```
District Geologist, Prince George
Off Confidential: 89.04.22
ASSESSMENT REPORT 17458 MINING DIVISION: Omineca
```


GEOLOGICAL REPORT ON THE

CABIN CLAIMS

(Cabin, Cabin 1 , Cabin 2)

Jim May Creek Area
Omineca Mining Division, British Columbia 94C/3E

Latitude 56 12'57", 56 11'13"
Longitude 125 05'55", $12501{ }^{\prime \prime} 50^{\prime \prime}$

For

OPERATOR:
Skylark Resources Ltd. \#902-837 West Hastings Street Vancouver, B.C.

OWNER :
John M. Mirko and Douglas Hopper Vancouver, B.C.

By

Christopher L Mcatee, M.Sc. and
H. Douglas Hopper

GEOLOGICALBRANCH ASSESSMENTREPORT

April, 1988

TABLE OF CONTENTS

PAGE
Introduction (a) Location, Access, and Physiography 1
(b) Property Claim Status 1
(c) Property History 4
Exploration Procedure 4
(a) Cabin Claim Group 4
(b) Goats Claim Group 7
Regional Geology 7
Property Geology, Mineralization, and Results Cabin Claim Group
(a) General 7
(b) Ruby Zone 9
(c) Cabin \#1 Showing 10
(d) Geochemical Soil Survey - CAB Grid 10
Goats Claim Group 14
Conclusions and Recommendations 16
Qualifications 17
Reference 19
Itemized Cost Statement (a) Cabin Claim Group 20
(b) Goats Claim Group 21

ILLUSTRATIONS

Fiqure

1. Location Map 2
2. Claim Map 3
3a. Cabin Claim Group - CAB Grid 5
3b. Ruby Zone - Sample Location Map 6
3. Goats Claim Group - Geology and Sample Location Map. 8
4. Assay Values - Ruby Vein Zone - Cabin Claim. 11
5. CAB Grid - Anomalous Soil Values - Au, Ag, As. 12
6. CAB Grid - Anomalous Soil Values - Pb, Zn 13
7. Assay Values - Goats Claim Group 15

APRENDICES

APPENDIX 1	Assay Results - CAB Grid
APPENDIX 2	Assay Results - Cabin Claim Group
APPENDIX 3	Assay Results - Goats Claim Group

INTRODUCTION

Location, Access, and Physiography

The Cabin and Goats claim groups axe located approximately 320 kms . northwest of Prince George, B.C. at 56 12' 57" North latitude, 125 05' 55" West longitude, and 56 11' 13" North latitude, 12501^{\prime} 50" west longitude, respectively (Figure 1).

Although the Omineca road is only 5 kms . to the southwest, access at present is by helicopter only. On the Cabin claims, the cat road that parallels Jim May Creek and ends at the old cabins is not serviceable.

The Cabin group (Cabin, Cabin \#1, and Cabin \#2 claims) is situated on Jim May Creek, a tributary of Tenakihi Creek, which flows into the Osilinka River. The Goats group is located 7 kms to the southeast near the head of Jim May Creek (Figure 2).

The claims iie in the Tenakini Range of the Central plateau and Mountain area of the Canadian Cordillera. The area is rugged with elevations from 1260 to 2020 metres a.s.I.

Rock outcrop is good to excellent.

Property Claim Status

The Cabin and Goats claim groups are owned by J. Mirko of 451 Hermosa Ave., North Vancouver, British Columbia, and Douglas Hopper of Vancouver, B.C. with details as follows:
GROUP CLAIM UNITS RECORDNO. RECORD DATE

CABIN

Cabin	20	8326	Apri1 23, 1987
Cabin \#1	1	8645	August 7, 1987
Cabin \#2	1	8646	August 7, 1987

CLAIM UNITS

GOATS

Goats	16	8325	April 23, 1987
Cabin $\# 38$	16	8647	August 7, 1987
Cabin $\# 39$	12	8648	August 7, 1987

PROPERTY HISTORY

Prospecting has been active in the area since the turn of the century when placer gold deposits were worked on Jim May Creek and on the Ingenika River. Prospecting and drilling was carried out by Cominco in the 1930's and 1940's; a few other major and funior companies have been active in the area since then. No economic ore bodies have been developed to date.

EXPLORATION PROCEDURE

Field work was carried out by Doug Hopper, prospector, and John Sveen, assistant, from July 17 to July 28, 1987, with two property examinations by C. McAtee during the work program.

Prospecting, rock chip sampling, mapping of veins and alteration zones, and soil-silt sampling were carried out on the claims. "B'horizon soil samples were taken at $15-30 \mathrm{~cm}$

Cabin Claim Group

On the Cabin claim group, 4100 metres of line was flagged for geochemical soil sampling. The lines as well as the soil sample locations are shown on Figure 3a. Soil samples, and silt samples where applicable, were taken every 50 metres along the lines. The samples, 133 in all, were analyzed using the 30 element ICP package of Acme Analytical Laboratories ' (Appendix 1). Gold was determined by standard atomic absorption technique.

Twenty-seven rock chip samples were taken for assay and analyzed using the same methods as for soils. Several of the old showings were prospected and sampled, as were several new ones (Figure 3a and 3b).

Goats Clatm Group

On the Goats claim group, 19 rock chip samples and 7 silt samples were taken on a reconnaissance program (Figure 4). These samples were analyzed as above.

REGIONAL GEOLOGY

The Cabin and Goats claim groups occur within the 1:253,440 scale Aiken Lake map area (Roots, 1954).

Regionally, Tenakihi Group metamorphic rocks, Takla Group sedimentary and volcanic rocks, and unnamed interbedded volcanic and sedimentary rocks are intruded by Omineca intrusives of Mesozoic age. Northeast of Blackpine Lake, Wolverine Complex amphibolites, quartzites, and skarns are present.

Structurally, beds of the Tenakihi Group have been deformed into a series of compound folds that have overwhelmed earlier more north-trending folds. Northwesterly faulting plays a major role in localizing mineralization both regionally and locally.

PROPERTY GEOLOGY, MINERALIZATION, AND RESULTS

Cabin Claim Group

 GeneralThe Cabin claim group covers Tenakihi Group rocks near the head of Jim May Creek (Figure 2). On the claim group, Tenakihi rocks consist of highly contorted quartzites and quartz-

mica schists on a major regional anticlinal structure.
The mineral showings occur in a series of siliceous brecciated fault or shear zones, along which there has been repeated movement and deposition of vein quartz and sulphide minerals. At least four periods of mineral deposition are known (Roots, 1954).

Numerous quartz veins from 91 to 457 cms . wide, and from 30 to 91 metres long are exposed. The largest body of vein quartz found in the whole map area is on the claims and covers an area 183 by 55 metres. Most of the latter veins are not mineralized to any extent, although crosscutting veins such as the "Ruby" are.

Ruby Zone
The Ruby zone, which is exposed on Jim May Creek about 6.4 kms. from it's mouth and 550 metres east of the old cabins, was prospected and rock chip sampled (Figure 3a and 3b). The general axis of the Ruby zone strikes $N 20 \mathrm{E}$ over a distance of 150 metres.

