ARIS SUMMARY SHEET

Off Confidential: 89.03.25 District Geologist, Smithers ASSESSMENT REPORT 17290 MINING DIVISION: Omineca **PROPERTY:** Pinenut 55 25 24 LAT LONG 127 31 13 LOCATION: 09 6142682 593656 UTM 093M05E 093M06W NTS CLAIM(S): Raven 1-6, Silverton 1-2 OPERATOR(S): Noranda Ex. AUTHOR(S): Myers, D. 1988, 54 Pages REPORT YEAR: COMMODITIES SEARCHED FOR: Gold, Silver, Arsenic, Zinc GEOLOGICAL SUMMARY: Quartz-arsenopyrite veins cut a Bulkley granitic stock and nearby, hornfelsed Lower Cretaceous Bowser Lake Group clastic sediments occur. WORK DONE: Geochemical ROCK 17 sample(s) ;ME Map(s) - 1; Scale(s) - 1:5000 SILT 15 sample(s) ;ME 85 sample(s) ;ME SOIL Map(s) - 1; Scale(s) - 1:5000R .TED REPORTS: 16601 MINFILE: 093M 038

LOG NO: 0422	RD.
ACTION:	200.00
*)************************************	
FILE NO:	

ASSESSMENT REPORT

1

GEOLOGY AND GEOCHEMISTRY

PINENUT PROPERTY Raven 1-6, Silverton 1-2 Claims Record Numbers 7880-7885, 8254-8255

> OMINECA MINING DIVISION BRITISH COLUMBIA

> > NTS 93 M / 5E, 6W

Latitude 55 degrees 25 minutes N Longitude 127 degrees 31 minutes W

> Work Performed: 30 September to 22 October 1988

NORANDA EXPLORATION COMPANY, LIMITED (NO PERSONAL LIABILITY) 3A-1750 Quinn Street Prince George, B.C. V2N 1X3 Phone 604-562-0022

FILMED

I ANTICIPACION

Report by: Del Myers, Senior Project Geologist

April 1988

.

GEOLOGICAL BRANCH ASSESSMENT REPORT

TABLE OF CONTENTS

.

5

LIST OF FIGURES																
SUMMARY														I	Page	
INTRODUCTION PURPOSE	LIST	OF	FIG	URE	s.									•	ii	
PURPOSE. .<	SUMM	ARY							•					•	1	
PURPOSE. .<	INTRO	DUC	TIO	N												
LOCATION AND ACCESS															2	
REGIONAL GEOLOGY .					AND	ACCE	ss.								2	
PREVIOUS WORK . <		PRO	PER	TY											27	
WORK UNDERTAKEN		REG	ION	AL	GEOL	OGY										
RESULTS . </td <td></td> <td>PRE</td> <td>VIOI</td> <td>US</td> <td>WORK</td> <td>۰ ،</td> <td></td> <td></td> <td></td> <td></td> <td>502</td> <td>•</td> <td>•</td> <td>•</td> <td>7</td> <td></td>		PRE	VIOI	US	WORK	۰ ،					5 0 2	•	•	•	7	
CONCLUSIONS	WORK	UND	ERT	AKE	N.		•		•		•				8	
REFERENCES	RESU	LTS					•		•		•	•		•	9	
REFERENCES .	CONCI	LUSI	ONS										•		13	
APPENDIX 1. List of Personnel	RECO	MMEN	DAT	ION	ıs .		•			4					13	
APPENDIX 2. Statement of Costs	REFE	RENC	ES	•	•	•	•			·	•	•	•	•	14	
	APPE	NDIX	1.	L	ist	of P	erso	nnel							15	
- 이번 것 같은 것 같	APPE	NDIX	2.	5	state	ement	of	Costs							16	
APPENDIX 3. Statement of Qualifications	APPE	NDIX	з.	5	state	ement	of	Quali	fice	ation	ns				17	
APPENDIX 4. Sample Reports	APPE	NDIX	4.	9	Sampl	e Re	port	з.							18	
APPENDIX 5. Analysis Reports	APPEI	NDIX	5.	A	inaly	ais	Repo	rts								

i

÷

. . .

LIST OF FIGURES

							Pa	ge
1.	Location map, 1:8,000,000	·	•	•	•	•	÷	з
2.	Location map, 1:500,000			•				4
з.	Claim map, 1:50,000 .			×				5
4.	Geology and Rock Sample Lo	cat:	ions,	1:5	5000	•	pocke	t
5.	Soil and Silt Geochemistry	, 1	5000				pocke	t

LIST OF TABLES

Ce 14

1. List of Claims 6

Protection and the

.

SUMMARY

Quartz-arsenopyrite veins sampled by P. Huel in 1986 gave gold values up to 0.94 opt (32 gmt) from the Raven 1-6 claims. Follow-up prospecting, geology, and geochemistry was undertaken in 1987 on the Raven and Silverton claims.

Thirty-four man-days were spent on the claims. One hundred fourteen rock, thirty stream sediment, and one hundred fiftyfour soil samples were taken over and next to a granite stock with associated quartz-arsenopyrite veins.

Values of up to 0.88 opt (30 gmt) Au, 28.9% As, 3.0 opt (103 gmt) Ag, and 8.36% Zn were obtained from different rock grab or chip samples up to 0.27 m wide. Soil results indicate a significant As-Zn-Mo anomaly. Veins are too narrow and to widely spaced in the area examined in 1987 to make ore. The final twelve man days of work is described in this report.

Further work is recommended in areas above anomalous silt samples, to the west and east of the As-Zn-Mo soil anomalies, and to test high arsenic soils for gold concentrations.

The economic target is Au-bearing mineralization as disseminated or stockwork zones or as wider quartz-arsenopyrite veins.

INTRODUCTION

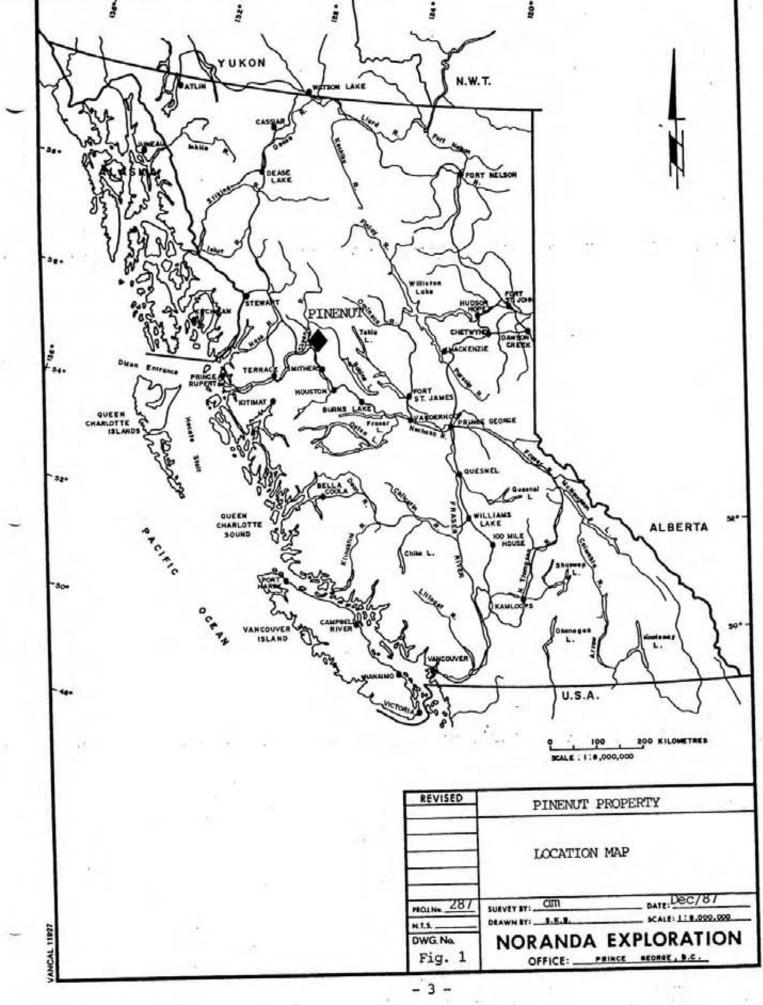
PURPOSE

Sampling by Paul Huel in 1986 gave high gold values from quartz veins found on the Raven 1-6 claims. The purpose of 1987 work was to investigate this mineralization and locate other mineralization on the property.

This report discusses work done between 30 September and 22 Ocother 1987.

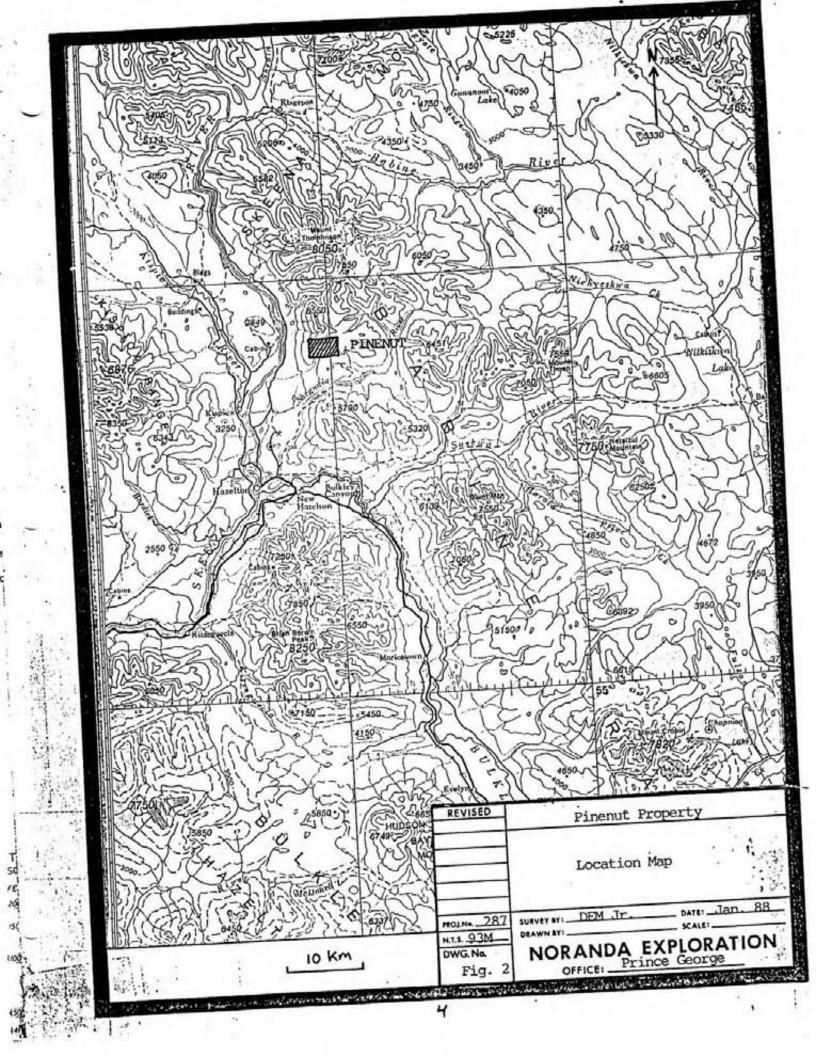
LOCATION AND ACCESS

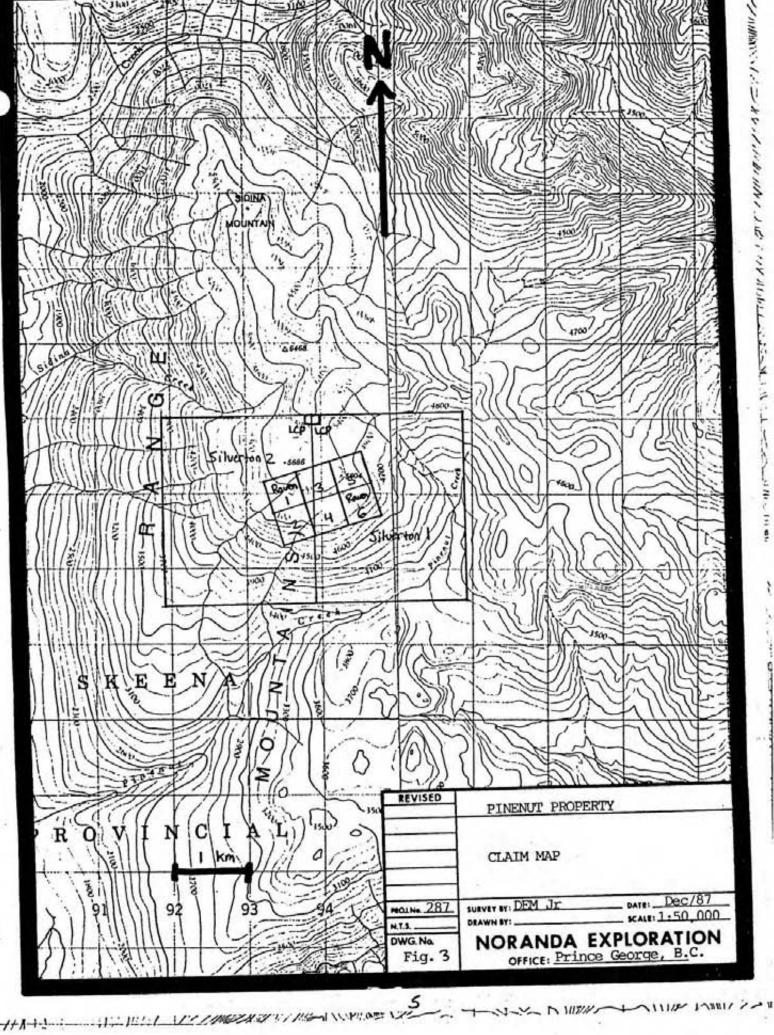
The Pinenut property is located is located 22 km NNE of Hazelton, B.C. (Figures 1 and 2). The property lies on the south slope of Sidina Mountain north of Pinenut Creek, a tributary of the Skeena River.


The property covers ground ranging from 1035 m (3400 feet) to 1828 m (6000 feet) in elevation. The claims are covered by balsam-rich forest below treeline and by alpine meadows above treeline, which is about 1524 m (5000 feet) a.s.l.

Access to the property was via logging roads to a clearcut at an elevation of about 760 m (2500 feet) on the south side of Pinenut Creek. From here a helicopter was used to shuttle men, equipment, and supplies onto the property. An old pack trail is supposed to lead to the property along the north side of Pinenut Creek. but it was not used for this work.

Poor weather during the time of this work decreased productivity and increased the use of helicopter time.


PROPERTY


The property consists of eight claims as listed in Table 1. Noranda Exploration holds an option to purchase the claims from the owner, Paul Huel of Kispiox. The claims are shown on Figure 3. For purposes of filing assessment work the claims were grouped on 3 December 1987 into the Pinenut Group

5

÷ •

r

SHIC

Claim	Rec.No.	Type	Units	Owner	Record Date
Raven 1	7880	2P	1	P. Huel	8 Sept. 86
Raven 2	7881	2P	1		
Raven 3	7882	2P	1	••	
Raven 4	7883	2P	1		
Raven 5	7884	2P	1	••	••
Raven 6	7885	2P	1		
Silverton 1	7886	MG	20		27 Mar. 87
Silverton 2	7887	MG	20		
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

Table 1. List of claims, Pinenut Creek property, NTS 93 M/5E,6W

total 46 units

The second se

2.4

₹.

REGIONAL GEOLOGY

The Pinenut property is underlain by Upper Jurassic fluvial and deltaic sediments of the Bowser Lake Group (Tipper and Richards, 1976). The clastic sediments are variably hornfelsed by late Cretaceous, felsic, Bulkley intrusives. The property lies along the northern edge of a broad structural high known as the Skeena Arch within the Intermontaine Belt of the Canadian Cordillera.

Five directions of faults are mapped in the area around Sidina Mt. These have azimuths of about 10, 30, 70, 135, and 160 degrees (Richards, 1980). A north-south striking syncline is mapped on the property as well.

