
District Geolo	ogist, Smithers		Off Confidential:	89.03.14
ASSESSMENT RE	PORT 17517 MI	NING DIVISION: Atl	in	
-PROPERTY: LOCATION:	Lis LAT 58 43 00 UTM 08 6509799 NTS 104K11E	LONG 133 08 00 608119		
CLAIM(S): OPERATOR(S): AUTHOR(S): REPORT YEAR:	Lis 2 Georgia Res. Lambert, E. 1988. 14 Pages			
COMMODITIES SEARCHED FOR:	Copper,Gold,Lead,Zi	inc,Silver		
GEOLOGICAL SUMMARY: int 40- sye Sul wes pyr WORK DONE: Geo SOI	The property is u tstones of the King rusive rocks. Beddi 45 degrees southwest nodiorite intrude bo phide-bearing quartz t. Pyrite, arsenopy rhotite and chalcopy chemical L 61 sample(s) ;M Map(s) - 3; Scale(s 104K 090	anderlain by Upper Salmon Formation, ing typically strik . Sheeted dykes of oth the sedimentary z-carbonate veins f yrite, sphalerite a yrite occur in pate ME s) - 1:10 000	Triassic mudstones and diorite-monzo tes 120-135 degrees of carbonate-altere y and igneous rocks fill fractures trer and lesser galena, ches and lenses.	and onite and dips ed ading east- stibnite,
]				
]				
]				
]				
]				

LOG NO:	0620	RD.
ACTION:		
FILE NO.		

GEOCHEMICAL REPORT

on the

LIS 2 MINERAL CLAIM

ATLIN MINING DIVISION, B.C.

NTS 104K/11E

LATITUDE 58°40'N, LONGITUDE 133°08'W

For

ļ			
ł		FILMED	
	l and the second		

GEORGIA RESOURCES, INC.

Vancouver, B.C.

GEOLOGICAL BRANCH ASSESSMENT REPORT

Ellen Lambert, M.Sc., FGAC, Geologist

L

....

May 30, 1988

TABLE OF CONTENTS

•

Page

INTRODUCTION		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	1
GEOLOGY	•	•	•	•	•	•	•	٠	•	•	٠	•	•	•	•	•	•	•	1
FIELDWORK	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	4
RESULTS	•	•	•	•	•	•	٠	•	•	٠	٠	٠	•	•	•	•	•	•	5
RECOMMENDATI	ON:	5	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	5
REFERENCES	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	6
STATEMENT OF (cos	TS		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7
STATEMENT OF	QUA	LIF	IC/	\TIC	SNC	5	•	•	•	•	•	•	•	•	•	•	•	•	8

APPENDIX

Geochemistry Results

LIST OF ILLUSTRATIONS

.

.

~

		Page
Figure 1	Location Map	. 2
Figure 2	Claim Map	. 3
Figure 3	Sample Location Map	pocket
Figure 4	Soil Geochemistry Map - Au, Ag, As, Sb	pocket
Figure 5	Soil Geochemistry Map - Cu, Pb, Zn	pocket

INTRODUCTION

A geochemical soil sampling program was conducted on behalf of Georgia Resources, Inc. in August, 1987, on the LIS 2 mineral claim. The property is located in northwestern British Columbia near the B.C. - Alaska border, approximately 60 kilometres east of Juneau (Figure 1) at latitude 58°40'N and longitude 133°08'W. The claim is situated just north of the south fork of King Salmon Creek, a tributary of Taku River. Access to the area can be obtained by a 15-minute plane or helicopter ride from Atlin, B.C.

The property is comprised of one mineral claim owned by Georgia Resources, Inc. (Figure 2):

Claim	Units	Record <u>No.</u>	Expiry Date
LIS 2	20	2818	March 25, 1991

GEOLOGY

The area about the LIS 2 claim is underlain by upper Triassic volcanic rocks of the Stuhini Group that were subsequently overlain and intruded by lower Cretaceous to early Tertiary Sloko Group volcanics and felsic intrusives (Souther, 1971). Major northeasterly-trending faults in the region generally crosscut northwesterly-trending faults.

Several massive sulphide deposits occurring in rhyolite are present in the region and include the Big Bull, Erickson Ashby, Polaris Taku and Tulsequah Chief Mines. The principal commodities at these mines are silver, gold, lead and zinc, with local copper and antimony.

