MINING DIVISION: Omineca

```
PROPERTY: Finlay River
LOCATION
    LAT 
    UTM 09 6340174 631469
    NTS 094E02W 094E07W
CLAIM(S): Jok 1-6,Wrich 1,Skarn 1-4,Grace 5,Error 1-8
OPERATOR(S): Skylark Res.
AUTHOR(S): Burns, P.J.
REPORT YEAR: 1988, 90 Pages
GEOLOGICAL
SUMMARY:
Triassic Takla Group volcanics which are intruded by the Jock creek (Black Lake) stock. These rocks are overlain by Lower Jurassic Hazelton Group volcanics and Middle Jurassic Toodoggone Volcanics. Several periods of post-mineral faulting/folding are evident. precious and base metal occurrences (epithermal quartz veins, quartz breccia, stockwork systems and quartz-carbonate shear zones) are associated with regional and localized structures.
WORK
DONE: Geological, Geochemical
GEOL 8240.0 ha
\(\operatorname{Map}(s)-1 ;\) Scale(s) - 1:13 158
ROCK 223 sample(s) ;ME
SOIL 462 sample(s) ;ME
MINFILE: \(\quad 094 \mathrm{E} \quad 047,094 \mathrm{E} \quad 048,094 \mathrm{E} \quad 049,094 \mathrm{E} \quad 082\)
```


ON THE

JOK 1 TO 6, ERROR 1 TO 8, GRACE 1 TO 5, CONCHA 1 TO 7, SKARN 1 TO 4, WRICH 1 TO 2 CLAIMS.

OMINECA MINING DIVISION NTS MAP SHEETS 94E/2E, 2W, 7W

LATITUDE $57^{\circ} 07^{\prime}-57^{\circ} 15^{\prime}$
LONGITUDE $126^{\circ} 44^{\prime}-126^{\circ} 54^{\prime}$

FOR
FIIMED

OPERATOR:

SKYLARK RESOURCBS LTD.
902 - 837 WEST HASTINGS STREET
VANCOUVER, B.C.

OWNERS :
JOHN M. MIRKO,
SKYLARK RESOURCES LTD. ,
CHENI GOLD MINES INC. AND
ASITKA RESOURCE CORPORATION.
GEOLOGICALBRANCH by ASSESSMENTREDADT

,

TABLE OF CONTENTS

PAGE
INTRODUCTION 1
LOCATION, ACCESS, PHYSIOGRAPHY 2
CLAIM DATA 3
HISTORY 5
REGIONAL GEOLOGY 6
STRUCTURE 8
PROPERTY GEOLOGY 8
GEOCHEMICAL SURVEYS
(1) Previous Work 11
(2) 1987 Geochemical Survey 12
DISCUSSION OF RESULTS 13
(1) Beaverdam 13
(2) Goat 15
(3) Skarn 18
(4) Jok 19
(5) Finlay River Prospects 21
(6) Others 22
CONCLUSIONS 23
RECOMMENDATIONS 23
(1) Beaverdam 23
(2) Goat 24
(3) Skarn and Jok 24
(4) Finlay River Prospects 24
(5) Others 25
REFERENCES 26
STATEMENT OF EXPENDITURES 27
STATEMENT OF QUALIFICATIONS 28

FIGURES

Fiqure

1. Location Map, Finlay River Project.
2. Claim Map, Finlay River Project.
3. General Geology Map, Finlay River Project.
4. $\mathrm{A}-\mathrm{F}$ Geochemical Soil Grid Maps for $\mathrm{Au}, \mathrm{Ag}, \mathrm{Cu}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{As}$, Beaverdam Showing, Grace 5 Claim.
5. Preliminary Geology Map, Beaverdam Showing, Grace 5 Claim.
6. Sketch Map, Skarn-Wrich Au-Ag-Cu-Pb-Zn Showings.

APPENDICES

APPENDIX 1 Acme Analytical Laboratories Geochemical Sample Analysis Certificates for the Jok, Error, Grace, Concha, Skarn and Wrich Claim Groups.

INTRODUCTION

This report summarizes activities conducted by Skylark Resources Ltd. during the 1987 field exploration season on 6 contiguous claim blocks totalling 323 units and $8-2$ post claims in the Toodoggone Gold Belt of northern British Columbia.

The purpose of the field program was to conduct a preliminary geological and geochemical evaluation of ground acquired in the area during the period March through September, 1987.

Properties discussed within this report include the JOK, ERROR, GRACE, CONCHA, SKARN and WRICH claim groups; both the Grace and Wrich groups were optioned from other companies during the field season.

These 6 claim blocks are hereafter referred to in this report as the "Finlay River groject".

Initial work on the properties in 1987 included regional geological mapping, stream, soil and lithogeochemical surveys as well as trenching.

The finlay River project occurs near the eastern margin of the Intermontane Belt in the Cassiar-Omineca Mountains.

The oldest rocks on the property are Asitka Group crystaliine limestones of Permian age. These are in thrust contact with Middle Triassic Takla Group volcanics which are, in turn, intruded by the Jock Creek (or Black Lake) stock comprised of granodiorite/quartz monzonite, and overlain by Early Jurassic

Hazelton Group volcanics and Early to Middle Jurassic Toodoggone volcanics.

Immediately to the east, the Lower Jurassic Omineca Intrusions crop out, and to the west of the property lie the relatively flat-lying Late Cretaceous to Tertiary sedimentary rocks of the Sustut Group.

Several periods of post-mineral faulting and minor folding have occurred within the Toodoggone area.

The 1987 field work led to the discovery of numerous precious and base metal prospects on the Finlay River Project, associated with regional and localized structures with epithermal quartz veins, quartz breccia, stockwork systems and quartz-carbonate shear zones.

LOCATION, ACCESS, PHYSIOGRAPHY

The Finlay River Property is situated 250 km north of Smithers, B.C. in the Toodoggone River area (See Figure 1), between approximate latitude $57^{\circ} 07 \prime$ and $57^{\circ} 15^{\prime}$, and longitude $126^{\circ} 44^{\prime}$ to $126^{\circ} 54$ ' on NTS Map sheets $94 \mathrm{E} / 2 \mathrm{E}, 2 \mathrm{~W}$ and 7 W .

Access is by fixed wing aircraft to the Sturdee River airstrip located 15 km SSE (south-south-east) of the Cheni Mines "Lawyers" gold-silver deposit and thence by helicopter some 17 km to the east.

The Omineca Mine access road was completed in the fall of 1987 and, at the junction of the Firesteel and Finlay Rivers, passes to within 3 km of the western boundary of the Grace 3 claim.

The topography of the Finlay River Property is characterized by rugged mountain ranges and peaks, with elevations up to 2000 m , separated by broad glaciated stream and river valleys ranging in elevation from 1100 to 1300 m .

The 30 to 50 m wide northerly flowing Finlay Rivex cuts through the centre of the property in a S.W. to N.E. direction (See Figures 2 and 3).

The skylark exploration camp was based on the sturdee airstrip which was central to all skylark properties located in the Toodoggone area, and serviced by daily direct flights from Smithers.

Northern Mountain Helicopters Bell 206 and Hughes 500 helicopters were utilized on a daily basis for property access.

CLATM DATA

The Finlay River Project comprises the following 6 claim groups (See Figure 2).

NAME
CONCHA 1
2
3
4
5
6
7
RECORD NO.

NO. UNITS

EXPIRY DATE

October 22, 1988

HISTORY

The Finlay River Project has been partially staked by numerous owners in the past, beginning during the 1970's, to cover copper, molybdenum and zinc geochemical anomalies associated with the exploration for porphyry copper deposits.

Amax Exploration Inc. originally staked the area encompassing the Grace claims in 1973. Geophysical surveys, geochemical soil sampling and geological mapping were conducted in 1974 (Hodgson and Lebel, 1974; Hodgson, 1974) and the claims subsequently lapsed. Re-staking occurred in 1978 and additional surveys were conducted, followed by more staking in 1980 (MacQuarrie, 1978, 1979 and 1980).

Tunkwa Copper Mines Ltd. carried out work on the property in 1981 (Allen, 1982) and Asitka Resource Corp. acquired the Grace property in 1983. Asitka carried out induced polarization and magnetic surveys followed by 291 m of diamond drilling (Allen and MacQuarrie, 1984).

The skarn zones on the Grace claims bear strong similarities with the Cheni Gold Mines Acapulco property located 5 km to the WNW. Cheni originally obtained a 3 m wide surface trench sample grading $0.75 \mathrm{oz} / \mathrm{t}$ Au. Subsequent drilling in 1987 led to the discovery of two 12 m magnetite-copper skarn zone intersections with short intervals of 3 to 4 m grading up to $0.13 \mathrm{oz} / \mathrm{t}$ Au.

The Wrich claim group is owned by Cheni Gold Mines Inc.
Serem Ltd., the predecessor to Cheni, staked the Wrich claims in 1981
following results of a 1980 stream sediment sampling program associated with favourable geology. A zone of "intense hydrothermal alteration" consisting of a silica-alunite cap was discovered and subsequentiy drill-tested in 1987, prior to the option agreement with Skylark (Vulimiri et al., 1982; Vulimiri et al., 1985).

Cheni drilled a total of 5 drillholes on this target and intersected the root zone below the black silica, argillic alteration cap. They have come to the conclusion that, while drilling has reduced the possibility of any large tonnage reserve, this zone continues to potentially contain up to a possible 500,000 tons of ore grade material.

Other portions of the Finlay River Project were previously held by Lacana (Jok area), Taiga Resources (Jok area) in 1980, and Golden Rule Resources Ltd. (Jok area) as recently as 1987.

REGIONAL GEOLOGY

The Finlay River Project occurs within the Intermontane Belt in the Cassiar-Omineca Mountains (Figure 3).

Permian Asitka Group crystalline limestones are the oldest rocks in the region and are commonly in thrust fault contact with Middle Triassic Takla Group andesitic flows and pyroclastic rocks. Early Jurassic calc-alkaline Toodoggone or Hazelton Group volcanic rocks crop out along the northern fringe of the area.

Takla volcanics have been intruded by the Lower Jurassic Jock Creek/Black Lake granodiorite/quartz monzonite stock and are overlain by Early to Middle Jurassic Toodoggone volcanics. This latter sequence is host to the most significant gold occurrences in the Toodoggone area and consists of a greater than 1000 m thick pile of complexly intercalated subaerial andesitic, dacitic and trachytic tuffs, epiclastic rocks and ash flow sheets that are considered to be coeval with the associated Omineca intrusions.

Regionally, the Toodoggone volcanic sequence has been subdivided into three divisions. The Lower division consists predominantly of pyroclastic maroon agglomerate along with grey, green and maroon andesitic to dacitic tuffs. The overlying Middle division comprises rhyolites and dacites along with an intermediate to acidic assemblage of orange crystal to lithic tuffs, welded tuffs and quartz feldspar porphyries.

The Upper division of the Toodoggone Group comprises a volcanicsedimentary sequence of conglomerates, greywacke and ash flows of andesitic-dacitic composition.

The above units are uncomformably overlain by relatively flatlying Late Cretaceous to Tertiary sedimentary rocks of the sustut Group. These comprise polymictic conglomerate, sandstone, shale and carbonaceous mudstone.

STRUCTURE

The structural setting in the Toodoggone area is considered to probably have been the most significant factor with respect to an ore control in permitting mineralizing solutions to migrate through the 1 km thick volcanic pile.

Numerous major regional fault systems and related splays can be traced for up to 50 km or more in a dominant northwest-southeast trend.

Major structures include the Saunders Creek, McClair and Lawyers - Attorney faults.

In some cases these structures are postulated to be related to collapsed volcanic centres and horst-graben complexes.

Gold mineralization is nearly always found proximal to these structures, which locally exhibit evidence of post-mineral displacement.

PROPERTY GEOLOGY

Originally, the Skylark Resources exploration program was designed to provide a preliminary evaluation of the Jok and skarn claim groups.

Field work conducted during August to early October successfully identified numerous areas of interest both within and outside of the Jok and Skarn claim boundaries. Subsequently, additional ground was staked (Concha and Error claims) and options were made
on ground held by Asitka Resource Corp. (Grace claims) and Cheni Gold Mines Inc. (Wrich claims).

Figure 3 shows individual claim boundaries along with preliminary property geology and geochemical survey grid and sample sites, as well as indicated sample numbers.

Figures 4,5 and 6 show details of the Beaverdam and Goat properties.

Geologically, the Finlay River Project is underlain by rock units dating from as early as Permian through to Lower and Middie Jurassic time.

The oldest rocks on the property occur on the Skarn and Grace claims, mapped regionally by Diakow et al. (1985) as Permian Asitka Group (?). Preliminary mapping by the author has shown unit IPV, C on the Skarn 2, 3 and 4 claims to be predominantly Triassic Takla Group volcanics of andesitic to dacitic composition. Specifically, these claims are underlain by unsubdivided dark green plagioclase feldspar porphyry and hornblende porphyry andesites with local volcanic breccia and agglomerate.

Magnetite and pyrite are commonly disseminated in the volcanics In concentrations up to 10% (eg. Samples 6702, 6703, and 6704). Prevalent alteration assemblage minerals include epidote-chlorite-carbonate.

Occasional limestone interbeds were noted (eg: Sample 6701) comprising thinbedded light grey limestone to marble and rare limestone breccia containing silicified angular to subrounded clasts up to 0.5 m in diameter.

Bedding within the limestone on the Skarn 2 claim varies from 120 to 145 , dipping 33 to 58 northeast.

Additional limestone exposures crop out with Takla Group volcanics some 6 km to the northwest, reportedly as "faultsegmented roof pendants" (Allen, 1986 , p.7) in the Jock Creek granodiorite stock.

Jurassic Toodoggone or Hazelton Group volcanics underlie a large portion of the Jok 1 to 6 claims. Diakow et al. (1985) refer to this sequence as Unit 9 and believe these rocks to possibly be correlative with Toodoggone volcanics.

In a traverse along the north-south ridge at the western boundary of the Jok 1 and 3 claims, rock types encountered comprised grey to maroon-grey and olive green porphyritic andesite flows. Locally, plagioclase feldspar phenocrysts are salmon pink in colour (eg. Sample 6731).

A 40 cm wide dark green basalt dyke striking 117 and dipping 77 S was mapped some 150 m northeast of sample 6731 (See figure 3).

East of the above sample location lies the contact between the Toodoggone and probable Hazelton Groups. The Hazelton here comprises a series of thin-bedded maroon conglomerates striking 093° and dipping $55^{\circ} \mathrm{s}$.

Diakow's Units 7 and 8 of the Toodoggone Group underlie much of the Wrich claims and comprise andesitic crystal ash tuffs and grey dacite flows.

The Concha 1 to 6 claims were staked in the fall of 1987 to cover the Finlay River valley. Bedrock exposure in this area is generally poor, except along the Finlay River and tributaries draining into it.

Samples 6801 to 6804 and 10507 to 10511 , taken from the east bank of the finlay River on the Concha 3 claim consist of Takla Group dark green andesitic flows and lapilli tuff.

GEOCHEMICAL SURVEYS

1. Previous Work

Previous geochemical surveys have been conducted on portions of both the Grace and Wrich claim groups, and the reader is referred to reports by Hodgson et al. (1974), MacQuarrie (1978, 1979 and 1980), Allen et al. (1984) and the B.C. Ministry of Energy, Mines and Petroleum Resources (1987) in reference to the former property, and Vulimiri et al (1982 and 1985) concerning the latter.

The area encompassed by the Jok claims was previously held by Golden Rule Resources (See B.C. Min., Energy, Mines and Pet. Resources - 1986 Summary (1987), p. C 391) and subsequently dropped.

2. 1987 Geochemical Survey

In addition to routine preliminary geological reconnaissance and prospecting, geochemical evaluation techniques were also conducted over much of the Finlay River Project. These included stream sediment, rock and soil sampling programs.

Initial samples were taken of stream sediments, rock and reconnaissance level soil samples where warranted. Specific mineral occurrences or areas of deemed interest were summarily soil sampled on a grid basis. Grid sampling was done on $12.5,25$ and 50 m sample centres with grid lines 50 m apart (eg.Figure 4). Soils were normally collected at a depth of at least 20 to 25 cm , well below the "A" horizon, and consisted either of brownish rubbly fines or glacial till which was collected in Kraft paper bags and shipped to Acme Analytical Laboratories for 30 element ICP analyses and gold in ppb by atomic absorption techniques. Results are listed in Appendix I and the geochemical sample sites and numbers are plotted on Figures 3, 4, 5, and 6.

In all, 685 samples were collected on the project, distributed by claim group as follows:

	Jok	Error	Grace	Concha	Skarn	Wrich
Rocks	10	4	93	9	22	85
Soils/Silts	95	6	232	-	120	9
TOTALS	105	10	325	9	142	94

TOTAL NO. ROCK GAMPLES $=223$
TOTAL NO. SOIL/SILT SAMPLES = 462

DISCUSSION OF RESULTS

Preliminary prospecting, geological and regional geochemical sample programs resulted in the discovery of several new precious and base metal occurrences within the Finlay River Project boundary. These are discussed below in the following order:

1. Beaverdam (Grace 5)
2. Goat (Skarn 2 and Wrich 1)
3. Skarn
4. Jok
5. Finlay River Prospects (Concha 3)
6. Others - Geochemical anomalies

1. Beaverdam

The Beaverdam showing occurs in the northeast corner of the Grace 5 claim and is cut by an easterly flowing creek which ultimately drains into the Finlay River. See Figures 3, 4 and 5.

The majority of the present surface exposure of this showing was, until recently, below water upstream behind an old beaver dam (hence the name of the prospect). The beaver dam eventually broke through, exposing the showing.

Regional prospecting and stream sediment sampling downstream below the area of interest originally led to the discovery of a brecciated and silicified, quartz-chalcedony vein float boulder some 400 m below the beaver dam. A return visit to attempt to locate the upstream source of this sample led to the discovery of two parallel quartz-chalcedony stockwork vein and breccia systems 70 m apart and striking 125.

The wallrocks are comprised of salmon-pink weathered, dark grey, quartz-eye porphyry dacitic (?) fragmentals which bear similarities to both the Toodoggone and Hazelton Group volcanics. This unit contains less than 1\%, 1 to 2 mm diameter grey-black angular quartz eyes or shards and 15 to 25 pink to grey-white, 2 mm diameter (plagioclase?) feldspar phenocrysts.

Angular to rounded clasts can comprise up to 15 to 35% by volume and are of variable size but averaging 1 to 3 cm in diameter at the site of sample 10529 (see Figure 5).

The "West" zone consists of a silicified multiphase breccia and stockwork vein system covering an area some 25 m long by 10 to 15 m wide, with silicified volcanic clasts surrounded and cut by quartz-chalcedony flooding and veins which locally exhibit "dogtooth", quartz-lined cavities. Clasts occasionally show 1 to 2 mm diameter hexagonal sericite pseudomorphs after biotite in trace quantities and up to 3% disseminated pyrite as 1 mm diameter grains.

Localized rare kaolinite alteration is visible within this zone, while epidote and chlorite appear to form a peripheral alteration halo.

Geochemical soil sampling, hand pits and float boulder tracing have shown the West zone to have an inferred strike length of at least 300 m .

Assay values as high as $0.107 \mathrm{oz} / \mathrm{t}$ (3670 ppb) gold were obtained from Trench 1 on the discovery showing over a 1.1 m width,

whereas a grab sample from the same locality prior to trenching returned $3.37 \mathrm{oz} / \mathrm{t}(115.6 \mathrm{ppm})$ silver, and $0.058 \mathrm{oz} /$ ton (2 ppm) gold.

The "East" zone, located 70 m to the east, consists predominantly of quartz-chalcedony parallel and stockwork veins and veinlets, locally vuggy, over a width of 15 to 25 m and an inferred strike length of some 200 to 300 m . Grab samples here ran as high as $0.057 \mathrm{oz} / \mathrm{t}(1930 \mathrm{ppb})$ gold and $2.99 \mathrm{oz} / \mathrm{t}(102.7 \mathrm{ppm})$ silver.

Silicification is not as prevalent. in the "East" as in the "West" zone.

A geochemical soil sampling grid (see Figure 4) set up over the main exposures of the Beaverdam showing indicated a moderate, broad Au/Ag anomaly located on the three southernmost grid lines (L3+00S, L3+50S and L4+00S) to the east of the baseline. This area will be extended by additional sampling in 1988.

In summary, the Beaverdam showing exhibits many of the factors characteristic of Toodoggone epithermal gold deposits (eg. Cheni's "Lawyers" and Esso's "Shasta" deposits), and is -interbreted to be localized along a splay related to one of the aforementioned important regional structures responsible for controlling the mineralizing event(s).

2. Goat

Regional reconnaissance prospecting on the Skarn claims in midAugust, 1987 led to the discovery of mineralized quartz-carbonate
vein and carbonate breccia float at the base of a cirque near the north end of the eastern boundary of the skarn 2 claim (see Figure 7).

Float boulder tracing subsequently located a 070 to 115 striking, near vertical dipping, 1 m wide quartz-carbonate vein some 100 m below the top of the cirque wall.

The mineralized vein strikes some 400 m east onto the Wrich 1 claim located approximately 300 to 400 m southwest of the small cirque lake shown on Figure 7.

Minexalization comprises pyrite-chalcopyrite-galena and sphalerite. Wallrocks are altered dark grey-green andesitic tuffs of probable Takla Group.

Float sample 6707 returned $I C P$ analyses of $1.57 \mathrm{oz} / \mathrm{t}$ (54 ppm) gold and $1.20 \mathrm{oz} / \mathrm{t}$ (41 ppm) silver. A geochemical atomic absorption assay on the same sample pulp returned $32,000 \mathrm{ppb}$ or $0.93 \mathrm{oz} / \mathrm{t}$ gold.

The remaining float from this sample was later collected and analyzed (sample 6925) as a check and returned $8.45 \mathrm{oz} / \mathrm{t}$ (202,900 ppb) gold and $5.97 \mathrm{oz} / \mathrm{t}$ (204.7 ppm) silver.

Subsequent additional prospecting led to the discovery of 4 additional parallel mineralized and locally silicified quartzcarbonate veins within a zone some 500 m wide and trending eastwest to NW - SE (080 to 125) with near-vertical dips to the north and south for the most part.

Wallrocks comprise grey-green andesitic flows and tuffs along with thinbedded reworked or water-lain tuffs striking northwest and dipping steeply to the northeast and southwest $178^{\circ} \mathrm{SW}$ to 79° NE) .

The veins vary in width from 10 to 15 cm on up to 3 m , and have been traced upslope along strike for over 200 m before disappearing under cover. The strike is open in both directions.

Numerous cross veins a few centimetres wide also exist and are locally mineralized.

Quartz is both milky white to grey in colour, and also of the amethystine variety, occasionally stained brick-red by hematite. Banded chalcedony surrounds relatively unaltered volcanic fragments in part, and "dog tooth" quartz crystal intergrowths occur as open-space fillings in vugs.

Malachite staining is common and cross-fracturing is locally intense, striking 162° and dipping $83^{\circ} \mathrm{W}$.

In addition to malachite and iron staining, mineralization consists of galena, chalcopyrite, green-black sphalerite along with disseminated pyrite and a soft grey (silver-bearing?) sulphide, probably tetrahedrite or argentite.

Sample 6929, taken from a 5 to 10 cm wide quartz-carbonate vein upslope on one of the smaller veins with visible disseminated pyrite, galena and sphalerite assayed (ICP) $4.46 \mathrm{oz} / \mathrm{t}$ (153 ppm) gold, $3.25 \mathrm{oz} / \mathrm{t}(111.6 \mathrm{ppm})$ silver, $1.91 \% \mathrm{~Pb}$ and $2.6 \% \mathrm{Zn}$.

\qquad

Note : This is a prospector's preliminary rough'sketch only. See Flg. 3 for location.

SCALE $1: 5000$		
DRAWN BY : D. Hopper	FIGURE : MARCH 1988	

A geochemical (atomic absorption) assay on the same sample returned $160,500 \mathrm{ppb}$ or $4.68 \mathrm{oz} / \mathrm{t}$ gold.

Additional grab samples from the individual veins returned separate values as high as 1.3% for copper, 3.1% lead, 9.0% zinc and $364.1 \mathrm{ppm}(10.62 \mathrm{oz} / \mathrm{t})$ silver.

3. Skarn

The major northwest striking regional structure interpreted to pass diagonally across the Skarn 1 claim (See Figure 3) has localized at least one area containing anomalous gold values associated with a quartz vein stockwork zone.

The zone strikes 125° to 130° for approximately 100 m by 15 m wide and is comprised of vuggy, white, parallel 1 to 3 cm wide quartz veins and veinlets in Takla Group medium to dark green feldspar porphyry andesitic flows. Individual attitudes on certain veins measured $120^{\circ} / 90^{\circ}$ and $140^{\circ} / 88 S W$.

Sample 6749 contained a trace of disseminated pyrite and returned slightly anomalous gold (31 ppb) and silver (1.3 ppm).

A crumbly, clay-altered and broken fault zone some 1 to 2 mide in fractured dark green andesites cuts the stockwork quartz vein zone immediately to the east.

Numerous base and precious metal geochemical anomalies were discovered on soil grids on skarn 1 and 2 and will be examined in detail during the 1988 field season.

Near the north end of line SKA 2, immediately north of $17+00 N$ on the baseline, a $\mathrm{Cu}-\mathrm{Pb}-\mathrm{Zn}$-Ag vein occurrence was discovered under moss in a dark green, aphanitic and highly chloritized andesite. Chalcopyrite, malachite, galena, sphalerite, limonite and pyrite were noted in the 10 to 15 cm wide zone striking and dipping 025° and $84^{\circ} \mathrm{W}$, respectively.

Epidote, manganese, rose quartz and carbonate are associated with the mineralization.

Assay results for two grab samples from this showing returned the following:

Sample No.	$\frac{\mathrm{Cu}}{(\mathrm{ppm})}$	$\frac{\mathrm{Pb}}{\mathrm{ppm})}$	$\frac{\mathrm{Zn}}{(\mathrm{ppm})}$	$\frac{\mathrm{Ag}}{(\mathrm{ppm})}$	$\left(\frac{A u}{p p b}\right)$
6747	2195	569	1941	12.8	1
6748	3175	1209	2615	34.1	62

This type of mineral occurrence is relatively common in Takla Group volcanics and several were found elsewhere in the Toodoggone area during 1987.

4. Jok

Prospecting and mapping along the ridge on the southwest portion of the Jok 3 claim led to the discovery of a weakly developed quartz vein stockwork zone and localized minor brecciation associated with a strong 3 to 5 m wide northeast trending nearvertical fault, See Figure 3.

At least 6 narrow (few cm. wide) quartz-carbonate veins with crystal-lined cavities were noted over a 3 to 4 m width in grey
porphyritic andesite-dacite flows adjacent to the fault.

Bedding attitudes in these flows on the southeast side of the fault are $160^{\circ} / 31^{\circ} \mathrm{E}$.

Subsequent prospecting in talus at the northern base of the slope below this zone led to the discovery of abundant multibanded quartz-chalcedony and purple amethystine quartz-bearing vein and breccia float in a greyish-green, pink felspar porphyry (plagioclose) andesite.

Numerous float boulders were observed to contain vuggy veins with quartz crystal linings and occasional malachite, chalcopyrite, turquoise (?) and minute grey-black sulphides (probably tetrahedrite) localized within veins and veinlets.

Silicification locally effects the andesitic wallrocks.

Boulder-tracing upslope identified the source of this material to be directly below the original weakly-developed quartz vein stockwork situated on the ridge top, and covering an area of approximately 10 m X 15 m.

Sample 6753 returned $0.92 \% \mathrm{Cu}, 68.6 \mathrm{ppm}(2.0 \mathrm{oz} / \mathrm{t}) \mathrm{Ag}$ and 195 ppb Au. See Appendix I.

Numerous northwest to northeast striking massive barite veins were noted elsewhere on the Jok 3 and 4 claims (see Figure 3), all dipping steeply west to vertical and from 2 to 25 cm wide. The veins were found to contain elevated silver values (eg. Sample 6732 returned 17.8 ppm Ag) but negligible values in other
precious or base metal elements.

The silt samples, collected from the creek at the outflow of a small cirque lake on the Jok 3 claim and draining to the NNE, were found to contain elevated gold, silver and zinc values, with gold up to 128 ppb (Sample Jock \#1, 8+00N on Figure 3). These elevated geochemical values are interpreted as probably being related to the aforementioned strong northeast trending fault shown on Figure 3 , which may have acted as a conduit for the mineralizing solutions.

5. Finlay River Pxospects

Claim staking in late september resulted in the discovery of 2 mineral occurrences on the banks of the finlay River on the Concha 3 claim (See Figure 3 for location).

The southernmost showing located on the east bank of the river in approximately the centre of the Concha 3 claim comprises massive chalcopyrite and pyrite with quartz gangue over a 1 m width and striking 093°, dipping $22^{\circ} \mathrm{s}$. Mineralized outcrop and float can be traced for 50 m along strike before disappearing into the river to the west, and upslope under overburden cover to the east.

Bedrock here comprises Takla Group dark green andesitic lapilli tuffs with epidote-chlorite alteration and trace disseminated pyrite. Locally, thin-bedded fine to medium grained green andesitic tuffs are present, striking 120° to 135° and dipping 73° to $82^{\circ} \mathrm{N}$.

Preliminary assay values from the southernmost showing returned individual results as high as $10 \% \mathrm{Cu}, 846 \mathrm{ppm} \mathrm{Pb}, 2.2 \% \mathrm{Zn}, 265.5$ ppm (7.74 oz/t) Ag and 580 ppb Au.

Some 500 m downstream to the north, on the same side of the river, a series of 9 separate quartz-carbonate veins over a 2 m width were discovered cutting fine grained dark green Takla Group andesites. Epidote and chlorite form part of the alteration assemblage in the volcanics, with individual quartzcarbonate veins containing galena and lesser amounts of chalcopyrite, sphalerite and pyrite. The veins are narrow, the widest being 10 to 20 cm , and strike 040°, dipping 070° E. Sample 10511 from these veins assayed $0.90 \% \mathrm{~Pb}, 1.5 \% \mathrm{Zn}$ and 6.1 ppm Ag . Gold was slightly anomalous at 21 ppb.

6. Others

Numerous isolated geochemical anomalies were located elsewhere within the Finlay River Project during the 1987 field season, the most significant of which are listed below:

Sample No.	Location	Au (ppb)
Jock 6, $2+00 \mathrm{~W}-3+50 \mathrm{~N}$	centre Jok 6 claim	1605
Jock 6, $2+00 \mathrm{~W}-6+00 \mathrm{~N}$	centre Jok 6 claim	108
Jock 6, $2+00 \mathrm{~W}-0+50 \mathrm{~S}$	centre Jok 6 claim	280
Jock \#1, 8+00N	S-central Jok 1 claim	128
SKA \#1, $2+505$	NE corner, Skarn 2	111
SKA \#1, $2+50 \mathrm{~S}-0+50 \mathrm{~W}$	NE corner, Skarn 2	112
SKA \#1, $2+50$ - $1+00 \mathrm{~W}$	NE corner, Skarn 2	240
SKA \#1, $2+50 \mathrm{~S}-2+50 \mathrm{~W}$	NE corner, Skarn 2	505
SKA \#1, $2+50 \mathrm{~S}-4+00 \mathrm{~W}$	N-central Skarn 2	120
SKA 1, 17+00N - 0+50W	Skarn 1 claim	119
SKA 2, 8+00N - 3+00E	NW corner, Wrich 1	102
SKA 2, 9+00N - 2+50W	SE corner, Skarn 1	119
SKA 2, 9+00N - 3+00W	SE corner, Skarn 1	147

CONCLUSIONS

The 1987 Skylark Resources Ltd. exploration program was successful in delineating several new precious and base metal occurrences in the Toodoggone Gold Belt.

The most significant showings at present appear to be the Beaverdam (Grace) and Goat (Wrich/Skarn) occurrences, although additional field studies will also be required on numerous other showings within the Finlay River Project in 1988.

RECOMMENDATIONS

The following recommendations are proposed for the Finlay River Project in 1988:

1. Beaverdam

Additional geological mapping and trenching along with expansion, particularly to the southeast, of the geochemical soil grid. Consideration should also be given to conducting EMR geophysics over the grid.

Contingent upon continuing positive results of this work, a first phase 3000' diamond drilling program is also recommended.
previous work by former holders of the property, including Asitka Resources, should be re-evaluated in light of the Cheni Mines "Acapulco" skarn project results.
2. Goat

Geological mapping to replace the current preliminary map of the area of interest, combined with additional prospecting for vein extensions along strike as well as additional veins.

Individual veins should be trenched and channel sampled perpendicular to strike over regular intervals of 2 m . The apparent sporadic occurrence of gold mineralization may necessitate further close-spaced sampling.

The program will include an initial Phase I diamond drilling program comprising 3000' total, in order to test for vein continuity and mineralization at depth.

A careful evaluation should also be made of all available Cheni Gold Mines data on the Wrich claims, particularly their drillhole and geochemical data.

3. Skarn and Jok

Additional geological mapping and fill-in prospecting is required on portions of the claim group as well as an evaluation of the numerous localized geochemical anomalies obtained in 1987.

4. Finlay River Prospects

The Concha claims will require prospecting, sampling and preliminary mapping.

The two showings on the banks of the Finlay River warrant geological mapping, sampling and trenching, and a soil geochemical grid should be localized around each.

5. others

Highly anomalous to "ore-grade" geochemical I.C.P. and A.A. precious and base metal values obtained from Acme Laboratories Ltd. should be assayed, with gold analyzed by fire assay, and Ag, Cu, Pb and Zn by acid attack.

REFERENCES

Allen, D.G. (1982). 1981 Geological and Geochemical Report on the Grace Property. Assessment Report.

Allen, D.G. and MacQuarrie, D.R. (1984). Geological, Geophysical and Diamond Drilling Report on the Grace 1 to 5 claims. Assessment Report.

Allen, G.M. (1986). Summary Geological Report on the Grace 1 to 5 claims, Omineca Mining Division, British Columbia, for Asitka Resource Corporation. $16 \mathrm{pp}+$ appendix, 6 figures.

Diakow, L.J., Panteleyev, A., and Schroeter, T.G. (1985). Geology of the Toodoggone River Area, 94E. B.C. Ministry of Energy, Mines \& Pet. Res., Prelim. Map 61.
"Exploration in British Columbia - 1986" (1987). B.C. Ministry of Energy, Mines and Petroleum Resources, pp C390 c391.

Hodgson, C.J.(1974). Finlay River Property Report. B.C. Min. Energy, Mines and Pet. Res. Assessment Report 5144.

Hodgson, C.J. and Lebel, J.L. (1974). Finlay River Property Report, AMAX Private Report.

MacQuarrie, D.R. (1978). Grace Project. 1978 Report.
MacQuarrie, D.R. (1979). Grace Project, B.C. Min. Energy, Mines and Pet. Res. Assessment Report 7649.

MacQuarrie, D.R. (1980). Grace Claims, 1980 Summary Report.
Vulimiri, M.R. and Crawford, S.A. (1982). Geological and Geochemical Report on the Wrich 1, 2 and 3 Claims, Omineca Mining Division, B.C. Assessment Report dated October, 1982. 22 pp .

Vulimiri, M.R. and Crooker, B. (1985). Geological and Geophysical Report on the Wrich 1,2 and 3 claims, Omineca Mining Division, B.C. Assessment Report dated November, 1985. 9 pp .

