Off Confidential: 89.04.22 District Geologist, Prince George ASSESSMENT REPORT 17458 MINING DIVISION: Omineca Cabin **PROPERTY:** 125 05 49 56 13 31 LONG LAT LOCATION: 10 6232917 369986 UTM 094C03E NTS Cabin, Cabin 1-2 CLAIM(S): OPERATOR(S): Skylark Res. McAtee, C.L.;Hopper, D.H AUTHOR(S): 1988, 29 Pages REPORT YEAR: GEOLOGICAL Tenakihi Group quartzites and quartz-mica schists occur as a SUMMARY: major anticlinal structure. Silver and gold values occur in brecciated guartz veins related to shears. Veins are 0.91-4.57 metres wide and 30-91 metres long. WORK Geological, Geochemical DONE: 2.0 ha GEOL 27 sample(s) ;ME
11 sample(s) ;ME ROCK SILT SOIL 122 sample(s) ;ME 094C 022 MINFILE:

			······
LUG NU:	0602		:.Ð [
ACTION:			
FILE NU.		<u></u>	

GEOLOGICAL REPORT ON THE

CABIN CLAIMS

(Cabin, Cabin #1, Cabin #2)

Jim May Creek Area Omineca Mining Division, British Columbia 94C/3E

> Latitude 56 12'57", 56 11'13" Longitude 125 05'55", 125 01'50"

> > For

OPERATOR:

FILMED

Skylark Resources Ltd. #902-837 West Hastings Street Vancouver, B.C.

OWNER:

John M. Mirko and Douglas Hopper Vancouver, B.C.

Ву

Christopher L McAtee, M.Sc. and H. Douglas Hopper

> GEOLOGICAL BRANCH ASSESSMENT REPORT

April, 1988

TABLE OF CONTENTS

(

 $\langle \$

Introduction	(a) Location, Access, and Physiography 1
	(b) Property Claim Status 1
	(c) Property History 4
Exploration H	Procedure
	(a) Cabin Claim Group 4
	(b) Goats Claim Group 7
Regional Geol	logy
Property Geol	logy, Mineralization, and Results
Cabin Cla	aim Group (a) General
	(b) Ruby Zone 9
	(c) Cabin #1 Showing 10
	(d) Geochemical Soil Survey - CAB Grid 10
Goats Cla	aim Group
Conclusions a	and Recommendations 16
Qualification	ns
Reference	
Itemized Cost	t Statement (a) Cabin Claim Group
	(b) Goats Claim Group 21

<u>PAGE</u>

2) 1, 1,

ILLUSTRATIONS

<u>Figure</u>

(

 $\left(\right)$

(

1.	Location Map	2
2.	Claim Map	3
3a.	Cabin Claim Group - CAB Grid	5
3b.	Ruby Zone - Sample Location Map	6
4.	Goats Claim Group - Geology and Sample Location Map.	8
5.	Assay Values - Ruby Vein Zone - Cabin Claim	11
6.	CAB Grid - Anomalous Soil Values - Au, Ag, As	12
7.	CAB Grid - Anomalous Soil Values - Pb, Zn	13
8.	Assay Values - Goats Claim Group	15

APPENDICES

••• •

.

APPENDIX	1	Assay	Results	-	CAB G	cid	
APPENDIX	2	Assay	Results	-	Cabin	Claim	Group
APPENDIX	3	Assay	Results	-	Goats	Claim	Group

INTRODUCTION

Location, Access, and Physiography

The Cabin and Goats claim groups are located approximately 320 kms. northwest of Prince George, B.C. at 56 12' 57" North latitude, 125 05' 55" West longitude, and 56 11' 13" North latitude, 125 01' 50" west longitude, respectively (Figure 1).

Although the Omineca road is only 5 kms. to the southwest, access at present is by helicopter only. On the Cabin claims, the cat road that parallels Jim May Creek and ends at the old cabins is not serviceable.

The Cabin group (Cabin, Cabin #1, and Cabin #2 claims) is situated on Jim May Creek, a tributary of Tenakihi Creek, which flows into the Osilinka River. The Goats group is located 7 kms to the southeast near the head of Jim May Creek (Figure 2).

The claims lie in the Tenakihi Range of the Central Plateau and Mountain area of the Canadian Cordillera. The area is rugged with elevations from 1260 to 2020 metres a.s.l.

Rock outcrop is good to excellent.

Property Claim Status

The Cabin and Goats claim groups are owned by J. Mirko of 451 Hermosa Ave., North Vancouver, British Columbia, and Douglas Hopper of Vancouver, B.C. with details as follows:

GROUP	<u>CLAIM</u>	<u>UNITS</u>	RECORD NO.	RECORD DATE
CABIN				,
	Cabin	20	8326	April 23, 1987
	Cabin #1	1	8645	August 7, 1987
	Cabin #2	1	8646	August 7, 1987

	<u>GROUP</u>	CLAIM	UNITS	RECORD NO.	RECORD DATE
Ņ	GOATS	Goats Cabin #38 Cabin #39	16 16 12	8325 8647 8648	April 23, 1987 August 7, 1987 August 7, 1987

PROPERTY HISTORY

Prospecting has been active in the area since the turn of the century when placer gold deposits were worked on Jim May Creek and on the Ingenika River. Prospecting and drilling was carried out by Cominco in the 1930's and 1940's; a few other major and junior companies have been active in the area since then. No economic ore bodies have been developed to date.

EXPLORATION PROCEDURE

Field work was carried out by Doug Hopper, prospector, and John Sveen, assistant, from July 17 to July 28, 1987, with two property examinations by C. McAtee during the work program.

Prospecting, rock chip sampling, mapping of veins and alteration zones, and soil-silt sampling were carried out on the claims. B' Writcon soil samples were taken at 15-30 cm depth.

Cabin Claim Group

On the Cabin claim group, 4100 metres of line was flagged for geochemical soil sampling. The lines as well as the soil sample locations are shown on Figure 3a. Soil samples, and silt samples where applicable, were taken every 50 metres along the lines. The samples, 133 in all, were analyzed using the 30 element ICP package of Acme Analytical Laboratories '-(Appendix 1). Gold was determined by standard atomic absorption technique.

 \bigcirc

 \mathcal{O}

ð

۲. י

Twenty-seven rock chip samples were taken for assay and analyzed using the same methods as for soils. Several of the old showings were prospected and sampled, as were several new ones (Figure 3a and 3b).

Goats Claim Group

On the Goats claim group, 19 rock chip samples and 7 silt samples were taken on a reconnaissance program (Figure 4). These samples were analyzed as above.

REGIONAL GEOLOGY

The Cabin and Goats claim groups occur within the 1:253,440 scale Aiken Lake map area (Roots, 1954).

Regionally, Tenakihi Group metamorphic rocks, Takla Group sedimentary and volcanic rocks, and unnamed interbedded volcanic and sedimentary rocks are intruded by Omineca intrusives of Mesozoic age. Northeast of Blackpine Lake, Wolverine Complex amphibolites, quartzites, and skarns are present.

Structurally, beds of the Tenakihi Group have been deformed into a series of compound folds that have overwhelmed earlier more north-trending folds. Northwesterly faulting plays a major role in localizing mineralization both regionally and locally.

PROPERTY GEOLOGY, MINERALIZATION, AND RESULTS

<u>Cabin Claim Group</u> <u>General</u>

The Cabin claim group covers Tenakihi Group rocks near the head of Jim May Creek (Figure 2). On the claim group, Tenakihi rocks consist of highly contorted quartzites and quartz-

Ç

mica schists on a major regional anticlinal structure.

The mineral showings occur in a series of siliceous brecciated fault or shear zones, along which there has been repeated movement and deposition of vein quartz and sulphide minerals. At least four periods of mineral deposition are known (Roots, 1954).

Numerous quartz veins from 91 to 457 cms. wide, and from 30 to 91 metres long are exposed. The largest body of vein quartz found in the whole map area is on the claims and covers an area 183 by 55 metres. Most of the latter veins are not mineralized to any extent, although crosscutting veins such as the "Ruby" are.

