LAT LOCATION: 11 5526774 479908 UTM NTS 082F14W Pandora's Box, Condo 5, Condo 7, Palada, Wedge 1-2, Le Roi (L.5754) CLAIM(S): OPERATOR(S): PBX Res. AUTHOR(S): Lyman, D.A. REPORT YEAR: 1988, 88 Pages COMMODITIES 3EARCHED FOR: Gold, Silver, Copper, Lead, Zinc **JEOLOGICAL** SUMMARY: The claims are underlain by porphyritic granite of the Cretaceous-Jurassic Nelson Plutonic Rocks and Jurassic-Triassic Slocan Group marine sediments which have been invaded by quartz veins with sphalerite, galena, pyrite and arsenopyrite. Shear zones with varying amounts of brecciated quartz have associated copper, pyrite, galena, sphalerite, lesser tetrahedrite and argentite. Calcite alteration is common. WORK Geological, Geochemical, Geophysical, Physical DONE: EMGR 11.0 km;VLF Map(s) - 4; Scale(s) - 1:2500 318.7 ha GEOL Map(s) - 3; Scale(s) - 1:10 000,1:5000,1:2500,1:2000 22.5 km LINE 6.8 km LSUR Map(s) - 2; Scale(s) - 1:10 000,1:1000 20.0 km MAGG Map(s) - 2; Scale(s) - 1:2500 48 sample(s) ;ME ROCK 32 sample(s) ;ME SILT 275 sample(s) ;ME SOIL 2 trench(es) TREN 50.0 m 082FNW

MINFILE:

LOG NO: 0414 RD. ACTICN: JHE 110: UB-RECORDER RECEIVED ADR M.R. H VANCOUVER 1988 GEOLOGICAL, GEOCHEMICAL GEOPHYSICAL REPORT ON THE MAURIER CREEK PROPERTY TH (PBX PROPERTY) VA SILVERTON AREA, ZO < A. SLOCAN MINING DIVISION 24 22 20 22 NTS Map Quad 82F/14 Latitude 49°54'N -----Longitude 117°16'W 22 061 - 2 3 (3) 00 FOR -1 (4) PBX RESOURCES LTD. 3 50 1020 - 475 Howe Street 20 Vancouver, B.C. 3 4 V6C 2B6 FILMED BY

David A. Lyman, Geological Engineer Hi-Tec Resource Management Ltd. 1500 - 609 Granville Street Vancouver, B.C. V7Y 1G5

January 1988

TABLE OF CONTENTS

		Page
1.0	SUMMARY	1
2.0	INTRODUCTION	2
2.1	Location and Access	2
2.2	Physiography	3
2.3	Property and Ownership	3
2.4	History and Previous Work	5
2.0	CTOLOGY.	
3.0	GEOLOGI	8
3.1	Regional Geology and Mineralization	10
3.2	Property Geology and Mineralization	10
3.2.	1 PBX Grid Geology	10
3.2.	2 PBX Grid Alteration and Mineralization	13
3.2.	3 CDO Grid Geology	14
3.2.	4 CDO Grid Alteration and Mineralization	16
4.0	GEOCHEMICAL SURVEY	16
4.0	GLOCHENICAL SORVEI	10
4.1	The 1987 Program	16
4.2	Sampling and Analytical Procedures	17
4.3	Discussion of Geochemical Results	19
4.4	PBX Grid Geochemistry	20
4.5	CDO Grid Geochemistry	21
5.0	GEOPHYSICAL SURVEY	23
		20
5.1	Program Methods	23
5.2	PBX Grid VLF-EM and Magnetic Survey Results	24
5.3	GDO Grid Magnetic Survey	26
6.0	DISCUSSION AND CONCLUSIONS	27
7.0	RECOMMENDATIONS	28
8.0	DEFEDENCES	20
0.0	REFERENCES	29

LIST OF APPENDICES

APPENDIX	I	Statement of Costs
APPENDIX	II	Statement of Qualifications
APPENDIX	III	Rock Sample Descriptions
APPENDIX	IV	Geochemical Analytical Results
APPENDIX	v	Statistical Analysis of Selected Elements, PBX Grid Soil Samples
APPENDIX	VI	Control Survey Data

LIST OF FIGURES

After Page

Figure	1.	Location Map		2
Figure	2.	Claim Map		4
Figure	з.	Regional Geology		8
Figure	4.	Property Geology and Property Map i	n	pocket
Figure	5.	PBX Grid Geology i	n	pocket
Figure	6.	PBX Grid Soil Geochemistry, Au Contour		20
Figure	6a.	PBX Grid Soil Geochemistry, Ag Contour		20
Figure	6b.	PBX Grid Soil Geochemistry, As Contour		20
Figure	6c.	PBX Grid Soil Geochemistry, Cd Contour		20
Figure	6d.	PBX Grid Soil Geochemistry, Cu Contour		20
Figure	6e.	PBX Grid Soil Geochemistry, Zn Contour		20
Figure	7.	CDO Grid Geology and Geochemistry i	n	pocket
Figure	7a.	CDO Showing Geology and Rock Sampling		16
Figure	7b.	Wedge Area Geology and Rock Sampling		16
Figure	8.	PBX Magnetic Survey i	n	pocket

After Page

Figure	9.	PBX Grid VLF-EM Survey (Fraser Filtered), Cutler, Maine 24.0 Khz	in pocket
Figure	9a.	PBX Grid VLF-EM Survey (Fraser Filter Jim Creek, Wash. 24.8 Khz	ed), in pocket
Figure	10.	PBX Grid VLF-EM Survey (Profiles), Cutler, Maine 24.0 Khz	in pocket
Figure	10a.	PBX Grid VLF-EM Survey (Profiles), Jim Creek, Wash. 24.8 Khz	in pocket
Figure	11.	CDO Grid Magnetic Survey	in pocket
Figure	12.	Ground Control Survey, 1:10,000	in pocket
Figure	13.	CDO Showing Area Survey, 1:1,000	in pocket

LIST OF TABLES

			After Page
Table	1.	Geochemical Statistics - PBX Grid Soil Samples	19
Table	2.	Correlation Coefficients - Selected Elements in Soil Samples, PBX Grid	19

1.0 SUMMARY

Pursuant to a request by the Directors of PBX Resources Ltd. an exploration program involving geological mapping, rock and soil geochemistry, magnetic and VLF-EM surveys and trenching was conducted on the PBX property by Hi-Tec Resource Management Ltd. during October and November, 1987.

The western boundary of the PBX property is located approximately 6 km southeast of Silverton and 4 km east of the Northair Mines Willa property, in south-central British Columbia. At Willa the rocks contain disseminated pyrite and chalcopyrite with current reserves of over 600,000 tons grading 0.22 oz/t Au, 0.28 oz/t Ag and 1.1% Cu. A mineralized fracture system developed east of the Willa deposit, trending slightly north of east, projects towards the PBX property. Fractures and shearing trending 060-085 degrees and 135-160 degrees, host the mineralization at the PBX showing and have been examined during recent work.

This work has defined two areas of coincident Ag-As-Cd-Zn soil anomalies on the PBX grid. Results from the main CDO showing include rock sample values up to 430 ppb Au, 529.7 ppm Ag, 418.1 ppm Cd, 804 ppm Cu, 64,743 ppm Pb, 462 ppm Sb, and 39,086 ppm Zn.

Results from the geophysical survey outlined an eastwest oriented zone of high magnetics which extends for 500 m, westwards off the PBX grid boundary. Three zones of anomalous VLF-EM conductors, one of which coincides with a multiple-element soil anomaly, are also present on the PBX Grid.

2.0 INTRODUCTION

Pursuant to a request by the Directors of PBX Resources Ltd. an exploration program involving geological mapping, rock, stream and soil geochemistry, magnetic and VLF-EM surveys and trenching was conducted on the PBX property by Hi-Tec Resource Management Ltd. during October and November, 1987. The purpose of this program was to evaluate the precious metal and/or base metal potential of the property with particular emphasis on two mineralized areas, the CDO and PBX showings. This report is based on the results of the exploration program and on the available literature pertaining to the area. A statement of costs incurred during the 1987 program is presented in Appendix I.

2.1 Location and Access

The western boundary of the PBX property, also known as the Maurier Creek property, is located approximately 6 km southeast of Silverton in south-central British Columbia (Figure 1). The property lies on NTS Map Sheet 82F/14 and is approximately centered at latitude 49°54' North and longitude 117°16' West.

There is good access to that part of the property within the Maurier Creek drainage via the Silverton Creek gravel logging road. The Maurier Creek road begins 6.7 km (4 miles) east of Silverton and allows travel of 9 km south through the centre of the property to the southern claims. The Fennell Creek road is reached 2.5 km further east from the Maurier Creek road junction, and gives access to the steep slopes of the eastern boundaries of the property.

> ESOURCE IANAGEMENT

The CDO showing and higher elevations in the northwestern part of the property are reached by travelling 1 km south from Silverton on Highway 6, then 1.5 km east on Red Mountain Road and finally 9 km east on the Hewitt Mine road.

2.2 Physiography

The Maurier Creek property is situated within the Slocan Mountain Range. Elevations on the claims range from 880 meters near the mouth of Maurier Creek to approximately 2300 meters above sea level southwest of Maurier Lake, with moderate to steep slopes. Vegetation in the area is predominantly spruce, hemlock, and cedar with an intergrowth of alder and willow in places.

The climate is moderate, but precipation can be heavy for an interior area. The spring, summer and fall present no weather problems, but permanent snow cover may remain at the higher altitudes from October to April.

2.3 Property and Ownership

The property lies in the Slocan Mining Division, and is recorded at the British Columbia Ministry of Energy, Mines and Petroleum Resources as follows:

<u>Claim Name</u>	No. of <u>Units</u>	Record <u>No.</u>	Due Date	Approx. <u>Area (ha)</u>
Condo	20	5011	June 6/88	262.5
Condo #6	14	4638	Apr. 11/88	350
Condo #7	20	4639	Apr. 11/88	500
Pandora's Box	18	4500	Sep. 11/88	450
Palada	18	4498	Sep. 11/88	450

<u>Claim N</u>	ame	No. of <u>Units</u>	Record <u>No.</u>	Due 1	Date	Approx. Area (ha)
Porphav	6	9	4499	Sep.	11/88	225
Palada	#2	18	5028	Jul.	10/88	400
Wedge	1	1	2599	Jul.	6/90	18.3
Wedge	2	1	2600	Jul.	6/90	10
Wedge	3	1	5407	Jul.	23/88	20.9
Wedge	4	1	5408	Jul.	23/88	20.9
Le Roi	(L-5754)	1	2503	Mar.	12/90	36.1
Baltimo	re (L-57	55) 1	2504	Mar.	12/90	26.9
Silver Fractio	Wedge on (L-575	6) <u>1</u>	2504	Mar.	12/90	6.8
	TOTALS	: 124				2777.4

The approximate areas above reflect correction for projected overstaking.

The property consists of eleven located claims and three reverted crown grants, all contiguous (Figure 2). Included in the located claims are seven modified grid system claims which are held in the name of Peter of Hills, B.C. and Burkhard Franz Leontowicz of Silverton, B.C. The four Wedge claims are all 2-post claims in the name of Dennis Tyers of Kaslo, B.C. The three reverted crown-grant claims, namely the Le Roi (L-5754), Baltimore (L-5755) and Silver Wedge Fraction (L-5756) owned by Dennis Tyers, are included in the property (Figure 2). PBX Resources Ltd. holds options on the claim group which totals 124 units, with an approximate area of 27 sq. km. A more detailed presentation of the property can be seen in Figure 4 at a scale of 1:10,000.

It should be noted that Sublot 20 is a government grant of surface rights, and covers roughly 560 ha in the northern portion of the Condo and Palada claims (Figure

4). In addition most crown-grant claims, including the Campbell Lease Group and other located ground south of Silverton Creek in the Hewitt and Van Roi vicinity, are covered by this surface right grant. Burkhard Franz owns Sublot 20, and during the 1987 field season conducted logging operations immediately west of the CDO showing.

A control survey was conducted by Frank Ferguson, an independent contractor, to ensure that all claims in the property are contiguous or overlap, and to provide accurate location of survey grids and other features. The survey utilized a Wild T-1 theodolite to measure horizontal and vertical angles, and a Topcon DMC3 electronic distance measuring instrument to measure slope distances. The survey data is compiled in Appendix VII. The plotted survey is presented at 1:10,000 scale for the entire property in Figure 12, and at 1:1,000 scale for the CDO Showing area in Figure 13.

2.4 History and Previous Work

Mineral deposits containing silver and lead have been known to exist in the Slocan area since 1865. The history of the area in general is one of initial rapid growth with subsequent, silver price-related booms and recessions. The Freddie Lee Mine, east of Sandon, was one of the first six properties to attain production in 1892. The discovery of this and other deposits brought about the building of the railways which in turn encouraged the development of mines and the erection of smelters in the region.

The Slocan Mine ranks second to the Sullivan Mine for silver production in British Columbia. In addition, the Hewitt and Van Roi Mines, north of and adjacent to the

Condo and Palada claims, have been mined intermittently since 1896. By the end of 1926 production from the Hewitt section of the lode, based on incomplete records, was 93,000 tons at an average grade of 14 oz/t Ag, 1% Pb and 18% Zn. Operations by over seven lesser groups from 1927 to 1970 produced a cumulative 26,800 tons averaging 24 oz/t Ag, 4.2% Pb and 6.8% Zn. Production for the Van Roi section to the end of 1926 was 262,000 tons with an average grade in excess of 8 oz/t Ag, 2.6% pb and 2% Zn. From 1927 through 1971, Van Roi production totalled 38,300 tons grading 5 oz/t Ag, 2.2% Pb and 3.5% Zn Ore was mined from an east-west vein (Sharp, 1977). system with branching shears. The area contains numerous old adits, all of which were designed to mine high grade portions of the same mineralized deposit.

The Campbell Lease Group, which includes most crown granted claims on the north ridges of Mt. Twigg, is contiguous with the Condo claim. The Hewitt and Van Roi Mines, covered by the Lease Group, were consolidated in 1950, and an extensive exploration program and construction of a floation mill were carried out. However, decreases in grade and ore prices resulted in the termination of production in 1952. From 1976 to 1978 and 1980 to 1983, Frank Pho, operating as Frank Pho Mining Ltd. of New Denver, B.C., conducted mining operations in the Hewitt Mine under a royalty agreement with Dungannon Explorations Ltd. and Sabina Industries Limited, operating companies of John K. Campbell. The eastern extremes of 9 and 10 levels were exploited with winzes to 4 sublevels below 10-level reaching a total depth of 480 feet (Frank Pho, personal communication). Incomplete mill records for November 1977 through July 1980 and May through July 1983 indicate 6961 tons processed with average heads of 10.25 oz/t Ag, 2.06% Pb and 5.16% Zn.

Silvana Division of Dickenson Mines recorded cadmium heads of 0.04% in roughly half the above tonnage.

Properties considered to be possible westerly extensions of the Hewitt-Van Roi lode have been the focus of exploration work in recent years. The Galena Farm-Noonday deposit and Metallic Mine areas, 4 km west of the Hewitt Mine, are notable examples. Anderado Resources Inc. and Andaurex Resources Inc. conducted soil sampling, geophysics and diamond drilling on the Galena Farm property in 1980 and 1981. Anomalous gold values up to 240 ppb were recorded (Allen, 1983).

Evidence of adit development and trenching exists on the Pandora's Box claim at the PBX showing, but no records of work are available.

On the adjacent Northair Mines/Rio Algom and BP Minerals joint venture Willa property, underground work and diamond drilling is continuing on three known areas of mineralization, the West, East and Main zones. The reserves for the West zone are 606,000 short tons at grades of 0.22 oz/st Au, 1.04% Cu and 0.27 oz/st Ag. The projected operating costs for the Willa program given positive economics is \$50.00/ton.

Recent work was conducted on the Condo and Pandora's Box claims by Green in 1986. This has produced sample values of 0.16 oz/t Au, 51 oz/t Ag, 26.4% Pb, 0.78% Zn and 0.13% Cu for the CDO showing on the Condo claim and values of 0.003 oz/t Au, 285.1 oz/t Ag, 29.4% Pb, 2.68% Zn and 0.16% Cu for the PBX showing.

3.0 GEOLOGY

3.1 Regional Geology and Mineralization

The regional geology and mineralization of the Slocan region has been described by Cairnes (1934, 1935) and Little (1960). The PBX Resources Ltd. property is predominantly underlain by sedimentary rocks of the Slocan series which are intruded by coarse grained granitic rocks of the Nelson batholith (Figure 3). The latter, previously termed the "Nelson Granite" by McConnell and Brock (1904), are Upper Jurassic to Lower Cretaceous in age. The Age of the Slocan series is described by Cairnes (1934) as Mesozoic and probably Triassic.

The sedimentary lithologies include argillites, argillaceous quartzites, limestone and tuffaceous rocks. These beds have been folded into a complex series of asymmetrical and overturned folds termed the Slocan Synclinorium by Hedley (1952). The majority of the Nelson batholith consists of porphyritic granite, granodiorite and diorite. Non-porphyritic phases of granite do occur within the main granite complex. The presence of these zones of non-porphyritic phases within the porphyritic granite indicates that the phenocrysts were largely formed after emplacement of the batholith (Little, 1960).

Locally light grey, felsic sills and dykes, which are frequently highly altered, are present. In the contact zone of the Nelson batholith with the Slocan sediments, in the Condo claim, numerous granodiorite and quartzmonzonite dykes are developed. Variable degrees of alteration and silicification commonly accompany dyke intrusion.

REGIONAL GEOLOGY LEGEND

LOWER CRETACEOUS

20	VALHALLA PLUTONIC ROCKS granite and granodiorite, minor pegmatite
19 19a 19b	NELSON PLUTONIC ROCKS mainly porphyritic granite mainly non-porphyritic granite
18	ULTRABASIC ROCKS serpentinite
16	LOWER JURASSIC Rossland Formation: metamorphosed greenstone, flow breccia, tuff, andesite, basalt
14	PERMIAN, TRIASSIC AND LOWER JURASSIC (?) Argillite, slate, argillaceous quartzite
13	TRIASSIC AND (?) LOWER JURASSIC Slocan Group: slate, argillite, quartzite, limestone, conglomerate, includes some volcanics

A second granitic phase, in part contemporaneous with, and in part younger than the Nelson plutonic rocks, occurs in the southern portion of the PBX Resources Ltd. property. McConnell and Brock (1904) named these rocks "Valhalla Granite". Cairnes (1934) recognized that the Valhalla suite of rocks intruded the Nelson batholith, but he regarded them as a late differentiation phase from a common source. Little (1960) retained the term "Valhalla" for the later stage granitic phases intruding the Nelson batholith and collectively termed them the "Coast intrusions " as defined by Rice (1947).

In common with the Coast plutonic rocks, the age of the Nelson batholith is probably Cretaceous with a lower age limit of post Middle Jurassic. As previously stated, the Valhalla granite intrudes the Nelson batholith on the Maurier Creek property, but regionally the contacts are diffuse and gradational. The slight age variation between the two plutonic assemblages is therefore negligable and the two may be regarded as contemporaneous.

The Slocan sediments are indicative of quiet water deposition with occasional beach and offshore bar development. The lack of fossil debris in the calcareous strata implies that these sediments were derived from an erosional source rather than an in situ biofacies. Hedley (1952) has suggested that the alteration of lithologies may indicate a period of cyclic sedimentation.

Many of the ore occurrences in the Slocan region have long been considered as zoned deposits. The controlling factors on mineralization include lithology, structural environment and pressure differences (Hedley, 1952). These have resulted in the following array of different types of mineralization: (a) quartz veins with gold, arsenopyrite, chalcopyrite, pyrrhotite, and pyrite; (b)

silver-lead-zinc lodes and (c) quartz veins with sulphides and polysulphides of silver with minor amounts of galena and sphalerite. Regionally, the silver-lead-zinc lodes predominantly occur in the Slocan series sediments, whereas the siliceous silver mineralization is largely confined to the plutonic rocks. Exceptions to this classification do occur, however, and both Hedley (1952) and Sharp (1977) consider structural control as being the major factor in ore distribution in the Slocan region.

The workings of the Hewitt Mine are mostly in sediments of the Slocan series, close to the northern contact of the Nelson batholith. A tongue from the batholith was encountered in the upper workings of the mine (Cairnes, The vein system in the mine is developed within 1935). an intense zone of shearing striking approximately eastwest and dipping northerly at an average angle of 70 degrees. The encompassed lodes have been traced underground for distances of 50 to 3,000 feet over widths ranging from 4 to 20 feet. The best vein mineralization the lodes occurs where crosscut folded beds (Sharp, 1977).

