District Geologist, Prince George Off Confidential: 89.04.22
ASSESSMENT REPORT 17457 MINING DIVISION: Omineca

GEOLOGICAL REPORT

ON THE

HEIDI - LAY MINERAL CLAIMS

Aiken Lake Area
Omineca Mining Division, British Columbia
$94 \mathrm{C} / 5 \mathrm{E}+\mathrm{W}$
$56^{\circ} 28^{\prime} 45^{\prime \prime}$ N. Latitude 125° 47'18" $^{\prime \prime}$ W. Longitude

For

OPERATOR:
Skylark Resources Ltd. \#902-837 West Hastings Street Vancouver, B.C. V6C 1 B6

OWNER:
John M. Mirko
Vancouver, B.C.

By
GEOLOGICALBRANCH ASSESSMMRTRENRT

TABLE OF CONTENTS

PAGE
Introduction (1) Location and Access 1
(2) Physiography 1
(3) Property Claim Status 3
(4) Property History 3
Exploration Procedure 5
Regional Geology. 9
Property Geology. 9
Mineralization 10
Results 11
Conclusions and Recommendations 18
Itemized Cost Statement 19
Qualifications 20
Reference 21
Appendices (1) Assay Results - Boils and Silts
(2) Assay Results - Rocks
(3) Assay Results - Lay Grid Soils
LLLUSTRATIONS
FIGURE PAGE

1. Location Map 2
2. Claim Map 4
3. Polaris Creek - Soil and Rock Chip Sample Locations - Lay Claims 6
4. Jupiter Adit Area - Lay \#1 and Lay \#2 Claims 8
5. Lay Soils Grid and Results - Lay Claims 13
6. Geological Map - Switchbacks North End Berry Creek Road 15
7. Sample Location Map - Heidi Claims 17

INTRODUCTION

Location and Access

The Heidi-Lay claim group is located 345 kms . northwest of Prince George, B.C., at $56^{\circ} 28^{\prime} 45^{\prime \prime}$ north latitude and 125° 47'18" west longitude. Lay Creek flows southeasterly across the property into the Mesilinka River, which in turn flows into the Omineca Arm of Williston Lake (Figures 1 and 2).

Access to the area is by road 400 kms . north from Fort St. James, B.C. This road runs SE-NW across the Lay \#2, Heidi \#1, and Heidi ${ }^{*} 2$ claims.

Physiography

The Heidi-Lay claim group lies within the Omineca Mountains of the Central Plateau and Mountain area of the Canadian Cordillera. The area is gently rolling to mountainous with elevations from 980 to 1880 metres a.s.l. The Lay Creek canyon, which is 100 to 150 metres deep, runs in a NW-SE direction across the claim group. Also, a smaller canyon is developed on Polaris Creek, a south flowing tributary of Lay Creek (Figures 2 and 3).

Rock exposure is poor to excellent on the claim group. Glacial deposits mantle the valley slopes up to about 1300 metres a.s.1. Rock exposure is very good in the Polaris and Lay Creek canyons, as well as the rugged mountainous area of the Heidi \#2 claim.

SKYLARK RESOURCES LTD.	
HEIDI-LAY CLAIM GROUP	
LOCATION MAP	
N.T.s. 94C-5	OMINECA M.D.,B.C.
100-200	${ }_{\text {Soorm }}$
SCALE AS SHOWN	DATE : FEB. 1988
RAWN BY, C.M.	FIGURE №.

Property claimstatus

The Heidi-Lay claim group is owned by John M. Mirko, of 451 Hermosa Ave., North Vancouver, B.C.

The claim group consists of the following claims:

Claim	Units	Record No.	Anniversary Date
Heldi ${ }^{\text {H }}$	16	8350	April 23, 1988
Heidi \#2	16	8351	April 23, 1988
Lay \#1	18	8352	April 23, 1988
Lay \#2	18	8353	April 23, 1988
Lay \#3	12	8354	April 23, 1988
Lay \#4	12	8355	April 23, 1988

Property History

Prospecting has been active in the area since the turn of the century when placer gold deposits were worked on Jim May Creek and on the Igenika River. Much prospecting and development work was carried out by Cominco in the 1930's and 1940's. A few major and funior mining companies explored for porphyry coppermolybdenum and Mississippi valley lead-zinc type deposits in the 1960's and 1970's. Some exploration for precious metals was done in the late 1970's and 80's, but was soon eclipsed by new gold discoveries in the Toodoggone area. No economic ore bodies have been developed in the Aiken Lake area to date.

CHONG

EXPLORATION PROCEDURE

Field work was carried out by Chris McAtee, geologist, Doug Hopper and John Sveen, prospectors, as well as Tom Smith, assistant, from July 8 to August 5, 1987.

Geological mapping, prospecting, rock chip sampling, and geochemical soil and silt sampling were carried out on the claims as follows: Soil samples were taken from the "B" horizom whire available

Area

Jupiter

Polaris

South of Jupiter

Granite Basin

Claims

Lay \#1, \#2

Lay \#3, \#4

Lay \#2, \#4

Heidi \#1, \#2

Work Program

5 soil samples
6 rock samples
23 soil samples
9 rock samples
295 soil samples
3 silt samples
19 rock samples
13.6 kms . lines

19 soil samples
6 silt samples 10 rock samples

Jupiter

Reconnaisance work was carried out in the area of the old Jupiter workings. The main adit, which is on the west side of Jupiter Creek, was open and in fairly good condition. No samples were taken underground due to unsafe conditions. Rock chip samples were taken on the steep east-facing cliff above the Jupiter portal and across Berry Creek to the east. Also a short soil sample line was run above the steep south-facing cliff on the east side of the creek (Figure 4).

Polaris

Soil samples were taken every 100 metres along the bluff on either side of the Polaris Creek canyon. Rock chip samples were also collected. (Figure 3).

South of Jupiter
A 13.6 km . soils grid (Lay grid) was put in south of the Jupiter showing on the south side of the Lay Creek canyon. The Omineca road was used as a baseline with lines 200 metres apart and stations 50 metres along the lines (Figure 5). Soil samples were taken at all stations along the lines and at 50 metre intervals between the ends of the lines. Also, the baseline was sampled for soils at 50 metre intervals. A soil sample line, with a few rock chip samples, was also run along the south bluff overlooking Lay Creek west of the Berry Creek road (Lay \# series - Figure 5).

At the north end of the Berry Creek road, a series of switchbacks exposes fresh bedrock and several new mineralized showings (Figures 4 and 6). Rock chip samples were taken and the veins and showings mapped.

Granite Basin

Reconnaissance work was undertaken on the Heidi \#1 and Heidi \#2 claims, where several traverses were run for soil and silt geochemistry (Figure 7).

CHONG

REGIONAL GEOLOGY

The Heidi-Lay claim group occurs within the 1:253,440 scale, Aiken Lake map area (Roots, 1954).

Regionally, Tenakihi group metamorphic rocks, Takla group sedimentary and volcanic rocks, and unnamed interbedded volcanic and sedimentary rocks are intruded by Omineca intrusives of Mesozoic age. Northeast of Blackpine Lake, Wolverine Complex amphibolites, quartzites, and skarns are present.

Structurally, beds of the Tenakihi group have been deformed into a series of compound folds that have overwhelmed earlier more north-trending folds. Northwesterly faulting plays a major role in localizing mineralization, both regionally and locally.

RROPERTY GEOLOGY

Rocks exposed on the Heidi-Lay claim group consist of tuffs, andesites, limestone, argillite, and chert, with numerous small dykes and stocks of acidic to intermediate composition.

The Polaris Creek Canyon shows a complex assemblage of slaty argillites, impure limestone, tuffs, and andesitic flows intruded by quartz biotite porphyry dykes or plugs.

All other rocks on the property are green or grey tuffs and andesites, sometimes interbedded with limestone.

Structure is complex, as evidenced by fresh exposed bedrock in a series of switchbacks fust south of the old Jupiter workings.

MINERALIZATION

The Heidi \#1 and \#2 claims cover the old Halquinn and Red Dyke groups which were staked in 1947 on the extension of the Granite Basin zone. This zone contains four wide pyritized bands exposed within a horizontal distance of about 600 metres contained in porphyritic andesites and diorite porphyry.

The Lay \#1 to \#4 claims cover the old Jupiter and Polaris groups held and worked by Cominco from 1936 to the 1940's. Early exploratory work on the Jupiter group consisted of two adits, one on either side of Berry Creek near its confluence with Lay Creek.

On the old Jupiter group, two distinct types of mineral deposits have been found in altered andesites and tuffs. The first is represented by a brecciated fault zone, the second by well defined quartz-calcite fissure veins mineralized with sphalerite, tetrahedrite, galena, and minor chalcopyrite, covellite, and pyrrhotite.

The old polaris group, which is situated about one kilometre east of the Jupiter workings, consists of several showings. Networks of quartz and quartz-calcite veins are mineralized with bands of blebby pyrite, arsenopyrite, pyrrhotite, and minor chalcopyrite. Also found along polaris Creek are several lens-like bodies of pyrrhotite, pyrite, and chalcopyrite near a quartz-biotite porphyry plug or dyke.

The object of the 1987 work was to further explore the area for precious metals mineralization.

RESULTS

Jupiter

Sample locations and assay results from the rock chip and soil-silt program are shown on Figure 4 and Appendix 2.

A quartz-carbonate vein containing fine grained galena, malachite, and azurite returned $114 \mathrm{ppb} \mathrm{Au}, 160.8 \mathrm{ppm}$ (160.8 g/tonne) Ag, 710 ppm Cu , and 1.6% combined pb plus zn across 127 cms. This vein (assay \#2057, \#2061) is brecciated and fractured, with fault gouge on both the hanging wall and foot wall as well as within the vein itself. The vein most likely corresponds with underground vein \#1 or vein \#3 mentioned in Roots' report (Roots, 1954).

Thirty-five metres northeast of the above mentioned vein, a 6.0 cm wide quartz vein (${ }^{(2055)}$ strikes 240 and dips 85 SE. A rock chip sample of vein material containing pyrrhotite, galena, and other unidentifiable sulphides returned 294.4 ppm (294.4 g/tonne) Ag, $0.8 \% \mathrm{~Pb}$ plus Zn , and anomalous Cu and Sb values. In the same vicinity a 5.7 cm wide banded quartzcarbonate vein with pyrite and chalcopyrite (\#2056) gave 260 ppb Au and 243 ppm As.

The adit on the east side of Berry Creek was found to be sloughed. One sample of picked material from the dump (\#2063) gave values of $145 \mathrm{ppb} \mathrm{Au}, 69.4 \mathrm{ppm} \mathrm{Ag}, 3.8 \% \mathrm{~Pb}$ plus Zn , and 345 ppm Cu. The picked sample consists of vein quartz with very fine grained galena and possibly tetrahedrite. An anomalous value of 4.8 ppm Ag was returned from a soil sample (B-002) above rusty tuffs approximately 200 metres ESE of the main Jupiter adit.

Polarls

Low assay values were returned from the Polaris area (Figure 3 and Appendices 1 and 2).

Five rock chip samples, each across 165 cms , at the main Polaris showing gave only mildy anomalous values of 223 to 371 ppm Zn. At the showing, highly fractured silicified rocks with 1 X 1 metre patches of yellow and orange stain contain thin quartz fracture fillings. The only visible sulphide is fine grained pyrite in $4 \times 10 \mathrm{~mm}$ blebs.

A 33 cm wide rusty zone in silicified grey quartzite and green cherts strikes $168 / 62^{\circ} \mathrm{E}$ and outcrops on either side of Polaris Creek (\#2072 and \#2703, Figure 4). The zone, which contains massive pyrrhotite and pyrite, is probably related to a feldspar-biotite porphyry dyke or plug found 50 metres upstream. Values of $60 \mathrm{ppb} A \mathrm{Au}$ and 685 ppm Cu were returned for assay \#2073. Soil samples numbered $\mathrm{P}-012$ and $\mathrm{P}-103$ gave assay values of $1.9 \mathrm{ppm} A g$ and 835 ppb Au respectively. Neither of these samples were taken in proximity to any mineral showing seen by the writer.

South of Jupiter

Spot high precious metal values, as well as a few high base metal areas are found on the Lay soils grid (Figure 5).

Gold values of $280,185,140$, and 79 ppb over a distance of 1900 metres were returned. Also, five samples southeast of the Berry Creek road and four samples in a 100 X 150 metre area near $6+00$ West showed values around 1.0 ppm silver.

Spot high arsenic values of 144 ppm (coincident with 1.1 ppm Ag) and 243 ppm were returned. Also, mildly anomalous values of 125 to 276 ppm zinc were received.

Rock chip samples from veins in tuffs and andesites exposed in the series of switchbacks at the north end of the Berry Creek road gave low assay values (Figures 4 and 6, Appendix 2.)

Here, sub-parallel shallow dipping barren quartzcarbonate veins are cut by many near vertical shears. A 30×45 cm boulder of angular float containing fine grained galena and pyrite (\#2053) returned $2.2 \mathrm{ppm} \mathrm{Ag}, 395 \mathrm{ppm} \mathrm{Zn}$, and 193 ppm Pb . The only other interesting value is 3509 ppm Zn in a 10 cm thick quartz-carbonate vein (\#2051). No anomalous rock chip or soil assay values were obtained from the line run along the south bluff overlooking Lay Creek west of the Berry Creek road.

Granite Basin

A series of soil samples taken along a steep east-facing ridge ($\mathrm{H}-001$ to $\mathrm{H}-005$) and down "Heidi Creek" ($\mathrm{H}-006$ to $\mathrm{H}-010$), gave the following results:
$A g \mathrm{ppm} \quad \mathrm{Au} \mathrm{ppb}$

H -001	2.0	49	
H -002	0.6	345	
H -003	1.0	158	
H -008	0.4	134	near \#2058 rock chip sample
H -009	2.0	91	

Locations are shown on Figure 7.

CHONG
Bedrock exposed here is massive green andesite with
minor limestone. Pyrite occurs in $3 \times 4 \mathrm{~mm}$ blebs and with
calcite in fracture fillings, as well as with up to 2%
disseminated pyrrhotite. No significant assay values were
obtained from a soil-silt traverse of two creeks tributary to Lay
Creek (Y-001 to 015 series).