The property is primarily underlain by mudstones and siltstones of the upper Triassic King Salmon formation that are cut by a diorite-monzonite intrusion. Bedding attitudes strike 120-135° and dip 40-45° southwesterly. Carbonate-altered syenodiorite, intruding both sedimentary and igneous rocks, occurs as sheeted dikes up to 3 metres across. These dikes follow east-west fracture trends.

Mineralization occurs as sulphide-bearing quartz-carbonate veins filling fractures that vary in width from 5 centimetres to 1 metre. Pyrite, arsenopyrite, sphalerite and lesser amounts of galena, stibnite, pyrrhotite and chalcopyrite occur in patches and lenses up to a few tens of metres in length. Previous work included geochemical soil and stream sampling over covered regions near strongly fractured, sulphide-bearing zones (Payne, 1980).

FIELDWORK

On August 12, 1987, the property was visited by Seamus Young (Donegal Developments Ltd., Vancouver) and Chris Graf (Active Minerals Ltd., Vancouver). 61 soil samples were collected by two soil samplers (contracted from Gordon Clark & Associates, .Whitehorse) at 50-metre intervals along two north-south grid lines established by hip chain and compass. The lines are approximately 800 metres apart, both beginning near the south boundary of the claim (Figure 3).

Samples were collected from the B horizon at depths ranging from 10 to 30 centimetres and geochemically analyzed by Acme Analytical Laboratories Ltd. of Vancouver, B.C. Samples were analyzed for 30 elements using standard ICP analysis techniques, and the results are plotted in Figures 4 and 5.

The purpose of the current program was to extend the area of sampling carried out by Stokes Exploration Management in 1980, in order to determine if mineralization occurs beyond anomalous zones defined by that survey.

RESULTS

Highly anomalous values of gold, silver, copper, lead, zinc, arsenic and antimony occur on the east soil line. Anomalous lead, zinc and arsenic occur on the west line.

Gold values range to 465 ppb on the east line, with a clustering of anomalous values occurring in the middle of the line, and another at the southern end. Scattered moderate anomalies to 95 ppb Au occur on the west line. Only one significant silver value occurs on the east line, assaying 19.2 ppm Ag, while sporadic values to 6.2 ppm occur on both lines.

Anomalous zinc values are numerous on both the east and west lines, commonly ranging between 200 and 500 ppm. Five samples returned values over 1,000 ppm, the highest value being 2,119 ppm. The most significant clustering of anomalous values occurs on the southern half of both lines.

Elevated copper and lead values are present on both lines. Copper typically has values between 150 and 300 ppm, with two samples assaying over 900 ppm. Lead values vary widely, ranging from 26 to 1,330 ppm. A clustering of anomalous copper and lead samples occurs on the southern half of the east line.

Arsenic values are very high over both grid lines with assays commonly over 1,000 ppm. The highest values are over 9,000 ppm. Anomalous antimony values are numerous on the east line with assays ranging to 215 ppm.

RECOMMENDATIONS

Results of the geochemical survey outlined in this report gave encouraging results in gold, zinc, copper and lead from the eastern soil line, and the western line has anomalous zinc values. Further exploration work in the form of detailed prospecting and fill-in geochemical soil sampling should be carried out in these regions, followed by trenching and drilling where favourable targets are outlined.

REFERENCES

Payne, J.G., 1980, Joly-Jak Property, Geology Report; BCDM Assessment Report #9048.

 \Box

Souther, J.G., 1971, Geology and Mineral Deposits of Tulsequah Map Area, British Columbia; GSC Memoir 362.