3.2 Property Geology and Mineralization

The two main areas of mineral occurence, the PBX showing and the CDO showing, involve two sepatate local geologic environments (Figure 4) and are discussed in separate sections below.

3.2.1 PBX Grid Geology

The PBX Grid area (Figure 5) is deep within the bounds of the Nelson Batholith and is locally dominated by porphyritic granite with less than 5% orthoclase porphyro-

blasts generally less than 1/2" long. Coarse to mediumgrained potash feldspar, plagioclase and quartz in decreasing order of content make up the groundmass, with between 5-10% hornblende and minor biotite accessories. All outcrops on ridges, talus slopes and stream exposures on the PBX Grid are of Nelson porphyritic granite with very little variation.

Some thin pegmatitic veins are more common further to the south on the property and represent part of the later Valhalla granite intrusions. On the PBX Grid, these phases are not of importance.

Outcropping above the Maurier Creek road in Pandora Creek at the PBX showing is a contact between the Nelson porphyritic granite and a biotite-plagioclase rock that is poorly exposed and is subject to several interpreta-This rock is composed of roughly 50 to 70% tions. medium to coarse black-brown biotite with the balance being plagioclase and minor quartz. On the PBX show some evidence of foliation was noted. The obscured outcrop in the creek exhibited no conclusive evidence of age relative to the granite. An exposure in the small adit adjacent to the showing was bounded by shearing and also gave no age evidence. Because of the high coarse biotite content, physical weathering, mostly by freeze and thaw, rapidly reduces the rock to a blackish, sandy textured mass that is readily eroded. Consequently, no further outcrops were found. This type of biotite-rich rock has been termed a lamphrophyre dyke by earlier writers (Hedley, 1952, p. 26). A group of such dykes with varying biotite content have been found underground, in the Hewitt and Van Roi Mines. These dykes were subjected to shearing before mineral deposition. In contrast, on the Willa Property, 4 km west of the PBX showing, but still within the Nelson Batholith,

Wong (1985) mapped lamphrophyre dykes that post-dated all stages of intrusion, brecciation and mineralization.

On the PBX Grid, however, the gneissic textures observed, the fact that partly digested inclusions of similar rock occur in local Nelson granite, and a decrease in porphyroblast content approaching the contact, suggest the presence of a remnant pendant similar to gneiss observed on the southwestern periphery of the batholith.

Interpretations of VLF-EM data (see below and Figures 9, 9a) suggests an elongate body of biotite-plagioclase gneiss underlies the area north of the base line for several hundred meters and extends from line 1400E westerly past line 1000E. An additional piece of indirect evidence supports this view. A 200 m wide area of timber astride the baseline between 1400E and 1300E has almost totally been blown down. Unstable clay-rich soil on a relatively mild slope (25-30 degrees) is responsible, which again suggests the presence of biotite gneiss bedrock.

Faulting has occurred along two orientations, easterly to slightly north of east (060-085 degrees) and southeasterly (135-160 degrees). The first set of faults hosts the mineralization at the PBX showing as locally thin steeply north dipping shears, which may be responsible for the easterly-trending VLF-EM anomaly at L 5500N on the grid which is not associated with a geo-The southeasterly chemical anomaly. faulting is expressed as discontinuous, unmineralized cross-cutting shears on the PBX show, and may be responsible for the southeasterly orientations of secondary streams in the At the PBX show, the weaker biotite gneiss was area. noticably more susceptible to faulting than the granite,

suggesting that this may affect structure and mineralization on a larger scale.

Confirmation of this tendency for faulting and later mineralization to follow weaker rock within the Nelson batholith is present at the Comstock mine, 3 km eastsouthwest of the PBX Grid in Fennell Creek drainage. Cairnes (1934, p. 33) notes that the Comstock lode which strikes 55 to 65 degrees east with dips of 35 to 55 degrees southeast preferentially follows a granitelamphrophyre contact.

3.2.2 PBX Grid Alteration and Mineralization

The main PBX showing (Figure 5) exposes a 15 m length of a near vertical vein striking 087°, in biotite-plagioclase gneiss on the northern bottom of Pandora Creek. At the level of the small adit, 9 m south across the creek, the vein centre is less than 1 m north from the contact with Nelson porphyritic granite. The vein centre is а highly silicified tan-cream-white repeatedly-brecciated lensoid mass from 10 to 25 cm wide. At least two stages of tan and cream-coloured quartz flooding and brecciation precede brownish finemedium grained sphalerite deposition in vein openings and possibly replacing reactive fragments. In some instances later thin, 0.5 to 1.5 cm-wide galena veins appear marginal to or cross-cutting the main vein associated with quartz veining. At least one stage of brecciation with white guartz flooding plus tan siderite and calcite post-dates all of the above. Two episodes of white and clear quartz veinlets follow, cutting the vein with little movement. Late white calcite veinlets are present everywhere peripheral to the vein. Broken rock and gouge especially on the north vein margins indicate post-mineral movement. Light green moderately to highly

silicified selvages of altered wall rock and brecciated vein fragments occur irregularly along the vein varying in width from 10 to 20 cm. Some fine disseminated pyrite and arsenopyrite occur in and on the margin of these selvages. Hairline width to 3 mm quartz veining forms an irregular stockwork for at least 5 meters in the northern vein margins. Fine veinlets and small pockets less than 0.5 cm wide of galena associated with guartz veinlets tourmalinized were noted in two instances on northern margins in biotite-feldspar wall rock.

Greene (1986) noted the similarity between the PBX showing and the Comstock Mine 4 km to the southeast, where the best mineralization occurred on a granite-lamphrophyre contact in partly silicified brecciated granite vein one to several feet thick. Explored by 2,800 feet of workings over 400 vertical feet, the ore occurs as streaks and disseminations with galena up to 3 inches thick. In 1904 a shipment of 295 tons averaged 98 oz/t silver and 56% lead. The lowest level carried ore grading up to 360 oz/t silver. Yeager conducted soil sampling, on contour, below the Comstock showings which failed to define extensions (Yeager and Ikona, 1986).

3.2.3 CDO Grid Geology

Along the northern extremes of the property, lower Jurassic Slocan Group marine sediments have been invaded by the Nelson Batholith (Figure 7). Locally these sediments are predominantly laminated to black-grey argillites, with lesser tan to white siltstone and fine grained quartzite, and minor thin laminated limestone. Limy and sandy variations of argillite are common. Black, harder, sharp fracturing argillite with several percent disseminated or thin interlaminated pyrite is

less common, but more readily apparent from it's rusty oxidized outcrop. All these variations may be found interbedded and gradational, and only thicker sequences of quartzite are shown as a separate unit in mapping.

The district fabric of a northwesterly trending megafold in Slocan sediments is best detailed by Hedley (1952). The axis of this so-called Slocan Fold lies roughly along the ridge separating the Slocan and Sandon districts, and the fold is steeply recumbent to the southwest. This picture becomes complicated because according to Robinson (1955) two things happen along the limb of the fold as it extends southeasterly. First, the plunge of the axis becomes steep, and secondly, the fold is "warped" (refolded) to the right through 120° to nearly an east-west orientation.

Robinson speculated that emplacement of the Nelson Batholith promoted this warp and resulted in faulting subparallel to bedding with associated tight folding. These movements caused the shattering, brecciation, small-scale folds and cross-fault voids that hosted quartz veining and mineral deposition.

On the Hewitt and Van Roi mine properties, Slocan Group argillite bedding-strikes change from northnortheasterly (025° to 045°) to east-north easterly (060° to 075°) as one progresses south to the main CDO showing vicinity. Mixed bedding attitudes are recorded in areas where folds with steep westerly-plunging axes occur on a scale of 25 to 100 m across. These folds are mimicked on a smaller scale within bedding parallel Ore shoots in Hewitt and Van Roi shears and veins. to rake 70° northwesterly apparently veins tend following folding and brecciation related to right lateral displacement along vein faulting.

3.2.4 CDO Grid Alteration and Mineralization

Mineralization is exposed on the west and east extremes of the CDO Grid at the CDO showing and on the Wedge Area respectively (Figures 7a and 7b).

The apexes of the Van Roi Mine North and South Veins are exposed by trenching and roadwork on the main CDO showing and consist of two sheared zones, 5 to 10 m wide, with widely varying content of brecciated quartz lenses and veining with associated pyrite, sphalerite, and lesser tetrahedrite and galena, argentite mineralization. Pyrargyrite has been identified by earlier reports (Sharp, 1977). Fleshy to tan-coloured siderite is associated with at least one stage of guartz veining. Calcite appears in late stage veinlets and as fissure filling. Varying degrees of hornfelsing are noted in all sediments on the CDO Grid, and are related to the proximity of the main Nelson intrusive contact or dykes parallel to veining and bedding.

Mineralization and alteration on the Wedge area was identical to that on the main CDO showing, with the exception that white quartz veining with prominent chalcopyrite and lesser tetrahedrite mineralization (samples L-1113 and L-1116) was found in dump material on the lower adit.

4.0 PROPERTY GEOCHEMISTRY

4.1 The 1987 Program

The PBX showing occurs just above the intersection of the Maurier Creek road and a short westerly flowing stream, termed Pandora Creek, near the western boundary

LEGEND

LOWER CRETACEOUS (?) 19a Nelson Intrusives: granite, granodiorite TRIASSIC AND (?) LOWER JURASSIC Slocan Group: 13a argillite 13 13b quartzite Unit includes minor limestone and limy argillite / -- ?- Geologic contact, queried where uncertain Born Fault, with attitude 701 Bedding attitude 50 \$ \$ Jointing, inclined, vertical \sim Outcrop 122222 Logging road

+9 Survey point

Adit >

Trench ×

1-1321

Rock sample number and location 26,14,451,442 ppm Au, ppm Ag, Pb, Zn

VALUES	IN PPH)	AU-PPB	AG	PB	IN	AS	CD	CU	SB
L 1301	* C	8	1.1	22	155	6	.1	83	4
L 1302	C	9	.9	27	102	16	.1	77	7
L 1303	C	7	1.0	26	92	16	.1	79	8
L 1304	C	11	1.4	17	105	17	.4	61	10
L 1305	C	10	1.2	18	87	18	.4	40	9
L 1306	C	12	.9	18	109	23	.1	48	9
L 1307	C	6	1.5	200	418.	15	.9	54	20
L 1308	C	157	231.9	29888	3931	74	24.5	495	189
L 1309	C	430	529.7	64743	22067	86	217.4	468	462
L 1310	C	29	30.5	2661	2798	19	23.6	56	32
L 1311	С	57	28.6	4295	1756	35	4.6	137	37
L 1312	C	11	5.2	274	1951	21	13.8	62	11
L 1313	c	12	4.8	549	1415	20	14.3	35	20
L 1314	C	6	5.1	555	1955	27	6.7	34	9
L 1315	G	44	23.9	1038	1267	76	11.2	52	37
L 1316	C	440	111.4	7488	9240	19	8.1	384	41
L 1317	C	136	186.3	37285	7398	35	74.4	B04	139
L 1318	C	155	121.0	4398	39086	194	418.1	195	76
L 1319	G	35	25.8	2666	3932	37	23.1	121	31
L 1320	R	11	3.8	521	999	24	9.0	50	1
L 1321	G	26	1.4	451	442	22	3.6	75	10
L 1322	Ģ	4	3.9	445	2147	6	16.1	60	5

sampre R LOCK CUTD

G = grab sample

LEGEND

LOWER CRETACEOUS (?) 19a Nelson Intrusives: granite, granodiorite TRIASSIC AND (?) LOWER JURASSIC 13 Slocan Group: 13a argillite 13b quartzite Unit includes minor limestone and limy argillite ---- Geologic contact, queried where uncertain 80 " Fault, with attitude 101 Bedding attitude 5044 Jointing, inclined, vertical Outcrop -----Logging road +30 Survey point Adit >-× Trench 1-1107 Rock sample number and location 5,0.1,36,101 ppm Au, ppm Ag, Pb, Zn

(VALUES	IN PPN	AU-PFB	AG	FB	ZN	AS	CD	CU	SB
L-1101	* R	26	2.7	217	738	20	8.3	18	3
L-1102	c	18	1.5	237	774	19	9.9	12	2
L-1103	С	25	5.8	1549	3432	42	30.7	46	11
L-1104	G	2	1.4	191	532	20	5.3	20	5
L-1105	С	29	.7	82	174	7	1.8	12	2
L-1106	R	25	1.4	38	60	7	1.6	24	4
L-1107	C	5	.1	36	101	10	2.4	30	7
L-1108	C	6	1.0	28	64	14	1.9	31	6
L-1109	C	23	11.2	791	13632	24	76.5	371	9
L-1110	G	1	2.2	669	2601	17	18.3	53	4
L-1111	C	10	65.8	18789	41544	24	259.9	251	74
L-1112	С	72	5.3	728	12148	24	81.2	342	6
L 1113	G	305	42.8	111	43276	18	670.7	200	18
L 1114	G	26	24.0	3233	111192	25	917.2	342	27
L 1115	C	11	7.1	126	1533	33	5.0	51	7
L 1116	G	118	626.5	38065	6633	413	69.5	59227	174

* Sample type: C = channel sample R = rock chip sample G = grab sample

of Pandora's Box claim. Because the exposed shearing and veining trended slightly north of east, a north-south array of survey lines would best intersect similar mineralization. The PBX survey grid (Figure 5) was established with a central baseline extending east 1 km from where the Pandora Creek crosses the road. Ten north-south survey lines were then spaced 100 m apart extending 750 m to each side of the baseline. Stations were established each 50 m for geochemical sampling with flagging each 25 m for geophysical measurements. Rock sampling on the PBX Grid was limited to mineralization in and around the PBX showing.

The CDO grid was established primarily for conducting geophysics across east to northeast-trending veining and granite contacts. A 1.2 km baseline was extended due east from the CDO showing on the north ridge of Mt. Twigg, across Maurier Creek to kilometer 1.2 on the lower Maurier Creek road. Twelve short, 300 to 800 m long, north-south survey lines were established every 100 m along the baseline with their northern extremes roughly coinciding with the northern property bounds. Stations were established as on the PBX grid. Rock sampling of mineralized areas was confined to the area around the CDO showing, and the East CDO or Wedge area, located on and below Maurier Creek road on grid lines 2000E and 2100E between stations 7250N and 7350N.

4.2 Sampling and Analytical Procedures

On the PBX grid, a total of 275 soil samples were collected using mattocks or soil augers and placed in Kraft paper sample bags. Soil augers were used exclusively on and below the 1400E line in an effort to penetrate overburden in the valley bottoms. Depth of overburden where it could be measured varied greatly

from 0.5 m to more than 3 m. On those lower lines an effort was made to collect a brownish "B" horizon at a minimum sample depth of 60 cm, but in practice the rocky content of glacial drift and colluvium, making up the overburden, limited sampling to between 40 and 50 cm. Above the 1400E line, shallower depths of 30 cm to 40 cm were attained because of increased talus and outcrop. A sandy brown upper "B" horizon wuth some organic content was commonly collected in these locations. A total of 32 stream sediment samples were taken mostly where streams intersect survey lines. A total of 47 rock samples were collected primarily in the mineralized areas of the CDO or PBX shows. These samples were graded as channel, rock chip and grab samples in order of decreasing reliability of representation, and are listed with brief descriptions in Appendix III.

All samples were sent to Min-En Laboratories Ltd., 705 West 15th Street, North Vancouver, B.C. for analysis. All stream and soil samples were subjected to a 12 element ICP analysis for Ag, As, Ba, Cd, Cu, Mn, No, Pb, Sb, Sn, W and Zn. Rock samples were similarly analysed except that Sn was not run, and instead Bi was run in about 75% of the analyses.

All samples were analysed for gold using atomic absorption methods for stream and soil samples and geochemical methods with fire assay preconcentration and atomic absorption finish for rock samples.

Soil and stream samples were dried at 95°C, then sieved to separate the minus 80 mesh fraction. A 1 gm portion of this fraction was placed in a test tube, 1:1 equimolar (50%) aqua regia added and digested for 6 hours. After cooling, samples were diluted to a standard

volume, and the solution analysed using a Jarell Ash model 900ICP Inductively-Coupled Plasma Analyser.

Rock samples were crushed and split to a 300 gm pulp. For ICP analysis the pulp is pulverized by ceramic plate pulverizer to minus 80 mesh and processed the same as soils. For geochemical analysis for gold, a 300 gm split is pulverized to minus 150 mesh, and a 15 gm sample weight is fire assay preconcentrated. The sample is then digested with Aqua Regia and taken up with 25% HCl. The gold is extracted with methyl iso-butyl ketone, and analysed by atonic absorption to a detection limit of 1 ppb against a standard gold solution.

4.3 Discussion of Geochemical Results

5

Reports tabulating analytical results are presented in Appendix IV.

In analyzing the PBX soil sample results, sample value means and standard deviations were calculated for selected elements to aid in assignment of anomalous values. These figures with high and low values for all elements analysed are presented in Table 1. Histograms and cumulative probability plots were constructed for Ag, As, Cd, Cu, Pb and Zn. These graphs with individual element statistics are compiled in Appendix V.

Correlation coefficients were also calculated for the above element suite and are presented in Table 2. Moderately strong to marginal correlations are seen for Cd relative to As, Cu and Zn, and for Cu relative to As and Ag. In conjunction with rock sample analyses and field observations, two tentative propositions may be advanced. Firstly, that cadmium is substituted partially for zinc in sphalerite, and secondly that signi-

TABLE	1.	Geochemical	Statistics	-	PBX	Grid	Soil	Samples
					r 1948	0170	DOTT	Sampre

		275	Soil Sa	mples		
Element	Valu <u>High</u>	Values <u>High Low</u>		s <u>Std. Dev.</u>	Coefficient of Variation	
Ag ppm	2.9	0.1	0.87	0.38	0.44	
As ppm	50	ı	13.27	8.07	0.61	
Au ppb	50	5				
Ba ppm	267	10				
Cd ppm	5.0	0.3	1.82	0.75	0.41	
Cu ppm	36	3	11.24	4.26	0.38	
Mn ppm	3066	24				
Mo ppm	5	1				
Pb ppm	40	4	8.68	3.93	0.45	
Sb ppm	7	ı				
Sn ppm	4	1				
W ppm	4	ı				
Zn ppm	739	4	86.57	71.29	0.82	

HI-TEC RESOURCE MANAGEMENT LIMITED

Table	2.	Correlation Coefficients - Selected Elements i	in
		Soil Samples, PBX Grid	82

		COL	REL	AT	ION	COEFF	ICIE	NTS		
COMP	ANY:HI	TEC RE	SOURCE	MANAG	EMENT			DATE:	JAN 27/	88
ATTN:D. LYMAN							SAMPLE TYPE:SOIL			
PROJ	ECT: 87E	8C044						ANALYS	SIS TYP	E:ICF
FILE	#:7-185	50								
	(Ac. 1997)		100-1002	-						2001725
			True True		HE FEA	ROUN CURREL	MITON NH	TIMEA,		
SHO EXC IN	WING THE EED THE DARKER	E INTE	AND UN	ENT CO VALUE	FOR .0	ION COEFFIC	IENTS. T	THOSE VI	ALVES TI RE SHOW	HAT N
SHC EXC IN	WING THE DARKER	E INTE	ER-ELEM ITICAL AND UN	VALUE CU	FOR .0 IED.	ZN	IENTS. T	THOSE VI	ALVES TI RE SHOW	HAT N
SHC EXC IN AG	WING THE DARKER	E INTE IR CRI PRINT AS	CD	VALUE DERLIN CU	FOR .0 RELAT FOR .0 IED. PB	ZN	IENTS. T	CHOSE V	ALUES TI RE SHOWI	HAT N
SHC EXC IN AG	WING THE DARKER AG 1.000	E INTE IR CRI PRINT AS .483 1.000	CD -433 .741	VALUE VALUE IDERLIN CU .566 .650	RRELAT FOR .0 IED. PB .138 .212	ZN	IENTS. T	THOSE V	ALUES TI RE SHOWI	HAT N
SHC EXC IN AG AS CD	WING THE DARKER AG 1.000	E INTE IR CRI PRINT AS .483 1.000	CD -433 .741 1.000	ENT CO VALUE IDERLIN CU .566 .650 .705	RRELAT FOR .0 IED. PB .138 .212 .346	ZN .314 .390 .518	IENTS. T	THOSE V	ALVES TI RE SHOW	HAT N
SHC EXC IN AG AS CD CU	WING THE DARKER AG	E INTE IR CRI PRINT AS .483 1.000	ER-ELEM ITICAL AND UN CD .433 .741 1.000	ENT CO VALUE IDERLIN CU .566 .650 .705 1.000	RRELAT FOR .0 IED. PB .138 .212 .346 .169	ZN .314 .390 .518 .397	IENTS. T	THOSE V	ALUES TI RE SHOWI	HAT N
SHC EXC IN AG AS CD CU PB	WING THE DARKER AG 1.000	E INTE IR CRI PRINT AS .483 1.000	CD -433 -741 1.000	ENT CO VALUE IDERLIN CU .566 .650 .705 1.000	PRELAT FOR .0 IED. PB .138 .212 .346 .169 1.000	ZN .314 .390 .518 .397 .482	IENTS. T	THOSE V	ALUES TI RE SHOWI	HAT N

ficant silver values may be associated with tetrahedrite-tennantite locally in addition to galena.