The quartz veins, which are brecciated and faulted in argillite host rocks, display a herring-bone type of structure. Vein widths vary from 15 cms. to 8.2 metres and generally carry <1/2\% pyrite and other sulphides, as well as mica and graphite. According to Roots (Roots, 1954), minerals recognizable in hand specimen include pyrite, sphalerite, galena, tetrahedrite, pyrargyrite, arsenopyrite, and minor amounts of molybdenite and chalcopyrite.

Rock chip samples numbered 2105 to 2121 and 2127 were taken from the Ruby vein zone (Figure 3b). Figure 5 summarizes assay results, widths, and mineralization from the Ruby vein zone.

Gold values of 710 and 390 ppb over 165 and 132 cms., respectively, were obtained for brecciated quartz veins striking 240 (\#2108 and \#2127). Silver values of 44.4, 30.0, 19.0, and 17.9 ppm were obtained from brecciated and non-brecciated quartz vein material. Arsenic values of 2152, 2183, 4259, and 4516 ppm were returned. Mineralization observed in the vein quartz includes 1/2-1\% pyrite, galena, and up to 40% soft grey (sulphide?) material.

Cabin \#1 Showing
This zone is near a small creek at grid co-ordinates 12+00E, 2+00s, 200 metres north of Jim May Creek (Figure 3a). There are a series of quartz veins trending 140 to 160 with pyrite patches and some grey unidentifiable material. The quartz veins, which cut the bedding and fill fracture gaps, are 6 to 13 mms., and up to 30 cms. wide.

Assay samples numbered 2121 to 2125 were taken from the area (Appendix 2). Rock chip sample $\# 2123$, from a 5 to 10 cm wide pyrite stringer, assayed 11 ppb gold, 22.4 ppm silver, and 1335 ppm lead.

Geochemical soil Survey - CAB Grid
The reconnaissance geochemical soll survey program proved effective. Several low but anomalous values were found for $\mathrm{Pb}, \mathrm{Zn}, \mathrm{As}, \mathrm{Ag}$, and Au (Figures 6 and 7). A spot high value

ASSAY VALUES - RUBY VBIN ZONE - CABIN CLAIH

Assay	Material	Sample over cms.	Strike	Mineralization	$\begin{gathered} \mathrm{Au} \\ \mathrm{ppb} \end{gathered}$	$\begin{array}{r} \mathrm{Ag} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { As } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{pb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Zn} \\ \mathrm{ppm} \end{array}$
2105	0 V	272	-	<1/2\% sulphides	29	1.7	92	36	17
2106	Q V	198	-	<1/2\% sulphides	27	0.6	14	18	8
2107	0 V	363	-	<1/2\% sulphides	10	0.6	75	55	53
2108	0 BX	132	060		710	17.9	4516	136	455
2109	0 V	41	160	1-5\% sgm	36	0.9	279	131	744
2110	0 V	Grab	-	sgm, 17 PY	43	5.1	741	416	657
2111	0 V	330	048	1/2-1\% py	240	19.0	1412	695	211
2112	0 Bx	25	---	py, graphite matrix	127	2.7	1232	105	80
2113	sil. sed.	97	045	PY	25	3.5	540	37	114
2114	0 V	122	---	py, sgm	230	2.6	2152	16	42
2115	0 Bx	231	---	py, 403 sgm	125	1.1	2183	15	11
2116	0 V , pinched	91	162		22	30.0	58	811	44
2117	0 V	198	162	galena, sgs	14	14.4	78	1751	29
2118	Rusty zone	76	030	PY	2	0.1	25	13	46
2119	0 V	25	030/V	mass. py spots	64	3.2	430	44	48
2127	0 Bx	165	060	20-30t sgm, fault zone?	390	1.6	4259	220	784

sgm - soft grey material
sgs - soft grey sulphide
Q V - quartz vein
0 Bx- quartz breccia

C \because
of 185 ppb gold at $4+50$ West on the baseline was returned.
Four anomalous silver values of 0.8 to 1.2 ppm suggest a quartz vein which carries silver trending 051 over 700 metres (Figure 6).

Goats Claim Group

Rocks on the Goats claim group area similar to those observed on the Cabin group. Schists predominate.

Figure 4 shows the rock chip and silt sample locations. Figure 8 and Appendix 3 list assay results, vein widths, and mineralization.

On southwestern Goats claim, a 12 metre wide quartz breccia zone trends in a northerly direction (\#2141 to \#2146). Some cherty fragments were observed on the eastern contact, with pyrite and darker coloured fragments towards the centre of the zone. Assay values range to $245 \mathrm{ppb} A \mathrm{Au}^{2} 15.7 \mathrm{ppm} \mathrm{Ag}, 962 \mathrm{ppm} \mathrm{Pb}$, and 1424 ppm As for the zone.

Some 900 metres to the northwest, a quartz breccia zone identical in appearance to the one mentioned above was found. Here, a recemented quartz breccia and shear zone ran 58 ppb $A u$, $11.6 \mathrm{ppm} \mathrm{Ag}$,1355 ppm pb , and 156 ppm As over 61 cms . (\#2133).

Silver assay values of $6.7,8.6$, and 4.9 ppm were returned from a quartz vein in a shear (\#2138) and quartz breccia zone (\#2139 and \#2140). Anomalous lead and arsenic values were also found in the quartz breccia zone (Figure 11).

Silt samples taken in the Goats camp area returned fair zinc values of 161 to 462 ppm.

Assay	Material	Sample over cins.	Strike	Mineralization	$\begin{gathered} \mathrm{Au} \\ \mathrm{ppb} \end{gathered}$	$\begin{gathered} \mathrm{Ag} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \mathrm{pb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { As } \\ \text { ppm } \end{array}$
2128	Q V	66	060/V	py	31	26.3	3064	661
2129	0	Grab	180/20 ${ }^{\circ} \mathrm{H}$	py, gm	9	0.3	47	46
2130	Q V	137		py	5	0.7	64	48
2131	0 V	23		green stain	2	0.2	20	10
2132	Gossan	28	180/15 ${ }^{\circ} \mathrm{V}$		25	0.8	35	2
2133	Q Bx	61	040/V	rusty on fractures	58	11.6	1355	156
2134	Rusty	Grab		shear zone	3	1.0	313	40
2135	$Q \mathrm{~V}$	Grab		black stain	3	3.6	1630	23
2136	0	Grab		black stain	1	1.0	344	23
2137	0	15	050/V	rusty	1	0.6	79	28
2138	0 V	9	060/V	graphite	1	6.7	213	2
$\left.\begin{array}{l} 2139 \\ 2140 \end{array}\right\}$	0 Bx	15 20		angular quartz fragments recemented with ep., chl., hem.	1 2	8.6 4.9	685 4472	135 1541
2141	0 Bx	Grab	12 metre	greyish quartz frags.	165	15.7	857	1421
2142	$Q \mathrm{Bx}$	Grab	wide breccia	east contact	106	8.1	962	556
2143	Q Bx V	18	zone strikes	rusty shear, py, darker coloured frags.	245	6.9	304	1420
2141	Q Bx	Grab	to south	centre of zone in quartzite.	12	3.8	906	88
2145	0	Grab		black stain	11	9.9	399	47
2146	Bx	Grab		rusty	1	0.8	218	17
					$\begin{aligned} & Q \text { - quartz } \\ & V \text { - vein } \\ & \text { BX - breccia } \\ & V \text { - vertical } \\ & \text { Gm - grey material } \end{aligned}$			

The 1987 program on the Cabin and Goats claim groups was successful.