ITEMIZED COST STATEMENT

JOK CLAIMS

SALARIES
Geologist (Aug.13,20-22) \$ 900.00
4.5 days @ $\$ 200 /$ day
Geological Assistant \& Sampler (Aug.13,20-22) 520.00
4 days @ \$130/day
Prospector (Aug.13,20-22) 520.00
4 days @ \$130/day
$\$ 1,940.00$
ROOM AND BOARD - 12.5 man days @ \$51/day \$ 637.50
COMMERCIAL AIRFARES (Incl. Freight) (prorated) \$ $\mathbf{6 7 5 . 2 0}$
HELICOPTER SUPPORT (All Incl.)
\$ 2,824.70
GEOCHEMICAL ANALYSES (ICP, Au ppb)
10 Rocks @ \$14.75/sample
95 Soils/Silts @ \$11.00/sample
EQUIPMENT AND SUPPLIES (prorated) \$ 487.80
MOBILIZATION/DEMOBILIZATION
$\$ 1,321.50$
REPORT PRERARATION \$ 824.75
(Includes Typing, Drafting, etc.)

Province of British Columbia

Ministry of Energy, Mines and Petroleum Resources mineral resources division - TItLes branch

MINERAL ACT
x^{3} Statement of Work - Cash Payment

I,

Agent lor \qquad SELF
(Name)

Valid subsisling FMC No. \qquad

(Address)

(Postal Code)
(Telephone Number)

STATE THAT: [NOTE: If only paying cash in lieu, turn to reverse and complete columns G to J and S to V.]

1. I have done, or caused to be done, work on the
 Work was done from...... fuknc. 13.

TYPE OF WORK

PHYSICAL: Work such as trenches, open cuts, adits, pils, shafts, reclamation, and construction of roads and trails. Details as required under section 13 of the Regulations, Including the map and cost statement, must be given on this statement.
PROSPECTING: Details as required under section 9 of the Regulations must be submitted in a technlcal report. Prospecting work can only be claimed once by the same owner of the ground, and only during the first three years of ownership.

GEOLOGICAL, GEOPHYSICAL, GEOCHEMICAL, DRILLING: Delails must be submilted in a technical report conforming to sections 5 Ihrough 8 (as appropriate) of the Regulations.
PORTABLE ASSESSMENT CREDIT (PAC) WITHDRAWAL: A maximum of 30% of the approved value of geological, geophysical, geochemical and/or drilling work on this statement may be wilhdrawn from the owner's or operator's PAC account and added to the work value on this statement.

$F \$ \$ 9903.95$ IWISH TO APPLY $\$ 9400$ OF THE Columns G htrough R inclusive MUST BE COMPLETED beiore work credits can be granted to clains． TOTAL VALUE FROM BOX F AS FOLLOWS：

Columns not applicable need not be completed．

CLAIM IDENTIFICATION

G	H	1	J
CLAIM NAME ． （one claimfoaso per line）	RECORD No．	No．OF UNTS	CURRENT EXPIRY DATE
STOK 4	8393	20	23／4／59
乐址上	8394	20	23／4／83
$\text { Gox } 43$	8395	8	23／4／83
Oox 44	8306	20	23／4／60
dok 45	8397	6	23／4／83
－60k 46	8398	20	23／4／93
	－		
－			
－			
\because	－		
			．
－			
－			

NOTICETO GROUP No．＿RECORDED＿12d $22 / 88$

Cash Payment
CASH IN LIEU OF WORK OR LEASE RENTAL

S	T	U	V
C	$\begin{gathered} \text { RECORDING } \\ \text { FEE } \\ 10 \% \text { OFS } \end{gathered}$	MINEFAL LEASE RENTAL	NEW EXPIRY DATE
			1
			$($
－．	．．．		－
TOTAL OFS	TOTAL OFT	TOTAL OFU	

[^0] Development，then he work reported Pr His se．
result，forfert to and vest back to the Province．
Value of work to be credited to portable assessment credit（PAC）account（s）．
［May only be credited from the approved value of Box C not applied to claims．］
ame of
amer／operator

SKARN CLAIMS

```
SALARIES
    Geologist $ 1,400.00
    (Aug.10, 14, 16-18, 23; Sept.2)
            7 days @ $200/day
    Geological Assistant & Sampler 650.00
    (Aug.14, 16-18, 23)
            5 days @ $130/day
    Prospector 650.00
    (Aug.14, 16-18, 23)
            5 days @ $130/day
    Prospector - 160.00
    (Sept.2)
    1 day @ $160/day
ROOM AND BOARD - }18\mathrm{ man days @ $51/day $ 918.00
COMMERCIAL AIRFARES (Incl. Freight) (prorated) & 748.50
HELICOPTER SUPPORT (All Incl.)
$ 3,545.90
    5.0 hours @ $601/hour
GEOCHEMICAL ANALYSES (ICP, Au ppb)
    22 Rocks @ $14.75/sample
    120 Soils/Silts @ $11.00/sample
EQUIPMENT AND SUPPLIES (prorated) . $ 731.70
MOBILIZATION/DEMOBILIZATION
$ 1,800.30
REPORT PRERARATION
    (Includes Typing, Drafting, etc.)

\section*{ITEMIZED COST STATEMENT}

\section*{WRICH CLAIMS}
```

SALARIES
Geologist \$ 800.00
(Sept. 19, 21, 23, 24)
4 days @ \$200/day
Geologist 540.00
(Sept. 19, 21, 23, 24)
4 days @ \$135/day
Geological Assistant \& Sampler 520.00
(Sept. 19, 21, 23, 24)
4 days @ \$130/day
Prospector . 520.00
(Sept. 19, 21, 23, 24)
4 days @ \$130/day