Two zones of coincident low value Ag-Ag-Cd-Cu-Zn soil anomalies were defined on the PBX Grid. The larger zone is additionally coincident with a VLF-EM conductor.

From inspection of rock sample results on both CDO and PBX showings, it appears an association exists between silver, cadmium, and antimony values, in addition to the district-wide correlation of silver, lead and zinc. Locally silver appears to follow zinc values more closely than lead.

4.4 PBX Grid Geochemistry

Over 300 soil and stream sediment samples were collected on the grid. The most striking feature to emerge from the plotted soil values is an area of zinc equal or greater than 100 ppm (Figure 6e). This area extends from the 1600E line southeasterly on the right bank of Pandora Creek more than 700 m to the 1000E line. Within the area, 9 of 40 samples exceed 200ppm zinc, and the highest value on the grid of 737 ppm zinc was noted. Coincident with the zinc ≥100 ppm zones, on and west of the 1400E line are areas of As ≥20 ppm, Ag ≥1.1 ppm, and Cd ≥2.5 ppm and Cu ≥16 ppm (Figures 6a to 6e). Less well defined areas of Au ≥10 ppb (Figure 6) only roughly fit the zinc zone. These values appear low to define an anomaly; however, a strong, coincident VLF-EM conductor recorded on two stations supports such an assertion (Figures 9, 9a). The validity of this anomalous zone becomes indisputable when viewing multiple overlays of geochemical and VLF-EM results. For all metals listed above (Ag, As, Au, Cd, Cu, Zn) as well as available VLF-EM Fraser-Filtered results a general configuration

		L4."	F 17,10	Γ 6,7	r ","	F 16,6	F2,6	r4,//	F 1.5	F 12,13	F17,19	
1		E25,19	14,7	4.7	6,8	-14,9	-13,4	- 13,11	- 8,9	- 12,11	20,11	57+00 N.
		13,13	2,0	18,11	9.10	12,8	.18,11	17,13	14,14	NIS	TNA	
		_1,14	-10,9	A16,12	E24,15	- 10,7	-17,11	-11,11	- 16,11	- 11,9	- 13,12	
	/	15,15	12,12	14,14	4 20,10	7,7	NIS	9.11	9,12	MIL	N/K \	
-1-	(-10,14	-3,10	- 12,18	A 11,8	19,11	13,9	-16,11	Dun	-10,10	224.14	55+00 N
		2,12	6,10	C22.0	11,10	A 39,14	5.6	14.10	12.17	NIC	True 1	00+00 H.
		- 11,13	-7.6	L19,14	021,10	410,4	12,10	10.0 (De.		12.7	
	/	3.12	7.14 /	E 23,15	13,"	122/18	24,12		15.12		NA	1
	/		7.0	(La 1	-14.9	L'14.9	19.9	12.7	C.	Gu	14 14	ST.OON
)	/	7.4		21.17			4,8	5	47	F		13370014.
(1112	1	5	A.	20	1.7 2	11,6	A	the second		
K	_	-15,15	1	["]	Ei	F 2,3	Gran	-13,7 V	4	423,14	£20,11	/
3		11,22	12,16	Ý	23,13	Liero	9	20	Î\	N/S	N/S	and the second second
Let) =	-7.15	21,26	- 22,18	-21,18	11	-01"	-6,//	11	-15,15	- 17,8	51 + 00 N.
Nan	\ =	36,29	23,14	19,14		26.19	1,6	12,9	Q22,19	A/15	MAS	
/	PBX	-2 5	\$ 17,20	25,17	154,20	21.10	13,7	1.11	1	4 27,16	N/5	B/L 5000 N.
(SHOWING	25,26	11,8	33.24	5,6	30,18	5,9	5,13	11,4	13,9	N/5	
)		- 13,16	- 9,0	E43,18	- B, 14	-74,12	-9,10	- N/S	1-12,9	- 18,12 (£27,13	49+00 N.
1	1	10,14	7,7	11,10	414,10	8,13	22,20	16,13	10,11	14,13	N/5	
/		- 7,11	- 5,8	-12,7	-11,9	4,10	- 12,8	-14,8	-18,10	- 9,11 (£ 25,13	
(1	12,9	1.7	15,4	5,7	13,4	3,6	18,11	A 22,11	\$16.11	N/5	
)		- 22,15	-2,7	-19,10	- 3, 4	-11,7	- 4,6	-18,10	-16,15	AT	- 17,11	47+00 N.
	-	16,21	5,9	22,9	- 10,10	1.4	10,11 (20,12	17,15	9,15	4 23,15	
/		-17,8	-13.16	-17,15	-17,10	-1.5	4.15,12	-16,13	-1,9	-19,11	-19,12	
L.C.P.	PANDORA'S	13,12	7.9	. M/S	N/S	13,11	1,6	11,7	9,7	11,10	N/S	
CONDO 6	CONDO 7	3.0	-10,8	-17,8	-2,6	-1,6	4 7,5	-8,9	- 5,6	-10,13	10,10	45+00 N
		11,12	9,4	5,6	1.6	5.7	2,12	1.7	19,10	14,9	MIS	
	3	- 15, 15	- 5,8	-12,7	-16,10	-1,5	- 9,8	-16.0	F20,8	-15,10	- 17,14	
		9,4	13.9	13,5	11,12	3,7	416,13	11,7	15,10	16.14	N/S	
		- 1/13	-10,7	-21.9	- 16,7	-5,7	-10,6	- 6,14	-11,9	(F21,12	- 9.14	43+00 N
		3.4	47	2	Lica	1.4 /	1	77	11 10	Lan	10.10	
	' i	IDE	L	IZE	-1510 L	14E /	-42	LIGE	-1016	L 18 E.	-1411-	and the state
LEG	END							PB	X RE	SOURCE	ES LTE)
1	Silt Sal	mple.		Contour	Intervo	7/		MAU	RIER	CK. PR	OPERT	ſΥ
4 33,21	(As ppn	n, Cuppn	<i>n)</i>	-20-	As = 2	Oppm.	PB	X G			CHEM	ISTRY
				-25-	2 2	oppm Oppm	FO	Ae Cu	(Areer	vic Value	s Contr	oured)
	5.000 A 0.000 A 0.000 A 0.000				- 5	- ppm	+	10,00	(MISEI	ine vulue	3 00110	alou)
- 17,8	Soil Sai (As ppm	nple. , Cuppn	n)					<u> </u>				1.
- 17,8	Soil Sai (As ppm	nple. , Cuppn	<i>n)</i>	100	200	300 m		HL.TEC		DWN. BY		0416 Feb. 1988

1	1	F 4,11	F 17,10	F 6,7	Г ^{11, 11}	F 16,6	F2,6	F4,//	r1.5	F 12,15	r17,10	C 11 2 1 1 1
1		- 15,19	\$ 14,7	-4.7	- 6,8	-14,4	-13,9	- 13,11	- 8,9	- 12, 11	- 20,11	57+00 N
	1	13,13	2,0	18,11	9,10	12,8	10,11	17,13	-14-14	NIS	MA	
)	-11,14	- 10,9	-4/5,12	- 24,13	- 10,7	-17,11	-11,11	- 16,11	- 11,9	- 13,12	
	/	15,15	12,12	14,14	4 20,10	7,7	MS	9.11	9,12	NIE	MAS	
	1	-10,14	- 3,10	(-12.10	411,8	19.11	-13,9	-16,11	- 21,14	-10,10	24,14	55+00 N
		2,12	6,10	122,11	11,10	A 38,14	5,6	14.10	T12,17	N/c	NK	
		- 4,13	-7,0	- 19,14	-21,10	4 10,4	12,10	-10,9	-31,16	_ // ,//	13.7	
-	/	5,12	7,14	4 27, 15	13,11	123,18	24,12	11,11	15,12	N/6	MA \	
V		- 11,14	- 7,10	-20,13	-14,9	Y-14,4	19.1	- 13,7	- 22,15	- 22,14	- 14,14	53+00 N
X		7,12	10,11	25,13	16,8	12,7	14,8	19,12	9.7	MIS	MIS	1
()		-15.13	- 14,18	- 26,20	-35,54	- 2,5	_1,7 2	13.7	- 23,/5	- 23,14	- 20,11	/
-1	1	11, 22	12,16	26,15	23,13	10,6	25,13	22,19	4 15,11	N/s	N/S	/
: 1	-	-7.15	15,22	- 22,14	-21,18	- 26,14	- 6,11	-6,11	4,16	-15,15	- 17,8	51+00 N
ino		36,29	23;14	. 19.14	12,13	26.19	1,6	12,8	22,19	N/S	MAS	
*)	PRV-	21,23	30,23	25,17	38,20	21,18	5.7	11.11	14.7_	N/S	<u>//s</u> B	L 5000 N.
/ s	HOWING	25,24	8,12	36,24	25,18	50,18	5,9	5,15	11,9	13,9	N/S	
		-13,16	-8,0	43,21	- 8, 14	-14,12	- 9,10	- N/5	-12,4	- 18,12	- 27,13	49+00 N
		10,14	7,7	11,10	14,18	8,15 (22,20	16,13	10,11	14,13	MIS	
		- 7,11	-5,8	-12,7	-11,9	-9,10	-12,8	-14,8	-18,10	- 9,11	- 25,13	
		12,4	1.7	15,4	5,7	13,4	3,6 .	18,11	A 22,11	16.11	N/5	
		- 22,15	-2.7	-19.10	- 3, 4	-11,7	- 4,6	-18,10	- 16,15	-1,7	- 17,11	47+00 N
	-	16,21	5,9	22,9	10,10	1.4	10,11	20,12	17,15	9,15	4 23,15	
		-17,0 (-13.16	-17,/5	- 17,10	-1.5	415,12	-16,15	-1,9	-19,11	- 19,12	
L.C.P.	ANDORA'S	13,12	7.9	M/5	N/s	13,11	1,6	11,7	9,7	11,10	N/5	
CONDO 6	ONDO 7	-3.0	-10,8	-17,8	-2.6	-1,6	17,5	- 8, 1	- 5,6	-10,13	-10,10	45+00 N
		11,12	9,9	5,6	1.6	5,7	2,12	1.7	19,10	14.9	NIS	
2		- 15, 15	- 5,8	-12,7	-16,10	-1,5	-9,8	-16.8	- 20,8	-15,10	- 17, 19	
		9,9	13.9	13,8	11,12	3,7	4 16,13	11.7	15,10	16,14	MIS	
		- 413	-10,7	- 21,9	- 16,7	-5,7	-10,6	- 6,14	-11,9	-21,12	- 9.14	43+00 1
1	•	. 3,4	4.7	L11,4	-15.8	L1,8 /	Lis	L7,7	-11,10	L/3.12	L14,10	
LECE	NO	. 10 E	L	12 E	L	.14E /		L 16 E		L 18 E.		
LEGE	ND					-	100	PB	X RES	OURCE	S LTD.	
	SIII Sal	mple. . Cuppn	,	Contour	Intervo	1/		MAU	RIER C	K. PR	OPERTY	
	and ppn	1 664	16	Cu ≥ :	16ppn	a	PB	X GF	RID, SO	IL GEO	CHEMIS	TRY
- Contractor	Soil Sai	mple.	1				As,	Cu (0	Copper	Value	es Cont	oured)
- 17,8	(As ppm	, Cuppn)									
1			°	100	200	300 m	A	HI-TEC RESOUR	CE	0ww 8Y Cr#K BY	0	IGUNE NT
	10-0-0-0						AGINI	LIMITED	and the second sec	SCALE 1:	1500	60

		1		00	200	300 m	1 A	HI-TEC RESOURCE MANAGEME	NT	DWN 87	500	FIGURE NT 6e
-104,1,	Soil Sampi (Zn ppm, l	le. Pbppm	, –	-100-	24	00ppm	2	źn, Pb	(Zinc	Values	Conto	ured)
# 85,9	(Zn ppm, H	obppm.	-	-/00-	Zn ≥1 ≥2	00 ppm 200 ppm	PB	X GRI	D, SOI	LGEO	HEMI	STRY
1	Silt Sampl	le.	. 0	ontour	Interval			MAUR	IER CI	K. PRC	PERT	Y
LEG	END					[PBX	RESO	URCE	S LTD	
-		e,s L e	61,4 LI	2E	L.61.11	L37,5 /	L16, 4	L25,4	L35,4	L 61,6	L 32,8	
	-4	17,6	64,10	- 109.4	-61,9	- 28, 8	F84,6	- 47,10	- 85,15	+0,10	- 38,10	43+00 N
	. 83	2,12	70,9	. 71,13	-61, ti	18,6	4159.4	10,5	108,10	82.6	N/S	
	- 41	5,13	\$4.4	- 77,4	- 76, 7	- 8,6	159,5	-50,11	- 2/2,34	- 67,14	- 81,12	
	- 13	51,14	90,12	- 55.7	18,7	.00,8	46,9	22.6	116,12	43,4	N/S	
CONDO 6	CONDO 7 F	9,5 F	104,15	- 75.11	-21,7	- 21,15	4.88,7	-86,8	-231,14	- 40, 5	34,7	45+00 N
L.C.F	PANDORA'S IN	1.13	65,12	NIS	N/S	77,14	4,5	91,8	45,10	27.5	N/S	
/	-6	A,16	. 70, 7	-82,5	-89.9	- 5,4	108,7	-101,15	219.9	-54,11	62,10	
		6,14	61,10	105.8	60.4	13.7	6.12	205,15	11,10	107,15	[47+00 N
		80.9	48 /	CIST IA	- 19 4	35,9	57.6	100,4	106	46,19	N/5	
		48,6	- 72.10	- 63,10	-54,12	489,12	[)	101,6	- 78,8	- 79,10	- 66,11	
	9	15, N	\$1,10	60,10	4 84.8	126,5	136,12	109,4	54,10	59,5	N/S	
	-*	80,6	69,10	-84.4	-110,7	-133,12	-61,6	-M/s	46,10 (- 115, 14	- 133,10	49+00 N
	SHOWING 7	5,10	274,12	-111,11	28,4	225,13	41,4	- 51,5	67,5	52,5	N/S	
)	PBX -44	* 4	96.14	137.5	167.4	195.4	34.5	B ¹ .B	45.7	N/S	N/S	B/L 5000 N
auri		60,00	82,4	105,7	149,5	160,7	27,12	43,9	102,5	N/5	N/S	
er c		152,7	137,10	-166,14	-123,5	E435, 13	39,8	- 49,6	41,4	- 132/2	- 53,9	51+00 N
-	T.	ar, a	739,40	177,7	204.6	54,5	86,11	105,13	477,4	N/S	N/K	`
/		216.7	-233.7	- 349.18	Ligno	18.4	44,6	173,5 64,6 477,8	60,4	N/S	N/S	
	/ t	44,4	-111,6	- 127,10	-91,11	-63,5	-93/3 62,9	\$4,5	- //2,//	- 125,10	- 85, 9	53+00 N
	1/ 1	50,10	- 134,8	127,7	- 88.9	Cior, 13	96,9	84,10	145, 15	~/s	~/s	1
	/ F	47,5	- 73, 7	- 85.6	- 66,10	84,11	-71,5	- 72,5	- 11By 13	-109,9	- 51,9	
		50,12	61,5	119,8	57,8	B1,6	38,6	74,5	109,10	1/5	NIS	
		69.8	- 72,5	-122,10	49,7	80,4	-79,6	- 110,7	-117,11	- 70,11	-67.5	55+00 N
	1/1	60,7	68.6	65,15	▲ 63,8 ▲ 73,5	\$9,5	N/5	105.8	115,9	N/c	NIC	
		- 78,5	- 59,11	Ana,1	-106,14	-80.6	92.11	-87.4	41,10		ac ral	
	f	71,13	49.7	76,12	74.4	Q 42.4	74.9	90.11	45.7	5,6	-54,11	57+00 N
	1 1 4	-105 12	Q 65,7	166	1.30.7	L 101 1	62.5	10.0	27.22	m /	A constant of the	

emerges of an east-west area of lower values at 5050 N with parallel elongate high value areas on either side.

A smaller and weaker area of $Zn \ge 100$ ppm, As ≥ 20 ppm, Ag ≥ 1.0 ppm and Cd ≥ 2.5 ppm, lies on lines 1800E and 1700E between 5100N and 5500N. This area does not have an associated anomalous VLF-EM conductor, however VLF-EM coverage is not complete.

Rock sampling on the PBX Grid was concentrated on the PBX showing, 25 m above Maurier Creek road in Pandora Creek (Figure 5). Nine samples, L-1201 through L-1209, were collected from trenching in and near the creek, a short east-southeast-trending adit, and a small vein 40 m further up the creek. Two channel samples, L-1203 and L-1208, taken from the 10-25 cm wide brecciated and silicified vein outcropping in the creek bed and north bank returned up to 31.2 ppm Ag, 46 ppm As, 216.2 ppm Cd, 761 ppm Pb and 33,909 ppm Zn. These lower grade values from representative samples are not inconsistent with Greene's (1986) galena-rich high grade sampling (285 oz/t Ag, 29.4% Pb, 2.68% Zn).

4.5 CDO Grid Geochemistry

Soil and stream sampling were not budgeted for the CDO grid area, because of anticipated contamination from old mining operations. During work on the grid, as finally established, it became apparent that contamination would not greatly effect soil and stream sampling. However, because of time, budget and manpower restrictions, the decision not to conduct such sampling remained.

Rock sampling was conducted in two areas of the CDO grid: the main CDO showing and the East CDO grid or Wedge area.

The main CDO showing (Figure 7a) exposes the apex of the North and South Van Roi veins. Three rock channel samples were taken on the North vein and associated rusty shearing (L-1314 to L-1316, see Figure 6), and values were obtained up to 440 ppb Au, 111.4 ppm Ag, 384 ppm Cu, 7,488 ppm Pb, 41 ppm Sb, and 9,240 ppm Zn. Fourteen rock channel samples in total (L-1303 to L-1313, L-1317 to L1319) were taken on three different locations of the South vein with values up to 430 ppb Au, 529.7 ppm Ag, 418.1 ppm Cd, 804 ppm Cu, 64,743 ppm Pb, 462 ppm Sb, and 39,086 ppm Zn. Five additional rock samples were taken on small shears and quartz veins between the main veins and in the South vein footwall with no significant results. These North and South vein sample values are of lower grade than the more selective sampling by Greene (1986, p.9-11), but consistent with historic Van Roi grades of 6 to 9 oz/t Ag, with 5 to 9% combined Pb-Zn. In fact, because these sample values do come from the Van Roi veins, the grades and metal relationships displayed may be used to gauge other occurrences against the Van Roi.

The East CDO grid or Wedge area (Figure 7b), at approximately kilometer 1.0 on the Maurier Creek road near the mouth of Maurier Creek, has mineralized, sheared argillite exposed along the main road and in two short adits below the road. Trenching and road work totalling over 2000 cubic meters by Peter Leontowicz, using his front-end loader, exposed parallel mineralized quartz veining and breccia in sheared argillite near the upper adit. A total of thirteen channel and rock chip samples were taken in and around the upper adit (L-1101 to L-1112, L-1115) with values up to 29 ppb Au, 65.8 ppm Ag, 259.9 ppm Cd, 371 ppm Cu, 18,989 ppm Pb, 74 ppm Sb and 41,544 ppm Zn.