Assays show a fair silver and anomalous gold content across relatively large widths. Soil and silt sampling provide a good tool in this terrain.

Recommendations for further work include:

1. Reconnaissance prospecting, rock chip sampling, and silt sampling on the Cabin \#1, Cabin $\# 2$, Cabin 38 , Cabin $\# 39$ and southern part of the Cabin claim.
2. Diamond drilling on the Ruby vein zone.

QUALIFICATIONS

I, CHRISTOPHER L. MCATEE, certify that:

1. I am a minerals exploration geologist.
2. I am a graduate of Brock University, St Catharines, Ontario with a degree in geological Sciences (M.Sc., 1977), and a graduate of Wright State University, Dayton, Ohio, with a degree in Geology (B.Sc., 1972).
3. I have spent the past ten years in mineral exploration and development in Canada and the United States.
4. I personally examined the property and directed the geophysical program conducted by Skylark Resources Ltd. in 1987.

Vancouver, B.C.
April, 1988

Christopher L. McAtee Geologist

QUALIFICATIONS

I, H. DOUGLAS HOPRER of 828 West Hastings street, Vancouver, B.C., did attend the provincial Institute of Mining, Haileybury, Ontario in the years 1962-1964, 1965 and 1966, for which I am a Mining Engineering Technologist.

Since 1966, I have worked with various mining companies as Field Geologist, Junior Engineer, looking after diamond drilling projets, underground mining exploration and surface wxploration.

DATED at Vancouver, British Columbia, this 23rd day of March, 1988.

REPERENCE

Roots, E.F. (1954) Geology and Mineral Deposits of Aiken Lake Map - Area, British Columbia. Geological Survey of Canada Memoir 274, 246 pp.

ITEMIZED COST STATEMENT

CABLN CLAIM GROUP

Helicopter - 3.0 hours @ \$595/hour	\$ 1,785.00
Fleld Wages - 1 prospector 7 days a \$130/day	910.00
1 assistant 3 days a 130/day	405.00
1 assistant 7 days @ \$95/day	910.00
1 assistant 2 days @ \$95/day	190.00
Report/Drafting/Wordprocessing	735.00
Mob/Demob - Vehicle - Fuel - Equipment	235.00
Camp 11 man days @ \$35/day	490.00
Assays - 100 @ \$13.25/each	2,120.00
TOTAL	\$ 7,780.00

TOTAL $\$ 7,780.00$

ITEMIZED COST STATEMENT

GOATS CLAIM GROUP

Helicopter - 2.8 hours @ \$595/hour	\$ 1,666.00
Field Wages - 1 prospector 6 days $\$ 130 / \mathrm{day}$	780.00
1 asgistant 6 days @ 130/day	780.00
1 assistant 1 day @ \$95/day	95.00
Report/Drafting/Fordprocessing	435.00
Mob/Demob - Vehicle - Euel - Equipment	433.00
Assays 9 man days @ \$35/day	315.00
Assays - 27 @ \$13.25/each	357.75
TOTAL	\$ 4,761.75

TOTAL $\$ 4,761.75$
ACME ANALYTICAL LABORATORIEG
852 E. HASTINGS 8T. VANCOUVER B.C. VGA 1RG
PHONE 253-3158
DATA LINE 251-1011 GEDCHEMICAL ICF ANALYEIB

 SKYLARK RESOURCES FFOJECT~FIRESTEEL/GRUESTAKE File \# 日7-3214 Fiage 1

ACME ANALYTICAL LABORATORIES - 852 East Hastings Street, Vancouver, B.C. V6A 1R6
APPENDIX 1 - Assay Results - CAB grid