CONCLUSIONS AND RECOMMENDATIONS

Work on the Heidi-Lay claim group has shown that low precious metal values are found in quartz and quartz-carbonate vein systems. Several high lead and zinc values were returned for soil and rock samples.

Recommendations for further work include:

1. Juplter - Prospecting, rock and silt sampling on Berry Creek.
2. Polaris - Prospecting, rock and possibly silt sampling to the north of work already done on Polaris Creek.
3. Reconnaisance and prospecting, soil and rock sampling, on several traverses between Berry and Polaris Creeks.
4. South of Jupiter (Lay Grid) - Extend the grid to the southwest and possibly fill soil lines between existing lines.
5. Southwest corner of Heidi \#2 claim - Prospecting and rock sampling above tree-line. Very steep area.

With the exception of the Lay grid which has excellent road access, the work recommended here is best done with helicopter setouts.

ITEMIZED COST STATEMENT

HEIDI-LAY CLAIM GROUP

Field Wages - 1 prospector 8 days @ \$130/day	1,040.00
1 geologist 14 days @ 135/day	1,890.00
1 assistant 9 days @ \$130/day	1,170.00
1 assistant 14 days @ \$95/day	1,330.00
Report/Drafting/Wordprocessing	1,270.00
Mob/Demob - Vehicle - Fuel - Equipment	245.00
Camp 42 man days @ \$35/day	1,470.00
Assays - $395 @ \$ 13.25 / \mathrm{each}$	5,233.75

TOTAL \$ 13,648.75

QUALIFICATIONS

I, CHRISTOPHER L. MCATEE, certify that:

1. I am a minerals exploration geologist.
2. I am a graduate of Brock University, st Catharines, Ontario with a degree in geological Sciences (M.Sc., 1977), and a graduate of Wright State University, Dayton, Ohio, with a degree in Geology (B.Sc., 1972).
3. I have spent the past ten years in mineral exploration and development in Canada and the United States.
4. I personally examined the property and directed the geophysical program conducted by Skylark Resources Ltd. in 1987.

Vancouver, B.C. April, 1988

Christopher L. MAte Geologist

Roots, E.F. (1954) Geology and Mineral Deposits of Aiken Lake Map - Area, British Columbia. Geological Survey of Canada Memoir 274, 246 pp.

SAMPLE:	MO	CH	PD	2 N	AG	HI	co	MK	FE	AS	U	AU	TH	58	CD	58	81	V	CA	P	LA	CR	K6	SA	II	θ	AL	kH	K	N	Allt
	FPM	PPM	P9\%	PPM	PPK	PPK	PPK	PPM	2	PPM	PPM	PFM	PPM	PPM	PPM	PPK	PPM	PPM	I	2	PPM	PPK	z	Pr	1	FP\%	2	2	z	PPM	PP
- -001	1	12!	27	12?	2.2	10	27	1409	9.62	164	5	N0	2	23	1	5	3	159	. 72	. 045	10	56	. 62	310	. 04	5	1.67	. 01	. 07	1	53
8-902	1	150	69	189	4.8	33	23	1047	7.37	87	5	HD	3	17	2	12	2	128	. 34	. 027	8	45	. 19	255	. 01	J	1.66	. 01	. 07	1	36
J-003	1	103	18	89	. 2	35	28	1219	6.41	48	5	H0	1	22	1	2	2	120	. 44	. 032	5	53	1.04	218	. 05	5	2.32	. 01	. 06	1	3
E-004	1	104	12	82	. 6	42	23	1004	4.98	48	5	NO	1	33	1	2	2	108	. 76	. 043	4	56	1.00	117	. $0:$	9	2.39	. 01	. 07	1	9
I-005	1	180	21	9	. 2	37	34	144	7.30	74	5	NO	2	$2!$	1	2	2	157	. 86	. 032	8	63	2.15	132	. 05	5	3.29	. 01	. 12	1	15
H-001	1	55	51	156	2.0	19	10	590	5.38	20	8	ND	2	72	1	2	3	4	. 50	. 093	3	43	. 86	16	. 13	2	5.60	. 01	. 06	1	49
H-002	1	19	36	163	. 4	26	18	609	5.21	28	5	KD	2	100	1	2	2	65	. 70	. 056	2	51	1.38	105	. 14	2	6.49	. 01	. 07	1	345
H-003	1	82	30	139	1.0	30	17	523	4.89	15	5	N0	2	57	1	2	2	81	. 63	. 056	3	59	1.44	107	. 20	5	5.53	. 02	. 04	,	151
H-004	1	72	21	125	. 9	27	15	587	4.47	10	5	ND	1	72	1	2	2	58	. 65	. 066	2	46	1.13	4	. 12	2	3.97	. 01	. 05	1	57
H-005	1	27	25	126	. 3	19	13	982	5.30	9	5	KD	2	69	1	2	2	94	. 40	. 059	4	44	. 51	146	. 18	5	2.50	. 02	. 05	1	30
H-006	1	130	7	106	. 2	40	22	895	4.76	14	5	KD	2	90	1	2	3	98	1.98	.07!	3	75	2.16	59	. 16	2	3.38	. 02	. 07	1	19
H-007		138	15	117	. 2	41	24	493	4.52	12	5	KD	2	101	1	2	2	7	1.00	. 054	4	59	1.59	85	. 19	2	3.10	. 03	. 04	1	12
H-008	1	30	19	71	. 4	24	13	460	7.11	.	5	ND	3	38	1	2	2	193	. 38	. 045	4	64	1.22	59	. 33	2	2.52	. 01	. 03	1	134
H-00?	4	176	20	90	2.0	37	19	805	9.60	51	5	N0	3	590	1	2	2	68	1.31	. 054	3	15	1.21	143	. 18	2	3.08	. 10	. 09	1	71
H-010	1	176	17	139	. 4	38	21	725	4.54	18	4	ND	1	104	1	2	2	10\%	2.32	. 100	5	10	1.92	71	. 11	5	3.45	. 03	. 07		11
P-001	2	54	16	133	. 3	41	17	472	4.14	45	5	ND	2	24	1	2	3	91	.41	. 109	1	58	1.08	101	. 10	2	2.55	. 01	. 04	1	2
P-002	1	85	7	95	. 3	36	12	585	3.29	22	5	ND	1	108	1	2	2	63	2.19	. 060	6	55	1.15	182	. 11	13	2.03	. 02	. 05	1	1
P-003	4	32	11	BJ	. 1	23	8	264	4.01	51	5	ND	2	29		5	2	112	. 45	. 024	1	39	. 59	93	. 09	3	1.47	. 01	. 05	1	1
P-004		32	11	105	. 1	27	11	593	4.31	71	5	ND	1	24	1	6	2	88	. 34	. 013	1	42	. 56	112	. 07	J	1.40	. 01	. 09	1	2
P-605	1	47	10	59	. 4	30	10	234	2.16	27	5	NO	2	51	1	2	2	65	. 75	.021	6	79	. 94	79	. 07	4	2.43	. 08	. 05	1	5
P-008	1	61	4	56	. 1	28	14	454	3.16	13	5	ND	2	37	1	2	2	4	. 97	. 025	4	36	1.03	10	. 18	2	1.68	. 02	. 02	1	J
P-007	1	124	6	78	. 1	32	13	494	2.89	-	5	HD	1	82	1	2	2	57	2.46	. 051	5	38	1.09	104	. 14	10	1.56	. 03	. 04	1	12
P-00t	3	49	15	118	. 3	27	14	356	5.71	27	5	ND	2	24	1	3	2	103	. 47	. 086	,	43	. 71	77	. 14		2.09	. 01	. 04		,
P-009	2	73	14	121	. 7	41	19	522	4.66	19	5	KD	2	32	1	2	3	90	. 61	. 013	6	46	1.00	102	. 18	4	2.60	. 02	. 04	1	-
P-010	2	72	11	135	. 5	40	21	636	5.50	30	5	ND	2	25	1	2	2	:2	. 55	. 059	,	45	. 91	81	.11	5	2.19	. 01	. 04	1	4
P-011	2	61	16	113	. 2	42	20	334	5.30	23	5	ND	2	26	1	3	2	97	. 52	.039	4	41	. 82	84	. 20	2	2.29	. 01	. 04	1	14
P-012	5	184	18	211	1.9	107	31	173	6.83	35	6	H0	4	22	,	2	2	13	. 35	. 029	7	43	1.16	97	. 20	2	2.75	. 01	. 05	1	
P-013	2	140	19	244	. 3	58	37	1012	6.06	40	5	N0	2	27	1	3	2	105	. 48	. 065	5	49	1.00	122	. 21	2	2.74	. 01	. 05	1	6
P-014	3	206	12	144	. 6	120	34	530	5.96	26	5	W	4	28	1	2	2	19	. 40	. 021	7	57	1.36	110	. 19	3	2.96	. 01	. 03	1	12

ACME ANALYTICAL LABORATORIES - 852 East Hastings Street, Vancouver, B.C. V6A IR6
Appendix 1 - Assay Results HEIDI - LAY - claim group - Soils and Silts

SKYLARK REBZURCES FRUJECT～FIFESTEEL／GFUBSTAKE FILE \＃B7－3214
5ARPLEI

$-n$	$\simeq \simeq \pm-\infty$	$\simeq \rightarrow-$ 上	$\cdots \rightarrow$－		Mmomo	－m～N－	－omN－	ふーがか
$\sim \sim$	－－－－	ーーーーが		ーーNーツ	－m－～	－－ッ－～～	$\rightarrow-$	\rightarrow
¢	※以心\％	둑둥웅。	三－		웅 웅․․․			$\because \sim$ 으응
\bigcirc	¢	엉후웅	\％¢5 ㅎ	$\bigcirc 55 \%$	등 앙	응웅	흐응응	M－\％
$\stackrel{n}{\dot{c}}$		Mo 응	NㅡㅍN	$\underset{\sim}{n} \text { 곱 }$ NMल	후누웅 min	$\underset{\sim}{~} \underset{\sim}{\circ} \approx$		ヘ～～シ～ minn in
rr	－mN－－		－n＋Nu	NNNNT	$\rightarrow+\infty-\infty$	～n＊om	－nmmm	mrnen
సึ		¢ $\sim_{\text {¢ }}^{\text {¢ }}$	구욲		¢ッ\％	ำ \sim_{0}^{\sim}	우ํッ\％	
0	¢ํo우		感点苛的示	으의 웅	응응	水的可可		ごロニ～
哭各	No응웅		븟쏭응	¢ ¢ ¢ ¢	¢ ¢ ¢ ¢ ¢	둥 응 옥	\mathfrak{F}	
たか		An＊	ペ		覑 \sim_{0}°		以N®엉	ミ士臣気
mm	－mmmm	MnM－N	Naぃmm	\cdots－mun m	のルール	$m+\square m$	いmMNM	\cdots－
¢50	융응승융웅		哭呺웅웅		風可帤男	둥우융ㅎㅇㅇㅇㅇ		웅뭉크ㄴㅜㅜㄱ
命皆		¢			M	か下下が罟	吅 ำำ	
氺		的嵒三気		펑으으응	男끄읋		수읃읏응	可ごッ
nN	NMNMN	NNTON	nnenn	NNmNN	いにNM	nNoner	NNNMN	MNNNN
now	NNNNM	NenNm	nnnen	NMMNN	nNMN	nonnty	nNNNN	nNNNN
－－	－	\rightarrow	$\cdots \rightarrow-\rightarrow-$	－	\cdots	－	ー－ーー－	－ッ－ー－
\cdots	界NかM	品的竿二平	二～0		\％\％NN	がからから	パらヘさ	응ㅇㅇㅇ％
nor	－－	ーーツ－m	－m－m－	－ーーー－	－N－N	nonmm	－－nNm	NN－m－
웆					옺웆우웇		웆우ㅇㅜㅜ웆웆	
かぃ					以umb	にぃいが		のにいいい
$0 \sim$		－\％MコN	嵒응N	ご男ご灾	界유N		$\cdots \sim \sim$	$\infty \cos ^{\circ}$
可	M M M				No M N M		뭉우N	
面罵		莫幸品品			品号品呺	可灾品耍管	N号第等筞	宗客察
$\because \sim$	ロッツコニ		以N玉心	ベッらー	M우은	ロニッ		N～ッ～ニ
\cdots	¢Nニッ～	M	パ\％	品がッ以	品욲	がNが		
Y－	$\because \because \square$	$\because M \because$	Mr：$-~$		凹ツ\％	$\cdots \div \%$	mmma	$\cdots \cdots \%$
罟	\cdots \％	Mosoos	뀽№	鹍式馬気		○8ミロー	\％ 0 \％	
nos	$n \rightarrow N+n$	$\rightarrow * m \sim N$	0		$\simeq コ$－	No「が思	ッロッざ	二or y°
M $\underbrace{(1)}$	がッジ	ミ－\％＝		がッ゙゚		テ～ッ～ッ	べが苗的	三品
－－	－	－－－－－	－	いMOOTN	のぃが	ーーーーー		ーツーーー
$\begin{aligned} & ㅇ ㅡ ㄹ ~ \\ & \vdots y y \end{aligned}$		気気完気空	空空空空弯	으ㅇㅡㅡㅇㅡㅡ응 －- － \boldsymbol{a} ．	$\begin{gathered} \text { Ko } \\ \hdashline a \\ a \\ 0 \end{gathered}$	它荌管苞号。		

