PROSPECTING AND SOIL GEOCHEMISTRY

IOTA EXPLORATIONS LTD. Suite \#5 440 Victoria Street

Kamloops, B.C., V2C 2A7
(604) 828-0411

Bryan Elliott

GEOLGGICALBRANCH

17,277

```
~
District Geologist, Kamloops
Off Confidential: 89.01.15
ASSESSMENT REPORT 17277 MINING DIVISION: Nicola
```



```
    UTM 10 5545033 676652
    NTS 092I02E
CLAIM(S): Bonus V
OPERATOR(S): Iota Ex.
AUTHOR(S): Elliott, B.
REPORT YEAR: 1988, 23 Pages
COMMODITIES
SEARCHED FOR: Copper,Molybdenum/Molybdenite,Gold,Silver
GEOLOGICAL
SUMMARY: The region is underlain mainly by Upper Triassic volcanic,
    sedimentary and intrusive rocks of the Nicola Group. In places
    remnants of the Tertiary Coldwater group conglomerates and vesicular
    basalts overlie the Nicola Group. At Quilchena Creek an altered
    monzonite grades easterly into Jurassic? granodiorites of the Pennask
    Batholith.
WORK
DONE: Prospecting,Geochemical
    PROS 30.0 ha
    Map(s) - 1; Scale(s) - 1:2500
    ROCK 15 sample(s) ;ME
    SOIL 366 sample(s) ;ME
        Map(s) - 2; Scale(s) - 1:2500
MINFILE: 092ISE084
```


TABLE OF CONTENTS

Page \#

TABLE OF CONTENTS
1.0 INTRODUCTION. 1
1.1 CLAIM STATUS 1
1.2 LOCATION \& ACCESS 2
1.3 PHYSIOGRAPHY 2
1.4 VEGETATION AND CLIMATE. 2
2.0 REGIONAL GEOLOGY 3
2.1 PROPERTY GEOLOGY. 3
2.2 PREVIOUS WORK 3
3.01987 PROSPECTING AND SOIL SAMPLING PROGRAMME 4
3.1 DISCUSSION OF RESULTS 4 \& 5
4.0 CONCLUSIONS 5
5.0 RECOMMENDATIONS 5
6.0 REFERENCES 5
7.0 COST STATEMENT. 6
8.0 STATEMENT OF QUALIFICATIONS 7
LIST OF FIGURES
FIGURE 1 LOCATION MAP
FIGURE 2 GEOLOGY AND SOIL SAMPLE GRID LOCATION MAP (In Pocket)
FIGURE 3 PHYSICAL FEATURES AND SELECTED SAMPLES (In Pocket)
FIGURE 4 SOIL GEOCHEMISTRY Cu, Mo (In Pocket)
FIGURE 5 SOIL CHEMISTRY Au, Ag, As (In Pocket)
APPENDICES
APPENDIX A CERTIFICATE OF ANAL.YSIS

1.0 INTRODUCTION

The Bonus Claim Group is located 14 kilometers south and southwest of Quilchena, B.C. and borders the Hamilton Creek Indian Reserve Number Seven on the west, south and east. The properties are 100\% owned and operated by Iota Explorations Ltd.

The property is situated within the central part of the Nicola belt. This region is underlain mainly by Upper Triassic volcanic, sedimentary and intrusive rocks of the Nicola Group which are noted for their copper deposits. (Geology of the Nicola Group between Merritt and Princeton: Bulletin 69, by V.A. Preto). A soil sampling programme was carried out between June 30th and July 11th, 1987 to evaluate the potential for a Cu, Mo porphyry type deposit and to check the area for Au and Ag values.

1.1 CLAIM STATUS

The Bonus Claim Group includes Bonus IV, Bonus V, Bonus VI and Bonus VII M.G.S. mineral claims totalling seventy-eight units and are 100\% owned by Iota Explorations Ltd.

CLAIM NAME	RECORD NUMBER	NUMBER OF UNITS	EXPIRY DATE
Bonus IV	1773	20	Jan. 27/88
Bonus V	1774	18	"
Bonus VI	1775	20	"
Bonus VII	1776	20	"

The Bonus IV, Bonus V, Bonus VI and Bonus VIl M.G.S. Mineral Claims were grouped as the Bonus Claim Group on January 15, 1988.

1.2 LOCATION AND ACCESS

The Bonus Claim Group is located 14 kilometers south of Quilchena, B.C. The property is within the Nicola Mining Division (NTS 92I/2) and the geographic co-ordinates are $50^{\circ} 02^{\prime}$ North latitude and $120^{\circ} 32^{\prime}$ West longitude.

The Bonus Claims are accessible from three directions. A road leads south from Highway 5 at Quilchena, B.C. and more or less follows Quilchena Creek to the claims. The other access routes branch off the Merritt Princeton Highway 5 at the Lundbom Lake and Courtney Lake turnoffs, consecutively eleven and twenty kilometers south east of Merritt, B.C.

1.3 PHYSIOGRAPHY

The claim area is characterized by relatively gentle wooded slopes on the west giving way to broad, drift mantled, drumlinized open rolling plains to the east. The drainage is dominated by north flowing Quilchena Creek which drains into Nicola Lake, with many dry streambeds trending east west bisecting the south/southeast trending drumlins and following, in part, a generally west to east glacial meltwater channels.

1.4 VEGETATION AND CLIMATE

Fir and pine covered wooded slopes on the west give way to open bunchgrass and sagebrush cover to the east with aspen and willow along some of east west trending dry streambeds leading to heavier poplar, fir, pine and willow along the narrow Quilchena Creek Trough.

The climate of the area is typical of the B.C. Interior drybelt with moderate temperatures and precipitation. Snow is frequently gone by mid March.

FIGURE 1

2.0 REGIONAL GEOLOGICAL SETTINGS

The general geology of the Quilchena Creek area is outlined on G.S.C. Map 886A (W.E. Cockfield, 1948) and, more recently, Preliminary Map 47 (V.A. Preto, 1979).

2.1 PROPERTY GEOLOGY

Within the western uplands area of the Bonus Claim Group Upper Triassic volcanic, sedimentary and intrusive rocks of the Nicola Group are relatively well exposed and cut by a series of $N / N E$ trending shears. Minor Cu mineralization occurrences were traced along some shears. A triangular area covering the S/W corner of the Bonus IV claim is intermittently overlain by a thin layer of coldwater group conglomerates. Moving downslope to the east the geology is masked by a thick covering of glacial till. However, east west trending dry streambeds do expose remnants of tertiary vesicular basalts.

At Quilchena Creek within the grid area a large exposure of highly altered intensively fractured intrusive (quartz monzonite?) occurs. Malichite, chalcopyrite, bornite and molybdenite mineralization occurs over the whole area of altered intrusion, concentrating along fractures and associated with quartz veinlets and blebs. Moving upslope to the east the altered intrusive grades sharply into barren granodiorites of the Pennask Batholith.

2.2 PREVIOUS WORK

Although no assessment reports were filed on the Bonus grid area, considerable work was performed, presumably during the 1950 -60's porphyry copper development era. Three drill platforms, four major cat trenches and old grid line stakes were observed.

3.01987 PROSPECTING AND SOIL SAMPLING PROGRAMME

Eight man days were expended on May 5th and May 6th, 1987 prospecting areas of Bonus IV and Bonus V Claims. Assay results from samples taken then led to targeting the Bonus V grid area.

From June 30th to July 11th, 1987 a total of 10 kilometers of grid lines were surveyed using drag chain and compass, slope corrected, and stations picketed. The baseline runs north south starting from a point 1121 meters west of the south/east corner (metal pin) of I.R.7. The gridlines are east west 100 meters apart and samples taken at 25 meter intervals. Power saw cutting through thick bush along Quilchena Creek was done on gridlines where required.

Where possible " B " horizon soils were collected at an average depth of twenty five centimeters. However much of the property outside of the actual outcrop areas are covered by a thick glacial till layer with poor soil development and many samples obtained were a grayish till sample. Samples were placed in Kraft Wet Strength cussetted soil bags, sun dried and shipped to Acme Analytical Laboratories in Vancouver. Samples were analyzed for 30 element ICP, plus gold, as outlined in Appendix A.

3.1 DISCUSSION OF RESULTS

The selected rock and soil geochemical samples shown in Appendix A on pages 1 and 2 and mapped on Figure 3 are from highly altered mineralized (quartz monzonite?) intrusive rocks and from red ironized bedded soils exposed at the base of east west cutting dry streambeds. Sample values indicate a strong Cu, Mo and a lesser Au, Ag prospect over a larger area than outcrops.

The soil grid confirms anomalous Cu , Mo and slightly anomalous Au , $\mathrm{Ag}+$ As values in a promising rock type over the outcrop areas but fails to target expanded areas of interest. The highest Au value at 380 ppb was described in the sampliers notes as a reddish clay sand silt material from the base of an old streambed which appears to be an old Quilchena Creek channel. The other high Au sample at 225 ppb came from near the old drill platform at L800 Station $0+25$ east and may be somewhat contaminated by drill recovery material.

4.0 CONCLUSION

There is reasonable evidence to recommend further programmes.

5.0 RECOMMENDATIONS

Further geochem type testing should be limited to the reddish gossanous soils along the bases of dry streambeds. Samples should be sieved and screened to concentrate heavy metals.

Area and rock types would be amenable for an Induced Polarization type Geophysical survey.

6.0 REFERENCES

Cockfield, W.E., 1948: Geology and Mineral Deposits of Nicola Map Area, British Columbia, Memoir 249.

Preto, V.A., 1979: Geology of the Nicola Group between Merritt and Princeton, Bulletin 69.

7.0 COST STATEMENT

Prospecting May 5th - 6th, 1987	
8 man days 0 \$100.00 per	\$ 800.00
Room and Board @ $\$ 45.00$ per $\times 8$ (Commercial Rates)	360.00
$3 / 4$ ton 4×4 pickup @ $\$ 40.00$ per $\times 2$	80.00
Laboratory Analysis	137.50
Bonus Grid June 30th - July 11th, 1987	
12 man days field supervision @ \$150.00	1800.00
24 man days grid and sampling work @ \$100.00	2400.00
Board and Room 36 man days @ $\$ 35.00$ (Field Rates)	1260.00
3/4 ton 4×4 pickup @ $\$ 40.00 \times 12$ days	480.00
Powersaw $0 \$ 21.75 \times 4$ days	87.00
Powersaw standby $\$ 10.00 \times 8$ days	80.00
Pickets, flagging, marking pens, etc.	171.86
Laboratory Analysis	4092.25
Report compilation $\$ 150.00$ per $\times 4$ days	600.00
Typing, copying, binding	210.80
	12559.41
15\% Contingencies	1883.91
Total Cost	\$14 443.32

8.0 STATEMENT OF QUALIFICATIONS

I, Bryan Elliott, of the City of Kamloops, in British Columbia hereby state that:

1. I am a Professional Prospector and have carried out my profession since 1973.
2. I am a graduate of British Columbia Department of Mines Exploration Course 1979, and have completed college courses in mineralogy and geology, 1978.
3. I have been employed in field supervisory positions for El Paso Mining and Milling, Teck Explorations, and Noranda Explorations. I have held the Exploration Manager position for Tugold Resources and Mary Creek Resources, and am currently President and Exploration Manager for Iota Explorations Ltd.
4. This report is based on information gathered during the 1987 field season, and opinions expressed reflect that knowledge and information gathered from local experience and research.
5. I have done this report on behalf of Iota Explorations Ltd.