EKYLARK REBOURCES PROJECT-FIFESTEEL/GRUBSTAKE FILE * E7-3214

5ARPLE:	$\begin{gathered} \text { MO } \\ \text { PPM } \end{gathered}$	$\begin{gathered} \text { cu } \\ \text { PFH } \end{gathered}$	$\begin{aligned} \text { PI } \\ \text { PPM } \end{aligned}$	$\begin{gathered} \text { IH } \\ \text { PRK } \end{gathered}$	$\begin{gathered} \text { A6 } \\ \text { PPM } \end{gathered}$	$\begin{gathered} \text { HI } \\ \text { PPK } \end{gathered}$	$\begin{array}{r} \text { CO } \\ \text { PPK } \end{array}$	$\begin{gathered} \text { KH } \\ \text { PPN } \end{gathered}$	$\begin{array}{r} \text { FE } \\ \mathbf{z} \end{array}$	$\begin{gathered} \text { AS } \\ \text { PPM } \end{gathered}$	$\begin{array}{r} \mathbf{U} \\ \mathbf{P H} \end{array}$	$\begin{gathered} \text { AU } \\ \text { PFR } \end{gathered}$	$\begin{array}{r} \text { IK } \\ \text { PRK } \end{array}$	$\begin{array}{r} \text { Sh } \\ \text { PPn } \end{array}$	$\begin{gathered} \mathbf{C D} \\ \text { PPM } \end{gathered}$	$\begin{gathered} \text { SD } \\ \text { PPK } \end{gathered}$	$\begin{gathered} 1! \\ \text { PPM } \end{gathered}$	$\begin{gathered} V \\ \text { PRH } \end{gathered}$	$\begin{gathered} C A \\ Z \end{gathered}$	1	$\begin{aligned} & \text { Lh } \\ & \text { PPM } \end{aligned}$	$\begin{gathered} C R \\ \text { PRK } \end{gathered}$	$\begin{gathered} \mathbf{B E} \\ \mathbf{I} \end{gathered}$	$\begin{gathered} \text { IA } \\ \text { PPM } \end{gathered}$	II	$\begin{array}{r} \mathbf{1} \\ P P M \end{array}$	$\frac{\mathrm{AL}}{\mathrm{Z}}$	$\begin{gathered} \text { KA } \\ I \end{gathered}$	$\begin{aligned} & x \\ & Z \end{aligned}$	$\underset{\mathrm{PP}}{\boldsymbol{y}}$	$\begin{aligned} & \text { AUt } \\ & \text { PRI } \end{aligned}$
CAI LldOON $0+00$	1	29	39	100	. 4	24	13	210	3.65	32	5	NO	8	15	1	2	3	25	. 11	.033	25	22	. 35	57	. 02	6	1.24	. 01	. 18	1	1
Cal Litoon 0r50E	1	17	12	4	. 2	17	5	151	2.22	23	5	N0	4	7	1	3	2	31	. 06	.023	. 3	12	. 13	40	. 03	2	. 17	. 01	. 08	1	1
CA1 LI+OON 1+00E	1	22	17	93	. 4	18	7	158	4.32	21	5	KD	It	12	1	2	2	35	. 08	. 018	33	16	. 24	31	. 06	2	. 12	. 01	. 15	1	1
CA) LI+00H 1+50E	1	30	1.	46	. 3	26	10	253	5.23	24	5	KD	15	D	1	2	2	26	. 05	. 035	37	24	. 56	37	. 05	15	1.35	. 01	. 24	1	2
CAI LIt00N 2400E	1	12	12	59	. 3	12	5	147	2.37	16	5	ND	3	9	1	2	2	30	. 09	.02J	21	12	. 41	56	. 06	2	. 91	. 01	. 27	1	1
Cat L1400N 2450E	1	19	44	81	. 2	19	7	185	3.94	28	5	NO	9	6	1	J	2	33	. 06	. 049	23	23	. 19	31	. 06	2	1.17	. 01	. 21	I	11
CAB L1+00N 3+00E	,	34	20	97	. 1	32	16	551	4.67	14	5	KD	17	14	I	2	2	23	. 20	. 041	38	29	. 15	50	. 06	3	1.69	. 01	. 35	1	1
Ch] L1400N 3+508	1	22	14	67	.1	22	1	151	3.62	12	5	KD	14		I	2		28	. 03	. 047	37	14	. 27	20	. 02	4	. 94	. 01	. 09	1	1
CAI L1400N 4+00E	,	21	13	69	. 1	24	-	155	3.56	13	5	KD	14	5	1	2	2	25	. 02	. 044	36	14	. 28	20	. 02	2	. 90	. 01	. 09	1	2
CAI LItOOX 4150E	1	20	15	67	.1	21	7	145	3.28	12	5	HD	13	5	1	2	2	24	. 03	. 041	35	13	. 25	20	. 02	2	. 86	. 01	. 08	1	5
Cal L1+00H 5400E	1	10	10	43	. 1	11	4	72	1.87	4	5	HD	10	4		2	2	24	. 01	. 014	33	9	. 12	19	. 02	2	. 81	. 01	. 05		7
Ca) LI+00X 5+10E SILT	1	31	14	92	. 1	42	14	210	4.19	7	5	10	19	10	,	2	2	14	. 10	. 039	41	19	. 14	22	. 02	2	1.07	. 01	. 12	1	5
CAP Lt+00K 5+50E		29	16	42	.1	27	10	190	4.86		5	KD	16	5	1	2	2	21	. 02	. 052	32	20	. 41	23	. 02	2	1.27	. 01	. 13	1	3
[A] $11+00 \mathrm{~N}$ 6+00E	1	10	5	51	. 1	11	4	86	1.44	1	5	HD	\square	8	1	2	2	23	. 05	. 016	32	7	. 06	40	. 01	3	. 50	. 01	. 03	1	3
CAI L1400N 6+50E	1	10	12	45	.2	15	6	135	2.31	8	5	NO	B	10	1	2	2	20	. 12	. 012	25	19	. 40	25	. 06	2	1.05	. 01	. 21	1	2
Cas Litoon 74008	1	27	14	98	. 1	21	10	301	3.71	39	5	H0	15	13	1	2	2	17	. 13	. 022	47	21	. 57	36	. 03	3	1.35	. 01	. 21		4
CAS L1+00N 7+50E	1	27	13	73	. 1	27	It	314	3.32	12	5	KD	15		,	2	4	17	. 09	. 025	37	24	. 49	36	. 05	2	1.30	. 01	. 29	1	2
CAT 1.1400 N 8+00E	1	49	30	151	. 8	52	46	1051	5.22	10	6	H0	10	29	1	2	2	35	. 33	. 042	5	35	. 75	72	. 04	2	2.51	. 01	. 24	1	1
Cal Lt+00N A+50E	1	12	18	76	.2	12	7	163	2.08	6	5	ND	5	18	1	2	2	22	. 19	. 030	24	14	. 21	52	. 03	2	. 16	. 01	. 14	1	1
[A] 11+00K 9+00E	1	1	7	51	. 1	6	3	19	1,31	2	5	N0	4	13	1	2	2	17	. 15	. 012	30	11	. 32	36	. 04	2	. 70	. 01	. 15	1	1
CA) $19+00 \mathrm{~N} 9+50 \mathrm{E}$	1	1	8	35	. 2	\square	3	52	1.16	5	5	KD	4	7	1	2	2	12	. 07	. 014	33	6	.17	29	. 01	2	. 51	. 01	. 07	2	2
CAP LIT00K 10+00E	1	17	11	70	.1	18	7	126	3.42	7	S	KD	12	-	1	2	2	28	. 05	. 030	32	17	. 37	46	. 03	2	. 76	. 01	. 12	1	31
CAB LI+00N 10450E SILT	1	17	10	16	.1	34	12	298	3.60	1	5	KD	12	10	1	2	2	13	. 14	. 035	28	17	. 62	23	. 02	2	1.04	. 01	. 12	1	5
Ch] LI+00N $11+00 \mathrm{E}$,	30	22	100	. 1	22	10	172	6.11	11	5	ND	14	13	1	2	2	33	. 10	. 012	27	25	. 52	73	. 06	2	1.78	. 01	. 20	1	4
CaI LI+00N 11+50E	1	7	$\cdot 12$	44	. 1	1	4	124	1.70	2	5	KD	3	11	1	2	3	23	. 08	. 019	24	12	. 30	34	. 03	3	. 75	. 01	. 10	I	1
CAE Litoon 12400\%	1	25	13	81	. 1	25	10	222	3.76	11	5	ND	14	5	1	2	2	21	. 03	. 018	28	26	. 90	42	. 05	2	1.05	. 01	. 27	1	4
CAE IL 10+004	1	29	8	78	.1	37	16	279	4.04	10	5	KD	14	22	1	2	2	26	. 22	. 027	36	27	. 71	31	. 08	2	1.51	. 01	. 21	1	5
CAB IL 9150M	1	31	12	73	. 1	30	10	169	4.13	30	5	KD	18	7	1	2	2	16	. 05	. 024	31	18	. 42	28	. 01	2	1.13	. 01	. 14	1	2
Cal BL 9+00M	,	18	15	58	. 4	23	8	155	3.12	11	5	KD	1	12	1	2	2	19	. 11	. 042	27	14	. 25	17	. 02	2	. 15	. 01	. 15	1	5
CAI Di. $8+50 \mathrm{M}$	1	18	-	74	.1	26	9	172	4.82	12	5	MD	11	10	1	2	2	31	. 06	. 026	27	26	. 39	27	. 05	2	1.01	. 01	. 15	1	1
CAP BL P1004	1	16	13	65	. 1	22	1	129	3.12	13	5	80	12	9	I	2	2	24	. 07	. 016	33	20	. 46	24	. 06	7	1.03	. 01	. 31	1	2
CAB EL 7150M	1	29	22	03	. 1	29	11	217	4.23	17	5	H0	17	10	1	1	2	19	. 06	. 031	18	11	. 25	29	. 03	24	. 69	. 01	. 30	1	4
Cal il $7+004$	1	32	15	98	. 1	35	13	288	3.62	21	5	\%	16	21	J	2	2	15	. 40	. 044	39	19	. 61	32	. 02	2	1.12	. 01	. 23	1	3
CAB IL 6+50N	1	21	12	71	. 1	32	13	303	3.23	11	5	ND	11	11	1	2	4	15	. 07	.031	33	17	. 49	30	. 02	2	. 91	. 01	. 21	1	,
Cat kL $6+00 \mathrm{~L}$	1	24	12	69	. 4	29	10	221	2.83	16	5	HI	7	14	1	2	2	13	. 11	. 029	34	13	. 39	10	. 02	3	. 71	. 01	. 16	1	,
CAt AL 5450k	1	32	24	14	. 9	31	11	199	4.50	22	5	ND	15	10	1	2	2	21	. 05	. 032	47	21	. 37	35	. 03	1	1.34	. 01	. 22	1	1