SAMPLEI	1 O	CU	P1	IH	${ }^{4} 5$	HI	CO	KN	FE	AS	ป	AJ	IH	SR	co	58	11	v	CA	P	LA	CR	186	Jin	II	1	AL	NA	x	\%	AUI
	PPM	PFK	PRH	PPK	PPM	PYK	PPK	PPM	1	PPM	PPM	PPK	PrM	PFM	PPK	FPK	FPK	FPK	2	2	PPK	PPK	2	P\%	2	FPM	1	2	$\underline{1}$	PPK	P3)
R2001	1	78	27	52	. 1	92	24	526	4.37	3	5	nd	3	19	1	2	2	112	2.65	. 044	2	53	3.26	6	. 34	10	3.17	. 02	. 02	1	2
R2002	1	62	16	37	. 1	39	13	487	2.66	9	5	NO	1	111	1	2	2		12.18	. 059	2	37	1.38	3	. 23	10	2.52	. 02	. 01	2	1
R2003	1	66	9	52	. 3	10	14	587	3.62	2	5	H0	2	217	1	2	2	119	2.05	. 091	3	10	1.95	11	. 20	15	2.35	. 01	. 05	1	1
R2004	1	31	57	53	1.3	3	7	783	2.54	19	5	ND	1	502	t	2	2	11	5.70	. 053	4	3	. 11	463	. 01	1	. 38	. 01	. 21	1	1
R2005	1	61	19	77	2.5	15	17	974	4.91	59	5	ND	1	167	I	6	2	55	8.74	. 027	3	10	1.38	415	. 01	8	. 53	. 01	. 22	1	25
82006	1	66	8	84	. 4	48	23	902	5.91	20	5	ND	2	51	,	2	2	135	4.25	. 034	3	129	2.14	40	. 06	7	3.28	. 02	. 09	1	2
R2007	1	15	2	47	. 3	22	-	1424	3.57	14	5	NO	5	183	1	2	2		24.54	. 009	2	J5	2.55	115	. 01	1	. 63	. 01	. 04	1	1
R2008	1	113	5	66	. 3	53	25	499	5.23	$1!$	5	HD	1	71	,	2	2		10.47	. 052	2	67	1.16	71	. 01	12	2.57	. 01	. 14	1	3
K2009	1	33	1	35	. 2	14	12	1017	2.11	40	5	HD	3	135	1	2	2		19.44	. 017	2	46	1.74	210	. 01	7	. 80	. 01	. 08	1	1
R2010	1	69	5	42	. 6	19	16	851	4.41	11	5	HD	1	114	1	2	2		10.43	. 044	5	18	1.26	270	. 01	14	1.37	. 01	. 19	1	1
R2011	2	45	9	15	. 6	23	14	812	4.68	11	5	ND	1	276	1	2	2	40	7.11	. 017	6	12	1.89	117	. 01	15	1.00	. 01	.17	1	1
R2012	26	16	10	74	1.3	10	7	1075	4.14	B	5	HO	2	221	1	2	2		17.29	. 010	2	4	4.78	204	. 01	1	. 16	. 01	. 04	1	1
R2013	1	61	2	19	. 3	45	15	781	3.12	12	5	HD	2	232	1	2	2		11.75	. 033	4	73	3.05	19	. 01	5	. 56	. 01	. 06	1	1
R2014	1	60	4	51	. 3	276	24	828	4.23	θ	5	H0	1	269	,	2	2	82	9.62	. 056	5	219	3.16	269	. 01	8	. 53	. 01	. 02	1	2
R2015	1	45	4	11	. 4	38	19	920	5. JI	14	5	ND	2	121	1	2	2	73	6.50	. 038	3	31	2.32	314	. 01	12	. 57	. 01	.13	1	1
R2016	6	71	5	54	. 6	14	13	315	3.94	1	5	H0	2	121	1	2	2	47	1.01	.056	2	14	. 71	16	. 18	5	2.11	. 24	. 10	1	45
R-2017	2	41	154	564	1.9	14	12	945	5.69	15	5	ND	2	168	2	6	2	13	1.19	. 010	2	33	1.38	68	. 18	3	2.97	. 16	. 11	1	121
R-2018	1	23	82	203	1.0	4	8	1096	4.93	2	5	ND	1	73	1		2	34	1.25	. 032	2	10	1.98	48	. 14	3	3.51	. 21	. 14	1	54
R-2019	1	15	39	11	. 0	5	10	428	5.47	5	5	NO	1	62	1	5	2	27	. 74	. 036	2	10	. 82	39	. 17	2	2.07	. 20	. 13	1	75
R-2020	1	11	25	67	. 5	1	12	795	5.23	3	5	HD		61	1		2	27	1.00	. 035	2	9	1.00	41	. 16	5	2.16	. 30	.1?	1	50
R-202!	1	17	34	50	. 6	5	12	937	5.17	4	5	HD	1	73	1	5	2	31	1.36	. 035	2	11	1.03	49	.14	2	3.15	. 37	.19	1	104
R-2022	,	41	5	41	. 3	22	10	367	4.17	5	5	HD	1	51	1	J	2	34	. 79	. 052	2	34	. 80	69	. 23	2	1.37	. 05	. 08	1	36
R-2023	1	86	15	91	. 9	15	17	346	5.70	11	5	HD	1	97	1	1	2	43	1.68	. 040	2	10	. 46	4	. 19	3	3.05	. 36	. 15	1	32
R-2024	1	41	10	78	.4	25	12	313	5.50	15	5	ND	,	50	1	5	2	30	. 71	. 048	2	22	. 47	4	. 21	2	2.28	. 17	. 17	1	87
R-202S	1	19	2	11	. 3	6	7	189	5.68	2	5	ND	1	314	1	3	2	52	2.44	. 030	2	9	. 24	47	. 15	2	5.38	. 37	. 13	i	39
R-2026	1	44	5	73	.1	11	18	295	5.69	10	5	H0	1	181	1	4	2	39	2.40	. 036	2	\dagger	. 30	4	. 11	2	4.48	. 54	. 12	2	47
R-2027	1	23	15	19	4	5	10	266	5.13	22	5	HD	1	24	1	2	2	28	1.33	. 039	2	6	. 39	59	. 16	3	1.95	. 06	. 17	1	57
R-2028	1	36	7	68	.1	5	10	284	3.28	10	5	ND	1	71	1	2	2	38	2.12	. 041	2	4	. 53	15	. 14	3	3.10	. 18	.11	1	23
R-2029	2	28	16	60	. 3	3	10	217	4.02	18	5	KD	1	123	1	3	2	22	. 75	. 042	2	1	. 18	110	.10	3	2.32	. 21	.13	I	61
8-2033	1	49	8	57	. 1	55	24	1037	5.03	5	5	ND	1	141	1	2	2.			. 037	3	52	3.30	98		5		. 01			
R-2034	1	45	14	46	. 1	233	27	845	4.67	8	4	HD	1	202	1	2	2	115	11.57	. 038	3	319	4.01	32	. 01	3	8.93	. 01	. 04		

ACME ANALYTICAL LABORATORIES - 852 East Hastings Street Vancouver, B.C. V6A IR6
Appendix 2 - Assay results - HEIDI - LAY CLAIM GROUP - ROCKS

R205t	15	23	37	3509	1.9	6	5	1096	3.39	9	5	ND	1	207	25	2	2		10.72	. 003	2	3	2.07	435	. 01	4	. 14	. 01	. 07	16	1
R2052	1	31	47	99	1.0	4	1	941	2.91	9	5	ND	3	272	1	7	2	14	5.47	.080	8	4	. 44	495	. 01	14	. 46	. 01	. 24	t	1
R2053	18	42	193	345	2.2	7	5	096	2.69	10	5	ND	1	108	3	2	2	12	9.9	. 006	2	4	2.46	541	. 01	6	. 15	. 01	. 04	1	20
R2054	1	50	1	6	1.0	18	11	457	3.81	33	5	ND	1	257	1	2	2	54	12.38	. 018	3	19	1.81	474	. 01	7	. 32	. 01	. 12	1	20
R-2055	4	609	2357	5875	294.4	10	6	709	2.22	d!	5	NO	1	97	105	391	2	11	7.00	. 002	2	5	. 79	25	. 01	6	. 43	. 01	. 07	1	$3!$
R-2056	1	10	7	15	1.0	2	3	1374	1.18	243	5	ND	1	468	1	2	5	7	29.62	. 004	3	4	. 22	27	. 01	2	. 31	. 01	. 05	1	260
R-2057	15	331	849	21648	126.2	3	5	372	. 62	10	5	KD	1	21	555	103	4	3	1.97	. 001	2	- 3	. 06	21	. 01	2	. 17	. 01	. 02	6	59
R-2058	86	58	27	100	1.0	10	13	322	17.34	27	5	ND	1	27	,	1	2	76	. 56	. 023	2	50	. 65	18	. 29	2	1.29	. 02	. 03	1	29
R-2059	1	91	12	478	1.0	10	11	1233	4.23	2	5	ND	1	45	4	4	2	93	1.15	. 031	2	20	2.11	39	. 14	2	3.66	. 10	. 06	1	6
R-2060	1	61	9	193	. 3	12	20	1095	5.81	2	5	ND	1	129	1	4	2	76	1.62	. 031	2	14	2.15	51	. 17	2	4.03	. 13	. 07	,	9
$\mathrm{R}-2041$	10	710	2485	13074	160.8	4	4	377	. 72	16	5	ND	1	30	323	178	2	7	2.51	. 001	2	1	. 11	161	. 01	3	. 32	. 01	. 03	5	114
R-2062	1	78	5	126	. 4	13	17	938	5.00	15	5	ND	1	140	2	2	2	78	7.35	. 030	3	19	1.50	200	. 01	5	. 69	. 01	. 09	,	5
R-2063	6	345	2979	7671	69.4	8	5	1069	2.84	57	5	ND	1	114	130	73	6	7	13.19	. 003	2	2	. 95	4	. 01	3	. 10	. 01	. 02	1	145
R-2064	1	113	15	71	.2	13	-	343	4.54	4	5	No	1	46	1	3	2	B 3	. 16	. 055	-	21	1.30	93	. 32	1	1.12	. 12	. 11	2	7
R-2065	1	141	47	223	. 8	15	θ	300	4.30	2	5	HI	1	69	4	2	4	54	1.75	. 045	1	14	1.00	73	. 27	4	1.42	. 15	. 13	2	5
$\mathrm{R}-2046$	1	154	11	371	. 1	20	14	459	5.25	2	5	ND	1	42	5	2	2	9\%	1.13	. 060	8	23	1.32	45	. 26	,	1.15	. 09	. 12	1	7
R-2067	1	120	16	234	. 1	17	10	603	5.45	2	5	HD	1	47	3	3	4	97	1.35	. 084	10	21	1.54	88	. 40	3	2.01	. 11	. 22	2	2
R-2068	1	102	10	72	.1	4	1	343	4.41	3	5	HD	2	31	1	2	2	45	. 84	. 041	11	12	. 69	02	. 22	4	1.13	. 07	. 10	1	9
R-2072	1	411	10	25	. 2	13	18		13.42	2	5	KD	2	43	1	2	5	95	4.34	. 068	5	32	. 69	10	. 17	2	. 97	. 04	. 03	24	6
R-2073	1	685	1%	36	. 5	23	23	1026	11.97	2	5	HD	1	67	,	2	7	41	6.05	. 055	6	14	. 51	7	. 06	12	. 72.	. 02	. 03	109	40
R-2074	2	239	10	14	. 1	17	20		10.56	2	5	KD	2	70	1	2	2	62	. 87	. 123	5	26	. 11	25	. 18	10	1.06	. 14	. 08	10	1
8-2075	30	190	13	12	.1	4	0	242	8.11	5	5	HD	2	7	,	2	2	86	1.17	. 117	5	24	. 46	20	. 22	6	1.34	. 09	. 05	11	J
R-2095	I	138	7	71	. 3	13	13	115	5.87	4	5	ND	2	202	1	2	8	155	2.60	. 076	1	28	1.61	108	. 28	11	6.84	. 76	1.17	2	7
R-2147	3	201	21	39	. 1	35	14	539	5.9	2	5	HD	2	34	1	2	3	226	5.54	. 051	J	53	2.28	19	. 45	28	5.91	. 02	. 01	2	1
R-2148	1	33	1	48	. 1	39	16	1235	4.72	20	9	HD	1	231	1	2	2			. 010	2	40	4.71	241	. 01	1	. 23	. 01	. 04	1	1
$\mathrm{R}-2149$ $\mathrm{R}-2150$	1	35	5	18	. 1	47	18	1259	5.49	16	6	ND	1	240	1	2	2		14.29	. 015	2	27	5.37	223	. 01	7	. 37	. 01	. 06	1	1
R-2150	1	62	5	48	. 1	79	24	927	4.97	2	5	HD	1	170	1	2	2	153	B. 67	038	4	83	4.70	74	01	1	. 56	. 03	. 03	1	1

ACME ANALYTICAL LABORATORIES - 852 East Hastings Street Vancouver, B.C. V6A iR6
Appendix 2 - Assay results - HEIDI - LAY CLAIM GROUP - ROCKS

- sample typet pi-i goil py-silt pio-nock aut ahalysis dy an from 10 grah sarple.