5.0 GEOPHYSICS

5.1 Program Methods

Due to thick overburden, dense slash and trees, geophysical VLF-EM and magnetic surveys were determined to be effective exploration tools on the PBX property. Grids were established on the CDO and PBX showings, using line spacings of 100 m and station spacings of 25 m. On the PBX grid 11.0 km of VLF-EM and 14.4 km of magnetic measurements were completed. On the CDO grid 5.4 km of magnetic measurements were collected.

The geophysical survey was conducted with an EDA Omni Plus VLF-EM/Magnetometer System (Serial #218054) as the field unit and the EDA Omni IV Magnetometer as the reading base station which recorded the magnetic diurnal variations. Both systems are microprocessor based. The data was processed using a Toshiba T1100 Computer and the Contur 2.2 program by Geosoft Inc. were used to store, correct, profile and contour data.

Two VLF transmitting stations were recorded: Jim Creek, Washington (24.8 KHz) and Cutler, Maine (24.0 KHz). Both stations have been used to interpret the data and a strong correlation can be seen between the two.

After profiling, the VLF data was processed through a low-pass Fraser Filter. The filtered data is displayed for both stations because the Jim Creek station did not broadcast on two days during the survey, leaving the Cutler station to supply signal for parts of the upper PBX Grid.

5.2 PBX Grid VLF-EM and Magnetometer Survey Results

The magnetic survey results, corrected for diurnal variations, have been contoured to accentuate the magnetic highs and their flanks (Figure 8). Readings ranged over 600 gammas, from 56,300 to 56,900 gammas, on the PBX grid.

By far the most striking aspect of the contoured PBX grid magnetometer data is the abrupt change in the magnetic nature of the lithology north and south of the baseline. To the north of the baseline, the contours are fairly flat with a few small highs and lows. To the south of the baseline, the nature of the contours changes dramatically. With few exceptions, the magnetic highs occur on or near line 15+00E between stations 49+00N and 45+50N. This magnetic zone extends from 16+00E westerly for 500 m, to line 11+00E where it disappears off the edge of the grid.

The PBX grid Fraser Filtered data for the Cutler (Figure 9) and Jim Creek (Figure 9a) stations shows three distinct conductive zones.

The strongest lies just south of the baseline. This zone (referred to as Zone A) extends from line 15+00E striking east/west 500 m to line 10+00E where it disappears off the edge of the grid. By looking at the line profiles (Figures 10, 10a), several properties of this zone can be deduced. Comparing the in-phase and quadrature profiles shows a strong non-uniform conductor at depth, surrounded by non-conductive material. This zone also seems to delineate a boundary between conductive and non-conductive host rock and/or overburden. South of this zone the host rock/overburden is conductive and north of this zone it is non-conductive. Thus a

strong relationship between the magnetic and VLF responses can be established.

To the north of this boundary conductive zone, there is a narrower conductive zone (termed Zone B) that parallels Zone A. Zone B also extends from line 15+00E striking east/west 500 m to line 10+00E, and extends westerly off the edge of the grid. As in the previous zone, Zone B is a strong non-uniform conductor at depth displaying peak values on line 15+00E. The presence of a smaller conductor just south of Zone B on line 15+00E may be responsible for disguising and distorting the nature of the larger conductive zone nearby.

The other main area of interest (Zone C) lies to the south of Zone A and it therefore lies in conductive ground. This zone is more spread out and less well defined than the above two zones. However, because the host rock and/or overburden of this region is conductive, the nature of the conductor(s) is far harder to determine. From both the line profiles and the filtered data, it can be assumed that more than one conductor is actually present. Once more, the filtered EM values for Zone C peak on line 15+00E.

On line 16+00E, a small but strong conductor is evident. This response is probably caused by the presence of a swamp in the area.

In conclusion, an east/west striking zone of high magnetics extends from line 16+00E in the 500 m immediately south of the baseline, west to the grid boundary. Also noted are three zones of VLF-EM anomalies, some of which are coincident with the high magnetics.

5.3 CDO Grid Magnetic Survey

Corrected total field magnetic readings ranged over 550 gammas, from 56,550 to 57,117 gammas on the CDO grid. Two striking magnetic features are present in the western part of the CDO grid (Figure 11). The first is a sharp 180-gamma low at 1000E, 7050N elongated easterly and occurring directly over the Van Roi North Vein apex. A five to seven meter wide pyritic shear zone with thin mineralized quartz veins and lenses is the local surface expression. The South Vein apex 50 m south on line 1000E displays a flat response. More quartz veining and larger quartz lenses with broken rock in shears are present here as opposed to clayey gouge found in the North Vein.

A 400-gamma high elongated on a 060° trend occurs on lines 1200E and 1300E between 6700N and 6800N. The area is well within Nelson granite and is largely covered. A steep five meter wide shear zone with no surface mineralization and sparse quartz veining parallels the southeastern margin of the magnetic high, but is centered 100 m to the south. A small pyrrhotitic argillite inlier or mineralized portion of a shear within the granite are indicated.

No distinct magnetic signature change is present across known areas of argillite-granite contact. The eastern portion of the grid does not display trends that would help distinguish mineralization alteration or rock type.

The VLF-EM portion of the geophysical survey on the CDO grid was judged unacceptable because of equipment difficulties that were not diagnosed during work on the property.

6.0 DISCUSSION AND CONCLUSIONS

Deep soil sampling using augers is tedious work, but was proven a valuable tool to 'see' through overburden on the PBX grid. Geochemistry in conjunction with the VLF-EM survey have outlined an area roughly 300 m wide and over 400 m long within which two easterly trending parallel target zones are present. Limited exposures and an elongate zone of low level soil zinc suggest the easterly-trending zones may intersect a southwesterlytrending zone of shearing with weaker mineralization. A smaller, weaker area of anomalous geochemistry currently unsupported by VLF-EM highs is present on lines 1700E and 1800E north of the baseline.

On the PBX grid, arsenic and cadmium analyses in soil sampling have helped define precious and base metal anomalies, and may be of value as pathfinders and indicators of metal zoning.

Rock sample correlations of the above elements with precious and base metals on both grids suggest arsenic, cadmium and possibly antimony in soil analysis would be helpful in defining mineralization on the CDO grid.

Geology and rock sampling on the apex of the Van Roi North and South Veins (CDO showing) over known mineralization with reserves in place, provided control for other sampling in the area. This information has helped gauge similar mineralization at the Wedge area in the eastern part of the CDO grid. Wide zones of shearing and quartz vein-related mineralization are present on the Wedge area, and they display geochemical signatures similar to the main CDO showing. Completion of the VLF-EM survey over the CDO grid plus geochemical sampling

would help define mineralization and structure over the largely covered area between the CDO and Wedge showings.

The bulk of the property, which totals roughly 27 sq km, remains unexplored and deserves reconnaissance work especially west of the PBX grid, toward the Comstock property, and south of the PBX grid where breccia and quartz veining similar to the Willa property may be present along an east-west trend.

7.0 RECOMMENDATIONS

The next phase of exploration on the PBX property should include the following elements:

PBX Grid Area

- Evaluation of the geochemical and VLF-EM defined anomalous zone in the vicinity of the PBX show using a backhoe trenching in conjunction with D-7 cat road work.
- Completion of VLF-EM coverage on the grid.
- Addition of a 900E survey line with sampling and geophysics.
- Additional mapping and prospecting.

CDO Grid Area

- Evaluation of the Wedge zone with trenching.
- Completion of VLF-EM coverage of the grid.
- Addition of survey lines to cover east and north of the Wedge show.
- Soil sampling of extended CDO grid.
- Additional mapping and prospecting.

Other Areas

Reconnaissance geology and stream sampling, particularly of the areas east and south of the PBX grid.

Respectfully submitted, HI-TEC RESOURCE MANAGEMENT LTD.

David A Geological Engineer

February 29, 1988

- 8.0 REFERENCES
- Allen, D.G. (1983). Geological report on the Galena Farm property, Slocan M.D., B.C. for Andaurex Resources Inc. B.C.M.E.M.P.R. Assmt. Rep. No. 10, 972.

Annual Reports, Minister of Mines, British Columbia 1893-1928.

- Cairnes, C.E. (1934). Slocan Mining Camp Geol. Surv. Canada Mem. 173.
- Cairnes, C.E. (1935). Descriptions of Properties, Slocan Mining Camp; Geol. Surv. Canada Mem. 184.
- Cobban, Gillian (1987). Northair pulls 91 ft. hole of 0.34 oz gold at Willa; Northern Miner, 14 December 1987, p. 1.
 - Greene, A.S. (1986). Report of preliminary evaluation, Maurier Creek property; unpublished private report prepared for Condo Gold Ltd., Mr. P. Leontowicz and Mr. B. Franz.
 - Hedley, M.S. (1952). Geology and Ore Deposits of the Sandon area, Slocan Mining Camp; B.C. Dept. of Mines, Bull. 29.
 - Little, H.W. (1960). Nelson map area, West Half; Geol. Surv. Canada, Mem. 308.
 - McConnell, R.G. & Brock, R.W. (1904). Geol. Surv. Canada, Map 792 West Kootenay Sheet.
 - Rice, H.M.A. (1947). Geology and Mineral Deposits of the Princton Map-area, British Columbia; Geol. Surv. Canada, Mem. 243.
 - Robinson, M.C. (c.1955). Report on the Slocan area. Unpubl. G.S.C. Internal Report No. 82F114W.

- Sharp, W.M. (1977). Geology, Ore potential and proposed Development of the Hewitt-Van Roi property Silverton area Slocan M.D. British Columbia. Report for Sabina Inds. Ltd. and Dungannon Explorations Ltd. of Toronto, Ont. and Vancouver, B.C.
- Yeager, D.A. and Ikona, C.K. (1986). Geochemical report on the Comstock-Silver Cup property; BCMEMPR Assessment Report #15110.
 - Wong, R.H. (1985). Assessment Report on the 1984 Diamond Drilling Program on the Rockland Group 8006 and Willa Group 8101 claims; BCMEMPR Assessment Report #13382.

APPENDIX I

Statement of Costs

APPENDIX I

STATEMENT OF COSTS

PBX RESOURCES LTD. - PBX PROPERTY Project 87BC044 October 11 to November 22, 1987

Mobilization/Demobilization		\$ 1,553.86
Cat Work		4,980.00
Geochemical Analysis - 12 Element ICP 306 soil samples @ \$10.90/sample 48 rock samples @ \$15.75/sample rush surcharge	\$3,335.40 756.00 284.50	4,375.90
Geophysical Survey (EDA Omni Plus Syst	em)	
Magnetometer Survey	\$2,200.00	
- 20 km @ \$200.00/km	4,000.00	6,200.00
Survey and Linecutting		4,100.72
Truck Rental and Fuel		2,594.55
Field Supplies		766.50
Project Preparation		1,500.00
Freight		488.47
Domicile		6,640.00
Communications and Office Overhead		500.00
Report Compilation and Drafting		6,000.00
15% Project Management Fee		\$39,700.00 5,955.00
Salaries D. Lyman, Project Geologist 26 days @ \$300.00/day	\$7,800.00	
A. Cooper, Field Technician 31 days @ \$200.00/day	6,200.00	
K. Ross, Field Technician 26 days @ \$200.00/day	5,200.00	19,200.00
Supervision		
2 days @ \$375.00/day		750.00
	TOTAL:	\$65,605.00

APPENDIX II

Statement of Qualifications

STATEMENT OF QUALIFICATIONS

- I, DAVID A. LYMAN, of Vancouver, British Columbia, certify that:
- I am employed as a geologist by Hi-Tec Resource Management Ltd., 1500 - 609 Granville Street, Vancouver, British Columbia.
- I graduated in 1969 from The Colorado School of Mines with the degree of Geological Engineer.
- 3. I have 18 years of experience as a geologist in mineral exploration in Alaska, Canada, the Western United States and Mexico.
- I have neither received nor expect to receive any financial interest, direct or indirect, in the property examined in this report or any property within a 10 km radius.
- 5. This report is based on my personal examinations and work supervised by me during October and November 1987 and on geological reports and maps from government and consultant sources.

David Geological Engineer

February 29, 1988

APPENDIX III

Rock Sample Descriptions

ROCK SAMPLE DESCRIPTIONS

	Rock <u>Sample #</u>	*Type Sample	<u>Width (m)</u>	Description
	L-1101	R	0.8	White quartz-flooded lens, some earlier relict breccia tex- tures, trace pyrite.
-	L-1102	с	0.5	White to clear quartz veinlets, 0.1 to 1 cm wide, in sheared and broken black argillite, minor pyrite.
-	L-1103	с	0.6	Finely sheared black argillite on margin of above quartz vein- ing, minor pyrite some fine quartz veinlets.
-	L-1104	G	0.1	White and clear quartz vein, 5 to 10 cm thick, in broken black argillite, minor galena and sphalerite.
	L-1105	с	0.08	Clear quartz vein crosscutting hornfelsed quartzite and argillite, trace pyrite.
	L-1106	R	0.5	Black fine-grained silicified argillite, 1-2% pyrite dissemi- nated and in laminations.
	L-1107	с	0.4	Thin shear zone in black argillite, minor pyrite, some fine quartz veinlets.
	L-1108	С	0.6	Similar to L-1107.
	L-1109	с	0.3	Quartz-carbonate lens, several stages of brecciation and heal- ing brown sphalerite with minor galena.
	L-1110	G	0.2	White quartz veining, trace pyrite.
	L-1111	с	0.6	Brecciated and silicified quartz vein with up to 5% brown sphalerite in vein openings, lesser galena, in small cross- cut upper adit.

HI-TEC RESOURCE MANAGEMENT LIMITED

-	Rock <u>Sample #</u>	*Type <u>Sample</u>	<u>Width (m)</u>	Description
-	L-1112	с	0.4	Brecciated and silicified quartz vein cluster with faulted argillite partings, minor galena and sphalerite, in upper adit at junction of cross-cut.
-	L-1113	G	dump	White quartz veining with prominent blebs and streaks of pyrite, sphalerite and chalco- pyrite.
-	L-1114	G	dump	Veining as L-1113 with high sphalerite and lesser galena as blebs and veinlets.
_	L-1115	с	0.02	Open, clear quartz veining, 0.5 to 2 cm thick, with thick rusty clay selvages.
- 1	L-1116	G	dump	White and clear quartz veining with prominent chalcopyrite in vein openings, lesser spha- lerite, galena, some tetra- hedrite(?).
-	L-1201	с	0.15	Lt. green, pink and white brec- ciated and quartz-flooded quartz-vein centre, minor spha- lerite.
	L-1202	с	0.5	Black biotite-feldspar gneiss, sheared, 2 m north of vein centre, fine quartz veinlet stockwork, 2-4 cm spacing.
-	L-1203	с	0.1	White quartz vein with scat- tered sphalerite blebs, siderite selvage.
-	L-1204	с	0.4	Fleshy to white quartz veining in porphyritic granite shear. Just inside portal.
	L-1205	с	0.05	Broken quartz lens in shear in porphyritic granite. 20 m in- side portal.

-	Rock <u>Sample #</u>	*Type <u>Sample</u>	Width (m)	Description
-	L-1206	с	0.4	Quartz-clay lens with silici- fied ribbon-rock margins in sheared granite-biotite gneiss
-	L-1207	с	0.15	Broken quartz lens and ribbon rock in shear in biotite feldspar gneiss. 7 m inside portal.
_	L-1208	с	0.25	Brecciated and silicified quartz vein centre, sphalerite in breccia openings and replac- ing fragments, minor galena.
-	L-1209	G	0.10	Similar to L-1208, minor spha- lerite.
-	L-1210	G	0.10	Sheared and broken porphyritic granite, weak clay alteration, Porphau Claim.
-	L-1301	с	0.35	Hanging wall side of shear, rusty grey black gouge in argillite.
	L-1302	с	0.65	Footwall side of above shear.
-	L-1303	с	0.10	Hanging wall margin of south vein shear, finely broken argillite, some quartz and cal- cite veining, rusty.
	L-1304	с	0.3	South vein shear, broken rusty quartzite and argillite.
-	L-1305	с	0.7	South vein shear, banded gouge and angular argillite frag- ments.
	L-1306	с	0.5	South vein shear, banded clay gouge and argillite fragments, some quartz veinlets.
	L-1307	с	0.5	South vein shear, coarse milled fault breccia, thin grey gouge.
·	L-1308	с	0.35	South vein centre, broken rusty argillite, few thin quartz veinlets with galena.

.

-	Rock <u>Sample #</u>	*Type <u>Sample</u>	<u>Width (m)</u>	Description
-	L-1309	С	0.4	South vein centre, white quartz lenses and veinlets to 5 cm with galena centres, finely sheared argillite, clay gouge, scattered sphalerite.
_	L-1310	с	0.45	South vein centre, coarsely broken rusty argillite, few 1/2 cm gouge zones with galena and argillite fragments.
-	L-1311	c	0.48	South vein, shear on north margin of vein centre, finely sheared argillite with quartz veinlets and trace galena. 25% green-grey clay gouge.
-	L-1312	с	0.60	South vein shear, broken angu- lar argillite, rusty frac. sur- faces.
-	L-1313	с	0.35	South vein shear, finely sheared argillite, gouge and 10-15% quartz-galena veinlets.
-	L-1314	с	0.20	North vein, quartz breccia, rusty irregular fractures.
-	L-1315	G	2.0	North vein, rusty shear with grey clay gouge 5-10% quartz vein fragments.
	L-1316	С	0.25	North vein, as L-1314 5-7% quartz veining with blebs and streaks of galena.
-	L-1317	c	0.5	South vein, broken argillite and quartz breccia, 10 cm quartz vein on margin, galena blebs.
	L-1318	с	0.35	South vein, quartz lenses cut by rusty shearing, sphalerite- pyrite-galena in openings and replacing fragments.
	L-1319	G	0.40	South vein margin, coarsely sheared argillite.
	L-1320	R	0.50	Quartz breccia, no sulfides.

-	Rock <u>Sample #</u>	*Type <u>Sample</u>	<u>Width (m)</u>	Description
-	L-1321	G	0.25	8 m wide shear, sample in zone of rusty black gouge with quartz veinlets and fragments.
_	L-1322	G	0.15	Quartz breccia vein in 1.5 m shear, trace sphalerite.