EKYLARK REBOURCEB PRUJECT-FIRESTEEL/GRUBSTAICE FILE \# B7-3214

SAMPLEt	$\begin{gathered} \text { KO } \\ \text { PPK } \end{gathered}$	$\begin{gathered} \text { CU } \\ \text { PPK } \end{gathered}$	$\begin{gathered} \text { PI } \\ \text { PPK } \end{gathered}$	$\begin{gathered} \text { IN } \\ \text { PrM } \end{gathered}$	$\begin{gathered} A E \\ P P H \end{gathered}$	$\begin{gathered} \mathrm{KI} \\ \mathrm{PPM} \end{gathered}$	$\begin{gathered} C 0 \\ P P M \end{gathered}$	$\begin{gathered} \text { KH } \\ \text { PRK } \end{gathered}$	$\begin{gathered} \mathrm{FE} \\ \mathrm{Z} \end{gathered}$	$\begin{aligned} & \text { A5 } \\ & \text { PPM } \end{aligned}$	$\begin{array}{r} U \\ P P M \end{array}$	$\begin{gathered} \text { AU } \\ \text { PPK } \end{gathered}$	$\begin{aligned} & \text { JH } \\ & \text { PPK } \end{aligned}$	$\begin{gathered} 5 R \\ 8 P H \end{gathered}$	$\begin{gathered} C D \\ P P M \end{gathered}$	$\begin{gathered} \text { 58 } \\ \text { PPM } \end{gathered}$	$\begin{gathered} \text { BI } \\ \text { PP } \end{gathered}$	$\begin{array}{r} V \\ \text { PPK } \end{array}$	$\begin{gathered} \mathrm{Ch} \\ \mathbf{z} \end{gathered}$	$\begin{aligned} & \mathbf{P} \\ & \mathbf{Z} \end{aligned}$	$\begin{array}{r} \text { LA } \\ \text { PPM } \end{array}$	$\begin{gathered} \mathrm{CR} \\ \mathrm{PPR} \end{gathered}$	$\begin{gathered} \text { K6 } \\ \text { Z } \end{gathered}$	$\begin{array}{r} \text { IA } \\ \text { PPM } \end{array}$	II	$\begin{array}{r} 1 \\ \text { PPK } \end{array}$	$\begin{gathered} A L \\ \mathbf{I} \end{gathered}$	$\begin{gathered} K A \\ Z \end{gathered}$	$\begin{aligned} & \mathbf{X} \\ & \mathbf{Z} \end{aligned}$	$\underset{P_{i}^{\prime}}{N}$	$\begin{aligned} & \text { AUI } \\ & \text { PPI } \end{aligned}$
Cat BL Stoon	1	20	17	4	. 1	22	7	122	2.73	10	5	no	\dagger	1	1	2	2	12	. 03	. 037	20	11	. 24	14	. 03	3	. 62	. 01	. 09	1	
CAE IL 4175K SILT	1	34	23	124	. 2	50	15	401	3.98	15	5	No	14	24	1	2	2	13	. 32	. 034	31.	23	. 53	50	. 03	3	1.08	. 01	. 19	1	
Cad 8L 41501	1	20	14	\%	. 2	22	9	215	3.10	17	5	kD	9	15	1	2	2	19	. 16	. 021	26	18	. 17	39	. 06	2	. 16	. 01	. 25	1	11
CAR 5L 4+00\%	1	13	11	42	. 6	12	5	85	2.07	5	5	\%	-	15	1	2	2	22	. 15	. 016	26	10	. 21	32	. 05	2	. 55	. 01	. 15	1	
CAI BL 345014	1	17	18	73	. 2	19	B	151	3.78	9	5	ND	1	10	1	2	2	32	. 08	. 032	27	21	. 40	34	.08	6	1.05	. 01	. 17	1	
CAI EL 3400M	1	18	15	06	. 1	22	10	180	3.99	11	5	N0	9	15	1	2	2	32	. 14	. 022	23	24	. 50	36	. 01	2	1.14	. 01	. 13	1	
	1	22	13	87	. 3	23	9	138	4.10	9	5	KD	8	8	1	2	2	34	. 06	. 028	29	21	. 39	24	. 01	2	1.08	. 01	. 13	1	
CAE IL 2+501	1	38	28	[13	. 7	40	14	264	5.08	17	5	KD	11	8	1	2	2	17	. 05	. 046	43	20	. 51	31	. 02	7	1.17	. 01	. 13	1	
CAI 8L $2+00 \mathrm{~K}$	1	38	29	120	. 2	42	14	554	4.94	14	5	ND	10	$1!$	1	2	2	18	. 13	. 050	10	22	. 62	41	. 03	5	1.20	. 01	. 15	1	
Cal IL $1+501$	1	39	34	110	. 1	43	14	290	5.14	17	5	HD	17	日	1	2	5	17	. 07	. 050	38	21	. 59	20	. 02	6	1.19	. 01	. 14	1	
CAI IL ILSON SJLT	1	42	26	117	. 2	52	17	354	4.41	20	5	KD	19	13	1	2	2	13	.11	. 053	45	18	. 54	28	. 02	5	. 12	. 01	. 14	1	
CAE AL $1+00 \mathrm{M}$	1	21	24	45	. 1	29	10	226	4.27	18	5	kD	12	4	1	2	2	22	. 03	. 071	35	14	. 30	21	. 02	2	. 92	. 01	. 09	1	
CAI 3L O+50H	1	33	31	明	. 2	34	12	179	b. 02	11	5	HD	17	,	1	,	3	21	. 01	. 093	34	22	. 42	17	. 03	2	1.04	. 01	. 09	1	
CAB DL 0400	1	22	26	90	.1	25	1	173	3.26	21	5	W0	11	1	1	2	2	20	. 12	. 027	29	23	. 6	36	. 07	2	1.31	. 01	. 22	1	
CAE IL Ot50E	1	20	30	49	.2	21	9	198	2.94	15	5	MD	9	9	1	2	2	19	. 08	. 019	36	22	. ${ }^{3}$	26	. 07	2	1.19	. 01	. 22	1	
CAR EL 1400 E	1	22	19	81	. 1	25	9	170	3.12	12	5	H0	10	7	1	2	2	19	. 06	. 015	31	22	. 45	27	. 06	7	1.26	. 01	. 19	1	
CAD DL 1+50E	1	17	26	4	. 1	19	6	111	3.22	14	5	ND	10	6	1	2	2	23	. 05	. 013	33	21	. 53	29	. 06	30	1.24	. 01	.15	1	
CAI PL $2+00 \mathrm{E}$	1	20	22	17	.1	24	1	163	3.13	14	5	ND	9	1	1	2	2	20	. 01	. 020	33	21	. 44	34	. 01	3	1.27	. 01	. 19	1	
CAE IL 2450E	1	24	29	75	. 2	28	11	274	3.52	11	5	ND	,	19	1	2	2	21	. 21	. 030	31	25	. 71	54	. 06	2	1.51	. 01	. 23	,	
CAI BL 2+50E SILI	1	11	14	4	.1	16	-	170	2.04	3	5	ND	10	10	1	2	2	11	. 11	. 035	29	14	. 44	25	. 04	2	. 71	. 01	. 13	1	
CAI IL 3+00E	1	16	14	57	. 1	19		145	2.85	1	5	ND	10	10	1	2	2	17	. 15	. 025	28	22	. 71	34	. 04	2	1.21	. 01	. 23	1	
CAI IL $3+50{ }^{\text {- }}$	1	35	23	83	. 3	31	9	132	3.25	2	5	HD	11	14	1	2	2	11	. 18	. 010	40	24	. 82	32	. 03	2	1.39	. 01	. 35	1	
CAS IL 3+60E	1	35	16	89	.1	42	14	252	4.09	4	5	N0	20	11	1	2	2	14	. 13	. 039	48	18	. 60	24	. 02	2	1.01	. 01	.12	1	
CAS EL 4-00E	1	32	23	10	. 1	29	10	129	4.42	6	5	H0	15	11	1	2		19	. 12	. 025	4	24	. 70	38	. 02	13	1.53	. 01	.12	1	
CAE PL 4 450 E	1	31	17.	17	1	32	11	169	3.95	2	5	ND	16	10	1	2	2	18	. 19	. 054	41	24	. 11	25	. 04	12	1.33	. 01	. 19	1	
CAP ML 4+50E SILT	1	41	46	227	. 1	45	28	2317	52.82	168	5	ND	11	58	1	8	2	1	. 41	. 034	30	5	.13	170	. 01	2	. 69	. 01	. 09	1	
CAB 8 L 5+00E	1	43	51	122	1.2	18	9	291	3.80	187	5	ND	14	4	1	5	2	10	. 14	. 063	34	12	. 11	23	. 04	2	. 45	. 01	. 22	1	
CAB PL b+00E	1	14	15	55	. 3	16	4	89	2.14	8	5	N0	8	1	1	2	2	15	. 03	. 015	24	19	. 51	23	. 05	2	1.05	. 01	. 15	1	
CAB BL $6+50 \mathrm{E}$	1	22	30	14	. 5	26	13	324	3.58	11	5	K0	10	12	1	2	2	23	. 20	. 049	32	25	. 66	65	. 01	2	1.58	. 01	. 25	1	
Cas IL 7400E	1	21	21	68	.1	23	10	357	2.76	6	5	KD		10	1	2	2	18	. 16	. 037	33	22	.12	48	. 05	7	1.33	. 01	. 21	1	
Ch] DL 7450E	1	20	11	68	. 1	24	,	268	3.28	4	5	HD	9	16	1	2	2	19	. 24	. 052	35	23	. 71	16	. 05	15	1.34	. 01	.19	2	
Cal dL 7h50e SILT	1	16	19	63	-1	30	11	457	2.74	6	5	ND	7	14	1	2	2	12	. 25	. 052	29	14	. 41	33	. 03	1	. 1	. 01	. 11	1	
CAB BL $8+00 \mathrm{E}$	1	30	22	43	. 1	18	8	158	2.47	14	5	ND	14	4	1	2	2	12	. 07	. 040	30	15	. 13	27	. 04	15	. 86	. 01	. 18	1	
CAS SL 9450E	1	6	19	27	. 1	6	2	50	1.63	2	5	ND	9		1	2	2	16	. 03	. 013	28	10	. 22	23	. 03	3	. 78	. 01	. 05	1	
CAI IL 9400E	1	20	14	49	. 1	12	5	111	2.12	8	5	KD	9	3	1	2	2	13	. 06	. 043	22	15	. 12	20	. 05	2	. 96	. 01	. 11	2	
CAE IL 9+50E	1	22	23	70	. 1	21	8	205	2.82	4	5	ND	11	10	1	2	2	17	. 16	. 036	30	19	. 62	50	. 06	2	1.17	. 01	. 23	2	