SAMPLE:	MD	CU	P1	1 N	A6	KI	CO	NN	FE	AS	U	AU	IK	SR	CD	SB	I	V	CA	8	LA	CR.	H6	Ih	II	8	AL	HA	K	U	Ald
	PPM	PPK	PPM	PPM	PPK	PPK	PPK	PPM	2	PFM	PPK	PPK	PFK	PPH	FPM	PPM	PPK	PPM	2	1	PPK	PPM	2	PFM	1	PP\%	2	1	z	PPM	FI

LAY 6 foon 14+50E	2	91	21	133	. 5	323	12		10.31	243	5	ND	2	16	1	5	2	135	. 18	. 011	1	236	2.14	77	. 01	12	3.75	. 01	. 06	1	1
LAY $6+00 \mathrm{~K}$ 15+00E	1	46	J5	173	1.1	23	23	526	9.52	144	5	HD	2	9	1	2	2	102	. 10	. 068	1	27	. 52	122	. 01	7	2.53	. 01	. 08	1	5
Lay 6100 N 15450E	2	31	3	93	. 3	20	13	310	5.17	22	5	N0	2	28	1	2	2	144	. 50	. 058	3	13	. 71	16	. 20	10	1.49	. 01	. 04	1	1
Lay b+00n 16+00E	1	57	14	62	. 2	35	17	484	4.52	23	5	NO	2	24	1	2	2	117	. 64	. 049	3	57	1.18	60	. 22	4	2.12	. 02	. 03	1	16
LAY 5toon $6+50 \mathrm{E}$	2	19	13	170	. 7	46	23	510	5.69	28	5	N0	2	34	1	2	2	136	. 58	. 019	3	61	1.24	17	. 24	6	2.11	. 02	. 04	1	6
LAY 5400k 7400E	1	67	2	137	. 4	31	18	529	6.31	30	5	H0	3	26	1	2	2	153	. 44	. 076	2	51	1.44	46	. 25	13	2.10	. 01	. 01	1	1
Lay 5400N 7+50E	1	103	11	141	. 2	53	30	518	6.24	26	5	N	2	40	1	2	2	156	. 54	. 026	3	72	1.76	54	. 35	14	3.40	. 01	. 01	1	1
Lay 4t50n 10450e	1	41	4	107	. 9	27	14	342	4.59	17	5	ND ${ }^{\circ}$	1	27	1	2	2	120	. 42	. 016	4	50	. 93	53	. 26	4	1.91	. 01	. 05	1	1
LAY 4tSON 13400E	1	18	15	208	. 3	35	20	1033	5.21	11	5	N0	2	33	1	2	2	120	. 52	. 076	3	42	1.30	74	. 20	7	2.53	. 02	. 04	1	11
LAY 4450n [1450e	1	39	5	130	. 4	22	15	602	5.32	11	5	NO	1	21	1	2	2	134	.40	. 095	3	49	1.08	42	. 24	5	2.25	. 02	. 04	1	2
LAY 3+00N 2+00N	1	46	17	72	. 5	35	17	210	5.14	9	5	ND	2	28	1	2	2	157	. 89	. 036	3	75	1.17	52	. 24	13	2.55	. 02	. 02	1	16
LaY 3+00N 1+501	1	53	5	32	. 3	37	It	362	6. 25	19	5	KD	2	29	1	2	2	166	. 62	. 057	3	69	1.34	48	. 26	11	2.73	. 02	. 03	1	25
Lay 3+00N 1+00H	1	35	9	77	. 1	30	13	369	4.34	16	5	ND	2	29	1	2	2	127	. 78	. 060	3	57	1.01	45	. 24	14	2.11	. 02	. 03	1	2
Lay 3+00N 0+50M	1	67	6	62	. 1	50	17	441	7.16	53	5	N0	1	22	1	2	5	112	. 42	. 069	2	103	1.31	65	. 14	10	2.91	. 01	. 03	1	75
LaY 3+00N 2+50E	1	48	15	99	1.0	20	14	332	6.16	39	5	NO	1	25	1	2	2	139	. 54	. 054	3	40	1.05	150	. 13	9	2.47	. 01	. 04	1	155
LAY 3+00H 3400E	2	07	17	132	. 2	35	20	624	5.89	39	5	KD	2	17	1	2	2	120	. 32	. 027	3	59	. 95	204	. 03	13	2.58	. 01	. 04	1	5
Lay 3+00N 3+50E	1	33	12	11	. 3	15	9	210	4.59	12	5	NO	2	22	1	2	2	134	. 45	. 080	3	40	. 91	63	. 17	5	2.29	. 02	. 05	1	2
LAY 3+00N 4400E	1	67	14	51	. 3	24	15	272	3.67	16	5	HO	1	22	1	2	2	93	. 51	.033	2	43	. 91	55	. 14	10	2.39	. 02	. 03	1	13
Lay 1+50\% $15+50 \mathrm{~K}$	1	125	1	72	.1	60	25	515	6.25	J1	7	H0	1	39	2	2	2	186	1.24	. 032	2	78	2.15	57	. 27	14	3.84	. 02	. 04	6	1
LAY 1+50\% $15+00 \mathrm{H}$	1	47	21	88	. 3	35	14	437	4.17	24	5	HO	2	34	1	2	2	180	. 16	. 082	3	78	1.42	56	. 33	7	3.27	. 02	. 03	2	1
LAY 1450N 14+50N	1	68	16	65	. 5	45	19	404	6.51	21	5	N0	2	31	1	2	2	213	1.19	. 035	2	79	1.19	34	. 35	16	3.21	. 02	. 03	1	1
Lay 1+00M 11+50\%	1	27	18	47	. 4	28	10	263	5.00	11	5	KD	2	29	1	2	2	179	. 90	. 044	3	4	1.08	35	. 36	11	2.35	. 02	. 02	1	5
LAY 1400H 11400 H	1	131	13	52	. 1	60	20	695	5.01	23	6	H0	J	16	1	2	2	155	. 59	. 022	4	103	2.57	16	. 16	7	2.63	. 01	. 02	3	2
Lay 1400k 10t50\%	1	20	21	47	. 4	17	1	278	3.90	7	5	No	2	30	1	2	2	197	1.04	. $02!$	3	46	. 74	36	. 41	11	2.07	. 01	. 01	1	1
Lay $2+00518+50 \mathrm{~L}$	1	50	16	77	. 2	53	22	510	6.6	15	5	ND	3	22	1	2	2	205	1.28	. 015	2	95	2.30	33	. 46	16	4.13	. 02	. 02	2	1
Lay $2400519+001$	1	63	16	${ }^{4}$. 1	66	19	421	6.17	24	5	ND	2	21	1	2	2	186	1.75	. 071	2	91	2.18	44	. 37	14	4.01	. 02	. 02	3	39
LaY $2+00510+5014$	1	21	17	67	. 1	22	5	330	5.15	10	5	N0	1	37	1	2		112	. 90	. 005	3	56	. 94	53	. 28	6	2.61	. 02	. 03	1	2
Lay $2+00516+00 \mathrm{M}$	1	21	21	75	.4	38	14	344	5.97	16	5	ND	2	26	1	2	2	197	1.14	. 072	3	77	1.37	34	. 38	4	3.15	. 02	. 03	2	4
Lay $2+00 \mathrm{~S} 15450 \mathrm{M}$	1	89	14	4	.1	49	21	449	4.94	24	5	H0	2	33	1	2	2	169	1.40	. 019	2	71	1.12	53	. 35	10	3.72	. 02	.03	3	3
Lay $2+00515+001$	1	85	11	53	. 2	43	16	372	4.60	1J	5	ND	2	25	1	2	2	156	1.42	. 035	2	65	1.70	44	. 30	2	3.35	. 02	. 02	2	J
LAY $2+00514+504$	1	56	12	92	. 2	30	19	617	5.03	13	5	KD	2	25	1	2	2	182	1.28	. 012	3	57	1.14	11	. 31	19	2.57	. 02	. 03	1	2
Lay $2+00511+50 \mathrm{H}$	I	39	12	95	. 5	38	18	370	5.42	24	5	N0	2	24	1	2	2	187	. 97	. 071	4	67	1.32	45	. 38	2	3.52	. 02	. 02	3	140
Lay $2+00511400 \mathrm{~W}$	1	4	21	41	. 2	56	22	542	6.90	17	5	ND	3	33	1	2	2	199	1.57	.033	2	96	2.54	30	. 16	16	4.01	. 01	. 01	1	5
LAY $2+00510450 \mathrm{~K}$	1	36	15	时	. 4	34	17	391	5.30	11	5	ND	2	26	1	2	2	170	1.01	. 074	3	47	1.54	47	. 36	9	3.38	. 02	. 03	1	4
Lay 2+00S 7450N	1	31	5	13	. 3	42	15	425	6.10	9	5	HD	1	24	1	2	3	201	1.10	. 118	3	73	1.53	45	. 36	15	3.04	. 02	. 02	1	2
LAY 24005 7+00K	1	59	16	45	. 4	67	18	429	5.54	15	5	KD	1	23	1	2	4	146	1.20	.136	3	90	2.09	41	. 31	11	3.11	. 01	. 03	1	1

GKYLARK RESOURCES FFRJECT-FIRESTEEL FILE \# 97-2679
SAMPLE:

LaY 12+00K $1+00 \mathrm{H}$	1	35	15	70	. 3	35	18	405	5.47	5	5	ND	2	28	1	2	2	179	1.00	. 037	3	45	1.35	37	. 36	14	3.19	. 01	. 03	1	7
LAY 12+00K 0450 H	1	50	11	67	. 5	18	18	426	4.77	14	5	HD	3	27	1	2	2	165	1.24	. 071	3	67	1.63	44	. 35	14	J. 16	. 01	. 03	2	3
Lay 12+003 0+00gi	1	50	2	67	. 5	39	21	111	4.69	12	5	HD	3	30	1	2	2	153	1.05	. 085	2	72	1.64	46	. 32	12	3.87	. 02	. 02	1	6
Lay 12+00\% 0 +50S	1	32	11	68	. 5	21	13	359	5.44	2	5	H0	3	26	1	2	2	202	. 85	. 084	3	71	1.28	45	. 42	2	3.28	. 02	. 04	1	5
LAY 12100\% 1+00S	1	41	15	76	. 7	41	18	39 B	6.07	11	5	NO	2	26	1	2	2	192	. 88	. 065	3	88	1.86	44	.42	7	3.87	. 01	. 01	1	1
LaY 12+00\% 1+50S	1	36	3	80	. 5	41	17	405	6.03	13	5	NO	3	25	1	2	2	190	. 87	. 074	3	87	1.63	41	. 43	2	4.38	. 02	. 02	1	6
Lay 12400K 24005	1	27	17	61	. 6	39	12	320	5.03	1	5	ND	1	25	1	2	2	182	. 79	. 058	3	$6!$	1.24	41	. 39	9	3.02	. 01	. 03	1	22
Lay $10+00 \mathrm{NH} 1+00 \mathrm{~K}$	1	43	3	62	. 3	49	17	437	5.79	21	5	N0	3	27	1	2	2	220	1.26	. 024	2	83	1.60	40	. 42	13	3.39	. 01	. 01	1	5
Lay $10+00 \mathrm{~N} 0+50 \mathrm{~K}$	1	33	3	72	. 4	45	16	350	5.02	8	5	ND	2	27	1	2	2	170	1.08	. 047	2	76	1.36	48	. 38	2.	3.56	. 02	. 02	1	2
Lay 10600H 0 050S	1	23	10	12	. 3	21	12	409	5.80	11	5	H0	3	25	1	3	2	195	. 07	. 161	4	67	. 93	34	. 11	9	2.69	. 01	. 04	1	10
Lay 10+00k 1+00S	1	34	2	78	. 1	34	16	386	5.60	9	5	ND	2	26	1	2	2	206	t. 24	. 066	3	64	1.29	32	. 14	11	3.19	. 01	. 02	3	3
Lay 10+004 $1+505$	1	54	10	61	. 4	42	17	103	4.56	9	5	HD	3	27	1	2	2	155	1.23	. 091	2	4	1.48	42	. 34	1	3.71	. 02	. 02	1	18
Lay 10400N $2+005$	1	21	10	69	. 5	27	14	339	5.63	5	5	NO	1	25	1	2	2	208	. 90	. 066	3	71	1.09	4	. 45	2	8	. 02	03	1	7
Lay 8400 N 14005	1	37	14	51	. 4	32	14	343	5.05	2	5	MD	1	25	1	2	2	203	1.21	. 063	3	71	1.32	56	. 43	2	3.34	. 02	. 02	1	1
lay drook it50s	1	79	12	55	. 1	55	20	431	4.53	12	7	NO	1	23	1	2	2	15 ?	1.42	.087	2	70	1.30	37	. 34	5	4.35	. 02	. 03	1	2
Lay d +00\% 24005	1	56	12	18	. 5	51	18	437	5.64	14	5	HI	2	21	1	2	2	182	1.18	. 115	2	92	1.75	40	. 37	1	4.48	. 01	. 02	1	3
Lay $6+00 \mathrm{H} \mathrm{O}$ +50S	1	15	1	107	. 8	57	21	498	6.25	29	5	H0	2	34	1	2	2	173	. 98	. 079	3	44	1.95	53	. 36	12	3.67	. 01	. 03	1	1
Lay $6+00112+005$	2	70	10	116	. 9	40	19	587	6.28	29	5	ND	1	22	1		2	165	. 59	. 063	3	53	1.40	69	. 18	11	3.67	01	. 04	1	22
Lay $6+00 \mathrm{HL} 1+505$	1	40	18	73	. 4	16	17	402	5.1]	10	5	HD	2	23	1	2	2	175	1.40	. 067	3	71	1.55	38	. 39	11	3.56	. 01	. 02	1	12
lay beoty $2+005$	1	42	7	78	.4	27	15	677	5.99	7	5	ND	1	27	1	2	2	192	. 81	. 080	3	61	1.11	71	. 36	10	2.90	. 01	. 02	1	2
LAY $2+00 \mathrm{CH} 2+50 \mathrm{~K}$	1	62	17	90	. 4	35	17	426	5.11	13	5	ND	2	23	1	2	2	143	. 48	. 123	3	67	1.13	6	. 27	5	3.79	. 02	. 04	3	B
LAY 240012400 K	1	34	6	d)	. 5	27	12	301	4.94	7	5	H0	2	29	1	2	2	165	. 59	. 074	4	67	. 97	52	. 37	9	3.29	. 02	. 03	1	10
Lay $2400 \mathrm{~K} 1+50 \mathrm{~N}$	1	25	16	125	. 1	29	17	504	5.4	12	5	K0	2	24	1	2	2	152	. 75	. 129	3	70	1.09	52	. 31	10	3.15	. 01	. 03	1	2
Lay $2+00 \mathrm{~K} 1+00 \mathrm{H}$	1	25	5	85	. 2	31	13	334	5.00	12	5	ND	2	29	1	2	2	162	. 87	. 047	2	10	1.16	35	. 33	11	2.72	. 01	. 03	1	1
LAY 2+001H $0+50 \mathrm{H}$	1	25	12	59	.1	23	10	270	4.53	6	5	HD	1	25	1	2	2	164	. 88	. 057	3	49	. 89	3	. 33	6	2.31	. 01	. 02	1	5
Lay 2+001 04008L	1	33	14	84	. 5	37	17	146	4.72	12	5	HO	1	26	1	2	2	141	. 90	. 080	3	72	1.28	58	. 30	7	2.98	. 02	. 04	1	10
Lay 2400w 0+505	1	42	3	66	. 1	43	18	36	4.16	12	5	ND	,	25	1	2	2	135	. 11	. 045	2	71	1.26	16	. 24	i	3.13	. 02	. 02	1	5
Lay 2 +001 $1+005$	1	29	11	101	. 3	41	16	804	5.23	10	5	HD	2	24	1	3	2	168	. 83	. 092	4	17	1.19	17	. 32	11	2.76	. 01	. 02	2	
Lay 2400 K 24505	1	31	9	111	.4	53	21	484	5.38	10	5	HD	1	25	1	2	2	159	. 16	. 077	3	82	1.42	6	. 32	8	3.35	. 01	. 03	1	5
LAY IL O 0 O0E/K $3+00 \mathrm{~N}$	1	46	2	82	. 3	33	17	555	5.18	10	5	ND	1	28	1	2	2	151	. 6	. 119	3	69	1.31	40	. 29	15	2.65	. 02	. 04	1	9
LAY BL O+00E/K 2+50H	2	27	9	111	. 4	33	17	515	5.68	7	5	ND	1	22	1	2	2	199	1.03	. 057	1	71	1.01	45	. 47	1	2.78	. 01	. 03	1	5
LAY IL O+00E/W 2400K	1	24	13	102	. 5	31	13	405	5.78	7	1	HD	2	24	1	2	2	191	1.11	. 075	3	73	1.20	32	. 38	10	2.84	. 01	. 02	$!$	
Lay il $0+00 \mathrm{E} / \mathrm{L}$ 1+50N	1	18	2	125	. 1	24	14	469	4.76	3	5	MI	2	24	1	3	2	177	1.14	. 071	4	54	. 69	4	. 10	1	2.11	. 01	. 03	1	15
lay bl 0400E/K $0+505$	1	32	2	15	. 2	34	14	363	5.60	9	5	H0	2	20	1	2	2	175	. 82	. 093	3	65	1.10	42	. 29	12	2.81	. 01	. 03	1	
LAY IL O+00E/4 1400S	2	41	10	59	. 1	30	12	311	4.13	13	5	ND	J	27	1	2	2	119	. 59	. 104	3	60	1.02	4	. 26	1	3.22	. 02	. 03	1	
LAY IL O400E/K 1+50S	3	65	13	14	. 4	31	17	318	7.86	21	5	HO	1	27	1	3	2	221	. 18	. 034	4	105	1.10	40	. 47	11	4.10	. 01	. 03	1	2
STD C/AU-S	19	40	42	131	7.1	4	26	436	3.95	31	20	7	36	47	14	17	10	59	. 47	. 003	35	56	. 16	173	. 09	36	1.11	. 04	. 15	13	50