APPENDIX IV

Results of Geochemical Analyses

* 965 OND OF SOIL LIST FOR L 1100E 5050N

ATTENTION: D.LYM	AN			(604)	980-581	4 BR (604	1988-452	4	. TYPE S	DIL SED	CHEM + DA	JE: NOV 19.
VALUES IN PPM) AG	AS	RA	CD	CU UJ	HN	NO	PR	SB	TN	SN	W AN-PPR
L1000E 4250N	.3	3	94	2.3	9	664	1	5	3	39		1 5
L 1000E 4300N	.3	1	46	1.6	13	713	5		ĩ	47		
1 1000F 4350H	4	9	161	2.5	9	710		12		92		1 3
11000E 44008 40	1.7	15	100	1 7	15	000	2	17		45	3	3 10
110005 14504		11	125	2.5	12	(377		-13		93	,	1 5
110005 45008	2.0	11	105	11		057				131		<u>í</u> þ
LIDDOE ASSON	4.0	17	105	1.7	17	035	3	2		14	1	3 3
LINNOE 43304	-0	13	105	1.7	12	400	2	15	2	101	1	3 5
LIDUDE 4600M	1.0	11	110	2.8	8	414	•	16	2	61	3	4 5
L1000E 4650N	1.5	21	188	2.4	16	759	5	14	6	85	1	4 10
L1000E 4790N	1.0	22	107	1.2	15	556	2	9	1	80	1	3 5
L1000E 4750H	.1	9	124	1.9	12	832	2	10	2	71	1	2 5
L1000E 4800N	.7	3	57	1.2	11	307	2	6	2	48	1	2 20
L1000E 4850N	.8	10	92	2.4	14	476	4	11	1	95	1	4 5
L1000E 4900N	1.0	13	84	2.9	16	427	3	6	2	80	1	2 5
L1000E 4950N	1.3	25	134	3.6	26	790	1	10	1	75	1	3 5
L1000E 5000N	.9	21	84	3.2	23	391	4	11	5	46	1	2 5
£1000E 5050N	1.5	35	222	4.7	29	1968	2	10	1	160	1	3 5
L1090E 5100N	.7	7	91	2.6	15	616	3	7	1	132	1	3 20
L1000E 5150N	1.0	11	67	2.1	22	1145	3	8	2	141	1	2 10
L1000E 5200N	2.1	15	71	2.4	13	717	3	7	1	216	1	3 10
11000E 5256M	1.0	1	46	1.7	12	148	2	10		69		3 10
L1000E 5300N		11	17	1.4	14	548	1	9	Ŧ	44		1 5
LIDDOF 5350M	7		54	2.2	12	975		10	í	50		1 10
110005 51008	"		57	1.5	17	474	-	. E		47		3 10
LIQUE SAUDE			25	1.3	15	7/0	2	12				2 5
L1000E 34304				1./		748				29		3 3
L1000E 2200M	1.2	10	19	2.0	14	478	2	8	1	64	1	2 5
L1000E 5550N	1.9	15	122	2.5	15	611	1	7	1	90	1	5 10
L1000E 5600N	.8	11	96	2.7	14	351	2	5	1	78	1	2 5
11000E 2820N	.8	12	127	2.5	12	436	4	13	1	71	1	3 5
L1000E 5700M	1.7	25	115	3.2	19	1953		12	3	105	1	3 5
L1000E 5750H	1.0	9	84	2.9	11	749	1	7	1	64	1	2 5
1,1000E 5750N 201	4 4	1	36	1.1	5	340	1	4	1	47	1	1 5
L1100E 4250N 87	Renm .6	q	57	1.8	7	341	2	4	1	61	1	2 5
L1100E 4300N	.8	10	59	2.4	7	446	1	10	1	64	1	2 5
11100E 4350N	.9	13	71	1.7	9	852	2	9	1	79	2	2 5
11100F 4400N	9	5	45	1.6	8	739	2	4	5	84	1	2 5
11100F 1450H	1.4		84	1.9	9	431	2	12	6	90	2	3 5
111005 45004		10	101	2.6	R	522	ĩ	13	5	104	i.	3 10
CLIDDE ASSON	.0	10	44	1.4		740	7	17	i	45	1	7 6
111005 40004		17	347	2.4	14	1204	ĩ	1	5	70	÷	1 5
111005 46000	1.9	15	101	1.9	10	170				41		
F11066 4820M	.8	2	13	1.3	0	3/4	1		1	40	1	2 20
L1100E 4700R	.0	2	40	1.4	1	51/	1	11	1	48		2 20
LITPOE 4750M	.6	1	42	1.0	1	701	1		2	35	1	1 5
L1109E 4800N	.8	5	97	1.9	8	1448	1	10	2	12	1	2 5
11100E 4850M			54	1.3	7	184		10	1	51		1 5
L1100E 4900N	.7	8	71	1.5	10	417	2	10	1	69	1	2 5
L1100E 4950N	.8	8	177	1.6	12	574	2	12	1	274	1	3 10
11100E 4998N STR	REAM1.7	27	134	3.4	20	776	1	9	1	85	1	2 5
L1100E 5000N	.8	38	157	5.0	23	252	3	14	4	46	1	3 15
1,1100E 5097H STA	REAM 3.1	21	72	2.7	26	1046	3	13	1	197	1	2 10
L1100E 5100N	2,1	15	85	2.3	22	766	1	10	1	137	1	2 10
L1100E 5150N	1.6	12	111	4.2	15	1212	1	40	2	739	1	3 10
L1100F 5200M	2.0	14	97	3.1	18	1368	1	7	2	233	1	2 5
111005 52500	1.2	10	47	1.5	11	507	1	8	2	108	1	7 15
LILLOOF STOON	1.2	1.0	47	1 7	10	694	ť	6	i	111	i	3 10
LILLOOC STRAN			40	21	14	104				134		3 10
111006 53000		-	10	1.4	14	100		7	1	78		7 5
CITAGE Deniel		1	48	1.9	10	100			ž	41	i	2 4
CLIVE 3430N	1.0	0	-3	1.0	10	240			-	72		2 75
F1106E 22008	1.1	3	69	1.2	19	318		3		12		2 20
111005 55500	1.1	12	67	1.9	12	509	2		1	AH		/ 10

OMPANY: HI TEE PESOUPEE HANAGEMENT MIN-EN LARS IEP REPORT PROJECT NO: 87 BC 044 (PBX SLOCAN) 705 WEST 15TH S1.. NORTH VANCOUVER. B.C. V7H 112

HACT: F31) PAGE 1 OF 1 CTI C 110.

CUMPANY: HI TEC RESOURCE MANAGEMENT MIN-EN LARS ICP REPORT PROJECT NO: 87 BC 044 (PBX SLOCAN) 705 WEST 15TH ST., NORTH VANCOUVER, R.

....

IACT:F31) PAGE 1 OF 1

ATTENTION- B LA	MAN	SLUCHIN	102 1	1251 1310	51 NL	URIN VANCI	DUVER, H.	C. VIH	112		FILE	NO; 7-	-18509/P3+4
CUALUES IN OD	I DE	40		1604	1480-281	4 UR (684	1)988-452	4	+ TYPE	SOIL BEDD	HEN + (ATE: NO	W 19. 1987
LUDOE FLOOR	40	85	88		LU	MN	MD	PB	58	ZN	SN	N F	HU-PPB
CETURE SEDIO	-8	10	38	1.9	9	425	2	11	1	59	1.	2	5
L1100E 56500		1	52	1.0	8	188	1	7	2	49	1	1	10
101008 52900 2	STREAM	14	49	1.6	1	425	1	. 7	2	65	1	1	10
L1109E 3/508	1.0	17	41	1.2	10	224	3	12	1	51	1	2	5
1.12008 42500	.8	11	17	1.0	9	493	3	10	1	74	1	3	5
112005 43008	.,	23	125	2.1	9	527	1	4	1	109	1	3	20
L1200E 4350N	•7	13	73	1.8	в	375	3	13	1	71	1	2	15
L120PE 4400N	.5	12	107	1.9	7	498	1	4	1	77	1	3	10
L1200E 4450H	.7	5	59	.6	6	112	2	7	1	33	1	1	5
L1200€ 4500N	.6	17	95	2.1	8	256	1	11	1	75	2	3	5
L1200E 4600N	1.3	17	.142	1.9	15	1218	2	5	7	82	2	4	10
L1200E 4650N	.7	22	114	2.6	9	321	1	8	6	105	1	3	10
L1200E 4700N	.8	19	136	2.2	10	524	2	14	2	153	2	3	5
L1200E 4750H	• b	15	87	1.8	9	375	1	8	2	94	1	3	5
L1200E 4800N	.7	12	88	1.3	7	.232	1	10	1	63	1	1	5
L1200E 4850N	1.1	11	120	1.8	10	1632	1	10	2	80	1	2	5
L1200E 4900N	1.5	43	115	3.9	18	363	1	16	1	84	1	4	5
11200E 4911N S	TREAM 1.4	33	136	4.2	21	1138	2	15	2	96	1	2	5
L1200E 4956N	1.9	36	136	2.8	24	963	1	11	2	111	1	3	10
L1200E 5000N	.9	25	118	3.1	17	343	2	5	1	137	1	3	5
L1200E 5050W	.8	19	75	2.2	14	1191	1	T	3	105	1	2	10
L1200E 5100N	. 6	22	97	2.4	14	298	2 .	14	7	166	2	3	5
L1200E 5150M	1.3	26	140	2.8	15	792	1	7	1	177	3	4	10
L1200E 5200N	1.7	26	125	3.3	20	827	2	18	3	399	2	3	10
L1200E 52500	.9	23	98	2.3	13	394	1	6	3	170	3	3	5
L1200E 5300W	1.3	20	82	2.6	13	440	1	10	2	127	3	3	10
L1200E 5350N	1.2	32	146	3.1	14	662	3	7	2	127	1	3	50
L1200E 53608 8	REAM 1.3	23	110	2.5	15	978	1	10	2	105	2	2	10
L1200E 5400N -	1.2	19	91	2.4	14	654	2	6	2	85	- i - i	2	5
L1200E 5450M	1.0	22	108	2.2	11	698	1	8	3	119	i	3	5
L1200E 5500N	1.1	12	138	2.7	18	672	• 3	10	1	122			5
L1200E 5550H	1.0	14	84	2.4	14	447	3	13	5	65	2	2	5
L1200E 5600M ST	RAAM 1.0	16	101	2.6	17	789	3	10	1	114	ĩ	2	5
11200E 5450N	1.1	18	76	1.9	11	470	1	12	3	76	i	2	5
11200E 5700N	.4	4	46	1.5	7	220	i	5	Ť	65	2	2	10
11200F 5750R	.4		44	1.2	7	175	1	7	4	56	1		5
L1300F 42508	.6	15	90	1.6	R	299	7	11	r	41	2	2	5
11300F 4300H		15	55	1.3	1	253	ĩ	9	1	61	i	î	5
L1300E 4350N	.7	11	81	2.1	12	690	3	11	- i	61	1	2	5
11300E 4400N	.5	16	75	2.2	10	336	1	1	s	76	4	i	5
11300F 4450H	.8	1	17			144		7		10			
11300F 4500B	.5	,	79	4	6	141	1	7	2	21	1	1	-
11300F 4400N	8	17	84	7.1	10	407	1	0	î	90	2		ř.
11300E 4650N	.9	10	71	1.7	10	237	Ť		5	60	7		10
11300E 4700N			94			474		,	2	70			
11300E 4750H			50			100				87			
LI TODE ABOON		ú	75	1.7	a	152	i i	12		50	-	-	20
LITOOR 49508 5	REAM 1 2	14	1.47	2 7	10	1720	2	0	:	01		3	10
1 1700E 4000N	1 5	1.	77	1.0	14	494	2	0	1	00	1	4	10
113005 40500	1.0	E	37	1.0		400	-		2	20		1	5
11300E 49504		25	105	1.0	10	340				267			3
113005 50000	1.0	10	103	3.0	20	710			-	147	-	-	10
LITONE SOLON	1.0	30	179	3.1	20	128	1		1	163	1	3	15
11700C CLOOK	.8	12	39	1.7	13	73/	1	3	2	144	1	2	5
L1300E 51008	1.7	21	78	2.5	18	3/6	-	3	3	123	1	2	5
LITAGE STOCK			48	1.0	15	53/		0		206			15
LINNE STOR	1.0	33	100	3.5	36	227	:	10	3	15/	1	3	20
113005 57000	.8	10	00	1.4	8	123	1	5	1	64	1	1	5
LUMAE STEAD	1.7	17	13	1.5		438	1	0	2	11	1	2	20
LI TOOC \$4000	1.3	13	98	1.5	11	324	1	10		88		2	10
1120-05 240(M	1.0	41	36	1.5	10	254	3	10	3	55	2	2	10

TENTION.	B. LYMON				(604)	580-581	A 00 1404	1000-4514		. TYPE		FII	LE MUS	1-18305/
VALLIES TH	PPH 1	46	20	RA	60	CII	HU 1004	ND ND	00	THIFE	SUIL BEU	LHER E	DATE:	NUV 19.
1300E 545	201		11	64	1.4	10	700			35	11	58		AU-PPB
1300E 550	IN 20H	7		117	1.4	13	200	1	7		3/	1	2	5
1300F 557	ON STREAM	.7	11	57	2.7	8	491		4		49	1	1	5
1300F 555	IN STRRAM		20	63	2 3	10	55.	5		1	73		2	2
1300E 557	IN STREAM	.0	19	47	1.4	10	798	2	0		13	1	2	2
1300F 560	IN STANT	0	74	82		13	010				03			?
1300E 545	508	9	47	45	1.6	10	115	1.	19	1	106	1	3	2
1300E 570	-	.8	6	55	1.1	R	1034		-	-	74	3	3	10
1300E 571	ON TREAM			44	1.7	0	1040	1		1	33	1	1	2
1300E 575	ON STREET			44	1.9	112	574	1			70	2	1	5
13455 470	IN OTOGAN)		17	144		13	310				/4		2-	10
14005 425	AN SIVENULT	5		47	4.1	13	2931	4	5	2	40		1	10
1400E 170	04			70		7	140	1	0	-	31		1	10
1400E 475	014	.0	1	24	1.7	7	77		0	2	10		1	10
1400E 440	6H		3	17			70	1	6	1	10	1	1	2
14006 445	ON CON	0	5	50	1 7	·····;··	154				40			
1400E 450	CH .	5	1	41	1.3 T	4	175	1	15	1	21	-	-	19
1400E 455	ON CON		11	40			105	-	1.4		77		1	13
14000 140	οw Δi		13	10	1.0	13	24		17		5			10
1400E 400	ON ON	1	1	17			60	1	7	2	17		1	10
1400E 400	0N	7		40	12		134				A1			
1400E 475	AH		11	47	1.7		157	1	0	-	55	2	1	10
1400E 477	51 404 1	0	13	118	7.4	2	013	2	12	2	99	1	2	15
1400E 480	CH STHEAM	7	Q	131	1.8	10	442	i	11	2	108	i	2	5
1400E 495	6N 1	.0	9	94	1.8	13	786	1		ĩ	176	;		10
14000 400	AN I	1	14	219	1.7	12	1119		12		120			
1400E 405	AN I		50	07	A 4	19	677		13		775			10
1400E 473	AN 1		21	125	2.2	10	DL7	2	4		105		1	10
1400E 505	04 1 Ali		24	149	2.1	10	510	1	-	2	140	3	3	20
1474E 545	AN		20	107	2.5	14	740	2	13	1	135	÷		5
1400E 515	0N	1	10	50	17		749		5		54			
1400E 520	ON CON	7	2	75		5	51	1	1	2	19	1	î	15
1400E 525	011	4	12	97	1.9	7	192	x	11	2	73	2	2	5
1400E 570	ION I	7	14	104	1.0	9	TIA	1	5	ĩ	13	1	2	10
1400E 530	ON I		23	179	2.9	18	808	2	13	1	101	1	T	5
1400E 540	04	9	17	73	2.0	11	574	3	11		84			5
1400E 540	50 200	1	10	49	1 0		392	2		1	58	-1	î	5
LAGOE SAS	IN STREAM		19	47	7.0	11	281	2	4	2	81	i	Ť	10
1400E 540	WW Granert		70	40	4.5	14	1094	2	11	1	44		2	10
1400E 550	ON AON		10	49	LR	11	443	i	1	2	50	2	2	5
1400E 555	ON TVA	1		32	1.4	7	204	1	5		19			
1400E 510	ON		10	50	2 2	7	315	3	4	1	80	1	2	10
14000 540	AN		12	71	1 1	9	676	1		2	40	7	2	5
14006 570	INN .	.0	14	50	0	0	494	2		2	101	1	2	
14005 575	ion a	5	16	42	1.9	4	412	ĩ	0	÷	80	2	ž	
140VE 3/3			10	36	1.7		-112							

ŝ

COMPANY: HI TEC PE	SOURCE MA	HAGEHENT		н	IN-EN L	ABS ICP F	REPORT				IACT:F3	1) PAGE 1 OF 1
PROJECT NO: 87 BC	044 (PBX	SLOCAN)	705 N	ST 15TH	ST NO	RTH VANCI	DUVER. B.C	. V7H 1	112	CO11 0C0	FILE N	0: 7-18505/P7+8
IVAL HES IN PPH I	06	24	RA	C0	CII	HI TOUR	80	PR	CD	74	CNCH + DH	W AN-000
11500F 4250N	.1	1	13	.7	3	63			30	14		N HU-FFD
11500F 43000	.2	10	52	1.8	6	716	i	- 2	2	04	2	1 5
1 1500E 4350N STA	AMI R	16	200	4.2	13	1496		14	ň	150	1	2 5
11500F 4400H		9	105	7.1	9	2149	2	5		50		2 5
11500E 4450H	5	2	74	2.1	\$2	903	i			44		2 5
11500E 4500N 40H	5		106	1.8	5	506				00		2 5
LISONE ASSON STA	EAM	1	37		6	375	1	5	2	00	1	7 10
LISONE ALDON STR	6.4.4 A	13	84	1.9	17	414	1	7		00		2 5
11500E 4000H 37A	1.0	10	59	1.7	11	340	T	12	2	60	2	1 10
115005 47004	5	10	05	1.3	1	717	2	14		57	1	3 10
115000 47004			1.1	1 2		113						
11500E 4000N		17	75	1.3	0	452	2	10	1	77	- 22	2 5
LISANE ADEAN		22	07	2.1	20	132	3	12	:	174		1 10
115005 40000	.0		74	1.7	10	255	-	12	2	130		3 10
LIGOUE 49900		-	39	1.3	10	177	-		1	41		1 10
LISHOE ATOM			4.2	1.6		133				74		3 10
LIBOOE SOUGH	.'	3	10	.8	1	110	1		2	30		1 5
LIDUOE DUDVI		1	21			150	2	12	-	21		1 5
11200£ 21000	.4	5	3/	1.5	11	300	1	8	0	34		3 13
L1590E 5150N	1.0	25	44	3.1	13	522	2	11	1	80		3 10
L1500E 5200M			49			21		6		19		1 29
1.1590E 5250N	.7	12	46	1.5	4	168	1	6	2	41	1	1 15
L1500E 5285N 40H	6AM .5	14	64	1.9	8	511	1	9	2	62	1	2 5
L1500E 5300N	.7	19	62	1.6	9	322	3	13	2	93	1	2 5
L1500E 5350H	.7	24	58	2.2	12	431	2	9	2	96	1	3 5
L1500E 5400N		12	49	2.2	10	504	2	5	2	71	!	2 10
L1500E 5450M	.6	5	28	1.1	6	428	1	6	1	38	1	1 5
L1500E 5500N	1.1	13	51	1.5	9	796	3	6	3	79	1	2 5
L1500E 5550N N	1/5					2.02			220	-5-011		
11500E 5600N	1.0	17	46	2.2	11	374	1	11	2	97	1	3 5
L1500E 5650N	1.0	18	50	1.7	10	494	2	9	3	74	1	2 40
L1500E 5700N	.8	13	39	2.1	9	227	1	5	5	62	2	2 5
L1500E 5750N	.5	2	51	.9	5	120	5	7	1	40	1	1 10
L1500E 4250N	.4	7	29	1.1	7	133	1	4	1	25	1	1 5
L1600E 4300N	1.2	5	104	1.6	14	2272	1	10	5	47	2	2 15
L1600E 4350N	.9	11	94	1.6		329	1	5	!	70	2	2 5
L1500E 4400N	.8	16	44	1.9	8	165	2	11	1	50	1	2 5
L1500E 44398 STR	EAM .6	3	71	2.0	5	220	1	8	2	111	.1	1 10
L1600E 4450N	.7	1	100	.7	7	121	1	6	1	22	1	1 5
L1600E 4500N	1.1	8	88	1.3	9	526	2	8	1	88	1	2 10
L1600E 4550N	.4	11	86	2.0	7	221	1	8	1	91	1	2 10
L1600E 4600N	.5	16	176	2.3	13	811	2	15	1	181	2	3 15
11600E 4650N	.4	20	200	2.4	12	565	3	13	1	205	2	3 5
L1500E 4700M	.7	18	225	1.8	10	494	2	5	1	120	1	2 10
L1500E 4750N	.2	18	97	2.2	11	289	1	4	1	100	1	3 10
L1600E 4800M	.3	14	82	1.6	8	377	1	6	1	101	2	2 5
L1600E 4850N	.7	16	93	1.8	13	1000	2	4	1	109	1	3 15
L1600E 4950N	1.1	5	48	1.7	13	179	1	5	1	51	2	2 25 .
L1600E 5000N	1.3	11	118	1.5	11	3066	1	8	2	81	1	2 10 :
1.1500E 5050M	1.1	12	53	1.9	B	179	1	9	3	43	1	1 5
L1600E 5100N	.4	6	42	.5	11	85	1	6	2	49	1	1 5
L1600E 5150N	1.2	22	88	1.6	19	661	1	13	2	105	2	3 10
L1600E 5200N	.7	13	45	1.7	7	194	2	6	2	47	1	1 5
L1600E 5222N 20M	.4	9	63	1.8	6	456	1	8	2	77	1	1 10
L1600N 5745H 20H	Renn 6	11	49	1.8	6	447	1	6	2	64	1	1 5
L1600N 5250N ST	ARAM .7	19	62	2.2	12	563	1	5	2	73	2	2 5
L1600N 5300N	,5	13	53	1.9	7	512	2	5	3	54	1	2 15
L1600N 5350N	1.2	11	72	1.7	11	901	1	10	1	84	2	3 5
L1600N 5400N	.6	10	50	1.9	9	512	3	5	1	72	1	2 15
L1600N 5450N	.9	14	66	1.2	10	753	3	5	3	74	2	2 10
L1600N 5500N	.9	16	60	1.9	11	1011	3	7	2	110	1	2 10