PREVIOUS WORK

No assessment reports are available for any previous work over the area covered by the claim. Old claim posts exist on the claims and many of the veins have been hand trenched some years ago. Showing 93M-38 of the B.C. Mineral Inventory undoubtedly refers to showings examined this August. MMAR 1912 (p.K98) describes the Silverton group after which two of the present claims were named.

Paul Huel collected samples and staked the Raven 1-6 claims during the summer of 1986. His best rock sample (86-PH-H) assayed 0.942 opt Au (32.2 ppm).

An assessment report (Myers, 1987) describes work done on the property in August 1987. Some information obtained then is also presented herein, although the cost statement refers only to costs for work done between 30 September and 22 October 1987.

WORK UNDERTAKEN

All samples were analysed by Acme Analytical Laboratories by either ICP or AA methods depending on the element and the type of sample (see Appendix 5).

Two men spent five days working on the claims from 30 September to 4 October. The move into the property was delayed two days by bad weather and an extra day was needed to remove the camp due to bad weather. A tent floor was built at Camp II (Figure 4).

Two contour soil sample lines at 4200 and 4500' elevation (1280 and 1372 m) were sampled at 50 or 100 m intervals. Bhorizon soil samples were taken with soil augers from variable depths of 10 to 90 cm below surface depending on the thickness of the A-horizon. Samples were placed in kraft bags, dried, and shipped to the Noranda Geochemical Laboratory in Vancouver for processing.

These contour lines and more of the area above treeline was prospected. Three rock, fifteen silt, and eighty-five soil samples were taken altogether.

Two man days were spent on 22 October sampling various felsic dikes for mineralization. Fifteen rock samples were taken.

RESULTS

GEOLOGY AND PROSPECTING

ŧ.

Lithologies

Four mappable units have been defined (Myers, 1987) on the property:

Unit 1. (Hf) is variably hornfelsed clastic sediments, gray to black, consisting of contact metamorphosed claystones (S1), siltstones (S2), and sandstones (S3). This unit is folded into a syncline with a N-S axis passing about 300 m east of the Silverton 1 LCP. These are Bowser Lake Group sediments.

Unit 2. (P4) is granite to granodiorite, medium grained, massive, one and two feldspars, quartz, and chlorite after biotite, some sericitic alteration noted, minor pyrite and rare molybdenite mineralization noted (disseminated and fracture coating). This is a Bulkley intrusive.

Unit 3. (H4) is rhyolite and rhyolitic quartz porphyry, white to cream colored, very fine grained except for medium grain quartz phenocrysts in places. Unit 3 cuts units 1 and 2. This is a late stage of the Bulkley(?) intrusive.

Unit 4. (H2) is andesitic dike, fine to very fine grained, dark greenish gray, which cuts units 1 and 2. Age relation to unit 3 is unknown.

Mineralization

Three types of mineralization were noted on the property:

 Quartz-arsenopyrite-pyrite-sphalerite-galena-tetrahedrite veins up to about 30 cm wide with some mineralization found as narrow halos in the wall rock. These veins are best exposed and most common in unit 2 granites but are also common in nearby hornfels.

2. Rusty hornfels and hornfels with pyrite-pyrrhotite pods or blebs, no particular association to quartz-arsenopyrite veins noted.

3. Molybdenite and molybdenite-pyrite-pink feldspar fracture coatings in granite (unit 2).

Figure 4 shows a 700 x 350 m granitic stock which is cut by rhyolitic dikes and surrounded by hornfels (not mapped). Several quartz-arsenopyrite veins are mapped over lengths of 50 to 100 m and have strikes of 90 and 160 degrees. Other strikes noted from smaller veins are about 20, 45, 70, and 110 degrees. Dips range from about 40 to 70 degrees, although one vein striking 110 degrees had a dip of 18 degrees.

Quartz-arsenopyrite mineralization is centered about 1200 m south of the Silverton 1 LCP, coincident with a granite stock. The iron sulfide in hornfels mineralization is peripheral to this. The distribution of molybdenite mineralization is not known with confidence.

ROCK GEOCHEMISTRY

One hundred fourteen rock samples were analysed at Acme Analytical Labs for 16 or 30 elements by ICP methods. Samples are described in Appendix 4. The results are given in Appendix 5 and Figure 4. Statistics on some elements analysed are as follow:

Element	Low Value	Sign. Value*	High Value	% > Sign. Value
Mo	.001%	.1 %	.012%	0 %
Cu	.01	.2	.62	2
Pb	.01	1.0	2.16	2
Zn	.01	1.0	8.36	10
Ag	.01 opt	1.0 opt	3.09 opt	19
Au	.001opt	0.02opt	.882opt	51
As	.01 %	1.0 %	28.9 %	58
Sb	.01	.5	.84	1

*significant value - economically or environmentally significant

Inspection of the values above shows that the main economic interest on the property is for Au-As mineralization with some values for Ag-Zn also.

Examination of Figure 4 shows a wide distribution for significant Au and As values in rock samples and possibly a more restricted distribution of significant Ag and Zn values more or less coincident with the baseline.

Rock samples with high Au values (+3.4 ppm, 30 samples) are generally from samples from high sulfide contents (usually 10% or more) or from narrow veins (27 cm or less). Such rock is not common enough in the area gridded to make an ore deposit. Because of this it seem the likely economic potential on the property is for high grade veins rich enough for underground mining or mineralized stockwork zones suitable for open pit mining in areas outside the gridded area.

STREAM SEDIMENT GEOCHEMISTRY

Sample locations are shown on Figure 5. Analytical reports are given in Appendix 5.

Of the thirty silt samples analysed by Acme for 30 elements by ICP and for Au by AA the following values were obtained:

Element	Low	Threshold	High	# > Threshold
Mo	1 ppm	10 ppm	31 ppm	3
Mo	1 ppm 23	10 ppm 100	31 ppm 92	õ
Cu			122	7
Pb	10	25		7
Zn	100	250	760	
Ag	.1	1.4	1.7	1
Au	.001	.020	.320	3
As	9	100	1477	13
Sb	2	10	24	з
ω	1	10	21	2

Threshold values are selected on the basis of past experience. Gold silt anomalies are somewhat less frequent than the rock geochemistry results would indicate, while lead silt anomalies are more frequent.

All the silt anomalies are located downstream from known mineralization except for several peripheral anomalies 26826, 92615, 92622, 92623, and 99144 (Figure 5). Prospecting and soil sampling should be extended to cover their source areas.

SOIL GEOCHEMISTRY

5

One hundred fifty-four B-Horizon soil samples were analysed by Acme for 30 elements by ICP plus Au by AA with the following important results:

Element	Low	Threshold	High	# > Threshold
Mo	1 ppm	10 ppm	34 ppm	30
Cu	18	100	200	6
Pb	4	50	161	5
Zn	58	250	1109	33
Ag	.1	1.4	7.1	11
Au	.001	.020	.053	2*
As	10	100	1911	82
Sb	2	10	11	з
ω	1	10	38	4

* only analysed for 69 samples

The threshold values again were chosen from past experience and are almost identical to those chosen for silt samples. As, Zn, and Mo soil anomalies are common in the area sampled.

Molybdenum anomalies are more frequent than would be predicted of the basis of rock analyses, while Au and Ag anomalies are less frequent than would be predicted. Possible reasons for this include:

 Molybdenum mineralization is more widespread and Au and Ag mineralization is less widespread than predicted by rock sampling due to rock sampling bias.

2. High background levels or large sources for Mo in the area and low background levels or small sources for Au and Ag.

 Low Au and Ag mobility, high Mo mobility resulting in misleading soil results.

Figure 5 shows that As soil anomalies are most widespread, covering an area 1.8 x 1.0 km open to the west and possibly the east. Zn and Mo soil anomalies are more restricted. Further soil sampling should be done to extend and better define these anomalies along with prospecting on contours or tied in to an extended grid.

Further analytical work should be done to check that soils are truly not anomalous in gold. If the large arsenic soil anomaly should be correlated with a gold soil anomaly then the property would merit a more extensive program.

CONCLUSIONS

A large number of quartz-arsenopyrite-sphalerite veins are found in and around a granitic Bulkley intrusive and surrounding hornfelsed Bowser Lake Group sediments.

High grades for Au-As-Ag-Zn mineralization occur, but over narrow widths (less than 0.3 m). One grab sample (26801) of a quartz-pyrite-arsenopyrite vein assayed 0.882 opt (30.2 gmt) gold and 2.28 opt (78.1 gmt) Ag. The best chip sample (26755) assayed 0.82 opt (28 gmt) Au over 27 cm with 3.09 opt (105 gmt) Ag. Minor mineralization occurs in narrow selvages beside the veins. The veins, however, are too narrow and too far apart to be of economic interest in themselves in the area mapped.

Silt sampling to date indicates As-Pb-Zn anomalies in the area of the Raven 1-6 claims and above. Source areas including and beyond the area soil and rock sampled in 1987 are indicated.

Soil sampling indicates a significant As-Zn-Mo anomaly on the Raven 1-6 claims. The number of Au and Ag soil anomalies is low. This maybe due to lack of bedrock anomalies or to some problem with precious metal dispersion. The As soil anomalies occur over an area 1.8 x 1.0 km open to the west and possibly to the east.

RECOMMENDATIONS

1. Further work should be directed to locating additional Au mineralization as lower grade, large tonnage disseminated or stockwork zones or as higher grade veins of greater width than found so far on the Raven 1-6 claims.

 Prospecting and soil sampling in the areas above silt samples 26826, 92615, 92622, 92623, and 99144 is recommended.

3. Further analytical work should be done to test high arsenic soils for gold concentrations. It is surprising in light of the high arsenic concentrations in rocks mineralized with gold, that there are so few soil gold anomalies when there are so many arsenic soil anomalies.

REFERENCES

- , 1913. "Silverton Group" in Minister of Mines Annual Report 1912. Victoria, B.C., pp. K98-99.

- Myers, D., 1987. Assessment Report; Prospecting, Geology, and Geochemistry; Pinenut Property. Noranda Exploration Co., Prince George, B.C., 12 pp. + appendices.
- Richards, T.A., 1980(?). Geologic map, Hazelton, B.C., NTS 93M, GSC Open File 720, Ottawa, Ont., 1 sheet.
- Tipper, H.W. and Richards, T.A., 1976. Jurassic Stratigraphy and History of North-Central British Columbia. GSC Bulletin 270, Ottawa, Ont., 73 pp.

APPENDIX 1. List of personnel, Pinenut property, September -October 1987

1.2.2.1.2.1

m

Name Address	Position	Days in Field	Man-days
Brian Enns Mackenzie, BC	Assistant	22 October	1
Paul Huel Kispiox, BC	Prospector	30 Sept4, 22 Oct.	6
Grant Malensek Vancouver, BC	Geologist	30 Sept4 Oct.	5

total man-days 12

APPENDIX 2. Statement of Costs

Field Personnel 12 man-days at 5140 =		\$ 1680
Food and Accommodation		
12 man-days at \$20 =	12	240
Truck Rentals		500
Helicopter Support		
6.8 hours at \$480 =		3264
Equipment and Supplies		
12 man-days at \$20 =		240
Laboratory Analysis	4	0.000
17 rocks, 30 element ICP geochem	00.9'0	153
and Au by AA	@ 4.25	72.25
85 soils, 30 element ICP geochem	@ 6.75	573.75
15 silts, 30 element ICP geochem	@ 6.75	101.25
and Au by AA	@ 4.25	63.75
Report Preparation		
1 man-day @ \$250		250
Management		
1 man-days at \$300		300
total		[¢] 7438

Delbert E. Myers, Jr. Senior Project Geologist 7 April 1988

APPENDIX 3. Statement of Qualifications

Relevant Training

B.Sc. (1970) Pennsylvania State University University Park, Pa., USA Geological Sciences

M.Sc. (1973) University of Toronto Toronto, Ontario, Canada Geochemistry

Relevant Experience

- 1973 1980 Exploration and Mine Geologist Cominco Ltd. Vancouver and Yellowknife
- 1980 1982 Exploration Geologist Noranda Exploration Co., Ltd. Yellowknife, N.W.T.
- 1982 1983 Exploration Geologist Noranda Exploration Co., Ltd. Smithers, B.C.
- 1983 Exploration Geologist Noranda Exploration Co., Ltd. Prince George, B.C.

Professional Affiliations

Fellow, Geological Association of Canada

Member, Association of Professional Engineers, Geologists, and Geophysicists of the Northwest Territories

Member, Canadian Institute of Mining and Metallurgy

The work reported herein was done under my supervision.

+ 80

Delbert E. Myers, Jr. Senior Project Geologist 7 April 1988

APPENDIX 4. Sample reports, Pinenut property, 1987

PROPERTY PINENUT CREEK

N.T.S. 93-14-5/6 DATE AUG 14/87

	RO	CK SA	MPLE I	REPOR					ROJECT			_
AMPLE NO.	LOCATION & DESCRIPTION	54 SULPHIDES	TYPE	WIDTH	Au	G	6 🗌 A 🗌	00.40	GOAD	GOAD	GDAD	SAMPLE BY
19612	9874= 9750N QT2 - 4cm As, By + Hidrowin Will	1%	CHIP	Soan	·003	-						R.D.
19613	16 Azi 270 FROM 9750N 9901E, ATOFED FRATURES PURE		CHIP	80 cm	.001							"
19614	MASSIVE AS PY FROM 12 cm pod from Zone Drifts	100	GRAB	-	.167							1,
19615	38m Azi 56° FROM 9750N 9900E, SMEAKZONG BY DYKE	1%	CHIP	1.0m	,001							"
19616	24, Azi 230 FRAM 9650N 9900E SHLAK MAFS. SLST. (py)	Hory	CAIP	(Scm	.004							"
19617	Ru Azi 110 FROM Scien/B.C. Normest po Tart (GRAB	-	.001							ŀ
9618	44 Hzi 160° FROM 7556 M/12, SI- NEL VELICELIN 19 pod	1 7	GRAB	-	.002							11
9619	92 TON 9845, 912 minlok in URieso Das py vendets	1 C	FLANT JA KAR	-	.112							"
1620	92 500/ 1800E, FELSENFIER, HEFESIS SUNE VENIIS FIL, 5. 1)	1	FC-11/KAN		.264							"
19621	2 Lm AL 21 "Filom 9250N/9750E FREVEIN (HS, Dy)		CHIP	inom	.173							"
19622	32 m Azi 235 FROM 12504 57506 GTZ VEN (15, 14, 54)	1.1.1.2	CHIP	22.90	.171	-						"
11623	FOOTWALL FROM SAMPLE 13/22 SUCCERENCES	2.14	CHIP	30cm	.010							"
19624	501 121 225 ES 192500/ Juscherry NG 1 4	10	CHIP	160-	.312	-						"
19625	For A21 225 FRom 92504/73400 (freedore 15, 1) F. tull an #19624, wether to post job files	~1%	CHIP	750-	.004							"
n= 14	SAMPLE #5 19612,13,15,16,21,22,23,24,25	A	, Az 6	FIR	AS	AY						
	SAMPLE AS 17614,17,18,17,20 14	CLEM.	1.7 16.	P+ Au	by	1.11.			_			
					Ľ,							
					-							
1=14					1			1				

GEOCHEM A = ASSAY

NTS. 03M -/6 DATE AUG 1/87

PROPERTY Pine No!