APPENDIX A

GEDCHEMICAL ICF ANALYEIB

SAMPI	no	CuI	P8	2N	A6	MI	co	*	$f 5$	AS	4	Al	TH	88	C0	56	81	v	CA	P	LA	68	\%	BA	II	8	Ab	WA	8	v	AUI
	P9\%	PPM	P\%	PFm	PPK	PP\%	P\%	P\%\%	2	PFh	Pm	PP\%	P\%	P\%	PP\%	PF*	PF\%	PPN	1	1	P+h	P\%*	1	PF\%	1	PPM	2	\%	:	FF\%	PP\%
somus 6R10 L1+25s	356	2452	2	28	3.7	3	4	261	2.07	11	5	n 0	2	50	1	4	3	33	. 59	. 031	5	5	. 31	15)	. 03	4	. 44	. 05	. 10	3	
bowus grid Ls+905	38	6726	6	7	5.5	6	5	334	2.13	99	5	ND	2	60	1	4	2	24	1.19	. 028	6	5	. 15	109	. 01	5	. 32	. 05	. 13	5	
S0mus 6kid Let605	297	1366	16	45	1.6	1	3	262	1.60	30)	5	15	2	192	1	,	4	13	2.38	. 022	2	2	. 15	86	. 01	4	. 19	. 03	. 03	3	
Bowus 6kID L7**NS	166	2870	7	70	3.6	2	3	2 N	1.95	153	5	15	1	42	2	1	6	11	. 42	. 012	2	3	. 08	159	. 01	2	. 12	. 03	. 06	3	
BOMUS 6RID $69+605$	1645	553	423	3	1.2	1	4	85	5.71	183	8	ND		0103	1	11	7\%	7	. 21	.005	2	1	. 02	162	. 01	7	. 97	. 02	. 05	1	

SARPLEA

EL $0+00$	1	38	5	43	. 1	18	8	387	2.34	5	5	$N 2$	3	152	1	2	2	55	2.91	. 083	\bigcirc	26	. 81	120	. 11	2	1.10	. 06	. 07	1	3
L0+00 0+25E	1	41	2	52	. 1	20	10	416	2.69	4	5	NO	2	9	1	2	2	63	1.82	. 085	9	30	. 74	98	. 12	4	1.11	. 04	. 10	1	1
L0+00 0+50E	1	51	5	60	. 1	22	10	537	2.99	5	5	ND	2	70	1	2	2	68	. 91	. 0.94	11	33	. 80	127	. 14	5	1.62	. 04	. 22	1	4
L0+000 0+75E	1	48	6	49	. 1	21	9	448	2.66	5	6	N0	2	114	1	2	2	62	2.69	. 084	10	28	. 85	99	. 13	5	1.33	. 05	. 09	1	1
Le+00 1+00E	1	47	6	70	. 1	20	10	557	2.79	5	5	ND	1	67	1	2	2	59	. 85	. 098	10	32	. 66	145	. 13	6	1.75	. 03	. 29	1	1
L0+00 1+25E	1	46	3	52	. 1	19	?	423	2.46	4	5	N0	2	98	1	2	2	59	3.03	. 087	9	27	. 80	102	. 12	7	1.34	. 04	. 10	1	1
$10+001+50 \mathrm{E}$	1	40	3	68	. 1	21	?	524	2.72	2	5	ND	1	66	1	2	2	62	. 94	. 100	10	30	. 61	130	. 12	6	1.36	. 03	. 20	1	2
L0+00 1+75E	1	38	3	59	. 1	17	10	505	2.67	2	5	ND	1	69	1	2	2	60	. 91	. 101	10	29	. 61	135	. 11	2	1.40	. 0 ?	. 22	1	1
L0+00 2+00E	1	37	5	62	. 1	18	-	525	2.76	3	5	ND	1	65	1	2	2	63	. 87	. 0.95	10	31	. 60	137	. 12	5	1.40	. 03	. 19	1	2
L0+00 $2+25 E$	1	38	2	43	. 1	19	\bigcirc	374	2.40	5	7	NV	2	84	1	2	2	61	2.13	. 080	9	26	. 65	97	. 11	5	1.05	. 04	. 08	1	2
L0+00 2+50E	1	39	3	48	. 1	19	9	392	2.53	6	5	ND	2	69	1	2	2	60	1.06	. 072	9	27	. 70	112	. 11	9	1.34	. 05	. 10	1	1
L0+00 2+75E	1	45	2	44	. 1	18	8	370	2.39	b	7	ND	2	82	1	2	2	60	2.57	. 087	\%	26	. 67	94	. 11	8	1.15	. 03	. 09	1	1
LO+00 3+00E	1	44	2	47	. 1	17	8	373	2.54	4	8	ND	2	91	1	2	2	63	2.80	. 085	9	29	. 69	95	. 11	3	1.13	. 03	. 10	1	1
L0+00 3+25E	1	41	2	48	. 1	17	8	391	2.48	6	5	N0	1	68	1	2	2	59	1.34	. 085	9	28	. 65	95	. 10	7	1.21	. 03	. 14	1	1
L0+00 3+50E	1	39	9	56	. 1	20	10	434	2.57	4	6	ND	2	58	1	2	2	59	. 71	. 080	10	29	. 57	117	. 11	6	1.43	. 02	. 19	1	t
$10+003+75 E$	1	40	2	62	. 2	20	9	489	2.76	3	5	ND	2	66	1	2	2	65	. 82	. 101	10	30	. 62	128	. 12	6	1.46	. 03	. 24	1	2
$10+004+00 \mathrm{E}$	1	43	8	67	. 1	22	9	494	2.72	2	5	ND	2	68	1	2	2	60	. 86	. 098	10	30	. 66	124	. 12	6	1.46	. 03	. 23	1	1
L0+00 4+25E	1	42	4	64	. 1	19	9	504	2.80	3	5	ND	2	67	1	2	2	62	. 84	. 100	10	31	. 66	126	. 13	6	1.50	. 04	. 25	1	1
L0+00 4+50E	1	41	3	67	. 1	19	?	505	2.60	3	5	ND	2	66	1	2	2	56	. 81	. 102	10	28	. 64	130	. 12	9	1.48	. 03	. 24	1	1
LO+00 4+75E	1	44	8	69	. 1	21	9	531	2.71	4	5	ND	2	71	1	2	2	59	. 85	. 098	10	30	. 65	138	. 12	6	1.53	. 03	. 26	1	2
L0+00 5+00E	1	43	7	68	. 1	20	9	529	2.74	4	5	ND	2	72	1	2	2	61	. 89	. 103	10	28	. 67	135	. 13	7	1.51	. 04	. 30	1	2
L0+00 5+25E	1	44	3	69	. 1	18	9	535	2.61	2	5	ND	2	70	1	2	2	57	. 94	.111	10	28	. 63	142	. 11	6	1.41	. 03	. 28	1	1
L0+00 5+50E	1	48	2	98	. 1	19	10	426	3.15	5	5	ND	2	55	1	2	2	77	. 77	. 095	10	37	. 61	103	. 12	5	1.35	. 02	. 17	1	1
L0+00 5+75E	1	37	7	69	. 1	15	8	458	2.70	2	5	ND	2	59	1	2	2	62	. 72	. 091	10	29	. 51	129	. 12	8	1.45	. 03	. 20	1	1
L0+00 6+00E	1	42	3	54	. 1	20	9	420	2.66	3	5	ND	2	9	1	2	2	62	1.82	. 086	10	30	. 73	106	. 13	8	1.30	. 04	. 14	1	4
L0+00 6+25E	1	43	2	62	. 1	21	8	431	2.87	3	5	ND	2	68	1	2	2	69	1.26	. 096	10	33	. 73	98	. 13	5	1.28	. 03	. 17	1	1
L0+00 6+50E	1	37	3	50	. 1	20	8	418	2.73	5	5	ND	2	64	1	2	2	64	1.22	. 099	9	31	. 65	93	. 12	5	1.12	. 03	. 18	1	1
L0+00 6+75E	1	38	3	54	. 1	18	8	431	2.13	2	5	$N 0$	1	58	1	2	3	45	. 84	. 080	8	23	. 58	107	. 10	8	1.16	. 03	. 19	1	1
L0+00 7+00E	1	29	4	38	. 1	17	8	329	3.13	4	5	ND	2	59	1	2	2	64	. 73	. 077	8	30	. 55	122	. 11	3	1.02	. 06	.08	1	380
LO+00 7+25E	1	27	2	37	. 1	13	7	337	2.28	2	5	ND	2	65	1	2	2	55	1.13	. 076	7	26	. 54	80	. 10	6	. 86	. 03	. 09	1	3
L0+00 7+50E	1	10	2	15	. 1	2	2	101	. 44	3	5	ND	1	18	1	5	2	9	. 26	. 026	2	6	. 12	30	. 01	3	. 19	. 01	. 06	2	1
L0+00 7+75E	4	92	6	114	. 1	19	9	752	2.41	7	7	ND	1	145	1	2	2	48	2.06	. 161	9	30	. 62	317	. 06	17	1.08	. 02	. 20	1	1
10+00 8+00E	4	85	6	74	. 1	21	10	587	2.76	7	6	ND	1	113	1	2	2	59	1.67	. 156		42	. 77	174	. 10	9	1.25	. 03	. 20	1	2
L0+00 8425E	2	58	3	60	. 1	20	9	562	2.64	6	5	N0	2	89	1	2	2	58	1.13	. 091	9	37	. 68	141	. 11	9	1.21	. 03	. 19	1	1
$10+008+50 E$	1	49	6	59	. 1	21	10	493	3.04	4	5	ND	2	77	1	2	2	69	. 91	. 089	12	34	. 76	135	. 15	6	1.63	. 04	. 21	1	1
L0+00 8+75E	1	45	6	73	. 1	19	9	573	2.42	3	5	ND	1	82	1	2	2	50	. 82	. 088	9	31	. 56	172	. 11	6	1.60	. 03	. 27	1	2
STD C/AU-S	18	56	37	135	7.2	66	28	937	3.89	36	18	8	34	49	16	16	21	55	. 47	. 086	38	56	. 85	179	. 08	36	1.82	. 07	. 14	13	48