ROOM AND BOARD - 16 man days © \$51/day	\$	816.00
COMMERCIAL AIRFARES (Incl. Freight) (prorated)	\$	675.30
HELICOPTER SUPPORT (All Incl.) 4.9 hours a $\$ 601 /$ hour	\$	2,944.90
GEOCHEMICAL ANALYSES (ICR, Au ppb)		
85 Rocks @ \$14.75/sample	\$	1,253.75
9 Soils/Silts @ \$11.00/sample		99.00
	\$	1,352.75
EQUIPMENT AND SUPRLIES (prorated)	\$	650.40
MOBILIZATION/DEMOBILIZATION	\$	275.00
REPORT PRERARATION (Includes Typing, Drafting, etc.)	\$	650.00

```

Province of British Columbia
Ministry of Energy, Mines and Petroleum Resources
MINERAL RESOURCES DIVISION - TITLES BRANCH
MINERAL ACT
Statement of Work - Cash Payment

I.


Agent for .................. \(\qquad\)
(Name)
Valid subsisting FMC No. 215619 HelRKOIN
Valid subsisting FMC No. \(\qquad\)

\(\qquad\)
(Address)
\(\qquad\)
\(\qquad\)
(Postal Coda).
STATE THAT: [Note: Il only paying cash in lieu, turn to reverse and complete columns G to J and S to V\(]\)
1. I have done, or caused to be done, work on the \(\qquad\)



Record Nos). \(8340 \quad 9341\) \(\qquad\) 8342 83 3
Situate at. \(\qquad\) in the \(\qquad\) Mining Division, Work was done from. \(\qquad\) AUGUST 10 19.87 to... \(\qquad\) SEATEMAECR 2 , 19. \(\qquad\) 87.

TYPE OF WORK
PHYSICAL: Work such as trenches, open cuts, adits, pits, shafts, reclamation, and construction of roads and trails. Details as required under section 13 of the Regulations, including the map and cost statement, must be given on this statement.
PROSPECTING: Details as required under section 9 of the Regulations must ba submitted in a technical report. Prospecting work can only be claimed once by the same owner of the ground, and only during the first three years of ownership.
GEOLOGICAL, GEOPHYSICAL, GEOCHEMICAL, DRILLING: Details must be submitted in a technical report conforming to sections 5 through 8 (as appropriate) of the Regulations.
PORTABLE ASSESSMENT CREDIT (PAC) WITHDRAWAL: A maximum of \(30 \%\) of the approved value of geological, geophysical, geochemical and/or drilling work on this statement may be withdrawn from the owner's or operator's PAC account and added to the work value on this statement.


Columns \(G\) through \(R\) inciusive MUST BE COMPLETED before work credits can be granted to claims. Columns \(Q\) through \(J\) and \(S\) through \(V\) inclusive MUST BE COMPLETED before a cash payment or rental payment can be credited.
Columns not applicable need not be completed.
APPLICATION OF WORK CREDIT
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline K & L & M & N & 0 & P & Q & ค \\
\hline WORK TO & APPLIE & & RECORDING & PENALTY & PRID & & EXCESS \\
\hline value & YEARS & \[
\begin{aligned}
& \text { EXCESS } \\
& \text { CREDIT }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FEESS } \\
& 5 \% \text { OF }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FEES } \\
& 10 \% \text { OF K }
\end{aligned}
\] & \[
\begin{aligned}
& \text { EXCESS CREDT } \\
& \text { BEING USED }
\end{aligned}
\] & EXPIRY DATE & CREDIT \\
\hline 76000 & 5 & & \[
5_{300}
\] & - .. & . & \[
23 / 4 / 91
\] & . \\
\hline \(\$ 4500\) & 3 & & \[
225
\] & . & & \[
23 / 4191
\] & \\
\hline \(\beta^{2} 4800\) & 3 & & F240 & & & \[
2314191
\] & \\
\hline \(\bigcirc 4800\) & 3 & & \[
\sqrt{8} 240
\] & & & \[
23 / 4 / 91
\] & \\
\hline \(N / A\) & N/A & & \(N / A\) & & & \(N / A\) & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & - & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline \[
\frac{20,100}{\text { TOTALOEK }}
\] & & & \[
\begin{aligned}
& 8 / 005= \\
& \hline \text { TOTALOFN }
\end{aligned}
\] & TOTAL OFO & & & \\
\hline
\end{tabular}

2 POSI FRACTION. REV CROWN GRANT ARE I UNIT EACH

1, the undersigned Free Miner, hereby acknowledge ar statement or provide false information under the Mir statements made, or information given, in this Stateme the exploration and development has not been per Qevelopment, then the work reported on this staternen resutt, forfeit to and vest back to the Province.

\section*{ITEMI 2ED COST STATEMENT}

\section*{GRACE CLAIMS}

\section*{SALARIES}

Geologist \(\quad \$ 1,400.00\)
(Aug. 30-31; Sept. 22,27,29; oct.1-2) 7 days @ \$200/day

Geologist 540.00
(Sept.22,27,29)
4 days @ \$135/day
Geological Assistant \& Sampler 1,170.00
(Aug.30-31; Sept.2-4,22,27,29; Oct.2) 9 days \(@ \$ 130 /\) day

Prospector 1,300.00
(Aug. 30-31; Sept.2-4,22,27,29; Oct.1-2) 10 days a \(\$ 130 /\) day

\section*{Prospector}
\[
160.00
\]
(oct.3)
1 day a \(\$ 160 /\) day
\begin{tabular}{|c|c|}
\hline OOM AND BOARD - 31 man days a & 0 \\
\hline COMMERCIAL AIRFARES (Incl. Freight) & \$ 1,572.60 \\
\hline HELICOPTER SUPPORT (All Incl.) & \$ 6,731.20 \\
\hline 11.2 hours @ \$601/hour & \\
\hline GEOCHEMICAL ANALXSES (ICP, Au ppb) & \\
\hline 93 Rocks @ \$14.75/sample & \$ 1,371.75 \\
\hline 32 Soils/Silts @ \$11.00/sample & 2,552.00 \\
\hline & \$ 3,923.75 \\
\hline EQUIPMENT AND SUPPLIES (Includes Blasting Equip.) & \$ 1,260.16 \\
\hline MOBILIZATION/DEMOBILIZATION \& Plugger, Blasting Caps, Powder, Samples Out, Tent, Rods, Etc. & \$ 8,469.71. \\
\hline REPORT PREPARATION & \$ 860.00 \\
\hline (Includes Typing, Drafting, etc.) & \\
\hline TOTAL & \$28,968.42 \\
\hline
\end{tabular}

Province of British Columbia
Ministry of Energy, Mines and Petroleum Resources
MINERAL RESOURCES DIVISION - TITLES BRANCH MINERAL ACT

Statement of Work - Cash Payment

\[
V>N-3 \subset 2 \quad 986-4821
\]

(Address)

(Postal Code)
STATE THAT: [NOTE: If only paying cash in lieu, turn to reverse and complete columns \(G\) to and \(S\) to V.]
1. I have done, or caused to be done, work on the \(G R A C E S, E R R O R \neq E R O R \neq Z\)
 Record \(N o(s) 5801,8967,8968,8969,8970897 / 1,8972,8973,8974\) Situate at F FNLAY RNER in the \(\qquad\) OMMNECA Mining Division,


TYPE OF WORK,
PHYSICAL: Work such as trenches, open cuts, adits, pits, shafts, reclamation, and construction of roads and trails. Details as required under section 13 of the Regulations, including the map and cost statement, must be given on this statement.
PROSPECTING: Details as requited under section 9 of the Regulations must be submitted in a technical report. Prospecting work can only be claimed once by the same owner of the ground, and only during the first three years of ownership.
GEOLOGICAL, GEOPHYSICAL, GEOCHEMICAL, DRLLLING: Details must be submitted in a technical report conforming to sections 5 through 8 (as appropriate) of the Regulations.
PORTABLE ASSESSMENT CREDIT (PAC) WITHDRAWAL: A maximum of \(30 \%\) of the approved value of geological, geophysical, geochemical and/or drilling work on this statement may be withdrawn from the owner's or operator's PAC account and added to the work value on this statement.


\title{
~. \(\$ 76200.80\) \\ I WISH TO APPLY \(\$ 26,200 . \quad\) OF THE TOTAL VALUE FROM BOX FAS FOLLOWS:
}

Columns \(G\) through R inclusive MUST BE COMPLETED before work credits can be granted to claims. Columns G through J and S through V inclusive MUST BE COMPLETED before a cash payment or rental payment can be credited.
Columns not applicable need not be completed.

CLAIM IDENTTFICATION


NOTICE TO GROUP No \(\qquad\) RECORDED
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(\frac{\mathrm{k}}{\text { kexme }}\) & TL & & N & & & & \\
\hline vuat & trass & Ecese & 边 &  &  &  &  \\
\hline 20000 & 3 & & 15:- & & & 14/9/91 & \\
\hline 30000 & 3 & & 15.00 & & & & \\
\hline \(300^{\circ}\) & 3 & & 15.00 & & & . & \\
\hline 200.00 & 3 & & 15.00 & & & " & \\
\hline 3880 & 3 & & 1s.0. & & & " & \\
\hline 300.0 & 3 & & 15:0 & & & 7 & \\
\hline 300.0 & 3 & & 15.0 & & & 。 & \\
\hline \(300{ }^{\circ}\) & 3 & & 15.. & & & & \\
\hline \(1800^{\circ 0}\) & , & & 90.0 & & & 15/7/89 & \\
\hline \(1600^{\circ}\) & 1 & & 80.0 & & & 25/7/89 & \\
\hline \(3200^{\circ}\) & 1 & & 160.0. & & & 25/7/89 & \\
\hline \(1200^{\circ}\) & 1 & & 60.0 & & & 25/7/89 & \\
\hline \(66000^{\circ}\) & 4 & & \(800 \cdot\) & & & 20/9/92 & \\
\hline & , & & & & & & \\
\hline & & & & & & & \\
\hline - & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline 26,200 & & & \(1310^{\circ}\) & Taso & & & \\
\hline
\end{tabular}
- 2 POST, FRACTION, REV CROWN GRANT ARE \(\ddagger\) LNIT EACH

Value of work to be credited to portable assessment credit (PAC) account(s)
IMay only be credited from the approved value of Box C not applied to claims.]

\section*{Narne}
\(2,768.42\)

1, the undersigned Free Miner, hereby acknowiedge ar statement or provide false information under the Mir statements made, or information given, in this Statems the exploration and development has not been pe Development, then the work reported on this statemen result, torteit to and vest back to the Province.

\section*{QUALIFICATIONS}

I, P.J. Burns, of 1522 Woods Drive, North Vancouver, in the province of British Columbia, hereby certify that:
(1) I am a registered Fellow of the Geological Association of Canada - No. F5254.
(2) I am a graduate of the University of British Columbia, Vancouver, with a Bachelor of science degree in honours geology.
(3) I have practiced my profession continually as mine, exploration and consultant geologist for the past 14 years across Canada, in the U.S.A., Nicaragua, Costa Rica, Chile, Peru, Argentina and Brazil.
(4) I personally examined the property and directed the field exploration program in 1987.

Vancouver, B.C.
April, 1988
Patrick J. Burns Consulting Geologist

\section*{APPENDIX I}

\section*{ACME ANALYTICAL LAB}

JOK CLAIMS

ACME ANALYTICAL LABDRATORIEG 852 E. HASTINGS GT. VANCOUVER E.C. VGA 1RG PHDNE 253-3158

 - saxple typer rock ant malysis iy m from 10 cran sarple.


gKYLARK REGOURCES PROJECT-FIRESTEEL FILE \# 日7-3715
Page 2


\section*{GEOCHEMICAL ICF AMALYSIS}





\footnotetext{
* GirAce 5 claim
}

SAMPLE!

*J-6 0+00 5ILT JRa 7 700 K JRE \(7+00 \mathrm{H} 0+50 \mathrm{E}\) JRE 7400K 1400E JRG 7+00N 1+50E

JFid 7400 N 2400 E JFi 7 +60N 2450 E JR \(7+00 \mathrm{~K} 3+00 \mathrm{E}\) JR6 7+00~ \(3+50 \mathrm{E}\) Jhio \(7+0 \mathrm{OH} 4+00 \mathrm{E}\)

\section*{JKi 760N 5+00E JRG \(7+00 \mathrm{~K} 5+50 \mathrm{E}\) Jkt \(7+00 \mathrm{~K}\) b 600 E} JK6 7+1)UN-6+50E

\section*{JK2 \(7+00 \mathrm{H} .7+00 \mathrm{E}\) JRA 7400: 7+50E JK6 7+00K \(1+00 \mathrm{E}\) JR6 7+00H 9+50E} \(\begin{array}{llllll}1 & 33 & 13 & 94 & .3 & 12 \\ 1 & 14 & 17 & 77 & .2 & 11\end{array}\)
\begin{tabular}{cccc}
\(c\) & & & \\
\(\mathbf{i}\) & 615 & 2.81 & 6 \\
5 & 425 & 3.10 & 14 \\
3 & 278 & 3.04 & 9 \\
5 & 1472 & 3.10 & 34 \\
5 & 561 & 3.19 & 47
\end{tabular}
\begin{tabular}{llll}
5 & ND & 1 & 71 \\
5 & ND & 2 & 38 \\
5 & ND & 1 & 28 \\
5 & HD & 1 & 24 \\
5 & ND & 3 & 13
\end{tabular}
2
2
2
3
2
\begin{tabular}{lll}
48 & .83 & .070 \\
\(6!\) & .21 & .072 \\
49 & .14 & .051 \\
58 & .17 & .070 \\
59 & .54 & .103
\end{tabular} \(\begin{array}{ll}14 & .59 \\ 18 & .53 \\ 21 & .29 \\ 10 & .10 \\ 13 & .14\end{array}\) \(\begin{array}{cc}9 & 117 \\ 9 & 91 \\ 0 & 9 \\ 4 & 1\end{array}\) .08
.05
.10
.04
.12 \(\begin{array}{llll}2 & 1.63 & .03 & .04 \\ 2 & 2.67 & .02 & .05 \\ 2 & 1.71 & .02 & .05 \\ 2 & 2.18 & .02 & .05 \\ 2 & 3.67 & .03 & .07\end{array}\)

\section*{JRE 7+00H 9+50E} J86 \(7+00 \mathrm{~K} 10+00 \mathrm{E}\) JKi \(7+60 \mathrm{~N}\) It +00 E JR6 7+00K \(11+50 \mathrm{E}\) JR 7 HOWN \(12+50 \mathrm{E}\)
\begin{tabular}{ll}
1 & 1 \\
1 & 1 \\
1 & 1 \\
1 & 1
\end{tabular}
\begin{tabular}{ccccc}
13 & 18 & 125 & .6 & 3 \\
16 & 24 & 113 & .4 & 7 \\
15 & 26 & 111 & .3 & 7 \\
11 & 22 & 94 & .3 & 7 \\
16 & 23 & 19 & 1.5 & 12
\end{tabular}
\(\begin{array}{rrrr}9 & 1127 & 5.31 & 16 \\ 9 & 2065 & 4.45 & 23 \\ 11 & 2949 & 4.30 & 9 \\ 8 & 1218 & 4.19 & 11 \\ 7 & 419 & 1.35 & 19\end{array}\)
\begin{tabular}{llll}
5 & HD & 1 & 38 \\
5 & MD & 1 & 39 \\
5 & ND & 3 & 69 \\
5 & MD & 1 & 20 \\
5 & MD & 1 & 23
\end{tabular}
\begin{tabular}{ll}
1 & 2 \\
2 \\
2 \\
1 & 2 \\
2
\end{tabular}
\begin{tabular}{lll}
50 & .34 & .171 \\
63 & .47 & .097 \\
48 & .85 & .048 \\
39 & .14 & .085 \\
55 & .10 & .077
\end{tabular}
11
17
14
8
10
\(\begin{array}{rr}17 & .70 \\ 11 & .14 \\ 11 & .45 \\ 9 & .20 \\ 17 & .14\end{array}\) \(\begin{array}{cc}74 & .04 \\ 94 & .13 \\ 98 & .14 \\ 262 & .03 \\ 138 & .00\end{array}\)
\(\begin{array}{llll}4 & 3.14 & .03 & .05 \\ 2 & 2.11 & .03 & .07 \\ 7 & 2.90 & .04 & .09 \\ 2 & 1.21 & .02 & .09 \\ 3 & 2.06 & .02 & .05\end{array}\)

JKi 7400M 13+00E
JRS \(6+50 \mathrm{~N}\)
JKs 5100 N
JRS \(5+50 \mathrm{H}\)
Jf6 5+00K
JR6 1450 N
JFi \(4+00 \mathrm{H}\)
Jhi ? 350 N
\(1542+50 \mathrm{~K}\)
-

\section*{}

STD C/AL-S

\section*{* GRRCE 5 CLAIm}

\section*{SKyLARK hesources froject-fifesteel file \# 87-3795}

Fage 3
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline SAKPLEI & H0 & CH & PB & IN & 45 & NI & CO & Hh & FE & AS & \(U\) & AU & TH & 5R & CO & 51 & 81 & V & CA & P & LA & CR & His & 8 A & JI & 1 & AL & \(N A\) & K & N & Aut \\
\hline & PFM & FPK & PPM & PPK & PF/ & FFh & PFM & PFM & 2 & FP\% & PFh & PPK & PPM & PFh & FPM & PPM & PPM & PPM & 1 & 1 & PFM & \%FM & 2 & PFH & 1 & PFM & 2 & 2 & 2 & PfK & Ff3 \\
\hline JRis \(1+50 \mathrm{~N}\) & 1 & 12 & 20 & B7 & . 3 & 13 & 5 & 219 & J. 38 & 15 & 5 & N0 & 1 & 19 & 1 & 3 & 2 & 11 & . 16 & . 057 & 9 & 21 & . 44 & 127 & . 05 & 2 & 2.22 & . 02 & . 05 & 1 & 2 \\
\hline Jke \(1+00 \mathrm{~K}\) & 1 & 12 & 16 & 69 & . 2 & 11 & 4 & 272 & 3.53 & 16 & 5 & ND & 1 & 10 & 1 & 2 & 2 & 63 & . 06 & . 066 & 8 & 18 & . 31 & 83 & . 04 & 2 & 2.27 & . 01 & . 05 & 1 & 1 \\
\hline J5h O650H & 1 & 12 & 18 & 47 & . 1 & 9 & 1 & 119 & 3.86 & 13 & 5 & K0 & 1 & 16 & \(!\) & 2 & 2 & 70 & . 10 & . 069 & 1 & 12 & . 75 & 86 & . 04 & 2 & 2.74 & . 02 & . 06 & 1 & 2 \\
\hline Jki \(0+00 \mathrm{H}\) & 1 & 13 & 19 & 106 & . 4 & 9 & 5 & 570 & 3.32 & \(2!\) & 5 & KD & 1 & 26 & 1 & 2 & 2 & 59 & . 28 & . 121 & 12 & 11 & . 48 & 101 & . \(\mathrm{US}^{\text {c }}\) & 2 & 3.75 & . 03 & . 07 & 1 & 1 \\
\hline Iockil 3Jtoun & 3 & 46 & 43 & 682 & . 2 & 12 & 17 & 1715 & 3.11 & 4 & 5 & H0 & 2 & 43 & 4 & 2 & 2 & 10 & . 48 & . 067 & 12 & 18 & . 68 & 158 & . 10 & 2 & 1.96 & . 02 & . 05 & 3 & 1 \\
\hline JUCKI] 28+00N & 1 & 6 & 12 & 459 & - 4 & 17 & 7 & 618 & 2.91 & 6 & 5 & H0 & 3 & 61 & 4 & 2 & 2 & 49 & . 95 & . 062 & 15 & 23 & . 69 & 191 & . 09 & 2 & 1.59 & . 03 & . 0 园 & \(!\) & 1 \\
\hline JaCkil \(26+00 \mathrm{H}\) & 2 & 25 & 35 & 170 & . 5 & 13 & 7 & 781 & 3.65 & 10 & 5 & ND & 2 & 14 & 1 & 3 & 2 & 17 & . 65 & . 015 & 15 & 17 & . 59 & 237 & . 08 & 2 & 1.28 & . 02 & . 07 & 1 & 13 \\
\hline Juckil 22 +טON & 2 & 28 & 50 & 151 & 1.0 & 11 & 7 & 913 & ป. 62 & 10 & 5 & ND & 2 & 50 & 1 & 2 & 2 & 75 & . 71 & .087 & 17 & 12 & . 6 & 247 & . 08 & 5 & 1.54 & . 02 & . 0 & 1 & 5 \\
\hline Jackil 11400 N & 2 & 27 & 46 & 135 & 1.0 & 4 & 7 & 240 & 3.40 & 9 & 5 & KD & 2 & 55 & 1 & & 2 & 70 & . 92 & . 011 & 17 & 10 & . 59 & 296 & . 07 & 3 & 1.42 & . 03 & . 08 & \(!\) & 95 \\
\hline Jucks \(15+00 \mathrm{~N}\) & 3 & 21 & 53 & 139 & 1.3 & 10 & 8 & 1123 & 4.19 & 11 & 5 & ND & 3 & 51 & 1 & 2 & 2 & 90 & . 73 & . 093 & 11 & 14 & . 6 & 325 & . 10 & 2 & 1.44 & . 02 & .08 & \(!\) & 15 \\
\hline JOCh] 12400N & 1 & 21 & 71 & 212 & 1.2 & 7 & 9 & 1640 & 3.77 & 11 & 5 & ND & 3 & 11 & 2 & 3 & 2 & 71 & . 98 & . 084 & 11 & 9 & . 96 & 517 & . 10 & 2 & 2.10 & . 03 & . 10 & 1 & 12 \\
\hline Juckil broch & 4 & 31 & 53 & 145 & 2.3 & 9 & 1 & 1235 & 3.75 & 12 & 5 & HD & 3 & 76 & 1 & 2 & 2 & 75 & . 97 & . 045 & 19 & 10 & . 81 & 465 & . 11 & 3 & 2.25 & . 03 & . 11 & 1 & 128 \\
\hline Jockil 5+00K & 2 & 25 & 35 & 135 & 2.9 & 3 & 1 & \(128!\) & 3.83 & 11 & 5 & ND & 3 & 101 & 1 & 2 & 2 & 82 & 1.21 & . 105 & 17 & 4 & 1.07 & 732 & . 13 & 2 & 2.49 & . 03 & . 11 & 1 & 6 \\
\hline jecisi \(2+00 \mathrm{~N}\) & 1 & 27 & 30 & 150 & 3.6 & 5 & 7 & 10.1 & 3.12 & 14 & 12 & ND & 2 & 90 & 1 & 2 & 2 & 70 & 1.31 & . 122 & 17 & 5 & 1.06 & 873 & . 11 & J & 2.16 & . 03 & . 12 & 2 & 4 \\
\hline joxti falli creek & 1 & 116 & 122 & 477 & . 0 & 10 & 24 & 51!? & 5.46 & 10 & 5 & HD & 4 & 130 & \(\delta\) & 2 & 2 & \(3!\) & 1.58 & . 103 & 17 & 1 & . 10 & 205 & . 06 & 4 & 3.13 & . 03 & . 69 & 1 & 10 \\
\hline
\end{tabular}




DATE RECEIVEDI SERT 9 191
 ASSAYER
SKYLARK RESOURCES File \# 87-4023 Fage 1

 STD C/AU-S
\[
\begin{array}{rrrrrrrrr}
6 & 10 & 14 & 90 & .4 & 13 & 69 & 2.64 \\
14 & 50 & 10 & 135 & 7.4 & 70 & 27 & 1054 & 4.02
\end{array}
\]
* gricie 5 crarm


- sample typer Rock Chipr aUl ahalysis iy an froh 10 gran Sample.

SKYLAFK RESOURCES FFOJECT-FIFESTEEL File * 日7-4022 Fage 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline SAMPLEI & M0 & [U & P8 & 1 H & A6 & HJ & CO & \(\mathrm{KH}^{\text {d }}\) & FE & AS & J & AU & 7\% & 5 R & C0 & 51 & \(B 1\) & \(v\) & CA & P & LA & CR & M & PA & II &  & \({ }_{4}\) & NA & K & ¢ & AUP \\
\hline SAME & PPM & fPM & PFM & PPK & P9\% & \(\mathrm{Pr} \mathrm{\%}\) & PPM & PPK & 2 & PPK & PFK & PPH & PPM & PFM & PPh & PPM & PFH & PFM & 2 & 2 & Prin & PPM & \(\chi\) & FPh & 1 & PPM & 7 & 1 & 1 & PPM & \\
\hline R 6114 & 1 & 17 & 20 & 46 & . 1 & 2 & 4 & 1010 & 2.72 & E & 5 & ND & 3 & 226 & 1 & 2 & 2 & 51 & 5.38 & . 049 & 11 & 4 & . 59 & 201 & . 07 & 9 & 3.50 & . 06 & . 10 & 1 & 1 \\
\hline 86915 & 1 & \(1!\) & 33 & 105 & . 3 & 7 & 4 & 860 & 2.83 & 5 & 5 & HJ & 5 & 10 & 1 & 2 & 2 & 11 & . 17 & . 037 & 12 & 12 & . 83 & 14 & . 16 & \(\underline{0}\) & 1.01 & . 03 & . 15 & 14 & 5
505 \\
\hline STD C/AL-R & 20 & \(d\) & 40 & 136 & 7.2 & 70 & 29 & 1018 & 4.06 & 10 & 19 & 8 & 40 & 19 & 18 & 17 & 21 & 60 & . 50 & . 689 & 11 & 59 & . 91 & 173 & . 09 & 38 & 1.00 & . 06 & . 15 & 14 & 505 \\
\hline 86914 & 1 & 11 & 53 & 35 & . 5 & \({ }^{8}\) & 3 & 76 & 2.75 & 2 & 5 & ND & 1 & 14 & 1 & 2 & 2 & 10 & . 04 & . 055 & 6 & 2 & .10 & 141 & . 12 & 2 & . 37 & . 03 & . 25 & 1 & 4 \\
\hline R6917 & 1 & 9 & 15 & 34 & . 1 & 4 & 2 & 378 & 3.13 & 4 & 5 & H & 3 & 23 & 1 & 2 & 2 & 20 & . 09 & . 059 & 7 & 2 & . 42 & 340 & . 09 & 19 & .43 & . 05 & . 24 & 1 & 5 \\
\hline
\end{tabular}



\section*{}

DATE RECEIVED: SERT 1997

SKYLARK RESOURCES File \# 87~4023 Fage 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline SAMPLEL & H0 & Cu & \({ }_{\text {P }}\) & \({ }^{2 / 2}\) & \({ }^{\text {A6 }}\) & \({ }_{\text {HPM }}\) & COP & Pen & FE & \(\stackrel{\text { AS }}{\text { PFH }}\) & PPR & \(\underset{\text { PPM }}{\text { AU }}\) & \(\underset{\text { rPa }}{\text { rH }}\) & SR & CD & SB & \[
\begin{gathered}
\text { BI } \\
\text { P }
\end{gathered}
\] & \[
\begin{gathered}
V \\
P P M
\end{gathered}
\] & \[
\begin{gathered}
C A \\
Z
\end{gathered}
\] & \[
\begin{aligned}
& p \\
& z
\end{aligned}
\] & \[
\begin{gathered}
\text { LA } \\
\text { PPM }
\end{gathered}
\] & \[
\underset{\text { PR }}{\text { CR }}
\] & \[
\begin{gathered}
\pi 6 \\
\Sigma
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{BA} \\
\mathrm{PPM}
\end{gathered}
\] & \[
\mathrm{II}
\] & PPh & 4
4 & NA
1 & K & PPh & Ald \\
\hline & PPM & PPM & PPM & PPM & PPh & PM & PPM & P! & & & & & & & & & & & & & & & & & & & & & & & \\
\hline ERROR \(\$ 2\) 8. DAM 002 E & 7 & 72 & 37 & 243 & 4 & 12 & 15 & 869 & 7.90 & 13 & 7 & ND & 3 & 84 & 3 & 4 & 2 & 49 & 1.09 & . 167 & 11 & 16 & . 55 & 134 & . 07 & 2 & 1.82 & . 03 & . 05 & 2 & 27 \\
\hline RRIUR 12 2. OAn & 3 & 302 & 200 & 510 & . 9 & 18 & 11 & 913 & 3.94 & 11 & 5 & HD & 3 & 87 & 2 & 2 & 2 & 56 & 1.35 & . 087 & 12 & 16 & . 58 & 100 & . 06 & 2 & 3.44 & . 03 & . 06 & 1 & 27 \\
\hline
\end{tabular}

\section*{GEロCHEMICAL ANALYEIS CEFTIFICATE}
 THIS LEACH IS PARTLAL FOR MM FE CA P LA CR ME IA II I Y AHD LINITED FOR NA K AND AL．AU DETECTIOK LIMIT JY ICP IS I PPY．
－SAMPLE TYPEs hock Chips aUt Alislysis by an froh 10 ghan sampleg．

SKYLARK RESOURCES FROJEET－FIRESTEEL File \＃87－5074
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline SAMPLEI & \[
\begin{gathered}
\text { MO } \\
\text { PPH }
\end{gathered}
\] & \[
\begin{gathered}
\text { CU } \\
\text { PPK }
\end{gathered}
\] & \[
\begin{array}{r}
\text { PI } \\
\text { PPM }
\end{array}
\] & \[
\begin{array}{r}
\text { IH } \\
\text { PPM }
\end{array}
\] & \[
\begin{aligned}
& \text { A5 } \\
& \text { PPM }
\end{aligned}
\] & \[
\underset{\text { PI }}{\mathrm{HI}}
\] & \[
\begin{gathered}
\text { C0 } \\
\text { PPK }
\end{gathered}
\] & \[
\begin{gathered}
\text { MN } \\
\text { PPK }
\end{gathered}
\] & \[
\begin{gathered}
\text { FE } \\
\text { I }
\end{gathered}
\] & \[
\begin{gathered}
\text { AS } \\
\text { PPK }
\end{gathered}
\] & \[
\begin{gathered}
4 \\
\text { PPK }
\end{gathered}
\] & \[
\begin{gathered}
\text { AU } \\
\text { PPM }
\end{gathered}
\] & \[
\begin{aligned}
& \text { TH } \\
& P P R
\end{aligned}
\] & \[
\begin{gathered}
\text { SR } \\
\text { PPK }
\end{gathered}
\] & \[
\begin{gathered}
\text { CD } \\
\text { PPK }
\end{gathered}
\] & \[
\begin{array}{r}
5! \\
\text { PPH }
\end{array}
\] & \[
\begin{gathered}
\text { 日I } \\
\mathrm{PH}
\end{gathered}
\] & \[
\begin{array}{r}
Y \\
P P K
\end{array}
\] & \[
\begin{gathered}
\mathrm{CA} \\
Z
\end{gathered}
\] & 1 & \[
\begin{aligned}
& \text { LA } \\
& \text { PR }
\end{aligned}
\] & \[
\begin{gathered}
\text { CR } \\
\text { PRK }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{ME} \\
\mathrm{I}
\end{gathered}
\] & \[
\begin{array}{r}
\text { Ph } \\
\text { PRM }
\end{array}
\] & \[
\begin{array}{r}
\mathrm{II} \\
\mathbf{Z}
\end{array}
\] & \[
\begin{array}{r}
1 \\
P P Y
\end{array}
\] & 12 & Na
1 & K
\(\mathbf{z}\) & \[
\underset{\mathrm{PPM}}{\mathrm{~N}}
\] & \[
\begin{aligned}
& \text { AUt } \\
& \text { PPI }
\end{aligned}
\] \\
\hline ERRORI2 1＋50S BD R5 & 1 & － & 1 & 46 & ． 1 & 1 & 2 & 665 & 3.87 & 8 & 5 & ND & 6 & 25 & 1 & 2 & 2 & 34 & ． 22 & ．088 & 9 & 1 & ． 3.3 & 147 & ． 15 & 2 & ．\(\%\) & ． 03 & ． 15 & 1 & 11 \\
\hline ERROR12 3＋005 R6 & 5 & 4 & 50 & 23 & ． 1 & 1 & 1 & 239 & 1.92 & 2 & 5 & H0 & 4 & 21 & 1 & 2 & 2 & 16 & ． 03 & ． 031 & 1 & 5 & ． 73 & 17 & ． 02 & 2 & ． 74 & ． 05 & ． 20 & 1 & 1 \\
\hline ERRORI2 3＋505 BDAM RG & 1 & 1 & 24 & 37 & ． 3 & 1 & 1 & 401 & 2.60 & 2 & 5 & NO & 4 & 19 & 2 & 2 & 2 & 52 & ． 05 & ． 033 & 7 & 7 & 1.22 & 89 & ． 04 & 4 & 1.19 & ． 05 & ． 17 & 1 & 6 \\
\hline ERRORI2 3＋50S R6 & 1 & 6 & 11 & 55 & ． 1 & 1 & 1 & 463 & 3.39 & 3 & 5 & ND & 5 & 32 & ， & 2 & 2 & 37. & ． 05 & ． 047 & 11 & 7 & ． 97 & 4 & ． 06 & 5 & 1.25 & ． 05 & ． 15 & 1 & 5 \\
\hline
\end{tabular}

GRACE CLAIMS

\section*{GEDCHEMICAL ICP ANALYBIB}


 SKYLARK RESOURCES FROJECT-FIRESTEEL File \# B7-4022 Fage 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline SARPLEA & \[
\begin{gathered}
\text { HO } \\
\text { PPM }
\end{gathered}
\] & \[
\begin{gathered}
\text { [Ut } \\
\text { FPK }
\end{gathered}
\] & \[
\begin{gathered}
\text { PI } \\
\mathbf{P F H}
\end{gathered}
\] & \[
\begin{array}{r}
1 H \\
P P M
\end{array}
\] & \[
\begin{array}{r}
\text { A6 } \\
P Y M
\end{array}
\] & \[
\begin{gathered}
\text { KI } \\
\boldsymbol{P Y K}
\end{gathered}
\] & \[
\begin{gathered}
\text { CO } \\
\text { PPM }
\end{gathered}
\] & \[
\begin{gathered}
\text { KN } \\
\text { PPK }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{FE} \\
\mathbf{Z}
\end{gathered}
\] & \[
\begin{array}{r}
\text { A5 } \\
\text { FPK }
\end{array}
\] & \[
\underset{P F K}{U}
\] & \[
\begin{gathered}
\text { AUU } \\
\text { PRM }
\end{gathered}
\] & \[
\begin{array}{r}
\text { TH } \\
\text { PPK }
\end{array}
\] & \[
\begin{array}{r}
\mathrm{SR} \\
\mathrm{FFH}
\end{array}
\] & \[
\begin{array}{r}
\text { CD } \\
\text { PPK }
\end{array}
\] & \[
\begin{gathered}
\text { SB } \\
\text { PPM }
\end{gathered}
\] & \[
\begin{gathered}
\text { DI } \\
\text { PPK }
\end{gathered}
\] & \[
\begin{array}{r}
V \\
\text { PFK }
\end{array}
\] & \[
\begin{gathered}