STATEMENT OF COSTS

August 12, 1987

1.	Field Personnel	\$ 1,4	400.00
	l day @ \$300/day	\$ 300.00	
	Seamus Young 2 days @ \$300/day Ian Davidson	600.00	
	1 day @ \$250/day	250.00	
	Mike Michelmenelon I day @ \$250/day	250.00	
2.	Food and Accommodation 4 mandays @ \$70	2	280.00
3.	Travel/Vehicle Rental: 1/4 x \$1,706.48	4	426.62
4.	Field Supplies		50.00
5.	Helicopter 4 hrs. @ \$550.00	2,2	200.00
6.	Laboratory Analyses 61 soil samples @ \$11	6	571.00
7.	Report Preparation Report Drafting Photocopying	6 300.00 200.00 100.00	500.00
	TOTAL	<u>\$ 5,6</u>	27.62

•

STATEMENT OF QUALIFICATIONS

I, Ellen Lambert, of 5949 Toderick Street, Vancouver, British Columbia, hereby certify that:

- 1. I am a Fellow of the Geological Association of Canada.
- 2. I have a Bachelor's Degree in Geology from the University of Washington (1979) and a Master's Degree in Geology from the University of New Mexico (1983).
- 3. I have practiced as a geologist part-time since 1979 and full-time in mineral exploration since 1986 in the United States and Canada.
- 4. This report is based upon all data made available to me, published and unpublished, on the property area.

Respectfully submitted, ASSOCIATION GEOLOGICY Elena Mentert, A .Sc., FGAC FELLON

May 30, 1988

 $\left[\right]$

APPENDIX

.

.

Γ

GEOCHEMISTRY RESULTS

LIS

)

)

1

• •

}

1

_)

.