SKYLARK RESOURCES LTD FROJECT-FIRESTEEL FILE \# B7-2679

sarplei	$\begin{gathered} \text { KO } \\ \text { PPH } \end{gathered}$	Cu	PI PFM	IN	A6	HI FPM	CO	$\begin{gathered} \text { HH } \\ \text { PFK } \end{gathered}$	FE	AS	PFM	$\underset{\mathrm{FPh}}{\mathrm{AU}}$	IH	SR	CD	si	$\underset{\text { fFh }}{\text { I }}$	PFM	CA	P	LA FFM	CR PPM	$\begin{gathered} \mathrm{ME} \\ \mathbf{y} \end{gathered}$	BA PPM	11	fFK	$\begin{gathered} \text { AL } \\ \mathbf{I} \end{gathered}$	HA	f:	PPK	NUI PPir
	PFH	PFM	PFH	FFH	FPM	fPM	PPM	PFH	I	FFF	FPM	FPh	PFK	ffH	FPM	PFK	PFM	PFM	I	z	PFA	PPM	\boldsymbol{z}	PPM	2	FFK	I	I	I		
Lay $2+005$ 4+504	1	52	19	75	. 2	53	21	434	5.07	2	5	ND	3	23	1	2	2	178	1.21	. 126	3	82	1.61	35	. 29	9	4.21	. 01	. 12	1	3
Lay $245051+50 \mathrm{X}$	1	22	19	69	. 1	33	12	407	5.09	3	5	HD	2	22	1	2	2	187	. 19	. 084	3	79	. 93	38	. 19	1	2.33	. 01	. 02	1	2
Lay $2+5051+00 \mathrm{H}$	1	98	18	52	. 1	75	22	554	4.95	1	5	HO	3	33	1	2	2	159	2.05	. 034	4	84	1.98	52	. 21	18	3.82	. 02	. 01	1	19
Lay 2.50504501	1	42	19	10%	. 1	49	17	337	4.88	1	5	ND	2	23	,	2	2	164	. 87	. 072	3	79	1.71	42	. 25	10	3.16	. 02	. 02	1	1
LAY 2+50S 2450E	1	85	28	109	. 1	43	19	411	5.94	31	5	ND	2	24	1	3	2	190	. 6	. 036	5	81	1.16	68	. 16	8	3.15	. 01	. 04	1	3
Lay 2+50S 3+00E	1	58	17	79	.1	31	16	379	4.78	2	5	HD	1	31	1	2	$?$	157	. 74	. 062	2	59	1.13	59	. 23	7	2.58	. 02	. 03	1	12
Lay $2+5053+50 \mathrm{E}$	1	72	15	65	. 1	41	18	360	4.17	2	7	ND	2	30	1	2	2	132	. 11	. 065	3	12	1.27	38	. 22	6	2.79	. 02	. 62		9
Lay 2+50S 6+50E	1	17	16	59	.1	17	9	304	3.53	2	5	HD		21	1	7	2	127	. 41	. 076	1	46	. 68	35	.23	5	1.76	. 01	. 03	1	1
Lay 2+50S 7+00E	1	26	17	$6]$. 1	24	11	242	4.72	2	5	ND	2	25	1	5	2	181	. 51	. 065	4	50	. 73	53	. 26	3	2.23	. 02	. 02	1	1
LAY 2+50S 7450E	1	29	12	107	. 1	24	14	330	4.49	5	5	ND	2	32	1	3	2	147	. 60	. 045	3	54	. 90	66	. 23	5	2.28	. 02	. 03	1	3
LaY 2+50S 10+50E	1	61	25	57	. 1	33	15	374	4.12	2	5	HD	2	35	1	2	2	133	. 15	. 030	2	49	1.13	4	. 23	1	2.65	. 02	. 03	1	6
Lat 2+505 $11+$ DOE	1	22	25	48	. 1	23	12	26	3.91	2	5	H0	2	31	1	2	2	148	. 52	. 025	2	18	. 83	32	. 25	6	1.77	. 02	. 03	1	71
LAY $2+50511+50 \mathrm{E}$	1	53	$2!$	88	.1	37	17	431	4.72	2		ND	2	30	1	2	2	144	. 6	. 077	3	64	1.22	53	. 22	4	2.50	. 02	. 03	1	7
LaY 20+00N $0+505$	1	48	29	90	. 1	33	16	391	5.56	5	5	ND	2	31	1	2	2	173	. 70	. 034	3	70	1.28	53	. 34	2	3.51	. 02	. 03		4
Lay 20+004 1+005	1	25	25	60	. 1	23	9	280	4.44	3	5	Rio	2	32	1	4	2	219	. 14	. 029	3	56	. 93	59	. 57	2	2.19	. 01	. 01	1	9
LAY 20+00K $1+505$	1	52	27	98	. 1	71	24	581	6.29	3	5	ND	1	33	1	2	2	201	1.31	. 056	2	115	2.45	37	. 33	7	3.81	. 02	. 02	,	4
Lay 20+00以 21005	1	14	23	70	. 2	65	20	487	1.02	6	5	HD	1	26	1	2	2	202	1.09	. 054	3	104	2.26	31	. 35	1	3.76	. 02	. 01	3	7
Lay 19+50M 19+50M	1	83	31	69	. 4	39	17	481	4.20	8	5	HD	2	66	1	2	2	125	1.73	. 037	3	68	1.67	71	. 22	2	\$.54	. 05	. 03	1	12
Lay 19+00N 0+36K	1	42	36	10	. 2	45	17	189	4.14	4	5	H0	3	29	1	5	2	163	1.14	.068	3	69	1.52	55	. 27	7	3.29	. 02	. 01	,	10
LaY 18600\% $0+505$	1	74	31	82	. 1	11	21	512	7.07	19	5	KD	1	39	1	4	2	253	1.03	. 043	2	80	1.53	69	. 34	1	3.60	. 02	. 02	3	1
LaY 18400N $1+005$	1	51	23	79	. 2	41	19	424	4.98	2	5	HD	2	32	1	3	5	172	. 98	. 034	3	71	1.54	41	. 30	6	3.47	. 02	. 03	J	1
LAY 18+00K 1+50S	1	52	38	86	. 2	41	17	443	7.12	7	5	H0	3	20	2	4	2	244	. 71	. 077	2	91	1.50	31	. 41	8	4.22	. 01	. 01	1	4
Lay 11+000 $2+005$	1	108	35	4	. 1	71	26	622	6.13	2	7	NO	2	25	2	2	2	204	. 17	. 048	3	40	2.21	56	. 33	3	4.50	. 01	. 03	,	5
Lay 16+00N $1+50 \mathrm{~N}$	1	41	32	65	. 2	37	18	419	6.38	19	5	RID	3	29	1	2	2	278	1.02	. 057	3	83	1.39	33	. 39	7	3.14	. 01	. 02	,	2
LaY 16+00N $1+00 \mathrm{~N}$	1	37	26	45	. 1	27	12	418	5.55	3	5	ND	3	27	$!$	4	2	175	. 12	. 087	3	70	1.15	42	. 31	2	2.92	. 01	. 02	1	8
Lay $16+00 \mathrm{~K} 0+50 \mathrm{H}$	1	74	33	13	.4	45	17	477	5.54	11	5	HD	2	26	1	3	2	196	1.20	. 079	3	75	1.74	54	. 31	2	3.43	. 01	. 05	3	3
Lay 16+00N 0650S	1	35	35	73	. 1	39	16	383	5.22	2	7	HD	3	26	1	3	2	184	. 33	. 050	3	78	1.35	49	. 32	1	3.81	. 02	. 02	,	5
Lay 16+00k $1+005$	1	60	42	113	. 1	41	21	498	5.70	1	6	H0	2	29	1	2	2	181	. 93	. 104	3	78	1.37	4	. 27	2	3.59	. 01	. 02	3	7
LAY 16+001 $1+50 \mathrm{~S}$	1	50	30	74	. 3	47	18	563	5.16	2	5	ND	1	22	1	2	4	193	1.2	.050	2	72	1.79	40	. 34	7	3.90	. 01	. 02	1	2
LAY 14,001 $1+50 \mathrm{~K}$	t	65	46	84	. 7	47	20	453	6.40	8	7	HD	2	28	1	2	2	207	- 时	. 059	3	74	1.57	54	. 29	2	4.32	. 02	. 02	3	5
LAY 14+00K 1400N	;	31.	41	77	. 2	31	16	416	6.42	11	5	ND	3	24	1	2	2	222	. 69	. 066	2	75	1.30	75	. 27	2	3.35	. 01	. 03	1	1
Lay 15400K 0400RL	1	17°	19	62	. 1	23	8	313	4.90		S	ND	2	24	1	4	. 2	198	. 79	. 103	5	62	. 04	31	. 39	2	2.40	. 01	. 03	,	3
LAY 14+00Y 0+50S	1	16	11	76	. 2	45	16	470	5.10	3	5	KD	3	26	1	7	2	188	. 75	. 095	3	71	1.59	46	.34	2	3.80	. 02	. 02	1	16
LaY 14+00k 1400S	,	50	40	66	.4	39	16	384	6.22	2	5	ND	2	23	1	2	2	222	. 12	. 085	3	79	1.38	54	. 41	2	4.25	. 02	. 03	,	1
LAY 14+00K $1+505$	1	42	35	78	. 3	41	15	306	5.00	2	5	ND	2	28	1	2	2	185	1.08	. 085	4	65	1.41	45	. 33	1	3.71	. 02	. 02	2	6
LAY 14400N 2+005	1	23	33	41	. 1	27	13	496	4.49	2	5	HD	2	22	1	4	2	290	. 88	. 063	3	56	1.24	36	. 46	2	2.97	. 01	. 02	1	11
SID C/AU-S	20	13	39	131	7.2	69	25	938	3.72	37	20	7	37	47	17	16	10	61	. 47	.083	35	58	. 85	174	. 08	36	1.79	. 04	. 14	12	19