SKYLARK RESOURCES FROJECT-FIFESTEEL/GRUHSTAKE FILE \# B7-3214
SAMPLEI

CAS JL 10100E CAS BL 10400E 5ILT
CAB IL $10150 E$ SILI CAS DL 11+00E CAE UL $11+50 \mathrm{E}$

CAS OL 12,00E CAS EL 12,35E SILT CAS IL $12+50 \mathrm{E}$ CAB DL I3+00E CAE IL $13+50 \mathrm{E}$

CAI IL 14400E CAE LISOOS 1+50E CAO L1+005 $2+00 E$ Cal Lloos $2 \cdot 50 \mathrm{E}$ Cas Lloos 3+00E

CAE L14005 3+35E 5ILT CAB $11+O O S$ 3+60E SLLT CAE $1110054+00 \mathrm{E}$
 CA) LI +00 S 4 t 50 E
 al Litoos 5400E

CA1 (1+005 5450E
(A) $22+005$ 1+00E

Cal L2+00S $1+50 \mathrm{E}$
CAD 12 200S 2400E
CAO L2400S 2400 E
CAS L2+00S $3+00 \mathrm{E}$
CAI L2+005 3+50E SILT
CAI L2+00S 4+00E SILT
CAl L2+005 4+50E
CAD L2+00S 5+50E
CAl $12+005$ 6+00E
CAB L1+00E 1+505 [A] L6+00E 0+50K Cal L6+00E $0+00$
CAD LGOOE OH50S
CAE Lb+00E 04505A-

1	11	14	53	.1	12	1	119	2.21	5
1	22	17	87	.1	23	10	316	2.93	9
1	11	12	45	.1	13	7	185	1.83	5
2	22	17	79	.1	26	13	455	3.16	5
1	22	20	92	.1	21	12	319	3.43	10

5	MD	5	11
5	MD	7	16
5	KD	8	7
5	MO	12	0
5	ND	7	10

2	5
2	2
2	1
2	3
2	2

5	14
2	16
4	11
3	17
2	16

$$
\begin{aligned}
& .18 .023 \\
& .29 .050
\end{aligned}
$$

$$
\begin{aligned}
& 22 \\
& 35 \\
& 22 \\
& 23 \\
& 78
\end{aligned}
$$

$$
\begin{array}{ll}
15 & 0 \\
17 & 0 \\
10 & 0 \\
24 & 0 \\
15 & .
\end{array}
$$

$$
\begin{aligned}
& .49 \\
& .62 \\
& .37 \\
& .76 \\
& .59
\end{aligned}
$$

$$
\begin{array}{ll}
33 & 0 \\
12 & \cdot \\
19 & \cdot \\
34 & \\
32 &
\end{array}
$$

$$
\begin{aligned}
& .06 \\
& .06 \\
& .04 \\
& .06 \\
& .06
\end{aligned}
$$

$$
\begin{array}{cc}
2 & .9 \\
2 & 1.1 \\
1 & .1 \\
1 & 1.1 \\
2 & 1.0 \\
2 & 1.2 \\
1 & 1 . \\
2 & 1.3 \\
3 & 1.4 \\
2 & 1.4
\end{array}
$$

$$
\begin{aligned}
& .01 \\
& .01 \\
& .01 \\
& .01 \\
& .01 \\
& .01 \\
& .01 \\
& .01 \\
& .01 \\
& .01
\end{aligned}
$$

$$
\begin{aligned}
& .13 \\
& .17 \\
& .09 \\
& .17 \\
& .17 \\
& .13 \\
& .12 \\
& .09 \\
& .20 \\
& .13
\end{aligned}
$$

$$
\begin{array}{ll}
36 & 19 \\
23 & 24 \\
29 & 21 \\
30 & 20 \\
33 & 30
\end{array}
$$

$$
\begin{aligned}
& .54 \\
& .42 \\
& .53 \\
& .58 \\
& .88
\end{aligned}
$$

$$
\begin{array}{r}
107 \\
45 \\
57 \\
62 \\
68
\end{array}
$$

$$
\dot{0} \dot{0} \circ \dot{0} \dot{8}
$$

$$
\begin{array}{llll}
2 & 1.18 & .01 & .13 \\
2 & 1.65 & .01 & .31 \\
2 & 1.31 & .01 & .25 \\
3 & 1.15 & .01 & .24 \\
3 & 1.80 & .01 & .36
\end{array}
$$