ſ

GEORGIA RESOURCES PROJECT-T-1187 FILE # 87-3751

F

SAMPLE	90 1999 1999	CU 1999	23 777	D Ph	e ae 1 PPH	NI PPH	00 1991	NX PPN	FE Z	AS PPK	U 799	AU PPX	TH P ph	sr Pph	CD PPH	53 PP#	BI PPH	V PPX		P Z	LA Pph	13 119	MG Z	BA PPK	11 2	3 PPH	AL Z	NA Z	ĸ	X PPK	AU1 P73
6 87074S	1	- 44	93	23	5.5		12	2313	6.05	318	5	ND	4	77	,	10	•	F7													
6 B7077S	6	147	187	222	1.2	18	32	3380	10.78	1352		ND	3	28	1	15	5	36 101	-4	-117	24	12	- 52	450	.01	2	1.43	-01	-07	2	- 4
6 \$7078S	11	268	1330	1244	5.8	21	67	5534	17.56	5030	21	ND	3	55	10	51	2	101	•14 75	• 2 01	23	23	- 12	187	.03	2	3,44	-01	.01	2	24
6 870775	6	143	193	- 341	1.2	17	30	3235	7.78	1326	5	ND	2	27	t	15	5	142		136		23		Z21	.04	2	2.17	.02	.07	1	87
6 87080S	4	208	209	471	1.3	47	50	4315	12.21	979	5	ND	2	47	1	27	2	97	.65	.221	16	21 30	.58 .54	178 243	.03 .02	2	3.14 3.44	.01 .01	.07 .03	1	18 16
6 870815	7	418	131	521	3.1	50	82	3636	14.34	2383	5	ND	2	114	1	47	2	103	. 97	199	42	25	78	174			• • •			•	
6 8/0835 5 070845	3	201	- 181	576	- 7	27	53	322	7.93	1107	5	ND	1	158	5	•	2	17	. 44	258		2.J 97	+17	-12	-01	1	2.11	.06	-05	1	58
0/V813 C 970050	4	380	100	407		- 72	- 46	2577	11.37	3234	5	ND	2	70	3	29	2	80	.47	.148	12	25	- 43	97	-03	2	4.32	-01	-04	1	11
# 8/08J3 6 976940	2	232	47	308	1.6	85	22	1739	8.45	433	5	ΝD	1	51	1	5	2	175	1.16	.071		142	1.72	75	0.0	5	3.70	•VZ	.08	1	24
	2	2 33	6/	119	.1	107	42	2504	8.92	1041	5	ND	i	54	1	9	2	168	. 97	.073	4	152	1.70	80	.17	2	3.30	.03 .07	.23 .25	1	- 3 14
5 87087S	5	387	255	2119	4.5	94	51	2577	12.23	3549	5	m	2				•		à n												
5 870885	3	122	323	33	.7	51	21	1833	9.00	900	5	ND	- î	28	;	19	5	113	. 67	.150	15	56	.82	468	.01	2	2.39	.01	.12	3	63
6 87087S	-	244	663	1567	4.2	31	36	5134	12.07	1876	5	ND	5		10	77	2	121	. 83	-170	15	62	•17	275	.01	2	2.22	.02	- 13	1	•
6 87090S	2	143	137	441	1.0	35	34	2470	6.57	395	5	ND	2	149	3	12	5	101	.03	-144	42	23	-71	277	.01	7	2.17	.02	.10	1	75
6 87091S	1	118	- 144	351	.!	3	17	1322	6.62	826	5	ND	ī	52	र र	17		101	+ 81 FF	.136	12	35	• 78	141	•03	2	2.98	° 03	. 10	1	7
5 87092S	4	203	147	797	1.4	47	78	22/ 6	17 08					42	•	13	4	101	•00	.05/	12	34	. 70	147	.03	2	2.43	.02	.07	1	11
5 870935	2		70	235	1.1	70	27	1584	13.25	270	5	ND	2	21	1	34	2	88	.25	.135	1	30	.11	149	.02	2	1.81	. 07	- 05	1	
E 870945	2	157	152	115	1.0	- 21 51	24	1274	4.82	361	2	HD	1	- 44	1	11	2	105	- 42	.138	11	π	.78	174	.03	4	2.73	-01	.08	•	10
E 870755	Ā	250	201	215	2.0	40	19	1772	1.82	220	2	ND.	2	57	1	11	2	145	- 58	.153	12	100	1.83	129	.12	16	2.74	. 05	. 12	- î	11
6 87094S		243	47	551	7	11		2303 2	11.24	1/16	5	ND	2	67	5	45	2	116	-41	-166	17	54	1.14	201	.04	7	1.99	.04	-01	1	77
	-		•2		•1	∎1	28	778J 1	LU. #7	3/6	3	ND	2	168	I	14	2	142	1.10	-167	17	74	1.83	232	.03	2	3.11	11	.15	i	1
5 870975	1	323	143	432	1.0	53	33	2037 1	13.41	257	5	ND	3	54	1	18	2	171		120		7.	1 74			_		_			
E 870785	7	271	43	215	.4	76	35	2770 1	13.46	174	5	ND	2	57	1		5	174	41	199	17	37	1.38	104	.03	3	1.96	.05	.07	1	7