Ruby Zone

The Ruby zone, which is exposed on Jim May Creek about 6.4 kms. from it's mouth and 550 metres east of the old cabins, was prospected and rock chip sampled (Figure 3a and 3b). The general axis of the Ruby zone strikes N20E over a distance of 150 metres.

The quartz veins, which are brecciated and faulted in argillite host rocks, display a herring-bone type of structure. Vein widths vary from 15 cms. to 8.2 metres and generally carry <1/2% pyrite and other sulphides, as well as mica and graphite. According to Roots (Roots, 1954), minerals recognizable in hand specimen include pyrite, sphalerite, galena, tetrahedrite, pyrargyrite, arsenopyrite, and minor amounts of molybdenite and chalcopyrite.

Rock chip samples numbered 2105 to 2121 and 2127 were taken from the Ruby vein zone (Figure 3b). Figure 5 summarizes assay results, widths, and mineralization from the Ruby vein zone.

Gold values of 710 and 390 ppb over 165 and 132 cms., respectively, were obtained for brecciated quartz veins striking 240 (#2108 and #2127). Silver values of 44.4, 30.0, 19.0, and 17.9 ppm were obtained from brecciated and non-brecciated quartz vein material. Arsenic values of 2152, 2183, 4259, and 4516 ppm were returned. Mineralization observed in the vein quartz includes 1/2 - 1% pyrite, galena, and up to 40% soft grey (sulphide?) material.

Cabin #1 Showing

This zone is near a small creek at grid co-ordinates 12+00E, 2+00S, 200 metres north of Jim May Creek (Figure 3a). There are a series of quartz veins trending 140 to 160 with pyrite patches and some grey unidentifiable material. The quartz veins, which cut the bedding and fill fracture gaps, are 6 to 13 mms., and up to 30 cms. wide.

Assay samples numbered 2121 to 2125 were taken from the area (Appendix 2). Rock chip sample #2123, from a 5 to 10 cm wide pyrite stringer, assayed 11 ppb gold, 22.4 ppm silver, and 1335 ppm lead.

Geochemical Soil Survey - CAB Grid

The reconnaissance geochemical soil survey program proved effective. Several low but anomalous values were found for Pb, Zn, As, Ag, and Au (Figures 6 and 7). A spot high value

Assay 🛔	Material	Sample over cms.	Strike	Mineralization	Au ppb	A g ppm	As ppm	Pb ppm	Zn ppm
2105	Q V	272	-	<1/2% sulphides	29	1.7	92	36	17
2106	QV	198	-	<1/2% sulphides	27	0.5	14	18	8
2107	QV	363	-	<1/2% sulphides	10	0.6	75	55	53
2108	Q Bx	132	060		710	17.9	4516	136	455
2109	QV	41	160	1 -5% sgm	36	0.9	279	131	744
2110	QV	Grab	-	sgm, 1% py	43	5.1	741	416	657
2111	QV	330	048	1/2 - 1 % py	240	19.0	1442	695	211
2112	Q Bx	25		py, graphite matrix	127	2.7	1232	105	80
2113	sil. sed.	97	045	ру	25	3.5	540	37	114
2114	QV	122		py, sgm	230	2.6	2152	16	42
2115	Q Bx	231		py, 40% sgm	125	1.1	2183	15	11
2116	Q V, pinched	91	162		22	30.0	58	811	44
2117	QV	198	162	galena, sgs	14	44.4	78	1751	29
2118	Rusty zone	76	030	ру	2	0.1	25	13	46
2119	QV	25	030/V	mass, py spots	64	3.2	430	44	48
2127	Q Bx	165	060	20-30% sgm, fault zone?	390	1.6	4259	220	784

ASSAY VALUES - RUBY VBIN ZONE - CABIN CLAIM

 $\left(\right)$

(

(

sgm - soft grey material sgs - soft grey sulphide Q V - quartz vein Q Bx- quartz breccia

۰، برز برز

,

FIGURE 5

 $\left(\right)$

 $\overline{ }$

of 185 ppb gold at 4+50 West on the baseline was returned.

Four anomalous silver values of 0.8 to 1.2 ppm suggest a quartz vein which carries silver trending 051 over 700 metres (Figure 6).

Goats Claim Group

Rocks on the Goats claim group area similar to those observed on the Cabin group. Schists predominate.

Figure 4 shows the rock chip and silt sample locations. Figure 8 and Appendix 3 list assay results, vein widths, and mineralization.

On southwestern Goats claim, a 12 metre wide quartz breccia zone trends in a northerly direction (#2141 to #2146). Some cherty fragments were observed on the eastern contact, with pyrite and darker coloured fragments towards the centre of the zone. Assay values range to 245 ppb Au, 15.7 ppm Ag, 962 ppm Pb, and 1424 ppm As for the zone.

Some 900 metres to the northwest, a quartz breccia zone identical in appearance to the one mentioned above was found. Here, a recemented quartz breccia and shear zone ran 58 ppb Au, 11.6 ppm Ag, 1355 ppm Pb, and 156 ppm As over 61 cms. (#2133).

Silver assay values of 6.7, 8.6, and 4.9 ppm were returned from a quartz vein in a shear (#2138) and quartz breccia zone (#2139 and #2140). Anomalous lead and arsenic values were also found in the quartz breccia zone (Figure 11).

Silt samples taken in the Goats camp area returned fair zinc values of 161 to 462 ppm.

ASSAY VALUES - GOATS CLAIM GROUP

(

 \bigcirc

 \bigcirc

Assay 🛔	Material	Sample over cms.	Strike	Mineralization	Au ppb	Ag ppm	Pb ppm	As ppm	
2128	QV	66	060/V	ру	31	26.3	3064	661	
2129	Q	Grab	180/20 [°] W	py, gm	9	0.3	47	46	
2130	QV	137		ру	5	0.7	64	48	
2131	QV	23		green stain	2	0.2	20	10	
2132	Gossan	28	180/15 ¥		25	0.8	35	2	
2133	Q Bx	61	040/V	rusty on fractures	58	11.6	1355	156	
2134	Rusty	Grab		shear zone	3	1.0	313	40	
2135	QV	Grab		black stain	3	3.6	1630	23	
2136	Q	Grab		black stain	1	1.0	344	23	
2137	Q	15	050/V	rusty	1	0.6	79	28	•
2138	QV	9	060/V	graphite	1	6.7	213	2	
2139	0 Pr.	15		angular quartz	1	8.6	685	135	
2140 5	Xd V	20		with ep., chl., hem.	2	4.9	4472	1541	
2141	Q Bx	Grab	19	greyish quartz frags.	165	15.7	[¢] 857	1424	
2142	Q Bx	Grab	wide	east contact	106	8.1	962	556	
2143	Q Bx V	18	zone strikes	rusty shear, py, darker coloured frags.	245	6.9	304	1420	
2144	Q Bx	Grab	to south	centre of zone in quartzite.	12	3.8	906	88	
2145	Q	Grab		black stain	11	9.9	399	47	
2146	Bx	Grab		rusty	1	0.8	218	17	
				,	Q V Bx Gm Fi	- quar - vein - brec - vert - grey qure 8	tz cia ical materi	, al	

CONCLUSIONS AND RECOMMENDATIONS

The 1987 program on the Cabin and Goats claim groups was successful.

Assays show a fair silver and anomalous gold content across relatively large widths. Soil and silt sampling provide a good tool in this terrain.

Recommendations for further work include:

- Reconnaissance prospecting, rock chip sampling, and silt sampling on the Cabin #1, Cabin #2, Cabin #38, Cabin #39 and southern part of the Cabin claim.
- 2. Diamond drilling on the Ruby vein zone.