SAMPLE REPORT DOCK

	RO	CK SA	MPLE	REPOR	AT opt			ROJECT.	
SAMPLE NO.	LOCATION & DESCRIPTION	% SULPHICES	TYPE	WIDTH	L.D		G		SAMPLE
1011	Charles and an and a second se	25	1=Lant	5	.011				PH
19651	912, ETRIMOSTIE, Myrile	25	1	17	.001				11
19652	- AL 11 11 1 1 1 1 1 1 1 1	5	EAL A	TC.	.001	-	1	1	11
19692	Phile avenue in the solution with		They	TT	· 006				 11
196:9	DIFCIA White with	30	1.1.	1	.001				11
1961	17 11 11 11 11 11 11 18	-	h Silva	1.1	.010		-		11
19690	the stand of the s								
							1		
									 1
									_
							-		
							_		
								-	
							-	-	
				1			-	-	
				-					 -
n=6						0 - 0500			

G = GEOCHEM A = ASSAY

Box 2

N.T.S. 93 m/5,6 DATE 15 Aug. 87

NORANDA EXPLORATION COMPANY, LIMITED

Pinenut Creek PROPERTY_

SAMPLE REPORT

	SAM	LEN	EPORT					1
SAMPLE NO.	LOCATION & DESCRIPTION	TYP	WIDTH CM	opt Au	PP6 Au	ASSAYS	1 1	SAMPLED
	DV 92 05 7.	5 roch	statement of the local division in which the local divisio	.364				PHuel
19657	P1 1- 00 00	-	grab	1.242				
8	96 -1	_	1.00	· 533				
9	92 py as 90		5	.017				
19660	92 as sp py 7			1		_		
1	alt rock, py 2	-	grab	.004				
2	alt rock, py, kaolin, limonite 2	0 4		_		_		
3	alt rock, py 10	0 "	grab	.001				
4	92, py, as, tetrahednike, sp S	5 "	10	.023				
5	92 as py limonite 2.	5 "	10	.025				_
6	camp creek elev. 1450m just before fork	sil	+		29			
7	alt. rock, py 2	5 roch	e grab	.012				
8	Float - sp py as gz 50			.018				
	alt. rock, py 2		grab	.001				
	E Fork comp creek elev. 1450m	sil	+	-	16	-		
19670	E fork comp creek that the	-		1				
n= 14								
		_	_	-				-
		-		1-				
		-		1				
			_	-				
				1				
n=14		-		1				

N.T.S. <u>93 M 5/6</u> DATE <u>Kug 17/87</u> PROJECT <u>Num (Lain</u> ROCK SAMPLE REPORT % SULPHDES SAMPLED WIDTH SAMPLE NO. LOCATION & DESCRIPTION TYPE BY An 19671 20 anb PH .001 Sel, arano 4prite Thear 19672 .195 25 11 jointe aracno 19613 pipite, arsene in 80 9kob .131 11 19674 Parte raisino 70 grab .179 10 80 chip 19675 .056 11 10cm ansino pagate TU gras 1- Mele # 19675 Au, Ag by Fire Assay 14 ELEMENT KP + Au by A.A. # 19671, 72, 73, 74, 26801 n=5

G = GEOCHEM A = ASSAY

fo1 # 1

N.T.S. 431 5+6 DATE 14 Aug. 87

ber

PROPERTY 1-INC NIUT

. .

BOCK SAMPLE REPORT

	· RC	OCK SA	MPLE	REPOR	Topt			P	ROJECT			-
SAMPLE NO.	LOCATION & DESCRIPTION	% SULPHIDES		WIDTH	Au		GOAD	0010	GÜAD	o 🗆 n 🗆	GOAD	SAMPLEC BY
19676	UTE PY ASPY	35%	(HII'	3504	.019							T.G .
14677	WE WHELE OCK CUTY ALTINTSIR		CHIP	35cm	.01]					1		T.B.
19678	OTZ, MY. ASINI		CHIP			-	0	1		-		TV3,
19679	OTZ, PY, NSPY ME WHU LOCK CUTY ALTINTSUR OTZ, PY, ASPY OTZ, PY		CIJII"	701	-001							T.13 -
					_							
					-							
						-			-			
	· · · · · · · · · · · · · · · · · · ·											
			14									
									-			
					-				-			
				-	1		-		1			
		_		-	-							
					-							
		-				-						
					-		-		-			
n= 4		1		-			= GEOCI		A = ASS/		1100	

N.T.S. <u>931-5/6</u> N.T.S. <u>931-5/6</u>

PROPERTY PINEDUT

ROCK SAMPLE REPORT .

	RO	CK S/	AMPLE	REPOR	ant			P	ROJECT.			
SAMPLE NO.	LOCATION & DESCRIPTION	SULPHICES	TYPE	WIDTH	a la	GDAD	G			G□ ∧□	00.40	SAMPLE
14/04	OF2 FALT 21 Acar			1	Au 1.631							
19680	GIZ, CHL ZN, MY, ASPY		CHIP	15 cm	.601				-			T.R
9681	QTZ, CAL ZN, PY, ASPY PY, MANG PY, Po, MANG		GRAB	-	11000	-						T13
9682	PY, Po, MANG	1	GRAM		.661							T.B.
9683	OST, CAL, PY, ASPY	40%	GRAIT		.677	_		-				TB.
9684	PI Paul ANG			SOCM	.001							T.13.
9685	PY, Po, MANG, PY, Po SY, MANGANE ALT. OIL, PY, ASPY		GRAD		.001						-	T.13.
9686	BI DRAWLE DIE	1000.00	GRAG		.001							T.B.
9107	ATT PY ASRI	Same Di	TALLUS		.034							TB
	19680,84 Au, Ag by F4 19681,82,83, 85,86,87 1464	RE A	SSAY KP	t Aa	by t	¥.A.						
n = 8						-	= GEOCH	EM	A = ASSA			

PROPERTY PINENUT CREEK

BC14 N.T.S. <u>93M-5/6</u> DATE <u>AUG 17/87</u>

ROCK SAMPLE REPORT PROJECT SAMPLED % SULPHIDES WIDTH SAMPLE NO. TYPE LOCATION & DESCRIPTION BY Au T.B. 19688 PY, PO POD IN MIT SEDS. .001 4 5070 CHIP SUCH 19689 GTZ, PY, HSPY, MINERALIZED WILL ROCK 70% CHIP OTZ, PY, ASPY, Cu. 75"26 GRAD T.13. 15cm .258 .084: T. 13. n=3

PROPERTY _ PINENUT CREEK

N.T.S. 93M1-5/6 DATE AUG 15/87

Box 1

ROCK SAMPLE REPORT

PROJECT

And the second second second					04.				10000000			
SAMPLE NO.	LOCATION & DESCRIPTION	% SULPHIDES	TYPE	WIDTH	Au		0 A D	GOAD	G[] A[]	G A D	G A	SAMPLED BY
26751	37m Azi 354°FROM 9150N/BL GTZ@AS, PY	5	CHIP	Scm	1 21							RD
26752	WEATHERED FELSIC INTRUSING - FOOTWALL forts1	tr.	CHIP	40 cm	44 6							11
26753	8.5m Azi 100 FROM SODANBL. STZ Q AS, PY	10	CHIP	7cm								"
26754	SILICIFIED INTRUSINE - FOOTWALL of 26753	tr.	CHIP	35cm					1.			11
26755	6.5 m Azi 290" FROM 9000N/B.L. 110m 12 100 AS, PY+ 16- Fotund	20	CHIP	27cm	.820			Č	1	1.14		"
26756	10m AZI 244 FROM 90000/BL. PTZ @ AS, PY	20	CHIP	12 cm	-							"
26757	14.5 m AL 210 FROM 9000N/B.L. 9TZ Q AS, PY	60	CHIP	6 cm	1 /							"
26758	Mm AZI 24= FROM STOON/BC. FTZ. sarb @ AS. PY	5	CHIP	20cm				1				"
26759	20m Azi 350° FROM & 6758(SAME 1800) GT2Q AS, PY	15	CHIP	17 cm	1.0.0			1.1.1				11
26760	60 m Azi 354 FROM BESON/B.L. FTZ VENJET - INTRE VE	30	CHIP	1600	-081		1					11
26761	12m Azi 360 FROM \$600N/BL. CARB. SHEAR IN SUST.	.2	CHIP	20cm	-052				1			11
26762	8705N 100056 QTZ FLONT QAS, PY	30	FLONT /CRID		.153						1	"
26763	71 MAZE 25" FROM 8850N/8.L. 9T2@ AS, PV	5-10	CHIP	22 m	-308	1		ť	-	1111		11
26764	15 m A21 170 FROM 26758 (SAME VEN.) QT2 @ AS, AV, AI	100024-0-0	CHIP	11cm	.337							"
26765	24m AZI 350 FROM GOOON/BL. GTZQ AS, PY	5	CHIP	10cm	.147	.9		1.15	1	-		"
	(POSSIBLE EXTENSION of VENNED 26753				1 7							
					+	_						
n=15		1		-				-	1			

G = GEOCHEM A = ASSAY

PINEINUT CREEK PROPERTY -

-+

T.

N.T.S. <u>93 M-5/6</u> DATE <u>AUG 16/87</u>

Boye

	ROC	K SA	MPLE F	REPOR	Toot			PF	OJECT.	-		-
AMPLE NO.	LOCATION & DESCRIPTION	% SULPHIDES	TYPE	WIDTH	Au	GDAD	G A	GOAD	G A D	GOAD	GOAD	SAMPLE
		10	FLOAT / GRAD	-	.550			1/2		_		R.D.
26766	12 m AZE 164 FROM SEOSALRE. OF2 Q PY, 05. 16 m UP CREEK FROM EGOON - CONTACT ZONG	.2	CHIP	1.45M	-033							"
6761	224 m UP CREEK FROM BROOM - WEAK STOCKWORLY	.5	CHIP	.73M	.642							"
6769	" " GPANITE AFTAR 26768 WITH Han \$12.	Tr	CHIP	1.0m	.655		I				_	"
67710	4 m	tr.	CHIP	1.0M	.003	1 .	1	-		-		"
16771	" " " @ San PT2 verilit mover py	tr	CHIP	1.0 m	.002	1				-		1
26772	11 H H @ San PTZ vernlite As, py	.2	CHIP	1.0M	.068	-		-		-		11
				-	-	-		-				
		-						-	-			
		-		-	-			-	-	-		
		-		-	+		-		-	-	-	
					-	+		-		1		
					+	-	1					
			1	-	1	-	1	-				
			1	-	1							
			1			1						
		1		1	1			1				
					1							
		-			1						-	
											-	
1111												-
n=7							G = GEOO		A = ASS			

G = GEOCHEM A = ASSAY

.

PINENUT CREEK PROPERTY

N.T.S. <u>93 M- 5/6</u> DATE <u>AUG 17/87</u>

		ROCK SA	MPLE	REPOR	opt				ROJECT		100000	
AMPLE NO.	LOCATION & DESCRIPTION	% SULPHIDES		WIDTH	G AL	GOAD	G	G	GOAO	GOAO	G 🗆 A 🗆	SAMPLE BY
26773	QTZ ventet @ As, py	5	CHIP	16cm		Ru. Ag	64	FIRE	AS	SAY		R.D.
×0.7	() 2 Jonne Con 2, 1 J				.073	0	/					
										-		
				-								
-				-					-			
										1		
	and the second											
					<u> </u>						- 00-	
inter-				-								
				-	-						-	
n=1				-	-	-	1			1		

G = GEOCHEM A = ASSAY

.

3

PROPERTY PINENUT

N.T.S.	93 m/ 5564
DATE	22 Oct. 87
PROF	2A7

	ROC	K SA	MPLE	REPOR	т			PI	ROJECT	28	7	_
SAMPLE NO.	LOCATION & DESCRIPTION	% SULPHIDES	TYPE	WIDTH		a I A I Au ppb	0 🗆 🗚 🗌				00.40	SAMPLE BY
26785	Felsic dike w. 1% py, gtz. rich		chip	Zm		2				-		PHuel
26786	Felsic dike w. 1% py	1	chip	3.2		11						ŭ
26787	Felsic dike w. py > 1%	14	chip	3.5		6		1.15				R.
26788	sondstone w. quartz, po, aspy	2	chip	2		15						н
267-89	Felsic dike w. qtz eyes (rhyolitic)	Ail	Chip	4		I						11
26790	10 cm ven - q tz asseno, tetrahel.,	5	chip	OIM		173						11
	PY, SP, Strike 0650/ 35°NW dip									_		
26791	Felsic dike in 5-locm vens of get	2	chip	0.2		12						н
	aspy, py							C., 1				
26792	rhyolisc dike, > 1% py	1+	chip	4		3						"
26793	Felsic dike > 1% Py	1+	chip	3		5						11
26794	Felsic dika	nil	chip	2.5		47						н
26795	diorite beside vein, dissempy	1	chip	2		8						11
26796	sediment of w side of vein, lumanthe	neg.	rock	grab		3						и
26797	Felsie dike w. 1% pyrik	1	rack	8		8						н
26798	Felsie dike w. Py, aspy, souche	2	chip	1		7						ท
	from center of 26797 + much mire altood											
26799	diorrie & Felsic intrusive w. soricite \$	14	chip	5m makes		2						л
	Minor py, around vein, w. qtz. veintes			-				-				
N=15								dus	20	Nou.	87	

G = GEOCHEM A = ASSAY

. . .

80x #4 N.T.S. 93 M/ 5,6 DATE 17 Aug. 87

PROPERTY _ PINENUL - Raver claims

		-		opt	SAMPLE					
AMPLE NO.	LOCATION & DESCRIPTION	TYPE	WIDTH	An			ASSAYS		1	SAMPLED
			-							
26801	gtz-pyrite- arsenopyrite, locm wide	rock	grab	.882						P Huel
26801	q+2- pp	-	1							
										_
								1		
			-	-						
			-	-		and the				-
				-						
				-			-	-		
				-				-		
				-	-		-	-		
			-	1	-					
		+	1	1						
			1	1				1		
		-	-							
n=1										

1

÷Ľ.

	PROPERTY	N.T.S. <u>9311 5660</u> DATE <u>1987-10-03</u> PROJECT 287											
SAMPLE NO.	LOCATION	DESCRIPTION	OCK SA	TYPE	WIDTH	00.40	0000 An	GD A []					SAMPLED BY
26826	Silverton claims	4200 Et elev		Silt			4						PH
26827	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4		**			2						PH
268 28		ц.		~ ~ ~			1						GIM
268 29	1.	()		~ ~ ~			3						GM
26830					-		1	_					<u>GM</u>
			_										
	······												
					-				_				
n=5					-							-	

G = GEOCHEM A = ASSAY

N.T.S.	93	M	15,6
DATE	6 F	lug.	87

PROPERTY_	Pinenut	Creek	4	Raven, Silverton - Sidina Mtn.
PROPERTY_				LE REPORT

			WIDTH	opt	PP6	ASSAYS				SAMPLED
AMPLE NO.	LOCATION & DESCRIPTION	TYPE	WIDTH	Au	Au					BY
76162	Basilt 3800', main creek, dry	silt			18					DEMJG
76163	Bn cobble 92 (03 gn intrusive	rack	grab	.003	in and in the		1			"
76164	130m ole porphyry - who Bp-chl por- ce alt	rock	grab	.001						11
76165	502m silt 4130', main creek, small caryon	silt			101	_				"
76166	1	rock	grab	.001						"
	w. 92, PY, as?					_				
76167	936m rusty talus Finos, treat as rock	talus fines	grab	.001		_				"
	4405'					_				
76168	970m top of 5m falls, rusty veinlet, 7 cm which	rock	grab	.073		-		-	-	"
	92 py as , ackoitic halo, 105°/48°N						-	-		
76169	1023m 4 cm gz as py van in Py	rock	grob	.110			-	-		"
	4545' , 354°/52°E		-	-			-	-		
76170	1036m sample of typical Py hoe, o/c	rock	grab	.001			-			"
76171	1042 m 10t cm ucin, py-92-45, in creek	rock	grob	.050						"
	maybe whicker, poor exposure, 1340/47'E,						-			
	30 cm on other side		-	-			-			
76172	1045 m vein 337/26 NE as 14 92	rock	grab	.479		_				4
76173	1042m on rt. hand side, 60cm + true work?	rock	chip	.040			-	-	-	n
76174	1081m, 15 cm q2-as van, 22/56 E	rock	chip	.009			-			
76175							-	-	· · · · ·	
	Fe Q2 As material, 4640'	rock *	dup	.014			-			"
n=14			-	-		day	26	Nou	87	

18

N.T.S. <u>93M SE 6</u> DATE OCT 1/87

	PROPERTY Silverton Clair	ns (Pi		RT	ррь	-	D	28	1/0	37
SAMPLE NO.	LOCATION & DESCRIPTION	96 SULPHIDES			DAD Au	0[] A []				SAMPLE
92614	sunte punchatite horoslels	40	floor/P)		930					P.H.
92615	pyrite pyreholite, hornsfels SIL ASO'ELEU ALT SEO, pyrite, arono		SiLt		320					11
92616	ALT SEO, pijute, arono	30	GENE		.7					11
92617	/ / /		Silt		1					1.
92618			Silt		1					PH
				 -				 		
							-			
		_		 	1			 		
		_					-	 		
					-		-			
		-		 	-			 		
						-		 		
					19					
n=5										

G = GEOCHEM A = ASSAY

PROPERTY_Silvertue Claims Pinenut cuck

1

N.T.S. <u>93M SE/Gar</u> DATE <u>CCT 2</u>

PROJECT_

		ROCK SA	MPLE	REPOF		ррЪ		PF	ROJECT	28.	7	
SAMPLE NO.	LOCATION & DESCRIPTION	% SULPHIDES	TYPE	WIDTH	Lo.d.	- Au	G□ A□	G∏ ∧□	G 🗆 A 🗆	G 🗌 A 🗌	g 🗌 a 🗌	SAMPLEC BY
92619	Sitvitor Clains		Silt Silt			1						PH
97620	Silverton Clains Silverton Clains		SIL			6		9				11
92622			Silt			1						11
92623			SLF			2		a				11
92629	1		SLF			1						11 .
92620 92622 92623 92623 92629 92629	S, turter, Claims		s,Lt			3						P4-
						-10						
				-								
				-							-	
								-				
n=6							= GEOCH		A = ASS			I

N.T.S. 93 M/5,6 DATE 6 Aug.87

PROPERTY ____ PINENUt Creek - Raven, Silverton Claims - Sidina Mtn.