1.18

CUMPANY:	HI TEC RESOUR	RCE HANA	GEHENI		HI	H-EN LA	BS ICP HEF	OHS				(ACT:F3)) FAGE	1 OF 1
PROJECT N	D: 87 BC 044	(PBX SL	DCAN)	705 WEST	15TH ST	NOR'	TH VANCOUV	ER. B.C.	¥7M 1T2			FILE NO:	7-1850	S/P9+10
ATTENTION	: D.LYMAN	2.2.1.0.000			(604)9	80-5914	UR (604)9	99-4524	+	TYPE S	OIL GEOCHE	H + DAT	E:NOV	19. 1987
IVALUES	IN PPH)	AG	AS	BA	CD	CU	MM	MQ	P8	SR	ZN	SN	H AU-I	PPB
L1600N 5	550N	.6	9	48	1.4	11	397	2	8	1	105	1	3	5
1.1600N 5	600N	.5	11	42	1.3	11	300	1	4	2	97	1	3.	5
L1600N 5	6501 1	1.1	17	52	1.9	13	336	2	11	3	90	1	3	5
L1600N 51	700N	.8	13	46	1.6	11	316	1	8	2	68	1	3	5
L1600H 5	750H 1	1.0	4	67	1.2	11	160	1	7	2	48	1	2	10
11700E 4	250H	.4	11	61	1.5	10	433	1	9	3	55	1	2	5
L1700E 43	SOON	.5	11	73	1.5	9	320	2	13	2	83	1	3	5
L1700E 4	350H	.9	15	52	1.3	10	208	1	10	2	108	1	3	5
L1700E 44	IOON	.8	20	147	3.0	8	2978	3	34	2	212	1	3	5
L1700E 4	450N	.9	19	91	2.6	10	486	1	12	1	116	1	3	5
L1700E 4	500N	.4	5	49	1.2	6	161	1	14	1	231	2	2	10
L1700E 45	550N	.8	9	35	1.2	7	144	2	10	4	45	1	2	5
L1700E 4	6001	.5	1	28	.6	9	239	1	9	2	19	1	1	10
L1700E 44	650N	.9	17	135	2.8	15	617	1	10	3	111	1	3	10
1.17008 4	700 n	.7	16	63	2.1	15	410	1	6	2	70	3	2	5
L1700E 4	TSON STREAM	1.1	22	100	2.7	11	437	2	8	4	66	1	3	5
L1700E 4	BOON	.9	18	62	2.1	10	279	1	8	3	78	1	2	5
L1700N 4	BI III STREAM	1.0	16	70	2.2	11	317	1	23	3	79	1	2	10
L1700N 41	B50N	.7	10	57	1.6	11	301	1	10	3	54	1	7	5
L1700N 4	900N	1.0	12	37	1.5	9	216	2	10	3	46	1	2	5
L1700H 4	950N	.6	11	49	1.6	9	361	2	5	2	67	2	2	5
11700N 50	DOON	.9	16	32	1.4	7	191	1	7	4	45	1	2	5
L1700N 5	050N	1.3	22	145	2.8	19	492	2	5	2	102	1	3	5
L1700N 5	100N STREAM	.3	1.4	86	2.5	16	311	1	9	3.	91	1	2	5
L1700N 5	150H 40H	1.0	15	77	1.9	11	318	1	4	2	77	1	2	5
L1700N 5	200N	.8	23	77	2.0	15	493	1	7	3	135	2	3	5
L1700N 5	250N	.7	9	54	.7	7	519	1	9	3	60	1	2	15
L1700N 5	300N	1.3	22	58	1,8	13	865	2	11	4	112	1	3	10
L1700N 5	350N	.4	15	98	2.8	12	370	2	15	1	145	1	4	5
L1700N 5	400N	1.0	31	75	3.6	16	670		13	5	118	_1	4	10
L1700N 5	450N	1.0	12	55	2.0	17	375	1	10	2	109	3	3	5
L1700N 5	500N	.7	21	55	2.5	14	404	1	11	2	119	3	3	10
L1700N 5	550N	.7	9	69	1.9	12	313	1	9	2	115	1	3	5
L1700N 5	600N	.6	16	62	1.4	11	517	1	10	3	91	1	3	5
L1700N 5	650H 40H	.7	14	49	1.7	14	448			2	95		2	
L1700N 5	700N	.6	8	52	2.2	9	368	1	12	2	13	1	2	2
L1700N 5	750N	.4	1	14	.6	5	56	1	13	3	15	1	1	5
L1800E 4	2501	.9	13	57	1.8	12	255	2	6	3	61	2	3	3
LIBUOE 4	300N	1.1	21	38	2.9	12	135	1	10	5	4()	1	5	3
1.1800E 4	350H	1.0	16	58	2.2	14	289	4		4	82			
L1800E 4	400N	1.2	15	43	1.3	10	192	2	19	4	6/	1	2	2
LIBOOE 4	4501	1.3	14	48	1.5	9	362	1	4	3	43	1	2	5
L1800E 4	500N	1.1	10	13	1.3	13	410	1	5	4	90	1	4	5
L1800E 4	550N	1.1	11	11	1.0	10	43	1	5	1	£1 53	1	7	5
11800E 4	600N	.7	19	63	2.5		276				39			
L1800E 4	650H	1.1	9	82	1.3	10	766	1	3	3	107	1	2	5
LIBOOE 4	68/N AOM	1.0	n	83	2.5	11	732	i.	3.7	3	30		1	5
L1800E 4	17001	.4	1	44	.,		/8	1	15	3	00	4	2	E E
LIBBOE 4	721H STREAM	1.0	34	90	1.3	32	940	4	17	3	104	1	2	5
L1800E	150H STREAM	1.0	16	/8	-1.1		012		10		74			
L1900E 4	9900A	.9	4	33	1.8	13	150	2	E	3	5.0	2	4	10
1.1800E	1850N	.4	34	50	1.0	13	107	2	14	7	(15		7	5
L1800E	440()N	.9	18	/1	2.5	12	290	3	19	3	57	1	5	5
L1800E 4	1950N	1.0	13	44	1.1	9	104	1	3	4	110	1	3	5
L1800E	19/2N STREAM	1.9		84	4.0	15	547		12		232			16
L1800E	1000	1.5	15	75	1.0	15	521	1	7	7	94	2	3	5
LIBUOE S	STOON	1.3	13	10	2.2	14	497	1	10	3	125	i	3	5
L1800F	3300M 54660M	1.4	11	57	1 7	14	414	s	9	4	109	3	3	5
LIBOOF :	3400N 5500H	1.1	11	33	1.7	10	000	2	11	3	79	2	7	10
r i four	a journ		10	72	1.6	10	101							

CONFANT: HI I	EC RESO	URCE H	ANAGENENT			MIN-EN L	ABS ICP 8	EPOPT				(ACI	:F31) (PAGE 1 OF
PROJECT NO: 8	7 PC 044	(PBX	SLOCAN)	705 W	EST 15TH	ST NO	RTH VANCO	UVER, 8,	C. V7H 1	12		FI	LE NO: 1	7-18505/P11
ATTENTION: D.I	LYMAN				(604)	980-581	4 OR 1604	1988-452	4	+ TYPE	SOIL GEO	CHEH +	DATE:N	OV 19. 198
(VALUES IN P	PM)	AG	AS	BA	CD	CU	NN	MO	PB	58	ZN	SH	W	AU-PPB
LIB00E 56008		.6	11	38	1.1	9	219	1	5	2	36	1	2	. 5
L1800E 5700N		.6	12	52	.9	11	459	3	6	1 -	75	1	3	5
L1900E 5750H		1.2	12	54	1.7	13	411	2	9	1	86	1	3	10
L1900E 4250N		.7	14	47	1.3	10	201	1	8	3	32	1	2	5
L1900E 4300N	Second	.6	9	59	1.3	14	371	1	10	2	38	2	2	5
L1900E 4400H		1.4	17	86	2.1	14	1890	3	12	3	81	2	3	5
L1900E 4480H	STREAM	1.9	15	116	2.3	11	659	2	27	2	89	1	2	10
L1900E 4500H		.4	10	46	1.1	10	124	2	7	4	39	2	2	10
L1900E 4600H		.6	19	60	.6	12	152	2	10	2	62	3	3	5
LI900E 4640H	STREAM	1.6	23	104	2.7	13	407	3	6	3	150	3	3	5
1 1900E 4700H		.7	17	46	2.0	11	196	1	5	2	86	1	3	15
L1900E 4800N		1.0	25	46	1.8	13	189	1	15	2	66	4	3	10
L1900E 4900N		1.0	27	121	2.5	13	409	3	10	3	133	1	3	5
L1900F 5100N		.9	\$7	89	1.4	8	354	1	ę	4	53	1	1	5
LISONE 52008		1.1	20	83	1.5	11	491	1	5	4	58	1	2	5
1 1900E 5300N		.9	19	30	2.3	14	398	2	9	2	85	1	3	5
L1900E 5400N		.6	13	30	1.0	7	233	1	9	3	31	1	1	5
L1900E 5500N		1.1	24	66	1.2	14	576	1	5	2	67	1	3	10
1.1900E 5600N		1.0	13	32	1.6	12	153	3	13	3	45	3	3	10
L1900E 5700H	6	1.5	20	70	1.5	11	458	1	11	5	54	1	1	5
1.1900E 5750H		1.2	17	39	1.0	10	238	1	8	4	44	1	1	5
L11400E50+50H	1	.9	23	77	2.3	14	841	2	4	4	82	3	2	5

1.1

COMPANY:	H1-1EC	RESOURCES				MIN-EN L	.85 1CP R	EFORT				(AC	T:F31) F	PAGE 1 (
PROJECT N	IO: 87 P	3C 044		705	KEST 15TH	I ST., NO	IRTH VANC	OUVER. B	8.C. V7M	112			FILE N	0: 7-207
ATTENTION	1: D.A.L	YMAN			1604	1980-581	4 OR (60	41988-45	524	1 TYPE	ROCK GE	OCHEM 1	DATE:I	DEC 16.
IVALUES	IN PPN) A6	AS	BA	CD	CU	MN	HO	FB	SB	ZN	N	AU-PPB	
L-1101	* R	2.7	20	64	8.3	18	1169	1	217	2	738	1	26	
L-1102	с	1.5	19	53	9.9	12	4010	1	237	2	774	1	18	
L-1103	C	5.8	42	57	30.7	46	5447	5	1549	11	3432	3	25	
L-1104	G	1.4	20	61	5.3	20	3184	1	191	5	532	1	2	
L-1105	C	.7	7	28	1.8	12	453	1	82	2	174	1	29	
L-1106	R	1.4	7	24	1.6	24	156	5	38	4	60	1	25	
L-1107	C	.1	10	47	2.4	30	269	1	36	1	101	2	5	
L-1108	C	1.0	14	56	1.9	31	283	3	26	6	64	3	6	
L-1109	C	11.2	24	18	76.5	371	248	4	791	9	13632	5	23	
L-1110	G	2.2	19	24	18.3	53	703	1	669	4	2601	2	1	
L-1111	C	65.8	24	15	259.9	251	750	9	18989	74	41544	10	10	
L-1112	C	5.3	24	17	81.2	342	1487	4	728	6	12148	9	72	
IVALUES	IN PPA	J HO	85	BR			CU.	111	nu	PB	SB	IN		AU-PPI
L 1113	a	42.8	18	45	2	6/0.7	200	347	3	111	18	43276	39	305
L 1114	9	24.0	25	12	1	417.2	342	549	1	3233	27	111192	8	2
L 1115	C	1.1	33	110		5.0	51	21564	6	126		1533	26	11
L 1116	9	- 626.5	415	23	49	64.5	24221	1559	5	38065	1/4	6633	24	11
L 1201	<u> </u>	14.0	+ 38	54		.9	1098	3065	3	718	1	278	18	
L 1202	C	2.3	40	665	1	1.1	137	1282	2	89	4	156	58	
L 1203	5	31.2	46	40	2	24.4	116	8/45	5	/61	15	4410	n	1
L 1204	C	.5	1	44	1		15	653	1	41	3	126	11	P
L 1205	C	3.6	9	84	1	12.3	47	3591	2	247	5	1816	8	1
L 1205	C	2.9	18	200	1	7.8	35	4391	3	367	5	1610	15	
L 1207	C	1.6	9	29	1	3.2	22	1834	3	186	4	1030	14	
L 1208	С	10.1	45	47	7	216.2	52	9551	4	189	16	33909	9	- 3
L 1209	G	28.2	20	78	1	9.4	39	3711	2	619	14	2189	24	
L 1210	G	.7	4	137	1	.4	14	834	2	34	6	311	14	
L 1301	C	1.1	6	74	1	.1	83	677	1	22	4	155	21	
L 1302	C	.9	16	79	2	.1	11	821	1	27	1	102	23	
L 1303	C	1.0	16	341	5	.1	79	633	2	26	8	92	26	
L 1304	С	1.4	17	530	6	.4	61	1207	2	17	10	105	29	1
L 1305	С	1.2	18	383	7	.4	40	969	2	18	9	87	26	1
L 1306	C	.9	23	209	1	.1	48	629	2	18	9	109	24	1
L 1307	C	1.5	15	98	1	.9	54	1106	1	200	20	418	22	
L 1308	C	231.9	74	125	2	24.5	495	1347	3	29888	189	3931	5	15
L 1309	C	529.7	86	56	1	217.4	488	9262	7	64743	462	22067	7	43
L 1310	C	30.5	19	119	1	23.6	56	1802	2	2661	32	2798	8	2
L 1311	C	28.6	35	64	1	4.6	137	1306	3	4295	32	1756	5	5
L 1312	C	5.2	21	111	1	13.8	62	883	2	274	11	1951	9	1
L 1313	C	4.8	20	123	1	14.3	35	1637	1	549	20	1415	10	1
L 1314	C	5.1	27	25	1	6.7	34	704	1	555	9	1955	1	
L 1315	G	23.9	76	59	1	11.2	52	1668	2	1038	37	1267	8	4
L 1316	C	111.4	19	9	1	8.1	384	159	2	7488	41	9240	1	44
L 1317	C	186.3	35	37	9	74.4	804	287	2	37285	139	7398	1	13
L 1318	C	121.0	194	57	27	419.1	195	15166	2	4398	76	39086	20	15
L 1319	G	25.8	37	202	3	23.1	121	6458	2	2666	31	3932	2	3
L 1320	R	3.8	24	78	1	9.0	50	2064	1	521	7	999	5	1
1 1321	G	1.4	22	31	5	3.6	75	1180	1	451	10	442	12	2
				******	********									

12

.

R = rock chip sample G = grab sample

APPENDIX V

Statistical Analysis of Selected Elements PBX Grid Soil Samples

	SPECIALISTS IN N	INERAL ENVIRONMENTS
	705 VEST 15TH STREET NORT	TH VANCOUVER, B.C. CANADA V7M 1T2
	TELEX: 04-352828 PHO	NE: (604)980-5814 DR (604)988-4524
<u>s</u>	TATISTICAL S	SUMMARY ON AG
OMPANY: HI TEC	RESOURCE MANAGEMENT	DATE: JAN 27/88
TTN:D. LYMAN		SAMPLE TYPEISUIL
RUJECT: 87BC04	14	ANALYSIS TYPE:ICP
ILE#:/-1850		
NUMBER OF S	AMPLES: 274	5 HIGHEST AG VALUES:
MAXIMUM VAL	.UE: 2.90 PPM	L1300E 5150N 2.9 PPM
MINIMUM VAL	UE: 0.00 PPM	L1000E 4500N 2.8 PPM
MEAN:	.87 PPM	L1000E 5200N 2.1 PPM
STD. DEVIAT	10N: .38 PPM	L1100E 5100N 2.1 PPM
COEFF. OF V	ARIATION: .44	L1345E 4700N 2.1 PPM
HISTOGRAM FO	R AG CLASS IN	TERVAL = .08
MID CLASS	CLASS	
PPM	%	
< .50	9.85 1	
.54	5.47	
.62	9.85	
.70	18.25	
.78	12.04	
.86	9.49	
.94	0.00	
1.02	11.68	
1.10	6.93	
	2.153 (2.25) 110 (1.25)	
1.18	4.38	
1.18	4.38 4.38	
1.18 1.26 1.34	4.38 4.38 0.00	
1.18 1.26 1.34 1.42	4.38 4.38 0.00 1.46	
1.18 1.26 1.34 1.42 1.50	4.38 4.38 0.00 1.46 2.19	
1.18 1.26 1.34 1.42 1.50 1.58	4.38 4.38 0.00 1.46 2.19 .36	
1.18 1.26 1.34 1.42 1.50 1.58 1.66	4.38 4.38 0.00 1.46 2.19 .36 1.46	
1.18 1.26 1.34 1.42 1.50 1.58 1.66 1.74	4.38 4.38 0.00 1.46 2.19 .36 1.46 0.00	
1.18 1.26 1.34 1.42 1.50 1.58 1.66 1.74 1.82	4.38 4.38 0.00 1.46 2.19 .36 1.46 0.00 0.00	
1.18 1.26 1.34 1.42 1.50 1.58 1.66 1.74 1.82 1.90	4.38 4.38 0.00 1.46 2.19 .36 1.46 0.00 0.00 0.00 .36	
1.18 1.26 1.34 1.42 1.50 1.58 1.66 1.74 1.82 1.90 1.98	4.38 4.38 0.00 1.46 2.19 .36 1.46 0.00 0.00 .36 1.36	
1.18 1.26 1.34 1.42 1.50 1.58 1.66 1.74 1.82 1.90 1.98 2.06	4.38 4.38 0.00 1.46 2.19 .36 1.46 0.00 0.00 0.00 .36 .36 .36 .36	
1.18 1.26 1.34 1.42 1.50 1.58 1.66 1.74 1.82 1.90 1.98 2.06 ≥ 2.10	4.38 4.38 0.00 1.46 2.19 .36 1.46 0.00 0.00 0.00 .36 .36 1.31	
1.18 1.26 1.34 1.42 1.50 1.58 1.66 1.74 1.82 1.90 1.98 2.06 ≻ 2.10	4.38 4.38 0.00 1.46 2.19 .36 1.46 0.00 0.00 .36 .36 1.31	9.12%

	MIN-EN LABOR SPECIALISTS IN MIN 705 VEST 15TH STREET NORTH VA TELEX: 04-352828 PHONE: (6	RATORIES LTD ERAL ENVIRONMENTS NCOUVER, B.C. CANADA V7N 112 04)980-5814 OR (604)988-4524	<u>. </u>
COMPANY:HI TEC	TATISTICAL SU	DATE:	5 JAN 27/88
ATTN:D. LYMAN		SAMPLI	E TYPE:SOIL
PROJECT: 07BCO4	44	ANALY	SIS TYPE:ICP
FILE#:7-1850			
NUMBER OF	SAMPLES: 274	5 HIGHEST AS VAL	UES:
MAXIMUM VAL	LUE: 50.00 PPM	L1400E 4950N	50 PPM
MINIMUM VAL	_UE: 0.00 PPM	L1200E 4900N	43 PPM
MEAN:	13.27 PPM	L1100E 5000N	38 PPM
STD. DEVIA	FION: 8.07 PPM	L1300E 5000N	38 PPM
COEFF. OF V	VARIATION: .61	L1000E 5050N	36 PPM
HISTOGRAM FO	DR AS CLASS INTER	RVAL = 1.6	
MID CLASS	CLASS		
PPM	%		Marcoll Transfer
< 6.00	16.79		
6.80	5.84		
8.40	8.39		
10.00	5.84		
11.60	14.23		
13.20	6.57	Constant day	
14.80	8.03		
16.40	9.49		
18.00	2.55		
18.00 19.60	5.47	-	
18.00 19.60 21.20	2.55 144 5.47 144 2.92 144	-	
18.00 19.60 21.20 22.80	2.55 5.47 2.92 5.47		
18.00 19.60 21.20 22.80 24.40	2.55 5.47 2.92 5.47 3.28		
18.00 19.60 21.20 22.80 24.40 26.00	2.55 5.47 2.92 5.47 3.28 1.46		
18.00 19.60 21.20 22.80 24.40 26.00 27.60	2.55 5.47 2.92 5.47 3.28 1.46 .36		
18.00 19.60 21.20 22.80 24.40 26.00 27.60 29.20	2.55 5.47 2.92 5.47 3.28 1.46 .36		
18.00 19.60 21.20 22.80 24.40 26.00 27.60 29.20 30.80	2.55 5.47 2.92 5.47 3.28 1.46 .36 0.00 .73		
18.00 19.60 21.20 22.80 24.40 26.00 27.60 29.20 30.80 32.40	2.55 5.47 2.92 5.47 3.28 1.46 .36 0.00 .73 .73		
18.00 19.60 21.20 22.80 24.40 26.00 27.60 29.20 30.80 32.40 34.00	2.55 5.47 2.92 5.47 3.28 1.46 .36 0.00 .73 .73 0.00		
18.00 19.60 21.20 22.80 24.40 26.00 27.60 29.20 30.80 32.40 34.00 35.60	2.55 5.47 2.92 5.47 3.28 1.46 .36 0.00 .73 .73 0.00 .73		
18.00 19.60 21.20 22.80 24.40 26.00 27.60 29.20 30.80 32.40 34.00 35.60 37.20	2.55 5.47 2.92 5.47 3.28 1.46 .36 0.00 .73 0.00 .73 0.00 .73 0.00		
18.00 19.60 21.20 22.80 24.40 26.00 27.60 29.20 30.80 32.40 34.00 35.60 37.20 > 38.00	2.55 5.47 2.92 5.47 3.28 1.46 .36 0.00 .73 0.00 .73 0.00 1.31		
18.00 19.60 21.20 22.80 24.40 26.00 27.60 29.20 30.80 32.40 34.00 35.60 37.20 > 38.00	2.55 5.47 2.92 5.47 3.28 1.46 .36 0.00 .73 0.00 .73 0.00 1.31		