QUALIFICATIONS

I, CHRISTOPHER L. MCATEE, certify that:

- 1. I am a minerals exploration geologist.
- 2. I am a graduate of Brock University, St Catharines, Ontario with a degree in geological Sciences (M.Sc., 1977), and a graduate of Wright State University, Dayton, Ohio, with a degree in Geology (B.Sc., 1972).
- 3. I have spent the past ten years in mineral exploration and development in Canada and the United States.
- 4. I personally examined the property and directed the geophysical program conducted by Skylark Resources Ltd. in 1987.

Vancouver, B.C. April, 1988

Christophen Finakte

٠,

• •

Christopher L. McAtee Geologist

QUALIFICATIONS

I, H. DOUGLAS HOPPER of 828 West Hastings Street, Vancouver, B.C., did attend the Provincial Institute of Mining, Haileybury, Ontario in the years 1962-1964, 1965 and 1966, for which I am a Mining Ehngineering Technologist.

Since 1966, I have worked with various mining companies as Field Geologist, Junior Engineer, looking after diamond drilling projets, underground mining exploration and surface wxploration.

DATED at Vancouver, British Columbia, this 23rd day of March, 1988.

Happer

REFERENCE

(

Roots, E.F. (1954) Geology and Mineral Deposits of Aiken Lake Map - Area, British Columbia. Geological Survey of Canada Memoir 274, 246 pp.

ITEMIZED COST STATEMENT

CABIN CLAIM GROUP

 \bigcirc

 \mathbf{C}

 \mathbf{C}

Helicopter - 3.0 hours @ \$595/hour	\$ 1,785.00
Field Wages - 1 prospector 7 days @ \$130/day	910.00
1 assistant 3 days @ 130/day	405.00
1 assistant 7 days @ \$95/day	910.00
1 assistant 2 days @ \$95/day	190.00
Report/Drafting/Wordprocessing	735.00
Mob/Demob - Vehicle - Fuel - Equipment	235.00
Camp 14 man days @ \$35/day	490.00
Assays - 100 @ \$13.25/each	<u>2,120.00</u>
TOTAL	\$ 7,780.00

١.

.

.

ITEMIZED COST STATEMENT

GOATS CLAIM GROUP

 \subset

 $\left(\right)$

Helicopter - 2.8 hours @ \$595/hour	\$ 1,666.00
Field Wages - 1 prospector 6 days @ \$130/day	780.00
1 assistant 6 days @ 130/day	780.00
1 assistant 1 day @ \$95/day	95.00
Report/Drafting/Wordprocessing	435.00
Mob/Demob - Vehicle - Fuel - Equipment	433.00
Assays 9 man days @ \$35/day	315.00
Assays - 27 @ \$13.25/each	357.75
TOTAL	\$ 4,761.75

21

,

.

.

ACME ANALYTICAL LABORATORIES 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE 253-3158 DATA LINE 251-1011 GEOCHEMICAL ICP ANALYSIS .500 GRAM SAMPLE IS DIGESTED WITH 3HL 3-1-2 HCL-HHO3-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 HL WITH WATER. THIS LEACH IS PARTIAL FOR MH FE CA P LA CR HG BA TI D N AND LINITED FOR NA AND K. AU DETECTION LINIT BY ICP IS 3 PPM. - SAMPLE TYPE: P1-3 ROCK P4-12 SOIL AUS ANALYSIS BY AA FROM 10 GRAM SAMPLE. Aug 20/81 ASSAYER. ACHIG. DEAN TOYE, CERTIFIED B.C. ASSAYER DATE RECEIVED: DATE REPORT MAILED: AUS 12 1997 SKYLARK RESOURCES PROJECT-FIRESTEEL/GRUBSTAKE File # 87-3214 Page 1 SAMPLE CU MB 28 ZN AG NI CO KN FE AS U AU ŤK SR ED CA ST 11 Y 2 LA CR XG DA 11 2 AL. NA ĸ H. AUS PPN PPN PPH 22K PPK ₽PX PPH PPA PPM ĩ PPN PPN PPN PPH PPN P2X PPK P2X I I 778 PPH z PPK ĩ PPK 1 1 1 P73 PPK CAD 14+00E 1+00SA 24 t 21 102 .4 40 10 105 2.10 2 5 10 14 2 2 18 .28 .071 57 24 .77 51 .11 4 1.43 10. .40 CAR L&+00E 1+505 1 1 18 18 74 C .1 21 . 214 2.72 13 ND 5 14 7 2 1 2 17 .01 .028 39 23 .45 31 .07 1.21 10. .21 EAB L4+00E 2+00S 1 . 1 18 21 75 .2 20 12 313 3.30 10 5 RD 14 7 1 2 2 23 .06 .024 44 25 .69 5 .07 2 1.58 -01 CAT L12+00E 0+50K .21 1 1 12 1 7 46 .1 15 15 2.41 5 5 5 ND 4 5 t 2 2 22 .04 .024 24 13 .27 25 .05 2 .79 .01 .07 CAB L12+00E 0+00 1 Т 10 12 63 .2 16 C 7 119 2.44 7 5 ND 13 2 2 17 .16 .015 28 21 .40 47 .07 2 1.21 -01 .17 1 CAB L12+00E 0+505 1 4 10 61 .1 14 192 2.61 5 1 ND - 3 17 .05 .025 23 20 .54 47 .07 3 1.14 .01 .17 2 CAB 112+00E 1+005 1 C • 48 .1 12 123 1.87 4 3 5 NÐ 4 L 2 4 14 .07 .021 25 14 .54 37 .06 7 1.02 .01 -14 2 . CAD 112+00E 1+505 • 15 48 12 1 .3 4 155 1.90 5 5 НD B Q 1 2 2 18 .10 .022 22 17 .55 55 .01 2 1.06 .01 .18 1 1 CAB L12+00E 2+005 I. 7 15 59 .2 5 13 132 2.14 4 . ND 7 5 1 2 2 22 .04 .022 20 20 .41 28 .10 2 1.09 .01 .13 1 2 CAN L12+00E 2+155 SILT 20 • 73 .1 38 10 285 2.93 C 4 5 ND 11 ſ 2 2 12 .07 .032 23 21 . 47 21 .04 2 .11 .01 .12 1 1 CAR L12+00E 2+505 1 25 15 80 .1 31 14 545 3.47 5 -5 ЯD 15 14 2 2 18 .13 .037 47 23 .71 39 .04 2 1.39 .01 .10 CAR 112400E 3400S 13 12 ¢ 1 56 .1 17 127 2.92 4 7 5 ЮĎ .01 .031 . 2 2 17 25 17 .60 34 .08 2 1.07 _0t .21 1 1 CAB 3 1 17 11 45 .1 17 7 120 2.17 • 5 NÐ 7 5 1 2 3 15 .08 .038 27 18 .52 34 .04 2 1.07 .01 .20 CAR 4 1 1 15 11 45 1 .1 20 B 228 2.93 8 HD 5 B 10 1 2 4 17 .13 .042 33 20 .42 42 .07 2 1.24 .01 .22 1 L EAB 6 1 15 15 45 C .1 15 5 101 2.14 5 KD t 7 2 2 1 11 .08 .034 21 11 .32 23 .05 2.75 .01 .14 1 2 CAB 7 1 30 17 102 .1 27 1 457 5.97 27 2 2 21 .22 .073 23 41 .73 47 .11 2 1.37 .01 .26 CAD 8 15 71 C 1 14 .1 24 10 320 2.85 B 5 ND 7 17 2 2 17 .25 .051 33 20 .64 51 .08 2 1.21 .01 .24 CAR 7 1 1 18 13 1 70 .1 21 273 2.46 8 5 6 ND 11 . 2 2 1 15 .19 .040 34 17 .45 46 .08 2 1.11 .01 .30 1 1 CAB 10 -14 1 14 43 .1 13 4 118 2.56 8 5 HD ۰. 3 1 2 2 14 .05 .037 20 12 .32 15 .05 3 .18 .01 .11 1 2 CAU 11 1 15 11 50 C .1 17 7 271 2.44 7 5 HD 2 2 14 .13 .047 33 14 **.**5L 38 .06 2 . 73 .01 .1 1 1 CAB STATION 1 t 18 16 59 .1 17 7 134 3.02 7 -5 ND 3 2 17 .04 .040 24 17 .53 25 .05 2 1.07 .01 .15 1 CAD STATION 2 1 15 17 52 .1 16 7 117 3.42 12 5 HD 7 3 1 2 2 27 .02 .100 20 13 .24 17 .08 2 .43 .01 .11 CAR 0+00 0+50N 1 1 1 13 14 -51 .3 17 5 102 2.13 17 5 ND 7 15 1 4 20 2 .14 .010 27 18 .41 32 .05 3 .74 .01 .18 1 1 CAR 815+50E 1+00N 1 22 16 203 .4 61 40 4524 20.51 4104 5 KD 10 57 1 2 2 10 .34 .031 36 10 .30 205 .03 4 .41 .01 .21 2 CAN DLS+SOE 0+SOS SILT P 1 C 1 42 2 185 .1 34 24 1817 48.00 2133 5 KD 9 112 3 50 2 t .33 .017 27 4 -13 203 .01 2 .54 .01 .10 1 î

.....