1

SAMPLE REPORT

SAMPLE NO.	LOCATION & DESCRIPTION	TYPE	WIDTH	opt	pp6	ABSAT	9			SAMPLED
SAMPLE NO.	LOCATION & DESCRIPTION	TTPE	WIDTH	Au	Au					BY
99135		silt			2					RD, TB
6		n			2					"
7		11			1					11
8		n			1					IJ
9		11			1					U
99140		"			1					IJ
41		n			2					IJ
2		11			1					
3		b			1					u
4		n			lost					11
5		FOCK		.001						h
6		h		-002						
7				.042						11
8		ut.		.315						u
9		11		.001						11
99150				1249						u
			-		-		-			
			-	-						
				-						
				100					07	
n=16			1			dm	26	Nou.	87	

N.T.S. <u>93 M/5,6</u> DATE <u>6 Aug. 87</u>

PROPERTY_ PINENUL Creek - Raven, Silverton claims - Sidina Mt.

SAMPLE REPORT

		TYPE	WIDTH	op+	ppb	ASSAYS	2			SAMPLED BY
SAMPLE NO.	LOCATION & DESCRIPTION	TYPE	WIDTH	Au	Au		-			
99201	1152m, Scm 92-py-as vein in hornfels in creek	rock	grab	.036						DEMJ5,P
	130/42NE									
99202	1241m Scn py-as-qz ven, 4745'	rock	grab	112						Л
	climb out of creek canyon here							ļ		
99203	silt, 4960', just beyond (below?) silt 8786	sí l+			1					11
			-							
·····										
	-	-								
15-1-111									-	
n=3						drus	26	Nou,	87	

The second s

APPENDIX 5. Analysis reports, Pinenut property, 1987

10.0

Pinenut (BM)

8708-077

C

ACHE ANALYTICAL LABORATORIES

852 E. HASTINGS ST. VANCOUVER B.C. VAA 1R6

DATA LINE 251-1011

PHONE 253-3158

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH JML 3-1-2 HCL-HM03-H20 AT 45 DEG.C FOR OME HOUR AND IS DILUTED TO IO ML WITH MATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR MG BA TI B W AND LIMITED FOR MA AND K. AU DETECTION LIMIT BY ICP IG 3 PPM. - SAMPLE TYPE: SILT AUX AMALYSIS BY AA FROM 10 GRAM SAMPLE.

DATE RECEIVED : NE 13 1987 DATE REPORT MAILED : aug 23/87 ASSAVER ... DEAN TOYE. CERTIFIED B.C. ASSAVER

NORANDA EXPLORATION (VANCOUVER) PROJECT-8702-077 240 File # 87-3271

SAMPLED	NO PPN	CU PPH	PB	2N PPH	A6 PPM	NI PPH	CO PPR	FN PPN	FE 1	AS PPR	U FPM	AU	TH	SR PFR	CD PP#	SB PPM	BI PPM	PPR	CA T	PI	LA PPR	CR PPM	M5 1	BA PPR	11	PPR	AL I	1	1	-	401 PP8	
12222	1	1.22	100				1	201		-		1.5	÷.,			52			4											1	54	
76162	17	48	48	235	.٩	- 11	10	916	3.43	567	- 2	RD.	•	- 25	2	11	- 3	23	.24	.053	15	12	.43	62	.01		1.12	.03	-14		18	
76165	31	92	122	460	1.7	15	16	1544	5.22	1477	- 5	ND	٠	39	- 5	23	6	25	.30	.062	14	- 11	.43	76	.01	- 2	1.28	.02	.99	5	101	
099135	1	27	18	121	.1	13	13	1429	5.18	22	5	ND	1	41	1	2	2	34	.33	.077		10	.62	121	.01	2	1.48	-02	.05	1	2	
099136	1	34	17	127	.1	14	13	1112	5.09	16	5	ND	2	49	1	2	2	. 38	.44	.068	8	10	.67	122	.01	2	2.02	.03	.05	1	2	
099137	i	37	18	115	.2	14	12	936	4.62		5	80	2	49	i	2	2	42	.52	.073		12	.65	124	.01		1.74	.03	.05	1	1	
099138	1	35	14	117	.1	14	12	945	4.91	14	5	ND	1	48	1	2	2	36	.43	.059	8	10	.67	106	.01	2	1.98	.02	.04	1	1	
099139	1	25	15	121	.1	13	12	1405	4.58	19	5	10	1	32	1	2	2	37	.35	.067	8	10	.55	126	.01	2	1.97	.02	.03	1	1	
099140	2	25	19	123	.7	13	13	2270	0.202.25	17	5	80		34	1	2	2	39	.36	.071		10	.52	130	.01	2	1.98	.02	.05	1	1	
099141		34	19	114		15	13	1153		21		80		27	1	2	2	37	.32	.061		12	.61	89	.01	3	1.85	.03	.05	1	2	
099142	2	28	18	120	.1	13	15	1284		50	5	80	2	41	i	ż	2	39	.41	.064		11	.57	101	.01		1.77	.02	.05	i	1	
099143	1	41	19	117	.1	16	15	1118	4.48	38	5	10	2	34	1	2	2	38	.43	.072	10	12	.63	89	.01	3	1.74	.03	.04	I	1	
099203	4	60	80	628	.3	12	17	2113	5.13	770	5	80	4	27	7	24	2	38	.33	.087	10	16	.58	76	.01	2	1.69	.04	.11	21	1	

00

AUG

U LEU

Silt n= 12

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE 253-3158 DATA LINE 251-1011

ACME ANALYTICAL LABORATORIES

4

ASSAY CERTIFICATE

4

							- 5A	KPLE TYPE	ROCK							
DATE RECEIVED:	AUG 13 1987	DAŤ	E REPO	IRT MAI	ILED: ()	ug 23/	187	ASSA	IVER.	. Ale	7. DEA	N TOYE	. CERT	IFIED	8.C. A	185AYER
	NO	DRANDA	EXPLO	RATION	(VANCI	Ούνεκ)	PE0JE0	2 1-87 0	7-077 (240	F;]e #	07-32	71A			
SAMPLE#	MO X	cu x	PB X	2N %	AG OZ/T	N1 %	со %	MN 2	FE ۲	A5 %	U %	тн %	CD %	S9 X	81 %	AU QZZT
76163	.001	.01	.28	1.53	.13	.01	.01	.:3	1.05	.:3	.002	.01	. 02	.01	.01	.003

76163	.001	.01	. 28	1.53	.13	. O1	.01	.13 1.05 .13	.002	.01	.02	.01	• • • •	+005
76164	.001	.01	,01	.01	.01	.01	.01	.08 1.32 .01	.002	.01	.01	.01	.01	001
76166	.001	.01	.01	.05	-04	.01	.01	.05 3,85 .05	.002	.01	.01	.01	.01	.001
76167	.001	. 03	ុប្	.01	.01	• • i	.01	.02 24.31 .02	.002	.01	.01	.01	.01	.001
76168	.001	, 09	.04	.01	, PC	.01	.01	,05 40.48 4.67	.002	.01	.01	,02	.03	,073
76169	.001	.01	.07	.01	. 47	.01	.01	.12 12.32 11.02	.002	. 01	.01	.01	.01	.110
76170	.001	.01	.01	.01	.01	.01	.01	.06 1.36 .01	.002	,01	• 01	.01	,01	. 001
76171	.001	. 14	.45	.59	1.12	. Q1	.01	.61 33.88 2.24	,002	.01	.01	.01	.01	.ÚSC
76172	.001	.02	.02	.24	.35	.01	. 01	,01 29.78 27.65	.002	.01	.01	.03	. 01	.479
76173	.001	.01	.19	.15	1.41	. 01	.01	.24 7.57 2.24	.002	.01	.01	.01	.01	. ()4()
76174	.001	.01	.02	.01	.09	.01	, 01	.27 2.13 .94	.004	.01	.01	.01	.01	.009
76175	.004	.03	.12	.10	.32	.01	.01	.06 9.58 1.66	.002	.01	,01	.01	.01	.014
86629	.004	.01	.02	.01	.01	.01	.01	.01 38.14 .13	.002	.01	.01	.01	.01	.001
099145	.001	.01	.01	.01	.01	.01	.01	.02 .72 .02	.003	.01	.01	.01	.01	.001
099146	.001	.01	.01	.01	.01	.01	.01	.01 2.21 .06	.002	.01	.01	.01	,01	.002
099147	.001	, 01	.01	.94	,12	.01	.01	.07 8.06 6.08	.003	.01	. 01	, 01	.01	.042
099148	,001	.08	,01	.53	, 38	.ú1	.01	.02 32.07 22.80	.003	.01	.01	.03	.01	.315
099149	,001	.62	2.16	.12	1.07	.01	.01	.10 3.05 .10	.002	.01	.01	,84	.01	.001
099150	.001	.04	.13	.01	.35	.01	.01	.06 17.28 13.71	.002	.01	,01	. 10	.01	.249
099201	.001	.07	.13	.03	1.23	.01	.01	.18 19.29 3.51	.002	.01	.01	.07	.01	.036
099202	.002	.13	.02	.01	.11	.01	,01	.04 30.80 10.62	.002	.01	.01	.01	.01	.112
5TD R-1/0Z	.093	.89	1.37	2,41	2.97	.03	.02	.08 7.00 .94	.013	.01	.04	.14	,03	-

Rock n=21

(

(

Ć

ţ

¢

2

í.

£

Ť.

t.

ς

€

•

C

C

C

€

C

													0			~	((0)	$\langle \rangle$								හැං	-8-	112	<u> </u>	_	
•														rem																	- ب ب	Ĺ
A	CME ANAL	YTIC	AL L	ABD9	RATOR	RIES				HAS									A 15				25	3-31	58	DA			291- ::	1011	<u>n</u> -n) C
						o gran	7.461 F								I ⊂					YS			4)74 H	IER.	<u> </u>							
					ŤHI	is leach Smiple T	IS PA	AT]AL	FOR MN	FE CA I Analysi	P LA CI	R MG B	A TI B	K AND	LINITE	D FOR	NA AKI	1 K. :	AU DEI	TECTION	LIKIT	97 IC	P (5 J	PPH.					ΈP	10	1937	
ם	ATE RECE	IVED	1 A	AIG 24 1		P3 - 51	117			AILE		Su	A	2/8		ASSI	AYEF	. A	V _F	pe j	4.DE	AN	τογε	, CE	ERTI	FIED	в.С.	JASS	AYER		TGU	
					NO	RANDA	A EX	PLO	RATI	DN (VAN)	PR	ojeć	т-е:	708-	112	2 8 9	,	Filo	(e#	87-3	555		Fage	e 1					*****		•
s	SAMPLE#	MD (PPM PP		PB 2 Pm PP	N AG K PPI	5 ∦I PP#	CQ PPM	MK FPR	FE	AS P p r	ť PPR	AU Ppr	TH PP#	SR FPM	CD PPM	SB PPM	BÎ PFR	V PPN	CA Z	P I	LA PPI	CR PPM	MG 1	BA PP#	TI ĭ	8 A Ffm	1 HA 2 2	K I	11 1797 - 11	AUC PFB		¢
	SOIL I			76 33		5 10	18		5.70	805 21 5	5	NĴ Nô	1	[7	1	٩ 2	2	65 32	.13 .48	. 150 . 597	10 11	13 13	.52 .47	48 58	.01 .01	2 2.5 3 2.5			13 1	30 •		C
	501L 2 501L 3 501L 4	5 1	18 3	35 58 20 8 42 92	17 .3	57	9 6 14		3.40	212 149 882	5	80 80 80	1 [1	37 71	1	4 10	2 2 7	46 32	. <u>16</u>		8	10 15	.20	67	.01	2 1.8	9 .01	.05	2 1	l i		
	SGIL 5			32 43					4,76	579	5	κÜ	2	56	2	7	2	34	, 51	.084	Ġ	13	.48		.01	3 2.6			i	9	66	C
	SDIL 6 SDIE 7	5 3	29	25 41 32 16	з.	6 15 4 4	10 5	479		145 241	5 5	ND NG	1	53 45	9 3	6 5	2	33 35	. 59 . 35	.123	19 8 8	15 6	.31 .21 .51	50 54 118	.01 .01 .01	5 2.1 2 1.4 2 2.7	2 .01	.07	1	13	Del.	C
5	SDIL Ø Sdil 9 Sdil 10	2	26	16 53 20 12 21 10	26 .	1 11	8	913	4.37 3.38 4.11	47 28 34	5 5	NU NG No	1	27 13 10	1 1	2 2 2	2 2 2	40 36 43		.105 .125 .104	5	13 13 12	,40 ,50	69 98	,01 .01	2 2.6	4 .02	,05	1	1		ŧ
•	SOIL 11		33	4 9	_		9	463	5.19	48	5	ND	1	t9	1	3	2	36	.15	.109	11	н	.38	55	.01	5 4.0			1	l L	no. Rok	- 1
	SOTE 12 Sote 13	4 6	48 :	21 11	19 .:	3 13		641	4.25	65 184	5	NC XQ XQ	1 1	31 23	1	4	2	41 41 25			7 9 7	12 51	. 39 . 46 . 21	29 62 29	.01 .01 .01	2 3.5 5 2.7 2 2.6	2 .01	.04	1 t	1	Dee	
	SON 14 Son 15			49 17 15 8	n 1. 15 .		11 B		5.22 5.80	1061 95	5 5	KD KD	1	4	ļ	2	2	31			5	13	33	31	.01	2 1.6			1	1	Vent) C) (
	SDIL 66 SDIL 17		36 42	28 J 20 10	71 . 04 .	2 25 I II	7 14	559 931	5,67 5.61	105 121	5 5	ND ND	5 2	4 6	1 1	5 2	2 2	42 36	.01 .03	.091 .079	6 8	36 17	.26 .49		.01 .01	2 2. 2 3.	i6, ði	.04	1 t	2	- martine	^` c
	SOIL IE SOIL 19	4	4	31 9	19 , 99 ,	2 21	11	564	6.24 7.27	98 156	5 5	ND ND	1 2	6 5	9 1	ь 2	5	39 43		. 100	5	833 72	, 44 , 39		.01 .01	6 3.1 6 3.1	14 .01	04	t !	2 2	۰ ۱	€
	SOIL 29 SOIL 21		25 26		99 . 42 .	3 12 4 9	7 R	521	4.25 4.6B	103 258	5	NC ND	1	8 R	1	•	7	38 50	.01 .01		6 8	22 15	.37	58 52	.01 .01	6 2.i				, I	Į,v	y _
	SOIL 77 SDIL 73	3	46		72.			419	3.97	95 618	5	NB HD	1 2	44 72	1 2	2	2	53 35	.07 .91	.115	5 13	55 28	.42 .53	45 103	.01	6 2.5 3 2.6	is .01	.04	I	4 3		C
	SOIL 24 SOIL 25				03 . 07 ,				5.13 3.86	58 552	5 5	ND Xo	2 2	23 78	1 5	4 2	2 2	42 29	.24 1.13		6 13	- 14 1921	.44 ,40	70 93	.01 .01	2 2. 5 2.1			t I	1 2		C
	501L 26 501L 27			23 13 22 1		2 40 5 13	B	468 517		81 107	5 5	KD ND	L 1	9 7	L 1	5	2	36 37	.04 .01) 8	160 16	. 10 . 42	64 53	.01 .01	2 2.1 6 2.1			1	1 1		C
	SOTE 28 Sote 29		26 67		69. 09.	2 9 4 12	7 10	565 591		59 99	5 5	90 No	1 2	7 23	1	2 2	2	47 46		,095	7 8	17 16	.30 .56	51 51	.01 .01	2 2. 2 2.	EN .O			1 11		(
	SDIL 30	2	37	19 I 17	90.	.47	' 8 • •	: 48) : 48)	* 6.18 5 5 41	78	5 5	KQ NB	:	6	1	4	2	55 47	.0:	. 150	6 7	13 15	.31 .35	4 0 86	.01 .01	3 2.1 5 2.1	и и	1,04 1,04	1	1		
	SD1L 31 SD1L 32 SD1L 33	3	49	24 1	15.	.L L3		786	8 5.41 5 4.54 5 3.24	77	5 5 5	ND ND HD	1	48	1	2	2	45 40	.43 .05	.046 .100	B 7	12 8	.54 .20	112 57	.05 .01	2 2. 2 1.	67 .0 92 .0	2 .04	L I	2		C
	SOLL 34 SOLL 35	4	45		He .	J 22 .B 10	26	355	8.23 5 4.00	66	5 5	WD Nd	2 2	ģ	1 ;	2 7	1 2	!1+ 36	. 12	.219 .177	11		.55 .32		.01 .91	ьз. 22.	03 .0 95 .0	1 .04 1 .05		i I		(
	SDIL 36 STO CIAU-S	[9 19				.5 8 .3 54			5 7,97 5 3,93		5 19	NŰ B	2 38	57 59	6 19	9 1?	1 22	33 57		.265 .099			. 33 . 85		.01 .09	32. 341.	46 .0 93 .0			3 49		ĩ
edia Sta	Soil	<u> </u>	36																													