	SPECIAL	ISTS IN MIN	ERAL ENVIRONMENTS	
	705 WEST 1	STH STREET NORTH VAL	NCOUVER, B.C. CANADA V7M 1T2	
	TELEX: 04-	352828 PHONE: (64	04)980-5814 OR (604)988-4524	
STA	TISTI	CAL SU	MMARY ON C	<u>P</u>
OMPANY: HI TEC R	ESOURCE MAN	AGEMENT	DATE	IJAN 27/88
TTN:D. LYMAN			SAMP	LE TYPE:SOIL
ROJECT:878C044			ANAL	YSIS TYPE:ICP
ILE#:7-1850				
NUMBER OF SAM	PLES: 274		5 HIGHEST CD V	ALVES:
MAXIMUM VALUE	: 5.00	PPM	L1100E 5000N	5 PPM
MINIMUM VALUE	.30	PPM	L1000E 5050N	4.7 PPM
MEAN:	1.82	PPM	L1400E 4950N	4.6 PPM
STD. DEVIATIO	N: .75	PPM	L1100E 5150N	4.2 PPM
COEFF. OF VAR	IATION: .41		L1200E 4900N	3.9 PPM
HISTOGRAM FOR	CD	CLASS INTER	RVAL = .15	
MID CLASS	CLASS		(T)	
PPM	×	1127-1128-128-128-128-128-128-128-128-128-12		
< 1.10	12.77	International Action		
1.18	8.03			
1.33	12.41			
1.48	4.74			
1.63	6.93			
1.78	12.41			
1.93	9.12		ويعتقب والمتحد والمحد والمحد والمحد	
2.08	4.74			
2.23	9.12			
2.38	3.28			
2.53	5.84			
2.68	.73			
2.83	2.92			
2.98	.73			
3.13	3.28			
3.28	.36	-		
3.43	0.00			
3.58	1.09			
3.73	0.00			
3.88	.36			
	0.00			
4.03				
4.03 > 4.20	1.31			

E and a

	SPECIALISTS IN	MINERAL ENVIRONMENTS	
	705 WEST 15TH STREET NO	RTH VANCOUVER, B.C. CANADA V7M 1T2	
	TELEX: 04-352828 PH	DNE: (604)980-5814 DR (604)988-4524	
51	TATISTICAL	SUMMARY DN CU	1
OMPANY: HI TEC	RESOURCE MANAGEMENT	DATE:	JAN 27/88
TTN:D. LYMAN		SAMPLE	TYPE:SOIL
RDJECT: 87BC04	4	ANALYS	SIS TYPE: ICF
ILE#:7-1850			
NUMBER OF S	AMPLES: 274	5 HIGHEST CU VAL	UES:
MAXIMUM VAL	UE: 36.00 PPM	L1300E 5200N	36 PPM
MINIMUM VAL	UE: 3.00 PPM	L1000E 5050N	29 PPM
MEAN:	11.24 PPM	L1000E 4950N	26 PPM
STD. DEVIAT	ION: 4.26 PPM	L1200E 4956N	24 PPM
COEFF. OF V	ARIATION: .38	L1000E 5000N	23 PPM
HISTOGRAM FO	R CU CLASS I	NTERVAL = .85	
MID CLASS	CLASS		
PPM	*		
	(a) (day) (1)(
	0.07		
< 7.00 7.67	8.03		
7.43	8.03 11.31		
7.43 8.28	8.03 11.31 7.66		
< 7.00 7.43 8.28 9.13	8.03 11.31 7.66 11.31		
 7.00 7.43 8.28 9.13 9.98 10.07 	8.03 11.31 7.66 11.31 10.58		
 7.00 7.43 8.28 9.13 9.98 10.83 	8.03 11.31 7.66 11.31 10.58 11.31		
 7.00 7.43 8.28 9.13 9.98 10.83 11.68 12.57 	8.03 11.31 7.66 11.31 10.58 11.31 7.66		
 7.00 7.43 8.28 9.13 9.98 10.83 11.68 12.53 17.70 	8.03 11.31 7.66 11.31 10.58 11.31 7.66 0.00 9.76		
 7.00 7.43 8.28 9.13 9.98 10.83 11.68 12.53 13.38 14.27 	8.03 11.31 7.66 11.31 10.58 11.31 7.66 0.00 8.76 9.79		
 7.00 7.43 8.28 9.13 9.98 10.83 11.68 12.53 13.38 14.23 	8.03 11.31 7.66 11.31 10.58 11.31 7.66 0.00 8.76 8.39		
 7.00 7.43 8.28 9.13 9.98 10.83 11.68 12.53 13.38 14.23 15.08 	8.03 11.31 7.66 11.31 10.58 11.31 7.66 0.00 8.76 8.39 4.01		
 7.00 7.43 8.28 9.13 9.98 10.83 11.68 12.53 13.38 14.23 15.08 15.93 14.70 	8.03 11.31 7.66 11.31 10.58 11.31 7.66 0.00 8.76 8.39 4.01 1.82 1.09		
 7.00 7.43 8.28 9.13 9.98 10.83 11.68 12.53 13.38 14.23 15.08 15.93 16.78 	8.03 11.31 7.66 11.31 10.58 11.31 7.66 0.00 8.76 8.39 4.01 1.82 1.09		
 7.00 7.43 8.28 9.13 9.98 10.83 11.68 12.53 13.38 14.23 15.08 15.93 16.78 17.63 	8.03 11.31 7.66 11.31 10.58 11.31 7.66 0.00 8.76 8.39 4.01 1.82 1.09 2.92		
 7.00 7.43 8.28 9.13 9.98 10.83 11.68 12.53 13.38 14.23 15.08 15.93 16.78 17.63 18.48 	8.03 11.31 7.66 11.31 10.58 11.31 7.66 0.00 8.76 8.39 4.01 1.82 1.09 2.92 0.00 1.66		
 7.00 7.43 8.28 9.13 9.98 10.83 11.68 12.53 13.38 14.23 15.08 15.93 16.78 17.63 18.48 19.33 	8.03 11.31 7.66 11.31 10.58 11.31 7.66 0.00 8.76 8.39 4.01 1.82 1.09 2.92 0.00 1.46		
7.00 7.43 8.28 9.13 9.98 10.83 11.68 12.53 13.38 14.23 15.08 15.93 16.78 17.63 18.48 19.33 20.18	8.03 11.31 7.66 11.31 10.58 11.31 7.66 0.00 8.76 8.39 4.01 1.82 1.09 2.92 0.00 1.46 1.09		
7.00 7.43 8.28 9.13 9.98 10.83 11.68 12.53 13.38 14.23 15.93 16.78 17.63 18.48 19.33 20.18 21.03	8.03 11.31 7.66 11.31 10.58 11.31 7.66 0.00 8.76 8.39 4.01 1.82 1.09 2.92 0.00 1.46 1.09 0.00		
7.00 7.43 8.28 9.13 9.98 10.83 11.68 12.53 13.38 14.23 15.08 15.93 16.78 17.63 18.48 19.33 20.18 21.03 21.88	8.03 11.31 7.66 11.31 10.58 11.31 7.66 0.00 8.76 8.39 4.01 1.82 1.09 2.92 0.00 1.46 1.09 0.00 .73		
7.00 7.43 8.28 9.13 9.98 10.83 11.68 12.53 13.38 14.23 15.08 15.93 16.78 17.63 18.48 19.33 20.18 21.03 21.88 22.73	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
7.00 7.43 8.28 9.13 9.98 10.83 11.68 12.53 13.38 14.23 15.93 16.78 17.63 18.48 19.33 20.18 21.03 21.88 22.73 23.58	8.03 11.31 7.66 11.31 10.58 11.31 7.66 0.00 8.76 8.39 4.01 1.82 1.09 2.92 0.00 1.46 1.09 0.00 1.46 1.09 0.00 .73 .73 0.00		
<pre>< 7.00 7.43 8.28 9.13 9.98 10.83 11.68 12.53 13.38 14.23 15.08 15.93 16.78 17.63 18.48 19.33 20.18 21.03 21.88 22.73 23.58 > 24.00</pre>	8.03 11.31 7.66 11.31 10.58 11.31 7.66 0.00 8.76 8.39 4.01 1.82 1.09 2.92 0.00 1.46 1.09 0.00 .73 .73 0.00 1.31		

-

SPEC 705 TELE	CIALISTS IN MIN VEST 15TH STREET NORTH V X: 04-352828 PHONE: (NERAL ENVIRONMENTS ANCOUVER, B.C. CANADA V7M 1T2 604)980-5814 DR (604)988-4524	-
STATIS	TICAL SU	JMMARY ON PE	2
OMPANY: HI TEC RESOURCE	MANAGEMENT	DATE	JAN 27/88
ATTNED. LYMAN		SAMPL	E TYPEISUIL
TL 54.7-1950		ANALT	SIS TYPE:ICP
·ICE#17-1850			
NUMBER OF SAMPLES: 27	4	5 HIGHEST PB VA	LUES:
MAXIMUM VALUE: 40	.00 PPM	L1100E 5150N	40 PPM
MINIMUM VALUE: 4	.00 PPM	L1700E 4400N	34 PPM
MEAN: 8	.68 PPM	L1200E 5200N	18 PPM
STD. DEVIATION: 3	.93 PPM	L1000E 4600N	16 PPM
COEFF. OF VARIATION:	.45	L1200E 4900N	16 PPM
HISTOGRAM FOR PB	CLASS INTE	RVAL = .55	
MID CLASS CLASS			
PPM X		and the second se	
< 5.00 7.66			
5.28 15.33			
5.83 10.58		and the second	
6.38 0.00			
6.93 10.95	The second s		
7.48 0.00			
8.03 7.30			
8.58 0.00			
9.13 8.76	(Inclusion of the local division of the loca		
9.68 0.00			
10.23 12.41			
10.78 8.39			
11.33 0.00			
11.88 6.20	PROPERTY AND INCOME.		
12.43 0.00			
12.98 6.20			
13.53 0.00			
14.08 3.65			
14.63 0.00			
15.18 1.09			
15.73 0.00			
> 16.00 1.75			
			the second se
	0.00%	7.66%	15.33%

	TELEX: 04-352828 PHONE	(604)980-5814 DR (604)988-4524	
	RESOURCE MANAGEMENT	DATE: JA	N 27/88
ATTN:D. LYMAN	REODORCE THIRROENERT	SAMPLE	TYPE:SOIL
ROJECT: 87BC04	4	ANALYSI	S TYPE:ICP
TLE#:7-1850			
NUMBER OF S	AMPLES: 274	5 HIGHEST ZN VALUE	ES:
MAXIMUM VAL	UE: 739.00 PPM	L1100E 5150N	739 PPM
MINIMUM VAL	UE: 4.00 PPM	L1400E 5100N	635 PPM
MEAN:	86.57 PPM	L1200E 5200N	399 PPM
STD. DEVIAT	ION: 71.29 PPM	L1100E 4950N	274 PPM
COEFF. OF V	ARIATION: .82	L1300E 4950NDUP	253 PPM
HISTOGRAM FO	R ZN CLASS INT	ERVAL = 12.9	
MID CLASS	CLASS		
PPM	X		
< 16.00	2.19		
22.45	5.11		
35.35	8.39		
48.25	13.50		
61.15	13.87		
74.05	17.15		1999 - B.
86.95	10.58		
99.85	7.30		
112.75	6.93		
125.65	3.28		
138.55	3.28		
151.45	1.09		
164.35	1.82		
177.25	.73		
190.15	.36		
203.05	.73		
215.95	.73		
	1.46		
228.85	0.00		
228.85 241.75			
228.85 241.75 254.65	.36		
228.85 241.75 254.65 267.55	.36		

	5	Ľ	1 I N - SPI 70 TE	ECIALIS 5 VEST 15TI LEX: 04-35	STS IN H STREET NO 2828 PH	MINERAL ENVI MINERAL ENVI RTH VANCOUVER, B.C. ONE: (604) 980-5814 OR	CANADA V7M 112 (604)988-4524
5.63	International Control of Control	CO	RREI	AT	ION	COEFF	ICIENTS
COMP	ANYIHI	TEC R	ESOURCE	MANAG	EMENT		DATE: JAN 27/88
ATTN	D. LY	IAN					SAMPLE TYPE:SOIL
PROJ	ECT:87	30044					ANALYSIS TYPE: ICP
FILE	#17-18	50					
SHO	EED THE	BELOW E INTE	REPRES ER-ELEN	SENTS 1 IENT CO VALUE	THE PEA	RSON CORREL7 ION COEFFICI 1 LEVEL OF S	TION MATRIX, ENTS. THOSE VALUES THAT SIGNIFICANCE ARE SHOWN
SHO EXC IN	TABLE WING THE EED THE DARKER AG	BELOW HE INTE EIR CR PRINT AS	REPRES ER-ELEN ITICAL AND UN CD	SENTS 1 IENT CO VALUE IDERLIN	THE PEA DRRELAT FOR .0 NED. PB	RSON CORREL7 ION COEFFICI 1 LEVEL OF S ZN	TION MATRIX, ENTS. THOSE VALUES THAT BIGNIFICANCE ARE SHOWN
THE SHO EXC IN	TABLE WING THE DARKER AG 1.000	BELOW IE INTE EIR CRI PRINT AS .483	REPRES ER-ELEN ITICAL AND UN CD	ENTS 1 IENT CC VALUE IDERLIN CU	THE PEA DRRELAT FOR .0 NED. PB	RSON CORREL7 ION COEFFICI 1 LEVEL OF S ZN .314	TION MATRIX, ENTS. THOSE VALUES THAT SIGNIFICANCE ARE SHOWN
THE SHO EXC IN AG	TABLE WING THE EED THE DARKER AG 1.000	BELOW HE INTE IR CRI PRINT AS .483 1.000	REPRES ER-ELEM ITICAL AND UN CD .433 .741	ENTS 1 IENT CO VALUE IDERLIN CU .566 .650	THE PEA DRRELAT FOR .0 NED. PB .138 .212	RSON CORREL7 ION COEFFICI 1 LEVEL OF S ZN .314 .390	TION MATRIX, ENTS. THOSE VALUES THAT SIGNIFICANCE ARE SHOWN
THE SHO EXC IN AG AS CD	TABLE WING THE DARKER AG 1.000	BELOW E INTE IR CRI PRINT AS .483 1.000	REPRES ER-ELEM ITICAL AND UN CD .433 .741 1.000	SENTS 1 IENT CC VALUE IDERLIN CU .566 .650 .705	HE PEA DRRELAT FOR .0 NED. PB .138 .212 .346	RSON CORRELA ION COEFFICI 1 LEVEL OF S ZN <u>.314</u> .390 .518	TION MATRIX, ENTS. THOSE VALUES THAT BIGNIFICANCE ARE SHOWN
THE SHO EXC IN AG AS CD CU	TABLE WING THE DARKER AG 1.000	BELOW E INTE FRINT AS .483 1.000	REPRES ER-ELEN ITICAL AND UN CD .433 .741 1.000	ENTS 1 IENT CC VALUE IDERLIN CU .566 .650 .705 1.000	THE PEA DRRELAT FOR .0 VED. PB .138 .212 .346 .169	RSON CORREL7 ION COEFFICI 1 LEVEL OF S ZN .314 .390 .518 .397	TION MATRIX, EENTS. THOSE VALUES THAT BIGNIFICANCE ARE SHOWN
AG CD CD CD CD CD CD CD CD CD CD CD CD CD	TABLE WING THE DARKER AG 1.000	BELOW E INTE IR CRI PRINT AS .483 1.000	REPRES ER-ELEM ITICAL AND UN CD .433 .741 1.000	SENTS 1 IENT CC VALUE IDERLIN CU .566 .650 .705 1.000	HE PEA DRRELAT FOR .0 NED. PB .138 .212 .346 .169 1.000	RSON CORREL7 ION COEFFICI 1 LEVEL OF S 2N .314 .390 .518 .397 .482	TION MATRIX, ENTS. THOSE VALUES THAT SIGNIFICANCE ARE SHOWN
AG CD CD CD CD CD CD CD CD CD CD CD CD CD	TABLE WING THE DARKER AG 1.000	BELOW E INTE IR CRI PRINT AS .483 1.000	REPRES ER-ELEN ITICAL AND UN CD .433 .741 1.000	ENTS 1 IENT CC VALUE IDERLIN CU .566 .650 .705 1.000	HE PEA DRRELAT FOR .0 NED. PB .138 .212 .346 .169 1.000	RSON CORRELA ION COEFFICI 1 LEVEL OF S ZN .314 .390 .518 .397 .482 1.000	TION MATRIX, ENTS. THOSE VALUES THAT BIGNIFICANCE ARE SHOWN

-

APPENDIX VI

Control Survey Data

PBX A MAULI Survey	RESOURCE ER CREI Calci	rs EX PROPE, ulation	Sheet	NOTE: O COOR ALL Oper	DINATES A MEASUREI ation	MENTS .	TO VAN ROI A ARE IMPERIA VAN	HINE (ARI) HL Roi MINE	AREA	PLOT FIGU Refere	RES 12 =	+ 13. C	1 D	$\cap $	VAGE 1/3	5
Course From To	Azimuth	Slope Distance	Vertical Angle	Horizontal Distance	Vertical Distance	Sta.	Latitude (N)	Departure (E)	Elevation	н. I. 8 н. р.	Elevation of rail or Floor	Accum. Gr. Elevation & Horiz, Dist.	Grade Chain Elevation	Grade Chain Length	Grade	Fie
A 1					1		9344.100	24,791.400	4485.66		AT I	LEVEL	PORT	82		T
11 AZ	263 02 27"	2093.787'	7 50 '36 "	2074.199	285.728	42	9092, 786	22,732.482	4771.65	-3,445 - 3,182	/					
17 4 3	90 "13 '54"	2548.700'	3 06 21"	2544.956	738.090'	23	9082.496	25,277.417	4910.00'	+3.150	- (ALT	METER	E	EVAT	(na	1
3 Cop 21	92 02 42"	65.370'	to 18'54"	65.369"	÷. 359'	C00 21	9080.163	25,342.744	4909.25	+3.806	1.	(IDTODE	00	BASEC	w-	,
- 21 (A. 20	117 20 118"	178 585'	6°26 '12"	127.774	14.415	12020	9021.484	25,456,247	4922.84	+4.101	-					1
70 11 000 20	155 35 42"	108 460'	to 11 '36"	107.508'	15.639'	Bo 19	8923.582	25 500.668	4938.64	+4.101	1					-
Da 19 (Da 3	169 36 48	582.550'	14.33 18"	563.854'	146.400	Con 3	8370.826	25.611.989	5084.88	+4.232	1					
Baz Chal	174 27 00*	87.625	2.34'17"	87.537'	* 3.929'	Cont	8283.699	25.620, 453	5089.43	+3.478	1		4			1
DI Baz	11 47 30	181.527'	9.31 42"	178.978	30,309'	100 7	8458.900	25.657.028	5057.19	+2.986	1	1.14.2				1
n (n 4	182 40 00	507.080'	7 24 12 *	502.848	4	Boy 4	7781.391	25.597.043	5152.83	+2.935	1 .					1
has Chas	159 14 54	159 217'	8.57 00 "	157.278'	24.770'	Bos	8136.624	25.676.179	5062.66	-2.925	1					1
Dal Cool	53'05'18'	72.046'	23"45'54"	65.937'	29.035'	100 6	8323.300	25.673.174	5058.40	+2.925	1 mr.	PUSIVE /	PREIC	LITE.	CONTR	-
m3 Cont	201 17 24"	115.156	"1º15'06"	115.130'	2.516'	C00 7	8430,621	25,513.605	5085.89	+3.412	1.					T
207 COOS	294 19 24	77. 788 "		75.931	Ĩ6.896 '	100 8	8461.896	25,444,414	5068.37	+4.297 -4.921	1.		1			
DOT COO	327 1/48"	288.874'	10°03 '06"	284.439	50.419	Coo 9	8669.702	25,359.508	5034.85	+4,298	1					
2007 Cool	297 05 24	238.842'	5°32'06"	237.727	23.038	600 10	8538,879	25,301.958	5108,30	+4.298	/			14		T
Do 7 Chal	270'12'30'	126.409'	T1'02 48"	124.067	+ 24.222	VDC II	8431072	25.389.539	5109.49	+4.298	1					1
Do II Con	- 122 4771	" 76.475'	- 12°14'17"	74.445'	17.510	12. 12	8379554	25433 779	5090 70	T3.64Z	/		1			1
Pan 12 Con	2 102 49 37	" 60.071 '	2 . 43 42	60.003	7.861	100 12	8360 197	25.500.077	5092.74	+4.101	/				-	1
(2013 Con	14 144 57 32	" /07.118'	"c"31'36"	107.118'	·0.984'	Coo 10	8272.495	25,561.571	5093.03	+4.232	1			1		
Do 14 Cha	5 187 10'24	261.283'	10°19'00"	257.057	+ 46.793	Care	8017.449	25,529.470	5139.13	+4.232	1	200 1 - 100 200 - 100		5		83
Working	Place		2	D	ate		ge -etunit	Calcs	By	1.000		Checked By		14		

.