C A \\
Z
\end{gathered}
\] & \[
\begin{aligned}
& \text { P } \\
& \text { i }
\end{aligned}
\] & \[
\begin{array}{r}
\text { LA } \\
\text { PPM }
\end{array}
\] & \[
\begin{gathered}
\text { CR } \\
\text { PM }
\end{gathered}
\] & \[
\begin{gathered}
\text { Mg } \\
2
\end{gathered}
\] & \[
\underset{\mathrm{FPh}}{\mathrm{IA}}
\] & \[
\begin{array}{r}
\mathrm{II} \\
\mathrm{I}
\end{array}
\] & \[
\underset{\text { PPK }}{8}
\] & \[
\begin{gathered}
A L \\
I
\end{gathered}
\] & \[
\begin{gathered}
N R \\
I
\end{gathered}
\] & \[
\begin{aligned}
& k \\
& z
\end{aligned}
\] & \[
\begin{array}{r}
\mathrm{N} \\
\text { PFM }
\end{array}
\] & \[
\begin{aligned}
& \text { AUt } \\
& \text { PPI }
\end{aligned}
\] \\
\hline \(\cdots\) & & & & & & & & & & & & & & & & - & \(\square\) & & & - & & & & & & & & & . 17 & & 1 \\
\hline 86781 & 1 & 20 & 29 & 52 & 1.1 & 1 & 3 & 300 & 1.70 & 2 & 5 & HD & 3 & 10 & 1 & 2 & 2 & 27 & . 07 & .033 & \(d\) & 2 & . 27 & 29 & . 07 & 7 & -47 & . 01 & . 17 & 1 & 415 \\
\hline R 6782 & 22 & 230 & 13979 & 27136 & 54.1 & 2 & 9 & 992 & 1.62 & 2. & 5 & No & 1 & 58 & 205 & 2 & 4 & 7 & 4.94 & . 020 & 11 & 3 & . 29 & 39 & . 04 & 2 & . 53 & . 02 & . 04 & & 415 \\
\hline \% 6788 & 1 & 5 & 12 & 34 & . 3 & 1 & 4 & 414 & 1.25 & 2 & 5 & RD & 3 & 30 & 1 & 2 & 2 & 19 & . 57 & . 027 & 6 & 6 & . 26 & 18 & . 08 & 22 & . 52 & . 01 & . 07 & 1 & 5 \\
\hline R 1778 & 1 & 30 & 13 & 47 & . 3 & 4 & 3 & 569 & 1.38 & 2 & 5 & ND & 2 & 17 & 1 & 2 & 2 & 15 & . 50 & . 026 & 4 & 6 & . 37 & 19 & . 06 & 7 & . 60 & . 01 & .11 & 1 & 8 \\
\hline R 6790 & 1 & 9 & 13 & 67 & 1.1 & 5 & 5 & 673 & 2.49 & 10 & 5 & ND & 2 & 44 & 1 & 2 & 2 & 24 & . 48 & . 018 & 6 & 5 & . 65 & 18 & . 12 & 2 & 1.04 & . 01 & . 13 & 1 & 1 \\
\hline -6791 & 1 & 110 & 15 & 80 & 2.4 & 5 & 7 & 879 & 2.60 & 7 & 5 & ND & 2 & 21 & 1 & 4 & 2 & 29 & . 97 & . 047 & 7 & 4 & . 59 & 4 & . 09 & 5 & . 85 & . 01 & . 18 & 1 & 51 \\
\hline R 6792 & 1 & 11 & 13 & 50 & 1.9 & 5 & 3 & 566 & 2.10 & 7 & 5 & No & 3 & 19 & 1 & 4 & 3 & 25 & . 28 & . 023 & 6 & 5 & . 43 & 48 & . 11 & 1 & . 72 & . 01 & . 14 & 1 & 16 \\
\hline R 1893 & 1 & 14 & 36 & 4 & 2.1 & 1 & 1 & 74 & 3.19 & 17 & 5 & NO & 1 & 13 & 1 & 2 & 3 & 38 & . 17 & . 012 & 19 & 3 & . 18 & 55 & . 05 & 7 & 1.02 & . 01 & . 18 & 1 & 10 \\
\hline R 4784 & 1 & 12 & 19 & 43 & 26.7 & 2 & 1 & 358 & 1.01 & 5 & 5 & ND & 1 & 11 & 1 & 2 & 2 & 8 & . 06 & . 015 & 3 & 2 & . 33 & 165 & . 03 & 2 & . 38 & . 01 & . 10 & 1 & 245 \\
\hline 8 4785 & 1 & 52 & 29 & 17 & 20.1 & 4 & 2 & 152 & 1.12 & 5 & 5 & ND & 1 & 4 & 1 & 2 & 2 & 6 & . 03 & . 017 & 3 & 9 & . 12 & 56 & . 01 & 18 & . 28 & . 01 & .10 & 1 & 280 \\
\hline 18796 & 1 & 22 & 15 & 26 & 4.7 & 3 & 2 & 261 & 1.68 & 34 & 5 & HD & 1 & 7 & 1 & 2 & 2 & 21 & . 09 & . 038 & 4 & 5 & . 25 & 4 & . 10 & 2 & . 42 & . 01 & . 19 & 2 & 11 \\
\hline R 6797 & 1 & 11 & 52 & & 115.6 & 1 & 3 & 591 & 2.11 & 31 & 5 & 2 & 2 & 24 & 1 & 2 & 2 & 21 & . 07 & . 036 & 1 & 4 & . 45 & 331 & . 04 & 2 & . 55 & . 01 & . 13 & 1 & 1480 \\
\hline R 1798 & , & 55 & 25 & 21 & 28.0 & J & 2 & 271 & 1.18 & & 5 & KD & 2 & 36 & 1 & 2 & 2 & 10 & . 08 & . 019 & 3 & 2 & . 13 & 758 & . 05 & 18 & . 25 & . 01 & . 09 & 1 & 495 \\
\hline R 6789 & 1 & 24 & 11 & 38 & 28.7 & 1 & 3 & 312 & 1.67 & & 5 & K0 & 2 & 18 & 1 & 2 & 2 & 23 & . 27 & . 032 & 4 & 4 & . 33 & 4 & . 09 & 6 & . 53 & . 01 & . 11 & 1 & 345 \\
\hline
\end{tabular}
GEDCHEMICAL ICP ANALYSIS


- sarple tyes Rock Chips aut anglysis iy ma froh 10 brak saxple.
 SKYLARK RESOURCES FROJECT-TOODOGGONE File \# 87-4516 Fage 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline SAMPLE\# & 80 & - & Pr & 21 & \({ }^{\text {A6 }}\) & \({ }_{\text {RI }}\) & \(\mathrm{CO}_{\mathrm{CO}}\) & Pr & FE & \({ }_{\text {AS }}^{\text {AS }}\) & Pr & Pry & TH & PP4 & PPY & PP\% & \({ }_{\text {PI }}^{\text {日I }}\) & PPM & \({ }_{2}\) &  & \begin{tabular}{l}
LA \\
LA
\end{tabular} & CR & Mg
2 & PPA & II & PPM & at & \[
\begin{gathered}
\text { KA } \\
1
\end{gathered}
\] & \[
\begin{aligned}
& x \\
& z
\end{aligned}
\] & \(\underset{\text { PPM }}{\text { N }}\) & fut \\
\hline & PPA & PPM & PPF & PPM & PM & PPM & PPM & PPM & 2 & PPM & Pph & PPM & PPM & PPY & PPM & PPh & PPI & PPM & 2 & \[
z
\] & PPM & PPM & 2 & PPM & 1 & PPM & \% & \[
1
\] &  & & \\
\hline 10505 & 3 & 50 & 201 & 65 & 2.1 & 5 & 6 & 457 & 2.15 & 137 & 5 & HD & 1 & 28 & 1 & 3 & 2 & 31 & 2.19 & . 011 & 2 & 4 & . 37 & 7 & . 07 & 2 & . 50 & . 01 & . 05 & 1 & 1\% \\
\hline 604 & 2 & 26 & 100 & 42 & . 1 & 2 & 3 & 223 & 1.27 & 71 & 5 & k0 & 1 & 9 & 1 & 2 & 2 & 21 & . 78 & . 008 & 2 & 3 & . 24 & 5 & . 05 & 2 & . 33 & . 01 & . 05 & 1 & 46 \\
\hline 10607 & 5 & 45 & 47 & 56 & 1.8 & 7 & 1 & 391 & 3.15 & 129 & 5 & но & 1 & 10 & 1 & 6 & 2 & 72 & . 31 & . 033 & 2 & 11 & . 99 & 16 & . 20 & 2 & 1.02 & . 02 & . 05 & 1 & 19 \\
\hline
\end{tabular}

ACME ANALYTICAL LABORATORIES LTD．
ESZ E．HASTINGS ST．VANCQUVEF B．C．VGA IFio

\section*{GEロCHEMICAL ANALYSIS CEFTIFICATE}




\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline SAMPLEI & \[
\begin{gathered}
\text { YO } \\
\text { PPM }
\end{gathered}
\] & \[
\begin{gathered}
C] \\
P P M
\end{gathered}
\] & \[
\begin{array}{r}
\text { PI } \\
\text { PR }
\end{array}
\] & \[
\begin{gathered}
\text { 1N } \\
\text { PPM }
\end{gathered}
\] & \[
\begin{gathered}
\text { A5 } \\
\text { PPM }
\end{gathered}
\] & \[
\begin{gathered}
\text { H! } \\
\text { PH }
\end{gathered}
\] & \[
\begin{gathered}
\text { CD } \\
\text { PPM }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{KM} \\
\text { PPM }
\end{gathered}
\] & \[
\begin{array}{r}
\text { FE } \\
\mathrm{Z}
\end{array}
\] & \[
\begin{gathered}
\text { AS } \\
\text { PPM }
\end{gathered}
\] & \[
\underset{P M}{U}
\] & \[
\begin{gathered}
\text { AU } \\
\text { PPH }
\end{gathered}
\] & \[
\begin{array}{r}
\text { rit } \\
\text { PFH }
\end{array}
\] & \[
\begin{gathered}
5 R \\
P M
\end{gathered}
\] & \[
\begin{gathered}
\text { CD } \\
\text { PPG }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{SI} \\
\mathrm{PPH}
\end{gathered}
\] & \[
\begin{gathered}
\text { II } \\
P P K
\end{gathered}
\] & \[
\begin{array}{r}
V \\
P \mathrm{M}
\end{array}
\] & \[
\begin{gathered}
C A \\
Z
\end{gathered}
\] & \[
\begin{aligned}
& p \\
& \mathbf{q}
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{LA} \\
\mathrm{PRM}
\end{gathered}
\] & \[
\begin{gathered}
\text { LR } \\
\text { PRM }
\end{gathered}
\] & \[
\begin{gathered}
\text { MG } \\
\text { I }
\end{gathered}
\] & \[
\begin{gathered}
\text { jn } \\
\text { PPM }
\end{gathered}
\] & \[
\begin{gathered}
\pi \\
i
\end{gathered}
\] & \[
\begin{array}{r}
3 \\
\text { PPK }
\end{array}
\] & \[
\begin{gathered}
A L \\
I
\end{gathered}
\] & H／ & \[
\begin{aligned}
& K \\
& Z
\end{aligned}
\] & \[
\underset{\text { PRM }}{V}
\] & \[
\begin{aligned}
& \text { AUt } \\
& \text { Pri }
\end{aligned}
\] \\
\hline 6RACE IL 2＋00N & 1 & 10 & \(\dagger\) & 43 & ． 1 & 3 & 3 & \(5 \mathrm{~B}^{4}\) & 2.85 & 4 & 5 & ND & 2 & 27 & 1 & 2 & 2 & 14 & ． 27 & ． 019 & 5 & 12 & ． 14 & 74 & .10 & 3 & ． 72 & ． 01 & ． 05 & 1 & 1 \\
\hline 6RACE IL I＋75 & 1 & 14 & 7 & 61 & ． 3 & 10 & 1 & J75 & 5.07 & 7 & 5 & NO & 3 & 21 & 1 & 2 & 2 & 108 & ． 22 & ． 043 & 7 & 21 & ． 40 & 113 & ． 13 & 2 & 2.17 & ． 01 & ． 04 & 1 & 1 \\
\hline GRACE ML \(1+50 \mathrm{M}\) & 2 & 75 & 21 & 105 & 1.4 & 22 & 10 & 1674 & 3.98 & 7 & 5 & No & 2 & 81 & 1 & 2 & 2 & 11 & 1.27 & ． 133 & 18 & 27 & ． 70 & \(31 \%\) & ． 04 & 3 & 3.54 & ． 02 & ． 07 & 2 & 1 \\
\hline GRACE FLL \(1+37 \mathrm{H}\) & 1 & 19 & 1 & 63 & ． 3 & 13 & b & 141 & 2.42 & 2 & 5 & ND & 2 & 42 & 1 & 2 & 2 & 18 & ． 54 & ． 056 & 11 & 17 & .48 & 111 & ． 06 & 3 & 1.60 & ． 01 & ． 04 & 1 & 1 \\
\hline CRaCE PL． \(1+25 \mathrm{~K}\) & 1 & 15 & 7 & 81 & ． 2 & 7 & 6 & 152 & 3.12 & 2 & 5 & HD & 1 & 30 & 1 & 2 & 2 & 71 & ． 41 & ． 025 & 7 & 17 & ． 35 & 92 & ． 07 & 4 & 1.24 & ． 01 & ． 03 & 1 & 3 \\
\hline GRACE FL \(\mathbf{1 + 1 2 \mathrm { N }}\) & ， & 5 & 14 & 12 & ． 1 & 3 & 4 & 275 & 3.15 & 2 & 5 & M \({ }^{\text {d }}\) & 1 & 15 & 1 & 2 & 2 & 43 & ． 17 & ． 047 & 6 & 15 & .17 & 41 & ． 09 & 2 & ． 98 & ． 01 & ． 04 & 1 & 58 \\
\hline grace bl \(1+00 \mathrm{M}\) & 1 & 17 & 7 & 79 & ． 1 & 11 & 1 & 419 & 1.22 & 1 & 5 & ND & 1 & 21 & 1 & 2 & 2 & 4 & ． 22 & ．043 & 8 & 23 & ． 43 & 82 & ． 08 & 2 & 2.41 & ． 01 & ． 04 & 1 & I \\
\hline CRACE DL O＋ITM & 1 & 14 & 1 & 74 & ． 2 & 8 & 1 & 453 & 4.14 & 7 & 5 & ND & 2 & 22 & 1 & 2 & 2 & 19 & ． 18 & ． 101 & 8 & 20 & ． 30 & 10 & ． 07 & 3 & 2.41 & ． 01 & ． 04 & 1 & 1 \\
\hline SRACE IL O＋75 \({ }^{\text {S }}\) & 1 & 13 & 1 & 92 & .1 & 10 & 9 & 1261 & 3.06 & 3 & 5 & ND & 2 & 17 & 1 & 2 & 2 & 81 & ． 14 & ． 078 & 6 & 19 & ． 27 & 113 & ． 07 & 2 & 1.75 & ． 01 & 05 & 1 & 1 \\
\hline GRACE ML O＋62H & 1 & 21 & 11 & 40 & ． 1 & 10 & 7 & 362 & 3.77 & 3 & 5 & K & 4 & 23 & 1 & 2 & 2 & 19 & .25 & ． 028 & 1 & 21 & ． 41 & 71 & ． 08 & 3 & 1.57 & ． 01 & ． 03 & 1 & 1 \\
\hline 6RACE IL O＋50 & 1 & 11 & ！ & 60 & ． 1 & \(B\) & 7 & 369 & 4.01 & 5 & 5 & HD & 2 & 21 & 1 & 2 & 2 & 7 & ． 19 & ．024 & 7 & 21 & ． 31 & 13 & ． 07 & 2 & 1.56 & ． 01 & ． 04 & 1 & 1 \\
\hline ERACE BL O＋37H & 1 & 5 & 14 & 37 & 1.2 & 4 & 4 & 435 & 3.07 & 2 & 5 & ND & 1 & 24 & 1 & 2 & 2 & 15 & ． 20 & ． 011 & 6 & 14 & ． 15 & 140 & ． 05 & 2 & ． 95 & ． 01 & ． 04 & 2 & b \\
\hline CRACE IS LO＋50S 1＋004 & 1 & 16 & 1 & 51 & ． 1 & 1 & 7 & 376 & 5.19 & 5 & 5 & ND & 3 & 19 & 1 & 2 & 2 & 105 & ． 14 & ． 074 & 7 & 23 & ． 37 & 75 & ． 06 & 2 & 3.25 & ． 01 & ． 03 & 1 & 3 \\
\hline CRACE IS LO＋505 \(0+751\) & 1 & 13 & 12 & 5 & ． 1 & 1 & 7 & 446 & 5.68 & 9 & 5 & N0 & 2 & 20 & 1 & 2 & 2 & 118 & ． 18 & ． 056 & 7 & 21 & ． 34 & 12 & ． 08 & 2 & 1.84 & ． 01 & ． 04 & \(!\) & 2 \\
\hline GRACE IS LO＋505 0＋501 & 1 & 16 & 5 & 85 & ． 2 & 14 & 7 & 575 & 5.17 & 7 & 5 & NJ & 3 & 19 & 1 & 2 & 2 & 101 & ． 16 & ． 086 & 角 & 27 & ． 42 & 87 & ． 06 & 3 & 3.02 & ． 01 & ． 03 & 1 & 1 \\
\hline GRACE \(\mathbf{i 5}\) LO＋505 0＋251 & 1 & 13 & 14 & 45 & ． 1 & 9 & 5 & 335 & 2．81 & 3 & 5 & ND & 2 & 21 & 1 & 2 & 3 & 15 & ． 21 & ． 027 & 8 & 16 & ． 34 & 121 & ． 07 & 3 & 1.57 & ． 01 & ． 04 & 1 & 1 \\
\hline GRACE 15 LO＋505 0＋134 & 1 & 52 & 13. & 69 & ． 5 & 13 & 8 & 851 & 5.48 & 8 & 5 & No & 3 & 19 & 1 & 2 & 2 & 108 & .16 & ． 163 & 1 & 29 & ． 45 & 82 & ． 06 & 2 & 2.68 & ． 01 & ． 04 & 1 & 2 \\
\hline 6RaCE I5 LO＋505 0＋00H & 1 & 12 & 1 & 74 & ． 2 & 13 & 7 & 538 & 3.17 c & 1 & 5 & ND & 2 & 18 & 1 & 2 & 2 & 73 & ． 16 & ． 066 & 1 & 25 & ． 37 & 48 & ． 05 & 2 & 2.34 & ． 01 & ． 04 & 1 & 1 \\
\hline ERACE A5 LJ＋50S O＋00E & 1 & 8 & 5 & 18 & ． 3 & 12 & 5 & 295 & 1.93 & 2 & 5 & ND & 2 & 41 & 1 & 2 & 2 & 41 & .53 & ． 008 & 1 & 21 & ． 55 & 124 & ． 05 & 2 & 1.51 & ． 01 & ． 04 & 2 & 1 \\
\hline crace is LJ＋505 0＋25E & 1 & 10 & 11 & 62 & ． 2 & 7 & 6 & 116 & 3.35 & 5 & 5 & KIJ & 2 & 19 & 1 & 2 & 2 & 83 & ． 16 & ． 044 & 7 & 24 & ． 33 & 4 & ． 09 & 2 & 1.29 & ． 01 & ． 03 & 1 & 1 \\
\hline CRACE 15 3＋505 0＋75E & 1 & 4 & \(!\) & 37 & ． 2 & 1 & 3 & 24 & 2.10 & 2 & 5 & ND & 2 & 14 & 1 & 2 & 2 & 57 & .12 & ． 016 & 7 & 16 & ． 11 & 65 & ． 01 & 2 & ． 76 & ． 01 & ． 04 & 1 & 1 \\
\hline GRALE IS LJ＋50S 1＋00E & 1 & 23 & 11 & 77 & ． 2 & 11 & 7 & 434 & 6.49 & 10 & 5 & ND & 2 & 17 & 1 & 2 & 2 & 141 & .17 & ． 056 & 1 & 25 & ． 14 & 10 & ． 07 & 2 & 2.15 & ． 01 & ． 04 & 1 & 3 \\
\hline CRACE \(15 \mathrm{LJ}+505 \mathrm{~S}\) 1＋25E & 1 & 19 & 11 & 12 & ． 1 & 14 & 9 & 365 & 4.34 & 10 & 5 & H0 & 2 & 21 & 1 & 2 & 2 & 8 & ． 20 & ． 067 & ， & 26 & ． 55 & 100 & ． 07 & 5 & 2.16 & ． 01 & ． 05 & 2 & 1 \\
\hline ERACE 15 L \(3+5051+50{ }^{\text {c }}\) & 1 & 21 & 4 & 77 & 1.7 & 16 & 6 & 134 & 3.29 & 7 & 5 & KD & 2 & 20 & 1 & 2 & 2 & 40 & ． 21 & ． 058 & 11 & 23 & ． 64 & 74 & ． 07 & 4 & 2.06 & ． 01 & ． 06 & 1 & 17 \\
\hline grace is LJ＋50S 1＋75E & 1 & 24 & 12 & 42 & .6 & 16 & B & 434 & 4.87 & 7 & 5 & N0 & 2 & 24 & 1 & 2 & 2 & 102 & ． 26 & ．08日 & 10 & 3i & ． 60 & 102 & ． 08 & 11 & 1.71 & ． 01 & ． 05 & 1 & 132 \\
\hline CRACE 15 13＋505 2＋00E & 1 & 29 & 1 & 76 & ． 5 & 13 & 7 & 44 & 3.70 & 1 & 5 & ND & 1 & 24 & 1 & 4 & 3 & 74 & ． 33 & ． 073 & & 21 & ． 60 & 98 & ． 06 & 2 & 1.14 & ． 01 & ． 14 & 2 & 2 \\
\hline ［RACE IS L3＋505 2＋25E & 1 & 52 & 12 & 71 & ． 3 & 11 & 10 & 581 & 5.43 & 1 & 5 & HD & 2 & 42 & 1 & 2 & 2 & 116 & ． 64 & ．031 & 9 & 33 & ． 70 & 110 & ．01 & 4 & 2.16 & ． 01 & ． 06 & 1 & 2 \\
\hline GRACE 15 LJ 3 S05 \(2+376\) & 1 & 20 & 家 & 69 & ． 4 & 7 & 1 & 475 & 4.56 & 2 & 5 & N0 & 2 & 34 & 1 & 2 & 2 & 107 & ． 53 & ． 022 & 7 & 22 & ． 45 & 114 & ． 09 & 2 & 1.75 & ． 01 & ． 04 & 1 & 1 \\
\hline  & 1 & 163 & 15 & 74 & 1.0 & 14 & 13 & 2175 & 3.54 & 6 & 5 & HD & 1 & 52 & 2 & 2 & 2 & 62 & 1.34 & ． 053 & 10 & 22 & ． 65 & 13 & ． 06 & 1 & 1.75 & ． 02 & ． 08 & 1 & 4 \\
\hline CRRCE IS L3＋505 2＋75E． & 1 & 21 & 6 & 75 & ． 1 & 10 & 1 & 478 & 5．85 & 14 & 5 & 10 & 1 & 28 & 1 & 2 & 2 & 127 & ． 27 & ． 050 & & 27 & ． 53 & 111 & ． 08 & 2 & 1．81 & ． 05 & ． 07 & 1 & 1 \\
\hline ERACE \(55 \mathrm{LJ+505} 2499 \mathrm{E}\) & 1 & 20 & 10 & 62 & ． 1 & 14 & 9 & 512 & 5.00 & 1 & 5 & NO & 2 & 33 & 1 & 2 & 2 & 79 & ． 45 & ． 013 & 8 & 27 & ． 67 & 88 & ． 08 & 2 & 2.06 & ． 01 & ． 10 & 1 & 1 \\
\hline GRACE IS L3＋505 3＋00E & 1 & 30 & 5 & 74 & ． 2 & 21 & 13 & \(6{ }^{6} 3\) & 5.75 & 1 & 5 & KI & 2 & 25 & 1 & 2 & 2 & 118 & ． 26 & ． 086 & 1 & 3 & 1.15 & 44 & ． 04 & 2 & 2.12 & ． 01 & ． 06 & 1 & 1 \\
\hline GRACE A5 LJ＋505 3＋13E & 1 & 15 & 5 & 63 & ． 3 & 12 & 4 & 530 & 5.09 & 12 & 5 & ND & 2 & 24 & 1 & 2 & 2 & 101 & ． 28 & ． 054 & 7 & 22 & ． 74 & 78 & ． 10 & 2 & 2.16 & ． 01 & ． 09 & 1 & 17 \\
\hline frace is l3＋50S 3＋25E & 1 & 17 & 1 & 4 & .1 & 14 & 1 & 526 & 4．32＊ & 7 & 5 & ND & 2 & 23 & 1 & 4 & 2 & 78 & .25 & ． 013 & 1 & 22 & ． 72 & 11 & ． 07 & 1 & 2.13 & ． 01 & ． 07 & 1 & 4 \\
\hline
\end{tabular}

SAMPLEI
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline HO & [ & PI & 7N & A5 & HI & CO & HK & FE & AS & 4 & All & TH & SR & CD & 58 & 81 & \(V\) & Ch & P & LA & CR & M6 & 84 & II & \# & AL & NA & \(k\) & V & AUt \\
\hline HPH & Pr月 & PPM & PPM & PPM & PPM & PPM & PPM & 1 & PPM & PFM & fPK & PPM & PPH & PH & PPN & PPM & PPM & 1 & 2 & PPM & PPM & 2 & PPM & 2 & PFM & 1 & 1 & 1 & PH & PPB \\
\hline
\end{tabular}

SHACE 15 L4+005 0+75E GRACE 15 24+005 1+00E STD C/AU-5

GRACE 15 L4+005 \(1+25 E\) ERICE I5 L4+005 i+75E gRACE I5 L \(4+0052+00 E\) GRACE 15 L4t00S 2+2IE GRACE IS L4+00S \(2+50 \mathrm{E}\)
 GRACE :5 L4+005 \(2+75 E\) CRACE 15 L4+005 \(2+878\) GRACE IS L4+005 3+00E CRACE 15 L4+00S \(3+15 E\)

ERACE 15 L4+005 3+25E GRACE 15 L4to0S \(3+37 E\) GRACE 15 L4+00S \(3+505\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 30 & 7 & 82 & . 1 & 13 & 11 & 134 & \(5.20^{\prime}\) & 22 & 5 & ND & 3 & 20 & 1 & 2 & 2 & 11 & . 22 & . 032 & 8 & 20 & 1.02 & 11 & . 07 & 4 & 2.57 & . 01 & . 04 & 1 \\
\hline 1 & 41 & 7 & 14 & . 3 & 18 & 10 & 449 & 4.32 & 14 & 5 & H0 & 1 & 37 & 1 & 2 & 2 & 71 & . 41 & . 127 & 9 & 22 & . 92 & 132 & . 05 & 9 & 2.50 & . 01 & . 10 & 3 \\
\hline 18 & 57 & 38 & 130 & 7.3 & 6 & 28 & 1113 & 3.12 & 31 & 20 & 7 & 38 & 50 & 18 & 18 & 14 & 55 & . 45 & . 085 & 37 & 59 & . 85 & 176 & . 06 & 34 & 1.87 & . 06 & . 13 & 13 \\
\hline 1 & 13 & 10 & 58 & . 3 & 6 & 3 & 277 & 2.20 & 7 & 5 & ND & 1 & 20 & 1 & 2 & 2 & 53 & . 27 & . 029 & 7 & 16 & . 29 & 68 & . 07 & 2 & 1.13 & . 01 & . 05 & 1 \\
\hline 1 & 88 & 12 & 140 & . 4 & 12 & 15 & 1207 & 6.16 & 46 & 5 & NI & 1 & 20 & 1 & 2 & 2 & 108 & . 36 & . 087 & 8 & 24 & . 12 & 12 & . 02 & 4 & 2.13 & . 01 & . 01 & 1 \\
\hline 1 & 92 & 7 & 8 & . \({ }^{1}\) & 14 & 11 & 530 & 5.09 & 17 & 5 & ND & 1 & 18 & 1 & 2 & 2 & 111 & . 21 & . 058 & 1 & 27 & . 81 & 75 & . 04 & 2 & 2.43 & . 01 & . 05 & 1 \\
\hline 1 & 34 & 8 & 53 & . 2 & 11 & 1 & 131 & 5.18 & 1 & 5 & HO & 2 & 26 & 1 & 2 & 2 & 107 & . 3 & . 035 & 10 & 23 & . 70 & 10 & . 08 & 2 & 2.17 & . 01 & . 05 & 1 \\
\hline 1 & 34 & 10 & 64 & . 4 & 14 & \(\dagger\) & 695 & 4.68 & 20 & 5 & ND & 1 & 19 & 1 & 2 & 2 & \(10 t\) & . 29 & . 055 & 7 & 28 & . 81 & 18 & . 12 & 3 & 2.10 & . 01 & . 06 & 1 \\
\hline 1 & 4 & 7 & 13 & . 2 & 22 & 12 & 581 & 5.36 & 17 & 5 & H0 & , & 23 & 1 & 2 & 2 & 105 & . 27 & . 033 & 7 & 31 & 1.05 & 70 & . 10 & 5 & 2.54 & . 01 & . 05 & 1 \\
\hline 1 & 58 & 5 & 53 & . 2 & 16 & 10 & 134 & 4.93 & 3 & 5 & WD & 3 & 23 & 1 & 2 & 2 & 102 & . 24 & . 045 & 7 & 25 & . 70 & 72 & . 04 & 2 & 2.08 & . 01 & . 11 & 1 \\
\hline 1 & 3 & 11 & 45 & . 1 & 11 & 1 & 398 & 4.12 & 3 & 5 & ND & 1 & 19 & 1 & 2 & 2 & 95 & . 29 & . 035 & 1 & 24 & . 70 & 51 & . 03 & 4 & 1.99 & . 01 & . 06 & 1 \\
\hline 1 & 18 & 9 & 49 & . 1 & 9 & \(t\) & 381 & 4.14 & 2 & 5 & NJ & 1 & 18 & 1 & 2 & 2 & 94 & . 23 & . 049 & 7 & 21 & . 44 & 53 & . 07 & 2 & 1.41 & . 01 & . 06 & 1 \\
\hline 1 & 22 & E & 42 & . 3 & 11 & 7 & 391 & 4.65 & 6 & 5 & K0 & , & 20 & 1 & 2 & 2 & 106 & . 25 & . 048 & 6 & 23 & . 58 & 72 & . 09 & 3 & 1.75 & . 01 & . 06 & 1 \\
\hline 1 & 39 & 14 & 54 & . 3 & 15 & 12 & 527 & 5.93 & 14 & 5 & N0 & 1 & 14 & 1 & 2 & 2 & 117 & . 31 & . 083 & 5 & 28 & . 94 & 4 & . 06 & 2 & 2.51 & . 01 & . 014 & 1 \\
\hline 1 & 25 & 5 & 50 & . 4 & 4 & 7 & 118 & 4.88 & 3 & & HD & 1 & 13 & 1 & 2 & 2 & 102 & . 20 & . 059 & 5 & 20 & . 70 & 51 & . 01 & 2 & 2.16 & . 01 & . 09 & 1 \\
\hline 1 & 31 & 1 & 13 & . 3 & 13 & 16 & 60日 & 5.64 & 5 & 5 & HD & 1 & 29 & 1 & 2 & 2 & 138 & . 51 & . 051 & 5 & 3 & 1.47 & 43 & . 06 & 7 & 2.60 & . 01 & . 07 & 1 \\
\hline
\end{tabular}


\section*{GEDCHEMICAL ANALYSIS CEFTTEICATE}


－Sayple types pi－q soil pio－12 rock ant amalysis iy an from 10 gram sample．

SKYLARK RESOURCES PROJECT－A－TEAM File \＃ \(87-4839\) Fage 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline SAMPLEI & HI & CJ & P1 & 2H & A5 & HI & col & HH & FE & AS & 4 & All & TH & Sh & CD & SB & BI & \(V\) & CA & P & LA & CR & H6 & 明 & 11 & & AL & HiA & & W & AUt \\
\hline & PRM & PPM & PPH & PPM & PPM & PPM & PPM & PPM & 7 & PPM & PPM & PPi & PRH & PPK & PPM & PPK & PP\％ & PPM & 7 & 1 & PPH & PPM & 1 & PFH & 7 & PPK & 1 & 7 & 7 & PPM & PPB \\
\hline GRACEE5 2＋00\％ \(2+50 \mathrm{H}\) & 1 & 19 & 10 & 56 & ． 3 & 7 & 5 & 247 & 4.09 & 1 & 5 & MD & 3 & 23 & 1 & 2 & 2 & 91 & ． 25 & ．073 & 7 & 20 & ． 25 & 16 & ． 06 & 6 & 1.72 & ． 01 & ． 03 & 1 & 1 \\
\hline GRACEIS 2＋00以 \(2+2501\) & 1 & 22 & 8 & 59 & ． 2 & 10 & 1 & 387 & 3.91 & 2 & 5 & ND & 4 & 21 & 1 & 2 & 2 & 79 & ． 24 & ． 080 & 8 & 21 & ． 38 & 74 & ． 07 & 3 & 1.98 & ． 01 & ． 04 & 1 & 1 \\
\hline GRACEE5 2＋00M 2＋004 & 1 & 13 & 9 & 33 & ． 2 & 3 & 3 & 134 & 2.71 & 3 & 5 & ND & 3 & 16 & 1 & 2 & 2 & 75 & ． 14 & ． 011 & 1 & 13 & ． 13 & 80 & ． 06 & 4 & 1.20 & ． 01 & ． 03 & 1 & 4 \\
\hline CRACEI5 2＋00N 1＋18M & 1 & 24 & 4 & 48 & ． 1 & 14 & 7 & 343 & 3.27 & 3 & 5 & WD & 3 & 28 & 1 & 2 & 2 & 74 & ． 26 & ．028 & 9 & 20 & ． 45 & 116 & ． 07 & 7 & 1.37 & ． 01 & ． 03 & 1 & 13 \\
\hline GRACEIS \(2+00 \mathrm{~N} 1+75 \mathrm{H}\) & 1 & 17 & \(\dagger\) & 60 & ． 1 & 10 & 7 & 331 & 4.97 & 3 & 5 & HD & 3 & 21 & 1 & 2 & 2 & 102 & ． 24 & ． 032 & 8 & 23 & ． 37 & 135 & ． 01 & 2 & 1.81 & ． 01 & ． 03 & 1 & 1 \\
\hline ERACEIS 2＋00H 1＋153 & 1 & 22 & 17 & 68 & ． 2 & 10 & 7 & \(3!1\) & 4.67 & 6 & 5 & HD & 4 & 22 & 1 & 4 & 2 & 90 & ． 23 & ． 062 & 1 & 24 & ． 38 & 103 & .10 & 4 & 2.72 & ． 01 & ． 05 & 1 & 1 \\
\hline  & 1 & 14 & 15 & 82 & ． 1 & 11 & 1 & 362 & 4.81 & 2 & 5 & ND & 3 & 25 & 1 & 2 & 2 & 94 & ． 27 & ．038 & 8 & 22 & ． 44 & 89 & ． 10 & 5 & 2.30 & ． 01 & ． 04 & 1 & 2 \\
\hline GRACEE \(52+00 \mathrm{~N} 1+3\) OM & \(!\) & 10 & \(t\) & 77 & ． 2 & 1 & 7 & 731 & 2.52 & 2 & 5 & HD & 2 & 33 & 1 & 2 & 2 & 60 & ． 43 & ． 017 & 7 & 14 & ． 40 & 121 & ． 09 & 1 & 1.10 & ． 01 & ． 04 & 1 & 1 \\
\hline 6RACEIS 2＋00H 1＋141 & 1 & 14 & 11 & 65 & ． 1 & 9 & 5 & 303 & 4.20 & 2 & 5 & ND & 3 & 23 & 1 & 2 & 2 & 47 & ． 23 & ． 031 & 8 & 18 & ． 37 & 114 & ． 12 & 1 & 1.58 & ． 01 & ． 05 & 1 & 1 \\
\hline GRACEIS 2＋004 1＋00以 & 1 & 23 & \(\dagger\) & 102 & ． 2 & 11 & 7 & 345 & 4.21 & 3 & 5 & HD & 4 & 23 & ， & 2 & 2 & 86 & ． 26 & ． 040 & 9 & 20 & ． 40 & 92 & ． 08 & 5 & 2.12 & ． 01 & ． 04 & 1 & 1 \\
\hline GRACEI5 2＋00N 0＋754 & 1 & 15 & 11 & 64 & ． 3 & 12 & 5 & 350 & 2.65 & 3 & 5 & WD & 3 & 35 & 1 & 2 & 2 & 61 & ． 50 & ． 030 & 7 & 15 & ． 38 & 101 & ． 018 & 5 & 1.23 & ． 01 & ． 05 & 1 & 1 \\
\hline GRAEEIS 2＋00） \(0+5011\) & 1 & 14 & 10 & 45 & ． 2 & 1 & 5 & 259 & 2.98 & 2 & 5 & ND & 2 & 24 & 1 & 2 & 2 & 75 & ． 29 & ． 022 & 7 & 14 & ． 30 & 80 & ． 08 & 5 & 1.26 & ． 01 & ． 03 & 1 & 2 \\
\hline GRACE \(5_{5}\) 1＋50N \(2+501\) & 1 & 17 & 8 & 13 & .1 & 8 & 1 & 285 & 3.68 & 2 & 5 & WD & 3 & 19 & 1 & 2 & 2 & 82 & ． 19 & ． 049 & 8 & 18 & ． 35 & 12 & ． 09 & 4 & 2.22 & ． 01 & ． 03 & 1 & 5 \\
\hline 6RateIS 1＋50H2＋25M & 1 & 14 & 8 & 55 & ． 2 & 7 & 4 & 242 & 3.26 & 2 & 5 & HD & 3 & 17 & 1 & 2 & 2 & 70 & ． 15 & ． 058 & 1 & 17 & ． 29 & 13 & ． 08 & 2 & 1.83 & ． 01 & ． 03 & 1 & 1 \\
\hline GRACEI5 1＋50M \(2+00 \mathrm{Y}\) & 1 & 22 & 10 & 50 & ． 1 & 9 & 7 & 342 & 3.74 & \(b\) & 5 & MD & 4 & 29 & 1 & 2 & 2 & 89 & ． 27 & ． 015 & 9 & 20 & ． 40 & 100 & ． 09 & 1 & 1.33 & ． 01 & ． 04 & 1 & 1 \\
\hline ．6RACE15 1＋50N 1＋75X & 1 & 19 & 7 & 59 & ． 3 & 8 & 5 & 206 & 3.38 & 3 & 5 & NO & 2 & 24 & 1 & 2 & 2 & 7 & ． 21 & ． 047 & 9 & 16 & ． 23 & 17 & ． 04 & 4 & 1.64 & ． 01 & ． 03 & 1 & 1 \\
\hline ERACEIS 1＋50K 1＋50y & 1 & 13 & 10 & 4 & ． 1 & 1 & 5 & 284 & 4.03 & 4 & ． & HD & 2 & 20 & 1 & 2 & 2 & 94 & ． 19 & ． 034 & 7 & 18 & ． 36 & 104 & ． 11 & 4 & 1.61 & ． 01 & ． 05 & 1 & 2 \\
\hline GRACEI5 1＋50H \(1+25 \mathrm{~N}\) & 2 & 15 & 5 & 56 & ． 3 & 8 & 5 & 237 & 3.55 & 1 & 5 & MD & 3 & 17 & 1 & 2 & 2 & 67 & ． 15 & ． 044 & 1 & 16 & ． 27 & 15 & ． 06 & 7 & 2.11 & ． 01 & ． 04 & 1 & 1 \\
\hline GRACEI5 1＋50M 1＋141 & 2 & 12 & 10 & 51 & ． 4 & 7 & 5 & 217 & 3.74 & 5 & 5 & HD & 3 & 14 & 1 & 2 & 2 & 80 & ． 16 & ． 060 & 7 & 15 & ． 26 & 8！ & ． 06 & 2 & 2.24 & ． 01 & ． 04 & 1 & 1 \\
\hline CRACEE5 \(\mathrm{I}+50 \mathrm{~N}\) ：+00 N & 1 & 15 & 10 & 63 & ． 1 & 10 & 5 & 339 & 4．28 & 5 & 5 & ND & 2 & 21 & 1 & 2 & 2 & 80 & ． 17 & ． 074 & 7 & 18 & ． 34 & 8 & ． 07 & 1 & 1.86 & ． 01 & ． 04 & 1 & 1 \\
\hline CRACE 5 2 +50 N 0＋889 & 1 & 17 & 12 & 73 & ． 2 & 1 & 1 & 302 & 3.78 & 4 & 5 & ND & 3 & 17 & ， & 2 & 2 & 83 & ． 11 & ． 058 & 8 & 19 & ． 35 & 65 & ． 08 & 4 & 1.74 & ． 01 & ． 01 & 1 & 1 \\
\hline CRACEL5［＋50N 0＋75N & 2 & 15 & 11 & 68 & ． 4 & 12 & 7 & 314 & 4.26 & 5 & 5 & ND & 5 & －15 & 1 & 3 & 2 & 75 & ． 14 & ． 040 & 7 & 20 & ． 36 & 65 & ． 07 & 1 & 2.11 & ． 01 & ． 04 & 1 & 1 \\
\hline ERACEI5 1＋501～ \(0+50 \mathrm{H}\) & 1 & 15 & 7 & 70 & ． 8 & 1 & 6 & 263 & 4.05 & 2 & 5 & HD & J & 21 & 1 & 2 & 2 & 81 & ． 24 & ． 039 & 1 & It & ． 32 & 91 & ． 09 & 1 & 1.97 & ． 01 & ． 04 & 1 & 2 \\
\hline SRACEIS 1＋50\％ \(0+25 E\) & 1 & 12 & 7 & 77 & ． 1 & 7 & 5 & 272 & J． 8 8 & 2 & & KD & 3 & 17 & 1 & 2 & 2 & 93 & ． 11 & ． 023 & 7 & 16 & ． 29 & 71 & ． 01 & 4 & 1.26 & ． 01 & ． 04 & 1 & 1 \\
\hline ERACEIS It50N O＋50E & 1 & 12 & 9 & 81 & ． 1 & 7 & 5 & 337 & 4.55 & 3 & 5 & H0 & 2 & 23 & 1 & 2 & 2 & 102 & ． 23 & ． 086 & 1 & 17 & ． 33 & 100 & ． 10 & J & 1.25 & ． 01 & ． 04 & 1 & 24 \\
\hline ERACEI5 1＋50N 0＋75E & 1 & 18 & 11 & 52 & ． 8 & 11 & 7 & 314 & 3.19 & 8 & 5 & KO & 3 & 20 & 1 & 2 & 2 & 80 & ． 21 & ． 040 & 7 & 19 & ． 38 & 7 & ． 08 & 6 & 1.72 & ． 01 & ． 04 & 1 & 1 \\
\hline GRaCEIS 1＋50h 1＋00E & 1 & 8 & 5 & 33 & ． 5 & 3 & 3 & 154 & 3.25 & 3 & 5 & N0 & 2 & 15 & 1 & 2 & 2 & 76 & ． 14 & ．030 & 6 & 13 & ． 11 & 47 & ． 06 & 2 & 1.08 & ． 01 & ． 03 & 1 & 1 \\
\hline SRACEIS 1＋OOH 2＋00H & 1 & 16 & 16 & 50 & ． 2 & 11 & 7 & 312 & 4.04 & 4 & 5 & ND & 3 & 21 & 1 & 2 & 2 & 14 & ． 27 & ． 072 & 8 & 19 & ． 38 & 82 & ． 08 & 1 & 1.97 & ． 01 & ． 04 & 2 & 1 \\
\hline SRACEI5 1＋00K 1＋75 & 1 & 15 & 10 & 63 & ． 3 & 10 & 1 & 305 & 3.80 & 2 & 5 & H0 & J & 22 & 1 & 2 & 2 & 10 & ． 21 & ． 013 & 8 & 19 & ． 39 & 71 & ． 08 & 1 & 1.79 & ． 01 & ． 04 & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline , SAMPLEI & \[
\begin{gathered}