SKYLARK REGOURCES FROJECT-FIRESTEEL FILE B7-2679

SAKPLEE	NI	CU	P1	2H	${ }^{\text {Af }}$	KI	CO	KN	FE	AS	U	AU	TH	SR	CD	58	31	V	C/	P	LA	$\underset{\text { cR }}{\text { CR }}$	ME	- PA	II		AL	HA	I	PFM	$\begin{aligned} & \text { Alt } \\ & \text { FFI } \end{aligned}$
	FFK	PPK	PPH	PPM	PPM	PPM	PPM	PPM	2	PPM	PPK	PPM	PFK	PPK	PPM	PFM	PPK	FPK	I										$\underline{1}$		
LAY IL 0+00E/K $2+00 \mathrm{~S}$	1	$3!$	2	121	. 1	51	20	397	5.70	6	5	HD	2	23	1	2	3	179	1.20	. 038	3	78	1.52	39	. 35	17	3.32	. 02	. 03	1	5
Lay ML 0000E/K24505	1	57	6	71	. 3	52	20	318	4.89	2	5	KD	1	22	1	2	3	145	1.04	. 099	3	74	1.56	33	. 21	11	3.62	. 02	03	1	64
LAY \&L $0+00 \mathrm{H}$ I +00 K	1	58	18	46	. 5	62	23	388	4.59	3	5	NO	1	26	1	2	2	127	1.08	. 016	3	82	1.68	37	. 23	14	3.28	. 02	. 02	1	10
	1	29	J	76	. 3	21	12	324	4.67	6	5	HD	1	21	1	2	2	135	. 67	. 073	3	${ }_{5}{ }^{\text {b }}$. 85	40	. 20	3	2.07	. 01	. 02	1	4
LAY EL OHONM O+00\%L	1	70	5	36	. 2	12	8	358	2.29	2	5	NO	2	36	1	2	2	6	1.12	. 025	2	33	. 57	25	. 09	2	1.35	. 05	. 02	1	9
LAY EL $0400 \mathrm{E} 3+50 \mathrm{H}$	1	38	2	84	. 5	21	13	333	6.33	9	5	ND	2	24	1	2	5	172	. 40	. 033	1	57	. 98	52	. 36	3	2.64	. 01	. 04	1	1
Lay il O OOOE 3100 H	1	133	20	46	. 4	13	17	354	3,57	8	5	HD	2	39	1	2	2	96	. 0	. 016	5	57	1.24	50	. 23	15	2.49	. 02	. 02	1	1
Lay il 0 O00E $2+50 \mathrm{~N}$	1	38	21	114	. 6	33	18	116	5.46	11	1	KD	2	26	1	2	3	131	. 10	. 034	3	54	1.41	49	. 27	11	2.63	. 01	. 04	1	1
LAY IL OHOEE 2400N	1	52	2	109	. 4	29	18	377	5.11	31	5	KD	1	23	1	2	3	12 ?	. 36	. 059	3	68	1.15	52	. 18	12	2.56	. 0	. 03	1	2
LAY IL $0+0081+50 \mathrm{H}$	1	27	2	72	. 1	10	12	261	3.21	27	5	Ho	1	21	1	2	2	79	. 36	. 027	2	30	. 46	55	. 12	2	1.36	. 01	. 03	1	9
LAY 9L OtOOE L100n	$\cdot 1$	95	t	112	1.1	33	25	184	6.07	22	5	kO	1	35	1	2	2	111	. 48	. 042	3	49	1.52	107	. 19	15	3.41	. 01	. 04	2	3
Lay il $0+00 \mathrm{E} 0+50 \mathrm{H}$	1	30	5	41	. 1	25	12	243	3.52	7	5	HD	2	21	1	2	2	108	. 73	. 019	2	56	. 98	4	. 22	10	2.04	. 01	. 02	1	2
LaY $2+00 \mathrm{E} 2+50 \mathrm{H}$	1	32	2	12	. 3	23	17	471	5.22	12	5	H0	2	20	1	2	2	132	. 18	. 028	3	51	1.17	119	. 13	1	2.11	. 01	. 04	1	1
Lay 2+00E 2400H	1	69	12	46	. 3	42	19	414	4.71	4	5	ND	1	27	1	2	2	133	. 71	.031	3	15	1.34	48	. 23	2	2.71	. 02	. 04	3	5
Lay $2+00 \mathrm{E} 1+50 \mathrm{H}$	1	19	11	52	. 4	12	E	219	3.45	5	5	K0	1	26	1	2	2	150	. 18	.046	3	39	. 53	67	. 27	7	1.47	. 01	. 03	1	J
LAY 2+00E $5+00 \mathrm{~K}$	1	51	11	92	. 6	35	18	409	4.46	6	5	H0	1	27	1	2	2	138	. 90	. 065	3	59	1.15	74	. 25	θ	2.50	. 01	. 03	1	2
Lay $2+00 \mathrm{O} 0+50 \mathrm{H}$	1	34	5	15	. 4	25	13	341	4.62	2	5	HD	2	25	1	,	2	137	. 12	.089	3	60	1.08	39	. 23	15	2.34	. 01	. 03	1	2
Lay 2400E 0+50S	1	10	13	127	. 6	33	20	340	5.97	5	-	HD	2	20	1	2	2	147	. 51	. 128	4	78	. 97	52	. 24	15	3.61	. 01	. 03	2	1
LAY $2+00 \mathrm{E}$ [4005	1	16	14	76	. 6	42	19	176	5.07	3	6	N0	3	24	1	2	2	138	1.08	. 099	3	76	1.19	33	. 24	1	2.47	. 01	. 05	1	1
Lay 2+00E $1+505$	I	46	11	109	. 3	42	21	531	4.91	2	5	HD	3	24	1		3	135	1.05	. 100	3	77	1.41	34	. 25	3	3.0	. 01	. 02	4	18
LAY 2400E 24005	1	51	8	64	. 3	31	18	479	5.10	2	5	ND	1	26	1	2	2	152	1.35	. 079	3	60	1.26	51	. 24	7	2.59	. 01	. 04	3	1
LAY $2+$ COE $2+505$	1	55	12	95	. 3	37	20	466	6.69	4	5	ND	3	26	1	2	3	216	1.73	. 046	3	6	1.84	37	. 34	1	3.32	. 01	. 04	5	2
Lay $4+00 \mathrm{E} 2+00 \mathrm{~K}$	1	51	10	55	. 1	23	11	407	3.40	3	5	NO	1	18	1	2	2	79	. 37	. 072	2	12	. 80	72	. 09	B	1.90	. 01	. 03	1	1
LAY $9+00 \mathrm{E}$ 1+50K	1	21	18	79	. 1	25	14	362	5.62	5	5	ND	2	24	1	2	2	181	. 48	. 046	4	12	. 97	82	. 19	16	2.00	. 01	. 05	1	2
LAY 4600E 1+00H	1	27	18	75	. 6	31	13	291	5.09	6	5	ND	2	24	1	2	2	146	. 45	. 049	4	B	1.27	10	. 17	2	2.21	. 02	. 04	t	,
LaY 4t00E 0+50h	1	23	10	51	. 2	18	12	272	5.06	2	4	ND	2	25	1	2	2	150	. 38	. 051	4	70	. 57	52	.15	1	1.74	. 01	.03	1	7
Lay $4+00 \mathrm{E} 0+00 \mathrm{SL}$	1	34	2	10	.1	37	13	250	4.75	2	5	ND	2	25	1	2	2	135	. 49	. 012	3	67	1.12	70	. 21	12	2.46	. 01	.03	1	1
Lay 4t00E $1+005$	1	35	11	37	. 2	31	12	226	3.65	3	5	HD	1	26	1	2	2	138	. 59	. 010	3	59	1.21	54	. 35	4	1.83	. 04	. 05	!	1
LAY $1+00 \mathrm{E}$ 1+50S	1	38	2	72	. 4	31	14	307	4.4	2	5	N0	3	25	1	2	2	122	. 53	. 102	3	6	1.14	41	. 26	2	2.19	. 02	. 03	3	6
Lay $4+00 \mathrm{E} 2+00 \mathrm{~S}$	1	51	2	80	. 1	31	16	330	4.41	4	5	HD	2	28	1	7	2	117	. 61	. 071	4	58	1.01	55	. 23	3	2.70	. 02	. 04	2	2
LAY 4400E 2+50S	1	75	14	65	. 2	25	16	331	4.32	2		ND	2	31	1	2	3	122	. 75	. 050	3	56	1.20	45	. 23	2	2.42	. 02	. 04	1	7
LAY $6+00 E 4+50 \mathrm{H}$	1	123	10	113	. 7	22	16	512	5.95	2	1	KD	2	24	1	2	2	106	. 51	. 022	2	37	1.18	34	. 50	8	3.13	. 01	. 03	4	1
LAY $6+00 E$ \$ 400 M	1	36	12	85	4	20	13	375	3.98	16	1	N0	2	22	1	2	2	90	. 38	. 044	3	43	. 14	33	. 22	6	1.60	. 01	. 05	2	2
LAY $6+00 \mathrm{E}$ 3+50\%	1	6	2	84	. 7	27	20	432	5.40	15	9	KD	2	24	1	2	2	115	. 54	. 092	3	55	1.32	54	. 18	12	3.00	. 01	. 08	2	.
Lay $6+00 \mathrm{E} 3+00 \mathrm{H}$	1	4	13	123	.6	29	11	459	6.00	18	6	KD	2	24	1	3	2	123	. 42	. 056	4	55	1.10	14	. 20	10	3.11	. 01	. 04	6	9
LAY 6+00E 2450K	1	30	5	94	. 1	20	13	327	4.92	9	7	KD	2	30	1	2	2	117	. 52	. 035	3	46	. 12	115	. 11	7	2.29	. 01	. 04	$!$	10
SID C/AU-S	20	62	43	131	7.1	18	29	918	3.90	38	18	7	39	50	18	17	22	54	. 49	. 095	38	59	. 89	179	. 09	3	1.71	. 06	. 13	12	8

SKYLARK FESOURCES FROJECT-FIRESTEEL FILE \# B7-2679

SAMFLEI	N0	Cl	Ps	IN	46	KI	CO	M	FE	AS	\cup	A	IH	SR	CD	5	11	v	CA	P	LA	CR	M6	B	11	I	AL	NA	K	N	AUS
	PPM	PPM	FPM	PPK	PPM	PPM	PPM	FPM	1	ffi	PFA	PPM	PFin	PFM	PPM	FPK	PFh	FFM	\%	2	PFM	FPh	2	PPM	I	PPM	1	z	2	PPM	FFI
LAY 6400E 2400 M	1	45	3	84	. 2	16	12	345	4.85	14	5	KD	2	21	1	2	2	114	. 43	. 039	2	36	. 90	97	. 04	$!$	2.24	. 01	. 11	1	3
Lay b+00E 1+50k	1	69	1	47	. 3	29	16	335	3.99	10	5	ND	2	45	1	2	2	92	1.10	. 028	3	50	1.18	231	. 11	9	3.22	. 02	. 04	3	5
Lar $6+00 \mathrm{E}$ 1+00\%	1	14	11	49	. 3	21	10	368	3.71	2	5	N0	1	31	1	2	2	122	.40	. 042	3	41	. 43	225	.18	6	1.56	. 01	. 04	1	3
LAY 6 W00E $0+50 \mathrm{H}$	1	26	16	14	. 4	25	10	286	4.38	2	5	HO	2	25	1	2	3	126	. 44	. 063	4	79	. 91	42	. 25	5	1.92	. 01	. 03	1	2
LAY GTOOE OH50S	1	45	12	47	. 3	23	15	563	5.02	5	5	ND	2	3	1	2	2	ISB	. 4	. $02!$	J	52	. 19	72	. 27	1	2.14	. 02	. 06	1	16
Lay b $000 \mathrm{E} 1+005$	1	29	9	72	. 3	24	11	369	4.84	4	5	HD	1	27	1	2	2	156	. 72	.086	3	57	. 87	10	. 22	7	2.35	. 01	. 04	1	22
LaY 6+00E 1+50S	1	44	19	84	. 3	32	15	421	6.11	11	5	HD	2	28	1	2	2	196	. 69	. 036	3	6	1.29	85	. 31	9	3.11	. 01	. 04	2	14
LaY $6+0002+005$	1	58	16	72	. 3	32	16	111	5.64	4	5	HO	2	27	1	2	3	180	. 74	. 029	3	63	1.19	19	. 26	11	2.92	. 01	. 04	1	1
Lay 6400E 2050S	1	33	19	74	. 3	23	14	319	5.14	3	5	HD	2	28	1	2	2	164	. 70	. 019	3	60	. 91	4	. 29	9	2.11	. 01	. 03	1	1
LAY 6400E 5400H	1	26	13	116	. 8	19	13	511	4.57	9	5	HD	2	34	1	2	2	111	. 18	. 069	3	16	. 93	73	. 26	11	2.27	. 01	. 04	1	2
LAY E+00E $4+50 \mathrm{~N}$	1	57	16	80	. 5	26	16	375	5.3!	5	5	HO	2	35	1	2	3	135	. 58	. 028	1	54	1.10	54	. 28	11	2.52	. 02	. 05	1	1
LAY B+00E $4+00 \mathrm{~N}$	1	39	15	70	. 3	19	13	417	5.62	10	5	H1	1	29	1	3	2	152	. 55	. 025	3	46	. 93	160	. 15	7	2.47	. 01	. 02	1	2
LAY E+00E 3450h	1	36	12	4	.4	24	13	15	5.29	10	5	HD	1	18	1	3	2	126	. 32	. 037	3	56	. 99	58	. 09	10	2.07	. 01	. 03	1	1
Lay LTOOE 3400N	1	24	13	94	. 5	16	11	347	4.96	10	5	HD	2	24	,	3	2	120	. 31	. 044	4	40	. 12	15	. 15	11	2.52	. 01	. 03	1	4
Lay E400E 2-50H	1	27	9	172	. 3	20	14	165	5.02	9	5	HO	1	26	1	2	2	111	. 47	. 072	3	46	1.05	56	. 16	4	2.73	. 01	. 04	2	9
Lay 8+00E 2400\%	1	112	10	42	.4	29	18	461	4.72	17	5	HD	2	34	1	2	3	102	. 66	. 055	4	50	1.29	71	. 17	7	2.99	. 02	. 04	2	29
LAY $6+00 \mathrm{E}$ [+50H	1	30	15	49	. 2	16	13	315	4.44	7	5	ND	1	28	1	2	2	116	. 11	. 023	4	38	. 73	84	. 16	10	2.08	. 02	. 04		1
LaY BHOOE It00\%	1	41	15	70	. 3	21	14	454	5.59	21	5	ND	2	23	1	2	2	123	. 43	. 067	3	47	. 95	60	. 10	6	2.52	. 01	. 04	1	3
LaY 8100E OH50N	1	13	14	4	.6	34	19	143	5.63	14	5	ND	2	26	1	2	1	120	. 47	. 080	3	52	1.20	135	. 16	9	3.45	. 02	. 06	1	5
LAY 8+00E 0+008L	1	27	9	90	. 3	17	12	359	5.33	10	5	HD	1	24	1	5	2	126	. 31	. 045	3	38	. 42	119	. 05	9	1.69	. 01	. 05	,	2
LaY 8+00E 0+50S	1	38	15	77	.4	31	14	377	5.69	7	5	ND	1	25	1	2	2	182	. 44	. 046	1	75	1.05	77	. 32	11	2.15	. 01	. 04	1	1
Lay 9+00E 1+00S	1	31	15	76	. 2	21	15	468	4.74	5	5	NO	1	31	1	2	2	123	. 61	. 082		50	. 96	63	. 21	7	2.32	. 01	. 07	1	1
Lay 0+00E 1+50S	1	31	12	75	. 3	19	11	63:	3.76	3	5	ND	2	27	1	2	4	100	. 51	. 078	4	41	. 92	71	. 22	8	2.10	. 03	. 04	1	24
LAY 8+00E $2+005$	1	41	13	65	. 3	22	12	351	4.52	3	5	HO	1	27	1	2	2	117	. 54	. 042	4	49	. 85	41	. 21	9	2.32	. 02	. 04	1	2
LaY 8400E 24505	1	32	13	74	. 3	15	10	258	4.82	3	5	HD	2	28	1	3	3	139	. 57	. 087	4	54	. 73	54	. 24	8	2.01	. 01	. 03	1	1
LAY 10400E 4+504	1	75	11	74	. 4	37	16	424	4.82	B	5	No	2	31	1	2	2	109	. 58	. 106	3	58	1.31	63	. 20	10	3.40	. 02	. 04	2	8
Lat 10400E 4400\%	1	18	15	62	. 5	31	11	432	4.16	14	5	N0	1	31	1	2	3	97	. 63	. 040	3	58	1.49	71	. 21	5	2.99	. 02	. 05	1	1
Lay 10400e 0450S	1	30	7	92	. 2	27	13	398	4.59	4	5	H0	1	25	1	2	2	113	. 12	. 075	4	56	1.07	54	. 22	10	2.41	. 01	. 03	1	1
Lay 10t00E 1+005	1	24	19	84	. 2	27	13	374	4.92	7	5	kD	2	27	1	2	2	165	. 41	. 022	3	52	. 97	68	. 30	9	2.53	. 02	. 04	1	2
Lay lotoot 1+505	1	23	15	112	. 3	22	13	482	4.80	7	5	Ho	2	20	1	2	2	123	. 62	. 129	5	56	. 17	61	. 22	11	2.90	. 01	. 04	2	1
Lay 10400E 24005	1	52	17	59	. 2	21	16	410	4.70	3	5	K0	2	28	1	2	2	115	. 53	. 055	3	53	1.19	53	. 24	10	2.41	. 02	. 04	1	2
Lay l0400E 2450S	1	48	16	63	. 2	24	14	317	5.00	4	5	No	1	29	1	2	2	130	. 54	. 073	4	53	1.07	54	. 23	-	2.57	. 02	. 05	1	1
LAY 12+00E 4+50H	3	47	15	130	. 4	32	18	524	5.08	13	5	ND	1	23	1	3	2	114	. 10	. 054	4	47	1.04	59	. 11	12	2.69	. 01	. 05	1	1
Lay 12+00E $4+00 \mathrm{H}$	2	69	25	212	. 3	45	22	1523	6.08	19	5	H0	1	24	1	2	2	113	. 39	. 157	4	58	1.29	57	. 17	15	3.09	. 01	. 04	1	1
Lay 12+00E 3+50\%	2	49	20	276	. 5	51	28	178	5.59	16	5	HD	2	36	1	2	2	113	. 52	. 070	1	66	1.12	70	. 27	10	2.71	. 02	. 04	1	2
LAY 12400E 3+00K	1	52	16	6	. 2	36	15	353	4.41	9	5	ND	1	27	1	2	4	105	. 62	. 044	3	53	1.14	49	. 20	7	2.86	. 02	. 03	1	31
STO C/ALSS	20	59	40	131	7.2	67	26	952	3.83	39	19	7	37	48	17	17	19	55	. 18	. 080	35	57	. 87	177	. 01	36	1.83	. 04	. 13	12	53