6 87077S	4	225	75	300	.1	65	34	2823 1	12.05	257	5	ND	2	59	1	32	2	155	. 66	. 166	14	70 74	1.78	294	.14 .07	4	3.05 2.30	.04 .05	.13 .12	1 1	42 21
1/5 145	- 3	77	28	102	.1	14	15	1007	7.50	1461	5	ND	3	12	t	2	-					•••								-	
8/8 165	7	105	- 44	113	.5	10	23	2282 1	3.72	401	5	KD	5	17	- î	-	5	17	.07	.14/	21	26	•47	83	-02	2	3.42	.01	.04	1	2
8/6 167	7	370	427	347	5.7	5	34	7454 1	6.53	4642	5	ND	2	16	Ť	135	22	78	. VB	-16/	24	20	.51	123	-01	3	2.39	.01	.07	1	14
8/6 165	2	107	218	407	2.0	10	18	4680	9.27	1770	5	ND	3	36	i	66	2	57 61	.43	.086	10 17	10 14	.10 .27	752 991	.01 .01	2 2	.73 1.01	.01	.10	1	25 51
B7E 149		701	1002	2038	4.2	13	41	3815 1	3.75	2417	5	NP.			••		_									-		•••	•••	•	~
875 170	23	31	242	254	2.6	77	47	2413 2	3.74	491 1	5	אות אות	;	41	20	55		76	.39	127	31	21	-4	251	.01	2	2.80	.02	.01	4	138
876 171	14	447	67	178	1.2	167	72	5450 1	1. 01	7.17 4217	5	עה אע	2	48	1	132	2	174	- 46	.276	9	55	1.54	62	.13	4	2.2	.02	.14	1	45
876 172	21	502	422	820	3.0	79	74	11084 2	L.15	4087	5	R.//	4	35	I	22	2	244	.71	.117	9	196	3.17	181	.17	4 :	Z. 58	.02	.35	÷	57
875 173	5	41	45	88	.7	12	4	572	4.43	498	5	ND	5 1	27 14	4 1	121 - 4	11 2	132 94	.17	.117	37	35 27	.01	150	-01	2	3.00	.01	-05	i	92
876 174	5	125	330	378		יד	F.4	3794 ··			_										•		eui	12	•14	2	(• VB	•01	.06	1	3
875 175	Ē	132	778	350	•9	<i>२।</i> रा	- 24	4/20 1	2.70	4265	5	ND	2	25	1	17	2	77	.23	.254	13	27		143	ń1	,	* ^^				-
175 174	22	480	150	117	4+/ 7 5	3/	- 18 - E 7	3333 12		532	5	XD	3	17	1	23	8	74	.15	.187	11	29	ц	120	-v. 61	- 4 ·		• • • •	.0/	1	7
\$76 177	22	489	130	707	2.3	34	22	3244 1.	5, 91	1654	5	ND	3	36	1	20	2	110	.15	.194	•	34	1.11		-01		0.8/ 7.54	.01	.0/	1	26
875 178	11	208	740	001 001	1.5	- 24	24	3345 13	5.17	1341	5	ND .	2	37	1	17	2	107	.15	.176	•	35	1.10	90	.07	4 3)•/9 / /0	.01	.01	1	51
		100	J70	708	1.3	. 4	47	/633-13	5.74	2087	5	ND	4	14	1	46	11	100	.10	.180	15	41	.77	100	.01	3 5	5.00	.01 .01	-05 -05	1	52 47
876 177	<u>†</u>	294	417	737	2.5	51	47	3071 14	.37 4	188 1	5	ND	2		5	70	-													-	
\$75 180	24	979	390	628	3.7	40	47	3577 13	.76	5747	5	ND.	÷.	50	9 4	30	Z a	7	.43	•123	14	37	- 77	131	.03	4 3	.11	.03	.04	1	135
876 181	16	440	75	617	2.4	6 1	74	4313 20	57 2	2517	5	ND	τ	74	1	6-) 87	4	87	•27	.130	- 14	32	.17	104	•03	5 2	.54	.03	.05	1	118
#75 182	11	751	470	542	17.2	44	55	2482 21	.83 1	1082	5	ND	2	±7 19τ	1		1	100	-75	.140	15	48	-14	141	.01	23	. 61	.04	.08	1	44
876 183	7	184	107	264	1.4	30	33	1548 10	.89 2	2142	5	ND ND	2	17	1	07 14	4	73 . 107	1.26	.106	10	30	•45	13	.01	8 1	.36	.08	.05	1	445
876 484	-										-		4		ĩ	17	3	101	.13	.170	11	55	-51	22	•03	35	.10	.01	.04	1	72
6/8 184 STD C/AU S	2	168	61	278	1.1	37	17	758 4	.95 1	1905	5	ND	2 1	165	t	13	7		1 78	117			-			_					
510 L/AD-S	n	ŧI.	42	122	7.0	71	27	1057 4	-08	41	19	7	37	52	14	16	22	61	.46		7 39	04 59	.8/ .85	177	-03	32	.37 .	.02	.05	1	40
																					**			* 4 V		21 1	•/• •	ve	-13	13	48

