ASSESSMENT REPORT 17521
 MINING DIVISION: Alberni

SEARCHED FOR: Gold, Copper,Lead,zinc GEOLOGICAL SUMMARY: Formation limestones which in turn have been intruded by Eocene age Catface diorite. Magnetite (sphalerite-galena-chalcopyrite) skarns have formed at the Karmutsen/Quatsino contacts and Catface/Quatsino contacts. A 5-50 centimetres wide quartz-pyrite-chalcopyrite vein, dipping 12 degrees to the south has been traced for 50 metres by 20 metres within diorite, with values up to 200 grams gold per tonne.

Geological, Geochemical, Drilling
DIAD $437.1 \mathrm{~m} \quad 9$ hole(s);BQ
$\operatorname{Map}(s)-1 ;$ Scale(s) - 1:200
GEOL
250.0 ha
$\operatorname{Map}(s)-2 ;$ Scale $(s)-1: 5000$
ROCK 88 sample(s) ;AU,AG
SILT 6 sample(s) ;AU,AG,CU,PB,ZN,AS
SOIL 130 sample(s) ;AU,AG,CU,PB,ZN,AS
CRELATED
JREPORTS:
MINFILE:
16355
092E 063

1988 SUMMARY REPORT ON THE
HEAD BAY PROJECT

Located in the Tahsis area of Vancouver Island Alberni Mining Division NTS 92E/15E
490 48' North Latitude
$126^{\circ} 31^{\prime}$ West Longitude
-prepared forCENTAUR RESOURCES LTD. -prepared by-

Henry J. Awmack, P.Eng.
GEOLOGICALBRANCH
 June 1988

TABLE OF CONTENTS

		Page
1.0		INTRODUCTION
2.0	LIST OF CLAIMS	.1.
3.0		LOCATION, ACCESS AND GEOGRAPHY
4.0		PROPERTY MINING HISTORY
	4.1	Previous WOrk
	4.2	1988 WOrk Program
5.0		REGIONAL GEOLOGY
6.0		PROPERTY GEOLOGY AND GEOCHEMISTRY
	6.1	Geology
7.0	6.2	Geochemistry
8.0		MINERALIZATION
8.0	DISCUSSION AND CONCLUSIONS	.2.

APPENDICES

Appendix A Appendix B Appendix C Appendix D Appendix E Appendix F Appendix G

Bibliography Statement of Expenditures Drill logs

- Rock Descriptions Certificates of Analysis Analytical Procedures Engineer's Certificate

LIST OF FIGURES

		Following
Figure 1	Location Map	Page
Figure 2	Claim Map	.1.
Figure 3	Regional Geology	.2.
Figure 4	North Half: Geology and Geochemistry Pocket	
Figure 5	South Half: Geology and Geochemistry Pocket	
Figure 6	Road Zone: Drill Plan	Pocket

\qquad

1.0 INTRODUCTION

The Head Bay property, comprising the VIG 3, 5, 7 and 8 Mineral Claims, was staked in 1987 and 1988 to cover a rich goldbearing pyrite-quartz vein exposed in a logging road approximately sixteen kilometers south-east of Tahsis on the west coast of Vancouver Island (Figure 1). Great Keppel Resources Ltd. (now Centaur Resources Ltd.) conducted an exploration program over the Head Bay property in June 1987, delineating the Road Zone on surface and yielding several good geochemical anomalies which were not followed up at that time.

Further exploration, consisting of diamond drilling, geological mapping, prospecting and geochemical sampling, was done over the Head Bay property in May 1988. This program was designed to test the Road Zone at depth and investigate the 1987 geochemical anomalies. Equity Engineering Ltd. conducted this program for Centaur Resources Ltd. and has been retained to report on the results of the field work.

2.0 LIST OF CLAIMS

Records of the British Columbia Ministry of Energy, Mines and Petroleum Resources indicate that the following claims, which comprise the Head Bay property (Figure 2), are owned by David A. Caulfield. Separate documents indicate that the claims are under option to Centaur Resources Ltd. The Head Bay property surrounds three Crown-Granted mineral claims.

Claim Name	Record Number	No. of Units	Record Date			$\begin{gathered} \text { Expiry } \\ \text { Year } \end{gathered}$
VIG 3	3150	16	March	12,	1987	1997
VIG 5	3255	20	June	11,	1987	1997
VIG 7	3566	8	May	17,	1988	1989
VIG 8	3567	16	May	17,	1988	1989
		60				

The location of all legal corner posts has been verified by the author.