SKYLARK RESOURCES FROJECT-FIFESTEEL FILE \# B7-2679

SATPLEA

LAY IL 18+00Y(SILI)	1	177	3	73	. 3	36	15	74.	3.94	13	5	KD	1	53	1	2	2	120	2.53	. 050	1	78	1.53	17	. 17	12	2.79	. 02	. 03	1
LAY JL $15+50$ (SILT)	1	258	3	67	. 3	28	7	784	1.28	18	5	H0	1	69	1	2	3	44	4.18	. 085	2	45	. 74	39	. 04	34	1.04	. 01	. 68	1
																2	2	161	3.19	. 059	4	202	2.24	22	. 31	16	3.79	. 01	. 04	2

EKYLARK RESOURCES LTD FROJECT-FIRESTEEL FILE \# B7-2670

5mplet	no	cu	18	2\%	A5	NI	co	HH	FE	AS	ป	AU	IH	5R	CO	58	11	V	CA		LA	Cf	M5	日A	II	1	AL	NA	k	-	AUS
	PFM	PFK	FP\%	PFH	PPK	PPM	PPh	PPM	1	PFM	PFH	PPM	PFM	FFK	PPM	PPK	PFM	PF	2	2	PPM	PFM	2	FF\%	2	PFK	I	\%	$\%$	PFn	PPI
LAY IL 2+50E	1	65	2	115	. 3	59	$3!$	671	7.55	12	5	ND	2	20	'1	2	3	191	1.26	. 050	3	126	2.31	62	. 22	16	3.98	. 01	. 03	1	5
Lay ill 3+00E	I	33	2	110	. 1	37	17	364	4.29	3	5	HD	1	21	1	2	2	112	1.01	. 065	4	60	1.33	52	. 27	12	2.12	. 01	. 03	1	2
Lay BL 3 $\mathbf{3} 50 \mathrm{E}$	1	28	9	${ }^{3}$. 3	22	14	420	5.93	5	5	HD	2	25	1	2	2	169	. 93	. 083	1	58	. 87	39	. 33	12	2.20	. 01	. 03	1	19
Lay il $4+600$	2	71	2	61	. 2	34	1	351	5.20	4	5	H0	2	28	1	2	2	119	. 62	. 081	4	67	1.37	51	. 24	8	3.48	. 02	. 04	1	3
LaY IL \$ 1 SOE	1	54	2	d0	. 1	31	15	340	4.36	5	5	HD	1	50	1	2	2	110	. 70	.053	3	59	1.21	58	. 23	10	2.71	. 02	. 04	I	200
Lay gl 5400E	1	45	3	63	. 2	43	16	331	5.02	6	5	HD	1	30	1	2	2	130	. 65	. 042	3	74	1.27	60	. 21	11	2.49	. 02	. 04	1	11
Lay il $5+50 \mathrm{E}$	1	46	5	59	. 2	33	15	327	5.32	5	5	ND	2	30	1	2	2	132	. 57	. 083	4	73	1.32	40	. 22	8	2.6	. 12	. 03	1	,
Lay Ri blooe	1	48	2	112	4	30	11	350	5.05	*	5	ND	2	26	1	2	2	108	. 51	. 107	5	62	1.01	6	. 22	11	3.21	. 62	. 04	1	6
Lay fl $6+50 \mathrm{E}$	1	46	1	70	. 2	47	19	406	5.06	1	5	HD	1	32	1	2	2	115	. 75	. 051	4	96	1.47	56	. 25	9	2.70	. 02	. 03	1	2
LaY IL. 7-00E	2	45	2	4	. 1	31	18	38B	5.02	4	5	HD	2	24	1	3	2	111	. 54	. 102	5	61	1.12	60	. 21	7	3.16	. 02	. 04	1	14
Lay OL 7+50E	1	60	2	41	. 2	46	16	401	4.42	5	5	KD	1	37	1	2	3	125	1.28	. 030	3	71	1.73	73	. 26	10	2.93	. 02	. 02	1	
Lay il liooe	1	44	2	90	. 1	57	22	375	5.82	7	5	KD	1	24	1	,	2	119	. 46	. 040	4	151	2.52	75	. 20	1	3.44	. 02	. 05	1	3
lay fl besoe	2	54	5	92	. 2	41	21	426	5.94	31	5	ND	2	26	1	2	2	146	. 71	.019	4	75	1.36	79	. 25	11	3.49	. 02	. 4	1	27
LAY EL 9+00E	1	49	5	11	. 3	34	18	456	6.08		5	NO	2	25	1		2	148	. 65	. 144	5	71	1.35	B8	. 25	7	3.22	. 02	. 03	1	
LaY IL 9450E	1	20	4	68	. 4	17	10	300	4.06	2	5	H	2	28	1	2	2	127	. 42	.033	4	44	. 76	91	. 22	9	1.93	. 02	. 03	1	1
Lay BL 10400E	1	37	5	02	. 2	21	15	352	5.57	8	5	ND	2	25	1		2	137	. 61	. 080	5	58	1.00	211	. 13	6	2.59	. 01	. 04	1	d
Lay il 10+50E	2	14	8	15	. 3	43	19	393	5.92	11	5	HD		28	1	3	2	146	. 75	. 074	3	76	1.40	78	. 26	7	3.37	. 02	. 03	1	
Lay EL 11400E	1	47	2	113	. 2	35	19	425	5.99	9		HD	2	24	1	2	2	144	. 62	. 153	4	69	1.25	79	. 24	9	3.60	. 02	. 03	1	5
lay ol 11+50E	1	41	2	17	. 1	31	11	34	4.56	11	5	NO	1	30	1	2	2	107	. 56	. 036	4	53	1.12	68	. 20	10	2.55	. 02	. 04	1	2
Lay IL 12+00E	1	20	5	71	. 2	12	9	303	3.38	3	5	HD	2	25	1	2	2	6	. 41	. 064	5	34	. 55	41	. 14	6	1.41	. 02	. 03	1	12
LaY IL 12+50E	1	40	12	143	. 4	24	19	414	4.61	6	5	ND	2	32	1	2	2	109	. 43	. 065	5	51	1.14	95	. 21	1	2.41	. 02	. 06	1	9
LAY EL 13+00E	1	6	3	51	. 4	35	18	376	5.20	9	5	KD	2	32	1	2	2	115	. 58	. 072	4	63	1.20	97	. 19	5	3.03	. 02	. 03	2	1
	1	22	0	79	. 1	19	11	312	3.91	2	5	ND	1	28	1	2	2	103	. 47	. 014		44	. 88	52	. 26	5	1.75	. 02	. 04	1	
Lay IL 1400E	,	42	12	59	. 3	27	15	341	5.55	10	5	Na	2	33	1	2	2	119	. 48	. 046	3	54	1.14	79	. 19	9	2.14	. 02	. 05	1	
SID C/AU-S	19	41	37	133	7.3	71	28	944	4.04	34	16	-	39	52	18	17	10	59	. 51	. 080	39	41	. 92	112	. 08	37	1.79	. 07	. 15	12	48