SAMPLEI

LO+00 9+00E	1	50	8	45	. 1	18	8	428	2.36	8	5	ND	2	BO	1	2	2	60	2.05	. 084	9	28	. 76	109	. 10	6	1.29	. 04	. 14	1	6
LO+00 $9+25 E$	1	52	9	55	. 1	21	7	594	2.23	6	5	ND	1	96	1	2	2	50	1.11	. 092	\bigcirc	31	. 56	217	. 07	4	1.63	. 03	. 21	1	
$10+009+500$	1	57	8	57	. 1	25	9	605	2.52	6	5	ND	1	79	1	2	2	58	. 81	. 076	9	37	. 68	172	. 10	6	1.72	. 03	. 28	1	1
$10+009+75 E$	1	61	3	52	. 1	24	?	605	2.57	6	5	ND	1	105	1	2	2	63	1.57	. 080	9	40	. 86	165	. 10	2	1.61	. 04	. 20	1	1
L0+00 10+00E	3	134	12	55	. 2	23	11	61 ?	2.82	10	5	ND	1	111	1	2	2	61	2.80	. 074	10	37	. 88	143	. 09	2	1.2 ?	. 03	. 13	1	5
L0+00 10+25E	2	81	13	$\bigcirc 8$. 1	17	9	763	2.88	37	5	N0	1	153	1	2	2	59	2.94	. 070	11	31	. 85	650	. 07	6	1.76	. 03	. 20	1	
L0+00 10+50E	1	55	10	51	. 1	25	10	602	2.62	8	5	N0	2	83	1	2	2	60	. 75	. 650	10	41	. 72	!51	. 12	3	1.67	. 03	. 27	2	1
L0+00 10+75E	1	55	9	62	. 1	19	?	657	2.32	5	5	ND	1	123	1	2	2	50	. 92	. 092	9	$3!$. 64	164	. 08	4	1.48	. 03	. 26	1	1
L0+00 11+00E	1	54	12	55	. 1	19	9	597	2.58	6	5	ND	1	72	1	2	2	59	. 65	.063	10	28	. 63	170	. 10	2	1.63	. 02	. 19	1	4
L0+00 $11+25 \mathrm{E}$	1	76	11	70	. 1	19	10	879	2.80	6	5	No	1	56	1	2	2	61	1.15	. 099	13	27	. 83	351	. 08	6	1.67	. 02	. 18	1	8
$10+0011+50 \mathrm{E}$	1	54	11	52	. 1	20	9	508	2.58	5	5	ND	1	79	1	2	2	60	. 76	. 075	$?$	30	1.00	102	. 11	6	1.65	. 03	. 22	1	2
L0+00 11+75E	1	46	10	56	. 1	18	7	550	2.43	7	5	N0	1	82	1	2	2	52	. 67	. 082	10	28	. 64	132	. 11	4	1.86	. 04	. 26	1	1
L1+00S O+00E	1	60	13	61	.	23	10	558	3.01	5	5	ND	2	78	1	2	2	72	1.14	. 089	11	35	. 82	136	. 12	3	1.65	. 04	. 22	1	1
L1+00S 0+25E	1	85	17	76	. 1	33	13	652	3.59	8	7	ND	3	111	1	2	2	81	1.92	. 089	14	40	1.23	196	. 16	2	2.12	. 07	. 19	1	1
L1+00S 0+50E	1	37	10	58	. 1	17	8	194	2.49	5	5	ND	2	57	1	2	2	57	. 62	. 071	10	27	. 50	138	. 11	6	1.68	. 03	. 22	1	1
L1+00S $0+75 \mathrm{E}$	1	49	10	58	. 1	20	9	482	2.79	4	5	ND	2	67	1	2	2	64	. 72	. 071	11	32	. 67	134	. 11	6	1.70	. 03	. 18	1	
L1+00S 1+00E	1	50	3	48	. 1	22	9	493	2.84	7	5	ND	2	68	,	2	2	72	1.22	. 082	10	32	. 72	106	.13	6	1.40	. 03	. 14	1	
L1+00S $1+25 E$	1	50	13	47	. 1	22	9	450	2.61	4	5	ND	3	96	1	2	2	65	2.12	. 073	10	29	. 78	113	. 13	2	1.26	. 05	. 08	1	1
L1+00S $1+50 \mathrm{E}$	1	42	10	43	. 1	22	8	411	2.72	5	5	ND	2	69	1	2	2	68	1.54	. 078	9	30	. 70	89	.11	4	1.12	. 04	. 08	1	
L1+00S 1+75E	1	42	14	43	. 1	20	?	416	2.65	8	5	ND	2	90	1	3	6	65	2.23	. 071	9	29	. 75	96	. 12	3	1.16	. 04	. 06	1	1
L1+00S 2+00E	1	38	6	37	. 1	18	7	351	2.56	6	5	ND	2	76	+	2	3	66	1.81	. 070	7	30	. 63	77	. 10	2	. 92	. 03	. 05	1	1
L1+00S 2+25E	1	43	9	39	. 1	19	9	422	2.55	4	5	ND	2	108	1	2	2	64	2.26	. 074	8	28	. 73	103	. 12	2	1.08	. 05	. 05	1	1
L1+00s $2+50 \mathrm{E}$	1	47	6	39	. 1	18	9	390	2.55	6	5	ND	2	110	1	2	2	65	3.08	. 079	9	30	. 74	91	. 11		1.11	. 04	. 06	1	2
L1+00s 2+75E	1	37	9	54	. 2	18	8	454	2.57	6	5	N0	3	61	1	2	3	59	. 86	. 081	9	28	. 55	117	. 10	2	1.41	. 03	. 18	1	
$41+0053+00 E$	1	37	13	58	. 1	18	8	470	2.60	3	5	ND	1	56	1	2	2	60	. 80	. 088	9	30	. 55	120	. 10	6	1.33	. 02	. 20	1	1
L1+00S 3+25E	1	44	11	51	. 1	22	9	431	2.74	7	5	ND	2	58	1	2	3	65	. 66	. 077	9	33	. 72	103	. 11	2	1.46	. 05	. 11	1	1
L1+00S 3+50E	1	43	13	48	. 1	23	9	423	2.79	6	5	N0	2	59	,	2	2	68	. 75	. 081	10	32	. 66	106	. 19	5	1.41	. 02	. 10	1	19
L1+00S 3+75E	1	43	6	39	. 1	18	7	359	2.28	5	5	ND		63	1	2	2	56	1.71	. 072	8	23	. 63	88	. 09	3	1.19	. 03	. 08	1	
LItoos 4+00E	1	49	11	41	. 3	18	8	380	2.40	7	5	ND	2	89	,	2	2	60	2.86	. 080	9	28	. 70	104	. 09	4	1.28	. 03	. 09	1	3
L1+00S 4+25E	1	55	10	48	. 1	22	8	420	2.72	3	5	ND	1	66	1	2	2	65	1.20	. 083	9	36	. 64	104	. 11	2	1.45	. 03	. 12	1	6
Li+00S 4+50E	1	39	18	50	. 1	17	9	433	2.68	4	5	ND	2	51	1	2	2	64	. 64	. 074	9	34	. 51	105	. 11	4	1.45	. 03	. 15	1	2
L1+00S 4+75E	1	43	17	75	. 2	17	9	573	2.50	4	5	ND	2	64	1	2	2	53	. 84	. 099	9	28	. 51	166	. 10	6	1.61	. 03	. 25	1	
L1+00S 5+00E	1	46	15	86	. 1	16	8	569	2.62	5	5	ND	2	68	1	2	5	56	. 97	. 110	9	29	. 53	164	. 09	3	1.44	. 02	. 26	1	
L1+00S 5+25E	1	44	10	65	. 1	16	8	506	2.65	3	5	ND	1	54	$!$	2	2	62	. 80	. 088	9	29	. 48	132	. 10	5	1.36	. 02	. 17	1	
LIt00S 5+50E	1	65	11	61	. 1	20	9	538	2.97	4	5	ND	2	57	1	2	2	68	. 75	. 080	10	36	. 57	130	. 11	5	1.67	. 02	. 17	1	
L1+00s 5+75E	1	33	14	59	. 3	16	8	489	2.54	2	5	ND	1	55	1	2	2	57	. 69	. 086	9	29	. 48	128	. 11	4	1.41	. 02	. 21	1	
ITD	18	55	40	124	6.7	63	26	93	3.73	39	19	7	30	44	15	16	24	54	45	. 080	35	56	. 82	160	. 07	33	1.75	. 06	. 12	13	

SAMPLE:

L1+00S $6+00 \mathrm{E}$	1	38	5	55	. 1	18	10	478	2.80	3	5	ND	2	64	1	2	2	60	. 82	. 097	10	30	. 61	122	. 12	5	1.49	. 03	. 23	1	8
L1+005 6+25E	1	46	8	98	. 1	19	11	719	2.80	2	5	ND	1	65	1	2	2	51	. 80	. 121	12	32	. 57	209	. 11	3	2.11	. 03	. 30	1	1
$11+0056+50 \mathrm{E}$	1	82	5	63	.1	16	10	630	3.08	3	5	ND	2	51	1	2	2	67	. 68	. 086	11	30	. 54	209	. 11	2	1.62	. 03	. 16	1	14
L1+005 $6+75 E$	1	41	3	52	. 1	17	8	407	2.84	4	5	ND	2	51	1	4	2	63	. 68	. 083	9	31	. 49	146	. 11	2	1.24	. 02	. 21	1	1
L! 4 00: $7+00 \mathrm{E}$	1	44	6	50	. 1	15	9	472	2.89	4	5	N0	1	66	1	2	2	64	. 83	. 101	10	31	. 57	138	. 11	3	1.26	. 03	. 18	1	4
L1+005 7+25E	1	43	4	45	. 1	16	8	451	2.61	4	5	ND	1	74	1	2	2	58	1.00	. 084	9	30	. 58	124	. 10	7	1.07	. 03	. 16	2	3
L1+005 7+50E	42	151	11	84	. 2	5	9	B50	3.09	18	5	ND	2	248	1	2	2	38	3.81	. 101	14	7	. 59	157	. 01	2	. 85	. 01	. 11	1	7
L1+00S 7+75E	14	225	11	110	. 1	9	11	876	3.03	13	5	N0	1	264	1	2	4	40	3.82	. 076	12	11	. 79	147	. 02	4	. 95	. 02	. 16	1	2
L1+255 7+75E	9	77	11	55	. 1	20	10	600	2.98	7	5	ND	1	101	1	2	2	65	1.78	. 072	10	43	. 80	166	. 11	6	1.47	. 03	. 23	1	1
L1+25S 8+00E	32	196	8	69	. 4	11	9	858	2.83	12	5	No	2	101	1	2	4	47	5.04	. 090	14	18	. 51	110	. 03	4	. 90	. 02	. 10	1	3
11+25S 8+25E	1	47	3	54	. 1	17	9	550	2.66	2	5	N0	2	78	1	2	2	50	. 67	. 053	9	31	. 59	149	. 12	4	1.71	. 03	. 36	1	1
L1+25S 8+50E	1	35	3	29	. 1	10	5	277	1.57	5	5	ND	1	1060	1	2	2	35	13.39	. 061	6	19	1.28	87	. 08	7	. 94	. 09	. 18	1	1
L1+25S 8+75E	1	40	6	64	. 1	12	8	591	2.21	2	5	N0	1	112	1	2	2	42	1.22	. 083	9	22	. 49	21.	. 09	4	1.69	. 02	. 34	1	1
L1+25S 9+00E	1	51	4	57	. 3	14	7	615	2.13	2	5	ND	1	82	1	2	2	42	1.04	. 090	11	19	. 44	263	. 09	6	1.73	. 03	. 25	1	2
L1+25S 9+25E	1	55	7	60	. 1	16	9	657	2.51	5	5	ND	1	66	1	2	2	50	. 78	. 083	12	24	. 48	280	. 10	3	1.86	. 03	. 26	1	2
L1+255 9+50E	1	56	6	66	. 1	15	9	765	2.66	3	5	ND	1	57	1	2	2	50	. 84	. 087	13	23	. 54	335	. 10	6	2.05	. 03	. 24	1	1
$11+2559+75 \mathrm{E}$	1	40	2	56	.1	14	8	533	2.29	2	5	ND	2	57	1	2	2	44	. 56	. 051	10	23	. 46	182	.11	4	1.71	. 03	. 25	1	2
L1+25S 10+00E	1	52	8	52	. 1	22	10	467	2.77	2	5	ND	2	69	1	2	2	59	. 59	. 059	9	35	. 79	100	. 13	5	1.61	. 05	. 24	1	2
L2+00S O+00E	1	50	4	52	. 1	21	10	416	2.71	4	5	ND	1	61	1	2	2	60	. 86	. 088	10	29	. 72	116	. 11	5	1.56	. 03	.21	1	3
L2+00S $0+25 \mathrm{E}$	1	71	7	46	. 2	20	9	431	2.55	7	5	ND	2	217	1	2	2	55	4.45	. 086	10	27	1.01	131	. 11	3	1.38	. 05	. 11	1	8
12+00S 0+50E	1	42	2	57	. 1	18	9	493	2.66	2	5	ND	1	75	1	2	2	56	1.03	. 090	10	28	. 68	140	. 11	2	1.55	. 03	. 19	1	1
L2+005 0+75E	1	46	9	54	. 1	20	10	535	2.90	4	5	ND	2	78	1	2	2	62	1.08	. 083	11	30	. 79	136	.14	3	1.73	. 06	. 15	1	1
L2+00S 1+00E	1	50	2	51	. 1	22	10	491	2.89	7	5	ND	2	91	1	2	2	64	1.90	. 092	11	29	.91	119	. 15	2	1.55	. 05	. 15	1	2
L2+00S 1+25E	1	42	2	59	. 1	17	10	562	2.83	3	5	ND	1	70	1	2	2	60	. 94	. 100	10	31	. 68	140	. 14	4	1.60	. 04	. 22	1	1
L2+00S 1+50E	1	45	7	55	. 1	18	10	531	2.97	4	5	ND	2	68	1	2	2	64	. 90	. 110	11	34	.67	144	. 14	6	1.67	. 03	. 29	1	2
L2+00S 1+75E	1	46	10	49	. 1	21	9	469	2.82	3	5	ND	2	65	1	3	2	63	. 94	. 090	10	30	. 75	111	. 13	3	1.44	. 04	. 18	1	1
L2+00S $2+00 \mathrm{E}$	1	44	4	57	. 1	18	11	548	2.95	4	5	ND	2	68	1	2	2	64	. 88	. 091	11	32	. 73	128	. 14	2	1.56	. 04	. 24	1	1
L2+00S 2+25E	1	42	7	54	. 1	17	10	510	2.87	4	5	ND	1	67	1	2	2	63	. 84	. 092	10	30	. 69	121	. 14	4	1.53	. 04	. 23	1	1
L2+00S $2+50 \mathrm{E}$	1	42	5	58	. 1	18	9	503	2.63	4	5	ND	2	69	1	2	2	56	. 89	. 103	10	28	. 63	135	. 12	4	1.40	. 03	. 27	1	2
L2+00S 2+75E	1	43	6	50	. 1	21	9	467	2.99	6	5	ND	2	61	1	2	2	68	. 94	. 092	10	32	. 73	103	. 12	4	1.30	. 03	. 18	1	2
L2+00S 3+00E	1	40	10	59	. 1	18	9	510	2.78	2	5	ND	1	72	1	2	2	61	1.04	. 094	9	31	. 64	131	. 12	3	1.35	. 03	. 21	1	34
L2+00S 3+25E	1	42	6	42	. 2	18	9	407	2.58	6	5	ND	3	102	1	2	2	60	2.81	. 084	9	27	. 82	108	. 13	3	1.21	. 14	. 08	1	4
L2+00S 3+50E	1	36	6	55	. 1	13	9	459	2.53	3	5	ND	2	61	1	2	2	53	. 78	. 089	10	28	. 53	131	. 12	5	1.49	. 03	. 23	1	1
L2+00S 3+75E	1	35	4	55	.1	13	8	460	2.61	3	5	ND	2	61	1	2	2	56	. 70	. 087	9	28	. 52	132	. 12	8	1.52	. 03	. 23	1	1
L2+00S $4+00 \mathrm{E}$	1	37	7	54	. 1	15	9	472	2.70	4	5	M0	2	58	1	2	2	58	. 76	. 094	9	29	. 53	126	. 12	5	1.41	. 03	. 23	1	1
L2+00S 4+25E	1	44	6	47	. 1	18	10	460	2.71	5	5	ND	2	61	1	2	2	60	. 88	. 091	10	29	. 66	110	. 12	6	1.36	. 03	. 16	1	7
STD C/AU-S	18	57	41	124	7.4	67	29	934	3.94	36	18	8	34	49	17	16	21	55	. 47	. 087	39	55	. 87	180	. 08	38	1.86	. 07	. 15	14	49