\mathrm{KO} \\
\mathrm{PPM}
\end{gathered}
\] & \[
\begin{array}{r}
\mathrm{CH} \\
\mathrm{PPH}
\end{array}
\] & \[
\begin{aligned}
P I \\
P P M
\end{aligned}
\] & \[
\begin{gathered}
\text { IK } \\
P R K
\end{gathered}
\] & \[
\begin{aligned}
& \text { AF } \\
& \text { PPH }
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{KI} \\
\mathrm{PR}
\end{gathered}
\] & \[
\begin{array}{r}
\mathrm{CD} \\
\mathrm{PPM}
\end{array}
\] & \[
\begin{gathered}
\mathrm{KI} \\
\mathrm{PPK}
\end{gathered}
\] & \[
\begin{gathered}
F E \\
\mathbf{Z}
\end{gathered}
\] & \[
\begin{aligned}
& \text { AS } \\
& \text { PPH }
\end{aligned}
\] & \[
\underset{\text { UR }}{\text { U }}
\] & \[
\begin{gathered}
\text { AU } \\
\text { PPH }
\end{gathered}
\] & \[
\begin{array}{r}
\text { TH } \\
\text { PPM }
\end{array}
\] & \[
\begin{gathered}
\text { 5R } \\
\text { PRH }
\end{gathered}
\] & \[
\begin{array}{r}
\text { CD } \\
\text { PPM }
\end{array}
\] & \[
\begin{gathered}
\text { SB } \\
\text { PPH }
\end{gathered}
\] & \[
\begin{gathered}
\text { I! } \\
\text { PPM }
\end{gathered}
\] & \[
\begin{gathered}
Y \\
P P_{K}
\end{gathered}
\] & \[
\mathrm{CA}
\] & \[
\begin{aligned}
& P \\
& q
\end{aligned}
\] & \[
\begin{gathered}
\text { LA } \\
P P M
\end{gathered}
\] & \[
\begin{gathered}
\text { CR } \\
\text { PPH }
\end{gathered}
\] & \[
\begin{gathered}
\text { Кб } \\
\text { I }
\end{gathered}
\] & \[
\begin{array}{r}
8 \AA \\
P \mathrm{PH}
\end{array}
\] & \[
\begin{gathered}
\text { II } \\
1
\end{gathered}
\] & \[
\begin{array}{r}
\mathbf{B} \\
\text { PF }
\end{array}
\] & \[
\begin{array}{r}
\text { AL } \\
\text { I }
\end{array}
\] & \[
\begin{array}{r}
\text { HA } \\
\text { I }
\end{array}
\] & \(\chi\)
7 & PP & \[
\begin{aligned}
& \text { AUt } \\
& \text { PPB }
\end{aligned}
\] \\
\hline 6RACES 5 1+00) O+25E & 1 & 23 & 9 & 110 & . 2 & 1 & 9 & 381 & 1.96 & 3 & 5 & N0 & 4 & 29 & 1 & 2 & 2 & 232 & . 27 & . 040 & 7 & 27 & . 32 & 70 & . 01 & 2 & 1.73 & . 01 & . 04 & 1 & 1 \\
\hline GRACELS \(1+00 \mathrm{~K} 0+50 \mathrm{E}\) & 1 & 13 & 12 & 140 & .1 & 7 & 1 & 318 & 4.39 & 3 & 5 & 10 & 1 & 25 & 1 & 2 & 2 & 106 & . 18 & . 024 & 1 & 17 & .23 & 17 & . 06 & 11 & 1.13 & . 02 & . 05 & 1 & 1 \\
\hline 6RACEIS 1+00k O+75E & 1 & 20 & 12 & 102 & . 3 & 10 & 8 & 45 & 4.55 & 2 & 5 & HD & 2 & 24 & 2 & 2 & 2 & 97 & . 16 & . 050 & 12 & 25 & . 27 & 111 & . 01 & 2 & 2.12
1.71 & . 01 & . 04 & 1 & 14 \\
\hline GRACEE \(51+00 \mathrm{~N} 1+00 \mathrm{E}\) & 1 & 18 & 10 & 12 & . 3 & 13 & 1 & 670 & 2.44 & 2 & 5 & ND & 2 & 29 & 1 & 2 & 2 & 55 & . 36 & . 020 & 12 & 19 & . 44 & 55 & . 07 & 3 & 1.71 & . 01 & . 05 & 1 & 1 \\
\hline GRACEI5 O+503 \(2+00 \mathrm{H}\) & 1 & 7 & 1 & 40 & . 2 & 5 & 3 & 225 & 2.71 & 2 & 5 & H0 & 2 & 24 & 1 & 2 & 2 & 14 & . 24 & . 022 & 6 & 16 & . 20 & 53 & . 09 & 3 & . 93 & . 01 & . & 1 & 1 \\
\hline ERACEES O+504 1+754 & 1 & 10 & 7 & 45 & . 1 & 1 & 4 & \(22!\) & J. 17 & 4 & 5 & ND & 2 & 27 & 1 & 3 & 2 & 43 & . 27 & . 016 & 1 & 18 & .23 & 19 & . 07 & 2 & 1.08 & . 01 & . 05 & 2 & 2
52 \\
\hline SID C/AU-5 & 20 & 60 & 31 & 126 & 7.1 & 67 & 28 & 1013 & J. 92 & 34 & 19 & 1 & 10 & 50 & 17 & 11 & 20 & 6 & . 17 & . 085 & 39 & 61 & . 85 & 170 & . 07 & 31 & 1.90
1.28 & . 06 & . 14 & 14 & 5
1 \\
\hline GRACEE5 \(0+50 \mathrm{~N}\) 1+50Y & & 9 & 5 & 74 & . 1 & 厚 & 1 & 301 & 3.10 & 2 & 5 & ND & J & 26 & 1 & 2 & 2 & 86 & . 28 & . 024 & 7 & 17 & . 29 & 6 & . 07 & 2 & 1.28
1.57 & . 01 & . 04 & 1 & 1 \\
\hline GRACEES O+50N \(1+25 \pm\) & 1 & 11 & 7 & 45 & .1 & - & \(t\) & 238 & 3.52 & 2 & 5 & KD & 2 & 21 & 1 & 2 & 2 & 86 & . 23 & . 044 & 7 & 20 & . 212 & 46 & . 10 & 4 & 1.47 & . 01 & . 05 & 1 & \\
\hline ERACEIS \(0+50 \mathrm{H}\) 1+004 & 1 & 13 & 4 & 51 & . 1 & 11 & 1 & 382 & 3.13 & 2 & 5 & KD & 4 & 22 & -1 & 2 & 2 & 8 & . 28 & . 041 & - & 2 & . 42 & 6 & . 10 & 4 & & & & & \\
\hline ERACEM5 0+50 \({ }^{\text {O }}\) O775 & 2 & 1 & 7 & 57 & . 3 & 5 & 1 & 821 & 3.95 & 2 & 5 & ND & 2 & 11 & 1 & 2 & 2 & 99 & . 16 & . 023 & 7 & 21 & .20
.58 & 60
72 & .07
.10 & 2 & 1.53
2.76 & . 01 & . 04 & 1 & 17 \\
\hline ERACEES OHSON O+ATH & 1 & 37 & 13 & 14 & . 5 & 14 & 12 & 522 & 7.07 & 2 & 5 & K0 & 6 & 19 & 1 & 2 & 2 & 169 & . 50 & . 072 & 11 & 18 & . 24 & 81 & . 01 & 3 & . 96 & . 01 & . 01 & 1 & 6 \\
\hline GRACELS O+501 \(0+501\) & 1 & 12 & 7 & 62 & . 1 & 1 & 1 & 274 & 3.91 & 2 & 5 & WD & 2 & 34 & 1 & 2 & 2 & 109 & . 28 & -019 & 1 & 15 & . 24 & 97 & . 06 & 2 & 1.19 & . 01 & . 05 & 1 & 2 \\
\hline ERACEES O 0 50h O+JCL & 2 & 15 & 7 & 80 & .4 & 6 & 5 & 275 & 3.12 & 3 & 5 & HD & 1 & 28 & 1 & 2 & 2 & 91 & . 26 & . 022 & 1 & 17 & . 30 & 4 & . 01 & 2 & 1.43 & . 01 & . 05 & 1 & 7 \\
\hline ERACESY O+5031 O+254 & 2 & 13 & 7 & 9 & . 2 & \(b\) & 1 & 288 & 4.20 & 5 & 5 & HD & 3 & 26 & 1 & 2 & 2 & 101 & . 22 & . 029 & 1 & 17 & . 30 & 8 & . 01 & 2 & 1.43 & . 1 & . & 1 & , \\
\hline 6RACEL5 0+50H O+14M & 2 & 19 & 1 & 61 & 2.3 & 10 & 7 & 450 & 4.05 & 1 & 5 & N0 & 3 & 22 & 1 & 2 & 2 & 88 & . 17 & . 033 & 1 & 19 & . 39 & 11. & .08 & 2 & 1.75 & . 01 & . 05 & \(!\) & 6
19 \\
\hline 6RACEIS O+504 O+37E & 1 & 1 & 11 & 20 & . 5 & 3 & 3 & 240 & 2.54 & 2 & 5 & HD & 2 & 22 & 1 & 7 & 2 & 70 & . 21 & . 013 & 7 & 9 & . 01 & 121 & . 09 & 2 & . 84 & . 01 & .05 & 1 & 19 \\
\hline GRACEES5 Ot50N O+50E & 1 & 7 & 7 & 52 & . 9 & 6 & 4 & 246 & 2.75 & 2 & 5 & N1 & 1 & 24 & 1 & 2 & 2 & 68 & . 20 & . 013 & 7 & 17 & . 22 & 90 & . 05 & 2 & 1.44 & . 01 & . 09 & 1 & 1 \\
\hline GRACEIS O+50M OHIJE & 1 & 14 & 12 & \(13!\) & . 3 & 7 & 1 & 9日2 & 3.36 & 2 & 5 & N0 & 2 & 47 & 1 & 2 & 2 & 73 & . 62 & . 025 & 1 & 16 & . 47 & 135 & . 05 & 2 & 2.04
1.49 & . 01 & . 12 & 1 & 110 \\
\hline GRACE \(550+501 \mathrm{H}\) O+75E & 2 & 1 & 17 & 37 & . 2 & 4 & 4 & 24 & 3.44 & 5 & 5 & NO & 2 & 12 & 1 & 1 & 2 & 59 & . 20 & .018 & 1 & 7 & . 14 & 112 & . 05 & 2 & 1.49 & . 01 & . 12 & 1 & 10 \\
\hline ERACEIS O+501 \(2+00 \mathrm{E}\) & 4 & 37 & 80 & 107 & 1.1 & 10 & 8 & 178 & 4.11 & d & 5 & H0 & 1 & 37 & 1 & 2 & 3 & 11 & . 34 & . 074 & 7 & 11 & . 53 & 84 & . 09 & 2 & 2.14 & . 01 & . 01 & 1 & 6 \\
\hline GRACEE 5 O+501 \(2+255\) & 1 & 18 & 11 & 58 & . 3 & 12 & 7 & 372 & 4.16 & 3 & 5 & ND & 3 & 25 & 1 & 2 & 2 & 60 & . 17 & . 113 & 8 & 21 & . 57 & 97 & . 06 & 4 & 3. 08 & . 01 & . 05 & 1 & \(!\) \\
\hline SRACEIS O+J7\% Ot75 & 2 & 24 & 13 & 12 & . 4 & 12 & 7 & 435 & 3.38 & 3 & 5 & HD & 2 & 21 & 1 & 3 & 2 & 74 & .23 & . 020 & 7 & 19 & .51 & 90
110 & . 07 & 2 & 1.86
2.45 & . 01 & . 07 & 1 & 5 \\
\hline GRACEL5 O+J7\% O+624 & 2 & 25 & 13 & 114 & 1.1 & \(t\) & 7 & 727 & J. 11 & 5 & 5 & N0 & 3 & 23 & 1 & 1 & 2 & 79 & .15 & . 053 & 8 & 18 & . 31 & 150 & . 04 & 2 & 2.15
4.51 & . 01 & . 14 & 1 & 4 \\
\hline GRACEIS O+37K \(0+504\) & 2 & 79 & 27 & 140 & 4.6 & 14 & 13 & 707 & 4.71 & 1 & 5 & HD & 2 & 18 & 1 & 2 & 2 & 61 & . 37 & . 069 & 15 & It & . 41 & 155 & . 04 & 2 & 4.51 & & & 1 & 1 \\
\hline 6RACES5 O+ 774 O O+37: & 1 & 7 & 1 & 57 & . 4 & 4 & 3 & 177 & 2.23 & 2 & 5 & ND & 3 & 29 & 1 & 2 & 2 & 70 & . 20 & . 011 & 7 & 13 & . 20 & 111 & . 05 & 6 & 1.14 & . 01 & . 06 & 1 & 1 \\
\hline ERACEIS 0+37\% O+254 & 2 & 44 & 17 & 279 & 1.8 & 16 & 12 & 890 & 7.61 & 2 & 5 & NA & 3 & 43 & 1 & 2 & 3 & 174 & . 52 & . 035 & 18 & 34 & .41 & 187 & . 04 & 7 & 2.51 & . 02 & . 06 & 1 & 530 \\
\hline GRAEES5 \(0+37 \mathrm{H} 0+13 \mathrm{~W}\) & 2 & 17 & 16 & 117 & 2.6 & 4 & 4 & 520 & 3.04 & 1 & 5 & HD & 1 & 23 & 1 & 2 & 2 & 65 & . 19 & . 069 & 10 & 13 & . 16 & 150 & . 05 & 2 & 1.77 & 01 & OS & 1 & 1 \\
\hline GRACE15 0+251 \(0+754\) & 5 & 40 & 12 & 72 & . 4 & 12 & 7 & 790 & 2.83 & 2 & 5 & HD & 7 & 71 & & 2 & 2 & 55 & .90 & . \(08!\) & 17 & 19 & . 60 & 132 & . 07 & 2 & 1.05 & 01 & . 05 & 1 & 1 \\
\hline CRACEI5 O+25 \(0+4\) SLI & - & 45 & 14 & 44 & .2 & 14 & 1 & 853 & 2.80 & 4 & 5 & N0 & 1 & 93 & 1 & 2 & 2 & 5 & .70 & . 081 & 17 & 19 & . 66 & 142 & . 07 & & & & & & \\
\hline CRACE15 \(0+25010050{ }^{\circ}\) & 2 & 30 & 24 & 171 & . 5 & 3 & 12 & 1869 & 4.53 & 10 & 5 & N1 & 1 & 2 B & 1 & 13 & 2 & 94 & . 40 & . 071 & 11 & 7 & . 75 & 174 & . 04 & 2 & 3.88 & . 01 & . 16 & 1 & 1 \\
\hline CRACEIS 0+251 06574 & 1 & 64 & 12 & 118 & .4 & 16 & \& & 627 & J. 22 & 2 & 5 & ND & 1 & 102 & 1 & 2 & 2 & 60 & 1.05 & . 045 & 11 & 23 & .72 & 113 & . 06 & 2 & 2.54 & . 02 & . 07 & 1 & 1 \\
\hline GRACEIS 0+25K \(0+274\) & 10 & 59 & 9 & 114 & . 6 & 12 & 9 & 1277 & 7.39 & 3 & 6 & WD & 1 & 85 & \(!\) & 2 & 2 & 51 & . 92 & . 011 & 18 & 16 & . 56 & 171 & . 05 & 2 & 2.02 & . 01 & . 04 & 1 & 1 \\
\hline GRACEES O+25N \(0+251\) & 1 & 34 & 8 & 12 & . 1 & 12 & 1 & 173 & 3.22 & 3 & 5 & KD & d & 59 & 1 & 3 & 3 & 56 & . 91 & . 071 & 12 & 15 & . 77 & 109 & . 02 & 3 & 2.02 & . 01 & . 07 & 1 & 1 \\
\hline GRACEEES \(0+251 \mathrm{O}\) O 1314 & 7 & \(t 0\) & 12 & 110 & . 5 & 14 & 1 & 741 & 2.43 & 2 & 5 & MD & 1 & 100 & 1 & 2 & 2 & 49 & 1.17 & . 085 & 18 & 20 & . 67 & 143 & . 06 & 5 & 2.23 & . 01 & . 07 & 1 & 1 \\
\hline GRACEI5 0+10K \(0+75 \mathrm{~N}\) & 1 & 35 & 7 & 83 & . 1 & 12 & 7 & 547 & 2.48 & 2 & 5 & K0 & 1 & 75 & \(!\) & 2 & 2 & 11 & . 78 & . 049 & 14 & 16 & . 42 & 123 & . 06 & 2 & 1.74 & . 01 & . 05 & 1 & 1 \\
\hline GRACEES O+10N O+63Y & & 13 & 9 & 89 & . 3 & 12 & - & 911 & 2.88 & 1 & 5 & WD & 4 & 79 & 1 & 2 & 2 & 54 & . 84 & . 077 & 16 & 11 & . 64 & 136 & . 06 & 2 & 1.93 & . 01 & . 06 & 1 & 2 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline ERACEES O+101 O+50Y & 7 & 54 & 14 & 97 & . 2 & 13 & 7 & 757 & 3.13 & 2 & 5 & NO & J & 90 & 1 & 2 & 2 & 60 & . 92 & . 0110 & 17 & 19 & . 18 & 153 & . 06 & 3 & 2.01 & . 02 & . 06 & 1 \\
\hline GRAEE \(150+10 \mathrm{Na} 0+37 \mathrm{M}\) & 7 & 53 & 15 & 97 & . 3 & 14 & 8 & 721 & 2.97 & 2 & 5 & ND & J & 95 & 1 & 2 & 2 & 55 & 1.01 & . 084 & 16 & 19 & . 68 & 159 & . 04 & 2 & 2.06 & . 02 & . 07 & 1 \\
\hline ERACEIS O+10N 0+25W & 5 & 29 & 1 & 71 & .1 & 9 & 1 & 125 & 2.18 & 2 & 5 & H0 & 2 & 80 & 1 & 2 & 2 & 46 & . 76 & . 057 & 10 & 11 & . 62 & 103 & . 07 & 2 & 1.46 & . 02 & . 07 & 1 \\
\hline SRACEI5 \(0+10 \mathrm{Na}\) & 4 & 44 & 12 & 10 & . 1 & 5 & 5 & 451 & 2.42 & 2 & 5 & ND & 1 & 52 & 1 & 2 & 2 & 51 & . 74 & . 053 & 1 & 13 & . 31 & 160 & . 02 & 3 & 1.19 & . 01 & . 10 & 1 \\
\hline ERACEIS \(0+00 \mathrm{M} 1+00 \mathrm{M}\) & 3 & 17 & 15 & 67 & 1.2 & 6 & 4 & 356 & 4.11 & 7 & 5 & N0 & 1 & 16 & 1 & 2 & 2 & 73 & .14 & . 045 & 12 & 13 & . 33 & 111 & . 05 & 2 & 2.45 & . 01 & . 07 & 1 \\
\hline SRACE15 O+OOH \(0+75 \mathrm{~L}\) & 1 & 13 & 15 & 59 & . 1 & 1 & 5 & 491 & 3.62 & 5 & 5 & HD & 1 & 35 & 1 & 1 & 2 & 55 & . 17 & . 051 & 10 & 1 & . 37 & 146 & . 03 & 4 & 2.46 & . 01 & . 14 & 1 \\
\hline ERACEIS O+00M \(0+654\) & 2 & 15 & 15 & 52 & . 1 & 3 & 7 & 772 & 2.77 & 2 & 5 & H0 & 1 & 42 & 1 & 2 & 2 & 58 & . 41 & . 027 & 7 & 7 & . 30 & 121 & . 08 & 2 & 1.69 & . 01 & . 15 & 1 \\
\hline GRACEIS O+00 \(0+50 \mathrm{H}\) & 2 & 10 & 13 & 53 & . 1 & 1 & 5 & 578 & 2.51 & 2 & 5 & HD & 1 & 28 & 1 & 2 & 2 & 55 & . 51 & .028 & 9 & 1 & . 18 & 100 & . 04 & 2 & 1.95 & . 01 & . 16 & 1 \\
\hline ERACEI5 O+00\% O+384 & 2 & 57 & 32 & 117 & 1.1 & 24 & 16 & t386 & 5.00 & 2 & 5 & ND & 2 & 38 & 1 & 2 & 2 & 102 & . 45 & . 094 & 27 & 32 & . 60 & 327 & . 03 & 2 & 5.39 & . 01 & . 04 & 1 \\
\hline 6RACEI5 O+OOH \(0+25 \mathrm{~L}\) & \(\downarrow\) & 40 & 14 & 113 & . 3 & 13 & 7 & 122 & 2.51 & 2 & 5 & H0 & 1 & 10 & 1 & 2 & 2 & 31 & . 15 & .06! & 12 & 21 & . 57 & 105 & . 05 & 2 & 2.12 & . 01 & . 04 & 1 \\
\hline GRACEIS O+00N O+134 & 1 & 14 & 15 & 86 & 1.1 & 2 & 5 & 476 & 3.17 & 3 & 5 & ND & 1 & 36 & \(t\) & 3 & 2 & 63 & . 13 & . 040 & 15 & 7 & . 35 & 131 & . 03 & 2 & 2.23 & . 01 & . 10 & 1 \\
\hline ERACEIS O+00N O+00E & 2 & 13 & 13 & J & . 1 & 1 & 4 & 236 & 4.67 & 7 & 5 & ND & 1 & 16 & 1 & 2 & 2 & 104 & . 11 & . 073 & 1 & 17 & . 14 & 11 & . 06 & 5 & 1.27 & . 01 & . 04 & 2 \\
\hline 6RACEE5 OtOOM O+I3E & 2 & 16 & 13 & 50 & .4 & 5 & 1 & 437 & 4.45 & 5 & 5 & ND & 1 & 23 & 1 & 2 & 2 & 86 & . 21 & . 069 & 8 & 15 & . 26 & 80 & . 05 & 2 & 1.91 & . 01 & . 05 & 1 \\
\hline SRACEIS 0+001 0+50E & 1 & 18 & 10 & 54 & . 1 & 12 & 7 & 347 & 3.14 & 4 & 5 & HD & 2 & 37 & 1 & & 2 & 54 & . 11 & . 054 & 1 & 18 & . 51 & 123 & . 05 & 4 & 2.18 & . 01 & . 06 & 1 \\
\hline ERACEI5 O+00\% O+75E & 2 & 14 & 11 & 39 & . 1 & 1 & 5 & 240 & 3.86 & 4 & 5 & N0 & 2 & 26 & 1 & 3 & 2 & 102 & . 19 & .033 & 7 & 18 & . 25 & 67 & . 07 & 2 & 1.39 & . 01 & . 04 & 2 \\
\hline SRACEES 0+00N 1+00E & 2 & 17 & 17 & 43 & . 1 & 1 & 7 & 312 & 5.56 & 4 & 5 & HO & 3 & 18 & 1 & 2 & 2 & 117 & . 13 & . 093 & 7 & 25 & . 37 & 19 & . 07 & 2 & 2.56 & . 01 & . 04 & 1 \\
\hline ERACEI5 O+00k 1+13E & 2 & 14 & 12 & B & . 1 & 12 & 5 & 287 & 4.22 & 5 & 5 & HD & 2 & 14 & 1 & 2 & & 64 & . 09 & . 145 & ? & 24 & . 31 & 49 & . 05 & 3 & 2.20 & . 01 & . 07 & 1 \\
\hline CRACE15 0+00k 1+25E & 2 & 14 & 10 & 62 & .1 & 10 & 1 & 279 & 4.15 & 8 & 5 & HO & 2 & 16 & 1 & 2 & 1 & 17 & . 13 & . 115 & 1 & 25 & . 34 & 19 & . 05 & 2 & 2.43 & . 01 & . 05 & 1 \\
\hline 6RACEIS O+00K 1+50E & 1 & 12 & 1 & 62 & .1 & 4 & 4 & 233 & 3.51 & 2 & 5 & KN & 1 & 12 & 1 & 2 & 2 & 11 & . 09 & . 059 & 7 & 17 & . 16 & 4 & . 03 & 2 & 1.72 & . 01 & . 05 & 1 \\
\hline CRACEIS \(0+00 \mathrm{H}\) 1+75E & 2 & 13 & 10 & 88 & . 3 & 10 & 7 & 285 & 4.30 & 5 & 5 & N0 & 3 & 26 & 1 & 2 & 2 & 17 & . 19 & . 034 & 8 & 20 & . 37 & 101 & . 04 & 2 & 2.59 & . 01 & . 08 & 1 \\
\hline ERACELS O+00k 2+00E & 1 & 10 & I & 50 & . 1 & 5 & 1 & 254 & 3.58 & 2 & 5 & KD & 3 & 25 & 1 & 3 & 2 & 80 & . 15 & . 035 & 7 & 16 & . 24 & 68 & . 05 & 4 & 1.62 & . 01 & . 04 & 1 \\
\hline GRACEIS 0+60H2+251 & 2 & 10 & 12 & 110 & . 1 & 7 & 6 & 402 & 3.15 & 2 & 5 & NB & 2 & 18 & 1 & 2 & I & 67 & . 19 & .091 & 7 & 17 & . 25 & 43 & . 04 & 2 & 2.07 & . 01 & . 07 & 1 \\
\hline ERACEI5 0+505 0+13E & 2 & 23 & 12 & 65 & . 6 & 14 & 4 & 312 & 4.10 & 7 & 5 & HD & 3 & 16 & 1 & 2 & 2 & 76 & . 12 & . 112 & 1 & 27 & . 36 & 81 & . 04 & 2 & 3.14 & . 01 & . 05 & 1 \\
\hline SRACEIS O+505 0+25E & 2 & 20 & 10 & 17 & . 1 & 21 & 9 & 320 & 4.63 & 8 & 5 & N0 & 1 & 15 & 1 & 2 & I & 49 & . 04 & . 099 & 7 & 34 & . 52 & 114 & . 02 & 2 & 2.44 & . 01 & . 06 & 1 \\
\hline 6RACEI5 O+505 0+36E & 1 & 10 & 7 & 95 & .1 & 1 & 4 & 224 & 3.13 & 2 & 5 & ND & 3 & 15 & 1 & 2 & 2 & 44 & . 13 & . 075 & 8 & 21 & . 26 & 80 & . 04 & 2 & 1.56 & . 01 & . 05 & 1 \\
\hline CRACEIS 0+505 O+50E & 1 & 14 & 1 & 65 & .1 & 10 & \(d\) & 311 & 3.54 & 4 & 5 & ND & 2 & 25 & 1 & 2 & 2 & \(\pi\) & . 24 & . 047 & 7 & 20 & . 32 & 13 & . 05 & 2 & 1.54 & . 01 & . 05 & 1 \\
\hline ERACEIS 0+505 0+67E & 1 & 13 & 9 & 41 & .3 & 6 & 4 & 257 & 2.67 & 3 & 5 & ND & 2 & 19 & 1 & 2 & 2 & 59 & . 17 & . 036 & 4 & 15 & . 17 & B3 & . 04 & 2 & 1.43 & . 01 & . 05 & 1 \\
\hline ERALEIS 0+505 0+75E & 1 & 15 & 1 & 57 & . 1 & 13 & 1 & 276 & 3.19 & 1 & 5 & ND & 3 & 20 & 1 & 2 & 2 & 43 & . 11 & . 049 & 1 & 24 & . 42 & 108 & . 06 & 2 & 1.68 & . 01 & . 05 & 1 \\
\hline GRACEIS O+505 O+MEE & 2 & 10 & 10 & 41 & . 3 & 6 & 4 & 247 & 3.57 & 3 & 5 & ND & 1 & 20 & 1 & 3 & 2 & 62 & . 14 & . 077 & 8 & 17 & . 23 & 62 & . 04 & 2 & 1.73 & . 01 & . 07 & 1 \\
\hline gracers 0+505 1+00E & 2 & 13 & 1 & 75 & . 1 & \(b\) & 5 & 219 & 3.69 & 1 & 5 & HD & 2 & 18 & 1 & 2 & 2 & 73 & . 12 & .083 & 7 & 19 & . 24 & 19 & . 03 & 2 & 1.97 & . 01 & . 05 & 1 \\
\hline ERACEIS 0-50S 1+25E & 2 & 13 & 12 & 67 & .1 & 5 & 5 & 225 & 4.61 & 4 & 5 & Ho & 3 & 17 & 1 & 2 & 2 & 97 & . 11 & . 103 & 7 & 21 & . 21 & 75 & . 03 & 2 & 2.39 & . 01 & . 04 & 1 \\
\hline GRACEIS 0450S 1+50E & 2 & 13 & 7 & 60 & . 4 & 1 & 5 & 201 & 3.63 & 3 & 5 & HD & 1 & 16 & 1 & 2 & 2 & 11 & . 04 & . 041 & 7 & 20 & . 20 & 7 & . 03 & 2 & 1.95 & . 01 & . 04 & 1 \\
\hline GRACEIS 0+505 1475E & 2 & 20 & 7 & 125 & . 1 & 11 & 1 & 546 & 5.59 & 2 & 5 & HI & 3 & 21 & 1 & 2 & 2 & 122 & . 22 & .081 & 9 & 23 & . 43 & 112 & . 05 & 2 & 2.11 & . 01 & . 07 & 1 \\
\hline GRACEIS 0+505 2+00E & 2 & 22 & 57 & 134 & . 1 & 12 & 7 & 337 & 5.17 & 3 & 5 & HD & 3 & 21 & 1 & 2 & 4 & 112 & . 21 & . 044 & 1 & 23 & . 11 & 94 & . 05 & 2 & 2.13 & . 01 & . 05 & 1 \\
\hline GRACEA5 1+005 0+00E & 1 & 19 & 5 & 49 & . 1 & 26 & 8 & 428 & 2.94 & 5 & 5 & H & 4 & 22 & 1 & 2 & 2 & 56 & . 21 & . 050 & 11 & 30 & . 418 & 111 & . 06 & 4 & 1.50 & . 01 & . 04 & 1 \\
\hline GRACEI5 1+00S 0+25E & 2 & 13 & 10 & 54 & . 1 & 1 & 1 & 130 & 3.22 & 5 & 5 & HD & 3 & 19 & 1 & 2 & 2 & 19 & . 07 & . 043 & 1 & 20 & . 19 & 11 & . 02 & 2 & 1.69 & . 01 & . 07 & 1 \\
\hline STD C/AL-S & 21 & 42 & 37 & 131 & 7.6 & 71 & 29 & 1038 & 4.06 & 11 & 11 & 8 & 10 & 54 & 19 & 17 & 17 & 60 & . 48 & . 090 & 41 & 63 & . 91 & 174 & . 07 & 31 & 1.90 & . 07 & . 15 & 13 \\
\hline
\end{tabular}
fraceis 14005 00t50e
 GRACEIS \(1+0050+17 E\) GRRCEESIS \(1+0050+17 E\)
GRACEIS \(1+005!+00 E\) GRACEIS \(1+005\) 1 \(1+35\)

SRACEIS 1+005 1+25E [RACE15 \(\mathrm{t}+00 \mathrm{~S}\) I+38E GRACEIS I+OOS 1450 E bracels \(1+005\) S \(1+75 \mathrm{E}\) SRACEIS \(1+005\) 2+00E

ERACEIS 1+505 0+00E GRACEI5 \(1+5050+25 E\) sRACEIS \(1+5050+50 E\) GRACELS \(1+505\) O+12E SRACEIS : 5 50S O 0 75E

6RACEIS ! +505 0+A7E GRACELS \(1+505\) 1+00E GRACELS \(1+505\) 1+13E 6RACEIS \(1+505 \mathrm{~S}\) +25E 6RACEIS \(1+5051+39 E\)

6RACEIS \(1+5051+505\) STD C/AU-5
GRACELS \(1+505\) thije GRACEIS \(1+505\) 1 1755 ERACEIS \(1+5052\) 200E

GRACE15 2+005 0+00E ERACES5 \(2+005\) O+25E 6AACEIS 2+005 O+50E ERACEIS \(2+0050+75 E\) ERACEIS \(2+005\) 1+00E

Enacels 2+005 1+25E TRACEELS \(2+005\) S \(1+50\) E chaceis 2 toos litiJe GRACE 15 2+005 \(1+75 E\) 6RACEIS 2+005 1+96E

ERACEIS 2+005 2+00E GRACESK \(2+5050+00 E\)
 1
5.09
\begin{tabular}{rrrrrr}
1 & 11 & 11 & 65 & .2 & 1 \\
1 & 15 & 11 & 62 & .1 & 10 \\
1 & 13 & 15 & 73 & .1 & 6 \\
1 & 11 & 7 & 64 & .1 & 1 \\
1 & 12 & 17 & 46 & .1 & 7
\end{tabular}
\begin{tabular}{lll}
7 & \(\mathbf{1 1 5}\) & 5.09 \\
1 & 390 & 6.34 \\
7 & 367 & 5.31 \\
4 & 265 & 3.20 \\
4 & 229 & 3.75
\end{tabular}
\[
\begin{array}{ll}
5 & N D \\
5 & K D \\
5 & H D \\
5 & H D \\
5 & K D
\end{array}
\]
\[
\begin{array}{lll}
1 & 27 & 1 \\
2 & 22 & 1 \\
3 & 37 & 1 \\
1 & 26 & 1 \\
1 & 19 & 1
\end{array}
\]
\begin{tabular}{lll}
2 & 2 \\
2 & 2 \\
2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
& 2 &
\end{tabular}
\begin{tabular}{rrrr}
114 & .25 & .110 & 7 \\
137 & .20 & .087 & 6 \\
132 & .30 & .057 & 7 \\
67 & .31 & .071 & 8 \\
84 & .17 & .036 & 7
\end{tabular}
\[
\begin{array}{ll}
23 & .38 \\
26 & .37 \\
17 & .10 \\
20 & .34 \\
22 & .25
\end{array}
\]
\[
\begin{array}{ll}
79 & .06 \\
12 & .06 \\
81 & .00 \\
70 & .06 \\
74 & .07
\end{array}
\]
\[
\begin{array}{llll}
4 & 1.75 & .01 & .04 \\
2 & 2.27 & .01 & .03 \\
1 & 1.55 & .01 & .04 \\
2 & 1.39 & .01 & .06 \\
7 & 1.35 & .01 & .05
\end{array}
\]
\begin{tabular}{ll}
1 & 12 \\
1 & 10 \\
1 & 15 \\
1 & 15
\end{tabular}
\[
\begin{array}{ll}
38 & 1 \\
62 & 1 \\
70 & 1 \\
65 & 1 \\
57 &
\end{array}
\]
\[
\begin{array}{rr}
.1 & 14 \\
.2 & 6 \\
.1 & 13 \\
.4 & 7 \\
.3 & 5
\end{array}
\]
\[
\begin{array}{rrr}
5 & 224 & 3.28 \\
1 & 257 & 3.69 \\
1 & 307 & 3.75 \\
7 & 2142 & 2.86
\end{array}
\]
\[
\begin{array}{lll}
2 & 19 & 1 \\
2 & 22 & 1
\end{array}
\]
\[
\begin{array}{rr}
5 & 259 \\
5.80 \\
\hline
\end{array}
\]
\[
\begin{array}{lll}
6 & 5 & N D \\
2 & 5 & \text { ND } \\
5 & 5 & \text { ND } \\
2 & 5 & \text { ND } \\
2 & 5 & \text { ND }
\end{array}
\]
\[
\begin{array}{lll}
2 & 22 & 1 \\
2 & 21 & 1 \\
1 & 32 & 1 \\
1 & 21 & .
\end{array}
\]
\begin{tabular}{ll}
2 & 2 \\
2 & 2 \\
2 & 2 \\
2 & 2 \\
2 & 2
\end{tabular}
\begin{tabular}{rrrr}
1 & .13 & .038 & 1 \\
22 & .16 & .033 & 7 \\
68 & .20 & .052 & 8 \\
55 & .42 & .025 & 14 \\
14 & .24 & .020 & 7
\end{tabular}
\[
\begin{array}{ll}
24 & : \\
18 & \\
25 & \cdot \\
17 & \cdot \\
17 & \cdot
\end{array}
\]
\[
\begin{aligned}
& .37 \\
& .20 \\
& .41 \\
& .25 \\
& .31
\end{aligned}
\]
\[
\begin{array}{ll}
14 & .07 \\
77 & .04 \\
90 & .07 \\
45 & .05 \\
14 & .04
\end{array}
\]
\[
\begin{array}{llll}
2 & 1.32 & .01 & .04 \\
4 & 1.69 & .01 & .05 \\
5 & 1.88 & .01 & .05 \\
2 & 1.67 & .01 & .05 \\
4 & 1.56 & .01 & .05
\end{array}
\]
\[
\begin{array}{llllll}
1 & 20 & 11 & 75 & 1 & 2 \\
1 & 91 & 7 & 14 & 1 & 1
\end{array}
\]

\[
\begin{array}{lll}
\mathbf{7} & 305 & 3.65 \\
1 & 350 & 4.59 \\
7 & 412 & 4.61 \\
5 & 265 & 3.41 \\
7 & 375 & 4.45
\end{array}
\]
\[
\begin{array}{ll}
.12 & .115 \\
.21 & .028 \\
.39 & .032 \\
.22 & .045 \\
.35 & .093
\end{array}
\]
\[
\begin{array}{r}
12 \\
4 \\
7 \\
1 \\
10
\end{array}
\]
\[
\begin{array}{lll}
53 & .55 \\
25 & .47 & 1 \\
19 & .30 & \\
17 & .30 & \\
23 & .41 &
\end{array}
\]
\[
\begin{aligned}
& 165 \\
& 100 \\
& 189 \\
& 101 \\
& 102
\end{aligned}
\]
\[
\begin{aligned}
& .04 \\
& .06 \\
& .06 \\
& .06 \\
& .07
\end{aligned}
\]
\[
\begin{aligned}
& 3.01 \\
& 2.03 \\
& 1.16 \\
& 1.80 \\
& 2.22
\end{aligned}
\]
\[
\begin{array}{ll}
3 & 3.00 \\
3 & 2.03 \\
3 & 1.46 \\
2 & 1.80 \\
1 & 2.28
\end{array}
\]
\[
\begin{aligned}
& .01 \\
& .01 \\
& .01 \\
& .01 \\
& .01
\end{aligned}
\]
\[
\begin{aligned}
& .01 \\
& .01 \\
& .06 \\
& .05 \\
& .05
\end{aligned}
\]


\[
\begin{array}{rr}
10 & 15 \\
12 & 114 \\
10 & 14 \\
12 & 10 \\
13 & 74
\end{array}
\]
\[
\begin{array}{ll}
.3 & 11 \\
.1 & 10 \\
.1 & 15 \\
.1 & 21 \\
.4 & 13
\end{array}
\]
6
6
6
6
6
\begin{tabular}{lll}
241 & 4.43 \\
285 & 4.11 \\
6 & 484 & 4.21 \\
6 & 335 & 4.05 \\
6 & 293 & 4.18
\end{tabular}
3
3
3
3
2
3
\[
\begin{array}{ll}
5 & \text { KD } \\
5 & \text { NB } \\
5 & \text { MD } \\
5 & \text { ND } \\
5 & \text { ND }
\end{array}
\]
\[
\begin{aligned}
& 2 \\
& 2 \\
& 2 \\
& 3 \\
& 2
\end{aligned}
\]
\[
\begin{aligned}
& 21 \\
& 14 \\
& 23 \\
& 26 \\
& 24
\end{aligned}
\]
\[
\begin{aligned}
& 2 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 2
\end{aligned}
\]
\[
\begin{array}{ll}
2 & 80 \\
2 & 78 \\
2 & 78 \\
2 & 75 \\
2 & 75 \\
2 & 78
\end{array}
\]
\(\begin{array}{ll}5 & 1.80 \\ 4 & 2.01 \\ 1 & 2.1 \\ 3 & 3.1\end{array}\) .01
.01
.01
.01
.01
.04
.05
.04
.05
.04
.04
.05
.04
.05
.045
1
1
17
1
23
52
22
22
26

22
19
23
17
28
78
57
71
12
78
92
79
18
58
68
10
197
101
156
144
126122
62
25
31
27

22
15
13
17
27.45
.87
.24
.53
.48
.44
.12
.19
.11
.44115
72
13
89
131\begin{tabular}{ll}
2 & 1.72 \\
\hline
\end{tabular}
\(\begin{array}{ll}.05 & 1 \\ .13 & 11\end{array}\)1
17
2
2
2
2
2
2
2
2
2
2 \(\begin{array}{ll}1 & 371 \\ 4 & 286 \\ 2 & 333 \\ 3 & 160\end{array}\)
\[
\begin{array}{rrrrrrrrrr}
1 & 19 & 6 & 46 & .1 & 22 & 1 & 272 & 2.69 & 4 \\
1 & 1 & 3 & 30 & .1 & 6 & 3 & 312 & 2.12 & 2 \\
2 & 14 & 6 & 78 & .1 & 7 & 6 & 347 & 5.25 & 2 \\
1 & 1 & 10 & 51 & .2 & 6 & 4 & 313 & 3.33 & 4 \\
1 & 20 & 7 & 67 & .2 & 14 & 6 & 242 & 3.95 & 4 \\
1 & 26 & 10 & 55 & .1 & 19 & 7 & 321 & 3.07 & 5 \\
1 & 1 & 1 & 46 & .2 & 5 & 3 & 190 & 3.01 & 3
\end{array}
\]

\[
\begin{array}{ll}
2 & 26 \\
1 & 25 \\
2 & 21 \\
1 & 17 \\
2 & 20
\end{array}
\]
\begin{tabular}{ll}
2 & 11 \\
2 & 50 \\
2 & 99 \\
2 & 72 \\
2 & 72
\end{tabular}
18
50
99
72
72
\[
\begin{array}{ll}
.11 & .036 \\
.17 & .032 \\
.12 & .076 \\
.11 & .062 \\
.13 & .076
\end{array}
\]
\[
\begin{array}{ll}
336 & 10 \\
32 & 8 \\
776 & 9 \\
162 & 1 \\
376 & 9
\end{array}
\]
\(\begin{array}{lll}59 & .18 & .072 \\ & 67 & .21 \\ .040\end{array}\)
\(\begin{array}{ll}26 & .49 \\ 17 & .18 \\ 21 & .36 \\ 20 & .16 \\ 26 & .44\end{array}\)
151
107
110
75
108
.07
.05
.07
.04
.07
\(\begin{array}{lll}2 & 2.14 & .01 \\ 2 & 1.00 & .01 \\ 2 & 2.16 & .01 \\ 3 & 1.31 & .01 \\ 2 & 2.14 & .01\end{array}\)
\(\begin{array}{ll}9 & 29 \\ 9 & 19\end{array}\)
\(\begin{array}{rrr}36 & 1.05 & \\ 4 & 1.44 & \\ 2 & 2.17 \\ 2 & 2.23 & \end{array}\)
\(\begin{array}{ccc}5 & 2.91 & .01 \\ 2 & 1.07 & .01 \\ 2 & .99 & .01 \\ 2 & 1.13 & .01 \\ 2 & 1.90 & .01\end{array}\)
.05
1
1
1
10
1
1
1
1
2
1
1
1
1
1
1
5
1
1
17
1
\[
\begin{aligned}
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1
\end{aligned}
\]
\[
\begin{array}{ll}
5 & \mathrm{HD} \\
5 & \mathrm{HD}