١.

(

•

C

(

ACME ANALYTICAL LABORATORIES - 852 East Hastings Street, Vancouver, B.C. V6A 1R6

APPENDIX 1 - Assay Results - CAB grid

SKYLARK REBOURCES PROJECT-FIRESTEEL/GRUBSTAKE FILE # 87-3214

SAMPLE	80 PPN	UJ PPH	РВ РРИ	ZH PPK	AG 1998	11 19	CO PPK	KN PPN	FE	AS PPH	U 77%	AU PPK	TH PPH	SR PPH	CD PPN	SD PPN	31 PPN	V PPH	CA 7	7	LA PPN	CR PPH	KG	1A PPK	TI Y	1 PPN	AL Y	KA T	ĸ	N Pen	AUT	
	•																		-	-			-		•		^	•	•	• • •		
CMB L1400M 0400	1	21	37	100	-1	24	13	200	3.45	32	5	KD	8	15	1	2	3	25	.11	.033	25	22	.35	57	.º2	4	1.24	.01	.18	1	1	
LAN LIFOON OFSOE	I	17	12	44	.2	17	5	151	2.22	23	5	KD	- 4	7	1	3	2	31	.04	.023	-31	12	.13	40	.03	2	.11	.01	.08	1	L	
CAN LITOON 1400E	1	22	- 17	83	.4	18	7	158	4.32	21	5	ND	11	12	1	2	2	35	.02	.048	33	- 14	.24	31	-01	2	. 12	.01	.15	1	1	
CAB 11+00% 1+50E	1	30	18	- 94	.3	26	10	253	5.23	24	5	KD	15		1	2	2	24	.05	.035	37	24	.56	37	.05	15	1.35	10.	.24	1	2	
CAN 11+00N 2+00E	1	12	12	59	.3	12	5	147	2.37	76	5	ND	2	9	1	2	2	30	.09	.023	21	12	.41	56	.06	2	. †1	.01	.27	i i	t	
CAD 11+00N 2+50E	1	17	44	81	.2	17	7	185	3.94	28	5	ND	,		i	3	2	33	.06	.049	23	23	. 49	31	.06	2	1.17	.01	. 21	ı	11	
CAB 11+00N 3+00E	1	34	20	97	.1	32	14	551	4.67	14	5	KÐ	17	- 11	i	2	2	23	.70	.041	38	29	.95	50	.06	3	1.49	.01	.35	i		
CAB L1+00N 3+50E	1	22	14	47	.1	22	1	15	3.62	12	5	NÐ	14	- ii	Ē	2	2	28	.03	.047	37	- ÎÌ	.27	20	.02	- Ť	. 14	.01	01	i	i	
CAB L1+00H 4+00E	í	21	13	47	.1	24	R	155	3.56	13	5	KD	14	5	1	2	2	25	.02	.046	34	14	.28	20	.02	2	70	.01	01	1	2	
CAB L1+00X 4+50E	1	20	15	67	.1	21	7	145	3.28	12	5	ND	13	5	I	2	2	24	.03	.041	35	13	.25	20	.02	2	.84	.01	.08	l	5	
CAB L1+00H 5+00E	1	10	10	43	.1	11	4	72	1.87	4	5	KD	10	4	1	2	2	24	.01	-014	33	,	.17	19	-07	,	.81	.01	. 05	I	2	
CAD LIHOOK SHIDE SILT	Ē	37	14	92	.1	42	14	280	4.19	7	5	ND	19	10	i	2	,	14	.10	.039	41	1		22	.07	,	1.07	.01	.12	i	÷	
CAB LIHOON SHOOE	1	27	14	12	t	27	10	190	4.96		Š	ND	16	5	1	2	• 2	21	.02	.052	32	20	.4	23	.02	2	1.29	.01	.13	ī	3	
CA3 11+00% \$+00E	1	10	5	51		11	4	86	1.44	- i	5	ND		8	- î	2	2	23	.05	-014	32	7	.01	40	.01	3	.50	.01	.03	i	3	
CAB L1+00N \$+50E	1	10	12	45	.2	15	4	135	2.31	8	5	КÐ	B	10	1	2	2	20	.12	.012	25	11	.40	25	.06	2	1.05	.01	.21	1	2	
CAS LI+00N 7+00E	1	27	14	78	.1	29	10	301	3.71	39	5	ND	15	13	1	2	2	17	.13	.077	47	71	.57	36	.03	3	1.35	.01	. 21	ſ	4	
CAB L1+00N 7+50E	1	27	13	73	.1	27	ii ii	314	3.32	12	5	XD	15		ī	2	Ā	17	.09	.075	37	24	.49	34	.05	,	1.30	.01	.21	i	2	
CAN 11+00N 8+00E	ī	49	30	151		52	44	1061	5.77	10	,	ND	10	2	i	5	,	15		.017	59	35	.25	17	-08	5	2.51	.01	.74	i	ĩ	
CAB LIHOUN BHODE	ī	12	18	74	.2	12	7	143	7.08	Å	Š	ND	5	19	÷	5	ĵ	27	19	010	74	1.	78	\$7	.03	,		.01	.14	i	i	
CAB 11+00N 9+00E	1	6	7	51	.1	- 4	3	17	1.31	1	5	ND	4	12	i	2	2	ÎŤ	.15	.012	30	II.	.32	34	.04	2	.70	.01	.15	i	i	
CAB LIHOON THEOE	1		8	35	.7	1	3	52	1.14	5	5	ĸn			1	7	2	12	07	414	77		. 17	24	61	,	.59	.01	_07	,	,	
CAD L1+00X 10+00E	1	17	- <u>1</u>	70	.1	18	7	124	7 42	2	Š	พก	12	í.	ì	2	5	20	- 65	616	73	17	17	-	101	,	42	61	12	ī		
CAB LIHOON 10450E SILT	ī	19	10	ii.		34	17	709	7 40		ŝ	80	12	10	1	2	2	11	14	015	70	17	17	70	03	5	1 04	A1	17	i	- JI - E	
CA3 11+00X 11+00E	i	30	22	100		27	10	172	£ 11		5	ND ND	14	17	i	2	2	77	10	.033	27	25	52	77		1	1 70		20	-		
CAB L1+00N 11+50E	ī	7	· · 12	44	.1	7	4	124	1.70	2	5	KD	3	11	1	2	3	23	.08	.017	24	12	.30	34	.03	3	.75	.01	.10	i	i	
CAB L1+00N 12+00F	1	25	13	Ri	.1	25	10	777	174	11	5	¥۳.	14			,	2	71	67	018	28	71	86	17	٨E	•	1 85	61	77			
CAB DI 10+00W	i	20		78		17	17	370	3178	11	ل ع	. чл ил			· :	- 4	4	41	+03	**10	20	40	•79	74	-173	- 4	1.03	• • •	-4/			
FOR DI 9450W	÷	71	10	70	**	35	10	111	1.01	10	3	n.y	11					20	• "	.027	38	- 41		31	.00	4	1.31	+41			3	
		10	15	50		30	17	107	7.13	- 20	J	RU ND	10		1	4	2	10	.03	• V28	21	11	.12	28	. VI	2	1.13	101	- 11		2	
CAB BL 8+50N	i	18	13	74	1	25	9	133	3.12 4.82	11	5 5	KD KD	11	12	1	2	2	31	.11	.012	27	14 26	.25	29	.02	2	.63 1.08	.01	.15	1	5	
	•	14	17	14		22		170	1 10		F	4P	12	-		~	-	••								_					-	
CAB BL 7450V	1	74	22	10 10		78	11	217	3.12	13	J E	70 10	12	7	- E - E	2	2	- 25	.0/	.016	33	20	- 46 - 20	24	.06		1.05	.01	* 31		2	
COP 51 7400W		17	46	80 80	•	47 TE	11	217	1.23	11	J	10 10	11	10		4	2	14	. 46	+031	18	14	.23	21	- 43	24	10.	.01	.30	1	. 1	
FOR DI AASON		31 98	13	75	•	33 77	13	404	J.01	21	J	10	10	2		2 0	2 ,	13	.49	•Viii	37	17	- 11	32	.0Z	2	1.12	.VI	-23	I	2	
CAN BL STOON	1	24	12	47	.4	32 29	10	221	2.83	16	5	ND	11	14	1	2	2	13	.07	.03	55 34	17	.47 .39	30 40	.02	23	.71	.01	-21 -14	1	1	
EAD BL S+50W	1	32	28	84	.1	31	Ħ	199	4.50	22	5	HD	15	10	t	2	2	21	.05	.032	47	21	.37	35	•02	4	1.34	.01	.22	1	1	