M0	Cl	PB	2N	A6	$N 1$	CO	HN	FE	AS	U	AU	TH	SR	CD	SB	BI	v	CA	P	LA	CR	M6	BA	It	B	AL	NA	K	N	aut
PPM	PPM	PPM	PPK	PPM	PPA	PPh	PPM	2	PPM	PPM	PPM	FPF	FFM	PFM	PFM	PPM	PPM	$\%$	\%	FFH	FPM	\%	PPA	2	PPK	2	\%	$\%$	PPM	PPP

L2+00S 4+50E	1	46	4	53	. 1	22	10	478	2.94	6	5	ND	2	68	1	2	2	66	. 96	. 107	10	32	. 76	120	. 13	4	1.46	. 04	. 20	1	3
L2+00S 4+75E	1	41	6	57	. 1	19	9	507	2.77	4	5	ND	2	66	1	2	2	60	. 84	. 092	10	30	. 64	127	. 13	2	1.53	. 04	. 22	1	1
L2+00S 5+00E	1	43	7	57	. 1	18	10	504	2.76	5	5	ND	2	79	1	2	2	60	1.17	. 100	10	29	. 69	122	. 13	7	1.40	. 04	. 21	1	2
L2+00S 5+25E	1	46	2	57	. 2	19	9	480	3.00	4	5	N0	2	65	1	2	2	68	. 85	. 097	10	31	. 64	117	. 14	3	1.47	. 03	. 22	1	1
L2+00S 5+50E	1	43	5	51	. 1	20	10	432	2.93	5	5	ND	2	63	1	2	3	67	. 93	. 101	10	31	. 66	101	. 13	3	1.40	. 03	. 19	1	2
L2+00S 5475E	1	45	4	58	. 1	21	9	497	2.62	4	5	NO	2	69	1	2	3	55	1.02	. 096	10	28	. 69	124	. 13	6	1.45	. 04	. 24	1	6
L2+00S $6+00 \mathrm{E}$	1	43	7	44	. 1	20	8	408	2.59	5	5	ND	2	64	1	2	3	58	. 84	. 090	?	28	. 62	109	. 11	2	1.21	. 03	. 17	1	2
L2+00S $6+25 E$	1	37	9	46	. 1	16	9	389	2.61	5	5	ND	2	61	1	2	2	61	1.12	.088	8	29	. 60	98	. 11	3	1.02	. 03	. 12	1	6
L2+00S 6+50E	1	42	3	48	. 1	19	9	447	3.08	5	5	ND	2	64	1	2	2	73	. 89	. 090	9	34	. 62	121	. 12	3	1.18	. 03	. 15	2	2
L2+00S $6+75 E$	1	41	6	35	. 1	16	8	300	2.73	5	5	ND	1	61	1	2	2	61	. 80	. 072	9	28	. 61	96	. 12	2	1.06	. 03	. 07	1	7
L2+00S 7+00E	56	472	37	105	1.2	9	10	697	3.30	46	5	No	2	238	1	2	6	39	3.88	. 081	9	8	. 42	179	. 02	8	. 87	. 02	. 18	1	7
L2+00S 7+25E	77	362	17	80	. 9	7	10	712	3.54	52	5	ND	2	264	1	2	2	42	4.75	. 078	9	6	. 42	356	. 01	9	. 87	. 01	. 19	1	5
L2+00S 7+50E	25	250	21	116	. 1	12	11	874	4.40	19	5	ND	3	96	1	2	3	65	1.09	. 097	19	18	. 55	292	. 06	8	1.90	. 02	. 38	1	4
L2+00S 7+75E	6	88	2	60	. 1	23	10	552	3.15	8	5	ND	2	89	1	2	3	71	1.68	. 088	10	46	. 91	143	. 12	5	1.58	. 03	. 23	1	20
L2+00S $8+00 \mathrm{E}$	1	61	5	51	. 1	24	10	516	2.87	5	5	ND	2	107	1	2	2	65	1.31	. 086	9	40	. 97	129	.13	5	1.62	. 04	. 28	1	1
L2+00S 8+25E	1	59	4	49	. 1	26	11	531	2.91	3	5	ND	2	106	1	2	4	60	. 85	. 069	10	35	. 77	150	. 13	4	1.71	. 03	. 36	1	2
L2+00S $8+50 \mathrm{E}$	1	59	4	69	. 1	20	10	650	2.87	5	5	ND	2	67	1	2	2	59	. 88	. 082	12	33	. 66	217	. 12	3	1.91	. 03	. 31	1	3
L2+00S 8+75E	1	39	12	66	. 1	15	8	594	2.39	6	5	ND	1	74	1	2	3	47	. 86	. 073	10	24	. 48	231	. 12	5	1.89	. 03	. 26	1	1
L2+00S 9+00E	1	36	7	66	. 1	15	8	532	2.31	2	5	N0	1	75	1	2	2	48	. 90	. 087	9	23	. 53	196	. 11	2	1.57	. 03	. 23	1	1
L3+00S O+00E	1	47	7	53	. 1	22	11	472	3.03	4	5	ND	2	66	1	2	3	69	. 81	. 082	10	34	. 66	123	. 13	3	1.67	. 03	. 20	1	1
L3+00S 0+25E	1	52	8	47	. 1	22	10	452	2.92	3	5	NO	3	81	1	2	2	67	1.83	. 091	10	31	. 80	112	. 14	6	1.50	. 04	.13	1	3
L3+00S O+50E	1	57	4	52	. 1	24	10	460	3.13	,	5	N0	2	68	1	2	2	70	. 99	. 096	11	33	. 83	117	. 13	3	1.61	. 03	. 16	1	3
LJ+00S O+75E	1	58	7	55	. 1	23	11	525	3.28	8	5	N0	3	73	1	2	2	72	1.03	. 100	11	36	. 87	123	. 14	6	1.70	. 04	. 18	1	2
L3+00S 1+00E	1	55	6	56	. 1	24	11	471	3.11	6	5	ND	2	71	1	2	2	70	. 92	. 092	11	34	. 84	123	. 13	4	1.73	. 03	. 20	1	2
L3+00S 1+25E	1	44	4	64	. 1	18	10	553	2.74	5	5	ND	2	73	1	2	2	58	. 96	. 101	10	29	. 66	142	. 13	5	1.58	. 03	. 27	1	2
L3+00S 1+50E	1	47	10	50	. 1	23	10	401	2.82	6	5	ND	2	69	1	2	2	64	. 88	. 086	11	31	. 67	124	. 11	2	1.59	. 03	. 15	1	4
L3+00S 1+75E	1	47	6	48	. 1	24	10	450	2.95	7	5	NO	2	78	1	2	2	69	1.79	. 088	10	31	. 79	111	. 14	J	1.49	. 04	. 13	1	3
L3+00S 2+00E	1	38	3	48	. 1	20	10	425	2.93	4	5	ND	2	59	1	2	3	67	. 80	. 087	10	30	. 61	110	. 13	2	1.43	. 04	. 16	1	1
L3+00s $2+25 \mathrm{E}$	1	32	5	46	. 1	17	8	397	2.71	2	5	ND	2	56	1	2	3	60	. 69	. 074	9	28	. 55	108	. 13	2	1.47	. 03	. 16	2	1
L3+00S $2+50 \mathrm{E}$	1	49	5	49	. 1	22	10	428	3.13	7	5	ND	2	75	1	2	2	72	1.57	. 089	11	35	. 80	112	. 13	5	1.52	. 04	. 13	1	2
L3+00S 2+75E	1	50	9	51	. 1	23	11	440	3.05	6	5	ND	2	74	1	2	2	71	1.35	. 091	11	34	. 78	116	. 14	4	1.53	. 04	. 15	1	12
L3+00S 3+00E	1	46	6	50	. 1	24	10	432	3.22	5	5	No	3	66	1	2	2	75	. 83	. 088	11	36	. 75	109	. 14	4	1.50	. 04	. 16	1	5
L3+00S 3+25E	1	44	5	60	. 1	21	10	515	2.68	3	5	ND	2	74	1	2	2	57	1.02	. 102	10	29	. 69	138	. 13	3	1.53	. 03	. 23	1	1
L3+00S 3+50E	1	46	3	49	. 1	21	9	431	2.79	5	5	ND	2	88	1	2	2	64	2.00	. 089	11	30	. 73	121	. 13	2	1.35	. 04	. 11	2	4
LJ +005 3+75E	1	50	10	48	. 1	23	10	387	3.01	7	5	ND	2	80	1	2	2	72	2.18	. 099	11	35	. 76	113	. 13	5	1.40	. 04	. 11	2	1
L3+00S 4+00E	2	37	4	45	. 1	21	9	407	2.75	5	5	ND	2	67	1	2	2	64	1.21	. 090	10	30	. 68	96	. 13	2	1.23	. 04	. 15	1	1
SID C/AU-S	20	56	41	121	7.3	62	28	925	3.97	39	18	8	34	49	16	14	21	56	. 47	. 085	38	55	. 86	177	. 08	31	1.84	. 07	, 14	13	48

SAMPLE:

L3+00S 4+25E	2	50	9	54	. 1	24	10	480	2.68	2	5	ND	3	75	1	2	2	67	1.34	.085	0	31	. 81	116	. 12	10	1.28	. 04	. 16	1	2
L3+00S 4+50E	3	48	9	50	. 1	22	?	449	2.70	5	5	N0	3	75	1	2	2	70	1.53	. 085	9	30	. 84	98	. 13	8	1.23	. 04	. 15	2	1
$13+0054+75 E$	3	54	4	64	. 2	24	10	505	3.03	8	5	ND	3	89	1	2	2	78	1.19	. 104	10	35	. 91	114	. 13	14	1.12	. 04	. 27	1	1
L3+00S 5+00E	2	48	7	57	. 2	24	9	474	2.76	4	5	ND	3	79	1	2	2	70	1.45	. 099	9	30	. 80	110	. 12	9	1.31	. 05	. 19	1	1
L3+005 5+25E	2	48	7	53	. 1	23	9	461	2.85	2	5	ND	2	66	1	2	2	13	1.10	. 093	9	33	. 76	105	. 12	8	1.24	. 03	. 15	1	2
LJ+00S 5+50E	3	44	6	54	. 1	23	9	463	2.83	5	5	ND	3	65	1	2	2	72	1.01	. 003	9	33	. 75	103	. 12	7	1.22	. 03	. 20	1	1
L3+00S 5+75E	4	33	8	44	. 1	20	10	378	5.09	5	7	ND	3	50	1	2	2	155	. 85	. 079	8	54	. 62	82	. 13	12	. 84	. 02	. 08	1	2
L3+00S $6+00 \mathrm{E}$	58	244	13	53	. 3	15	10	547	2.90	38	5	ND	3	22°	1	2	2	$6!$	2.62	. 071	9	25	. 78	170	. 09	10	1.00	. 04	. 12	1	3
L3+00S $6+25 E$	8	50	6	50	. 1	18	8	414	2.80	4	8	ND	3	214	1	2	2	75	2.09	. 082	10	35	. 87	117	. 13	8	1.09	.11	. 08	2	1
L3+00S 6+50E	4	66	9	52	. 2	23	9	475	2.91	6	8	ND	3	132	1	2	2	74	2.03	. 079	10	37	. 85	114	. 12	8	1.28	. 04	. 13	1	1
L3+00S 6+75E	6	82	6	68	.2	21	9	510	2.89	8	5	ND	3	65	1	2	2	67	. 85	. 073	12	32	. 65	142	. 11	11	1.67	. 03	. 22	1	1
L3+00S 7+00E	44	308	26	96	. 4	9	9	871	3.64	21	5	ND	3	43	1	2	3	75	1.31	. 098	15	13	. 40	224	. 03	10	1.15	. 02	. 16	2	2
L3+00S 7+25E	14	169	12	79	. 1	12	9	652	3.09	11	5	ND	2	55	1	2	2	57	. 56	. 036	10	22	. 44	168	. 07	9	1.46	. 02	. 30	1	1
L3+00S 7+50E	4	61	9	63	. 2	22	8	611	2.66	4	5	ND	2	84	1	2	2	60	. 83	. 069	9	38	. 68	172	. 10	5	1.64	. 03	. 30	1	1
L3+00S 7+75E	3	59	6	53	. 1	20	9	600	2.63	4	5	ND	2	136	1	2	3	58	. 76	. 054	9	31	. 75	96	. 11	27	1.49	. 04	. 32	1	1
L3+00S 8+00E	3	59	8	59	.1	18	9	537	2.58	7	6	ND	2	92	1	2	2	60	1.99	. 082	9	25	. 76	211	. 10	7	1.50	. 03	. 19	2	1
L3+00S $8+25 E$	3	41	9	60	. 2	18	8	547	2.58	6	5	ND	2	66	1	3	2	58	. 69	. 066	10	27	. 57	184	. 12	6	1.79	. 04	. 25	1	1
L3+00S 8+50E	3	44	5	60	. 2	20	8	595	2.56	4	5	ND	2	74	1	2	2	58	. 84	. 081	10	27	. 56	216	.11	8	1.83	. 03	. 24	1	1
L3+00S 8+75E	3	55	11	69	. 3	24	11	573	2.99	6	5	ND	2	71	1	3	2	69	. 86	. 078	10	35	. 73	138	. 12	11	1.87	. 03	. 32	1	1
L3+005 9+00E	3	51	6	68	.1	23	10	542	2.85	4	5	ND	2	60	1	2	2	65	. 67	. 076	9	33	. 62	137	. 12	9	1.83	. 03	. 33	1	1
L4+00S 0+00E	3	52	6	61	. 1	24	10	542	3.15	5	5	ND	3	70	1	2	2	78	. 89	. 083	10	35	. 75	135	. 14	7	1.70	. 03	. 22	1	1
STD C/AU-S	21	60	36	136	7.4	68	27	955	3.97	38	19	7	39	48	17	19	23	62	. 49	. 077	36	59	. 89	173	. 08	38	1.74	. 06	. 13	14	52
L4+00S 0+25E	2	57	8	51	. 1	22	10	473	2.89	6	5	ND	3	103	1	2	2	77	2.63	. 082	10	33	. 91	115	. 14	6	1.38	. 05	. 11	1	2
L4+00S 0+50E	3	57	10	54	. 1	27	10	481	3.11	5	5	ND	2	90	1	2	2	82	2.39	. 093	10	33	. 91	123	. 13	9	1.48	. 04	. 13	1	1
14+00S 0+75E	2	48	5	46	. 1	22	9	415	2.60	6	5	ND	3	95	1	2	2	71	2.57	. 075	,	29	. 75	108	. 12	4	1.16	. 04	. 09	1	2
L4+00S 1+00E	3	45	9	60	. 1	23	10	532	3.04	5	5	ND	3	71	1	2	2	76	1.01	. 090	10	35	. 70	143	. 13	5	1.55	. 04	. 22	1	1
L4+00S 1+25E	3	46	7	67	. 2	21	9	578	3.04	4	5	ND	3	77	1	2	2	74	. 99	. 098	9	33	. 69	152	. 13	10	1.51	. 03	. 25	1	1
L4+00S 1+50E	3	46	2	55	.1	21	10	494	2.85	5	5	ND	3	68	1	2	2	72	1.03	. 081	9	31	. 73	123	. 13	8	1.40	. 03	. 19	1	1
L4+00S 1+75E	3	42	5	65	. 2	19	9	543	2.73	3	5	N0	3	69	1	2	2	66	. 92	. 092	9	31	. 60	146	. 12	11	1.40	. 03	. 23	1	1
L4+00S 2+00E	3	36	10	62	. 1	18	9	$52!$	2.83	5	5	ND	3	61	1	2	2	68	. 78	. 080	10	33	. 59	137	.13	?	1.56	. 03	. 22	1	1
L4+00S 2+25E	3	45	3	65	. 1	20	9	518	3.01	5	5	ND	3	71	1	2	2	72	. 83	, 078	10	33	. 65	156	. 13	8	1.79	. 03	. 24	1	2
L4+00S 2+50E	2	36	8	67	. 1	18	9	506	2.74	5	5	ND	3	68	1	2	2	64	. 76	. 076	9	32	. 57	151	. 12	8	1.69	. 03	. 23	1	1
L4+00S $2+75 E$	3	41	12	76	. 1	17	9	543	2.69	2	5	ND	3	67	1	2	2	61	. 83	. 089	9	31	. 56	166	. 11	11	1.59	. 03	. 29	1	1
L4+00S 3+00E	2	57	6	56	. 1	25	10	444	2.90	7	5	ND	3	87	1	2	2	75	2.25	. 086	10	35	. 93	121	. 12	11	1.46	. 04	. 13	1	3
L4+00S 3+25E	2	55	6	50	. 1	21	8	428	2.56	5	5	ND	2	93	1	2	2	65	2.32	. 076	10	30	. 85	116	. 11	8	1.25	. 05	. 09	1	2
L4+00S 3+50E	3	50	11	50	. 2	23	9	418	2.89	6	5	N0	3	69	1	2	3	76	1.61	. 085	10	34	. 75	101	. 12	9	1.22	. 03	. 13	2	1
L4+00S 3+75E	3	45	2	59	.1	19	9	497	2.69	3	5	ND	3	67	1	2	2	66	. 91	. 080	9	31	. 70	112	. 11	12	1.39	. 03	. 19	1	1

Sanfled

14+005 4*00E	2	40	6	48	+1	19	9	398	2.64	3	5	N0	1	60	1	2	2	$6 t$. 17	. 084	9	31	. 58	111	. 12	5	1.28	. 03	. 17	1	1
L4+005 4+2SE	2	41	7	47	. 1	17	10	430	2.99	3	5	M	1	68	1	2	2	71	. 90	. 091	9	34	. 62	112	. 12	7	1.11	.0]	. 14	1	3
L4+005 4+50E	2	37	6	65	. 1	18	9	388	3.10	4	5	k	1	79	1	2	2	76	1.06	.110	9	36	. 58	106	. 11	8	1.02	. 03	. 16	1	1
L4*00S 4.75E	2	29	4	38	. 1	16	8	172	2.5 t	2	5	N1	1	61	1	2	2	62	1.75	. 084	8	30	. 64	83	. 12	2	1.00	. 06	. 65	1	1
64*005 5*00t	2	41	10	41	. 1	18	9	416	2.89	4	5	N0	2	69	1	2	2	69	1.44	.085	9	32	. 62	92	.12	2	1.01	. 03	.13	1	3
L4+005 5+25E	3	56	8	41	. 1	17	9	414	2.80	5	5	M1	1	82	1	2	2	65	1.28	. 061	9	31	. 65	128	. 12	6	1.13	. 64	. 04	1	1
L4+005 5+50E	2	29	8	58	. 1	15	8	354	2.45	2	5	N1	1	89	1	2	2	59	1.49	. 075	8	28	. 61	81	. 11	$?$. 96	. 03	. 07	t	2
14*005 5475E	72	254	15	91	. 2	12	10	734	3.27	24	5	n0	1	177	1	2	3	53	1.37	.117	12	17	. 46	190	. 05	7	. 91	. 02	.17	1	2
L4+00S $\mathrm{a}+00 \mathrm{E}$	26	290	15	89	. 2	10	8	706	J. 16	50	5	KD	1	167	1	2	3	48	1.70	. 119	12	15	. 41	195	. 04	12	. 81	. 02	. 17	1	1
L4+005 $6+25 \mathrm{E}$	24	291	15	918	. 2	4	9	729	3.27	28	5	N0	1	151	1	2	$\%$	49	1.67	. 04	12	13	. 41	191	. 04	8	. 92	. 02	. 15	1	1
L4*005 6+50E	19	293	14	71	. 3	7	8	505	3.06	27	5	ND	1	162	1	2	2	46	2.94	.069	11	11	. 33	198	. 04	6	. 65	. 02	. 18	1	1
L4.005 6475E	13	233	4	59	. 1	11	9	408	3.19	15	5	$6]$	2	61	1	2	2	57	. 65	. 067	12	24	. 57	214	. 09	2	1.22	. 02	. 20	2	1
L4+00S 7+00E	25	345	16	91	. 1	9	9	749	3.54	31	5	ND	2	215	1	2	2	50	2.71	. 129	15	$1]$. 41	195	. 04	9	. 92	. 02	. 21	1	1
L4+605 7+25E	32	250	19	134	. 1	8	12	1257	4.42	25	5	N0	2	87	1	2	3	${ }^{6} 6$. 60	. 077	18	11	. 43	476	. 03	8	1.58	. 01	. 30	1	1
64*005 7+50E	16	205	12	71	. 3	4	6	756	2.59	17	5	NO	1	234	1	2	2	43	8.83	. 102	13	5	. 29	210	. 01	5	. 73	. 01	. 12	1	1
L4+005 7+75E	3	100	10	45	.4	22	9	435	2.74	7	5	nd	1	150	1	2	2	66	5.47	.082	9	34	. 84	180	. 11	2	1.42	. 03	.15	2	1
L4+005 8 +000	3	65	11	61	. 1	20	10	511	2.91	5	5	no	2	145	1	2	2	63	1.46	. 086	10	It	1.53	205	. 12	6	1.57	. 04	. 17	1	2
L4+905 8+25E	4	60	5	56	.2	18	9	458	2.72	4	5	N0	2	70	1	2	2	60	. 74	. 091	10	30	1.49	98	. 12	4	1.69	. 04	+19	2	2
L4+005 8+50E	\$	60	12	69	. 1	24	10	542	2.90	5	5	N0	1	79	1	2	2	57	. 69	.062	10	32	.71	141	. 12	,	1.94	. 03	. 37	1	1
15.005 0+00E	2	\$6	12	53	. 1	23	10.	472	2.85	7	5	h2	2	86	1	3	2	64	2.02	. 099	10	50	. 84	116	. 12	5	1.52	. 04	. 14	1	6
15+00S 0+25E	2	41	6	57	. 1	19	9	465	2.72	2	5	n0	1	64	t	3	2	60	. 89	.084	9	28	. 65	118	. 12	2	1.51	. 03	. 21	1	
L5-0.6 O+50E	2	56	11	55	. 1	23	10	467	3.02	7	5	N0	2	97	1	2	2	70	2.12	.088	10	33	. 92	121	. 14	,	1.58	. 05	. 15	1	1
15+005 $0+75 \mathrm{E}$	2	45	10	57	. 1	20	9	486	2.90	6	5	W0	2	66	1	2	2	65	. 93	. 093	10	30	. 68	119	.13	2	1.47	. 04	. 19	1	1
LS+005 1+00E	2	50	5	56	. 1	24	10	488	3.19	4	5	W8	2	70	1	2	2	74	1.08	. 096	11	34	. 85	115	. 15	5	1.53	. 04	. 16	1	4
L5+00S 1+25E	2	48	10	53	.1	21	9	465	2.96	3	5	n0	2	65	1	3	2	68	. 97	. 090	10	32	. 73	197	. 14	2	1.44	. 04	. 15	5	1
15+00S $1+50 \mathrm{E}$	2	44	9	58	. 1	19	9	476	3.05	2	5	ns	2	68	1	2	2	68	. 89	. 097	10	33	. 72	112	. 14	3	1.56	. 64	. 21	1	1
(5+005 1+75E	2	37	13	50	. 1	17	9	410	2.87	4	5	15	2	65	1	2	2	66	.77	.082	10	31	. 62	109	. 14	2	1.51	. 04	. 13	3	1
L5+00S 2+00E	2	31	9	54	. 1	15	9	438	2.61	4	5	N	2	55	1	3	2	58	. 67	. 075	9	25	. 50	115	. 12	2	1.47	. 04	. 16	2	1
15+00s $2+25 \mathrm{E}$	2	35	15	59	. 1	15	?	436	2.62	3	5	0	2	61	1	2	2	61	. 71	. 081	10	31	. 50	170	.13	2	1.68	. 03	. 29	2	1
L5+005 $2+50 \mathrm{E}$	2	39	7	$6!$. 1	19	9	419	2.88	5	5	N	2	61	1	2	2	65	. 79	.066	10	31	. 59	116	. 12	4	1.51	+03	.17	1	1
15600S 2475E	2	44	12	75	. 1	20	9	494	2.70	2	5	25	2	71	1	2	2	57	1.01	. 106	10	29	. 64	142	. 11	J	1.52	. 03	. 25	2	1
L5+005 3+00E	2	46	10	58	. 1	22	10	413	3.23	5	5	M9	2	65	1	2	2	75	. 69	. 098	10	36	. 71	106	. 13	6	1.58	. 63	. 20	2	1
15+605 $3+25 E$	2	38	15	67	. 1	18	10	503	2.85	2	5	的	2	66	1	J	2	60	. 73	.083	10	31	. 56	138	. 14	3	1.75	. 04	. 22	1	1
L5*W5 J 50 E	2	31	12	57	. 1	16	8	448	2.59	4	5	*	2	55	1	3	2	55	. 61	. 069	10	26	. 52	129	. 12	2	1.68	. 06	.16	5	1
15+005 3+75E	2	51	10	56	. 1	21	10	437	2.85	5	5	w 1	3	85	1	2	2	63	1.04	. 093	11	31	. 96	117	.13	8	1.47	. 84	. 18	2	1
L5+005 4+00E	2	36	9	58	. 1	14	8	435	2.56	\$	5	M ${ }^{\text {d }}$	2	54	1	4	2	56	. 71	. 076	9	28	. 54	109	. 12	2	1.37	.05	. 17	2	1
STO C/ALI-S	20	56	40	131	7.1	64	27	901	3.89	40	18	7	12	47	16	15	20	34	. 47	.097	37	54	. 85	172	.08	31	1.81	.06	.13	12	49