ſ

(

																																ny
SAMPLES	ND PPH	CU PPM	PB PPM	ZN PPM	A6 PPN	NI PPM	CO PPM	MN PPM	FE 1	AS PPM	U PPM	AU PPM	TH PPM	SR PPM	CD PPM	SB PPM	B1 PPM	V PPN	CA 2	P	LA PPM	CR PPR	MG X	BA PPN	11 2	8 PPM	AL Z	NA Z	к 2	N PPM	AU1 PPB	
SOIL 37	25	52	16	326	.1	11	12	1489	5.19	193	5	ND	2	60	4	8	2	52	.52	.240	8	15	.46	141	.01	2	2.65	.02	.10	1	1	
S01L 38	24	35	17	302	.1	11	10		4.58	193	5	ND	1	42	1	ь	2	47	.40	.050	10	13	.64	90	.01		2.34	.01	.07	1	1	
SOIL 39	24	40	21	235	.2	11	12		4.37	122	5	ND	1	10	1	6	2	41	.04	.075	8	12	.49	90	.01	2	2.75	.02	.07	1	1	
SOIL 40	20	50	29	512	.5	12	12	1286	4.72	961	5	ND	1	59	2	8	2	40	.54	.182	12	14	.52	89	.01	3	2.25	.02	.12	1	1	
SOIL 41	10	63	22	422	.2	13	11	733	4.46	387	5	ND	2	56	1	8	4	42	.48	.082	11	11	.53	97	.01	2	2.13	.02	.07	1	1	
SOIL 42	5	25	12	93	.4	4	4		3.07	61	5	ND	1	9	1	5	2	42	.03	.107	7	9	.22	50	.01		1.56	.01	.05	1	1	
SOIL 43	18	59	61	461	1.0	8	9		3.82	370	5	ND	1	79	3	7	5	40	.70		20	10	.46	133	.01		2.65	.02	.10	1 2	1	
SOIL 44	15	42	25	697	.3	7	8	465	4.22	648	5	ND	2	63	2	5	2	38	.60	.183	13	10	.47	132	.01		2.24	.02	.08	2	1	
SOIL 45	17	25	20	147	.7	7	5	303		236	5	ND	1	12	1	4	2	35	.07	.140	8	10	.31	67	.01		2.06	.02	.07	1	1	
SOIL 46	33	47	11	853	.2	13	10	686	4.57	666	5	ND	1	33	2	7	2	42	.26	.043	10	15	.64	76	.01	2	2.32	.01	.0/	1	1	
SOIL 47	23	61	27	664	.8	14	9		4.72	761	10	ND	2	77	2	4	2	37	.73		20	15	.52	93	.01		2.73	.02	.07	1	1	
S01L 48	13	48	17	136	.1	11	11	525	4.99	48	5	ND	1	7	1	4	2	39	.02	.044	8	10	.49	68	.01		2.32	.01	.05	1	1	
SOIL 49	11	44	26	999	.3	13	12	931	5.09	117	5	ND	1	58	4	4	2	43	.37	.086	10	12	.48	104	.01		2.29	.02	.07	2	1	
501L 50	13	38	22	135	.2	9	10	562	5.12	75	5	ND	1	22	1	4	2	47	.12		8	13	.50	100	.01	2	2.45	.01	.07	1	1	
SOIL 51	27	26	19	145	.1	13	11	1065	4.40	91	5	ND	1	64	1	4	2	52	.48	.191	6	15	.48	138	.01	2	2.31	.01	.07	1	1	
S01L 52	15	41	27	187	.4	11	9	685		461	5	ND	1	12	1	7	3	64	.04		8	17	.39	77	.02		2.64	.01	.09	1	2	
SOIL 53	5	32	17	995	.7	14	7	333	4.42	798	5	ND	1	30	1	2	2	38	.37	.096	10	13	.55	66	.01		2.48	.01	.05	5	1	
SOIL 54	9	73	28	1099	.1	14	12	839	5.06	797	5	ND	2	44	3	6	2	43	.39		11	14	.57	99	.01		2.44	.02	.07	2	2	
STD C/AU-S	21	61	42	127	7.1	71	29	1123		38	18	8	41	53	20	18	21	61	.51		41	58	.90	171	.08		1.82	.07	.14	13	53	
S01L 55	4	51	29	482	.2	14	12	622	5.58	608	5	ND	1	13	1	10	2	42	.12	.051	7	13	.57	56	.01	2	2.64	.01	.05	1	16	
SOIL 56	3	42	32	369	.6	10	10	661	5.62	891	5	ND	1	9	1	6	2	43	.04		7	12	.44	62	.01		2.43	.01	.05	1	1	
SOIL 57	3	63	21	210	.2	14	12	767	5.32	703	5	ND	2	13	1	7	2	48	.04		9	14	.50	107	.01		3.09	.02	.07	1	1	
SOIL 58	2	95	39	403	.3	18	16	1183	4.96	596	5	ND	2	46	1	6	2	39	.61		11	13	.56	107	.01		2.45	.02	.06	1	1	
SOIL 59	3	70	161	563	.6	14	21	2147	6.04	837	5	ND	2	81	2	3	2	30	1.18		7	12	.42	93	.01		2.04	.01	.06	6	1	
S01L 60	1	45	18	111	.1	16	14	815	5.16	46	5	ND	1	34	1	3	2	49	.31	.070	9	13	.59	147	.01	2	2.77	.02	.06	1	1	
SOIL 61	2	34	11	91	.3	6	6	360	3.71	52	5	ND	1	9	1	2	2	49	.02		7	10	.28	76	.01		2.37	.01	.06	1	1	
S01L 62	1	51	30	133	.1	13	14	899		45	5	ND	1	6	1	2	2	41	.01		8	11	.52	89	.01		2.80	.01	.04	1	1	
S01L 63	1	39	24	115	.1	9	9	584	5.03	31	5	ND	1	5	1	2	2	41	.01		7	9	.48	47	.01		2.19	.01	.03	1	1	
SOIL 64	1	25	17	79	.6	7	6	352	3.15	58	5	ND	1	9	1	4	2	41	.02		8	9	.31	59	.01		2.39	.01	.03	1	1	
S011 65	2	30	37	172	.1	11	16	2372	5.89	62	5	ND	1	9	1	2	2	40	.02	.207	8	14	.38	69	.01	2	2.58	.01	.05	1	2	
S01L 66	1	24	13	81	.3	6	5	518	2.60	19	5	ND	1	12	1	2	2	41	.05		7	8	.24	81	.01		1.71	.01	.04	1	1	
S01L 67	1	36	18	102	.1	10	8	404	4.98	30	5	ND	1	5	1	3	2	41	.01		9	13	.47	51	.01		2.99	.01	.03		1	
S01L 68	1	40	25	128	.2	12	12	1286	4.98	56	5	ND	2	6	1	4	3	49	.01			12		72	.01		2.74	.01	.06			
SOIL 69	1	30	16	119	.1	9	10	737	4.52	50	5	ND	1	6	1	4	2	45	.01	.132	9	12	.37	55	.01	2	2.40	.01	.05	1	1	

Soil n= 33

NORANDA EXPLORATION (VAN) PROJECT-8708-112 240 FILE # 87-3555

Page 2

1

1

1

(

(

C

C

(

(

ť.

1

(

1

0

1

bern.

						N	DRAN	NDA	EXPL	.ORA	TION	1 (0	AN)	FR:0	JECI	-87	08-1	12	240	F I	LE #	81	-355	5		S						Page 3	
SAMPLE	MO	CU	PB	ZN	AG	NI	CO	MN	FE	AS	U	AU	TH	SR	CD	SB	BI	۷	CA	P	LA	CR	MG	BA	U	8	AL	NA	ĸ	N	AUL		· •
	PPM	PPN	PPM	PPN	PPM	PPN	PPM	PPM	2	PPN	PPN	PPM	PPM	PPM	PPM	PPM	PPN	PPM	2	2	PPN	PPM	z	PPH	z	PPM	2	2	2	PPM	PPB		
19666	5	82	81	756	. 6	15	19	1450	5.71	803	5	ND	2	37	7	2	2	41	.42	.093	10	13	.61	68	.01	2	2.37	.01	.07	11	29		
19670	4	51	35	634	6	14	14	1216	4.76	421	5	ND	1	48	7	2	2	40	.41	.085	8	12	.45	68	.01	2	2.10	.01	.05	1	16		
99144	2	36	19	100	.1	14	14		4.28	112	5	ND	1	33	1	2	2	36	.38	.069	Ģ	10	.57	59	.01	2	1.56	.01	.05	1	2		

L.

(

(

C

(

C

C

C

C

(

(

(

Silt n=3

(

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

1

ASSAY CERTIFICATE

							-	- SA	MPLE TYPE	s Rock Chi	ps .						
DATE	RECEIVED:	AUG 24 1987	DAT	TE REPO	RT MA	LED: (Sept 4/	187	ASS	AYER	Ra	H. DEAN	TOYE,	CERT	IFIED	B.C. 4	SSAYE
		NOF					PROJECT		-112 2	240 F	ile #	87-3555	A P	age 1			
	SAMPLE#	MO	CU	PB	ZN	AG	NI	со	MN	FE	AS	υ	тн	CD	SB	BI	AU
	A REAL PROPERTY.	%	7.	7.	7.	DZ/T	x	%	%	7.	%	7.	7.	%	7.	%	OZ/T
	19612	.001	.01	.01	. 40	.06	.01	.01	. 10	2.90	.41	.002	.01	.01	.01	.01	.003
	19613	.001	.01	.01	.03	.02	.01	.01	.04	. 98	.04	.002	.01	.01	.01	.01	.001
	19614	.003	.20	.08	8.36	.81	.01	.01	.01	29.20	14.27	.002	.01	. 11	.01	.01	. 167
	19615	.001	.01	.01	.06	.03	.01	.01	.04	1.19	.08	.002	.01	.01	.01	.01	.001
	19616	.001	.01	.01	.10	.03	.01	.01	.11	3.65	.22	.002	.01	.01	.01	.01	.004
	19617	.001	.01	.01	.04	.01	.01	.01	.06	2.24	.03	.002	.01	.01	.01	.01	.001
	19618	.001	.03	.01	.01	.02	.01	.01	.04	9.12	.01	.002	.01	.01	.01	.01	.002
	19619	.001	.05	.06	.29	. 68	.01	.01	.01		19.29	.002	.01	.01	.02	.02	.112
	19620	.001	.05	.02	.01	.42	.01	.01	.01	25.93		.002	.01	.01	.03	.02	.264
	19621	.001	.13	.02	.02	1.22	.01	.01		29.00		.002	.01	.01	.01	.01	.173
	19622	.001	.12	.09	.22	1.25	.01	.01	.15	34.17	9.72	.002	.01	.01	.05	.04	.171
	19623	.001	.01	.01	.26	.05	.01	.01	.17	9.42	.38	.002	.01	.01	.01	.01	.010
	19624	.001	.03	.02	.07	. 66	.01	.01		19.15		.002	.01	.01	.03	.03	.312
		.001	.03	.03	.05	.14	.01	.01	.05	9.40	.25	.002	.01	.01	.02	.01	.004
	19625 19651	.001	.18	1.23	.87	1.01	.01	.01	.01	2.24	1.05	.004	.01	.01	.45	.01	.011
	10/50	007	.04	.01	.01	.04	.01	.01	18	11.72	.02	.002	.01	.01	.01	.01	.001
	19652	.002	.01	.01	.01	.09	.01	.01	.07	3.47	.29	.002	.01	.01	.01	.01	.001
	19653	.001	.01	.02	. 98	.04	.01	.01	.32	4.14	.89	.002	.01	.01	.01	.01	.006
	19654 19655	.001	.07	.01	.01	.02	.01	.01		11.99	.01	.002	.01	.01	.01	.01	.001
	19656	.001	.01	.01	.09	.08	.01	.01	.04	3.08			.01	.01	.01	.01	.010
	10/57	.002	.05	.14	1.04	.88	.01	.01	03	23.29	16.65	.002	.01	.01	.07	.01	. 364
	19657		.03	.05	2.39	.18		.01		18.43		.002	.01	.03	.05	.01	. 242
	19658	.001	.01	.05	.05	.49	.01	.01		22.36		.002	.01	.01	.07	.01	.533
	19659	.001	.01	.06	. 22	.10		.01		5.18		.002	.01	.01	.01	.01	.017
	19661	.001	.03	.01	.01	.04	.01	.01		11.74	. 17	.002	.01	.01	.01	.01	.004
	19662	.001	.04	.01	.01	.'02	.01	.01	.03	11.89	.03	.003	.01	.01	.01	.01	.003
		.001	.01	.01	.01	.03		.01	.01	2.92			.01	.01	.01	.01	.001
	19663 19664	.001	.09	.51	.65	1.94		.01	.06				.01	.01	.23	.01	.023
	19665	.001	.07	.21	.05	1.69		.01	.01	the state of the second			.01	.01	.11	.01	.025
	19667	.001	.03		.01	.11	.01	.01	C	19.80			.01	.01	.01	.01	.013
	10//0	001	.03	.10	3.91	2.70	.01	.01	.07	4.84	2.02	.003	.01	.02	.01	.01	.018
	19668	.001	.05	.01	.01	.05		.01		11.23			.01	.01	.01	.01	.001
	19669	.001	.05		.02	.03		.01		11.92		.002	.01	.01	.01	.01	.001
	19671	.001	.05		.02	.29		.01	.02				.01	.01	.01	.01	. 195
	19672 19673	.001	.12		.05	.51	.01	.01		25.24			.01	.01	.01	.01	.13
		001		07	.01	. 46	.01	.01	.04	31.33	12.22	.002	.01	.01	.02	.01	. 179
	19674	.001	.14		10000000			.01	.04				.01	.04	.15	.03	
	STD R-1/07	.093	.89	1.37	2.39	2.96	.03	.03	.04	0.71		.007					

Rock n=36

10

(

1

0

(

10

(

NORANDA EXPLORATION (VAN) PROJECT-8708-112 240 FILE # 87-3555A

54

1

í.