Υ.

(

(

(

(

C

(

C

C

C

€

C

(

(

C

C

(

SKYLARK RESOURCES PROJECT-FIRESTEEL/GRUBSTAKE FILE # 87-3214

SAMPLEN	KO	CU	73	ZN	AG	KI	CO	KN	FE	AS	U	AU	ĨH	SR	03	58	18	Y	CA	ŗ	LA	CR	KG	34	п	3	AL	KA	ĸ) N	AUT	
	171	PP/	rrs.	rrd	rra	rr A	rra	rrs	I	rrd	rrd	7 76	rrA	rrd	***	rrn	778	ern,	*	1	rrn	rra	*	ren	Á	FrA	4	4	•	erd	(1)	
CAB BL STOON	1	20	17	- 44	.1	22	7	122	2.73	10	5	ND	7	- 4	I.	2	2	12	.03	.037	20	11	.24	14	.03	2	. 42	.01	.09	E	7	
CAB BL 4475K SILT	1	34	23	124	.2	50	15	40	3.98	15	5	ND	- 14	24	1	2	2	13	.32	-034	37.	23	-22	50	.03	3	1.09	.01	-11	1	- 4	
CAB 8L 4+50W	1	20	- 14	20	.2	22	9	215	3.10	17	5	ND	9	15	1	2	2	- 17	-16	.021	26	18	.47	37	.06	2	.74	.01	.25	1	185	
CAB BL 4+00W	1	13	11	42		12	5	85	2.07	5	5	ND		15	1	2	2	22	.15	.016	26	10	.21	32	.05	2	.55	.01	.15	1	- I	
CAB BL 3+50W	1	17	18	73	.2	17	8	158	3.78	9	5	ND	1	10	1	2	2	32	.02	.032	27	21	-40	34	.08	6	1.05	.01	.17	I	1	
	1	18	15	91	.1	22	10	190	3.99	11	5	NÔ	•	15	t	2	2	32	.14	.022	23	24	.50	34	.08	2	1.14	.01	.13	5	z	
CAR BL 2+70M	i	22	17	27		23	ġ	178	4.10		5	KD.	Ŕ	R	1	2	2	34	.01	.078	21	21	.39	24	.07	2	1.08	.01	.13	1	5	
CAR BI 2+50W		12	70	111		40	- ú	764	5.05	17	5	ND.	1	8	i	2	,	1.	.05	.014	43	70	.51	31	.02	7	1.17	.01	.13	t	i	
CAB 81 2400M	1	79	20	120		17	11	554	2 42	ü	5	ND	10	ŭ	i	2	;	18	.13	.050	40	22	. 17	49	.03	5	1.20	.01	.15	i	i	
CAD BL 1+50W	i	39	34	110	.1	43	14	290	5.14	17	5	ND	17		i	2	5	17	.07	.050	38	21	.59	28	.02	- 6	1.19	.01	.14	i	ż	
CAR 81 4 (EAU 611 7					-	E7		75.4		70	F	ų۳.		17	1	2	•	17	1.	057	45	10	ç,	20	07	5	. 97	.01	-14	1	,	
LAN BE 1450W SILT	ļ	42	26	11/	-7	22	11	334	1.15	20	3	AU NC	17	13	1	4	2	13	- 18	.033	7J 76	14	.J1 76	20		2	- 14 			- 1	i	
CAP BL 1400M	1	21	24	15	.1	21	10	226	4.2/	18	5	KD 	12	1	1	4	4	- 22	.03	.0/1	33	14	.30	17	.v2	4	1.01		.03		(E	
CAN BL 0+50W	1	22	31	88	.1	34	12	179	6.02	11	5	KD.	17	4	1	2	• 1	21	.01	-042	21	44	. 12	- 11	•03	2	1.04	-91			•	
CAB BL 0400	1	22	24	20	-1	25	- 1	173	3.26	21	5	AD.	11		1	2	2	20	.12	.027	29	23	. 66	36	.07	2	1.3/	.01	•11		-	
CAB BL 0+50E	1	20	30	49	.2	21	9	178	2.94	15	5	ND	9	9	1	2	2	19	.08	.019	31	22	.43	26	.07	2	1.19	.01	.72	1	2	
CAB 81 1+00E	1	22	17	81	.1	25	•	170	3.12	12	5	KD	10	7	i	2	2	17	.05	.015	31	22	.45	27	.05	7	1.24	.01	. 19	1	2	
CAB BL 1+50E	1	17	26	44	.1	19		111	3.22	- 14	5	KD	10	6	1	2	2	23	. 05	.013	33	21	.53	29	.06	30	1.24	.01	.15	1	3	
CAN BL 2+00F	1	20	22	17		24	8	163	3.13	- 16	5	KD	9	1	1	2	2	20	.01	.020	33	21	.44	34	.04	3	1.27	.01	- 19	1	í	
CAR BL 2450F	i	24	29	75	.7	72	11	274	3.57	11	5	ND	9	17	1	2	2	21	.27	.030	31	25	.74	54	.06	2	1.51	.01	.23	1	1	
TAR RI 2450E STIT	- i	11	14		.1	11		170	2.04	3	5	ND	10	10	ī	2	2	11	.11	.035	29	14	.44	25	.04	2	.71	.01	.13	1	2	
	•	••	••		••		-			•	-		•••		-	-	-			•												
CAD BL 3+00E	1	16	- 14	57	.1	19	7	145	2.85	1	5	ND	10	10	1	2	2	17	.15	. 025	28	22	.71	34	01	2	1.21	.01	.23	1	1	
CAD DL 3+50E	1	35	23	83	.3	31		132	3.25	2	5	KD	11	14	1	2	2	- 10	.18	.040	40	24	.12	32	.03	2	1.39	.01	.15	1	2	
CAN BL 3+60E	1	35	16	87	.1	42	- 14	252	4.09	4	5	XD	20	- 11	1	2	2	- 14	.t3	.031	48	18	.60	24	.02	2	1.01	.01	.12	1	1	
CAB BL 4+00E	i	32	23	80	.1	21	10	121	4.42	6	5	HD	15	11	1	2	2	17	.12	.025	44	24	.70	38	.02	13	1.53	.01	.12	1	2	
CAB BL 4+50E	i	31	17	17	.1	32	11	167	3.15	2	5	ND	1	10	i	2	2	19	1	.054	41	24	.11	25	.04	12	1.33	.01	-19	1	2	
FAD DI 41505				778			20	5217	\$7.07	1(0	c	บก	ю	50			•	1		.034	30	5	.13	170	-01	7	.19	.01	.02	1	3	
CHU BL 473VE SILI	1		10	14		43	28	2311	32.02	100	5	망	11	10		đ	4			4V31		19	413	71	171		14			ł	- 11	
LAB 81 3+00E	1	43	21	122	1.2	1	Y	271	2.80	16/	3	MØ MØ	1	1	1	3		10	11		39	12	471	43	.V1				•44			
CAB BL 6+00E	1	- 14	15	55	•2	11		97	2.46	8	5	NO	8	4	1	2	2	15	-05	.015		14	•21	23	+43	4	1.43	.01	- 13			
CAB BL 6+50E	1	22	20	- 74	•2	26	13	324	3.50	11	5	DX	10	12	1	2	2	23	.20	.049	52	25		65	.01	2	1.28	-01	-23	1		
CAN BL 7+00E	1	21	21	68	.1	23	10	357	2.76	6	5	KĎ	9	10	1	2	2	18	.16	.037	22	22	.42	48	.05	7	1.33	.01	.21	1	1	
CAB BL 7+50E	1	20	18	48	.1	24	,	268	3.28	4	5	ND	9	16	1	2	2	19	.24	.052	35	23	.71	46	.05	15	1.34	.01	.17	2	: 3	
CAB BL 7450E SILT	ī	16	19	63	.1	30	11	457	2.74	i i	5	ND	7	- 15	1	2	2	12	.23	.052	21	- 14	.49	33	.03		. 17	.01	.11	- 1	- 4	
CAB BL 8+00E	1	30	22	13	.1	18	8	15R	2.47	14	5	ND	14	4	1	2	2	12	.07	.040	30	15	.43	27	.04	15	.86	.01	.18	1	1	
FAR BL RISOF	. i		10	27	1		2	50	1.43	, ,	5	MD	2	Å	i	,	2	14	.03	.013	78	10	.27	23	.03	3	.78	.01	.05	1	1	
EAB BL THOOE	1	20	14	47	.1	12	5	ш	2.12	Ē	5	סא	9	3	í	2	2	13	.0	.043	22	15	.42	20	.05	2	.96	.01	-11	2	2 1	
		73		76		91		205	7 0 7			μn	11	10	,	1	9	17		074	70	14	. 17	50	-01	2	1.14	.01	.21	2	2 4	
LND BL TYJVE	1		23	/V		1	8	¥V3	2.02		3	40		10	1	- 4	4	- 17	. 10	VJB	20	11		~~						•	•	