3.0 LOCATION, ACCESS AND GEOGRAPHY

The Head Bay property is located one kilometer west of the Head Bay logging camp on Tlupana Inlet, approximately sixteen kilometers southeast of the village of Tahsis on the west coast of Vancouver Island (Figure 1). It lies within the Alberni Mining Division, centered at $49^{\circ} 48^{\prime}$ north latitude and $126^{\circ} 31^{\prime}$ west longitude.

The Head Bay Forest Road, an improved gravel road which connects Tahsis to Gold River, passes through the VIG 7 claim. Branch roads from it and the Sucwoa Main Line extend throughout VIG 3 , VIG 7 and VIG 8 and provide access to the eastern portions of VIG 5. Active logging by BCFP on the southern and eastern parts of the property and extension of the Tlupana Main Line will continue to improve access to VIG 5 and VIG 8. A high-voltage .power line crosses VIG 7 and the northeastern corner of VIG 3 .

The Head Bay property covers the eastern flank of an unnamed mountain of the Vancouver Island Ranges between the Sucwoa River and Desperate Lake. Topography is rugged, with deeply incised. creeks and steep rock bluffs. Elevations range from near sea level on Desperate Lake to over 900 meters along the western boundary of the property. Outcrop exposure is excellent throughout.

Mature forest covers the southern and western parts of the property with hemlock, red cedar, fir and a moderate undergrowth of salal, devil's club, huckleberry and salmonberry. Areas logged five to twenty years ago are choked with slash and shrubbery. A substantial area in the east-central part of the property has been logged within the past two years, leaving logging slash without much vegetation.

The Tahsis area receives approximately 500 centimeters of precipitation annually in an otherwise moderate climate, with cool temperatures year-round. Heavy snowfalls can occur at higher elevations.

4.0 PROPERTY MINING HISTORY

4.1 Previous Work

The rich, narrow, quartz-sulphide veins of the Zeballos camp, approximately 35 kilometers northwest of the Head Bay property, were discovered in the 1920's and 1930's upstream from coarse placer gold pockets in the Zeballos River. These veins produced a total of 8,930 kilograms (287,811 ounces) of gold and 3,880 kilograms (124,700 ounces) of silver until 1948.

Development of the Zeballos gold camp resulted in increased exploration throughout the Tahsis area and led to the discovery in 1939 of the Mohawk and Vivian veins less than two kilometers west of the Head Bay property (Figure 3). Several adits were driven on these quartz-calcite-pyrite veins but were abandoned in 1940 as a result of the war.

The Glengarry-Stormont magnetite deposit, located on crowngranted mineral claims enclosed within the VIG 3 claim, was

discovered in 1902 but received little exploration until 1951. Surface exploration and diamond drilling in 1951 and 1952 indicated 330,000 tonnes of ore averaging $42.7 \% \mathrm{Fe}$ (MMAR-1956, p. 133). Small-scale production in the early 1960's yielded 23,000 tonnes of magnetite concentrate from 60,000 tonnes of ore.

Aberford Resources Ltd. conducted an extensive reconnaissance exploration program for disseminated gold deposits throughout the Tahsis peninsula in 1979 and 1980 and staked several claims to cover anomalous drainages. In the course of follow-up work, they discovered several rich gold showings including a narrow pyrite-quartz vein traced by Aberford over 23 meters in a road cut on what is now the VIG 3 claim. Robinson (1983) reported that the 15 Aberford samples taken from this showing, later named the Road Zone, averaged 54.76 grams gold per tonne ($1.598 \mathrm{oz} /$ ton) with the highest sample assaying 282.0 grams gold per tonne ($8.828 \mathrm{oz} / \mathrm{ton}$).

Homestake Mineral Development Company optioned the TAH 22 claim, containing the Road Zone, but dropped the option after limited property reconnaissance (Flanagan, 1984).

The TAH 22 claim was allowed to lapse in February 1987, and was immediately re-staked as the VIG 3 for subsequent option to Great Keppel Resources Ltd (now Centaur Resources Ltd.). A program of geological mapping, prospecting, geochemical sampling, geophysical surveying and hand-trenching conducted in June 1987 verified the presence of several narrow sulphide-quartz veins in the Road Zone, with assays up to 201.3 grams gold per tonne (Awmack, 1987). Several other geochemically anomalous areas and drainages were also identified on the Head Bay property. The VIG 5 claim was staked in June 1987 to cover favorable lithology and the regional trend of stratigraphy and mineralization.