CAE L6400E $1+00 \mathrm{~S}$

GKYLARK REBQURCEG FRDJECT-FIRESTEEL/GRUBSTAKE FILE \# B7-3214

R-2101	1	3	34	1	. 4	2	I	51	. 39	2	5	KD	1	3	1	2	5	1	. 11	. 001	2	2	. 01	3	. 01	2	. 01	. 01	. 02	1	J
R-2102	1	7	16	1	. 5	1	1	71	. 61	1	5	10	1	4	1	2	1	1	. 09	. 002	2	3	. 04	11	. 01	20	. 15	. 02	. 05	I	1
R-2103	3	7	22	1	. 3	4	1	147	. 54	2	5	KD	1	2	1	2	6	1	. 02	. 001	2	3	. 01	7	. 01	8	. 07	. 01	. 06	1	2
R-2104	1	35	40	21	. 1	31	10	270	1.95	3	5	HD	8	11	1	2	9	6	. 19	. 008	17	10	. 34	15	. 02	8	. 515	. 02	. 15	1	24
$\mathrm{n}-2105$	11	16	36	17	1.1	11	1	4	1.57	12	5	H0	4	1	1	3	3	1	. 01	. 006	10	6	. 01	9	. 01	6	. 15	. 01	. 13	1	29
R-2105	31	13	15	6	. 6	14	5	67	1.55	14	5	RD	3	1	1	3	!	2	. 01	. 005	1	1	. 02	10	. 01	2	. 15	. 01	. 12	1	21
8-2107	7	7	55	53	. 6	5	1	111	1.01	75	5	k0	1	4	1	2	1	1	. 04	. 001	2	5	. 02	3	. 01	2	. 05	. 01	. 04	1	10
R-2109	2	20	131	455	17.9	17	4	341	2.26	4516	5	ND	5	4	3	57	2.	2	. 56	. 001	12	3	. 25	1	. 01	2	. 16	. 01	. 14	1	10
R-2109	2	20	131	744	. 1	14	11	11	1.63	279	5	HO	1	1	4	5	3	1	. 01	. 001	2	3	. 01	1	. 01	2	. 01	. 01	. 02	1	31
R-2110	2	10	416	157	5.1	6	2	79	. 17	741	5	KD	1	1	4	10	6	1	. 01	. 001	2	J	. 01	1	. 01	2	. 02	. 01	. 02	I	43
R-2111	10	21	615	211	17.0	10	5	73	2.02	1412	5	HO	1	2	1	16	37	1	. 01	. 001	3	4	. 01	11	. 01	2	. 01	. 01	. 08	1	210
R-2112	1	10	105	60	2.7	1	5	50	3.61	1232	5	KD	3	5	1	27	1	1	. 02	.003	1	2	. 02	8	. 01	2	. 11	. 01	. 09	1	127
R-2113	1	37	31	111	3.5	227	1	75b	2.12	540	5	N0	1	3	1	10	2	3	. 01	. 011	12	4	. 21	13	. 01	3	. 24	. 01	. 11	1	25
R-2114	1	11	16	12	2.6	1	3	190	1.51	2152	5	HD	1	3	1	20	2	2	. 01	. 001	15	3	. 03	24	. 01	2	. 16	. 03	. 13	1	230
R-2115	1	7	15	11	1.1	6	3	103	2.30	2183	5	KD	4	2	1	14	2	2	. 01	. 003	1	1	. 02	24	. 01	4	. 18	. 01	. 14	1	125
8-2116	61	21	$11 t$	14	30.0	6	3	157	1.17	51	5	KD	3	6	1	2	4	1	. 11	. 021	10	2	. 05	10	. 01	2	. 15	. 01	. 13	,	22
R-2117	2	10	1751	29	41.4	1	1	94	. 67	78	5	ND	1	1	1	10	153	1	. 01	. 001	2	3	. 01	b	. 01	2	. 01	. 01	. 07	1	14
R-2118	2	12	13	4	. 1	27	10	231	2.32	25	5	N0	14	15	1	2	3	12	. 19	. 027	26	19	. 54	41	. 05	26	. 81	. 02	. 15	1	2
R-2119	1	12	41	48	3.2	11	5	217	5.日日	430	5	NO	b	12	1	23	2	2	. 11	. 005	11	1	. 09	13	. 01	2	. 16	. 01	. 13	1	3
R-2120	1	46	71	22	3.1	18	7	170	2.02	1	5	ND	4	5	1	2	13	3	. 08	. 010	10	5	. 20	13	. 01	3	. 26	. 01	. 18	1	3
R-2121	1	9	17	40	1.6	17	12	77	2.19	20	5	ND	3	2	1	2	10	1	. 01	. 004	1	5	. 05	1	. 01	2	. 13	. 02	. 07	1	2
R-2122	1	10	106	54	1.7	19	10	113	3.08	15	5	ND	6	17	1	2	7	1	. 24	. 015	9	4	. 20	1	. 01	7	. 29	. 03	. 01	1	1
R-212]	1	JI	1335	51	22.4	16	16	298	17.59	75	5	KD	7	6	1	2	34	5	. 07	. 010	7	7	. 11	15	. 01	2	. 21	. 02	. 18	2	11
R-2124	1	14	71	11	1.0	27	42		14.40	90	5	HD	4	7	1	2	2	J	. 01	. 006	5	5	. 05	1	. 01	2	. 02	. 06	. 07	1	2
R-2125	1	24	33	25	. 3	28	10	511	3.25	10	5	ND	5	20	1	2	2	3	. 28	. 017	1	6	. 36	23	. 01	2	. 21	. 03	. 17	1	
R-2126	2	$5!$	10	1	. 2	14	0	105	2.84	5	J	10	3	1	1	3	2	1	. 01	. 004	3	2	. 01	2	. 01	13	. 04	. 01	. 03	1	2
R-212]	2	7	220	784	1.6	11	1	510	2.47	4259	5	NO	5	55	4	4	3	2	. 75	. 001	10	1	.27	2!	- 01	2	. 17	. 01	. 12	1	8

ACME ANALYTICAL LABORATORIES - 852 East Hastings Street, Vancouver, B.G. V6A 1R6
Appendix 2 - Assay Results CABIN claim group