.

1

								GE	ORG	IA F	ESO	JRCE	IS P	ROJE	ICT-	T-11	87	FI	_E #	87-	-375	1										~ •,
SAMPLES	na PPH	(1) PP1	23 227	ZX PPn	A6 PP1	NÌ Pfh	00 •••	n. Pph	FE	AS	U Pita	AU	TH	SR	ĆD	SI	BI	¥	CA	t	LA	CR	86	DA	п	1	AL	KA	ĸ	N	AUI	
								1110	•	rrn	Itu	rrn	r	rra	тгл	rra	rra	rrn	1	1	P75	7 77.	I	77.5	z	PPN	2	Z	1	PPH	?? \$	
876 185	8	222	183	453	2.1	40	32	2012 1	10.79	2569	5	ND	3	93	3	34	7	119	1.03	. 132	14	77	1 74	150	76	7	7 07	67				
876 184	2	167	37	225	. 6	34	17	1141	7.04	570	5	ЖĎ	2	78	1	7	2	153	1.79	114		80	2 70	87		'	7 77	.03	.10	1	32	
\$76 187	3	130	47	221	.4	35	29	2239	8.87	310	5	ND	2	49	÷	12		125	15	104		2.2	1 70		- 12	4	3.32	- 07	-10	1	11	
876 198	3	221	56	210	.7	44	75	1570	8.74	1284	5	ND		ū	2	15	Ī	100	874 77		13		1.10	32	-03		4.0/	.03	-07	1	1	
876 189	2	132	35	159	.5	37	27	1455	7.31	272	5	NA	,	17	5	11		178		- 070	10	41	-/3	GT	.04	2	4.75	-01	.07	1	- 36	
	-		••			•.					•	Π¥	-	74	4	11	4	134	.4/	.108	13	-	1.04	104	.07	2	3.11	.02	•16	1		
876 190	5	354	271	1143	4.1	30	24	2081 1	12.24	5547	5	MD	2	47	10	117	19	92	70	120	15	75	78	-11A		_		••		_		
876 191	10	351	44	271	2.2	44	40	1951 1	17.55	1007	5	ND	- 1			70		24		107	10		- 14	230	.01	<u> </u>	1.80	•01	-07	3	2/5	
875 192	7	344	26	232		40	35	1741 1	14. IR	514	5	ND.	Ť	142		1		457	. 78	-100	20	- 3 3		1/5	.01	2	.7	.01	-12	1	28	
876 193	4	197	30	203	1.0	47	25	1774	9 79	174	5	ND.	2	141	-	12	4	117	- 70	.130	29		1.02	157	-03	- 3	2.53	-11	.30	1	10	
876 194	Ē	721	- 44	101	45	55	71	2442 1	11 70	001	5	л <i>и</i> мћ	4	111	<u>,</u>	10	4	117	1.28	-145	17	52	. 17	190	-01	2	2.38	.10	-12	1	1	
	•			187	749	55	41	1771 1	11.JV	e 01	J	μų	3	42		213	Z	92	-22	-123	16	23	.4	167	.02	3	1.13	.02	.10	1	117	
875 195	5	167	72	217	.4	29	40	3147	9.53	252	5	ND	2	48	ſ	1.	2	101	71	278	70	78					7 66				_	
876 176	2	154	47	174	.5	39	23	1770	7.53	197	5	ND	Ť	45	÷	14	-	101	-/-	177	20	27		148	-01	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3.25	.02	•07	1	5	
6 #7200S	2	177	43	201	.5	- 49	25	1891	9.59	317	5	הע חע	, ,	172	•	11		108	- 60	.13/	14		1.06	204	.02	28	1.77	.03	.11	1	14	
5 87201S	5	217	124	179	11	74	35	2522	. 41		5	110	÷	110	-	11	4	190	. 17	-131	12	13	1.55		.11	2	3.17	.11	-18	1	- 4	
5 172025	1	177	7	177		79	20	1078	1.97	131	J 6	140	ې م	35	2	10	4	172	-42	.147	14	- 14	1.41	75	.10	- 4	3.34	.02	.11	2	17	
	•	100		200		44	20	10/8	8.02	233	J	πų	4	77	1	3	2	100	.12	-151		22	,85	4 0	.15	2	3.44	.10	.07	1	10	
5 87203S	3	171	114	170	.2	87	39	2034	8.04	401	5	ND	1	50	1	7	2	177	1.45	105		170	4	105					• •		_	
5 87204S	1	171	87	221	.4	53	27	1447	7.18	571	5	ND.	-	۵۷ ۲۹	-		- 4	125	1-40	177		1/8	1.78	102	.2	17	3.00	•02	- 24	1	7	
6 07205S	7	287	183	291	1.7	щ	17	7454 1	10 51	1442	5	10	-	20	4	7	 -	12	.47	-123	16	10	1.37	161	-12	5	2.18	.02	-13	1	11	
	•			~ * * *	***	_		7171	t Ve d L	1004	3	10	ు	e v	ు	13	- 3	- 12	.44	-113	20	42		157	. 63		7 5 E	67	08	1	30	

 \sim

)

)

,

)

LEGEND

+ Soil sample location Au in ppb, Ag in ppm, As in ppm, Sb in ppm

ACTIVE MINERALS LTD. GEORGIA RESOURCES INC. LIS CLAIMS SOIL GEOCHEMISTRY Au, Ag, As & Sb N.T.S. 104K-IIE O 100 200 SCALE 1:10,000 FEB. 1988 FIG. 4