\end{array}
\]
\[
\begin{array}{lll}
3 & 27 & 1 \\
1 & 24 & 1
\end{array}
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline SAMPLEL & H0 & CII & P1 & 2 h & M6 & HI & CO & KH & FE & A5 & U & All & TH & SR & CD & 51 & BI & \(v\) & CA & P & L. & CR & H6 & & II & 1 & AL & NH & K & V & \\
\hline & PP & PPM & PPM & PPH & PPK & PPK & PPI & PPM & 1 & PPK & PPM & PPM & PPM & PM & PPM & PPM & PPM & PPM & 1 & 1 & PPM & PPM & 1 & PPM & 1 & PPM & 1 & I & 1 & PPM & PPB \\
\hline ERACEI5 2+50S 0+25E & 2 & 11 & \(1!\) & 64 & . 1 & 17 & 6 & 281 & 2.51 & 3 & 5 & ND & 3 & 22 & 1 & 2 & 2 & 55 & . 20 & . 029 & 1 & 23 & . 38 & 116 & . 04 & 2 & 1.73 & . 01 & . 07 & 1 & 1 \\
\hline ERACEES 2+50S 0+75E & 1 & 5 & 11 & 39 & . 1 & 5 & 2 & 184 & 1.40 & 2 & 5 & ND & 1 & 19 & 1 & 2 & 2 & 57 & . 15 & . 015 & 7 & 11 & . 20 & 15 & . 10 & 2 & . 77 & . 01 & . 05 & 1 & 1 \\
\hline GRACEES \(2+505\) 1+00E & 1 & 18 & 9 & 78 & . 3 & 13 & 5 & 511 & 2.43 & 1 & 5 & N0 & 2 & 31 & 1 & 3 & 2 & 59 & . 31 & . 032 & 7 & 20 & . 40 & 154 & . 06 & 2 & 1.33 & . 01 & . 08 & 1 & \(!\) \\
\hline ERACES \(2+5051+25 E\) & 2 & 8 & 10 & 45 & . 1 & 10 & 4 & 233 & 1.97 & 2 & 5 & ND & 2 & 19 & 1 & 2 & 2 & 50 & . 15 & . 013 & 8 & 19 & . 28 & 121 & . 06 & 2 & 1.39 & . 01 & . 04 & 2 & 1 \\
\hline 6RACEP \(2+5051+50 E\) & 2 & 11 & 9 & 62 & . 1 & 12 & 1 & 42 B & 3.41 & 1 & 5 & ND & 2 & 19 & 1 & 2 & 2 & 71 & . 15 & . 027 & 1 & 22 & . 37 & 107 & . 01 & 2 & 1.50 & . 01 & . 05 & 1 & 1 \\
\hline CRACEI5 2+50S 1+43E & 2 & 11 & 1 & 88 & . 1 & 10 & d & 113 & 3.54 & 5 & 5 & HD & 2 & 30 & 1 & 2 & 2 & 72 & . 23 & . 054 & 9 & 22 & . 30 & 138 & . 05 & 2 & 1.78 & . 01 & . 05 & 1 & 24 \\
\hline GRACEE \(2+5051+75 E\) & 1 & 10 & 11 & 76 & . 1 & 13 & 7 & 545 & 2.75 & 4 & 5 & ND & 1 & 20 & 1 & 2 & 3 & 59 & .19 & . 032 & 8 & 23 & . 40 & 147 & . 07 & 3 & 1.47 & . 01 & . 04 & 1 & 1 \\
\hline 6RACEIS \(2+5051+10{ }^{\text {d }}\) & 2 & 14 & \(\dagger\) & 92 & . 1 & 16 & 1 & 184 & 3.37 & 4 & 5 & HD & 3 & 29 & 1 & 2 & 2 & 70 & . 29 & . 064 & 1 & 25 & . 51 & 171 & . 06 & 2 & 1.83 & . 01 & . 05 & \(!\) & 2 \\
\hline GRACELI \(2+505\) 2+00E & 2 & 11 & 17 & 146 & . 1 & 15 & 7 & 76 & 3.90 & 4 & 5 & ND & 1 & 24 & 1 & 2 & 2 & 67 & . 24 & . 174 & 9 & 24 & . 43 & 121 & . 06 & 2 & 2.02 & . 01 & . 14 & 1 & 1 \\
\hline SRACEI5 2+505 2+12E & 2 & 13 & 9 & 11 & . 1 & 11 & 1 & 324 & 3.23 & 3 & 5 & ND & 1 & 26 & 1 & 2 & 2 & 12 & . 20 & .011 & 1 & 22 & . 33 & 59 & . 05 & 2 & 1.61 & . 01 & . 06 & 1 & 1 \\
\hline 6RACEL5 2+505 2+25E & 2 & 15 & 9 & 91 & . 1 & 11 & 7 & 351 & 4.57 & 3 & 5 & ND & 2 & 26 & 1 & 2 & 2 & 102 & . 25 & . 057 & 7 & 26 & . 36 & 85 & . 07 & 2 & 1.29 & . 01 & . 06 & 1 & 1 \\
\hline GRACEIS 2+505 2+3EE & 2 & 13 & 18 & 41 & . 3 & 1 & 5 & 257 & 3.10 & 5 & 5 & ND & & 18 & 1 & 2 & 2 & 10 & . 17 & . 022 & 7 & 20 & . 20 & 19 & . 07 & 2 & 1.09 & . 01 & . 08 & 1 & 1 \\
\hline GRACE15 2+505 2+50E & 2 & 14 & 14 & 71 & . 1 & 11 & 1 & 758 & 4.57 & 5 & 5 & ND & 1 & 29 & 1 & 2 & 2 & 115 & . 27 & . 046 & 7 & 24 & . 45 & 105 & . 08 & 2 & 1.53 & . 01 & . 08 & 1 & 1 \\
\hline GRACERS \(3+005\) O+00E & 2 & 10 & 6 & 43 & . 1 & 3 & 1 & 362 & 2.16 & 5 & 5 & WD & 1 & 24 & 1 & 2 & 2 & 47 & . 17 & . 017 & 7 & 14 & . 17 & 78 & . 06 & 3 & . 17 & . 01 & . 05 & 1 & 43 \\
\hline GRACEI5 3+005 0+25E & 2 & 10 & 1 & 51 & . 1 & 7 & 4 & 230 & 2.69 & 2 & 5 & ND & 3 & 24 & 1 & 3 & 2 & 74 & . 16 & . 021 & 日 & 17 & . 25 & 80 & . 09 & 2 & 1.05 & . 01 & . 01 & 1 & 1 \\
\hline SRACEIS 3+00S 0+50E & 7 & 10 & 1 & 45 & .1 & 11 & 4 & 211 & 2.67 & 5 & 5 & ND & 1 & 22 & 1 & 2 & 2 & 71 & . 22 & . 017 & 1 & 20 & . 30 & 84 & . 08 & 2 & 1.19 & . 01 & . 05 & 1 & 1 \\
\hline ERACEI5 \(3+005\) 0+75E & 2 & 15 & 11 & 113 & . 1 & 11 & 7 & 452 & 4.12 & 5 & 5 & HD & 1 & 22 & 1 & 2 & 2 & 42 & . 19 & . 055 & 1 & 24 & . 41 & 109 & . 01 & 1 & 1.61 & . 01 & . 06 & 1 & 1 \\
\hline GRACEIS J+00S 1+00E & 1 & 13 & , & 54 & . 1 & 11 & 5 & 219 & 2.37 & 2 & 5 & Hi & 2 & 30 & 1 & 2 & 2 & 61 & . 34 & . 006 & 1 & 19 & . 33 & 103 & . 05 & 4 & 1.25 & . 01 & . 05 & 1 & 1 \\
\hline GRacels J+OOS 1+50E & 2 & 14 & 12 & 81 & . 1 & 14 & 6 & 332 & 3.73 & 5 & 5 & ND & 2 & 19 & 1 & 2 & 2 & 81 & . 17 & . 032 & 7 & 23 & . 40 & 96 & . 08 & 2 & 1.53 & . 01 & . 04 & 1 & 1 \\
\hline GRACEIS J+005 1+75E & 2 & 22 & 12 & 61 & . 2 & 14 & \(t\) & 629 & 3.57 & 8 & 5 & ND & 2 & 26 & 1 & 2 & 2 & 79 & . 25 & . 046 & 1 & 23 & . 50 & 121 & . 07 & 2 & 1.56 & . 01 & . 06 & 1 & 11 \\
\hline 6RACE 35 3+005 1+8BE & 2 & 19 & 14 & 71 & . 3 & 7 & 1 & 126 & 3.14 & 2 & 5 & H0 & 1 & 22 & 1 & 2 & 2 & 65 & . 21 & . 054 & 7 & 22 & . 46 & 137 & . 01 & 2 & 1.61 & . 01 & . 04 & 1 & . 54 \\
\hline 6RACE:5 3+005 2+00E & 2 & 86 & 25 & 144 & . 7 & 36 & 17 & 3465 & 4.73 & 7 & 5 & HD & 3 & 55 & 1 & 2 & 2 & 81 & . 61 & .066 & 19 & 43 & . 72 & 357 & . 02 & 2 & 4.01 & . 01 & . 12 & 1 & 1 \\
\hline ERACE15 3+005 2+15E & 2 & 24 & 17 & 83 & 1.6 & 11 & 4 & 707 & 3.43 & 5 & 5 & N0 & 1 & 25 & 1 & 2 & 2 & 61 & . 20 & . 083 & 16 & 20 & . 29 & 144 & . 03 & 2 & 1.49 & . 01 & . 04 & 1 & 340 \\
\hline GRACE15 3+00S 2+25E & 1 & 21 & a & 70 & . 2 & 15 & 1 & 438 & 3.99 & 4 & 5 & ND & 1 & 31 & 1 & 2 & 3 & 11 & . 33 & . 030 & 9 & 29 & . 47 & 162 & . 06 & 2 & 1.35 & . 01 & . 07 & 1 & 167 \\
\hline ERACEIS 3+005 2+30E & 1 & 14 & 13 & 4 & . 3 & 5 & 3 & 222 & 1.72 & 2 & 5 & HD & 1 & 28 & 1 & 2 & 2 & 43 & . 37 & . 024 & 7 & 14 & . 14 & 137 & . 03 & 2 & . 81 & . 01 & . 07 & 2 & 1 \\
\hline 6RACEI5 3+00S 2+50E & 1 & 35 & 11 & 67 & . 3 & 20 & 7 & 338 & 2.97 & 2 & 5 & KD & 2 & 38 & 1 & 2 & 2 & 51 & . 78 & . 016 & 10 & 27 & . 49 & 128 & . 03 & 2 & 2.05 & . 01 & . 07 & 1 & 1 \\
\hline GRACEIS 3+OOS 2+G3E & 1 & 23 & 15 & 81 & . 1 & 17 & 7 & 555 & 2.85 & 2 & 5 & N0 & 2 & 30 & 1 & 2 & 2 & 54 & . 47 & . 010 & 8 & 25 & . 41 & 109 & . 04 & 2 & 1.70 & . 01 & . 05 & 1 & 1 \\
\hline GRACEIS \(3+005\) 2+75E & 1 & 24 & 7 & 76 & . 2 & 13 & 11 & 573 & 4.91 & 5 & 5 & HD & 2 & 21 & 1 & 2 & 2 & 96 & . 35 & . 060 & 7 & 21 & . 73 & 82 & . 03 & 2 & 1.80 & . 01 & . 01 & 1 & 1 \\
\hline GRACEIS 3+005 2+88E & 1 & 35 & 12 & 48 & .2 & 14 & 10 & 533 & 4.36 & 2 & 5 & H0 & 1 & 18 & 1 & 2 & 2 & 90 & . 22 & . 055 & 7 & 24 & . 82 & 74 & . 04 & 2 & 2.18 & . 01 & . 04 & 1 & 1 \\
\hline GRACEIS 1+00K 1+60N & 1 & 11 & 1 & 69 & . 1 & 1 & \% & 110 & 3.31 & 2 & 5 & HD & 2 & 31 & 1 & 2 & 2 & 14 & . 37 & . 022 & 6 & 16 & . 37 & 07 & . 011 & 3 & 1.00 & . 01 & . 03 & 1 & 1 \\
\hline CRACEE5 1+00K 0+adM & 1 & 15 & 12 & 75 & . 4 & 1 & 5 & 272 & 3.59 & 3 & 5 & HD & J & 16 & 1 & 2 & 2 & 13 & . 15 & . 033 & \% & 14 & . 23 & 75 & . 07 & 2 & 1.39 & . 01 & . 03 & 1 & 9 \\
\hline GRACEIS 1+001 0+754 & 1 & 11 & 10 & 95 & . 1 & 12 & 7 & 308 & 3.98 & 3 & 5 & H0 & 1 & 26 & 1 & 2 & 2 & 79 & . 21 & . 063 & 7 & 16 & . 37 & 116 & . 01 & 2 & 1.71 & . 01 & . 04 & 1 & 1 \\
\hline GRACEIS 1+00N 0+12\% & 1 & 16 & 9 & 58 & . 3 & 11 & 1 & 339 & 3.50 & 2 & 5 & HD & 3 & 21 & 1 & 2 & 2 & 76 & . 21 & . 079 & 7 & 17 & . 41 & 106 & . 08 & 3 & 1.78 & . 01 & . 05 & 2 & 1 \\
\hline GRACEIS I \(400 \mathrm{~N} 0+501\) & 1 & 16 & 9 & 110 & . 1 & 10 & 7 & 391 & 4.69 & 3 & 5 & HD & 3 & 20 & 1 & 2 & 2 & 105 & . 20 & . 065 & 8 & 21 & . 36 & 73 & . 07 & 9 & 1.48 & . 01 & . 03 & 1 & 3 \\
\hline CRACEIS 1+00\% 0+25N & 1 & 14 & 1 & 102 & . 3 & 10 & 7 & 356 & 4.18 & 4 & 5 & KD & 3 & 19 & 1 & 2 & 2 & 98 & 18 & . 042 & 7 & 19 & . 38 & 71 & . 04 & 1 & 1.74 & . 01 & . 04 & 1 & 1 \\
\hline STD C/Av-s & 20 & 60 & 39 & 131 & 7.5 & 70 & 24 & 1074 & 4.12 & 40 & 19 & 7 & 40 & 52 & 19 & 17 & 21 & 59 & . 49 & . 090 & 10 & 57 & . 93 & 180 & . 07 & 35 & 1.81 & . 04 & . 13 & 12 & 51 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline n－2291 & 1 & 12 & 1 & 54 & 1.1 & 1 & 6 & 796 & 2.71 & 5 & 5 & ND & 3 & 33 & 1 & 1 & 2 & 39 & ． 91 & ． 060 & 9 & 4 & ． 62 & 5！ & ． 08 & 了 & ． 97 & ． 02 & ． 18 & 1 & 13 \\
\hline R－2292 & 1 & 1 & 3 & 44 & ． 3 & 1 & 7 & 873 & 2.94 & 7 & 5 & ND & 4 & 25 & 1 & 10 & 2 & 12 & 1.30 & ． 067 & 10 & 2 & ．\({ }^{\text {d }}\) & 56 & ． 07 & 3 & ． 97 & ． 02 & ． 20 & 1 & 2 \\
\hline R－2293 & 1 & 82 & 16 & 43 & 13.1 & 2 & 4 & 756 & 2.19 & 19 & 5 & ND & 2 & 13 & 1 & 2 & 2 & 22 & ． 23 & ． 043 & 5 & 3 & ． 40 & 72 & ． 08 & 3 & ． 65 & ． 01 & ． 13 & 1 & 117 \\
\hline R－2294 & 1 & 15 & 5 & 42 & 1.1 & 2 & 4 & 549 & 2.21 & 13 & 5 & ND & 2 & 14 & 1 & 2 & 2 & 24 & ． 23 & ． 047 & 6 & 3 & ． 40 & 110 & ． 08 & 7 & ． 68 & ． 01 & ． 14 & 1 & 3670 \\
\hline R－2295 & 1 & 14 & 13 & 59 & 1.7 & 2 & 5 & 601 & 2.86 & 18 & 5 & H0 & 2 & 10 & 1 & 2 & 2 & 26 & ． 14 & ． 060 & 8 & 2 & ． 55 & \(7!\) & ． 05 & 2 & ． 73 & ． 01 & ． 17 & 1 & 25 \\
\hline 8－2296 & 2 & 15 & 12 & 54 & 2.0 & 2 & 3 & 475 & 2.15 & 31 & 5 & H0 & 2 & 17 & 1 & 2 & 2 & 14 & ． 04 & ． 048 & 12 & 1 & ． 40 & 529 & ． 01 & 2 & ．\({ }^{\text {d }}\) & ． 01 & ． 24 & 1 & 31 \\
\hline 1－2297 & 1 & 15 & 12 & 34 & 1.1 & 1 & 3 & 349 & 2.27 & 39 & 5 & MD & 2 & 7 & 1 & 2 & 2 & 13 & ． 05 & ． 048 & 10 & \(t\) & ． 31 & 118 & ． 01 & 2 & ． 49 & ． 01 & ． 17 & 1 & 10 \\
\hline 8－2298 & 1 & 11 & 1 & 69 & 2.6 & 3 & 3 & 462 & 2.08 & 37 & 5 & ND & 1 & 6 & 1 & 2 & 2 & 10 & ． 05 & ． 039 & 9 & 1 & ． 42 & 61 & ． 01 & 3 & ． 17 & ． 01 & ． 17 & 1 & 19 \\
\hline R－2299 & 1 & 11 & 10 & 80 & 27.0 & 3 & 7 & 781 & 2.82 & 4 & 5 & HD & 3 & 50 & 1 & 2 & 2 & 37 & ． 49 & ． 062 & 7 & 2 & ． 10 & 41 & ． 11 & 2 & 1.25 & ． 01 & ． 12 & 1 & 91 \\
\hline R－2300 & 1 & 49 & 28 & 13 & 56.1 & 2 & 4 & 784 & 2.25 & 2 & 5 & ND & 2 & 30 & 1 & 2 & 2 & 34 & ． 36 & ． 050 & 1 & 3 & ． 66 & 27 & ． 09 & 8 & ． 93 & ． 01 & ． 10 & 1 & 450 \\
\hline R－6805 & 1 & 5 & 2 & 37 & ． 2 & 1 & 1 & 448 & 1.64 & 2 & 5 & ND & 1 & 13 & 1 & 2 & 2 & 27 & ． 34 & ． 038 & \(\downarrow\) & 1 & ． 44 & 34 & ． 06 & 4 & ． 50 & ． 01 & ． 09 & \(!\) & 23 \\
\hline 7－6808 & 1 & 4 & 3 & 10 & 2.2 & 1 & 2 & 242 & ． 87 & 2 & 5 & MD & & 5 & 1 & 2 & 2 & 11 & ． 12 & ． 011 & 3 & 2 & ． 04 & 29 & ． 02 & 1 & ． 19 & ． 01 & ． 07 & 1 & 2 \\
\hline 8－6807 & 1 & 2 & 7 & 56 & ． 1 & 2 & 6. & 547 & 2.85 & 3 & 5 & HD & 3 & 10 & 1 & 7 & 2 & 50 & ． 11 & ． 044 & 12 & 3 & ． 62 & 44 & ． 04 & 4 & ． 77 & ． 02 & ． 15 & 1 & 1 \\
\hline 8－6808 & 1 & 12 & 11 & 88 & ． 3 & 4 & 6 & 917 & 2.48 & 2 & 5 & HD & 3 & 12 & 1 & 2 & 2 & 17 & ． 21 & ． 022 & 8 & 3 & ． 83 & 55 & ． 09 & 3 & 1.36 & ． 01 & ． 21 & 1 & \(!\) \\
\hline R－5909 & 1 & 11 & 10 & 84 & ． 7 & 2 & 1 & 1096 & 3.51 & 7 & 5 & H10 & 2 & 23 & 1 & 2 & 2 & 51 & ． 31 & ． 060 & 7 & 4 & ． 86 & 48 & ． 12 & 2 & 1.41 & ． 01 & ． 17 & 1 & 4 \\
\hline R－6910 & 1 & 21 & 75 & 60 & 3.6 & 2 & 5 & 545 & 2.91 & 2 & 5 & 10 & 2 & 11 & 1 & 2 & 2 & 25 & ．21 & ． 044 & 5 & 3 & ． 11 & 51 & ． 13 & 4 & ． 98 & ． 01 & ． 21 & 1 & 18 \\
\hline R－681！ & 1 & 31 & 15 & 90 & 1.7 & 3 & \(B\) & 047 & 3.34 & 4 & 5 & N0 & 1 & 19 & 1 & 3 & 2 & 35 & ． 35 & ． 071 & 12 & 10 & ． 64 & 41 & ． 09 & 4 & 1.24 & ． 01 & ． 21 & 1 & 12 \\
\hline R－6812 & 1 & 22 & 7 & 80 & ． 8 & 5 & 4 & 660 & 2．日日 & 7 & 5 & KD & 2 & 19 & 1 & 2 & 2 & 29 & ． 45 & ． 073 & 8 & 1 & ． 89 & 40 & ． 14 & 1 & 1.25 & ． 01 & ． 17 & \(!\) & 2 \\
\hline R－6813 & 1 & 12 & 12 & 43 & 1.5 & 4 & 4 & 454 & 2.26 & 12 & 5 & NO & 2 & 15 & 1 & 5 & 2 & 19 & ． 28 & ． 051 & 7 & 5 & ． 38 & 4 & ． 09 & 2 & ． 22 & ． 02 & ． 18 & 1 & 6 \\
\hline 2－6814 & 1 & 10 & 10 & 49 & ． 1 & 3 & 4 & 978 & 1.91 & 2 & 5 & ND & 2 & 58 & 1 & 2 & 2 & 30 & ． 45 & ． 033 & 7 & 2 & ． 18 & 42 & ． 02 & 5 & ． 65 & ． 01 & ． 09 & 1 & 1 \\
\hline n－6815 & 1 & 4 & 4 & 18 & .4 & 1 & 2 & 285 & 1.28 & \(-2\) & 5 & HD & 1 & 5 & 1 & 4 & 2 & 11 & ． 05 & ． 018 & 3 & 2 & ． 20 & 30 & ． 02 & 2 & ． 30 & ． 01 & ． 09 & 1 & 0 \\
\hline A－6816 & 1 & 4 & 6 & 36 & ． 5 & 2 & 4 & 559 & 2.00 & 3 & 5 & ND & 1 & 13 & 1 & 3 & 2 & 29 & ． 44 & ． 038 & 0 & 3 & ． 44 & 34 & ． 02 & 2 & ． 53 & ． 01 & ． 10 & 1 & 5 \\
\hline R－6817 & 1 & 1 & 5 & 24 & 3.2 & 3 & 3 & 535 & 1.53 & 2 & 5 & ND & ， & 日 & 1 & 2 & & 25 & ． 24 & ． 028 & 5 & 3 & ． 25 & 36 & ． 02 & 5 & ． 34 & ． 01 & .10 & 1 & 17 \\
\hline R－6918 & 1 & 19 & 13 & 45 & 41.9 & 4 & 3 & 502 & 1.66 & 2 & 5 & ND & ， & 14 & 1 & 2 & 2 & 18 & ． 20 & ．026 & 4 & 4 & ． 37 & 33 & ． 05 & 2 & ． 51 & ． 01 & ． 09 & 1 & 420 \\
\hline R－6899 & 1 & 11 & 5 & 31 & ． 6 & 2 & 3 & 402 & 1.42 & 2 & 5 & HO & & 15 & 1 & 2 & 2 & 21 & ． 18 & ． 028 &  & 4 & ． 36 & 35 & ． 05 & 4 & ． 50 & ． 01 & ． 10 & 1 & 4 \\
\hline R－6820 & 1 & J & 6 & 45 & ． 4 & 2 & 4 & 418 & 2.19 & 2 & 5 & N0 & 1 & 24 & 1 & 2 & 2 & 27 & ． 34 & ． 050 & 0 & 3 & ． 12 & 38 & ． 08 & 4 & ． 73 & ． 01 & ． 18 & 1 & 4 \\
\hline R－6｜21 & 1 & 1 & 7 & 31 & ． 6 & 2 & 1 & 544 & 1.88 & 3 & 5 & RI & 2 & 12 & 1 & 2 & 2 & 26 & ． 21 & ． 040 & 7 & 2 & ． 28 & 37 & ． 06 & 1 & ． 55 & ． 01 & ． 19 & 1 & 3 \\
\hline R－6122 & 1 & 10 & 3 & 22 & ． 9 & 1 & 3 & 53 & 1.16 & 2 & 5 & ND & 1 & 14 & 1 & 2 & 2 & 18 & ． 3 & ． 028 & 5 & 3 & ． 23 & 32 & ． 05 & 2 & ． 35 & ． 01 & ． 10 & 1 & \(!\) \\
\hline R－6923 & 1 & 回 & 5 & 39 & ． 7 & 5 & 3 & 555 & 1.66 & 2 & 5 & ND & 2 & 33 & \(!\) & 2 & 2 & 23 & ． 37 & ．031 & 7 & 7 & ． 44 & 46 & ． 07 & 10 & ． 64 & ． 01 & ． 13 & I & 3 \\
\hline R－6824 & 1 & 5 & 7 & 45 & ． 2 & 3 & 5 & 554 & 2.27 & 2 & 5 & ND & 3 & 21 & 1 & 2 & 2 & 31 & ． 28 & ． 048 & 7 & 6 & ． 49 & 53 & ． 07 & 5 & ． 15 & ． 01 & ． 15 & 1 & 1 \\
\hline R－6825 & 1 & 6 & 12 & 70 & ． 1 & 4 & 7 & 843 & 2.94 & 3 & 5 & HD & 3 & 17 & 1 & 6 & 2 & 38 & ． 80 & ． 070 & 9 & 1 & ． 63 & 39 & ． 04 & 2 & 1.15 & ． 01 & ． 27 & 1 & 1 \\
\hline R－6826 & 1 & 25 & 12 & 4 & ． 9 & 4 & 1 & 902 & 3.02 & 6 & 5 & ND & 3 & 30 & 1 & 10 & 2 & 43 & 1.74 & ． 070 & 10 & \(J\) & ． 61 & 40 & ． 01 & 4 & ． 91 & ． 01 & ． 25 & 1 & 5 \\
\hline STO C／AU－R & 19 & 59 & 37 & 132 & 7.4 & 69 & 24 & 1020 & 3.93 & 42 & 17 & 日 & 39 & 51 & 19 & 11 & 21 & 59 & ． 47 & ． 041 & 39 & 61 & ． 8 & 179 & ． 07 & 31 & 1.92 & ． 06 & ． 14 & 13 & 510 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline SAMPLEI & \[
\begin{array}{r}
\mathrm{HO} \\
\mathrm{PPM}
\end{array}
\] & \[
\begin{gathered}
\text { CU } \\
\text { PPK }
\end{gathered}
\] & \[
\begin{gathered}
\text { PB } \\
\text { PPM }
\end{gathered}
\] & 2K
PFM & \[
\begin{array}{r}
\text { AE } \\
\text { PPM }
\end{array}
\] & \[
\begin{gathered}
\mathrm{NI} \\
\mathrm{PPM}
\end{gathered}
\] & CO & \[
\begin{gathered}
\text { NH } \\
\text { PH }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{FE} \\
\mathrm{I}
\end{gathered}
\] & \[
\begin{array}{r}
\text { A5 } \\
\text { PPH }
\end{array}
\] & PPM & \[
\begin{array}{r}
\text { AU } \\
\text { PPH }
\end{array}
\] & \[
\begin{array}{r}
\text { TH } \\
\text { PFH }
\end{array}
\] & \[
\begin{array}{r}
5 R \\
\text { PR }
\end{array}
\] & \[
\begin{array}{r}
\mathrm{CD} \\
\mathrm{PFH}
\end{array}
\] & SP & \[
\begin{gathered}
\text { II } \\
\text { PR }
\end{gathered}
\] & \[
\begin{array}{r}
V \\
\text { PPY }
\end{array}
\] & CA
I & P
2 & \[
\begin{aligned}
& \text { LA } \\
& \text { PPM }
\end{aligned}
\] & \[
\begin{gathered}
\text { CR } \\
\text { PPM }
\end{gathered}
\] & NG
4 & \[
\begin{array}{r}
\text { BA } \\
\text { PPH }
\end{array}
\] & 11 & PPM & \[
\begin{gathered}
\text { AL } \\
\mathrm{I}
\end{gathered}
\] & Ha
2 & \(K\)
1 & PPM & AUI PPB \\
\hline R-6827 & 1 & 35 & 1 & 7 & . 4 & 4 & 5 & I30 & 2.49 & 4 & 5 & ND & 2 & 51 & 1 & 6 & 5 & 31 & . 61 & . 061 & 7 & 5 & . 84 & 41 & . 11 & 3 & 1.14 & . 01 & . 11 & 1 & 12 \\
\hline R-692I & 1 & 10 & 10 & 44 & . 1 & 2 & 4 & 124 & 2.11 & 2 & 5 & WD & 2 & 10 & 1 & 2 & 2 & 27 & . 56 & . 045 & 8 & 5 & . 19 & 31 & . 09 & 1 & 1.07 & . 01 & . 11 & 1 & 3 \\
\hline R-6929 & 1 & 15 & 9 & 46 & . 9 & 3 & 4 & 499 & 2.12 & \(7{ }^{\circ}\) & 5 & HD & 2 & 18 & 1 & 3 & 2 & 20 & . 25 & . 025 & 8 & 2 & . 42 & 52 & . 10 & 1 & . 78 & . 01 & . 15 & 1 & 11 \\
\hline R-6130 & 1 & 19 & 26 & 11 & 18.1 & J & 5 & 971 & 2.20 & 2 & 5 & HD & 1 & 23 & 1 & 2 & 2 & 32 & . 29 & . 018 & 9 & 3 & . 67 & 29 & . 08 & 2 & . 94 & . 01 & . 11 & 1 & 162 \\
\hline E- 10519 & 1 & 39 & 10 & 20 & 10.2 & 1 & 1 & \(27!\) & 1.44 & 19 & 5 & ND & 1 & 14 & 1 & 2 & 2 & - 18 & . 06 & . 036 & 2 & 3 & . 18 & 249 & . 06 & 1 & . 28 & . 01 & . 12 & 1 & 92 \\
\hline E- 10520 & 1 & 27 & 5 & 29 & 5.6 & 2 & 2 & 42 & 1.12 & 1 & 5 & NO & 2 & 12 & & 2 & 2 & 15 & . 14 & . 037 & & 2 & . 26 & 75 & . 07 & 2 & . 13 & . 01 & . 11 & 1 & 52 \\
\hline E-10521 & 1 & 65 & 8 & 11 & 9.4 & 1 & 1 & 156 & 1.38 & 11 & 5 & HD & 1 & 18 & 1 & 2 & 2 & 7 & . 04 & . 021 & 3 & 2 & . 12 & 283 & . 03 & 7 & . 25 & . 01 & . 10 & 1 & 132 \\
\hline E- 10522 & 1 & 30 & 11 & 14 & 9.1 & 1 & 2 & 209 & 1.44 & 17 & J & NO & 1 & 17 & 1 & 3 & 2 & 13 & . 04 & . 039 & 5 & 2 & . 13 & 340 & . 04 & 4 & . 24 & . 01 & . 15 & 1 & 99 \\
\hline E-10523 & 1 & 29 & 12 & 26 & 9.1 & & 1 & 281 & 1.94 & 24 & 5 & HD & 2 & 17 & 1 & 3 & 2 & 11 & . 03 & . 038 & 1 & 2 & . 31 & 34 & . 01 & 7 & . 38 & . 01 & . 16 & 1 & 185 \\
\hline E- 10524 & 1 & 46 & 34 & 42 & 56.8 & 2 & 2 & 44 & 1.62 & 22 & 5 & ND & 1 & 1 & 1 & 3 & 4 & 15 & . 03 & . 030 & 4 & 2 & . 36 & 137 & . 02 & 2 & . 41 & . 01 & . 09 & 1 & 530 \\
\hline E- 10525 & 1 & 72 & 19 & 15 & 29.7 & 1 & 2 & 230 & 2.29 & 10 & 5 & HD & 1 & 14 & 1 & 1 & 2 & 16 & . 04 & . 050 & 5 & 2 & . 12 & 234 & . 06 & 2 & . 28 & . 01 & . 20 & 1 & 305 \\
\hline E-10524 & 1 & 13 & 12 & 45 & 6.4 & 2 & 4 & 150 & 2.54 & 14 & 5 & ND & 2 & 13 & 1 & & 2 & 24 & . 18 & . 048 & 6 & 4 & . 40 & 63 & . 09 & 2 & . 57 & . 01 & . 13 & 1 & 32 \\
\hline E- 10527 & 1 & 26 & 13 & 23 & 10.7 & \(!\) & 1 & 254 & 1.12 & 18 & 5 & ND & 1 & 3 & , & 3 & 2 & 1 & . 02 & . 022 & 3 & 3 & . 17 & 43 & . 01 & 7 & . 23 & . 01 & . 09 & 1 & 70 \\
\hline £-1052日 & 1 & 12 & 10 & 31 & 3.7 & 1 & 1 & 527 & 2.43 & 22 & 5 & H0 & 2 & 14 & 1 & 2 & 2 & 25 & . 23 & . 047 & 7 & 5 & . 35 & 68 & . 09 & 7 & . 55 & . 02 & . 19 & 30 & 17 \\
\hline E-10529 & 1 & 11 & 19 & 20 & 57.8 & 3 & 2 & 166 & . 79 & 3 & 5 & ND & 1 & 4 & 1 & 13 & 2 & - & . 08 & . 011 & 2 & 3 & . 14 & 11 & . 02 & J & . 20 & . 01 & . 05 & 1 & 445 \\
\hline E- 10530 & 1 & 57 & 18 & 16 & 62.7 & 3 & 3 & 339 & 1.70 & 7 & 1 & ND & 2 & 17 & 1 & 5 & 2 & 22 & . 17 & . 036 & 5 & 1 & . 36 & 53 & . 08 & b & . 55 & . 01 & . 15 & 1 & 605 \\
\hline E-10531 & 2 & 183 & 76 & 27 & 59.1 & 1 & 3 & 423 & 1.31 & 3 & 5 & ND & , & 9 & 1 & 5 & 2 & 17 & . 38 & . 023 & 4 & J & . 28 & 40 & . 03 & 3 & . 33 & . 01 & . 08 & 1 & 110 \\
\hline E- 10532 & 1 & 11 & 2 & 24 & . 5 & 2 & 2 & 343 & 1.23 & 4 & 5 & HD & 1 & 4 & 1 & 5 & 2 & 15 & . 10 & . 021 & 4 & 2 & . 07 & 39 & . 01 & 2 & . 23 & . 01 & . 08 & 1 & 21 \\
\hline E-10533 & 1 & 17 & 5 & 47 & . 5 & 2 & 5 & 594 & 2.01 & 2 & 5 & HD & 2 & 31 & 1 & 2 & 2 & 22 & . 52 & . 039 & 1 & 3 & . 48 & 59 & . 09 & 7 & 1.04 & . 02 & . 12 & 1 & 4 \\
\hline E- 10531 & & 0829 & 1062 & 880 & 75.1 & 2 & 19 & 300 & 3.56 & 11 & 5 & ND & 1 & 7 & 6 & 6 & 2 & 7 & . 39 & . 007 & 2 & 3 & . 08 & 25 & . 01 & 3 & . 17 & . 01 & . 06 & 11 & 205 \\
\hline E- 10284 & 1 & 8 & 5 & 28 & 1.3 & 1 & 3 & 313 & 1. 62 & 2 & 5 & HD & 2 & 7 & 1 & 4 & 2 & 21 & . 14 & . 030 & 1 & 3 & . 22 & 20 & . 05 & 4 & . 35 & . 01 & . 13 & 1 & 6 \\
\hline STD C/hu-R & 20 & 62 & 43 & 132 & 7.1 & 73 & 21 & 1129 & 4.18 & 42 & 17 & 8 & 40 & 53 & 17 & 17 & 19 & 61 & . 50 & . 092 & 42 & 65 & . 91 & 183 & . 07 & 37 & 1.85 & . 07 & . 15 & 12 & 485 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline SAHPLET & H0 & [U & P8 & 7K & \({ }^{\text {A }}\) & HI & \({ }^{2}\) & \% \({ }^{\text {H }}\) & FE & AS & 1 & AU & rH & \(5 R\) & CO & 58 & BI & \(V\) & CA & \(F\) & LA & CR & Mi & 日A & II & ) & AL & HA & \(\underline{ }\) & N & AUt \\
\hline & PM & PPM & PPH & PPH & PFM & PPH & PFH & PFH & 1 & PPM & PPM & PPH & PPM & PP\% & PPY & PPM & PFK & PPM & 1 & 1 & PPH & PFM & 2 & PPM & 1 & PPM & 1 & 1 & \(\underline{1}\) & PFK & PFI \\
\hline E-10615 & 1 & 1 & 2 & 22 & . 7 & 3 & 2 & 236 & . 97 & 2 & 5 & ND & 2 & 12 & 1 & 2 & 2 & 11 & . 15 & . 019 & 3 & 3 & . 19 & 25 & . 03 & 1 & . 27 & . 01 & . 08 & 1 & 14 \\
\hline E-10616 & 1 & 5 & 2 & 18 & 1.3 & 1 & 2 & 218 & . 69 & 2 & 5 & HD & 1 & 12 & 1 & 2 & 2 & 9 & . 12 & . 013 & 2 & 1 & . 20 & 17 & . 03 & 3 & . 26 & . 01 & . 05 & 1 & 11 \\
\hline E-10617 & 1 & 36 & 13 & 40 & 7.7 & 2 & 3 & 416 & 1.13 & 2 & 5 & ND & 1 & 13 & 1 & 2 & 2 & 21 & . 17 & . 028 & 3 & 1 & . 31 & 34 & . 05 & 2 & . 42 & . 01 & . 09 & 2 & 24 \\
\hline E-104!8 & 1 & 13 & 1 & 32 & 8.8 & 2 & 3 & 268 & 1.34 & 2 & 5 & HD & 1 & 7 & 1 & 2 & 2 & 22 & . 12 & .026 & 1 & 2 & . 24 & 32 & . 05 & 3 & . 34 & . 01 & . 10 & 1 & 68 \\
\hline E-10419 & 1 & 3 & 1 & 31 & . 1 & 2 & 4 & 453 & 1.77 & 3 & 5 & KD & 2 & 15 & 1 & 5 & 2 & 28 & . 22 & . 038 & 5 & 1 & . 14 & 32 & . 06 & 4 & . 54 & . 01 & . 11 & 2 & 1 \\
\hline E-10620 & I & 9 & 7 & 33 & 1.4 & 1 & 2 & 452 & 1.03 & 2 & 5 & KD & 2 & 3 & 1 & 2 & 2 & 15 & . 78 & . 027 & 4 & 2 & . 29 & 31 & . 05 & 5 & . 13 & . 01 & . 07 & 1 & 1 \\
\hline E-1062! & 1 & 18 & 1 & 41 & 6.1 & 3 & 3 & 391 & 1.37 & 3 & 5 & но & 1 & 12 & 1 & 2 & 3 & 19 & . 16 & . 027 & 1 & 1 & . 30 & 28 & . 05 & 11 & . 41 & . 01 & . 12 & 1 & 1 \\
\hline E-10522 & 1 & 33 & 7 & \(3!\) & 3.4 & 2 & \(J\) & 325 & 1.43 & 4 & 5 & HL & 2 & 1 & 1 & 2 & 2 & 23 & . 16 & . 035 & 5 & 1 & . 25 & 28 & . 05 & 4 & . 10 & . 01 & . 13 & 2 & 1 \\
\hline E-10623 & 1 & 10 & 5 & 45 & . 3 & 2 & 3 & 415 & 1.5b & 2 & 5 & HD & 1 & 24 & 1 & 3 & 2 & 23 & . 29 & . 039 & 6 & 1 & . 38 & 39 & . 07 & 3 & . 60 & . 01 & . 12 & 1 & 1 \\
\hline E-10624 & 1 & 40 & 5 & 23 & 3.0 & 4 & 2 & 347 & . 84 & 7 & 5 & M \({ }^{\text {d }}\) & 1 & 13 & 1 & 2 & 3 & 10 & . 17 & . 015 & 2 & 2 & . 27 & 21 & . 03 & 7 & . 39 & . 01 & . 05 & 1 & 51 \\
\hline E-10625 & 1 & 16 & 10 & 65 & . 5 & 2 & 1 & 695 & 2.43 & 2 & 5 & ND & 3 & 32 & 1 & 2 & 2 & 32 & . 4 & . 055 & 7 & 3 & . 64 & 92 & . 01 & 5 & 1.12 & . 01 & . 17 & 1 & 14 \\
\hline E-10626 & 1 & 7 & 2 & 30 & 1.5 & 2 & 2 & 292 & 1.08 & 2 & 5 & no & 1 & 15 & 1 & 2 & 2 & 14 & . 20 & . 026 & 5 & 2 & . 24 & 24 & . 04 & 2 & . 38 & . 01 & . 06 & 1 & 3 \\
\hline E-10627 & 1 & 12 & 3 & 16 & d. 4 & 1 & 1 & 220 & . 76 & 2 & 5 & ND & 1 & 1 & 1 & 2 & 2 & 7 & . 08 & . 012 & 3 & 2 & . 13 & 18 & . 01 & 2 & . 22 & . 01 & . 06 & 1 & 36 \\
\hline E-10621 & 1 & 18 & 7 & 34 & 5.7 & 1 & 3 & 365 & 1.04 & 2 & 5 & ND & 1 & 12 & 1 & 2 & 2 & 13 & . 16 & . 019 & 4 & 1 & . 34 & 23 & . 03 & 7 & . 42 & . 01 & . 06 & 1 & 15 \\
\hline E-10624 & 1 & 31 & 1 & 25 & 102.7 & 2 & 2 & 224 & 1.14 & 3 & 5 & H0 & 1 & 8 & 1 & 2 & 2 & 13 & . 11 & . 018 & 3 & 3 & . 17 & 18 & . 05 & 2 & . 33 & . 01 & . 01 & 1 & 1930 \\
\hline E-10830 & 1 & 18 & 17 & 23 & 26.5 & 1 & 2 & 209 & 1.08 & 5 & 5 & WD & 1 & 5 & 1 & 2 & 2 & 10 & . 04 & . 017 & 2 & 1 & . 18 & 24 & . 03 & 4 & . 29 & . 01 & . 07 & 1 & 205 \\
\hline E-10431 & 1 & 1 & 3 & 41 & 2.1 & 3 & 4 & 332 & 1.40 & 2 & 5 & ND & 1 & 10 & 1 & 2 & 2 & 23 & . 17 & . 034 & 4 & 4 & . 39 & 39 & . 05 & 1 & . 52 & . 01 & . 11 & 1 & 13 \\
\hline E-10432 & 1 & 18 & 2 & 43 & . 4 & 2 & 3 & 130 & 1.30 & 3 & 5 & ND & 1 & 27 & 1 & 3 & 2 & 15 & . 32 & . 032 & 3 & 2 & . 34 & 26 & . 06 & 2 & . 59 & . 01 & . 07 & 1 & 1 \\
\hline TS-0+075 0+1014 & ' 1 & 23 & 1 & 91 & . 2 & 2 & 7 & 909 & 2.6 & 2 & 5 & ND & 3 & 44 & 1 & 2 & 2 & 37 & . 87 & . 061 & 10 & 4 & . 75 & 51 & . 08 & 3 & 1.12 & . 02 & . 11 & 1 & 1 \\
\hline T5-0+155 0+734 & 1 & 22 & \(\dagger\) & 63 & . 2 & 1 & 8 & 729 & 2.74 & 1 & 5 & N0 & 3 & 88 & 1 & 1 & 2 & 36 & 1.4 & .06日 & 1 & 6 & . 76 & 36 & . 15 & 6 & 1.10 & . 02 & . 13 & 1 & \(\cdot 1\) \\
\hline TS-0+324 0+104 & 1 & 13 & 1 & 87 & . 3 & 3 & 8 & 767 & 3.01 & 3 & 5 & N0 & 3 & 40 & 1 & J & 2 & 49 & . 56 & . 075 & 7 & 4 & . 90 & 27 & . 13 & 4 & 1.26 & . 02 & . 11 & 1 & 1 \\
\hline 6RACEA5 Lot00 0+25E & 1 & 7 & 7 & 42 & . 1 & 3 & 5 & 1176 & 2.00 & 2 & 5 & ND & 2 & 17 & 1 & 3 & 2 & 29 & . 64 & . 032 & 1 & 3 & . 46 & 46 & . 07 & 5 & . 70 & . 02 & . 12 & 1 & 1 \\
\hline STid c/aller & 19 & 62 & 43 & 153 & 7.0 & 71 & 32 & 1010 & 3.79 & 42 & 19 & 1 & 42 & 55 & 18 & 16 & 20 & 60 & . 46 & . 092 & 41 & 65 & . 86 & 176 & . 07 & 38 & 1.87 & . 06 & . 14 & 11 & 485 \\
\hline
\end{tabular}

\section*{CONCHA CLAIMS}