Sapplet
 PPK PA

15+005 $4+255$	1	43	6	47	. 1	19	8	416	2.33	3	5	no	1	111	1	2	2	57	1.45	. 087	9	28	. 70	110	. 10	11	. 95	. 65	.16	1	3
L5+005 4+50E	1	34	7	39	. 1	29	9	311	2.78	2	5	ND	2	70	1	2	2	74	1.00	.684	ε	35	.63	80	. 11	5	. 87	. 05	. 10	1	1
L5+005 $4+755$	1	41	${ }^{6}$	45	. 1	21	9	410	2.60	2	5	N0	2	81	1	2	2	6s	1.14	.061	9	31	. 68	109	. 12	2	1.01	.04	. 07	2	7
15+005 5*006	11	198	7	48	. 2	18	8	407	2.59	14	5	no	2	132	1	2	2	54	1.10	. 687	8	25	. 5	220	. 09	6	. 87	. 02	.17	1	42
L5+005 5+25E	9	123	8	4	. 1	15	9	384	2.54	10	5	NS	1	146	1	2	2	59	1.29	,OP8	8	26	.51	241	. 09	5	, 65	, 08	.11	2	1
15+00S 54505	15	142	12	47	. 4	13	7	415	2.22	15	5	N	1	298	1	2	2	47	1.34	. 074	7	21	. 54	288	. 07	,	. 75	. 03	. 11	1	11
L5*005 5+75E	6	$9 ?$	8	57	. 1	17	9	462	2.77	8	5	k	J	157	1	J	2	65	. 95	. 089	4	30	. 56	157	. 10	7	. 88	. 03	.13	1	1
15+005 6rook	2	92	10	63	. 1	20	10	542	2.87	J	5	M	2	116	1	2	2	66	1.17	. $0 \% \%$	11	31	. 81	139	. 13	1	1.26	. 04	. 19	1	1
15+005 6+25E	4	163	11	102	. 1	12	8	705	2.20	θ	5	$\cdots 0$	1	168	1	2	2	42	1.11	. 068	10	18	. 41	281	. 08	6	1.18	. 95	. 17	1	1
L5+0.5 6+50E	11	462	9	es	. 1	IV	7	755	2.68	33	5	N0	1	181	1	3	2	42	1.04	.06I	13	15	. 41	266	. 04	7	1.12	.02	.26	1	J
L5+0.5 6-75E	14	527	16	86	. 2	5	8	686	2.88	\$1	5	no	1	130	1	2	2	57	1.00	. 068	9	9	. 90	293	. 03	10	1.12	. 02	. 25	1	2
L5 $50057+00 \mathrm{E}$	27	795	20	74	. 8	7	10	731	3.05	68	5	10	2	146	1	2	2	37	2.25	. 065	10	7	. 21	464	. 02	13	. 69	. 01	. 21	1	1
15+00S 7+25E	32	900	18	69	1.2	3	8	571	2.43	83	5	N ${ }^{\text {c }}$	+	783	1	3	1	26	6.71	. 077	7	3	. 42	272	. 01	19	. 66	. 01	. 25	1	4
L5+005 7450E	12	551	14	67	1.1	5	11	573	2.76	57	5	N	2	205	1	2	7	50	4.02	. 072	8	7	. 2 E	311	. 01	13	. 72	. 01	. 25	1	1
L5*W3 7-75E	4	121	13	43	. 1	10	9	662	2.54	11	5	N0	1	131	1	2	3	47	. 62	. 081	11	22	. 44	239	. 09	5	1.66	. 02	. 21	1	1
15+006 $8+006$	3	91	10	45	-1	14	9	605	2.61	6	5	M9	2	59	1	3	2	52	. 59	.028	11	22	. 44	180	. 12	2	1.82	. 03	.2?	1	5
L5+0.5 $8+25 E$	8	263	5	33	. 2	5	5	452	1.78	12	5	N0	1	565	1	2	3	25	8.06	. 069	5	7	. 51	57	. 01	7	. 53	. 01	. 15	1	1
L6+00S 0+00E	1	54	4	51	. 1	24	10	438	2.97	5	5	N0	2	95	1	2	2	74	2.52	. 094	11	33	.85	104	. 14	b	1.20	. 04	. 12	1	1
L6+005 0+25E	1	$5!$	12	47	. 1	20	9	415	2.73	4	5	no	2	99	1	2	2	67	3.06	.069	10	31	. 83	106	.13	8	1.28	. 04	. 12	2	5
L6+005 0450E	1	50	5	47	. 1	21	10	408	2.99	5	5	18	2	74	1	2	2	74	1.60	.088	10	JV	. 72	105	, 13	4	1.27	. 03	. 10	1	3
$16+0050+75 E$	1	45	6	45	.1	20	9	371	2.61	2	5	ND	2	77	1	2	2	65	1.90	. 084	9	30	. 72	104	.11	4	1.21	. 03	. 09	2	38
L6+00S 1+00E	1	52	7	46	. 1	23	9	386	2.76	5	5	Na	2	86	1	2	2	70	2.55	. 087	10	31	. 75	104	. 12	8	1.25	. 03	. 10	1	35
$16+0051+255$	1	46	2	47	. 1	22	9	405	2.81	5	5	no	2	70	1	2	2	68	t. 40	.083	9	3!	. 69	101	. 12	6	1.23	. 03	. 13	1	1
L6+00S 1+50¢	1	43	7	55	. 1	19	10	42	3.01	5	5	n	3	64	1	2	2	71	. 81	. 064	10	d	. 60	119	.13	8	1.40	. 03	. 20	1	,
L6+00S 1+75E	1	4	8	56	. 1	21	10	495	2.82	3	5	10	3	67	1	2.	2	63	. 82	.083	10	\$3	. 67	126	.14	-	1.47	. 03	. 21	1	1
	1	41	3	54	. 1	17	10	425	2.81	4	5	N0	2	61	1	\ddagger	2	65	. 79	. 085	10	35	. 69	112	. 12		1.57	. 05	. 20	1	1
L6+005 $2+25 \mathrm{E}$	2	52	8	58	. 1	25	10	430	2.93	?	5	ND	2	69	,	2	4	68	. 99	. 093	11	14	. 79	112	.11	8	1.42	. 03	. 19	1	1
L6400S 2450\%	1	47	7	57	. 2	22	9	453	2.77	5	5	19	2	73	1	2	2	62	1.07	. 099	10	32	. 70	135	.11	7	1.57	. 03	.21	2	
L6+00S 2+75E	2	44	9	63	. 1	21	10	503	2.72	6	5	N0	2	70	1	2	2	60	1.03	. 104	10	32	. 66	135	. 12	8	1.37	. 03	.25	1	2
L64005 J 4006	2	46	7	52	. 1	22	10	439	3.10	6	5	NB	2	69	1	2	4	75	1.35	. 101	10	36	. 71	112	.13	6	1.28	. 03	. 17	1	3
L6*WS 3-25E	2	43	7	66	.1	17	9	507	2.68	4	5	N0	2	70	1	2	2	58	1.03	. 103	10	11	. 68	178	. 12	6	1.57	. 03	. 28	1	2
L6+005 3450E	2	49	8	54	. 2	21	10	464	2.79	3	5	N0	3	72	1	2	3	62	1.05	. 094	10	32	.77	115	. 13	8	1.40	. 04	. 20	1	1
L6+005 3+75E	2	53	7	47	.1	21	10	435	2.70	5	5	10	3	111	I	2	2	64	2.49	. 076	10	32	. 87	113	. 14	3	1. 32	. 05	.11	2	1
L6+0\% 4+006	2	52	12	55	. 1	25	11	486	2.98	3	5	N	2	86	1	2	2	6	1.15	.088	11	35	. 00	127	.13	5	1.40	. 04	. 20	1	1
L6*WNS 4-25E	2	41	8	46	. 1	17	9	44°	2.69	2	5	$N 2$	5	90	1	2	2	63	1.79	. 082	9	JJ	. 00	105	. 13	3	1.13	. 04	. 12	1	5
L6+005 4+50\%	44	270	12	47	. 6	6	7	586	2.23	32	5	N	2	326	1	2	3	32	1.38	. 070	6	11	. 28	364	.03	5	. 48	. 01	. 10	1	1
STD C/wils	20	57	41	125	6.9	67	28	912	3.92	37	15	8	37	49	17	16	24	54	.49	. 084	31	59	.89	175	.6e	J8	1.72	. 06	. 14	12	48

SAMPLEA
 $\begin{array}{lrrrr}\text { E } & \text { AS } & U & \text { AU } & 1 \\ Z & P P h & P P K & P P K & P F\end{array}$ TH SP