2

Page 2

- line

			10 30 00				contrast.				a. 2.200 - 0.10	10000000	0.1.500.000					
5	SAMPLEN	MO	CU	PB	ZN	AG	NI	co	MN	FE	AS	U	TH	CD	88	BI	AU	
		z	×	z	×	OZ/T	×	x	2	z	×.	x	2	x	2	7.	DZ/T	
3	9675	.001	.03	.01	.01	.44	.01	.01	.54	23.95	6.98	.002	.01	.01	.01	.01	.050	
1	9676	.001	.01	.06	.04	.04	.01	.01	.03	9.17	7.18	.002	.01	.01	.04	.01	.019	
1	9677	.002	.05	.01	.01	.06	.01	.01	.03	15.03	.09	.002	.01	.01	.01	.01	.001	
1	9678	.001	.01	.01	.03	.03	.01	.01	.03	3.45	2.68	.003	.01	.01	.01	.01	.007	
	19679	.001	.01	.01	.01	.01	.01	.01	.02	1.17	.02	.002	.01	.01	.01	.01	.001	
	9680	.001	.01	.06	.38	.18	.01	. 01	.33	5.11	1.46	.002	.01	.01	.03	.01	.031	
	9681	.001	.08	.01	.01	.02	.01	.01	.02	12.47	.03	.002	.01	.01	.01	.01	.001	
	9682	.001	.09	.01	.01	.03	.01	.01	.03	16.50	.02	.002	.01	.01	.01	.01	.001	
	9683	.001	.04	.01	.21	.32	.01	.01		11.42	3.33	.002	.01	.01	.01	.01	.077	
	9684	.001	.08	.01	.01	.01	.01	.01		11.46	.01	.002	.01	.01	.01	.01	,001	
,	9685	.001	.06	.01	.01	.01	.01	.01	.03	15.60	.03	.002	.01	.01	. 01	.01	.001	
	9686	.001	.02	.01	.01	.01	.01	.01	.02	7.78	.01	.002	.01	.01	.01	.01	.001	
	9687	.001	.02	.04	.08	.85	.01	.01		10.10	2.81	.002	.01	.01	.01	.02	.034	
	9688	.001	.02	.01	.01	.03	.01	.01		10.96	.01	.002	.01	.01	.01	.01	.001	
	9689	.001	.03	.01	.01	.25	.01	.01		15.32	8.75	.002	.01	.01	.02	.01	.258	
	19009	.001	.05	.01	.01	.23	.01	.01		13.32	0.75	.002			.02			
1	9690	.001	.09	.03	.12	.39	.01	.01	.09	25.61	4.43	.002	.01	.01	.01	.01	.084	
1	26751	.001	.02	.01	.32	.24	.01	.01	.01	6.60	4.48	.002	.01	.01	.01	.01	.085	
1	26752	.003	.01	.01	.06	.05	.01	.01	.07	3.72	.44	.002	.01	.01	.01	.01	.005	
	26753	.001	.05	.05	1.03	.45	.01	.01	.06	14.20	7.69	.002	.01	.01	.02	.01	.248	
	26754	.001	.01	.01	.08	.07	.01	.01	.07	2.28	.34	.002	.01	.01	.01	.01	.007	
	26755	.001	.08	.30	.58	3.09	.01	.01	17	19.95	2.63	.002	.01	.01	.13	.03	.820	
	26756	.001	.01	.04	.04	.31	.01	.01		12.95	9.04	.002	.01	.01	.03	.01	.330	
	26757	.001	.01	.05	.03	.26	.01	.01	1100000	17.06	17.12	.002	.01	.01	.03	.01	.135	
	26758	.001	.02	.25	.13	1.30	.01	.01	.02		3.54	.002	.01	.01	. 10	.03	.359	
	26759	.003	.03	.08	.17	1.30	.01	.01		16.55	3.40	.002	.01	.01	.04	.01	.146	
	10/07	.005	.05	.00			.01	.01	.02	10.33	3.40	.002	.01			.01		
- 2	26760	.003	.01	.04	.03	.24	.01	.01	.04	15,28	14.24	,002	.01	.01	.02	.01	.081	
- 2	26761	.001	.02	. 39	. 37	.23	.01	.01	.19	2.03	.08	.002	.01	.01	.04	.01	.002	
1	26762	.001	.05	.04	.15	.89	.01	.01	.03	14.96	6.77	.002	.01	.01	.02	.01	.153	
1	26763	.001	.04	.04	1.44	.45	.01	.01	.01	11.82	5.71	.002	.01	.02	.02	.01	.308	
-	26764	.001	.03	.07	2.53	.35	.01	.01	.02	14.00	12.85	.002	.01	.04	.04	.01	.337	
	26765	.001	.01	.02	.39	.18	.01	.01	.04	5.69	4.79	.002	.01	.01	.01	.01	.147	
	26766	.001	.08	.07	1.09	1.38	.01	.01	.03		6.06	.002	.01	.02	.01	.03	.550	
	26767	.001	.02	.01	3.04	.16	.02	.01	.15	7.01	1.32	.002	.01	.03	.01	.01	.033	
	26768	.002	.03	.04	.04	1.81	.01	.01	.08	13.49	2.96	.002	.01	.01	.03	.01	.042	
	26769	.004	.04	.04	.03	2.22	.01	.01	.03	5.17	2.84	.002	.01	.01	.03	.01	.055	
1e	26770	.003	.01	.01	.05	.11	.01	.01	.13	1.89	.08	.003	.01	.01	. 01	.01	.003	
	STD R-1/0Z	.093	.89	1.37	2.40	2.96	.03	.03	.08	7.01	.95	.010	.01	.04	.14	.03	.005	

Rock n=36

1 1111111111

-years

1

			NORANDA	EXPL	ORATION	(VAN)	PROJE	CT-B	708-113	2 240	FILE #	87-355	55A			
SAMPLE#	MO	CU	PB	ZN	AG	NI	CO	MN	FE	AS	U	тн	CD	SB	BI	AL
	%	%	%	%	OZ/T	7.	%	7.	7.	7	7.	7.	%	7.	%	OZ/T
26771	.012	.01	.01	.06	.05	.01	.01	.12	2.12	.05	.002	.01	.01	.01	.01	.002
26772	.001	.01	.02	.07	.18	.01	.01	.10		1.43	.002	.01	.01	.01	.01	
26773	.001	03	.07	.02	1.05	.01	.01	.04		2.23	.002	.01	.01	.01	:01	.068
26801	.001	.12	.03	.01	2.28	.01	.02		28.13			.01	.01	.03	.02	.882

Page 3

• 1

(

1

£

ŧ

1

1

4

Rock n=4

ŧ

1

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 · ACME ANALYTICAL LABORATORIES LTD.

GEOCHEMICAL ANALYSIS CERTIFICATE

Pinemet/ Tommy lack / General (In)

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEC. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MY FE CA P LA CR MS BA TI & W AND LIMITED FOR WA & AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: PI-SILT P2-ROCK AUI ANALYSIS BY AA FROM 10 GRAM SAMPLE.

DATE REPORT MAILED: Cet 22/87 ABSAYER. Nothin. DEAN TOYE, CERTIFIED B.C. ASSAYER DATE RECEIVED: DCT 16 1997

> NORANDA EXPLORATION (VAN) PROJECT-8710-046 240 File # 87-4907 Page 1

SANPLEN	NO PPH	CU PPM	PE PPM	ZN	A5 PPN	NI PPM	CO PPM	NN PPM	FE 1	45 1911	U PPM	AU PPM	TH PPM	SR PPM	CD PPM	SB PPM	BI PPM	V PPN	CA I	ł	LA FPM	CR PPM	#5 1	BA PPM	11	B	AL 1	NA T	K I	PPR	AU1 PP8	1
78083		30	20	161	.1	30	26	15241	4.04	31		ND	2	53	1	2	2	65	.39	.075	11	34	.49	858	.02	2	1.83	.01	.07	t	1	
78084	1	37	5	152	.1	19		1491			5	10	i.	67	i	2	2	49	.87	.142	11	24	.47	239	.02	5	1.85	.01		1	1	
78185	3	27	14	199	.1	24		7760		20	5	ND	1	58	1	2	2	64	.68	.101	10	28	.61	408	.03	4	1.67	.02	.06	1	1	
78085	2	41	12	186	.1	30		5189		18	5	80	1	54	1	2	2	81	.65	.110	17	37	. 76	278	.06	3	1.85	,03	.09	1	2	
78091	3	59	12	123	.2	22		1097		17	5	ND	2	71	1	2	2	62	.82	.067		28	.63	209	.03	2	1.92	.02	.09	1	1	
78092	2	н		134		25	18	2055	4.53	20	5	80	2	41	1	2	2	84	.47	.074	11	23	.71	195	.04	3	1.64	.02	.08	1	1	
78093	ĩ	38		98	.1	15	12		4.53	21	5	ND	2	44	1	2	2	52	.53	1000		77	1.00	68	.05		2.11	.04	.10	1	1	
92613	1	62	17	110	.1	18	16		4.70	17	5	ND.	1	57	i	2	2	36	.54	.067	1	12	.48	101	.01	2	1.62	.01	.04	1	2	

Silt

.

cc: Del file: Tommy Jack : Pinenet : Robert 1 : Utsun Cik 93m/SE

8110-046

PHONE (604) 253-3158 FAX (604) 253-1716

1.

									EXPL						ECT					1			-490									age 2	
SAMPLE	MD	CU	PB	ZN	A6	NI	CO	XN	FE	AS	U	AU	TH	SR	CD	SB	BI	٧	CA	P	LA	CR	MG	BA	TI	B	AL	NA	K	N	AUt		1
	PPM	PPH	PPM	PPM	PPH	PPM	PPM	PPM	z	PPM	PPN	PPM	1	I	PPM	PPM	z	PPM	1	PPM	I	Z	z	PPM	PPB		1						
19851	1	99	8	13	.2	4	2	81	1.11	2	5	ND	1	12	1	2	2	8	.09	.034	7	4	.03	66	.01	2	.31	.06	.06	1	1		
78087	1	9	8	53	.1	27	16	495	2.85	2	5	ND	2	150	1	2	2	84	2.21	.065	3	24	1.28	60	.29	6	1.91	.02	.03	1	1		
78088	1	19	7	22	.1	28	12	582	1.99	9	5	ND	1	294	1	6	2	16	18.16	.021	2	3	5.92	52	.01	5	.40	.02	.06	1	1		
78089	1	75	8	66	.1	24	14	752	3.19	3	5	ND	2	134	1	2	2	36	4.38	.095	15	26	1.38	38	.01	6	.44	.04	.10	1	1		
78090	9	137	5	28	.2	26	10	397	1.72	2	5	ND	2	21	1	2	2	11	1.85	.041	7	2	.10	50	.01	2	.22	.03	.08	1	2		
78094	1	155	26	41	1.1	10	14	308	6.56	136	5	ND	1	19	1	36	4	30	.04	.027	8	10	.48	29	.01	2	1.49	.01	.07	1	105		
78095	63	687	13	70	.5	17	23	912	8.55	37	5	ND	2	78	1	2	2	18	2.86	.489	9	3	.09	14	.06	2	1.20	.06	.03	2	5		
78096	5	13	19	46	.1	1	2	725	1.50	2	5	ND	6	124	1	2	2	1	1.38	.027	17	1	.08	38	.01	5	.32	.04	.14	1	1		
92614	1	1691	23	28	1.4	25	37	490	19.58	2	5	ND	4	24	1	2	119	23	1.24	.034	2	7	.46	33	.05	2	1.12	.02	.21	120	930		
92616	1	336	17	17	.7	13	22	323	18.86	8	5	ND	3	4	1	16	3	41	.05	.048	4	7	.53	15	.01	2	2.58	.01	.13	35	7		
STD C/AU-R	20	62	37	133	7.6	73	79	1049	4.04	41	20	8	39	55	19	18	18	61	.49	.092	41	58	.90	182	.07	37	1.88	.07	.14	12	485		

.

.

1

1

.

1

Rock

ŧ

PHONE (604) 253-3158 FAX (604) 253-1716 ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

(On) Pinemit

8711-042

1

1

40

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H2D AT 95 DEC. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR M5 BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. SANPLE TYPE: PI-T SOIL PA-STIT