ι

C

(

¢

(

¢

(

C

(

C

€

C

(

C

C

C

(

SKYLARK RESOURCES PROJECT-FIRESTEEL/GRUUSTAKE FILE # 87-3214

SAMPLEO	80 PPM	CU PPH	28 228	ZH PPK	AG 77K	NI PPK	CO PPN	nn Ppn	FE T	AS PPK	U H99	AU P?K	1H 897	SR PPN	CD PPH	SB PPH	31 PPN	V PPK	CA I	7 7	LA PPH	CR PPH	K6 Z	98 773	TI I	∎ 795	AL X	KA Z	K I	N 998	AUS PPB	
CAB BL 10:00E CAB BL 10:00E SILT CAB BL 10:50E SILT CAB BL 11:00E CAB BL 11:50E	 1 2 	11 22 14 22 22	14 17 12 17 20	53 87 45 79 82	1. 1. 1. 1.	12 23 13 26 21	4 10 7 13 12	114 314 185 455 319	2.21 2.93 1.83 3.46 3.43	5 7 5 5 10	5 5 5 5 5	ND ND ND ND ND	5 7 8 12 7	11 16 7 8 10	1 1 1 1	2 2 2 2 2 2	5 2 4 3 2	14 16 11 17 16	.18 .29 .13 .12 .17	.023 .050 .029 .033 .065	22 35 22 23 29	15 17 10 24 15	.49 .62 .37 .76 .59	33 42 19 34 32	.04 .05 .04 .05 .05	2 2 1 1 2	.93 1.10 .63 1.19 1.01	.01 .01 .01 .01 .01	.13 .17 .09 .17 .17	1 1 1 1	1 1 42 1	
CAU DL 12+00E CAU DL 12+35E SILT CAU DL 12+50E CAU DL 13+00E CAU DL 13+50E	1 1 1 1	28 23 20 14 14	17 11 15 24 10	84 75 79 81 58	.1 .1 .3 .1	29 34 25 21 17	14 10 8 10 12	261 252 224 177 430	3.74 2.99 2.85 3.01 2.90	6 2 7 7	5 5 5 5 5	HD ND ND ND X0	16 12 7 7	5 7 21 22 7	1 1 1 1	3 2 2 2 2 2	2 2 2 2 2	19 12 16 25 21	.01 .13 .27 .14 .12	.037 .038 .044 .026 .026	33 26 41 20 31	23 17 22 22 19	.76 .63 .82 .44 .51	25 20 43 82 55	.04 .03 .03 .07 .05	2 4 2 3 2	1.27 .99 1.32 1.41 1.46	.01 .01 .01 .01 .01	.13 .12 .07 .20 .13	5 1 1 1 1	1 1 1 1 3	
CAN BL 14+00E CAN L1+00S 1+SOE CAN L1+00S 2+00E CAN L1+00S 2+50E CAN L1+00S 3+00E	1 1 1 2 2	15 19 20 14 19	20 21 19 7 19	74 61 60 59 89	.2 .2 .4 .2 .1	23 14 17 16 24	7 6 7 13	146 147 124 171 319	2.43 3.77 2.56 2.19 3.43	5 11 11 6 4	5 5 5 5 5	ND ND ND ND ND	4 10	19 3 8 47 20	1 1 1 1	2 3 2 2 2	3 2 2 2 2 2	20 23 25 21 30	.23 .08 .04 .47 .20	.024 .046 .043 .050 .049	36 23 29 30 33	19 24 21 20 30	.54 .42 .53 .58 .80	107 45 57 62 48	.04 .09 .07 .09 .15	2 2 3 3	1.48 1.65 1.31 1.15 1.80	.01 .01 .01 .01 .01	.13 .31 .25 .24 .36	1 1 1 1	4 2 1 1	
CAB L1+005 3+35E SILT CAB L1+005 3+60E SILT CAB L1+005 4+00E CAB L1+005 4+50E CAB L1+005 5+00E	1 4 2 1 1	40 51 28 25 9	17 17 19 14 11	137 160 130 103 47	.3 .9 .6 .2 .1	65 31 35 24 10	16 13 12 7 4	323 892 581 237 97	3.14 3.40 4.60 3.08 2.04	12 12 15 9	5 5 5 5 5	ND HD ND KD	10 6 7 7 1	47 43 59 33	1 1 1 1 1	2 2 2 2 2	2 2 2 2 2	20 18 25 20 25	.62 .63 .01 .51 .03	.073 .072 .060 .040 .023	73 78 62 40 23	24 21 25 20 12	.73 .5B .78 .70 .27	89 72 105 41 31	.10 .05 .10 .10	2 2 5 2 5	1.62 1.52 1.99 1.35 .80	.01 .01 .01 .01 .01	.44 .28 .36 .35 .12	1 1 1 1 1	1 1 1 1	
CAB LI+005 5+50E CAB L2+005 I+00E CAB L2+005 I+50E CAB L2+005 I+50E CAB L2+005 2+00E CAB L2+005 3+00E	 	22 20 7 4 14	17 15 15 15	137 72 45 30 48	.7 .1 .3 .1 .2	46 21 7 6 17	10 9 5 2 7	315 145 82 90 128	2.69 4.25 3.00 .83 2.51	8 10 3 8	5 5 5 5 5 5	ND ND ND ND	2 11 7 1 7	42 - 5 - 4 - 6 - 16	1 1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	18 24 32 14 24	.53 .01 .02 .04 .19	.061 .023 .031 .014 .019	34 29 27 28 26	20 24 18 7 25	.40 .41 .39 .21 .77	79 42 26 39 56	.06 .10 .15 .05 .13	2 2 3 2	1.44 1.48 1.13 .69 1.57	.01 .01 .01 .01 .01	.25 .30 .17 .11 .31	 	l 1 1 1	
CAT L2+005 3+50E SILT CAT L2+005 4+00E SILT CAT L2+005 4+50E CAT L2+005 5+50E CAT L2+005 5+50E CAT L2+005 6+00E	2 2 1 2 1	30 17 25 6	22 • 13 13 9 10	108 93 77 32 28	.3 .2 .1 .2 .2	27 31 23 7 7	11 13 12 3 3	482 1341 313 67 57	3.25 3.07 3.25 1.36 1.20	12 20 10 7 5	5 5 5 5 5	HD ND ND ND ND	9 5 12 1 4	26 45 10 5	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	20 17 21 19 30	.44 .70 .18 .03 .02	.060 .066 .053 .024 .017	54 47 32 22 31	21 17 20 10 8	.70 .55 .70 .18 .11	68 80 62 32 21	.07 .07 .10 .03 .06	4 4 3 2 3	1.49 1.17 1.38 .57 .52	.01 .01 .01 .01 .01	.36 .25 .36 .11 .07	1 1 1 1 1	1 1 1 1 1	
CAB L1+00E 1+505 CAB L4+0DE 0+50X CAB L4+0DE 0+00 CAB L4+00E 0+505 CAB L4+00E 0+505A	1 1 1 1 1	16 18 20 14 43	12 16 29 19 27	55 63 101 74 140 25	.1 .3 .3	15 19 29 19 54	6 4 22 12 14 7	102 116 485 264 353	3.03 2.79 3.47 3.00 4.01	8 13 13 14 12	5 5 5 5 5	ND XD ND ND ND	10 7 15 7 15	3 9 14 13 30 7	1 1 1 1 1	2 2 2 2 2 2 2	2 2 2 2 2 2 2	27 22 21 23 26 20	.01 .07 .15 .16 .42	.028 .017 .017 .030 .064	27 32 32 34 108 25	17 15 23 19 29	.37 .46 .61 .45 1.00	31 27 50 51 71 37	.10 .05 .04 .07 .14	2 5 3 2 2 2	1.03 .97 1.47 1.41 1.74	.01 .01 .01 .01 .01	.18 .13 .22 .59	1 1 1 1 1	1 1 2 2	
CUB [8:445 1:443		-	13	44	•1		•	- 1	****				-		•	-	-					-										