L6+00S 4+75E	26	511	13	101	. 1	7	7	728	2.83	26	5	ND	2	130	1	4	4	39	. 83	. 073	14	11	. 24	511	. 03	7	. 74	. 02	. 14	2	12
L6+005 5+00E	19	279	12	53	. 5	14	9	440	2.90	22	5	ND	2	192	1	2	2	53	1.25	. 087	8	25	. 46	283	. 09	2	. 96	. 03	. 15	1	33
L6+00S 5+25E	40	314	15	53	. 4	9	7	465	2.41	34	5	ND	2	343	1	2	5	38	1.86	. 070	7	14	. 38	372	. 05	4	. 77	. 02	. 13	1	2
L6+00S 5+50E	29	297	18	88	. 4	8	8	559	2.48	31	5	N0	2	199	1	2	3	37	1.01	. 077	8	15	. 32	399	. 05	8	. 87	. 02	. 15	1	7
L6+00S 5+75E	1	58	7	54	. 1	17	10	455	3.06	4	5	ND	3	63	1	2	2	67	. 70	. 050	10	35	. 60	138	. 15	2	1.49	. 03	. 24	1	1
L6+00S 6+00E	2	93	8	67	. 1	16	9	635	2.64	4	5	ND	2	63	1	2	2	52	. 73	. 051	10	26	. 50	239	. 12	3	1.50	. 03	. 26	1	1
L6+00S 6+2SE	11	352	3	72	. 1	10	8	614	2.64	27	5	ND	1	55	1	2	3	42	. 69	. 084	11	15	. 34	390	. 05	7	1.14	. 02	. 24	2	1
L $6+605 \mathrm{~S}+50 \mathrm{E}$	1	95	2	57	. 1	21	11	558	2.89	6	5	ND	2	71	1	2	2	63	. 80	. 083	11	31	. 70	171	. 14	7	1.51	. 04	. 24	1	1
L6+00S $6+75 E$	5	340	11	76	. 1	14	10	824	3.00	16	5	ND	3	92	1	5	4	48	. 82	. 045	12	20	. 49	331	. 08	4	1.46	. 02	. 30	1	2
L6+00S 7+00E	16	483	13	92	. 1	6	8	976	2.73	29	5	N0	2	268	1	2	2	34	1.92	. 075	10	6	. 30	337	. 01	15	1.09	. 01	. 41	1	1
L6+00S 7+29E	25	733	14	70	1.1	5	7	563	2.81	40	5	ND	3	256	1	2	2	42	4.21	. 069	12	5	. 24	394	. 01	10	1.03	. 01	. 24	1	2
L6+00S $7+50 \mathrm{E}$	3	222	9	77	. 1	13	9	633	3.14	13	5	ND	2	72	1	2	2	55	. 66	. 039	12	22	. 42	208	. 11	8	1.71	. 02	. 35	1	2
L6+00S 7+75E	4	111	10	91	. 1	11	7	631	2.30	1 t	5	N0	1	56	1	2	2	39	. 65	. 058	11	17	. 28	291	. 10	7	1.98	. 03	. 26	1	1
L6+00S 8+00E	2	85	6	148	.2	6	4	1158	1.49	8	5	N0	1	74	1	2	2	24	1.22	. 102	6	10	. 19	349	. 05	7	1.26	. 03	. 15	2	1
L7+00S O+00E	1	47	3	49	. 1	21	9	454	2.83	6	5	NO	3	72	1	2	2	67	1.16	. 082	11	31	. 70	118	. 13	3	1.48	. 04	. 13	1	2
L7+00S 0+25E	1	45	4	43	. 1	19	9	395	2.61	6	5	ND	3	95	1	3	2	62	2.38	. 085	10	29	. 69	116	. 12	3	1.19	. 04	. 07	1	1
L7+00S 0+50E	1	36	5	53	. 1	15	9	459	2.57	5	5	N0	1	60	1	2	2	59	. 78	. 085	9	28	. 53	124	.12	4	1.38	. 03	. 18	1	5
L7+00S 0+75E	1	41	3	57	. 1	19	9	487	2.76	5	5	ND	2	65	1	2	2	61	. 86	. 096	10	32	. 56	145	. 12	3	1.59	. 03	. 23	1	1
L7+00S $1+00 \mathrm{E}$	1	37	7	61	. 1	18	9	506	2.54	4	5	ND	2	73	1	2	2	55	. 86	. 087	10	28	. 57	155	. 11	4	1.63	. 03	. 24	1	1
L7+00S 1+25E	1	35	8	53	. 1	18	9	470	2.76	4	5	ND	2	61	1	2	2	62	. 70	. 078	10	31	. 58	128	. 13	5	1.63	. 04	. 20	1	1
L7+00S 1+50E	1	35	2	55	. 1	16	9	485	2.61	5	5	ND	2	64	1	2	2	58	. 80	. 085	10	28	. 57	134	. 12	6	1.51	. 03	.19	1	1
L7+00S 1+75E	1	36	2	53	. 1	16	9	470	2.69	5	5	ND	2	60	1	3	2	60	. 71	. 074	10	30	. 58	131	. 13	5	1.58	. 04	. 18	1	1
L7+00S $2+00 \mathrm{E}$	1	38	7	56	. 1	20	10	474	2.72	4	5	N0	2	65	1	2	2	61	. 72	. 081	10	30	. 58	138	. 13	6	1.65	. 03	. 22	1	1
L7+00S $2+25 E$	1	47	6	50	. 1	21	10	416	2.94	6	5	ND	2	65	1	2	2	70	. 86	. 089	11	32	. 69	113	. 12	7	1.52	. 03	. 15	1	1
L7+00S 2+50E	1	35	9	53	. 1	15	10	435	2.70	3	5	ND	2	60	1	2	3	60	. 67	. 081	10	29	. 51	118	.13	5	1.57	. 03	. 18	1	1
L7+00S 2+75E	1	39	6	53	. 1	19	9	446	2.67	3	5	ND	2	63	1	2	2	59	. 78	. 086	10	29	. 56	126	. 12	5	1.58	. 03	. 22	1	1
L7+00S 3+00E	1	51	9	44	. 1	20	9	410	2.60	4	5	WD	2	96	1	2	4	63	3.10	. 089	10	28	. 78	110	. 13	7	1.36	. 04	. 11	1	2
L7+00S $3+25 E$	1	53	5	44	. 1	22	10	411	2.79	9	5	ND	3	91	1	2	3	68	2.62	. 092	11	31	. 76	108	.13	6	1.28	. 04	. 11	1	4
L7+00S 3+50E	1	41	5	49	. 1	20	10	473	2.79	5	5	N0	1	79	1	2	2	65	. 97	. 092	9	32	. 64	106	. 12	5	1.17	. 03	. 18	1	1
L7+005 3+75E	1	37	2	37	.1	17	9	382	2.72	5	5	ND	2	89	1	2	2	68	1.46	. 082	9	30	. 64	88	. 12	8	1.00	. 04	. 11	1	2
L7+00S 4+00E	1	34	12	34	. 1	19	9	417	2.51	5	5	ND	2	79	1	2	2	61	1.18	. 065	8	27	. 61	98	. 12	2	1.01	. 04	. 04	2	3
L7+00S $4+25 \mathrm{E}$	1	43	6	47	. 2	18	8	417	2.46	6	5	ND	2	229	1	2	2	57	2.26	. 088	9	27	. 90	113	. 12	16	1.13	. 08	. 13	2	2
L7+00S 4+50E	3	44	7	43	. 1	18	9	419	2.85	4	5	ND	3	126	1	2	2	72	2.32	. 090	10	30	. 90	99	. 16	6	1.15	. 11	. 10	2	1
L7+00S 4+75E	16	372	10	91	. 1	9	8	610	2.60	17	5	ND	1	128	1	2	4	37	. 74	. 067	9	14	. 32	415	. 07	9	1.29	. 02	. 27	1	1
L7+00S 5+00E	9	273	12	125	. 1	8	7	756	2.41	14	5	ND	1	121	1	2	3	34	. 68	. 043	11	11	. 25	469	. 09	7	1.78	. 03	. 23	1	,
L7+00S 5+25E	7	250	10	107	. 1	10	7	739	2.44	11	5	ND	2	90	1	2	2	35	. 53	. 035	11	11	. 24	467	. 10	5	1.89	. 03	. 22	1	1
STD C/AU-S	18	58	42	123	7.3	65	28	941	3.91	39	18	7	35	49	17	16	22	56	. 47	. 086	39	56	. 86	180	. 08	34	1.83	. 07	. 15	12	53

SAMPLE $\begin{array}{llllllll}\text { MO } & \text { CU } & \text { PB } & \text { IN } & \text { AG } & \text { NI } & \text { CO } & \text { MN } \\ \text { PPH } & \text { PPM } & \text { PPH } & \text { PPA } & \text { PPM } & \text { PPM } & \text { PFH } & \text { PPM }\end{array}$

17+005 5+50E L7+005 $5+75 \mathrm{E}$ $17+0056+00 \mathrm{E}$ L7+00S $6+25 \mathrm{E}$ L7+005 6+50E
$\mathrm{L} 7+00 \mathrm{~S} 6+75 \mathrm{E}$
$\mathrm{L} 7+00 \mathrm{~S} 7+00 \mathrm{E}$
$\mathrm{L} 7+00 \mathrm{~S} 7+25 \mathrm{E}$
$\mathrm{L} 7+00 \mathrm{~S} 7+50 \mathrm{E}$
$\mathrm{L} 7+00 \mathrm{~S} 7+75 \mathrm{E}$

$$
\begin{array}{ll}
90 & .1 \\
70 & .1
\end{array}
$$

L7+00S 8+00E L8+00S O+00E L8+00S 0) 25 E L8+00S O+50E L8+00S O +75 SE

	L8+00S 1+00E
	L8+00S 1+25E
	L8+00S 1+50E
	L8+00S 1+75E

L8+00S 2+00E

$\angle 8+00 S$	$2+25 E$
$L 8+00 S$	$2+50 E$
$L 8+00 S$	$2+75 E$
$L 8+00 S$	$3+00 E$
$L 8+00 S$	$3+2 S E$
$L 8+0 O S$	$3+50 E$
$L 8+00 S$	$3+75 E$
$L 8+00 S$	$4+00 E$
$L 8+00 S$	$4+25 E$
$L 8+00 S$	$4+50 E$

L8+00S 4+75E
C8+005 $5+00 \mathrm{E}$
LB+00S 5450E
L8+00S 5+75E
L8+00S $6+00 E$
STD C/AU-S
$\begin{array}{rrrrrr}12 & 273 & 10 & 86 & .1 & 6 \\ 33 & 265 & 18 & 80 & .4 & 4 \\ 54 & 593 & 19 & 67 & 1.1 & 6 \\ 7 & 35 & 7 & 36 & .1 & 12 \\ 50 & 549 & 13 & 73 & .7 & 6\end{array}$

88	623	18	85	.9	4
43	430	15	38	.9	2
3	108	7	40	.1	10
4	99	10	90	.1	11
5	124	10	70	.1	15

$\begin{array}{lll}9 & 846 & 2.67\end{array}$
1
1
1
1

94	11	80	.2
42	7	47	.1
45	6	51	.1
45	5	51	.1
40	5	52	.1

$\begin{array}{rrrr}6 & 630 & 2.41 & 9 \\ 6 & 403 & 2.30 & 31 \\ 8 & 409 & 3.15 & 62 \\ 7 & 322 & 2.27 & 3 \\ 8 & 738 & 2.56 & 74\end{array}$

$$
\begin{array}{rrrrr}
5 & \text { ND } & 1 & 82 & 1 \\
5 & \text { ND } & 1 & 239 & 1 \\
5 & \text { ND } & 2 & 263 & 1 \\
5 & \text { ND } & 1 & 93 & 1 \\
5 & \text { ND } & 1 & 517 & 1
\end{array}
$$

$$
\begin{array}{rrrrr}
2 & 2 & 34 & .50 & .022 \\
2 & 3 & 25 & 1.23 & .086 \\
2 & 2 & 38 & 1.87 & .064 \\
2 & 2 & 57 & 1.60 & .063 \\
2 & 2 & 30 & 1.99 & .061
\end{array}
$$

10
6
8
7
7

11	.22	432	.07
5	.19	305	.02
9	.29	372	.03
20	.66	68	.11
5	.19	452	.01

.07
.02
.03
.11
.01

2	1.45	.02	.17
5	.45	.01	.11
7	.70	.02	.16
2	.95	.04	.06
7	.62	.01	.16

2
3
1
2
2

$$
\begin{array}{rrr}
846 & 2.67 & 72 \\
514 & 1.72 & 42 \\
430 & 2.37 & 3 \\
6 & 631 & 2.43 \\
\hline & 588 & 2.53 \\
\hline
\end{array}
$$

8	621	2.38	6	5	ND	1	63	1
9	424	2.83	6	5	ND	2	78	1
9	402	3.03	6	5	ND	1	63	1
9	419	2.81	3	5	ND	2	63	1
9	421	2.70	4	5	ND	1	59	1

2	2
2	2
2	2
3	2
2	2

$$
\begin{array}{rrrr}
45 & .91 & .085 & \\
69 & 1.53 & .082 & 1 \\
74 & .83 & .080 & 1 \\
65 & .82 & .079 & 1 \\
63 & .79 & .081 & 1
\end{array}
$$

$$
\begin{array}{rr}
9 & 2 \\
10 & 3 \\
10 & 3 \\
11 & 3 \\
10 & 2
\end{array}
$$

$$
\begin{array}{ll}
20 & .58 \\
32 & .71 \\
34 & .65 \\
31 & .66 \\
29 & .62
\end{array}
$$

$$
\begin{aligned}
& 359 \\
& 101 \\
& 107 \\
& 111 \\
& 106
\end{aligned}
$$

$$
\begin{aligned}
& .08 \\
& .12 \\
& .12 \\
& .12 \\
& .12
\end{aligned}
$$

$$
\begin{array}{llll}
6 & 1.67 & .03 & .24 \\
2 & 1.17 & .04 & .10 \\
4 & 1.41 & .03 & .12 \\
2 & 1.44 & .03 & .14 \\
4 & 1.33 & .03 & .19
\end{array}
$$

$$
\begin{array}{r}
1 \\
2 \\
225 \\
2 \\
1
\end{array}
$$

2
2
2
3
2

$$
\begin{array}{rrr}
58 & 1.49 & .076 \\
58 & 1.84 & .076 \\
59 & .90 & .079 \\
60 & .78 & .077 \\
61 & 1.80 & .078
\end{array}
$$

$$
\begin{array}{r}
10 \\
10 \\
10 \\
9 \\
9
\end{array}
$$

$$
\begin{array}{rrrr}
29 & .85 & 116 & .12 \\
27 & .73 & 93 & .12 \\
27 & .67 & 102 & .12 \\
28 & .62 & 104 & .12 \\
29 & .73 & 102 & .12
\end{array}
$$

$$
\begin{array}{llll}
4 & 1.39 & .05 & .11 \\
2 & 1.19 & .04 & .08 \\
4 & 1.37 & .04 & .12 \\
3 & 1.36 & .03 & .15 \\
3 & 1.30 & .03 & .14
\end{array}
$$

$$
11 \quad 2
$$

$$
2 \quad 1
$$

$$
\begin{array}{lll}
1 & 2 & 2 \\
1 & 2 & 2
\end{array}
$$

$$
\begin{array}{lll}
2 & 70 & 1.6
\end{array}
$$

$$
\begin{array}{rrr}
70 & 1.69 & .07 \\
57 & 2.75 & .07 \\
59 & 1.85 & .06 \\
63 & .84 & .08
\end{array}
$$