4.2 1988 Exploration Program

In May. 1988, 437.1 meters of $B Q$ core in nine diamond drillholes tested the Road Zone at depth below the 1987 trenching. The core was logged, sampled and stored on site. Drill logs are attached in Appendix C.

Prospecting during the 1988 program was directed at geochemical anomalies discovered during the 1987 exploration program and along logging roads which have recently been constructed on the VIG 5 and VIG 8 claims (Figures 4 and 5). Rock samples are described in Appendix D. Limited geological mapping at a scale of 1:5000 along new roads extended the 1987 mapping. Six silt samples from major drainages were screened in the field to minus 10 mesh. A total of 130 reconnaissance soil samples were taken along contour lines, with samples taken from the B Horizon wherever possible. Both silt and soil samples were analysed for gold, silver, copper, lead, zinc and arsenic. Certificates of analysis form Appendix E, and analytical procedures are included in Appendix F.

The VIG 7 claim was staked to cover a geochemically anomalous drainage discovered during the 1987 program on the northern boundary of the VIG 3 claim. The VIG 8 claim covers zinc, copper, gold and lead occurrences on new logging roads near the southeast corner of VIG 5 .

5.0 REGIONAL GEOLOGY

The Tahsis area is underlain by thick northwesterly trending sequences of oceanic basalts and sediments of the Upper Triassic Vancouver Group and extrusive volcanics of the Lower Jurassic Bonanza Group. These have been intruded by Lower Jurassic batholithic Island Intrusions and by Eocene stocks of the Catface

Intrusions, with attendant regional and contact metamorphism (Figure 3).

The Vancouver Group, as defined by Muller et al (1981), consists of up to 6,000 meters of Karmutsen Formation (Unit 1) basaltic pillow lavas, pillow breccias, lava flows and intervolcanic limestone, overlain by up to 750 meters of massive Quatsino Formation limestone (Unit 2). This grades upwards into thinly-bedded silty limestones, limey sandstones and reef limestones of the Parson Bay Formation (Unit 3).

The Bonanza Group (Units 4 and 5) comprises a complex sequence of maroon to green interbedded volcanic flows and pyroclastics ranging from basalt to rhyolite in composition. These formed in an island arc environment, and contain both marine and terrestrial facies. The volcanics are locally overlain by clastic sediments ranging from pebble conglomerate to shale, siltstone and coaly beds.

Lower Jurassic Island Intrusion batholiths (Unit 6) are mapped on the southern end of Tahsis Inlet and to the east of Tlupana Inlet. They are generally moderately-grained quartz diorites to leucogranites and may be cogenetic with the Bonanza volcanics (Muller et al, 1981).

Stocks of the Eocene Catface Intrusions (Unit 6) are mapped on the northeast shore of Hisnit Inlet and the northern slopes of Santiago and Tahsis Mountains (Muller et al, 1981). The unmapped stock which extends southeasterly from the Head Bay property may also belong to the Catface Intrusions and may form part of the Hisnit Inlet stock. These intrusives are generally massive, light-colored fine- to medium-grained quartz diorites and granodiorites.

The Vancouver and Bonanza Group rocks form a southwest dipping monocline which is disrupted and offset by numerous northwesterly, northerly and easterly faults of unmeasured displacement. Amphibolite-grade regional metamorphism and migmatization are associated with the Island Intrusions. Contact metamorphism and skarn formation are common near Catface stocks. The Glengarry-Stormont magnetite deposit is hosted by a banded garnet-magnetite-epidote-diopside skarn in Quatsino limestone near its contact with the underlying Karmutsen volcanics close to the Head Bay stock.

The Mohawk and Vivian showings, approximately two kilometers west of the Head Bay property, are associated with a Catface stock which intrudes Quatsino limestone and Bonanza volcanics (Figure 3). The Mohawk vein, which is 35 centimeters wide and strikes northeasterly, is a vertical quartz-filled fissure vein with fine pyrite. The Vivian vein is a five to ten centimeter wide, steeply-dipping quartz-calcite vein which strikes northwesterly (Hoadley, 1953). Sampling of the Vivian ore dump by Aberford in 1983 yielded two assays averaging 121.2 grams gold per tonne ($3.537 \mathrm{oz} /$ ton) and 361 grams silver per tonne $(10.53$ oz/ton) (Robinson, 1983).