```

GEOCHEMICAL ANALYSIS CEFTIFICATE

```


- SAMPLE TYPE: PI-9 SDIL P10-12 AOCK AUS ANALYSIS IY AA FROM 10 GRAM SABPLE.
date receivedi oct lis 1989 date refort mailed: Oft \(22 / 87\) assayer. d.chefal . dean toye, certified b.c. assayer
\[
\text { SKYLARK RESOURCES PROJECT-A-TEAM File \# } 87-4839 \text { Fage } 1
\]
sarplei
--
R-6801
R-6802
R-6803
R-6004
\(E-10507\)
E-10508
E-10509
E-10510
E-1051!
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline H0 & cu & PI & IM & A5 & H! & co & H \(\mathrm{H}^{\text {H }}\) & FE & A5 & U & AU & זH & 5 k & co & 5 & 日I & \(v\) & CA & P & LA & CR & M & 8A & II & 8 & \({ }^{\text {Al }}\) & HA & \(k\) & N & Aut \\
\hline PFM & PPM & Pry & PPK & PPM & PPM & PPY & PPM & 2 & PPM & PPr & PPM & PM & PPM & PPK & PPM & PP & P\% & 1 & 1 & PPM & Pri & 1 & PPH & 1 & PPK & 1 & 2 & 1 & PPM & \\
\hline & & & & & & & & & & & & 1 & 5 & 1 & 2 & 2 & \(!\) & . 05 & . 001 & 2 & 1 & . 05 & 9 & . 01 & 3 & . 15 & . 01 & . 02 & 1 & 34 \\
\hline 1 & 4 & 1 & 1 & . 3 & 2 & 1 & 19 & . 29 & 3 & 5 & N0 & 1 & 7 & 1 & 2 & 2 & 1 & . 06 & . 001 & 2 & 1 & . 02 & 12 & . 01 & 4 & . 15 & . 01 & . 03 & 1 & 1 \\
\hline 1 & [ \({ }^{3}\) & 2 & \(\frac{1}{3}\) & . 3 & 2 & 8 & 19
196 & \({ }^{.29}\) & 7 & 5 & H0 & 2 & 97 & \(!\) & 2 & 2 & 5 & . 09 & . 029 & 5 & 9 & . 23 & 63 & . 01 & 5 & . 78 & . 02 & . 23 & 10 & \\
\hline & 20260 & 1 & 43 & 27.3 & 72 & 403 & 519 & 31.08 & Ј8 & 5 & HD & 2 & 4 & 2 & 2 & 6 & 21 & . 30 & . 020 & 2 & 14 & . 69 & 9 & . 04 & 15 & . 63 & . 01 & . 05 & 10 & \\
\hline 2 & 11579 & 504 & 798 & 12.9 & 5 & 57 & 316 & 5.68 & 100 & 5 & MD & \(!\) & 5 & 8 & 2 & 2 & 2 & . 79 & . 002 & 2 & 4 & . 04 & 5 & . 01 & 2 & . 09 & . 01 & . 03 & b & 580 \\
\hline & 149999 & 495 & 307 & 265.5 & 5 & 19 & 150 & 11.65 & 59 & 5 & к0 & 1 & 1 & 6 & 2 & 50 & 10 & . 01 & . 004 & 2 & 1 & . 01 & 7 & . 01 & 2 & . 01 & . 01 & . 02 & \(?\) & 445 \\
\hline 21 & 1294 & & 2234 & 36.7 & 4 & 27 & 545 & 1.12 & 13 & 5 & K \({ }^{\text {d }}\) & 1 & 9 & 195 & 2 & 4 & 7 & 1.09 & . 006 & 2 & 2 & . 11 & 10 & . 01 & 3 & . 29 & . 01 & . 01 & 1 & 89 \\
\hline & 52757 & 175 & 130 & 167.2 & 7 & 80 & 604 & 9.15 & 33 & 5 & HO & 1 & 7 & 5 & 1 & 2 & 11 & . 82 & . 006 & 2 & 1 & . 13 & 17 & . 02 & 2 & . 23 & . 01 & . 06 & 2 & \\
\hline 15 & 262 & 1996 & 14826 & 6. 1 & 6 & 11 & 140 & 1.69 & 13 & 5 & H & 1 & 57 & 122 & 2 & 5 & 24 & 2.06 & . 013 & 2 & 11 & . 45 & 27 & . 05 & 7 & . 75 & . 01 & . 05 & 1 & 21. \\
\hline
\end{tabular}

\section*{SKARN CLAIMS}

\section*{GEロCHEMICAL ICF ANALYBIG}



date receivedi ne 19 in7 date report mailed：aleg \(28 / 87\) assayer．Aosefly．dean toye，certified a．c．assayer SKYLARK RESOURCES FROJECT－FIFESTEEL File \＃B7－3418 Fage 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & SARPLEI & \[
\begin{gathered}
\mathrm{KO} \\
\mathrm{PPK}
\end{gathered}
\] & \[
\begin{gathered}
\text { CUP } \\
\text { PPM }
\end{gathered}
\] & \[
\begin{aligned}
& \text { PJ } \\
& \text { PPK }
\end{aligned}
\] & \[
\underset{P M}{2 N}
\] & \[
\begin{gathered}
\text { RG } \\
\text { PPK }
\end{gathered}
\] & \[
\begin{gathered}
\text { HI } \\
\text { PPM }
\end{gathered}
\] & \[
\underset{\text { PPK }}{C 0}
\] & \[
\begin{gathered}
\text { HN } \\
\text { PPR }
\end{gathered}
\] & \[
\underset{2}{\mathrm{FE}}
\] & \[
\begin{gathered}
\mathrm{AS} \\
\hline \mathrm{PM}
\end{gathered}
\] & \[
\begin{array}{r}
U \\
\text { PPK }
\end{array}
\] & \[
\underset{P: H}{\text { Al }}
\] & \[
\underset{\text { PPM }}{\text { TH }}
\] & \[
\begin{gathered}
\text { 5R } \\
\text { PPM }
\end{gathered}
\] & \[
\begin{gathered}
C D \\
\text { PPM }
\end{gathered}
\] & \[
\begin{gathered}
S p \\
P P M
\end{gathered}
\] & \[
\begin{gathered}
11 \\
\text { PPM }
\end{gathered}
\] & Pry & \[
{ }_{2}^{C A}
\] & \[
\begin{aligned}
& p \\
& z
\end{aligned}
\] & \[
\begin{aligned}
& \text { LPM }
\end{aligned}
\] & \[
{ }_{\text {PPM }}^{\text {cit }}
\] & \[
\stackrel{M 6}{1}
\] & \[
\begin{aligned}
& \text { IA } \\
& \hline P M
\end{aligned}
\] & \[
\mathrm{II}_{\mathrm{I}}
\] & PPR & \[
\begin{gathered}
\mathrm{AL} \\
\hline
\end{gathered}
\] & 2 & \[
{ }_{z}^{k}
\] & PPK & \[
\begin{aligned}
& \text { AUI } \\
& \text { PPb }
\end{aligned}
\] \\
\hline \(\times\) & R 4174 & 5 & 258 & 23 & 28 & 3.0 & 24 & 24 & 2566 & 11.03 & 170 & 5 & H0 & 1 & 58 & 1 & 4 & ． 2 & & 14.27 & ． 001 & 2 & 8 & ． 21 & 1 & ． 01 & ， & ． 18 & ． 01 & ． 01 & 1 & G \\
\hline & R 6875 & 1 & 8 & 1 & 28 & .1 & 5 & 6 & 2317 & 2.24 & 12 & 5 & KD & 1 & 115 & 1 & 2 & 2 & & 22.41 & ．023 & 2 & 11 & 1.18 & 6 & ． 11 & 8 & 1.15 & ． 01 & ． 04 & 2 & \\
\hline & R 6176 & 3 & 110 & 16 & 128 & ． 5 & 41 & 16 & 2306 & 5.69 & 17 & 5 & KD & 1 & 84 & 1 & 2 & 2 & － 91 & 12.41 & ． 019 & 9 & 36 & 1.92 & 14 & ． 13 & 2 & 1.96 & ． 01 & ． 09 & 1 & \\
\hline & 86177 & 2 & 52 & 18 & 4 & ． 1 & 3 & 5 & 986 & 2.02 & 1 & 5 & ND & 2 & 55 & 1 & 2 & 2 & 32 & 4.13 & ． 075 & 8 & 8 & ． 71 & 880 & ． 12 & 1 & ． 90 & ． 03 & ． 09 & 1 & \\
\hline & SKA \(2+505 \mathrm{sm}\) & \(\checkmark\) & 28 & 45 & 146 & ． 7 & 12 & 12 & 960 & 5.02 & 52 & 5 & N0 & 2 & 10 & 2 & 2 & 2 & 94 & 1.10 & ． 071 & 6 & 32 & 1.54 & 29 & ． 38 & 2 & 1.73 & ． 02 & ． 12 & 1 & 33 \\
\hline &  & 1 & 43 & 39 & 180 & ． 8 & 日 & 5 & 1365 & 2.65 & 13 & 5 & N0 & 1 & 49 & 1 & 2 & 2 & 31 & d． 46 & ． 020 & 3 & 10 & ． 78 & 15 & ． 02 & 1 & 1.17 & ． 01 & ． 12 & 1 & 26 \\
\hline & SID C／Ab－R & 18 & 6 & 40 & 131 & 7.1 & 69 & 28 & 1080 & 4.13 & 42 & 18 & 7 & 40 & 51 & 18 & 17 & 21 & 59 & ． 46 & ． 090 & 38 & 59 & ． 15 & 110 & ． 09 & 37 & 1.76 & ． 06 & ． 13 & 12 & 515 \\
\hline Skalt & 1＋00s 4t50y R6 & 1 & 38 & 19 & 79 & ． & 9 & 18 & 106 & 5.70 & 15 & 5 & HD & 1 & 108 & 1 & 2 & 2 & 134 & 1.16 & ． 095 & 2 & 21 & 1.18 & 43 & ． 11 & 2 & 1.14 & ．08 & ． 07 & 1 & \\
\hline Sxat & bioos 4i501 E6 a & 5 & 654 & 7 & 33 & 7.6 & 24 & 17 & 187 & R． 10 & 424 & 5 & HD & 1 & 18 & 1 & 21 & 2 & 52 & ． 91 & ．083 & 2 & 34 & ． 11 & 5 & ． 29 & 13 & 1.15 & ． 01 & ． 01 & 1 & \\
\hline 5xnl & \(8+5054+50 \mathrm{X} 86\) & 1 & 26 & 17 & 102 & ． 1 & 1 & 10 & 555 & 6.50 & 15 & 5 & ND & 4 & 91 & 1 & 2 & 2 & 77 & 1．3日 & ．051 & 7 & 14 & 1.44 & 50 & ． 15 & 2 & 2.82 & ． 11 & ． 19 & 1 & \\
\hline
\end{tabular}
saxplei
\(\begin{array}{ll}\text { SKA11 } & 04005 \\ \text { SKA11 } & 0+505 \\ \text { SKA1 }\end{array}\) SKA:1 1+00S

SKAl1 14505 SKAEI \(2+005\)
SKAII \(2+505\) SKAII \(2+505\) 1+50M SKAII 2+50S \(4+004\)

SKALL 2+50S 3+50Y 5Kall 21505 3+00Y \(5 \mathrm{~K} 1112+505\) 2+501 SKA11 \(2+5052+501\)
SKA11 \(2+505\)
\(2+0011\) SKAI! 2+50S I+504

5KAN1 2450S 1+001 SXAll \(2+505\) 0450H SXAL1 4 \(45013+005\) SKAII \(4+5013+005\) SKA11 \(4+501 \mathrm{Y} 3+50 \mathrm{~S}\)

SKAC1 \(4450 \mathrm{~K} 4+005\) SKAII \(4+50114+505\) SKAll \(1+50154005\) SKAII \(4+50 Y 5+505\) SKA11 \(4+5016+005\)

SKA11 \(4+504\) 6+50S STD C/AU-S
SKAH \(4+5016+155\) SKAE1 44501. 7400S SKALI 4 450Y \(7+505\)

SKHII 4+501 \(8+005\) SKAII \(4+50 \mathrm{Y}\) 9+505

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 0 & 50 & 82 & 406 & 1.3 & 18 & 15 & 74 & d. 85 & 59 & 5 & KD & 2 & 67 & 5 & 1 & 3 & 190 & . 31 & . 065 & 6 & 31 & . 43 & 67 & .11 & 3 & 3.21 & . 01 & . 03 & 1 & 50 \\
\hline 6 & 70 & 40 & 184 & 1.0 & 14 & 13 & 780 & 6.31 & 29 & 5 & ND & 1 & 26 & 1 & 2 & 2 & 136 & . 25 & . 104 & 10 & 21 & . 50 & 53 & . 05 & 3 & 3.28 & . 02 & . 04 & 1 & 13 \\
\hline 1 & 60 & 33 & 164 & . 1 & 19 & 12 & 1092 & 5.05 & 24 & 5 & ND & 1 & 23 & 1 & 2 & 2 & 49 & . 20 & . 081 & 7 & 32 & . 61 & 165 & . 06 & \(B\) & 2.80 & . 01 & . 04 & 1 & 12 \\
\hline 9 & 164 & 25 & 207 & . 7 & 27 & 25 & 1722 & 7.69 & 49 & 5 & KD & 1 & 67 & 1 & 2 & 2 & 127 & 1.00 & . 129 & 6 & 38 & 2.16 & 39 & . 07 & 3 & 3.95 & . 01 & . 05 & 1 & 50 \\
\hline 9 & 190 & 145 & 333 & 1.9 & 4 & 34 & 3235 & 8.55 & 68 & 5 & HD & 1 & 24 & 5 & 2 & 2 & 220 & . 34 & . 208 & 12 & 4 & . 51 & 㫙 & . 05 & 8 & 2.94 & . 01 & . 04 & 1 & 18 \\
\hline 11 & 345 & 211 & 584 & 2.8 & 30 & 42 & 1845 & 0.01 & 72 & 5 & Ho & , & 69 & 2 & 2 & 2 & 105 & 1.57 & . 097 & 10 & 40 & 1.75 & 32 & . 11 & 3 & 2.16 & . 01 & . 10 & 1 & 111 \\
\hline - & 267 & 160 & 216 & . 5 & 28 & 47 & 2132 & 9.28 & 75 & 5 & KD & 1 & 57 & 1 & 5 & 2 & 136 & . 88 & .043 & 12 & 10 & 1.98 & 52 & . 10 & 2 & 3.94 & . 01 & . 07 & 1 & 73 \\
\hline 7 & 195 & 235 & 346 & 1.1 & 27 & 37 & 1986 & 8.13 & 42 & 5 & HD & 1 & 52 & 1 & 2 & 2 & 112 & . 89 & . 083 & d & 41 & 1.85 & 32 & . 13 & 2 & 2.76 & . 01 & . 07 & 1 & 120 \\
\hline 5 & 182 & 111 & 317 & 1.5 & 31 & 35 & 2171 & 7.45 & 41 & 5 & HD & 2 & 41 & 2 & 2 & 2 & 120 & 1.47 & .081 & 7 & 45 & 2.04 & 45 & . 11 & 11 & 2.61 & . 02 & . 11 & 1 & 34 \\
\hline 4 & 106 & 19 & 198 & 1.0 & 22 & 32 & 2167 & 5,30 & 36 & 5 & ND & 1 & 48 & 2 & 2 & 2 & 98 & 1.18 & . 137 & 6 & 34 & 1.01 & 76 & . 03 & 5 & 1.58 & . 01 & . 10 & 1 & 39 \\
\hline \(\bullet\) & 220 & 295 & 444 & 2.6 & 30 & 31 & 1974 & 8.30 & 71 & 5 & ND & 2 & 59 & 3 & 4 & 2 & 110 & 1.29 & . 108 & 9 & 41 & 1.8) & 43 & . 12 & 16 & 2.77 & . 01 & . 10 & 1 & 505 \\
\hline 5 & 233 & 105 & 270 & 1.4 & 27 & 34 & 2702 & 4.13 & 41 & 5 & ND & 1 & 1 & 1 & 2 & 2 & 86 & 1.97 & .118 & 18 & 31 & 1.14 & 42 & . 06 & 2 & 2.63 & . 01 & . 01 & 1 & 33 \\
\hline 9 & 275 & 172 & 459 & 2.5 & 32 & 37 & 2007 & 8.22 & \({ }^{3}\) & 5 & HD & 1 & 53 & 2 & 2 & 2 & 108 & 1.16 & . 091 & 11 & 42 & 1.74 & 11 & . 11 & 2 & 2.70 & . 01 & . 01 & 1 & 67 \\
\hline 9 & 547 & 242 & 1984 & 5.7 & 4 & 34 & 3121 & 1.51 & 72 & - & KD & 1 & 34 & 11 & 3 & 2 & 91 &  & .096 & 37 & 40 & 1.48 & 71 & . 05 & 5 & 2.12 & . 01 & . 10 & 1 & 240 \\
\hline 7 & 362 & 129 & 365 & 2.2 & 29 & 41 & 1843 & 8.60 & 73 & 5 & ND & 1 & 51 & 1 & 2 & 2 & 91 & 1.08 & . 107 & 25 & 34 & 1.42 & 49 & . 68 & 2 & 2.15 & . 01 & . 04 & 1 & 112 \\
\hline 4 & 84 & 31 & 164 & . 6 & 22 & 13 & 832 & 4.03 & 67 & 5 & H1 & 1 & 98 & 1 & 2 & 2 & 0 & 1.62 & . 072 & 10 & 34 & 1.02 & 140 & . 07 & 3 & 2.22 & . 01 & . 07 & 1 & 17 \\
\hline 1 & 136 & 55 & 238 & 1.1 & 21 & 20 & 1320 & 5.11 & 100 & 5 & ND & 2 & 103 & 1 & 2 & 2 & 104 & 1.55 & . 012 & 13 & 36 & 1.33 & 166 & . 10 & 1 & 2.81 & . 02 & . 09 & , & 230 \\
\hline 5 & 87 & 44 & 178 & . 4 & 37 & 18 & 1208 & 6.12 & 101 & 5 & HD & 1 & 42 & \(!\) & 2 & 2 & 123 & . 45 & . 071 & 7 & 36 & 1.73 & 70 & . 01 & 2 & 2.81 & . 01 & . 07 & 1 & 9 \\
\hline 3 & 76 & 27 & 149 & . 6 & 25 & 20 & 143 & 5.75 & 59 & 5 & ND & 1 & 3 & 1 & 2 & 2 & 122 & . 75 & . 085 & 5 & 31 & 2.00 & 47 & . 13 & 2 & 2.56 & . 02 & . 09 & 1 & 10 \\
\hline 1 & 30 & 19 & 14 & . 2 & , & , & 339 & 4.25 & , & 5 & H0 & 1 & 51 & 1 & 2 & 3 & 100 & . 28 & . 077 & 7 & 30 & . 11 & 14 & . 09 & 2 & 2.46 & . 01 & . 04 & 1 & 3 \\
\hline 1 & 28 & 14 & 53 & . 7 & 1 & 5 & 239 & 4.29 & 9 & 5 & HO & 1 & 32 & 1 & 2 & 2 & 55 & . 09 & . 073 & 7 & 27 & . 27 & 93 & . 05 & 2 & 2.45 & . 01 & . 03 & 1 & 7 \\
\hline 1 & 20 & 13 & 78 & . 2 & 6 & 5 & 401 & 3.93 & 9 & 5 & H0 & 1 & 47 & 1 & 2 & 2 & 76 & . 25 & . 097 & 1 & 23 & . 36 & 93 & . 05 & 2 & 2.10 & . 01 & . 04 & 1 & 2 \\
\hline 1 & 19 & 17 & 53 & . 3 & 5 & 4 & 239 & 3.58 & 11 & 5 & ND & 1 & 32 & 1 & 2 & 2 & 85 & . 12 & . 049 & 6 & 19 & . 26 & 97 & . 07 & 2 & 1.77 & . 01 & . 04 & 1 & 2 \\
\hline 4 & 85 & 30 & 110 & . 7 & 20 & 19 & 1905 & 4.24 & 38 & 5 & N0 & 1 & 118 & 1 & 2 & 2 & 82 & 1.19 & . 015 & 12 & 24 & 1.10 & 156 & . 01 & 2 & 2.71 & . 01 & . 08 & 1 & 7 \\
\hline 18 & 62 & 40 & 134 & 7.3 & 73 & 29 & 1040 & 4.17 & 41 & 19 & 8 & 39 & 52 & 11 & 16 & 23 & 60 & . 49 & . 092 & 31 & 41 & . 11 & 175 & . 04 & 38 & 1.78 & . 06 & . 13 & 14 & 53 \\
\hline 3 & 241 & 36 & 163 & 1.0 & 24 & 13 & 978 & 3.26 & 47 & 17 & N0 & 2 & 113 & 1 & 2 & 2 & 15 & 2.01 & . 110 & J3 & 27 & . 90 & 15b & . 05 & 5 & 2.49 & . 02 & . 11 & 1 & 5 \\
\hline 12 & 111 & 67 & 227 & . 8 & 27 & 30 & 2166 & 8.54 & 129 & 5 & ND & 1 & 32 & 1 & 2 & 2 & 129 & . 72 & . 111 & 7 & 34 & 1.41 & 71 & . 03 & 2 & 2.84 & . 01 & . 10 & 1 & 7 \\
\hline 7 & 74 & 23 & 94 & . 7 & 19 & 9 & 541 & 3.90 & 60 & 5 & HD & 1 & 32 & 1 & 2 & 2 & 108 & . 56 & . 220 & 1 & 22 & . 58 & 339 & . 01 & 4 & 1.76 & . 01 & . 01 & 1 & 1 \\
\hline 1 & 79 & 21 & 154 & . 5 & 23 & 13 & 162 & 3.89 & 20 & 1 & ND & 3 & 96 & 1 & 2 & 2 & 78 & 1.28 & . 074 & 13 & 34 & . 19 & 137 & .11 & 1 & 2.21 & . 02 & . 04 & 1 & 30 \\
\hline 3 & 43 & 11 & 81 & 1.2 & 12 & 1 & 298 & 1.59 & 25 & 5 & MD & 1 & 16 & 2 & 2 & 2 & 4 & . 49 & .181 & 5 & 19 & . 26 & 143 & . 01 & 1 & 1.59 & . 01 & . 06 & 1 & 1 \\
\hline
\end{tabular}

ACME ANALYTICAL LABORATORIES 852 E. HASTINGS ST. VANCOUVER B.C. VGA 1RE PHONE 253-315B DATA LINE 251-1011 GEOCHEMICAL IEP ANALYSIS


 SKYLARK RESOURCES FROJECT-FIRESTEEL File \# 87-3715 Fage 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline SAMPLEI & \[
\begin{gathered}
\mathrm{KO} \\
\mathrm{PPH}
\end{gathered}
\] & \[
\begin{gathered}
\text { CU } \\
\text { PM }
\end{gathered}
\] & PR & \[
\begin{gathered}
\text { IK }
\end{gathered}
\] & \[
\begin{gathered}
A 6 \\
P P K
\end{gathered}
\] & \[
\underset{\text { Pr }}{\mathrm{MI}}
\] & \[
\begin{gathered}
C D \\
\text { PPM }
\end{gathered}
\] &  & FE & \[
\begin{gathered}
\text { A5 } \\
\text { PPK }
\end{gathered}
\] & \[
\begin{gathered}
\text { J } \\
\text { PRK }
\end{gathered}
\] & \[
\begin{gathered}
A U \\
P P M
\end{gathered}
\] & \[
\begin{gathered}
\text { TH } \\
\text { PPM }
\end{gathered}
\] & \[
\begin{gathered}
\text { SR } \\
\text { PPH }
\end{gathered}
\] & \[
\begin{aligned}
& \text { CD } \\
& \text { PPK }
\end{aligned}
\] & 8P & \[
\begin{gathered}
81 \\
\text { PPM }
\end{gathered}
\] & PPM & \[
\begin{array}{r}
\mathrm{CA} \\
\mathrm{Z}
\end{array}
\] & P & Lh & \[
\begin{gathered}
C R \\
P P K
\end{gathered}
\] & \[
\begin{gathered}
M 6 \\
Z
\end{gathered}
\] & \[
\mathrm{l}
\] & 11
2 & PM & \[
A L
\] & \(1 /\)
1 & K & F9M & ינוA
PPI \\
\hline SKA1 17+00K 5+001 & 1 & 16 & 32 & 99 & . 3 & 1 & \(t\) & 374 & 5. 45 & 45 & 5 & 2 & 3 & 47 & I & 2 & 2 & 100 & . 51 & . 032 & 9 & 11 & . 65 & 10 & . 14 & 2 & 3.65 & . 01 & . 03 & 2 & 98 \\
\hline SKAI 17400 4 450X & 3 & 17 & 23 & 230 & . 6 & 7 & 7 & 617 & 4.61 & 33 & 6 & HD & 1 & 18 & 1 & 2 & 2 & 91 & . 40 & . 035 & 6 & 18 & . 72 & 79 & . 13 & 2 & 1.90 & . 01 & . 04 & i & 3 \\
\hline SKAI 17400 4 +001 & 20 & 1239 & 136 & 3723 & 2.1 & 64 & 16 & 2148 & 5.68 & 86 & 18 & HO & 2 & 96 & 22 & 2 & 2 & 84 & 2.19 & . 064 & 16 & 21 & . 36 & 72 & . 08 & 2 & 4.72 & . 03 & . 06 & 1 & 62 \\
\hline SYAL 17+00\% 3+5011 & 5 & 29 & 20 & 292 & . 2 & 5 & 8 & 424 & 3.83 & 17 & 10 & HD & 1 & 36 & 2 & 2 & 2 & 95 & . 52 & . 029 & 7 & 18 & . 54 & 12 & . 17 & 2 & 1.96 & . 01 & . 04 & 1 & 7 \\
\hline SKA1 17400K 3+001 & 1 & 22 & 29 & 278 & . 7 & 9 & 11 & 417 & 4.53 & 16 & 5 & H0 & 1 & 42 & 2 & 3 & 2 & 90 & . 50 & . 033 & \$ & 19 & . 89 & 108 & . 18 & 2 & 2.59 & . 02 & . 03 & 1 & 8 \\
\hline 5KA1 17400N 2+501 & 9 & 104 & 45 & 230 & . 1 & 10 & 12 & 325 & 7.16 & 85 & 5 & ND & 1 & 22 & 1 & 2 & 2 & 93 & . 32 & . 075 & 6 & 14 & . 47 & 64 & . 12 & 2 & 2.70 & . 01 & . 04 & 1 & 16 \\
\hline SKAL 17400\% 2+001 & 7 & 57 & 98 & 1571 & 3.3 & 16 & 23 & 810 & 7.14 & 132 & \(\epsilon\) & HD & 1 & 51 & 4 & 2 & 2 & 101 & . 61 & .039 & 7 & 11 & . 91 & 122 & . 16 & 5 & 4.22 & . 02 & . 05 & 1 & 19 \\
\hline SKA 17100 N 1+504 & 3 & 155 & 12 & 333 & . 9 & 52 & 58 & 3005 & 2.19 & 125 & 10 & H0 & 1 & 20 & 3 & 2 & 2 & 205 & . 86 & . 056 & 5 & 140 & 2.19 & 50 & . 15 & 1 & 4.75 & . 01 & . 06 & 1 & 18 \\
\hline SXA: 17+00N 1+001 & 3 & 10 & 18 & 201 & . 2 & 3 & 5 & 308 & 3.11 & 21 & 5 & WD & 1 & 20 & 1 & 2 & \(\leqslant\) & 85 & . 28 & . 019 & 6 & 15 & . 31 & 63 & . 10 & 2 & 1.60 & . 01 & . 04 & 1 & 6 \\
\hline SKA1 17+003 0+504 & 3 & 27 & 27 & 422 & . 1 & 12 & 9 & 657 & 5.34 & 35 & 5 & HD & 1 & 18 & 1 & 4 & 2 & 109 & . 26 & . 017 & 7 & 21 & 1.05 & 115 & . 16 & 2 & 3.22 & . 01 & . 04 & 1 & 119 \\
\hline SKA: 17+00K \(0+004\) & 1 & 18 & 31 & 183 & . 8 & 8 & 14 & 330 & 6.01 & 210 & 5 & HE & 1 & 28 & 2 & 2 & 2 & 127 & . 38 & . 024 & 1 & 27 & . 46 & 62 & . 15 & 2 & 1.68 & . 01 & . 04 & 1 & 34 \\
\hline 5KA1 16+00N 5+001 & 5 & \(10!\) & 52 & 389 & . 5 & 12 & 15 & 1057 & 4.38 & 86 & 5 & ND & 2 & 43 & 2 & 2 & 2 & 74 & 1.00 & . 043 & 18 & 27 & . 76 & 63 & . 09 & 1 & 3.19 & . 01 & . 03 & 1 & g \\
\hline SKAL \(15+50 \mathrm{~N} 5400 \mathrm{~K}\) & 5 & 18 & 14 & 68 & . 1 & 3 & & 288 & 3.62 & 4 & 5 & HD & 1 & 31 & \(!\) & 2 & 2 & 86 & . 39 & . 026 & 7 & 20 & . 36 & 74 & . 11 & 2 & 1.80 & . 01 & . 03 & 1 & 5 \\
\hline 5Kal \(15+00 \mathrm{Na} 4+50 \mathrm{~K}\) & 3 & \(2 E\) & 13 & 81 & . & 1 & 8 & 282 & 4.12 & 15 & 5 & \% & 1 & 28 & 1 & 2 & 2 & 126 & . 20 & . 019 & 5 & 18 & . 47 & 87 & . 19 & 2 & 1.9 & . 01 & . 03 & 1 & 29 \\
\hline SKal 15t00M 46004 & 1 & 27 & 18 & 130 & . 1 & 7 & 10 & 330 & 6.34 & 24 & 5 & ND & 1 & 37 & 1 & 2 & 2 & 169 & . 50 & . 047 & 7 & 21 & . 49 & 78 & . 24 & 2 & 2.00 & . 01 & . 07 & 1 & 41 \\
\hline SKA1 15+00K 3-501 & 4 & 24 & 22 & 33 & . 1 & \(\varepsilon\) & 6 & 315 & 5.79 & 18 & 5 & HD & 2 & 32 & 1 & 2 & 2 & 142 & . 15 & . 037 & \(\square\) & 18 & . 43 & 95 & . 20 & 2 & 2.21 & . 01 & . 04 & 2 & 1 \\
\hline SKAL 15+00H 3+001 & 5 & 119 & 20 & 179 & 1.3 & 17 & 15 & 978 & 3.67 & 97 & 5 & N0 & 1 & 82 & 3 & 2 & 2 & 52 & 2.12 & . 093 & 22 & 28 & . 68 & 121 & . 06 & 2 & 3.87 & . 04 & . OE & 1 & \(\epsilon\) \\
\hline STO C/AJ-5 & 18 & 58 & 41 & 129 & 7.1 & 65 & 28 & 1024 & 3.90 & 42 & 19 & 7 & 36 & 47 & 17 & 17 & 21 & 51 & . 47 & . 083 & 36 & 56 & . 87 & 173 & . 08 & 35 & 1.90 & . 06 & . 13 & 12 & 50 \\
\hline 5KAL 54001 16450K & 3 & 740 & 27 & 389 & 3.0 & 25 & 49 & 1081 & 2.82 & 45 & 5 & H0 & 4 & 88 & 10 & 2 & 2 & 4 & 4.06 & . 119 & 44 & 18 & .74 & 69 & . 05 & 9 & 2.29 & . 02 & . 07 & 2 & 23 \\
\hline SKA1 \(4+60 \mathrm{~N} 15+00 \mathrm{H}\) & 3 & 335 & 19 & 308 & . 7 & 29 & 53 & 1866 & 5.17 & 20 & 5 & ND & 3 & 77 & 7 & 2 & 4 & 97 & 2.08 & . 055 & 20 & 26 & 1.38 & 55 & . 15 & 1 & 3.09 & . 02 & . 06 & 1 & 34 \\
\hline SkA1 4+25:14400K & 4 & 1130 & 23 & 514 & 2.4 & 35 & 22 & 1271 & 1.53 & 14 & 5 & ND & 2 & 45 & 17 & 3 & 2 & 21 & 6.00 & . 159 & 50 & 21 & . 42 & 70 & . 01 & 12 & 1.74 & . 01 & . 04 & 1 & 17 \\
\hline SXA2 \(11+60 \mathrm{NP}\) & 2 & 946 & 39 & 154 & 2.8 & 23 & 30 & 1150 & 2.31 & 16 & 5 & ND & 2 & 87 & 7 & 2 & 2 & 34 & 5.05 & . 165 & 17 & 35 & . 53 & 19 & . 02 & 15 & 1.52 & . 01 & . 05 & 2 & 21 \\
\hline SKA2 11000k & 3 & 915 & 49 & 178 & 3.1 & 2! & 76 & 739 & 4.03 & 29 & 5 & HD & 3 & 16 & 3 & 3 & 2 & 60 & 4.03 & . 175 & 14 & 52 & . 82 & 20 & . 03 & 16 & 1.8 & . 01 & . 06 & 3 & 89 \\
\hline SXA1 17400\% 1+10\% & 1 & 7 & 6 & 195 & . 1 & 42 & 24 & 1996 & 6.80 & 8 & 5 & H0 & 1 & \({ }^{6} 3\) & 1 & 1 & 2 & 150 & 10.54 & . 052 & 3 & 207 & 4.34 & 7 & . 24 & 2 & 3.91 & . 01 & . 01 & 3 & 3 \\
\hline SKA2 16+50H & 1 & 9 & 1 & 158 & . 1 & 11 & 15 & 1931 & 7.00 & 16 & 6 & H9 & 3 & 36 & 1 & 7 & 2 & 118 & 2.15 & . 076 & 2 & 50 & 2.90 & 39 & . 27 & 22 & 3.05 & . 06 & . 06 & 1 & 2 \\
\hline \(5 \mathrm{KA2} 9+00 \mathrm{~K} 1+0 \mathrm{OH}\) & 1 & 60 & 17 & 49 & . 4 & 8 & 15 & 378 & 9.34 & 18 & 7 & HD & 2 & 4 & , & 2 & 2 & 104 & . 55 & . 142 & 1 & 28 & 1.22 & 15 & . 27 & 2 & 1.74 & . 04 & . 14 & 1 & 16 \\
\hline
\end{tabular}
 LA CR \(\begin{array}{rr}\text { H5 } & \mathrm{PA} \\ 2 & \mathrm{FPH}\end{array}\) II
2 \(\begin{array}{rr}\mathrm{N} & \mathrm{Kh} \\ 2 & 2\end{array}\) \(\begin{array}{lll}K & \mathbf{U} & \text { AUI } \\ \mathbf{I} & \text { PPM } & \text { PPB }\end{array}\)

\begin{tabular}{cc}
8 & 1 \\
7 & \\
2 & 2 \\
2 & 2 \\
2 & \\
2 & 2 \\
3 & 4 \\
2 & 2 \\
9 & 14 \\
2 & 3 \\
2 & 55 \\
3 & 10 \\
3 & 16 \\
1 & 3 \\
1 & 21
\end{tabular} \(\begin{array}{rr}42 & 11 \\ 43 & 577 \\ 34 & \\ 225 & \\ 14 & \\ 24 & \\ 10 & \\ 27 & \\ 147 & \\ 37 & \end{array}\) \(\begin{array}{rrr}13 & 132 & .1 \\ 12 & 104 & 1.4 \\ 50 & 155 & .6 \\ 1 & 141 & 1.5 \\ 12 & 75 & .2 \\ 11 & 103 & .7 \\ 2 & 211 & .8 \\ 14 & 105 & .5 \\ 6 & 95 & .1 \\ 57 & 205 & 1.1 \\ 24 & 162 & .1 \\ 19 & 91 & .1 \\ 13 & 15 & .1 \\ 23 & 118 & .7\end{array}\) 12
9
8
13
14
9
11
12
1
13 \(\begin{array}{rrrr}14 & 546 & 4.54 & 38 \\ 33 & 1681 & 6.64 & 408 \\ 10 & 453 & 5.79 & 53 \\ 41 & 820 & 14.95 & 74 \\ 17 & 513 & 6.39 & 86 \\ 14 & 413 & 7.39 & 14 \\ 13 & 391 & 7.01 & 37 \\ 10 & 369 & 5.78 & 27 \\ 16 & 342 & 15.3! & 618 \\ 11 & 352 & 5.90 & 18\end{array}\) \(\begin{array}{lll}\text { HO } & 3 & 33 \\ \text { KD } & 3 & 14 \\ \text { KD } & 3 & 20 \\ \text { HD } & 2 & 14 \\ \text { HD } & 2 & 113 \\ \text { ND } & 1 & 18 \\ \text { HD } & 2 & 22 \\ \text { HD } & 2 & 25 \\ \text { HD } & 5 & 16 \\ \text { HO } & 1 & 31\end{array}\)
\begin{tabular}{ccc}
33 & 1 & 2 \\
19 & 1 & 2 \\
20 & 1 & 2 \\
19 & 1 & 1 \\
113 & 1 & 3 \\
18 & 1 & 2 \\
22 & 1 & 2 \\
25 & 1 & 2 \\
16 & 1 & 2 \\
31 & 1 & 2 \\
77 & 3 & 2 \\
18 & 1 & 2 \\
59 & 1 & 2 \\
35 & 1 & 2 \\
53 & 1 & 2
\end{tabular}
\begin{tabular}{rrrr}
2 & 103 & 1.23 & .026 \\
7 & 131 & .20 & .041 \\
2 & 153 & .25 & .029 \\
2 & 298 & .22 & .019 \\
6 & 208 & .89 & .045 \\
2 & 219 & .22 & .077 \\
12 & 124 & .22 & .044 \\
5 & 117 & .19 & .015 \\
2 & 159 & .14 & .078 \\
2 & 121 & .36 & .025 \\
2 & 10 & 2.12 & .062 \\
2 & 147 & 1.00 & .115 \\