$$
.079
$$

$$
\begin{array}{ll}
.014 \\
.074 \\
.068 \\
.080 & 1 \\
.075 &
\end{array}
$$

$$
\begin{array}{rllll}
8 & 30 & .59 & 66 & .12 \\
9 & 25 & .62 & 94 & .10 \\
8 & 26 & .63 & 71 & .11 \\
10 & 30 & .68 & 99 & .13 \\
7 & 30 & 54 & 69 & 11
\end{array}
$$

$$
\begin{array}{rrrr}
4 & .91 & .04 & .05 \\
5 & 1.10 & .03 & .06 \\
3 & .95 & .03 & .06 \\
5 & 1.30 & .04 & .18 \\
3 & .82 & .05 & .04
\end{array}
$$

$$
\begin{array}{ll}
6 & 5 \\
5 & 5
\end{array}
$$

$$
5 \mathrm{ND}
$$

$$
266
$$

$$
\begin{array}{rrrrr}
2 & 65 & 1.36 & .079 & 8 \\
2 & 67 & 1.50 & .077 & 10 \\
2 & 66 & .92 & .060 & 9 \\
3 & 61 & .85 & .071 & 10 \\
2 & 60 & .67 & .070 & 9
\end{array}
$$

$$
\begin{aligned}
& 30 \\
& 34 \\
& 31 \\
& 29 \\
& 28
\end{aligned}
$$

$$
\begin{aligned}
& .59 \\
& .84 \\
& .58 \\
& .63 \\
& .52
\end{aligned}
$$

$$
\begin{array}{rr}
72 & .12 \\
108 & .14 \\
106 & .12 \\
133 & .12 \\
143 & .12
\end{array}
$$

$$
\begin{array}{lc}
3 & .92 \\
9 & 1.32 \\
5 & 1.11 \\
2 & 1.23 \\
7 & 1.25
\end{array}
$$

$$
\begin{aligned}
& .05 \\
& .08 \\
& .03 \\
& .03 \\
& .03
\end{aligned}
$$

$$
\begin{aligned}
& .09 \\
& .11 \\
& .17 \\
& .18 \\
& .17
\end{aligned}
$$

$$
\begin{array}{rrr}
11 & .94 & .0 \\
12 & .94 & .0 \\
9 & 1.20 & .0
\end{array}
$$

$$
61
$$

$$
\begin{array}{lll}
3 & .73 & .01
\end{array}
$$

$$
8 \quad 34 \quad 1.80
$$

SAMPLE:

L8+00S $6+25 E$	47	$6!1$	28	107	. 3	5	7	662	3.25	27	5	ND	2	85	1	2	2	34	. 61	. 049	13	6	. 20	344	. 03	11	1.36	. 02	. 35	1	5
L8+00S $6+50 \mathrm{E}$	77	634	39	82	. 5	4	8	497	3.28	43	5	ND	1	110	1	2	5	31	. 61	. 043	10	5	. 15	436	. 01	10	1.00	. 01	. 27	1	12
L8+00S 6+75E	158	884	127	86	1.9	2	6	385	3.13	128	5	N0	1	152	1	10	23	18	. 61	. 054	7	1	. 10	433	. 01	6	. 65	. 02	. 25	1	22
L8+505 $6+755$	42	508	22	87	. 5	7	10	668	4.08	28	5	N0	3	57	1	2	2	62	1.07	. 078	19	16	. 34	665	. 06	6	1.17	. 02	. 25	1	6
L8+505 7400E	14	219	23	56	1.2	21	11	429	3.71	7	5	ND	1	64	1	2	6	61	. 73	. 044	11	38	. 84	225	. 14	3	1.82	. 03	. 31	1	10
L8+505 7+25E	5	114	11	66	. 2	17	10	634	2.72	6	5	ND	2	71	1	2	2	53	. 79	. 071	11	25	. 62	251	. 12	3	1.91	. 03	. 33	1	5
L8+50S 7+50E	6	81	11	70	. 1	16	9	673	2.44	5	5	ND	1	78	1	2	2	46	. 76	. 084	10	24	. 50	229	. 11	12	1.97	. 03	. 35	1	1
L8+505 7+75E	2	84	15	71	. 1	21	11	677	2.90	6	5	ND	1	83	1	2	2	50	. 88	. 082	13	32	. 67	240	. 14	2	2.50	. 03	. 37	1	3
L8+50S 8+00E	3	70	10	63	. 1	16	10	636	2.59	7	5	ND	1	74	1	2	2	50	. 83	. 085	12	28	. 53	244	. 12	2	2.38	. 03	. 28	1	1
L9+00S 0+00E	1	43	9	54	. 1	21	9	463	2.71	3	5	ND	2	63	1	3	2	59	. 77	. 090	11	31	. 60	123	. 12	2	1.59	. 03	. 24	1	2
L9+00S 0+25E	1	35	8	73	. 1	18	8	480	2.43	2	5	ND	1	68	1	2	2	51	1.00	. 115	10	28	. 54	161	. 10	5	1.36	. 03	. 28	1	1
L9+00S 0+50E	i	40	10	54	. 1	24	10	492	2.80	2	5	ND	2	62	1	2	2	60	. 72	. 086	11	33	. 66	127	. 13	3	1.71	. 04	. 22	1	2
L9+00S 0+75E	1	36	8	56	. 1	17	9	501	2.71	3	5	ND	2	62	1	2	2	59	. 72	. 080	11	30	. 56	133	. 12	2	1.65	. 03	. 20	1	1
L9+00S 1+00E	1	43	11	62	. 1	19	9	495	2.64	4	5	ND	4	67	1	2	2	57	. 86	. 107	10	28	. 55	148	. 11	5	1.53	. 03	. 28	1	1
L9+00S 1+25E	1	43	6	54	. 1	21	9	423	2.91	3	5	ND	2	61	1	3	2	65	. 73	. 085	10	35	. 53	120	. 13	7	1.61	. 02	. 24	1	1
L9+00S $1+505$	1	46	11	51	. 1	21	9	411	2.97	4	5	ND	3	65	1	2	2	70	. 78	. 089	11	35	. 62	116	. 13	2	1.58	. 03	. 16	1	5
L9+00S 1+75E	1	45	11	49	. 1	19	10	413	3.19	5	5	ND	2	60	1	2	2	76	. 80	. 093	11	38	. 59	112	. 12	3	1.46	. 02	. 19	1	2
L9+00S 2+00E	1	43	8	56	. 1	18	9	442	2.86	5	5	ND	2	60	1	2	2	64	. 75	. 089	10	$3 J$. 51	128	. 13	2	1.68	. 03	. 23	1	1
19+00S 2+25E	1	37	11	61	. 1	14	8	479	2.50	3	5	ND	2	59	1	2	2	53	. 70	. 086	10	26	. 43	145	. 11	3	1.57	. 02	. 22	1	1
L9+00S $2+50 E$	1	39	8	52	. 1	15	8	458	2.66	5	5	ND	2	61	1	2	2	60	. 79	. 086	10	28	. 54	126	. 12	6	1.43	. 03	. 21	1	1
L9+00S 2+75E	1	47	6	51	.1	18	9	455	2.73	5	5	ND	2	60	1	2	2	61	. 81	. 088	11	30	. 63	123	. 12	2	1.49	. 03	. 21	1	3
L9+00s 3+00E	1	40	2	44	. 1	19	8	413	2.76	4	5	ND	3	77	1	2	2	66	1.59	. 084	10	30	. 73	93	. 13	3	1.19	. 05	. 10	1	1
L9+00S 3+25E	1	24	3	37	. 1	14	9	272	3.01	3	5	ND	2	59	1	2	2	78	. 89	. 080	8	32	. 57	73	. 13	2	. 90	. 03	. 06	1	1
L9+00S 3+50E	1	49	8	43	. 1	17	8	411	2.57	4	5	ND	1	86	1	2	2	61	1.17	. 087	9	29	. 60	118	. 10	4	1.01	. 03	. 12	1	4
L9+00S 3+75E	11	128	11	63	. 1	14	9	516	2.56	10	5	N0	1	108	1	2	2	50	1.34	. 110	10	23	. 54	311	. 08	5	1.05	. 02	. 18	1	2
L9+00S 4+00E	15	195	12	104	. 2	13	8	645	2.31	9	5	ND	1	199	1	2	3	39	2.07	. 158	10	16	. 46	371	. 05	18	. 89	. 02	. 21	1	1
L9+00S 4+25E	1	57	8	55	. 1	21	10	512	3.03	6	5	ND	2	68	1	2	2	69	. 89	. 094	11	35	. 69	184	. 14	3	1.39	. 03	. 21	1	1
L9+00S 4+50E	1	70	7	45	. 1	22	10	402	3.23	5	5	ND	2	58	1	2	2	76	. 73	. 072	11	38	. 67	160	. 15	4	1.35	. 03	. 15	1	10
L9+00S 4+75E	2	74	11	54	. 1	18	9	458	2.68	7	5	ND	2	63	1	2	2	57	. 78	. 087	11	28	. 56	268	. 10	3	1.42	. 03	. 23	1	2
L9+005 5+00E	13	161	13	62	. 1	12	8	627	2.78	10	5	ND	2	75	1	2	2	50	1.57	. 081	13	17	. 44	463	. 06	6	1.13	. 02	. 20	1	1
L9+00S 5+25E	3	101	15	53	. 1	14	9	515	2.97	4	5	ND	2	63	1	2	2	57	. 63	. 038	13	26	. 53	329	. 12	4	1.55	. 03	. 26	,	3
L9+00S 5+50E	9	157	12	62	. 1	8	7	488	2.75	5	5	ND	2	53	1	2	2	44	. 51	. 031	14	15	. 28	592	. 07	6	1.56	. 02	. 24	1	2
L9+00S 5+75E	17	202	15	68	. 2	6	8	477	3.25	8	5	N0	3	43	1	3	2	51	. 48	. 043	17	9	. 25	566	. 03	3	1.05	. 01	. 17	1	6
L9+00S 6+00E	1	38	6	40	. 1	19	8	412	2.59	4	5	ND	2	74	1	2	2	63	1.21	. 081	9	29	. 64	102	. 13	3	1.07	. 04	. 07	1	2
L9+00S 6+25E	11	255	16	81	. 6	5	11	713	4.56	17	5	ND	3	95	1	2	2	70	2.83	. 091	26	7	. 21	1237	. 01	5	. 82	. 01	. 11	2	1
L9+00S 6+50E	21	188	9	51	. 2	6	8	478	2.38	10	5	ND	1	236	1	2	3	39	5.93	. 078	9	10	. 46	1884	. 03	2	. 81	. 02	. 15	1	3
STD C/AU-S	18	58	40	124	7.3	64	29	944	3.92	37	20	8	34	49	17	15	23	55	. 46	. 087	39	56	. 86	179	. 08	30	1.84	. 07	. 15	13	50

SARPLE

H0	Cu	PB	1N	A6	NI	CO	NN	FE	AS	u	AU	TH	SR	CD	S8	BI	v	CA	P	LA	CR	H6	BA	11	8	AL	NA	k	N	Aut
PPM	PPM	PPM	PPN	PPM	PPh	P9M	PPM	2	PPK	PPM	PPK	PPM	PPM	PPM	PPM	PFM	PP/	2	2	PPM	PPM	\%	PPM	2	PPM	$\%$	2	2	PPM	PPB
10	52	4	47	. 1	12	6	452	1.84	10	5	ND	1	114	1	2	3	36	3.83	. 084	9	15	. 43	462	. 05	12	1.26	. 02	. 18	3	1
4	51	5	63	. 2	16	9	608	2.50	7	5	ND	1	63	1	2	2	50	. 58	. 075	10	30	. 55	182	. 12	2	1.89	. 03	. 31	1	1
4	54	7	62	. 1	16	10	579	2.59	7	5	ND	1	70	1	2	3	54	. 63	. 083	10	29	. 62	184	. 13	4	1.89	. 06	. 33	1	2
3	50	4	61	. 1	14	9	585	2.42	6	5	N0	1	75	1	2	3	50	. 62	. 078	10	28	. 51	170	. 12	5	1.88	. 04	. 31	1	4
2	55	8	63	. 1	16	9	631	2.37	5	5	ND	1	78	1	2	2	46	. 75	. 085	10	25	. 52	233	. 11	5	1.98	. 03	. 35	1	1
3	64	6	58	. 1	20	10	576	2.76	4	5	ND	2	67	1	2	2	61	. 71	. 082	11	32	. 83	169	. 14	8	1.97	. 04	. 29	1	
20	56	41	121	7.2	62	28	926	3.88	37	19	8	34	49	16	17	21	54	. 46	. 084	38	56	. 85	178	. 08	37	1.80	. 07	. 14	13	52

∞