SKYLARK RESOURCES FROJECT-FIRESTEEL FILE * B7-2679

Lay bl 16400k	I	4	24	71	. 6	36	17	309	7.64	24	5	H0	1	29	1	2	2	238	. 90	. 027	3	94	1.77	31	. 40	2	3.17	. 01	. 02	2	19
LaY IL 15+501	1	51	26	99	. 7	82	25	B35	6.95	11	5	HD	1	21	1	2	2	222	1.25	. 098	3	110	2.91	40	. 35	2	3.59	. 01	. 02	1	5
LAY SL $15+00 \mathrm{M}$	1	42	22	71	. 5	49	16	336	4.97	11	5	HD	1	22	1	2	2	178	. 98	. 077	4	83	1.10	30	. 32	4	3.78	. 01	. 02	1	1
LAY IL 14+50M	1	10	16	95	. 2	55	23	432	4.91	15	5	HI	1	29	1	2	2	143	. 92	. 081	3	91	1.96	36	. 30	14	4.03	. 02	. 01	2	5
LAY IL 14,00\%	I	18	22	65	. 3	55	20	478	5.20	19	8	HO	1	Jo	1	2	2	177	1.23	. 060	2	06	2.33	46	. 26	2	4.03	. 01	. 02	1	2
LAY BL 13+5014	1	40	21	71	. 4	41	11	402	6.13	14	5	N0	1	24	1	2	2	216	1.02	. 063	2	100	2.08	41	. 40	2	3.37	. 01	. 02	1	1
Lay ill $13+00 \mathrm{H}$	1	52	24	73	. 4	53	19	412	5.33	23	5	N0	1	24	1	2	2	176	1.05	. 078	2	84	1.96	51	. 32	2	4.11	. 02	. 02	1	1
LAY 8L $12+50 \mathrm{H}$	1	20	18	55	. 6	28	11	290	5.58	9	5	ND	,	27	1	2	2	213	. 90	. 054	3	71	1.19	37	. 36	1	2.79	. 01	. 02	1	11
LAY IL 12+00H	1	70	23	56	. 5	45	11	434	4.53	13	5	ND	1	27	1	2	2	161	1.20	. 055	2	71	1.83	47	. 29	2	3.69	. 02	. 01	1	5
LAY PL $11+50 \mathrm{~N}$	1	${ }^{4}$	29	53	. 2	42	16	404	3.72	19	6	H0	1	29	1	2	2	143	1.24	.031	2	4	1.10	31	. 28	7	3.50	. 02	. 01	1	13
LAY IL $11+00 \mathrm{H}$	1	21	12	53	. 1	23	11	225	3.06	2	5	HI	1	16	1	2	2	121	. 78	. 025	2	36	. 83	24	. 21	2	1.10	. 01	. 01	1	1
LAY gL 10+504	1	16	2	38	. 1	11	7	175	3.25	6	5	KD	1	12	1	2	2	108	. 18	. 045	2	31	. 62	17	. 18	7	1.47	. 01	. 01	1	1
LAY IL 10300L	1	39	24	12	. 4	37	16	356	5.51	14	5	ND	1	23	1	2	2	116	1.15	. 146	2	78	1,49	35	. 30	2	3.49	. 02	. 02	3	3
Lay BL 9+504	1	50	38	92	. 6	45	23	428	5.50	20	5	HD	1	26	1	2	2	163	1.22	. 049	3	102	1.90	35	. 31	2	4.11	. 02	. 03	2	1
Lay il $9+001$	1	69	9	56	. 5	98	22	458	5.44	11	5	ND	1	20	1	6	2	177	1.07	. 046	3	126	1.93	37	. 24	θ	3.63	. 02	. 02	1	12
	J	20	14	42	. 5	24	10	277	5.22	1	5	ND	1	27	!	2	2	223	1.09	. 047	3	4	1.00	44	. 31	9	2.35	. 01	. 02	2	6
Lay IL Ptoor	1	33	13	73	. 2	41	16	341	4.11	13	5	ND	1	23	1	2	2	176	1.10	. 013	3	74	1.32	37	. 31	2	3.14	. 01	. 02	1	15
LaY PL 7450\%	1	41	17	1	. 3	53	19	450	5.54	9	7	HD	1	23	1	2	2	186	1.23	. 046	4	91	1.89	30	. 35	1	3.50	. 01	. 04	1	8
Lay il $7+00 \mathrm{C}$	1	52	26	74	1.0	6	20	409	6.13	24	5	HO	1	25		2	2	198	1.16	. 077	3	107	2.12	44	. 31	15	3.77	. 02	. 02	1	25
Lay IL $6+50 \mathrm{H}$	1	31	11	95	. 6	37	18	410	5.45	14	5	HD	1	26	1	2	2	180	. 94	. 080	4	75	1.27	67	. 30	4	2.96	. 02	. 03	1	12
Lay al $6+00 \mathrm{~K}$	2	36	2	114	. 6	38	16	403	6.58	23		ND	1	28	1	2	2	210	. 17	. 046		75	1.22	71	. 25	3	3.13	. 01	. 03	2	8
LaY PL. 5+50M	1	66	22	90	. 9	43	19	344	5.12	25	6	ND	1	23	1	2	2	169	. 95	. 076	3	9	1.56	51	. 22	1	3.33	. 01	. 04	1	37
LaY IL. 5+00\%	1	46	16	80	. 5	50	18	415	5.82	24	5	WD	1	25	1	J	2	166	. 64	. 085	3	109	1.70	61	. 23	5	3.20	. 01	. 03	2	2
LaY IL 4+503	1	56	16	75	. 7	57	21	455	5.55	23	6	ND	1	22	1	2	2	146	. 69	. 065	J	100	1.30	41	. 21	5	3.28	. 01	. 03	1	2
LAY IL 4+003	1	38	20	14	. 5	45	19	470	5.67	20	5	ND	1	22	1	2	2	175	. 17	. 091	2	18	1.52	52	. 23	11	2.19	. 01	. 04	1	1
LAY BL 3+5014	1	41	11	01	. 5	42	18	447	5.06	15	5	HD	1	23	1	2	2	162	. 94	. 084	3	11	1.39	52	. 22	2	3.01	. 01	. 03	1	31
Lay il. $3+004$	1	62	22	70	. 1	52	19	434	4.98	22	5	KD	1	24	1	2	2	153	1.01	. 065	3	68	1.61	44	. 24	2	3.30	. 02	. 02	1	7
Lay bl $2+50 \mathrm{Y}$	1	72	20	44	. 3	58	21	458	4.13	31	6	HD	1	23	1	2	2	147	. 33	. 077	2	82	1.71	47	. 22	2	3.03	. 02	. 03	1	!
LaY EL 2+003	1	21	16	63	.4	22	11	276	4.61	15	5	H0	1	22	1	2	2	160	. 87	. 078	3	51	. 78	36	. 23	6	2.08	. 01	. 02	1	7
LAY IL 1+50M	1	53	4	58	. 4	42	16	382	4.84	6	5	HD	1	27	1	2	2	166	1.37	. 058	3	66	1.46	34	. 21	2	2.92	. 01	. 05	1	10
LAY IL 5+00以	1	26	1	43	. 4	30	14	346	4.74	12	5	KD	1	25	1	2	2	169	1.05	. 052	3	61	1.14	40	. 26	3	2.33	. 01	. 02	3	2
LAY SL O4501	1	31	10	155	. 5	33	15	310	5.55	19	5	H0	3	20		2	2	164	. 79	. 110	5	6	1.12	60	. 25	4	2.73	. 01	. 04	1	1
Lay IL Otoon	4	319	20	222	. 1	76	37	$11 \% 5$	6.19	34	7	ND	2	30	2	2	2	135	. 63	. 025	6	69	1.53	63	. 24	2	3.35	. 02	. 04	2	3
LaY PL O+50E	1	92	11	88	. 5	46	18	374	4.83	15	5	N0		31		2	2	134	1.33	. 024	6	73	1.43	103	. 19	1	3.03	. 02	. 04	1	13
Lay BL i+00E	1	24	15	53	. 2	17	10	225	3.53	5	5	ND	2	26	1	2	2	120	. 66	. 072	4	45	. 12	38	. 21	1	1.89	. 01	. 03	1	37
Lay BL 1+50E	1	47	8	91	. 5	54	18	364	5.27	13	5	ND	1	$2!$	1	6	2	154	1.01	. 075	3	02	1.55	40	. 21	7	3.01	. 01	. 02	2	2
Lay BL 2+00E	,	50	8	13	. 4	46	23	360	4.13	7	5	ND	2	24	1	2	2	121	. 11	. 051	1	19	1.45	39	. 26	5	3.26	. 02	. 02	1	11
STD C/Av-S	14	4	40	131	7.3	70	27	905	3.96	38	20	7	37	50	11	18	20	63	. 49	. 081	37	60	. 90	170	. 08	34	1.75	. 06	. 13	12	59

GKYLAFK FESOURCES LTD FROJECT-FIRESTEEL FILE \# 日7-2679

SAHPLEI

LaY 12+00E 2+50N	1	56	13	175	1.1	32	20	1054	5.54	31	5	ND	2	24	1	2	2	120	. 13	. 202	1	62	1.14	81	. 18	2	3.88	. 02	. 04	3	2
Lat 12400e 2400 H	I	31	10	76	. 7	17	13	393	5.51	13	6	HD	2	31	1	2	2	135	. 60	. 106	3	54	. 98	48	. 25	2	2.11	. 02	.05	1	4
Lat $12+00 \mathrm{E}$ 1+50	1	35	12	51	. 8	21	13	329	4.36	16	5	N0	1	32	1	2	2	121	. 61	. 028	3	48	1.01	71	. 19	3	2.33	. 02	. 64	1	6
LAY 12+00E 1+09\%	1	52	17	74	. 6	34	18	414	4.87	21	5	H0	1	33	1	2	2	124	. 57	. 054	3	52	1.21	76	. 23	2	2.54	. 02	. 01	$?$	7
Lay 12+00E $0+50 \mathrm{~N}$	1	49	9	111	. 3	42	18	514	4.72	15	5	HD	1	31	1	2	3	131	. 59	. 044	3	43	1.50	76	. 29	4	2.30	. ${ }^{2}$. 11	1	2
Lay 12400E 0450S	1	55	2	76	. 6	26	13	327	5.14	11	5	HO	1	33	1	2	2	140	. 57	. 010	3	55	1.07	46	. 28	2	2.15	. 02	. 04	$\underline{1}$	10
Lat 12+60E $1+505$	1	55	11	70	. 5	30	15	338	4.58	13	5	ND	1	33	1	2	2	135	. 42	. 031	3	55	1.20	60	. 30	2	2.14	. 02	. 05	1	10
Lat j2tuee 2400S	1	53	4	66	. 5	32	16	353	4.25	14	5	HD	2	29	1	2	2	113	. 60	. 080	3	59	1.00	55	. 21	2	2.18	. 02	.(14	1	8
Lay 12toue 2450S	1	30	15	85	. 2	23	8	21!	3.19	5	5	ND	1	44	1	2	2	114	1.15	. 038	1	51	. 6	114	. 22	2	1.50	2	04	1	2
LAY 14+00E $6+00 \mathrm{M}$	5	47	7	228	. 7	37	25	1084	6.59	27	5	ND	2	23	2	2	2	135	. 38	. 067	4	51	. 91	121	. 19	2	2.10	. 02	. 06	1	1
LAY 14+COE 5+50K	5	54	19	135	. 7	44	20	433	6.14	26	5	HD	2	28	1	2	2	122	.43	. 063	4	57	1.15	55	. 24	7	2.55	. 01	. 05	2	1
LAY L4+00E $5+00 \mathrm{~K}$	1	3 i	7	109	. 3	19	13	312	4.59	18	5	kD	1	32	1	2	2	127	. 55	. 054	3	48	. 90	69	. 21	10	1.82?	. 02	. 04	1	1
Lay l4+00E 4650n	1	73	17	149	. 5	37	22	419	5.08	16	5	NO	2	30	1	2	2	117	. 53	.018	3	59	1.33	57	. 25	5	3.13	. 02	. 04	1	1
Lat 14+00E $4+00 \mathrm{H}$	1	65	12	72	. 7	53	17	540	4.94	22	5	Hi	2	34	1	2	2	146	1.12	. 042	3	84	1.10	55	. 32	2	3.	. 02	. 04	1	2
LAY 14,00E 3+50K	1	55	9	172	. 6	50	24	417	6.00	25	5	HD	3	22	1	2	2	147	. 68	. 116	4	84	1.47	75	. 29	13	4.60	. 02	.04	1	1
LaY 14100E 3+00H	1	59	12	140	. 7	21	20	470	6.24	22	5	NO	2	32	1	2	2	151	. 51	. 050	1	41	. 97	55	. 40	3	2.05	. 01	. 04	1	8
LAY 14+00E 2+50H	1	18	9	11	. 5	19	13	535	4.15	12	5	H0	1	25	1	3	2	130	. 52	. 018	3	40	1.31	84	. 33	2	2.10	. 03	. 07	2	5
LAY $14+00 \mathrm{E} 2+00 \mathrm{H}$	1	23	13	47	. 1	14	10	243	4.17	13	5	H0	1	26	1	2	2	130	. 43	. 068	3	3!	. 72	10	. 29	5	1.61	. 02	. 03	1	2
Lay 14+00E 1450N	1	16	7	61	.4	23	13	320	4.01	9	5	HD	2	31	1	2	2	109	. 51	. 047	3	46	. 82	54	. 23	2	2.07	. 02	. 03	1	2
Lay 14+00E 1+00\%	1	53	14	75	. 3	25	15	376	4.70	16	5	ND	1	26	1	2	2	110	. 48	. 010	3	49	1.07	82	. 14	2	2.12	. 02	. 05	1	2
LAY 14+00E 0+50H	1	71	19	62	. 2	26	17	376	4.39	22	5	HD	2	38	1	2	2	104	.61	. 048	J	56	1.27	70	. 23	5	2.78	. 03	. 04	1	5
Lay 16+00E 5450n	1	58	14	58	. 3	37	16	505	4.07	12	5	ND	1	37	1	2	2	111	. 88	. 023	3	64	1.49	59	. 32	2	2.90	. 02	. 05	1	5
LAY 16+00E 5+00H	1	26	16	52	. 3	21	14	351	3.53	10	5	HD	,	33	1	2	2	106	. 79	. 029	3	4	. 91	56	. 24	1	1.15	. 02	. 04	1	1
LAY 16+00E 4+50\%	1	31	25	119	. 2	28	14	362	4.52	17	5	H0	,	30	1	2	2	119	. 71	. 056	3	57	1.15	54	. 27	$?$	2.52	. 02	. 03	1	1
Lay 16+00E 2+50H	1	40	7	127	. 3	30	17	359	4.14	14	5	HD	1	29	1	2	2	112	.45	. 057	3	51	1.11	58	. 26	9	2.44	. 02	. 04	1	1
LAY 16400E $2+00 \mathrm{H}$	1	79	20	69	. 2	33	16	371	4.18	11	5	ND	1	32	1	2	2	115	. 58	. 022	3	53	1.23	106	. 24	2	2.35	. 02	. 04	1	1
LAY 16400E $1+50 \mathrm{H}$	1	10	22	16	. 3	21	13	127	4.53	15	5	ND	1	31	1	2	2	119	. 51	. 046	1	48	. 9	73	. 24	1	2.24	. 02	. 04	2	12
LAY 16+00E 1+004	1	69	8	106	. 4	21	17	505	5.04	15	5	HD	2	27	1	2	2	111	. 49	. 187	3	57	1.28	68	. 22	2	3.00	. 02	. 06	1	1
Lay 16+00E O+50\%	1	52	12	60	. 4	24	18	1102	3.64	15	5	HD	2	43	1	2	2	108	. 89	. 027	3	4	1.00	134	. 22	7	1.85	. 02	. 05	1	1
LAY EL 20+00\%	1	32	19	92	. 5	35	17	427	7.60	21	5	RD	1	23	1	2	2	222	. 84	. 050	J	82	1.38	43	. 42	8	3.20	. 01	. 04	1	6
LAY SL 19400N	1	37	2	85	. 4	28	15	418	5.50	16	5	HD	2	29	1	2	2	168	. 11	. 069	3	67	1.28	51	. 38	7	3.46	. 02	. 04	1	25
Lay gl $18+50 \mathrm{~K}$	1	69	18	84	.1	48	23	137	5.80	24	5	HD	2	53	1	2	2	166	1.30	. 044	3	69	2.19	45	. 35	8	4.13	. 02	. 04	1	1
Lay ji. 184004	1	71	12	116	. 2	35	21	719	4.23	23	5	N0	2	29	1	2	2	144	.94	. 078	3	74	1.61	80	. 31	3	3.12	. 01	. 05	1	I
Lay jl $17+501 \mathrm{H}$	1	68	19	64	. 3	50	22	502	5.30	22	5	HD	1	34	1	2	2	146	. 90	. 050	2	7	1.84	41	. 33	7	3.92	. 02	. 04	1	1
lay il $17+00 \mathrm{n}$	1	34	12	61	. 5	37	15	434	5.30	30	8	HD	1	27	1	2	2	154	. 15	. 078	2	74	1.41	36	. 34	7	3.14	. 01	. 04	1	3
Lay fl 16550 X	1	30	17	55	. 4	$3!$	14	341	4.51	17	5	HD	1	22	1	2	2	14	.76	. 014	2	55	1.28	27	. 31	1	2.40	. 01	. 02	1	2
SID C/AU-S	20	63	40	132	7.5	68	29	1027	4.01	41	17	8	39	51	19	18	23	58	. 50	. 094	41	59	. 91	192	. 09	36	1.73	. 07	. 15	13	52

寞
$\left.\right|_{1} ^{\text {罦 }}$
$\stackrel{\text { 孛 }}{1}$
$\stackrel{\text { 嵑 }}{1}$
$\stackrel{\text { 蔓 }}{1}$
$\stackrel{\text { 炭 }}{ }$
 $\stackrel{\text { 㟶 }}{1}$

4．
．

1
正
－
1

10ロロN \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$\frac{60014}{}$ $+1+2$
\qquad
\qquad

2のaN

102 N

\qquad