PBX RESOURCES MAURIER CREEK FRODERTY Surve

A5 26

26

26

1

NOTE COOLDINATES REPEL TO VAN ROI MANE GAID 2 ALL MEASUREMENTS ARE IMPERIAL

Course From To	Azimuth	Slope Distance	Vertical Angle	Horizontal Distance	Vertical Distance	Sta.	Latitude	Departure	Elevation	H. I. & H. P.	Elevation of rail or Floor	Accum, Gr. Elevation & Horiz, Dist.	Grade Chain Elevation	Grade Chain Length	Grade	Field Note Page
1005 Coold	179°25 '34"	214.269'	+ 4°44'24"	213.537	17.706	Coo 16	7923.098	25,678.318	5078.56	+3.117 -4.921	/					
Dog Colt	7º10'03"	287.398	- 13°34 '30"	279.370	67.456'	CD0 17	8946.889	25,394.365	4966.61	+4.134 -4.921	1					T
Go17 (30 18	144 47 27	" 115.222'	1º40 '18"	115.172'	3. 363'	Con 18	8852.787	25,460.769	4961.60	+3.281 -4.921	/					
2021 Boz	2 333 59 24	" 111.121'	15 13 18"	107. 223		CDOZZ	9,76.526	25,295,724	4879.22	+4.068 -4.921	. /	-				
(no 22 Coz	3 102 02 00"	120.569'	7.06'54"	119.641	14.934	Co 23	9151.583	25,412.736	4863.40	+4.035	/	f			-	
1023 Goz	4 116°52'06"	165.484	3°21'36"	165. 198'	9.698	100 24	9076.923	25,560.100	4852.72	+3.937 -4.921	/	1				
Bozu Coz	5 146 02 42	156.002	2.49'39"	155.812'	7.697'	CD0 25	8947.681	25,647,127	4844.69	+4.593 -4.921	/					
(2025 Coz	6 181°16'30"	208.396	4. 46 '48"	207.671	17. 365	Coo Za	8740.061	25,642.506	4861.30	+4.167 4.921	/	ſ				
COOR COOR	7 138'50'57'	55.580'	8 32 00"	54.965	8.247	CD0 27	8811.399	25,496.938	4952.63	+4,199 -4.921	/	r				
ma 27 Coz	8 155 56 39	"162.640'	9.27'30"	160.429'	26.727	Coo 28	8464.903	25,562.333	4925.31	+4.33/ -4.92/	/			-		
3027 Coz	9 138 09 27"	194.945	8 08 36*	192.979	27.614	CD0 29	8667.53	25,625.67	4924.43	+4.331 -4.921	/	r.		-		
CE227 Co :	30 235 55 45	"62.420"	24 "13'18"	56.925'	25.609	CDo 30	8779.509	25,449.784	4977.65	+4.331	/	T				
ac 27 Co	31 176 04 21 "	221.525	8.51'00"	218.888	34.081	(Do 31	8593.025	25,511.930	4986.12	- 4.921	-	T				
(TO) 27 Cro.	32 148°50'57	" 328. 160 '	To 16'00"	322.906'	58.488'	Bo 32	8535.053	25,663.975	5010,53	+44-331 -4.921		[-
Go 1 DA	- 184°39'44	* 244.078'	t "57'09"	242.451	+ 28.136	4	8042.050	25,600,746	5117.60	+2.985 -2.953		1				+
At As	5 72 14 20	3925.565		36 07.946	1546.865	AS	9142.650	29,036.725	3569.13	+ 2.985	NEI	RE LOP	Con	20'	1	

+2.95

+4.23

-4.92 +4.03

-4.92

- 3.81 +4.92

29.023.092 3559.79

29,010.416 3559.76

29,056.788 3542.05

Calcs. By

29,038,979 3606.058 - 4.23

Checked By

....

1

1

11

Working Place

25

27

(Carbo)

350 29 44"

215'50 '53"

177 35 48" 381.585'

6°52 42" 281.860'

5°52'00" 82.560'

325 42 281.356

378,853 '

21.645

.

6°51'36"

*/ "44'18"

8.483'

45.578

to.657'

16.85'

Date

26

25

LCP CONDO

27.

9224.077

8845.557

9206.532

9503.408

82.995'

21.655'

PBX RESOURCES MAURIER CREEK PROPERTY Survey Calculation Sheet

f.

1

1

NOTE: O COORDINATES REFEL TO VAN ROI MINE (421) (2) ALL MEASUREMENTS ARE IMPELIAL

1

1

Reference

ſ

PAGE

Operation INAURIER CREEK RUAD

1

.

Course From	то	Azimuth	Slope Distance	Vertical Angle	Horizontal Distance	Vertical Distance	Sta.	Latitude	Departure	Elevation	H. I. & H. P.	Elevation of rail or Floor	Accum, Gr. Elevation & Horiz, Dist.	Grade Chain Elevation	Grade Chain Length	Grede	Fleid Note Page
27 2	28	1'02'00"	261.295	6.51'36"	259.424	31.21	28	9762.790	29,061.466	3510,38	+4.46	/					
28 :	29	349° 16'36 "	216,695	6'03'18"	215.486'	22.858'	29	9974.513	29.021.371	3486.96	+4.36	1					1
29 74	51	8°20'18"	69.535'	7 "18'06"	68.971'	8.837'	TPI	10,042.755	29,031.373	3477.17	+3.97	/					
TP1	TP2	232 06 30"	102.020	1123'54"	100.008	20.16'	TPZ	9981,333	28,952.449	3456,75	+4.66	-1	-				1
TP2 A	DIT	100'8'24"	42.660'	4011'00 -	42.546'	3.11	ADIT	9973.843	28,994.330	3459,50'	+4.56	/					
29	30	23°40'00"	202.520'	6°09'42"	201.350	21.74'	30	10,158,929	29,102.196	3464.37	+4.07	/	1				
30	3/	59'32'12"	263.015	5 08 06"	261.959	23.54	31	10.291.739	29,327.993	3439,88	+3.97 -4.92	/			4		
31	32	87 24 30"	243.625'	525 24"	242.534	23.03	32	10,302.706	29,570.279	3416.19	+4.26	/					
32	33	88°54'12"	311.320	6°44'20"	309.167	36.55'	33	10,308.623	29.879.389	3378.75	+4.03 -4.92	1	ė		1		
33	34	122 53 42	\$13.22	3°51'06"	212.738	14.32	34	10,193.085	30.058.018	3364.10	+4.59	1.					
3 4	35	112 37 36"	201.761	5.34'36"	200.805	19.61	35-	10,115.830	30,243.367	3344.00	+4.43	/					
35	36	100°42'30 "	228.30	5 944 '54"	227.152'	22.87	36	10,073,623	30,466.563	3320.64	+4.43 -4.92	/					
36	37	2605'18"	907.08	3°38'42"	905.245'	57.667	37	10,135.377	31.369.699	32 96.98	+4.13	/					
37	38	108 41 24"	218.70	3º19'30"	218.332	12.68	38	10,065.474	31,576.538	3283.45	-4.92	1.					1
37	39	111°34'48"	350.48'	6 52 00"	347.967'	41.90	39	9937.586	31,900,152	3240.70	+4.07						
39	40	72 55 06	181.60'	2º42'00"	181.398'	8.55'	40	9990.919.	32.073.532	3231.62	-4.92	/			•		
40 \$	CP KHDAZ	102 46 54	53.30	3 32 30	53.19Z'	±3.32	LCP	9979.166	32,125,410	3234.64	+4.52	1 Lc,	P PALAD	42	Vaieros	E 3 8	Y
25	24	186 30'54	231,295	6.01'30"	230.017'	÷ 24.28	24	8617.025	29,012.881	3630.96	+4.92 - 4.30	1			1.		
24	23	185°11'30'	363.835	" "6°00'12"	361.840	\$38.05	23	8256.669	28,980.139	3669.67-	+ 4.92 - 4,26	1					-
23	22	181°41'00	703.590	"6°16'18"	699.379'	*76.86'	22	7557.592	28,959.594	3746.89	-4.92	/					
22	21	182 29 HZ"	379.835	6 24 30	377.462'	4z,395	21	7180.485	28,943.217	3789.77	+4.92	1			>**** *		
Wo	orking	Place		1	D	ate		· · · · · · · · · · · · · · ·	Calcs.	Ву			Checked By				

₹ Sur	BX MAVA Vey	RESCUR	LES EK Frofulation	Sheet	NOTE : D D Oper	COOR DIN ALL MEA	HT&C HSVR&, MARI	REPER TO V MENTS ARE ER CREFK	IAN ROI MIN IMPERIAL ROAD	E 441) DN	. PLOTA FIGUNE Reter	15 1 1 100 H	TUNI @		2	Phan 4	E 15
Course	fo	Aslmuth	Slope Distance	Vertical Angle	Horizontal Distance	Vertical Distance	Sta.	Latitude (N)	Departure (E)	Elevation	H. L. 8. P.	Elevation of rail or Floor	Accum, Gr. Elevation & Horiz, Dist.	Grede Chain Elevation	Grade Chain Length	Grade	Flate
21	20	202 10 30"	250.535	\$ 29 48 *	248,926	28.347'	20	6949.971	28,849:243	3818.84	- 4.92	1					
10	19	194 49 36"	135.160'	"4"22 42"	134.766'	·10.318'	19	6819.692	28,814.777	3829.88	+4.94	1					
9	18	228 44 24	89.750'	*7*24 '12*	89.002'	11.565	18	6760.997	28,747.872	3842.06	+4.9z	1					-
8	17	208 19 24	801.430'	6"07'24"	796.857'	\$5.488	17	6059.536	28,369.806	3928.04	-4.43	1			-		1
7	16	184 42 18"	184.540'	5 08'54'	183.795'	16,560'	16	3876.360	28,354,730	3945,19.	+4.92	1		1.			
6	15	199 38 47	243.665	2 05 42"	241.799'	"30.096"	15	5648.635	28,273.439	3976.08	+4.92	/					1
5	14	202 51 36"	798,170	6º19'24"	793. 314'	\$7.910	14	4917.630	27,965.252	4065,30	+4.92	1					
4	13	20/33 00"	689.785	2º13 '00"	685.729	74.696	13	4281.311	27,709.669.	4141.77	-4.92	1		1000			1
3	12	2122427	767.215	5 86 33"	763.092'	79.430	/z	3637.065	27,300,699	4222.51	+4.92	1					1
12	11	169 27 27"	179.050'	"4°51'00"	178,409	75.138	11	3461.668	27.333.342	4238.93	+4.92	1					
11	10	192 42 33	996.310	"5° 16 '30 "	992.090	\$91.597	10	2493.885	27,115.080	4331.61	+4.92	1					
0	9	191'52'51"	403.005	"7°51 '12"	402.505	20.061	9	2100.002	27,032.213	4352.29	+4.92	/					1
9	8	189 "03'51"	1896,053'	5%, 42*	1888.265	171.68'	8	235.317	26,734.735	4525.51	- 4.52 - 7.45	/					
8	7	192°20'27"	632.597'	503'00.	629.451	63.01	7	- 37.9.590	26,600,205	4589.31	-4.92	/		11			
7	6	192"39 '33"	659.756	5.45'24"	656.467	\$5.79	6	-1020.099	26,456.340	465625	+4.92	/	1				
6	5	192 20'09"	200.529	4°58'48"	199.772	17.407	5	-/215.259	26,413.660	4674.51	+4.92	/		1	•		1
5	4	192:05 27	661.970"	5'52'00"	658.503	\$7.66	4	- 1859.154	26,275.729	4743.51	+4.92	1					
4	3	18303'05'	229.476	6"55 42"	227.80	\$27.68	3	-2086.63	26,263.603	4772.47	- 3.44	/					1
3	Z	181 59 59	707.360	5 25'36	704.190	+66.89	z	-2788.487	26,206.314	4840.05	+4.92	1			1000		
2	Jet	200 27'57	\$77.887	2°30'00*	577.337	\$25.21	Je+	-3329.38	26,004.444	4866.47	+4.92	1			-		
Jet	1	187'08'01	444.791	5 36'15"	442.665	43.44	1	-3768.6.19	25,949.472	4908.54	+ 3.52	/	1 2. 2	13		-	
v	Vorking	Place		1	D	ate _		and an other	Calcs.	Ву			Checked By	-	-		

-

NOTE . DOODDINATES REFER TO VAN LOI MINE GILD_ PAGE PHOTIED HOLATIONS ON PBX RESOURCES (2) ALL MEASULE MENTS ARE IMPEDIAL (7) MANDIER CREEK PRODENTU Survey Calculation Sheet FIGURES 12 \$ 13 Operation MAURIER CREEK 20HD, EAST ODD 412 MURDE Reference Latitude Departure Elevation Cowine Azimuth Siope Vertical Horizontal Vertical Sts. H.L. Elevetion Accum. Gr. Grade Grade Chain Length Grade Field Note Page of rall or Elevation & Horiz, Dist. Chain From To Distance Angle Distance Distance +3.61 1 Lep 4 44 33 " -4, 307.205 25,740.463 44955.K 100 201 12 35" 579.704 577.7.9' 47.93 LeD Canbo PANDORAS - 4.92 6/2 Box +3.51 100 Pacaba 0° 29 03" 328.503 40.091' Lep 561.351 26.737.490 4484.01 LEP 7'00'56 \$ 526.0%6 - 4.9L +4,56 103. 729' 22.876' TF3 9974.013 28,953,693 3453.73 TP 1 TP3 228°29'35" 106.222 12026 12" 4.92. +4.47 3. 71V TP4 991 9.940 28.927.004 3444.53 TPV 206 14 12 60.928' 8 15 24" 60.301 TP3 - 4.83' TPS 203 51 18" 256, 427' 12 46'24" 250.082' 55.377 TP5 9691.222 28 825-865 3389,10 TPU -4.92' + 4.52 TP6 312 33 00 37.253 5"50'5Y" 37.060' 3.796' TPG 9726,576 28.814.751 3384.90 - 4.52 1 TPS + +, 63 TP7 331 08 24 117.095 113,534' 28.658 98=6.010 28, 759.952 3355.95 140 10'00" TPL TP7 +4.33 1 TP 8 357 26'36" 56.823' 7'26'02" 56.944' 7.362' TP8 9882.298 28,757.438 3348.00' TPT - 4.92 +4.49 7 1/24" 1.824' TP 9 9967,990 28,732.313 3343.58 TP9 3472505 87.821' 87.201' TP2 -7.09 + 4.43 341 36 30' 95.363' 11 13 54 93.536' TR. 576' TP10 10,056.749 28.708.901 3324.51 TP9 TPro -4.92 -4.26 OFB 9.783' 13.35'2" 9.511' 2.297' CP 27"19 12" 10,065, 199 28,713, 166 3326.15 TP 10 OLD No THES +4.26 TP10 141+ 288"18'32" 26 44 30 66.514' 33.549 Alt 10.077.633 28.645.654 3290.30 74.559' -4.9z -4.03 CP 278 59 36" TI. 315' CP 10,165.684 29.059.512 3452.16 44.671 43.25 16 21 15 L'EROI 1/ WEDGE 142 -4.9z 141 NE 44.4 1. Sec. 1. -14. . Working Place Date Calcs. By Checked By + .

10

_	with	minor	IIII
13a	argillite		

13b quartzite

-----Logging road Survey point +9 Adit Trench

15-3000 7500 N 13b 13a,b WEDGE AREA \cap 13a.b . 72 CONDO POTT LCP Vist ret 136 719a 7000 N 40001 19a 6700 19a and the fact of the fact of the state GEOLOGICAL BRANCH ASSESSMENT REPORT 300 metres 100 PBX RESOURCES LTD. MAURIER CREEK PROPERTY SLOCAN M.D., B.C. **CDO GRID GEOLOGY** FOR LOCATION SEE FIGURE N.T.S.: FIGURE No: SCALE 82 F/14 1:5000 7 DATE: OWN. BY: FEB 1988 HI-TEC RESOURCE MANAGEMENT LTD. PROJECT No: FILE No: CHKD. BY:

MAINE	
CUTLER,	
+ + + + + + + + + + + + + + + + + + + +	
	16+00 E.
	15+00 E.
······	
	GEOLOGICAL BRANCH ASSESSMENT REPORT
	17,265
	44+00N. 0 50 100 m.
	PBX RESOURCES LTD. MAURIER CK. PROPERTY
	PBX GRID

.

)	
11		
	*	
	15+00 E.	
	14+00 E.	
	13+00 E.	
·····	12 + 00 E.	
GEOL	OGICAL BD	
E <u>لوجد احدد ا</u>	SSTRENTRE	PORT
	1,26	55
°	50 100 m.	
PBX RES	OURCES	LTD.
MAURIER	CK. PROPE	RTY
VLF-EM Jim Creek	Survey Profile Washington: 24	es 4·8 Khz
HI-TEC RESOURCE MANAGEMENT	By: N.T.S. 82 F/14	Pate: JAN. 88
LIMITED	^{Scale:} I: 2500	

PBX AREA

10

Rd Jet.

Lep Conto 6/1' PANDORAS Box'

IE 28 38 48 SE GE 78 88 98 108

1

SCALE 1: 10,000

BEARING DERIVED FROM MAIN DRIFT - 1 LEVEL CU-ORDINATES ON CALC. SHEETS FROM I LEVEL ELEVATION - ALTIMETER USING SLOCAL LAKE AS DATUM. (IMPERIAL) CONDAS Y DISTANCES IMPERIAL AS REQUESTED. THE HO,000 ENLARGEMENT OF THE AREA APPEARS TO BE SLIGHTLY OVERSIZED BY SCALING THE UTM GRID FROM THE 1:50,000 TOPO MAP. - PROMARCY DISTORTION IN THE COPYING

PANDORAS Rep

GEOLOGICAL BRANCH ASSESSMENT REPORT

17,265

PBX RESOURCES LTD.

MAURIER CREEK PROPERTY Silverton Area, Slocan Mining District, B.C.

CDO SHOWING AREA

Base N

7500N

Sence 1:1000

GRID - IMPERIAL COORDS DERIVED FROM NOI LEVEL OF VAN ROI MINE POINTS 1-32 PRECEDED BY COO IN CALL. SHEETS ELEV. IN FEET - DERIVED BY ALTIMETER

FROM SLOEMN LAKE DATUM

04

.4