2 & 45 & 3.55 & .136 \\
2 & 104 & .34 & .057 \\
3 & 105 & 1.79 & .184
\end{tabular}
6
6
5
3
5
\[
\begin{array}{cc}
22 & .60 \\
30 & .61 \\
19 & .74 \\
15 & .90 \\
31 & .69 \\
& \\
24 & .75 \\
27 & .70 \\
32 & .72 \\
12 & .00 \\
39 & .71 \\
& \\
57 & 1.45 \\
70 & 2.07 \\
22 & .29 \\
25 & .49 \\
30 & .15 \\
& \\
10 & .33 \\
45 & 1.68 \\
30 & .83 \\
34 & 1.34 \\
29 & 1.11
\end{array}
\]
\[
\begin{aligned}
& 60 \\
& 95 \\
& 62 \\
& 36 \\
& 35
\end{aligned}
\]
\begin{tabular}{cc}
.04 & \\
.04 & \\
.16 & 2 \\
.11 & 5 \\
.25 & 12 \\
.24 & 2 \\
.22 & 6 \\
.17 & 3 \\
.21 & 2 \\
.11 & 2 \\
.07 & 8 \\
.14 & 6 \\
.02 & 2 \\
.12 & 2 \\
.03 &
\end{tabular}
\[
\begin{array}{rl}
2 & 2.11 \\
6 & 3.43 \\
2 & 2.51 \\
5 & 2.91 \\
12 & 2.81
\end{array}
\]
\[
\begin{aligned}
& .01 \\
& .01 \\
& .01 \\
& .01 \\
& .01
\end{aligned}
\]
\[
\begin{aligned}
& .03 \\
& .05 \\
& .01 \\
& .05 \\
& .03
\end{aligned}
\]
\[
\begin{aligned}
& 8 \\
& 9
\end{aligned}
\]

\begin{tabular}{rr}
31 & 29 \\
24 & 36 \\
17 & 27 \\
9 & 1 \\
14 & 23
\end{tabular}
\[
\begin{array}{rrrr}
29 & 994 & 4.10 & 23 \\
36 & 2167 & 6.14 & 24 \\
27 & 1645 & 2.27 & 26 \\
1 & 240 & 3.14 & 10 \\
23 & 1313 & 1.19 & 16
\end{array}
\]
\[
\begin{array}{ll}
5 & H \\
5 & K l \\
5 & H \\
5 & K 1 \\
5 & K 1
\end{array}
\]
\[
\begin{array}{ll}
1 & 77 \\
1 & 49 \\
1 & 59 \\
1 & 35 \\
1 & 53
\end{array}
\]
\[
\begin{array}{llll}
2 & 31 & 1.97 & .129
\end{array}
\]
\[
2
\]
SKA2 B+5OK
\[
\text { SKA2 } \mathrm{g}+00 \mathrm{H}
\]
\[
5 \times 127+501
\]
SKA2 7+00H
\[
\begin{array}{lrl}
1 & 45 & 1 \\
2 & 132 & 3 \\
1 & 132 & 1 \\
2 & 132 & 1 \\
1 & 107 & 2
\end{array}
\]
\[
\begin{array}{rr}
10 & .1 \\
118 & .4 \\
90 & .5 \\
129 & .5 \\
140 & .5
\end{array}
\]
\[
\begin{gathered}
7 \\
23 \\
16 \\
23 \\
17
\end{gathered}
\]
\[
\begin{array}{rrr}
9 & 915 & 1.41 \\
35 & 143 & 4.45 \\
15 & 572 & 4.47 \\
30 & 1247 & 5.39 \\
19 & 1044 & 5.10
\end{array}
\]
\[
\begin{array}{r}
9 \\
50 \\
41 \\
38 \\
33
\end{array}
\]
\[
\begin{array}{llll}
5 & \text { KD } & 1 & 45 \\
5 & \text { HD } & 1 & 18 \\
5 & \text { KD } & 1 & 43 \\
5 & \text { KD } & 1 & 70 \\
5 & \text { MD } & 1 & 40
\end{array}
\]
\[
\begin{aligned}
& 15 \\
& 46 \\
& 43 \\
& 70 \\
& 48
\end{aligned}
\]
\[
\begin{array}{rrrr}
2 & 31 & 1.97 & .129 \\
2 & 111 & .09 & .093 \\
2 & 104 & .50 & .116 \\
2 & 128 & 1.03 & .081 \\
1 & 111 & 1.11 & .090
\end{array}
\]
5
7
1
7
\begin{tabular}{rrrr}
2 & 124 & 1.24 & .099 \\
2 & 33 & .78 & .174 \\
2 & 92 & .92 & .205 \\
5 & 114 & .88 & .122 \\
2 & 114 & .55 & .252
\end{tabular}
\begin{tabular}{rr}
31 & 1.47 \\
8 & .11 \\
22 & .50 \\
21 & 1.00 \\
34 & 1.07
\end{tabular}\(\begin{array}{ll}53 & .02 \\ 37 & .18 \\ 45 & .04 \\ 34 & .16 \\ 39 & .10\end{array}\)\(\begin{array}{cccc}2 & .97 & .01 & .09 \\ 2 & 2.96 & .01 & .06 \\ 2 & 2.81 & .01 & .07 \\ 2 & 2.76 & .01 & .09 \\ 4 & 2.71 & .01 & .05\end{array}\)1
36
13
35
11
\[
\begin{aligned}
& \text { SKA2 } 6+50 \mathrm{~K} \\
& \text { SKA2 } 8+00 \mathrm{P} \rho \\
& \text { SKA2 } 5+50 \mathrm{H}
\end{aligned}
\]
\[
\begin{aligned}
& \text { SKA2 5+50H } \\
& \text { SKA2 5+001 }
\end{aligned}
\]
\[
\begin{aligned}
& \text { SKA2 5+00N } \\
& \text { SKA2 } 4+50 \mathrm{~N}
\end{aligned}
\]* SKA2 \(4+00 \mathrm{~N}\)STD C/AU-S

STO C/AU-S
\(k\) SKA2 \(3+00 \mathrm{H}\)
* SKA2 2450H
- SKA2 2+00

4 SKa2 \(1+50 \mathrm{M}\)
K SKA2 \(1+00 \mathrm{~K}\)
* SXa2 0+501 \begin{tabular}{rrrrr}
2 & 116 & 16 & 147 & .4 \\
10 & 11 \\
& 30 & 28 & 74 & .6 \\
\hline 95 & 26 & 13 & .7 & 10 \\
103 & 23 & 93 & .2 & 19 \\
118 & 18 & 105 & .6 & 17
\end{tabular} \(\begin{array}{lll}20 & 1797 & 5.78 \\ 12 & 2346 & 1.53 \\ 13 & 1063 & 3.60 \\ 22 & 1133 & 5.69 \\ 14 & 1157 & 1.78\end{array}\) 34
11
24
26
24 HO
HD
HD
HO
HO
\begin{tabular}{ll}
52 & 1 \\
21 & 1 \\
45 & 1 \\
57 & \\
39 & 1
\end{tabular}

\section*{SKAZ \(15+00 \mathrm{H} 5+0011\)} SKA2 \(15+00 \mathrm{H} 2+00 \mathrm{H}\)
\[
\begin{array}{rr}
1 & 42 \\
37 & 50 \\
1 & 38 \\
1 & 27 \\
1 & 37
\end{array}
\]
\begin{tabular}{cc}
6 & 90 \\
19 & 58 \\
6 & 69 \\
4 & 10 \\
2 & 30 \\
5 & 7 \\
4 & 6 \\
4 & 9 \\
5 & 9 \\
7 & 51
\end{tabular} \(\begin{array}{rrrr}55 & 125 & .2 & 17 \\ 39 & 157 & 7.3 & 69 \\ 10 & 121 & .2 & 21 \\ 23 & 78 & .4 & 6\end{array}\) \(\begin{array}{rrrrr}21 & 1472 & 1.22 & 100 & 5 \\ 29 & 1074 & 4.18 & 31 & 19 \\ 13 & 461 & 5.90 & 99 & 5 \\ 13 & 2179 & 2.99 & 32 & 5\end{array}\) \(\begin{array}{rrrr}1076 & 4.18 & 31 & 19 \\ 461 & 5.90 & 99 & 5 \\ 2479 & 2.98 & 32 & 5 \\ 905 & 1.95 & 19 & 5\end{array}\)
\[
\begin{array}{r}
1 \\
18 \\
1 \\
1 \\
1
\end{array}
\]
\[
\begin{array}{rrrrr}
3 & 153 & .40 & .126 & 6 \\
19 & 58 & .51 & .015 & 57
\end{array}
\]
\[
\begin{array}{rrrrrrrrrrr}
6 & 25 & 1.02 & 103 & .13 & 3 & 3.07 & .01 & .05 & 2 & 55 \\
37 & 61 & .94 & 186 & .01 & 34 & 1.07 & .06 & .14 & 13 & 51 \\
7 & 25 & .92 & 100 & .12 & 2 & 2.83 & .01 & .06 & 2 & 12 \\
5 & 9 & .15 & 141 & .02 & 2 & 1.24 & .01 & .06 & 1 & 1 \\
3 & 6 & .13 & 87 & .01 & 2 & 1.03 & .01 & .07 & 1 & 3
\end{array}
\]
\[
\begin{array}{llllll}
5 & \text { HO } & 1 & 32 & 1 & 2 \\
5 & \text { ND } & 1 & 22 & 1 & 3 \\
5 & \text { ND } & 1 & 24 & 1 & 2 \\
5 & \text { ND } & 1 & 31 & 1 & 1
\end{array}
\]
\[
\begin{array}{rrrrrrrrrrrrrrrr}
2 & 3 & 116 & .24 & .145 & 5 & 15 & .50 & 94 & .04 & 22 & 2.34 & .02 & .07 & 1 & 10 \\
3 & 5 & 114 & .15 & .134 & 5 & 13 & .11 & 112 & .05 & 33 & 2.35 & .02 & .06 & 1 & 15 \\
2 & 6 & 153 & .22 & .199 & 6 & 16 & .69 & 130 & .09 & 2 & 3.16 & .01 & .07 & 1 & 27 \\
4 & 7 & 143 & .26 & .149 & 7 & 18 & .02 & 108 & .12 & 3 & 3.15 & .01 & .07 & 1 & 65 \\
2 & 5 & 163 & .67 & .141 & 5 & 23 & .62 & 94 & .01 & 1 & 2.51 & .01 & .07 & 1 & 24 \\
3 & 9 & 142 & .11 & .037 & 7 & 35 & .41 & 80 & .21 & 29 & 1.87 & .03 & .05 & 1 & 3 \\
2 & 2 & 71 & 2.64 & .111 & 13 & 72 & .72 & 36 & .05 & 1 & 2.04 & .02 & .04 & 1 & 245
\end{array}
\]
 \(2 \mathrm{P} \quad \mathrm{L}\) \(\begin{array}{rrr}\text { CR } & \text { H5 } & \text { Bh } \\ \text { PPM } & 1 & \text { PPM }\end{array}\) \(\begin{array}{ll}\text { II } & 1 \\ 2 & \text { Pr }\end{array}\) \(\begin{array}{cc}\text { AL } & \text { 明 } \\ \mathbf{z} & 2\end{array}\) （ NUI SKA2 15＋001 1＋501 SKA2 \(15+00 \mathrm{H}\) 1400H SKA \(215+00 \mathrm{~K} 0+501 \mathrm{M}\) SKA2 18400K 4＋5014 SXA2 14，00H 4＋003

SKA2 14＋0OK \(3+501\) SXAZ \(14+00 \mathrm{~N}\) 3＋00N
 SKA2 \(14400 \mathrm{~K} 1+50 \mathrm{~S}\)
\begin{tabular}{lll} 
SXA & \(14+00 \mathrm{~K}\) & \(1+001\) \\
SKA2 \\
\hline
\end{tabular}
 SKA2 \(12+50 \mathrm{~K} 3+5011\) SKA2 12＋50R \(3+5014\)

SKA2 12＋00K 3＋00I 5KA2 \(12+00 \mathrm{~N} 2+501\) SKh2 \(12+00 \mathrm{~K} 2+001\) SKA2 12 ＋00H \(1+501\) SKA2 12＋00K 1＋00K
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline －かんにぃ &  &  & かんいいい & O以ッ以ー &  & ーいいい合 \\
\hline 二ニさ～ぃ & ニップ宜 & ＝0NMN & シーム &  & へニツ玉か & ロハツ円二 \\
\hline  &  & \[
\because \underset{\sim}{6}
\] &  &  &  &  \\
\hline 会莴品号品 &  & 会洛禺枵品 &  &  &  & \\
\hline － 으엇 & －\(\quad=0\) & 二小が & ＊ & 令に号か & 品 & M \％¢ \％ \\
\hline －Mロッ～ & \(n\) & \(\cdots\) & ぞッコニ &  & 킆ำ & \＃5 \\
\hline － & \(ッ ツ \rightarrow \square\) & & \(\because \square \%\) & & ■ Y ¢ & \(\because * ツ \% \%\) \\
\hline  & 留品第下玉 & 펑ㅇㅇNNㅡㄹ &  &  &  & 家 \\
\hline 뜪ㅇ & がッ & ハmウm & ¢ ¢ ¢ ¢ ¢ & 人㕩 &  & へ～ッツ \\
\hline  & ニ～以べが &  & 号呺为三 &  &  & ¢呚気以 \\
\hline & NNMN & のN＝M & ※n＝ツツ &  & －－m & \\
\hline
\end{tabular}

SKA2 \(\mathrm{B}+00 \mathrm{H} 3+00 \mathrm{E}\) SKA2 8＋00K 3＋50E STD C／AU－S

SKYLARK RESQURCES FROJECT-FIFESTEEL FILE * E7-3715
Fage 4
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline SAMPLEA & \[
\begin{gathered}
\text { MO } \\
\text { PPK }
\end{gathered}
\] & \[
\begin{gathered}
\text { Cu } \\
\text { PFM }
\end{gathered}
\] & \[
\begin{gathered}
\text { PQ } \\
\text { PPM }
\end{gathered}
\] & \[
\underset{\text { PFh }}{ }
\] & \[
\begin{gathered}
\text { A6 } \\
\text { FPN }
\end{gathered}
\] & \[
\begin{gathered}
\text { XI } \\
\text { FPM }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{CO} \\
\mathrm{PFM}
\end{gathered}
\] & \[
\begin{gathered}
H M \\
P P M
\end{gathered}
\] & \[
\begin{gathered}
\text { FE } \\
\text { I }
\end{gathered}
\] & \[
\begin{gathered}
\text { AS } \\
\text { PPK }
\end{gathered}
\] & PFK & \[
\begin{gathered}
\text { AU } \\
\text { PFM }
\end{gathered}
\] & \[
\begin{array}{r}
\text { IH } \\
\text { PPM }
\end{array}
\] & \[
\begin{array}{r}
\text { SR } \\
\mathrm{PPP}
\end{array}
\] & \[
\begin{gathered}
\text { CD } \\
\text { YFM }
\end{gathered}
\] & \[
\begin{gathered}
\text { SD } \\
\text { PPM }
\end{gathered}
\] & \[
\begin{gathered}
\text { II } \\
\text { PPn }
\end{gathered}
\] & \[
\begin{array}{r}
V \\
P P X
\end{array}
\] & \[
\begin{gathered}
C A \\
I
\end{gathered}
\] & \[
p
\] & \[
\begin{aligned}
& \text { LA } \\
& \text { PPM }
\end{aligned}
\] & \[
\begin{aligned}
& \text { ER } \\
& \text { PPM }
\end{aligned}
\] & \[
\begin{gathered}
\text { M6 } \\
2
\end{gathered}
\] & \[
\begin{aligned}
& \text { IA } \\
& \text { PPM }
\end{aligned}
\] & \[
\begin{array}{r}
\text { II } \\
\text { I }
\end{array}
\] & \[
\begin{array}{r}
1 \\
\text { FPM }
\end{array}
\] & \[
\begin{gathered}
A L \\
I
\end{gathered}
\] & \[
\begin{gathered}
\text { KA } \\
Z
\end{gathered}
\] & \(K\)
2 & PFh & \[
\begin{aligned}
& \mathrm{Alf} \\
& \mathrm{PH}
\end{aligned}
\] \\
\hline n-6743 & 3 & 177 & 48 & 774 & 4.5 & 1 & 9 & 5316 & 5.60 & 73 & 5 & HD & 1 & 189 & 5 & 2 & 5 & & 32.88 & . 001 & 2 & 2 & . 58 & 1 & . 01 & 13 & . 3 & . 01 & . 01 & 1 & 30 \\
\hline 8-6744 & 1 & 146 & 13 & 62 & . 1 & 12 & 18 & 1771 & 6.73 & 146 & 5 & HD & 1 & 90 & 1 & 2 & 2 & & 20.14 & . 011 & 2 & 4 & 1.63 & 4 & . 03 & 2 & 1.12 & . 01 & . 01 & 1 & 20 \\
\hline R-6745 & 1 & 74 & 2 & 4 & .1 & 5 & 9 & 513 & 2.41 & 3 & 5 & H0 & 1 & 24 & \(t\) & 2 & 2 & 67 & 1.30 & . 034 & 2 & 3 & 1.03 & 10 & . 04 & 2 & 1.11 & . 02 & . 04 & 2 & 2 \\
\hline 8-6746 & 304 & 29 & 68 & 139 & 4.9 & 29 & 15 & 1354 & 4.30 & 41 & 5 & HD & 1 & 6 & 1 & 8 & 2 & 107 & 11.82 & . 024 & 3 & 99 & 2.59 & 2 & .10 & 9 & 2.39 & . 01 & . 01 & 3 & 1 \\
\hline R-6747 & 1 & 2195 & 569 & 1941 & 12.8 & 31 & 53 & 790 & 2.57 & 75 & 5 & KD & 2 & 204 & 12 & 5 & 2 & 78 & 3.14 & . 045 & 2 & 71 & . 77 & 10 & . 20 & 5 & 1.45 & . 02 & . 01 & 1 & 1 \\
\hline R-674日 & 14 & 3175 & 1204 & 245 & 34.1 & 110 & 55 & 506 & 2.70 & 254 & 5 & HD & 1 & 186 & 10 & \(\square\) & 8 & 17 & 2.78 & . 040 & 2 & 206 & . 24 & 7 & . 13 & 4 & 1.00 & . 01 & . 01 & 4 & 62 \\
\hline * R-6749 & 1 & 121 & 80 & 54 & 1.3 & 10. & 20 & 523 & 3.65 & 63 & 5 & 10 & 2 & 27 & 1 & 1 & 2 & 103 & 1.15 & . 030 & 2 & 18 & . 15 & 11 & . 31 & 27 & 1.31 & . 02 & . 07 & 1 & 31 \\
\hline R-687! & 4 & 321 & 14 & 108 & . 3 & 1 & 7 & 876 & 4.22 & 12 & 5 & H0 & 1 & 66 & 1 & 6 & 1 & 10 & 1.01 & . 055 & 10 & 5 & 1.07 & 54 & . 22 & 2 & 2.39 & . 05 & . 08 & 1 & 52 \\
\hline 2-6879 & 2 & 101 & 2 & 111 & . 1 & 15 & 20 & 758 & 4.18 & 9 & 6 & HD & 1 & 139 & 1 & 6 & 2 & 75 & 1.19 & .015 & 1 & 31 & 1.79 & 96 & . 27 & 2 & 2.23 & . 05 & . 26 & 1 & - \\
\hline R-6880 & 3 & 15 & 14 & 12 & . 1 & 2 & 9 & 19 & 5.50 & 2 & 5 & NO & 1 & 21 & 1 & 2 & 5 & 2 & . 01 & . 006 & 2 & 4 & . 01 & 11 & . 01 & 3 & . 35 & . 01 & . 02 & 2 & E \\
\hline R-6881 & 10 & 434 & 5877 & 7271 & 7.3 & 1 & 1 & 7866 & . 61 & 3 & 5 & HD & 1 & 208 & 63 & 2 & 4 & 55 & 37.00 & . 001 & 3 & 2 & . 16 & 10 & . 01 & \({ }_{2}\) & . 16 & . 01 & . 01 & 1 & 29
38 \\
\hline R-6992 & & 2004 & 14 & 51 & 1.5 & 1 & 52 & 1550 & 8.36 & 85 & 5 & HD & ! & 17 & 1 & 2 & 2 & 55 & \(7 . \%\) & . 024 & , & 2 & 1.13 & 7 & . 07 & 27 & 1.67 & . 01 & . 03 & 1 & 38 \\
\hline \(\mathrm{ch}^{2} \mathrm{R}\)-6IEJ & 1 & 129 & 40 & 114 & -1 & 17. & 14 & 707 & 4.51 & 22 & 7 & KD & 1 & 27 & 1 & 2 & 2 & 135 & 2.15 & . 041 & 2 & 34 & 1.28 & 17 & . 32 & 2 & 1.71 & . 04 & . 07 & 1 & 5 \\
\hline R-488 & 1 & 32 & 7 & 32 & . 1 & 10 & & 318 & 2.48 & 14 & 5 & KJ & , & 11 & 1 & 2 & 2 & 73 & .63 & . 023 & 2 & 13 & . 75 & 9 & . 21 & 2 & 1.22 & . 01 & . 05 & 2 & 13 \\
\hline n-6885 & 1 & 143 & 12 & 45 & . 2 & 48 & 37 & 503 & 5.32 & 17 & 5 & H0 & 1 & 23 & 1 & 4 & 2 & 41 & 1.09 & . 057 & 2 & 160 & 1.91 & 7 & . 20 & 2 & 1.85 & . 04 & . 06 & 1 & 6 \\
\hline
\end{tabular}

 - ganple typei mocx aut nulyeis iy m frok to gram gavple.


BE2 E. HASTINGS ET. VANCDUVER E.C. VGA 1RG PHONE 253-315B. DATA LINE 251-1011 GEQCHEMICAL ICF ANALYBIE
 this leach ig partial for hn fe ca p la ch hig ia il s hand limited for wa aro k. au detection limit oy icp is j pra.
- saiple typer Rock chips aut ahalygis iy an fhon 10 gran sakple.

SKYLARK RESOURCES FFOJECTT-FIFESTEEL File \# 87-4022 Fiage 1



FHONE 253－3158
DATA LINE 251－1011
GEロCHEMエCAL IEF ANALYSエS
． 500 grah sahple is digested mith 3hl 3－1－2 hCt－hnoz－h20 at 95 deg． C for oke hour ahd is diluted to 10 hl mith water．

－SAmple types Rack chips aut ahalysis IY an froh 10 bran sample．
DATE RECEIVED：SEPT 281987
 SKYLARK RESOURCES FROJECT－TOODOGGONE File \＃87－4516 Fage i
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline SALPLEE & \[
\begin{gathered}
M 0 \\
P M
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{CU} \\
\mathrm{PPH}
\end{gathered}
\] & \[
\begin{array}{r}
\text { PR } \\
\text { PPM }
\end{array}
\] & \[
\begin{array}{r}
\text { IH } \\
\text { PFM }
\end{array}
\] & \[
\begin{gathered}
\text { AE } \\
\text { PPM }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{Hl} \\
\mathrm{PPM}
\end{gathered}
\] & \[
\begin{gathered}
\text { CO } \\
\text { PRH }
\end{gathered}
\] & \[
\begin{gathered}
H K \\
\text { PPK }
\end{gathered}
\] & \[
\begin{gathered}
f E \\
1
\end{gathered}
\] & \[
\begin{gathered}
\text { AS } \\
\mathrm{PRH}
\end{gathered}
\] & \[
\begin{gathered}
U \\
P R
\end{gathered}
\] & \[
\begin{gathered}
\text { AU } \\
P P H
\end{gathered}
\] & \[
\begin{aligned}
& \text { TH } \\
& \text { PPn }
\end{aligned}
\] & \[
\begin{gathered}
\text { SR } \\
\mathrm{PRM}
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{CD} \\
\mathrm{PPM}
\end{gathered}
\] & \[
\begin{gathered}
\text { SB } \\
\text { PR }
\end{gathered}
\] & \[
\begin{gathered}
\text { 日l } \\
\text { PPM }
\end{gathered}
\] & \[
\begin{gathered}
V \\
\text { PPK }
\end{gathered}
\] & \[
\begin{gathered}
C A \\
Z
\end{gathered}
\] & i & \[
\underset{\text { LPA }}{\text { LA }}
\] & \[
\begin{gathered}
\text { CR } \\
\text { YPM }
\end{gathered}
\] & \[
\begin{array}{r}
\text { M6 } \\
Z
\end{array}
\] & \[
\begin{gathered}
\mathrm{BA} \\
\mathrm{PP}
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{TI} \\
\mathrm{Z}
\end{gathered}
\] & \[
\underset{\text { PP }}{1}
\] & \[
\begin{gathered}
\text { AL } \\
\text { I }
\end{gathered}
\] & \[
\begin{gathered}
\text { H } \\
2
\end{gathered}
\] & \(X\)
\(Z\) & PF\％ & \[
\begin{aligned}
& \text { AUlt } \\
& \text { FPs }
\end{aligned}
\] \\
\hline 2251 & 1 & 224 & 8946 & 3393 & 7.9 & 2 & 3 & 9 & 2.10 & 45 & 5 & KD & 1 & 1 & 28 & 4 & 2 & 6 & ． 03 & ． 004 & 2 & 4 & ． 02 & 15 & ． 01 & 2 & ． 08 & ． 01 & ． 04 & 4 & 45 \\
\hline 2252 & 1 & 4725 & 23789 & 8789 & 78.8 & 3 & 1 & 1072 & 2．28 & 1 & 5 & ko & 1 & 4 & 57 & 12 & 2 & 7 & ． 14 & ． 003 & 2 & 5 & ． 09 & 10 & ． 01 & 2 & ． 47 & ． 01 & ． 06 & 6 & 37 \\
\hline 2253 & 24 & 83 & 337 & 378 & 13.1 & 55 & 16 & 1006 & 5.16 & 21 & 5 & HD & 1 & 2 & 1 & 7 & 10 & 94 & ． 11 & ． 049 & 2 & 155 & 2.12 & 14 & ． 02 & 2 & 2.41 & ． 01 & ． 06 & 1 & 22 \\
\hline 2254 & 3 & d3月 2 & 28663 & 31498 & 108.2 & 3 & 14 & 308 & 4.40 & \(1!\) & 5 & ND & 1 & 3 & 236 & 12 & 72 & 9 & ． 17 & ． 001 & 2 & 5 & ． 16 & 4 & ． 01 & 1 & ． 33 & ． 01 & ． 01 & 1 & 148 \\
\hline 2255 & 151 & 289 & 1774 & 697 & 4.2 & 3 & 2 & 175 & 2.23 & 104 & 5 & HO & 1 & 1 & 7 & 17 & 2 & 16 & ． 02 & ． 003 & 2 & 6 & ． 03 & 6 & ． 01 & 5 & ． 17 & ． 01 & ． 02 & 1 & 70 \\
\hline 2256 & 4 & 2456 & 30462 & 9984 & 49.6 & 2 & 5 & 142 & 2.27 & 19 & 5 & ND & 1 & 2 & 11 & 20 & 5 & 3 & ． 01 & ． 001 & 2 & 4 & ． 01 & 7 & ． 01 & 3 & ． 10 & ． 01 & ． 03 & 1 & 51 \\
\hline 2257 & 2 & 98 & 93 & 75 & ． 1 & E & 6 & 333 & 2.27 & 11 & 5 & ND & 1 & 1 & & 4 & 2 & 49 & ． 42 & ． 048 & 2 & 16 & ． 46 & 23 & ． 01 & 2 & ． 88 & ． 01 & ． 14 & 1 & 14 \\
\hline 2258 & 1 & 2b & 4657 & 6894 & 4.1 & 7 & 7 & 911 & 2.99 & 28 & 5 & ND & 1 & 12 & 16 & 3 & 2 & 42 & 2.09 & ． 009 & 2 & 10 & ． 61 & 4 & ． 01 & 1 & 1.13 & ． 01 & ． 03 & 3 & 27 \\
\hline 2259 & 2 & 4 & 28 & 108 & ． 4 & 8 & 9 & 4213 & 4.44 & 11 & 14 & NO & 1 & 243 & ， & 4 & 2 & & 25.55 & ． 014 & & 21 & 1.29 & 2 & ． 01 & 2 & 1.43 & ． 01 & ． 01 & 5 & 18 \\
\hline 2260 & 1 & 71 & 432 & 852 & 1.0 & 8 & 7 & 2616 & 2.37 & 17 & 5 & ND & 1 & 78 & 7 & 2 & 2 & 42 & 14.00 & ． 011 & 1 & 22 & ． 91 & 6 & ． 01 & 2 & ． 99 & ． 01 & ． 04 & I & 8 \\
\hline 2261 & 1 & 924 & 4837 & 37605 & 20.9 & 10 & 17 & 7267 & 6．56 & 14 & 5 & 10 & 1 & 29 & 276 & 6 & 23 & 89 & 3.10 & ．031 & 3 & 22 & 2.52 & 10 & ． 01 & 2 & 3.12 & ． 01 & ． 01 & 3 & 54 \\
\hline 2262 & 1 & 3727 & 10801 & 19691 & \(5 \mathrm{~L}, 3\) & 2 & 11 & 2115 & 2.58 & 21 & 5 & HD & 1 & 72 & 123 & 1 & 10 & 13 & 8．98 & ． 002 & 2 & 6 & ． 30 & 1 & ． 01 & 2 & ． 38 & ． 01 & ． 01 & 1 & 37 \\
\hline 2263 & 1 & 228 & 2438 & 12754 & 7.3 & 17 & 15 & 52b3 & 4．56 & 27 & 5 & ND & 1 & 95 & 189 & 1 & 2 & 68 & 11.6 & ． 019 & 4 & 52 & 1.63 & 20 & ． 01 & 15 & 2.26 & ． 01 & ． 17 & 1 & 58 \\
\hline 2264 & \(b\) & 1061 & 25780 & 25139 & 44.3 & 3 & 15 & 1118 & 6.93 & 112 & 5 & HD & 1 & － & 192 & 11 & 7 & 29 & ． 52 & ． 008 & 2 & 7 & ． 45 & 24 & ． 01 & 24 & ． 82 & ． 01 & ． 05 & 1 & 52 \\
\hline 22.5 & 2 & 3540 & 25295 & 34184 & 32.0 & 3 & 9 & 689 & 2.79 & 63 & 5 & ND & 1 & 1 & 251 & 10 & 7 & 10 & ． 64 & ． 003 & 2 & 5 & ． 11 & 9 & ． 01 & 17 & ． 33 & ． 01 & ． 03 & 1 & 92 \\
\hline \(\overline{2273}\) & 1 & 151 & 34 & 118 & 1.3 & 23 & 21 & 2575 & 4.57 & 10 & 6 & H0 & 1 & 128 & 1 & 4 & 2 & & 13.73 & ． 037 & 5 & 28 & 1.88 & 10 & ． 07 & 11 & 2.29 & ． 01 & ． 09 & 1 & 1 \\
\hline 2274 & 1 & 11 & 134 & 180 & ． 9 & 16 & 13 & 3069 & 4.33 & 14 & 8 & HD & 1 & 109 & 1 & 2 & 2 & 92 & 16.27 & ． 042 & 18 & 4 & 1.58 & － & ． 01 & 1 & 2.04 & ． 01 & ． 07 & 1 & d \\
\hline 2275 & 1 & 55 & 633 & 124 & ． 5 & 5 & 5 & 2627 & 2.78 & 13 & 5 & ND & 1 & 97 & 6 & 2 & 2 & 30 & 13.92 & ． 006 & 5 & 11 & ． 86 & 1 & ． 01 & 1 & 1.04 & ． 01 & ． 05 & 1 & 10 \\
\hline 2276 & J & 1892 & 23954 & 56558 & 85.2 & 1 & 20 & 1222 & 5.01 & 29 & 5 & ND & ， & 9 & 459 & 16 & 2 & 16 & 1.17 & ． 007 & 2 & 8 & ． 30 & 12 & ． 01 & 3 & ． 55 & ． 01 & ． 05 & 2 & 48 \\
\hline 2277 & & 12954 & 21433 & 85570 & 174．3 & 3 & 20 & 1547 & 3.47 & 13 & 5 & ND & 1 & 17 & 40 & 28 & 11 & 12 & 1.19 & ． 003 & 3 & 6 & ． 23 & 21 & ． 01 & 1 & ． 44 & ． 01 & ． 06 & 2 & 83 \\
\hline 2278 & 1 & 208 & 1720 & 6815 & 2.3 & 3 & 6 & 545 & 2.11 & 20 & 5 & HD & 3 & 10 & 30 & 2 & 2 & 24 & ． 83 & ． 055 & 12 & 6 & ． 57 & 36 & ． 01 & 4 & ． 94 & ． 02 & ． 13 & 2 & 1 \\
\hline 2279 & 1 & 197 & 1892 & 5034 & 2.1 & 26 & 27 & 5198 & 8.17 & 33 & 5 & HD & 1 & 7 & 33 & 5 & 3 & 172 & ． 51 & ． 069 & & J & 3.24 & 49 & ． 01 & 2 & 4.27 & ． 01 & ． 13 & 1 & 6 \\
\hline 2280 & 1 & 174 & 912 & 116 & 1.4 & 43 & 17 & 1304 & 4.01 & 5 & 5 & HD & 1 & 47 & 5 & ， & ， & 84 & 1.23 & ． 032 & 2 & 10 & 2.61 & 58 & ． 14 & 9 & 2.63 & ． 10 & ． 07 & 1 & 1 \\
\hline 2281 & 1 & 192 & 271 & 441 & 7.7 & 17 & 15 & 2595 & 5.81 & 51 & 5 & ND & 1 & 15 & 3 & 7 & 2 & 134 & 1.44 & ． 054 & 3 & 28 & 2.32 & 44 & ． 09 & 6 & 2.40 & ． 02 & ． 10 & 1 & 5 \\
\hline STD C／AU－R & 19 & －2 & 38 & 135 & 7.1 & \({ }^{1}\) & 28 & 1024 & 3.78 & 38 & 16 & 1 & 38 & 49 & 18 & 18 & 21 & 57 & ． 44 & ． 084 & 37 & 58 & ． 87 & 173 & ． 07 & Jo & 1.76 & ． 06 & ． 12 & 15 & 480 \\
\hline 2282 & 1 & 15 & 285 & 583 & ． 7 & 12 & 15 & 1321 & 4.39 & 6 & 5 & ND & 2 & 34 & 4 & 8 & 2 & 118 & 3.35 & ． 061 & 3 & 22 & 2.14 & 23 & ． 18 & 10 & 2.18 & ． 03 & ． 07 & 1 & 2 \\
\hline 22 BJ & & 511643 & 2180 & 4634 & 80.2 & 6 & 10 & 3071 & 5.14 & 37 & 5 & ND & 1 & 21 & 33 & 9 & 2 & 39 & 1.08 & ． 031 & 3 & 11 & ． 73 & 21 & ． 02 & 10 & 1.26 & ． 01 & ． 10 & 1 & 141 \\
\hline 12204 & 9 & 44 & 1961 & 3727 & 2.1 & 7 & 9 & 2960 & 3.74 & 42 & 5 & ND & 1 & 6 & 31 & 5 & 2 & 34 & ． 75 & ． 037 & 4 & 11 & ． 73 & 27 & ． 01 & 1 & 1.26 & ． 01 & ． 13 & 1 & 4 \\
\hline 2285 & 1 & 155 & 81 & 229 & ． 9 & 15 & 17 & 797 & 5.80 & 31 & 5 & HD & 2 & 45 & 3 & 7 & 2 & 151 & ． 90 & ． 078 & 3 & 35 & 1.82 & 13 & ． 33 & 1 & 2.34 & ．08 & ． 03 & 1 & 5 \\
\hline 22 HK & 6 & 1371 & 21796 & 3602 & 31.8 & 1 & 2 & 365 & 2.13 & 22 & 5 & MD & －1 & 3 & 10 & 8 & 2 & 5 & ． 01 & ． 003 & 2 & 4 & ． 02 & 28 & ． 01 & 1 & ． 16 & ． 01 & ． 04 & J & 33 \\
\hline
\end{tabular}

SKYLARK FESQURCES FFROJECT-TUUDOGGUNE FILE \# 87-4516
F゙age 2

```


[^0]: 1，the undersigned Free Miner，hereby acknowledge and understand that it is an offence to knowingly make a false statement or provide false information under the Mineral Act．I further acknowledge and understand that if the tatements made，orinformation given，is ins Statent Explonand this Statement of Exploration and e elopment then the work reported on this statement will be cancelled and the subject mineral clam（s）may，as