RECE	IVEL		NON 6		1	HIE	RE	UR	MA 1	LED	• /		1							1			515	,			э.			-	
				N	IORAN	IDA	EXPL	ORA	TION	1 (1)	AN)	PR:0	JECT	-87	11-0)42	287	F	ile	# 8	7-55	82	F	Page	1					1	
AMPLES	MO	CU	PB PPM	ZN PPH	A5 PPM	NI	CO PPM	MN	FE	AS	U	AU	TH PPN	SR PPM	CD PPM	SB PPM	BI	PPM	CA	PI	LA	CR	M5 I	BA	11 1	B	AL	NA	KI	PPH	NOV 2 4 1987
	11.0			ma																2023							1000	194		1	
200-1	2	3?	14	111	1.2	11	7		4.68	82	5	ND	2	31	1	2	2	46	.29	.098	?	13	.43	75	.01		2.12	.03	.06	1 :	Id ~ F
200-2	+	50	14	781	1.4	11	10		4.13	328	5	ND	3	62	6	2	2	41	1.0	.114	ġ	12	.42	101	.01		2.18	.04	.10	3	E - F
200-3	4	49	19	440	.9	12	12		4.52	449	6	ND	4	48	3	2	2	43		.052	9	13	.44	123	.01		2.22	.04	.09	1 1	
200-4	4	45	21	86	1.4	8	6	306	6.11	161	12	ND	ò	9	1	2	2	47		.081	6	18	.27	47	.02		5.90	.02	.11	2	
200-5	11	39	15	132	.6	12	13	466	4.85	824	5	ND	2	59	1	2	2	41	.48	.053	8	13	.42	67	.01	2	3.49	.03	.05	6	UT-
200-6	16	31	10	251	1.0	11	10	907	4.12	665	5	ND		75	1	2	2	41	. 66	.074	7	14	.40	102	.01	2	2.61	.03	.08	2	HL
200-7	7	24	17	58	.5	5	4		6.14	69	5	ND	2	12	1	2	2	78	.08	.045	5	13	.15	55	.02	3	2.13	.02	.05	3 2	10
200-8	30	30	17	218	.9	8	10			1911	9	ND	i	42	1	2	2	40		.108	10	14	.24	51	.01		3.23	.02	.08	1.	
200-9	9	36	24	122	1.0	7		1716		213	5	ND		12	i	2	2	59		.052	8	13	.37	105	.01		3.19	.02	.07	4	
200-10	9	200	30	495	1.2	14		1643		379	5	ND	1	81	3	ĩ	2	37	.99	.068	10	14	.28	74	.01		1.73	.03	.05	7	> .
200-10		200	30	47.1	1.2	14	14	1043	7.30	3/1		NY.					•		•••	1000		•••								(1. Di
200-11	6	51	24	237	.8	12	11	794	4.75	204	5	ND	2	70	2	2	2	44	.87	.097	11	14	.46	91	.01	2	2.46	.04	.05	3 -	20: Del Jele: Pinen
200-12	8	33	32	102	.5	7	6	338	8.35	412	5	ND	2	29	1	11	2	64	.29	.087	7	12	.27	66	.01		2.00	.03	.08	3 (In Dawn
200-13	9	77	22	281	1.7	9	12	3854	4.05	501	10	ND	4	104	4	2	2	33	1.05	.274	15	11	.26	120	.01	2	2.78	.03	.10	44	ill: Fuller
200-14	8	32	15	101	1.4	7	5		5.53	71	5	ND	4	34	1	2	2	74	.42	.107	8	11	.21	70	.01	2	1.46	.02	.11	2	
200-15	3	37	16	110	.7	12	11		5.28	51	5	ND	2	ø	1	2	2	42	.10	.124	6	13	.46	76	.01	2	2.59	.02	.05	2	
100 12						200			4124			64		12	22		160										1. 180				
200-15	3	35	12	160	.6	5	4	100 million (100 m	4.44	296	5	ND	2	38	1	2	2	48		.063	8	9 10	.16	125	.01		1.86	.02	.03	2	
200-17	4	47	24	134	1.1	7	6		4.53	116	5	ND	3	21	1	4	2	43	.25	.078	- T.							.02	.07	i	Δ.Δ
200-18	1	36	16	66	1.0	6	5		7.60	27	5	ND	2	8	1	2	2	66	.06	.217		13	.16	60	.01		1.84			5	1) • 0.
200-19	10	54	22	169	.9	16			5.41	260	5	ND	4	70	1	2	2	50		.129	11	23	.37	119	.01		2.71	.03	.06		V.U
200-20	3	36	13	107	.8	8	8	925	4.95	37	5	ND	2	76	1	2	2	45	.85	.094	9	12	.29	94	.01	2	2.06	.03	.06	1	12
200-21	3	32	18	123	.8	11	9	485	6.10	34	5	ND	3	14	1	2	2	48	.14	.056	8	14	.43	76	.01	2	2.73	.02	.07	4	11
200-22	3	30	15	87	.2	8	6		4.94	20	5	ND	1	8	1	2	2	45	.08	.063	7	11	.30	58	.01	2	1.89	.02	.01	3	V
200-23	1	37	11	104	1.1	11	10		4.87	16	5	ND	4	8	1	2	3	39	.10	.078	7	11	.47	67	.01	2	2.08	.02	.10	1	
200-24	3	27	9	90	.7	7	8		4.61	32	5	ND	2	22	1	2	2	49	.16	.062	7	11	.29	63	.01	2	1.86	.02	.06	4	
200-25	2	29	9	90	1.0	7	6		5.07	17	5	ND	2	6	1	2	2	45	.01	.062	6	12	.27	54	.01	2	2.54	.02	.06	1	
			1.0		050									52		-															
200-26	2	30	16	88	.9	7	6		5.94	36	5	ND	3	7	1	2	2	45		.099	7	11	.27	56	.01		2.66	.02	.05	2	2
200-27	3	33	10	89	1.1	8	7	-	5.66	19	6	ND	2	19	1	2	2	47		.082	7	12	.34	56	.01		2.09	.02	.09		
200-28	2	34	11	82	.2	6	5		6.BO	21	5	ND	1	5	1	2	2	55		.087	7	14	.21	65	.01	-	2.61	.01	.03	3	
200-29	3	29	14	72	.7	7	5	389	5.91	20	5	ND	2	5	1	2	2	53		.085	6	12	.25	55	.01		2.12	.01	.02	5	
200-30	2	22	10	68	.1	7	6	351	4.56	15	5	ND	1	11	1	2	2	44	.10	.117	6	11	.31	70	.01	2	1.87	.02	.04	1	
500-1	3	40	16	78	1.8	8	7	552	4.93	60	5	ND	2	23	1	2	2	38	.13	.137	5	15	.26	58	.03	2	4.76	.02	.03	5	
500-2	2	39	14	96	.6	10	10		4.52	73	5	ND	2	12	1	2	2	44		.062	7	12	.37	58	.02	2	2.42	.02	.07	1	
5 A D - 7	1	89	57	119	.6	6	4		6.63	406	5	ND	2	16	1	2	2	59		.081	7	11	.20	78	.01		2.25	.02	.06	1	
500-3 500-4		32	26	97	.5	7	i		4.35	270	5	ND	i	7	i	2	2	48		.072	7	11	.24	56	.01		2.44	.01	.01	1	
500-4 500-5	1 2	48	30	120	1.2	13	9		4.68	127	5	ND	ż	9	1	2	3	41		.072	7	15	.52	67	.01		3.73	.02	.07	3	
300-3	2	40	20	120	1.2	15	1	302	4.00	141		CIN.				1		-									155 1 4901	ANCES.	10000		
	2	46	19	95	1.3	9	8	509	4,87	84	5	ND	4	7	1	2	3	45	.02	.098	8	14	.40	59	.01		3.80	.02	.09	3	
500-6									100 C	0.000	100	6	40	54	19	18	22	60	.51	.091	40	62	.88	185	.08	77	1.93	.08	.17	14	

idea and Soil n=36

NORANDA EXPLORATION (VAN) PROJECT-8711-042 287 FILE # 87-5582

SAMPLE	MO PPH	CU PPM	PB PPM	ZN PPM	A5 PPM	NI PPM	CO PPM	MN PPM	FE	AS PPH	U PPM	AU PPM	TH PPM	SR PPM	CD PPH	SB PPM	BI	PPM	CA	PI	PPH	CR PPN	MG I	BA PPM	1	PPM	AL	NA	ĸ	PPM
4500-7	1	37	22	79	.2	9	5	359	4.60	121	5	ND	2	6	1	2	2	55	.03	.125	7	14	.27	54	.01	2	2.77	.02	.05	1
4500-8	2	22	14	66	.1	5	3	248	4.96	66	5	ND	1	7	1	2	2	53	.02	.127	5	11	.24	42	.01	2	1.83	.02	.04	1
4500-9	2	32	19	183	.4	14	11	713		161	5	ND	2	30	1	2	2	42	.39	.083	9	11	.50	95	.01	2	2.52	.04	.05	1
4500-10	6	112	27	499	1.7	32	16	2729	4.26	367	5	ND	6	48	3	2	2	28	.59	.241	44	22	.20	265	.01	2	5.78	.04	.08	4
4500-11	7	40	24	66	.1	7	5		5.96	180	5	ND	2	7	1	2	2	69	.04	.086	7	12	.25	42	.01	2	2.31	.02	.07	4
4500-12	10	36	24	263	1.5	14	14	3655	4.83	1064	5	ND	4	55	2	2	2	51	.58	.199	15	17	.44	90	.02		3.17	.06	.11	1
4500-13	8	42	22	107	.1	12	8	376	5.22	215	5	ND	2	8	1	2	2	50	.04	.051	7	14	,48	91	.01		3.54	.02	.06	5
4500-14	7	43	17	173	.4	14	12	735	4.96	1861	8	ND	2	82	1	2	2	45	.86	.098	9	16	.51	56	.01		2.73	.05	.10	1
4500-15	6	51	23	154	.1	15	13	932	5.50	619	5	ND	2	42	1	2	2	51	.40	.085	9	15	.50	94	.01		2.85	.04	.05	1
4500-16	34	38	19	143	•1	10	11	1120	5.72	1352	5	ND	1	102	1	2	2	49	1.04	.155	11	13	.29	65	.01	2	2.37	.04	.04	3
4500-17	14	43	15	74	.2	10	5	328		90	5	ND	2	14	1	2	2	52	.10	.072	9	14	.21	62	.03		2.81	.02	.04	3
4500-18	12	46	41	141	.1	11	11	865	5.90	144	5	ND	3	8	1	2	2	41	.05	.097	8	11	.30	55	.01		2.27	.02	.06	2
4500-19	4	44	20	109	1.7	8	7	962	4.17	138	5	ND	2	11	1	2	2	40	.03	.128	7	10	.19	85	.01		1.77	.02	.08	1
4500-20	7	46	46	103	.3	6	5	244	5.71	357	5	ND	2	6	1	2	2	47	.01	.062	7	10	.19	58	.01		2.51	.02	.03	1
4500-21	13	84	45	110	.6	6	8	978	5.62	460	5	ND	2	8	i	2	3	49	.03	.185	8	11	.25	56	.01	2	2.54	.02	.08	38
4500-22	5	34	14	111	1.0	6	5	514	4.19	112	5	ND	4	9	1	2	3	47	.03	.133	7	9	.23	77	.01		2.23	.02	.09	1
4500-23	10	64	21	278	.4	10	8	671	6.56	1320	5	ND	2	38	2	2	2	42	.45	.180	15	12	.32	52	.01		2.91	.03	.03	5
4500-24	4	58	42	180	1.0	10	7	444	5.46	632	5	ND	3	24	2	2	2	43	.28	.096	8	10	.30	70	.01		2.08	.03	.06	1
4500-25	5	41	30	121	.3	5	5	621	3.58	258	5	ND	1	6	1	2	2	50	.02	. 142	8	9	.16	47	.01		1.85	.02	.04	13
4500-26	3	26	18	83	.1	5	3	250	2.78	105	5	ND	1	7	1	2	2	32	.02	.119	1	10	.15	54	.01	2	2.37	.02	.05	5
4500-27	5	48	87	278	1.0	8	7	752	5.06	227	5	ND	2	10	1	2	2	45	.05	.112	7	10	.25	56	.01		2.66	.02	.05	1
4500-28	14	49	32	167	1.1	7	5	242	4.52	302	5	ND	3	74	2	2	2	54	. 65	.091	9	9	.20	78	.01	1.1	1.90	.03	.08	2
4500-29	5	76	24	247	.2	8	7	449	5.65	468	5	ND	1	57	2	2	2	48	.65	.115	8	11	.33	77	.01		2.49	.03	.05	1
4500-30	5	56	19	77	1.0	5	6	432	3.45	152	5	ND	2	22	1	2	2	51	.16	.114	10	8	.10	82	.01		1.61	.02	.07	2
4500-31	2	45	27	139	.4	12	11	568	5.63	108	5	ND	3	29	1	2	2	46	.28	.083	9	12	.40	92	.01	2	3.01	.03	.08	1
4500-32	5	54	17	128	1.4	12	10	640	5.03	148	5	ND	4	9	1	2	2	43	.04	.095	10	11	.43	83	.01		2.94	.03	.10	1
4500-33	3	42	19	96	6	7	6	723	6.66	90	5	ND	1	10	1	2	2	49	.05	.151	6	12	.22	61	.01		2.50	.02	.03	1
4500-34	7	174	25	1109	1.3	14	11	2102	3.64	757	5	ND	2	136	13	2	2	28	1.63	.204	20	10	.24	101	.01		2.13	.04	.09	3
4500-35	9	73	22	161	.7	13	11	694	5.04	119	5	ND	2	50	2	2	2	47	.52	.104	13	12	.34	103	.01		2.64	.03	.04	4
4500-36	2	41	26	87	.3	7	6	401	7.56	83	5	ND	2	5	1	2	2	60	.01	.083	7	14	.24	40	.01	2	3.49	.02	.02	1
4500-37	3	45	15	157	.5	13	9	739		56	5	ND	2	17	1	2	2	48	.14		7	12	.43	173	.01		2.42	.03	.05	32
4500-38	2	54	17	194	.3	14	13	1403	5.34	71	5	ND	2	27	1	2	2	45	.29	.168	12	15	.50	134	.01		3.05	.04	.08	1.0
4500-39	3	78	30	151	.8	13	18	1566	6.15	112	6	ND	4	42	1	2	2	48	.62	.135	10	13	.38	118	.01		2.98	.04	.09	1
4500-40	7	72	39	165	1.2	10	14	2772	5.20	137	5	ND	3	62	2	2	2	35	1.00	.270	19	12	.21	74	.01		2.37	.04	.08	1
4500-41	3	43	15	189	.6	12	9	768	5.32	220	5	ND	1	59	1	2	2	40	.86	.147	12	17	.37	72	.01	2	2.52	.04	.05	, i
4500-42	4	33	13	107	.1	12	11	614	4.95	72	5	ND	2	25	1	2	2	45	.22	.042	8	12	.48	84	.01		2.12	.03	.04	4
STD C	20	60	42	138	7.5	71	29	1073	4.17	40	18	7	40	48	19	18	21	60	.50	.092	40	56	.88	184	.08	22	1.90	.05	.14	13

Soil n=36

(

1

12

\$51-7FA

NORANDA EXPLORATION (VAN) PROJECT-8711-042 287 FILE . 87-5582

Page 3

ï

÷.

1

€.

10

c

1

٢.

¢

ť

٢.

(

C

distant allows

SAMPLEN	HO	CU	PB	ZN	A6	NI	CO	MM	FE	AS	U	AU	TH	SR	C0	58	81	۷	CA	P	LA	CR	85	BA	11	. 8	AL	NA	x	×
	PPM	PPM	PPM	PPM	PPĦ	PFN	PPH	PPR	1	PPH	PPM	FPM	PPN	PPN	PPH	PPH	PPM	PPH	1	1	PPn	PPH	1	PFM	1	PPM	1	1	1	PFM
4500-43		57	13	140	1.4	14	17	1766	1.52	73	5	ND		76	1	2	2	32	1.07	.205	13	14	.31	83	.01	2	3.54	.04	.08	1
4500-44	2	35	8	139	1.2	14	10	688	3.98	72	5	10	2	46	1	2	2	31	.63	.098	13	12	.42	97	.01	2	2.20	.03	.08	1
4500-45	2	41	16	90	.2	10		484	5.07	34	5	ND	2	8	1	2	2	43	.04	.066	1	11	.42	50	.01	2	2.39	.02	.06	1
4500-46	3	35	13	108	.2	12	10	598	4.57	29	5	ND	1	76	1	2	2	45	.32	.097	9	14	.47	90	.01	2	2.38	.03	.05	1
4500-47	2	32	7	88	1.0	10	7	586	3.58	11	5	ND	3	37	1	2	2	44	.38	.111	8	11	.37	89	.01	2	2.04	.03	.10	1
4500-48		33	13	83	.1	5		906	3.14	10	5	10	1	88	1	2	2	39	.79	.130	7		.14	92	.01	2	1.32	.03	.04	2
4500-49	2	30	20	91	.4	9	5	407	2.76	25	5	ND	1	42	1	2	2	38	.36	.093	7	11	.33	98	.01	2	1.77	.03	.05	2
4500-50	3	27	18	71	.8	7	5	265	5.72	19	5	ND	3	8	1	3	3	47	.07	.085	5	11	.24	79	.01	2	2.00	.02	.08	2
4500-51	3	39	22	162	.6	8		769	3.71	246	5	ND	1	84	1	2	2	32	.93	.124	10	12	.25	135	.01	2	2.01	.03	.04	2
4500-52	2	31	12	103	.4	,	,	621	4.81	23	5	ND	2	37	1	2	2	52	.42	.076	7	11	.34	127	.01	2	2.17	.03	.10	1
4500-53	1	#	10	103	1.2	9		559	4.29	25	5	ND	3	69	1	2	2	37	1.28	.194	11	10	.17	197	.01	2	1.84	.03	.11	1
4500-54	4	38	15	99	.2	10		571	5.03	57	5	ND	2	5	1	2	3	43	.02	.058	7	12	.39	58	.01	2	2.29	.02	.07	5
4500-55	1	42	12	101	.7	12	11	1487	4.65	19	5	ND	3	34	1	2	2	41	.36	.072		11	.45	70	.01	2	2.10	.03	.09	1
STD C	20	62	40	135	7.3	73	30	1015	4.14	42	16	7	38	48	18	14	24	61	.50	.095	38	58	.87	183	.09	33	1.89	.05	.15	13