- ;: - , , ,

(

C

C

C

€

€

C

C

C

Κ.

Υ.

C

(

(

(

(

(

BKYLARK REBUURLEB FRUJELI-FIRESIEEL/GRUBSIARE FILE # 87-3	SKYLARK !	RESOURCES	PROJECT-FIRESTEEL	/GRUBSTAKE	FILE #	67-321
---	-----------	-----------	-------------------	------------	--------	--------

۴

۲.

C

(

C

(

C

•

•

C

C

€

C

C

SAMPLES	NO PPK	CU PPN	23 272	IN PPN	46 P P N	NI PPH	03 899	nn Ppk	FE 1	AS 778	U PPK	AU PPH	TH PPH	SR PPK	CD PPN	S) PPK	10 119	V 1997	CA X	PI	LA PPH	CR 2PH	KG 1	BA PPH	11 1	l PPH	AL 1	KA I	K 1	¥ PPN	AUL Pfe
R-7101	ł	3	34	1	.4	2	1	58	.39	2	5	RD	1	3	1	2	5	1	.14	.001	2	2	.01	3	.01	2	.01	.01	.02	1	3
R-7107	i	7	16	i	.5	ī	1	71	.61	4	5	ND	1		1	2	4	- 4	,0¶	.002	2	3	.04	11	.01	20	.15	-02	.05	1	1
8-2103	j	7	22	t	.3	4	1	147	.54	2	5	KD	1	2	1	2		1	.02	.001	2	1	.01	7	.01		.07	-01	-06		2
R-2104	ī	35	40	27	.1	31	10	270	1.95	3	5	KD	8	Ħ	1	2	•	- F	- 17	800.	17	10	.39	15	.02	8	.53	.02	.15		3
R-2105	98	16	34	17	1.7	п	4	46	1.57	92	5	ND	4	1	I	2	3	1	-0F	.005	10	4	.01	7	.01	•	•12	.Q1	.13	1	17
R-2106	31	13	18	8	.6	14	5	67	1.55	14	5	ND	3	1	L	3	ł	2	.01	.005	4	4	.02	10	.01	2	.15	.01	.12	1	27
R-2107	7	7	55	53		5	Ł	111	1.01	75	5	KD	1	- 4	1	2	- 4	t	-04	. 001	2	5	.02	3	.01	2	.05	.01	.04	1	10
R-2108	2	20	134	455	17.9	17	6	341	2.26	4516	5	ND	5	- 48	3	57	2	2	.50	.001	12	3	.25	1	.01	2	.16	-0[.14	1	10
R-2107	2	20	131	744	.1	14	11	71	1.43	279	5	HD	1	1	- 4	5	3	1	.01	100.	2	3	-01	1	.01	2	.01	-01	.02	1	38
R-2110	2	19	416	457	5.1		2	79	.17	741	5	KD	1	1	- 4	10	6	L	.01	.001	2	1	•01	1	.01	2	.02	.01	-02	I	45
																					_					_					714
R-2111	10	21	675	211	17.0	10	5	73	2.02	1442	5	HD	1	2	1	- 14	37	1	-01	.001	3	4	.01	11	•01	2	-01	-01	.08		117
R-2112	4	10	105	80	2.7	•	5	50	3.66	1232	5	KD	3	5	1	27	4	1	.02	.003	•	2	.02	8	.01		.11	.01	.07	-	161
R-2113	1	37	37	- 114	3.5	22	1	756	2.42	540	5	ND	4	3	1	10	2	3	.04	.011	12	4	.21	13	.01	3	-24	.01	•10 •7	1	110
R-2114	1	- 11	16	42	2.6		3	170	1.51	2152	5	HD	- 4	2	1	20	2	2	.01	.001	15	3	.03	24	.01	2	-18	.03	.13		196
R-2115	1	7	15	il	1.1		3	103	2.30	2183	5	KD	- 4	2	1	17	2	2	.01	.003	•	- 4	.02	24	.01	4	-18	-01	.19	1	144
													_									-		14		•	15	01	13	1	22
8-2116	41	25	#11	- 44	30.0	- 4	3	157	1.17	51	5	KD	2		1	2	- 64	1	.11	.921	10	4	- UJ	10	uu. ۸۱	2	-13	•••	07	i	14
R-2117	2	10	1751	21	44.4	- 4	1	- 94	.67	78	5	ND	1	1	1	10	153	1	.01	100.	2	3	.01		101	21		493	45	1	.,
R-2118	2	12	13	- 44	.1	27	10	284	2.32	25	5	ND	- 14	15	1	2	- 1	12	.17	.027	26	14	101	11			11	A1	13	i	<u>и</u>
R-2119	1	12	- 44	49	3.2	- 11	5	217	5.88	430	5	ND	- 1	12	1	23	2	2	-11	.005		1	- UT	13	-01		-1-		19		ĩ
R-2120	. 1	46	77	.27	3.1	18	7	170	2.02	- 4	5	МD	- 4	5	1	2	13	2	.08	-010	10	3	•20	12	.41	•	.40	*41		•	•
						47	15	87	7.18	96	5	ND	τ	,		,	50	1	-01	.004	7	5	.05	1	.01	2	.13	.02	.07	1	2
K-2121				40	1.0	1/	12	1/	2.97	15	5	10 10		- 17	i	;	ÿ	i	.24	-015	÷	Ā	.20	÷.	.01	7	.29	.03	.04	1	1
R-2122		10	106	34	1./	14	10	100	3,00	15	5	• ay uh	;			;	ú	5	.07	.010	ż	7	- 11	15	.01	2	.21	.02	.18	2	11
R-2123	1	31	1393	26	14.4	88 27	18	410	11 10	19		עה קע	'	;		5	"	J	.09	1004	Ś	5	.05	Ť	.01	2	.02	.06	.07	- 4	2
K~2124	. !	14	/5	11	1.0	21	42	519	10.10	10	5	10 10	, i	20	:	5	5	3	.28	.019		ī	.31	23	.01	2	.28	.03	.17	1	1
N-2125	1	Zh	22	23		18	10	211	3.23	10	1	~	3	10	•	•	•				•	•				-					
8-7174	2	51	10		.2	14	8	105	2.84	5	5	жD	3	1	1	3	2	1	.01	.004	2	2	.01	2	.01	13	.04	.01	.03	1	2
R-2120	2	7	220	784	1.4	11	4	510	2.47	4259	5	ND	5	55	- Ă	- 49	3	2	.75	001	10	!	27	29	01	<u>,</u> 2	.17	10.	.12	1	390
	• •	- '		- ••			·										•			-											