GKYLARK REGOURCEB FROJECT-FIRE日TEEL/GRUBSTAKE FILE 日7-3214

SARPLEI	M0	ct	P1	1N	46	$\mu!$	co	H1	FE	AS	U	Al	IH	SR	co	fil	$\underset{\text { рря }}{\text { II }}$	$\underset{\text { per }}{V}$	CA	P	$\begin{aligned} & \text { LH } \\ & \text { PPK } \end{aligned}$	CR	$\begin{gathered} \mathrm{Ki} \\ \hline \end{gathered}$	$\underset{p e r}{\text { IA }}$	II	$\begin{array}{r} 8 \\ P H K \end{array}$	AL	$\begin{gathered} \text { MA } \\ ! \end{gathered}$	K		$\begin{aligned} & \text { Alf } \\ & \text { ffI } \end{aligned}$
	PR	PPM	PPK	PPM	Prin	PPK	PPR	PPH	1	PPM	PRM	FPM	PPA	PPK	PPK	PPM	PPM	PPK	\mathbf{I}	I	PPM	PPH	\mathbf{I}		1			\mathbf{I}	2		
$\mathrm{R}-2 \mathrm{I} 2 \mathrm{I}$	2	17	3044	149	24.3	1	1	90	1.26	$66!$	5	MD	1	3	6	11	65	1	. 01	. 001	2	3	. 01	2	. 01	9	. 02	. 01	. 01	1	31
R-2129	1	120	47	43	. 3	10	9		13.89	41	5	KD	9	3	1	9	2	2	. 01	. 017	7	3	. 04	17	. 01	22	. 01	. 01	. 01	2	1
R-2130	1	30	4	72	. 7	1	5	211	1.4	18	5	NO	5	34	1	2	2	2	. 53	. 016	14	3	. 11	26	. 01	2	. 17	. 01	. 16	1	5
R-213!	1	15	20	8	. 2	4	2	94	2.18	10	5	H0	1	4	1	2	2	5	. 01	. 017	5	7	. 07	$8!$. 02	2	. 24	. 01	. 19	1	2
R-2132	20	103	35	15	. θ	1	6		13.84	2	5	No	9	3	1	2	2	13	. 01	. 018	7	6	. 04	41	. 12	2	. 31	. 02	. 38	2	25
R-2133	1	50	1355	63	11.1	3	2	174	2.46	156	5	NO	3	1	1	25	2	1	. 01	. 013	1	3	. 01	11	. 01	1	. 10	. 01	. 06	1	58
R-2134	2	10	313	387	1.0	5	1	1453	3.09	10	5	ND	3	1	2	10	2	1	. 02	. 007	10	1	. 01	23	. 01	5	.13	. 01	. 09	1	3
8-2135	2	30	1630	134	3.6	7	1	1371	2.35	23	5	kid	2	1	1	4	2	1	.03	. 010	10	3	. 02	21	. 01	17	. 12	. 01	. 01	1	3
$n-2136$	1	5	34	67	1.0	J	1	419	1.07	23	5	\$0	1	1	1	2	2	1	. 01	. 007	1	3	. 01	14	. 01	4	. 01	. 01	. 07	1	1
R-2137	1	1	71	5	. 4	3	1	114	1.10	20	5	HD	1	1	1	4	2	1	. 01	.003	2	1	. 01	1	. 01	11	. 04	. 01	. 03	1	1
R-2138	1	7	213	22	6.7	3	1	69	1.29	2	5	Na	1	1	1	4	36	1	. 01	. 008	1	3	. 01	14	. 01	5	. 12	. 01	. 05	1	1
R-2137	1	19	695	141	B. 1	3	2	511	1.49	135	5	NO	2	,	1	6	2	2	. 01	. 010	12	5	. 01	23	. 01	1	. 16	. 01	. 11	1	1
R-2140	1	18	4472	118	4.9	1	1	113	1.03	1511	5	WD	1	I	1	53	5	1	. 01	. 007	3	2	. 01	4	. 01	1	. 04	. 01	. 04	1	82
R-2141	1	49	357	1185	15.7	4	8	128	19.05	1424	5	HI	1	7	6	116	5	3	. 01	. 018	2	8	. 01	47	. 01	6	. 01	. 01	. 03	5	165
R-2112	2	29	952	781	8.1	5	2	217	4.21	556	5	HD	1	1	4	121	2	1	. 01	. 020	1	3	. 01	9	. 01	2	. 06	. 01	. 04	2	106
8 R-214	1	17	304	185	6.9	4	2	93	2.67	1420	5	H0	1	3	-	40	2	1	. 01	. 002	2	1	. 01	20	. 01	2	. 02	. 01	. 03	1	245
R-2144	1	11	906	113	3.1	3	2	190	. 72	88	5	ND	5	2	1	129	2	2	. 01	. 015	29	4	. 01	30	. 01	5	. 18	. 02	. 13	1	12
$\mathrm{f}-2115$	1	13	394	114	9.9	7	3	739	. 72	47	5	HO	1		2	197	2	1	. 01	. 004	2	1	. 01	7	. 01	2	. 02	. 01	. 02	1	11
R-214	3	3	218	776	. 8	B	4	2491	4.58	17	7	N0	3	5	3	1	2	1	. 01	. 014	12	3	. 01	45	. 01	6	. 10	. 01	. 07	1	1

COAT 2129	2	107	102	211	. 2	43	22	740	2.36	21	5	NO	15	19	1	4	2	37	. 16	. 131	52	29	. 71	98	. 14	2	1.33	. 01	. 28	1	1
60RT SILT 11	1	5	20	47	. 0	9	4	119	1.31	5	5	N0	2	0	1	2	2	11	.15	. 033	14	1	. 20	33	. 02	2	. 60	. 01	. 03	,	1
60AJ SILT 12	,	13	50	162	1.1	15	6	245	1.68	9	5	K0	2	15	2	2	2	12	. 30	. 063	45	13	. 35	65	. 04	2	1.09	. 01	. 12	1	2
gual SILT \#3	2	11	41	369	. 6	21	41	4481	2.98	11	5	H0	1	20	10	2	2	14	. 37	. 089	32	11	. 29	120	. 02	B	1.01	. 01	. 11	1	1
coal sili it	1	12	34	225	. 8	12	5	418	1.53	2	5	NO	1	17	2	2	2	12	. 36	. 076	31	11	. 33	4	. 03	2	. 90	. 01	. 10	1	1
coal Sili is	1	11	4	250	. 7	13	B	770	1.70	7	5	HD	1	17	1	2	2	13	. 30	. 071	33	13	. 34	83	. 03	2	1.00	. 01	. 12	1	1
COAT SILI 4	I	9	35	161	. 5	12	5	453	1.14	5	5	ND	1	13	2	2	2	11	. 24	. 053	24	11	. 29	70	. 03	7	. 67	. 01	. 09	1	1
60NI SILT 17	1	5	35	147	. 7	9	1	201	1.21	3	5	H1	1	13	1	2	2	12	. 22	. 061	23	11	. 27	77	. 03	2	. 79	. 01	. 10	1	2

Acme Analytical Laboratories - 852 East Hastings Street, Vancouver, B.C. V6A IR6
Appendix 3 Assay Results - GOATS claim group