Soil n= 13

NORANDA EXPLORATION (VAN) PROJECT-8711-042 287 FILE # 87-5582

SAMPLE	MO PPM	CU PPN	PB PPM	ZN PPM	A6 PPM	NI PPM	CO PPM	MN PPH	FE	AS PPM	U PPM	AU PPM	TH PPM	SR PPM	CD PPM	SB PPM	BI PPM	V PPH	CA I	P I	LA PPM	CR PPM	M5 I	BA PPM	TI	B PPM	AL I	NA I	K I	PPH	AUI PPB
26826 P	5	42	18	279	.5	14	11	1122	4.15	781	6	ND	1	82	2	2	2	39	.83	.075	7	15	.49	60	.01	2	1.96	.05	.05	4	4
26827 P	10	39	38	760	.4	13	14	1393		523	5	ND	2	41	6	2	2	43	.43	.066	8	12	.85	77	.01	2	2.02	.04	.10	2	2
26828 P	3	43	22	437	.4	15	13			258	5	ND	2	29	4	2	2	43	.36	.058	8	15	.87	70	.03	2	1.99	.05	.12	2	1
26829 /	1	27	11	178	.2	13	12	1695	3.96	58	5	ND	1	59	1	2	2	33	.74	.053	8	11	.69	111	.01		2.02	.04	.05	1	3
26830 /	2	33	14	138	.4	14	12	944	4.53	54	5	ND	2	27	1	2	2	37	.31	.061	11	12	.84	69	.01	2	2.12	.04	.10	6	1
92615 P	5	35	16	220	.7	15	13	2502	4.21	706	5	ND	1	72	2	2	2	38	.66	.069	7	15	.58	60	.01	2	1.86	.05	.07	4	320
92617 1	2	24	29	196	.4	9	8	922		108	5	ND	1	77	1	2	2	26	1.03	. 053	7	10	.39	98	.01		1.42	.04	.03	1	1
92618 1	2	25	14	115	.1	11	10	897		72	5	ND	1	47	1	2	2	35	.52	.047	9	11	.51	86	.01		1.72	.04	.06	2	1
92619 P	3	23	15	117	.2	12	10	836		73	5	ND	1	31	1	2	2	44	.27	.055	7	12	.53	66	.01		1.92	.04	.02	2	1
92620 P	1	35	10	102	.3	14	14	1000		14	5	ND	1	22	1	2	2	40	.19	.039	8	12	.55	114	.01	2	2.08	.04	.04	2	6
92621 P		36	13	100	.3	15	16	1154	4.68	13	5	ND	2	20	1	2	2	41	.26	.061	8	13	.60	104	.01	2	1.94	.04	.03	1	2
92622 P	ŝ	28	18	109	.2	13	11	893		164	5	ND	1	40	1	2	2	39	.33	.051	7	11	.55	56	.01	2	1.65	.03	.04	7	1
92623 P	2	28	14	104	.2	14	12	750		136	5	ND	2	30	1	2	2	42	,32	.061	9	12	.64	50	.01	2	1.64	.04	.05	2	2
92624 f	ĩ	30	13	103	.4	14	13	876		58	5	ND	2		1	2	2	42	.29	.057	8	12	.66	60	.01	3	1.66	.04	.04	2	1
92625 P	2	23	16	114	.1	10	13			22	5	ND	1	25 24	1	2	2	42 39	.22	.094	7	11	.44	101	.01	2	1.96	.04	.03	2	2
STD C	19	57	38	130	7.5	67	27	1025	4.07	40	20	7	38	50	18	19	19	56	.48	.086	38	59	.85	177	.08	31	1.84	.08	.13	14	-

5

3

P-ZOMESH, PULVERIZEP

Sil+ n=15

1

Page 4

15

13

(

(

1

(c)

1

(

(

(

(

(

(·.

6

(

(

t

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

ACME ANALYTICAL LABORATORIES LTD.

GEOCHEMICAL ANALYSIS CERTIFICATE

Renewet (AM)

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEC. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MW FE CA P LA CR MS BA TI B W AND LINITED FOR WA K AND ML. AU DETECTION LINIT BY ICP IS 3 PPH. - SAMPLE TYPE: Rock Chips AUE ANALYSIS BY AA FROM 10 GRAM SAMPLE.

DATE RECEIVED 1 NON 24 1997 DATE REPORT MAILED: Dec 3/87 ASSAYER. D. AUge. . DEAN TOYE, CERTIFIED B.C. ASSAYER

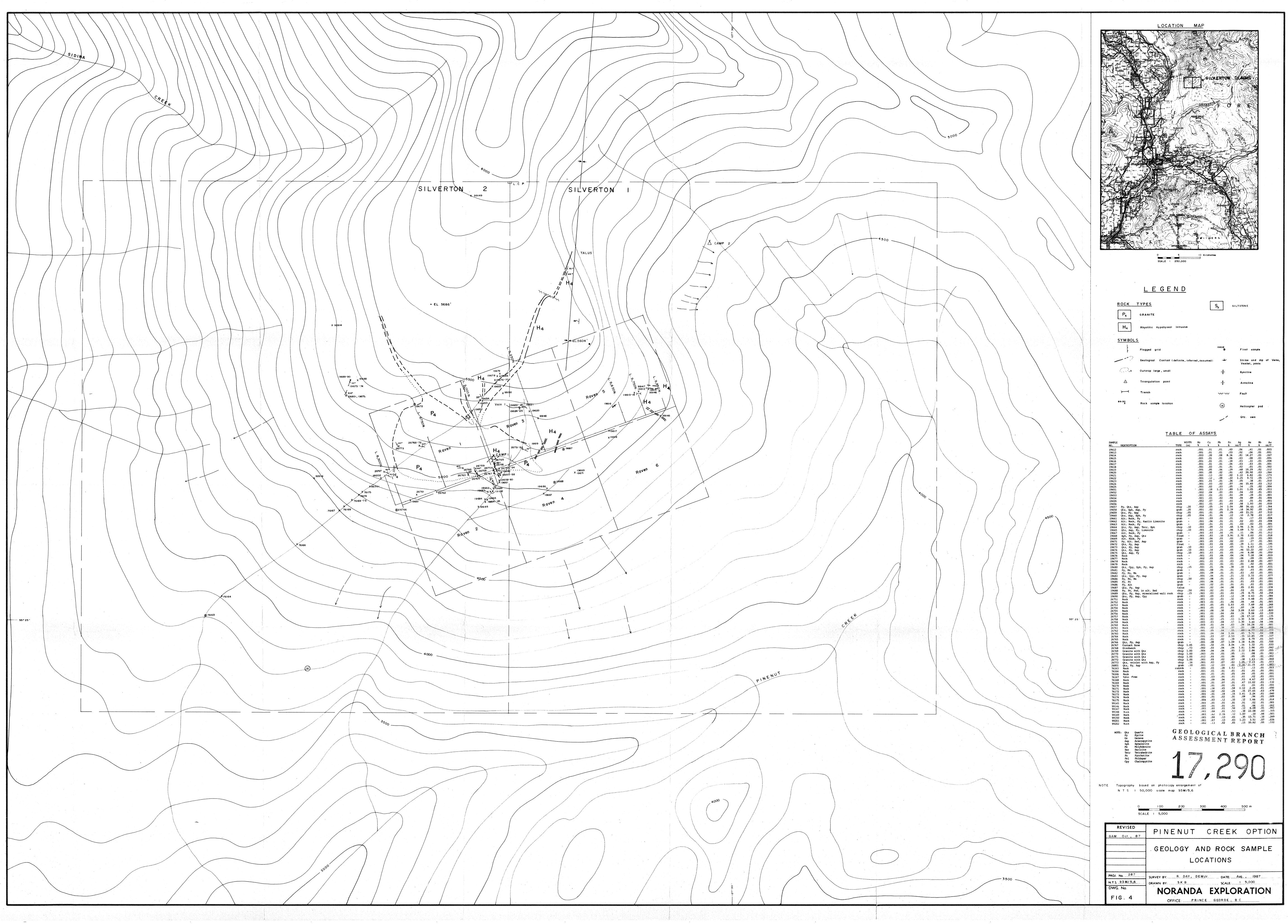
NORANDA EXPLORATION (VAN) PROJECT-8711-069 287 File # 87-5881

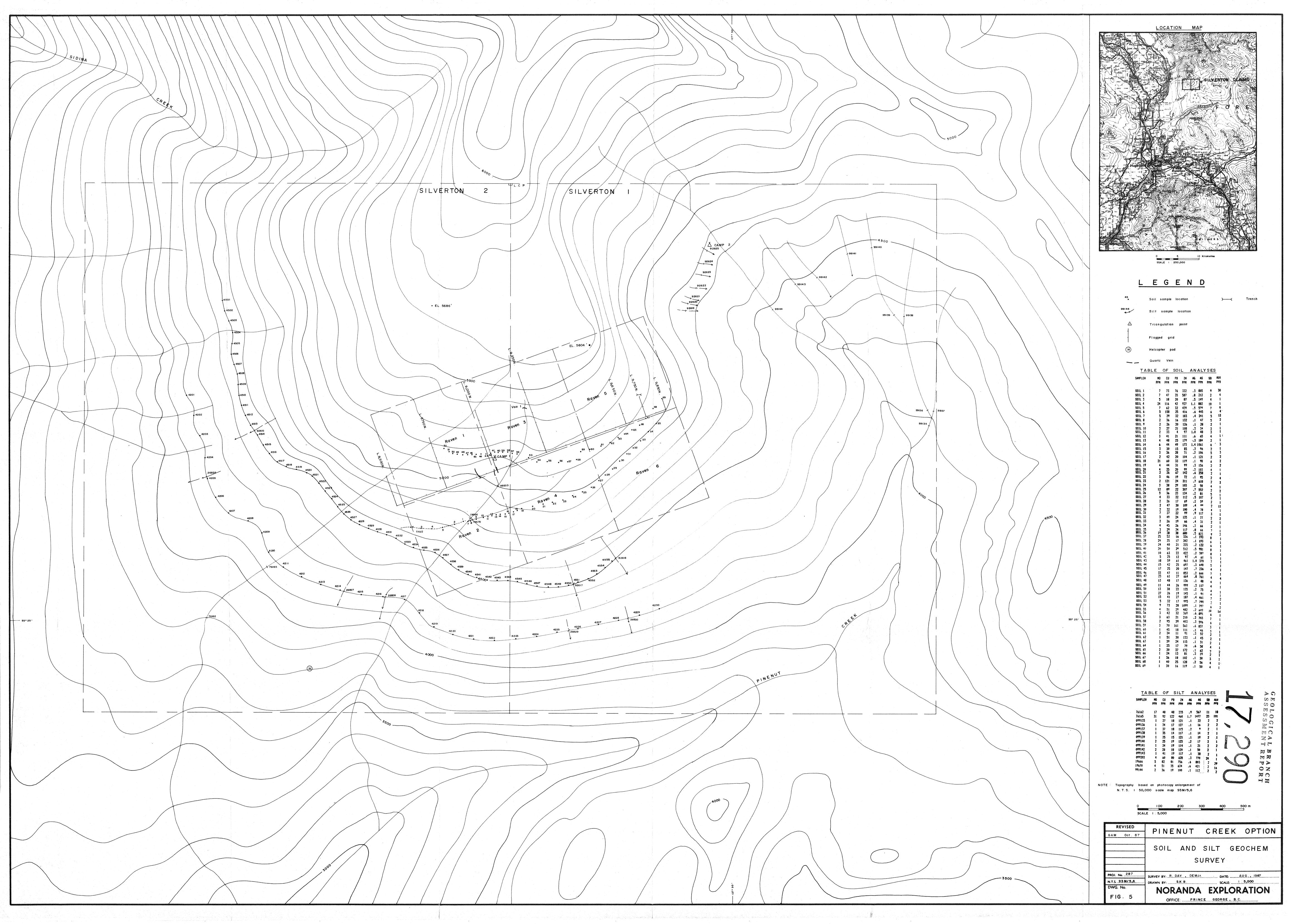
SAMPLEN	ND PPM	CU PPM	P9 PPN	ZN PPM	A6 PPM	NI PPM	CO PPM	HN PPM	FE	AS PPM	U PPM	AU PPM	TH PPM	SR PPM	CD PPM	SB PPM	BI PPM	PPN	CA 1	P 1	LA PPM	CR PPM	15	BA PPM	п 1	PPM	AL 1	NÅ T	K 1	PPN	AU1 P99
26795	1	17	11	432	.1	1	2	1400	1.17	60	5	ND	1	50	5	2	2	1	.94	.029	15	1	.05	105	.01	5	.43	.03	.20	1	2
26786	1	12	14	132	.1	1	1	738	.66	15	5	NO.		16	1	2	2	1	.18	.020		1	.06	60	.01	2	.40	.04	.17	1	11
26787	1	2	18	35	.1	2	1	276	.31	3	5	ND	4	4	1	2	2	1	.04	.010	2	1	.01	40	.01	3	.29	.05	.17	1	ă.
26788	2	257	10	25	2.2	1	9	226	16.75	10	5	80	5	77	1	2	2	70	.77	.056	2	10	.34	89	.13	1	1.88	.25	.13	13	15
26789	1	9	22	41	.1	1	1	115	.48	٠	5	80	3	4	1	2	2	1	.02	.011	2	1	.02	25	.01	2	.31	.05	.19	1	1
26790		200	1007	5069	2.0	3	8	199	3.70	14091	5	ND	2	16	78	411	2	1	.36	.040	2	2	.04	35	.01	3	.25	.01	.18	1	173
26791		82	10	924	2.1	1	3	1425	2.03	99	5	NO	5	10	5	2	2	1	.18	.025	12	1	.03	63	.01	2	.33	.01	.21	1	12
26792	1	5	19	57	.1	1	1	162	.66	64	5	ND	5		1	2	2	1	.09	.031	1	2	.03	39	.01	2	.33	.04	.17	1	3
26793	4	44	26	235	.5	1	1	1174	1.25	64	5	ND	,	7	3	2	2	1	.23	.019	19	2	.01	55	.01	6	.29	.01	.23	1	5
26794	4	26	105	579	1.1	1	1	457	1.31	1239	5	KD	10	14	5	21	2	1	.15	.023	23	1	.01	52	.01	5	.25	.01	.25	1	47
26795		29	6	38	.1	3		417	2.28	7	5	ND	5	9	1	2	2	11	.16	.045	11	5	.33	78	.04	3	.76	.05	.15	٠	8
26796		48	35	1439	1.7	14	11	1105	3.38	199	5	ND	2	1	30	9	2	5	.35	.074	10	2	.03	48	.01	6	.42	.01	.28	1	3
26797	7	41	34	544	.4	4	3	679	1.71	394	3	ND		. 8	. 8	2	2	1	.04	.030	16		.02	48	.01		.34	.02	.24	5	8
25798	4	71	17	1758	1.2	1	2	1487	1.95	449	5	ND.	1	10	27	2	2	1	.12	.036	10	3	.04	52	.01	5	.36	.01	.30	439	7
26799	9	30	17	156	.1	1	2	385	1.92	50	5	82	10	8	1	1	2		.11	.040	18	1	.17	43	.01	3	- 61	.04	.15	5	2
STD C/AU-R	19	61	42	132	7.5	69	29	1051	4.05	40	21		40	47	18	17	20	60	.46	.097	39	41	.90	177	.05	32	1.90	.06	.14	12	495

Rock n = 15

8711-069

PHONE (604) 253-3158 FAX (604) 253-1716


1


٤

Ψ.

DUC DM

.