ACME ANALYTICAL LABORATORIES - 852 East Hastings Street, Vancouver, B.C. V6A 1R6 Appendix 2 - Assay Results CABIN claim group

7

SKYLARK RESOURCES PROJECT-FIRESTEEL/GRUBSTAKE FILE # 87-3214

C

C

(

۲.

C

۲.

(

ſ

C

C

(

SAMPLES	ND PPR	63 N99	28 22K	71 797 797	AG PPN	NI PPK	00 79%	NN PPK	FE I	AS PPM	U 899	AU PPN	TH PPH	SR PPK	00 89%	SB PPH	BI PPM	V PPK	CA I	P	LA PPK	CR 22H	XE I	JA Pen	11 1	3 776	AL 1	NA I	K 1	N PPN	AUR 220
R-2128	2	17	3064	147	24.3	î	1	90	1.26	661	5	хD	1	2	6	41	45	t	.01	.001	2	3	.01	2	.01	7	.02	10.	.01	1	31
R~2129	1	120	47	43	.3	10	9	411 1	13.87	46	5	XD	1	3	1	9	2	2	.01	.017	7	3	.01	17	.01	22	.04	.01	,07	2	•
R-2130	1	20	н	72	.7	I	5	218	1.44	48	5	ND	5	34	i	2	2	2	.53	-014	14	3	.11	26	.01	2	.17	.01	, lá	1	5
R-2131	4	15	20	8	.2	4	2	94	2.48	10	5	HÐ	4	4	1	2	2	5	.01	.017	5	1	.07	81	.02	2	.24	.01	.19	1	2
R-2132	20	103	35	15	.0	t	4	57	13.84	2	5	NÐ	7	3	1	2	2	13	.01	.018	7	4	.04	11	.12	2	.31	.02	36	2	25
R-2133	i	50	1355	63	11.4	3	2	174	2.44	156	5	ND	3	1	1	25	2	1	.01	.013		3	-01	11	.01	1	.10	.01	-04	1	59
R-2134	2	10	313	367	1.0	5		1453	3.07	40	5	ND	3	4	2	10	2	t	.02	.007	10	- 4	.01	23	.01	5	.13	.01	.09	I.	3
8-2135	2	30	1630	134	3.6	7		1371	2.35	23	5	KD	2	- 4	1	4	2	1	.03	.010	10	3	.02	21	.01	17	.12	.01	.07	1	3
R-2134	I	5	344	87	1.0	3	1	449	1.07	23	5	KD	1	1	1	2	2	1	.01	.007	•	3	.01	н	.01	4	. Q H	.01	.07	1	I
R-2137	1	4	79	59	.4	3	1	114	1.10	29	5	ND	1	I.	1	4	2	1	.01	.003	2	4	.01		.0t	н	.04	.01	.03	1	1
R-2139	1	. 7	213	22	4.7	3	- L	67	1.27	2	5	NÐ	1	1	1	- 4	36	1	.01	.008	4	3	.01	- 14	.01	5	.12	.01	.05	1	1
R-2139	1	17	685	141	8.4	3	2	541	1.49	135	5	ND	2	1	1	6	2	2	10.	.010	12	5	.01	23	.01	- 4	-14	.01	.11	- 1	1
R-2140	1	18	4472	18	4.9	1	1	113	1.03	1541	5	XD	1	1	1	53	5	1	.01	.007	3	2	.01	- 4	.01	- 4	.04	.ÓI	.01	1	82
R-2141	1	49	857	1185	15.7	4	8	128	19.05	1424	5	КD	l	7	4	616	5	3	.01	.018	2	8	.01	47	.01	÷.	.01	.01	.03	5	165
R-2142	2	29	942	781	R.1	5	2	217	4.24	554	5	ND	1	1	4	127	2	1	.01	.020	4	3	.01	9	.01	2	.06	.01	.04	2	106
R-2143	1	17	304	185	6.9	4	2	† 3	2.67	1420	5	ND	1	3	8	40	2	1	.01	.002	2	- 4	.01	20	.01	2	.02	.01	.03	1	245
R-2144	1	- 14	706	113	3.8	2	2	190	.72	88	5	NÔ	5	2	1	129	2	2	.01	.015	21	- 4	.01	20	.01	5	.18	.02	12	1	12
R-2115	1	13	399	- 114	9.9	7	3	739	.72	47	5	KD	t	1	2	197	2	· 1	.01	.004	2	- 4	.01	- 7	.01	2	. 02	.01	.02	E	11
R-2146	2	3	218	776	.8	B	4	2491	4.58	17	1	ND	3	5	2	4	2	1	.01	.014	12	2	.01	45	.01	6	.10	.01	.07	ſ	L
50AT 2129	2	107	- 102	211	.2	43	22	780	7.34	21	5	ND	15			4	2	77	14	111	52	29	71	en.		,	1 77	A1	28	f	
GOAT SILT #1	Ī	5	20	47	.0	9	4	117	1.31	5	5	KD	2	9	i	2	2	31	.15	.033	14	1	.20	32	.02	2	.40	.01	.03	i	- i
GOAT SILT #2	• 1	13	50	462	1.1	15	6	215	1.68	9	5	XD	2	15	2	2	2	12	.30	.063	45	13	.35	45	-04	2	1.09	.01	.12	1	2
GOAT SILT #3	2	11	61	369		21	41	4481	2.98	11	5	ND	ĩ	20	tō	2	2	- H	.39	.089	32	11	.21	120	.02	Ē	1.01	.01		i	Ĩ
EDAT SILT #4	1	12	34	225	.8	12	5	418	1.53	2	5	ND	i	17	2	2	2	12	.36	.074	31	n	.33	44	.03	2	.90	.01	.10	i	1
GOAT SILT BS	1	- 11	- 46	250	.7	13	B	770	1.70	7	5	ND	ī	17	Ā	2	2	13	.30	.071	33	13	.34	83	.03	2	1.00	.01	.12	i	Ĩ
GOAT SILT 44	1	9	35	161	.5	12	5	453	1.44	Ś	5	ND	i	13	2	2	2	11	.74	.053	24	11	.24	70	-03	ż	.67	.01	.09	ī	i
	•	-			` <u>-</u>	-	-			-			•		•	Ì	•	••			27					•				•	•
ONAL SICE 17	1	5	55	147	.1	7	4	201	1.21	2	5	MÐ	1	12	1	2	2	12	.22	.061	23	11	. 21	71	.03	2	.79	.01	.10	1	2

Acme Analytical Laboratories - 852 East Hastings Street, Vancouver, B.C. V6A 1R6

Appendix 3 Assay Results - GOATS claim group