6.0 PROPERTY GEOLOGY, GEOCHEMISTRY AND GEOPHYSICS

6.1 Geology

Two Karmutsen/Quatsino sequences on the Head Bay property (Figures 4 and 5) are separated by an inferred easterly fault. Subsequent northwesterly faulting has downdropped Bonanza volcanics to the west of the Karmutsen/Quatsino sequences. Intrusion of the multiphase Head Bay Stock,along the easterly trending fault produced skarn near the contact between Karmutsen basalts and Quatsino limestone.

Dark green, generally fine-grained, massive, basaltic to andesitic flows of the Karmutsen Formation (Unit 1) are exposed on the northeastern and east-central parts of the Head Bay property. They are soft, pervasively chloritized and locally diopside- or epidote-altered. Fine-grained disseminated pyrite or magnetite is rare. North of the Sucwoa River, the Karmutsen Formation is composed of andesitic to basaltic pyroclastics.

Massive grey limestone of the Quatsino Formation (Unit 2) overlies the Karmutsen volcanics throughout the northwestern parts of VIG 3 and 7, the southern part of VIG 5 and throughout VIG 8, dipping moderately to the west or southwest. Basaltic flows are intercalated with massive limestone near the bottom of the section and thinly-bedded limestone bands become more pronounced upwards. One outcrop of black limey argillite on VIG 3 may represent the bottom of the overlying Parson Bay Formation (Unit 3).

The two Karmutsen/Quatsino sequences on the Head Bay property were probably displaced vertically by an easterly trending fault prior to intrusion of the Head Bay stock.

A later inferred northwesterly trending fault has downdropped Bonanza Group (Unit 5) felsic volcaniclastics and flows relative to the Karmutsen/Quatsino sequences in the western part of the Head Bay property, Where exposed, the Bonanza Group consists mainly of tuffs, tuff breccias, agglomerates and feldspar porphyry flows with little lateral or vertical continuity. They are generally dacitic to rhyolitic in composition, green to purple in color and contain 1\% finely disseminated pyrite.

All rock types have been intruded by the multiphase Head Bay stock (Unit 6) which appears to be one of the Catface Intrusions.

This stock extends southeasterly from the center of the property towards Head Bay along the inferred fault which separates the two Karmutsen/Quatsino sequences. A portion of this stock is elongated about a southeasterly trending axis on the northwestern part of the VIG 8 claim. In its central outcrops on the southern portion of VIG 3, the stock is a medium-grained, equigranular diorite composed of 70% plagioclase, 20% hornblende, 5% biotite and 5\% magnetite. Outcrops of a monzonitic phase, composed mainly of plagioclase and orthoclase with 5% biotite, occur sporadically along the southern contacts of the Head Bay stock. In its northeastern exposures and near its intrusive contacts, the stock is highly variable in composition and texture, ranging from diorite to coarse gabbro to anorthosite to pyroxenite. This mafic phase, which contains up to 25% magnetite, is related to the Glengarry/Stormont magnetite skarns and hosts the goldbearing sulphide-quartz veins of the Road Zone.

Skarn (Unit 7) has formed wherever the gabbroic phase of the Head Bay stock has intruded Quatsino limestone, especially near the Quatsino/Karmutsen contact. It varies considerably in thickness from a few centimeters in road cuts west of the Road Zone to several meters in the Glengarry-Stormont magnetite deposit. Contact skarns generally consist of fine-grained diopside and epidote with variable amounts of quartz and calcite. Up to 5% pyrite, 20% magnetite and traces of chalcopyrite are present locally. On the VIG 8 claim, andesitic dikes cutting Quatsino limestone have been converted to skarn near their contact with the Head Bay stock. This skarn type contains locally abundant sphalerite, galena, pyrite and auriferous chalcopyrite. The Glengarry-Stormont skarns, located on the Crown-granted mineral claims enclosed within VIG 3, are composed of alternating bands of andradite garnet and magnetite with lesser epidote, diopside, quartz and calcite. Beryl, pyrite, chalcopyrite and specularite are rare. These banded skarns are replacements of chemically favorable beds near the bottom of the

Quatsino limestones. A similar skarn zone is exposed over 60 meters with a thickness of two to five meters on VIG 3 southwest of the Crown-granted mineral claims.

6.2 Geochemistry

Six stream sediment samples, screened in the field to minus 10 mesh, were taken from streams draining the VIG 7 and VIG 8 claims (Figures 4 and 5). None contained anomalous values for gold, silver, copper, lead, zinc or arsenic.

Four lines of soil geochemical samples were taken along contour lines in areas that had not received previous geochemical coverage (Figures 4 and 5). All soil samples were analyzed for gold, silver, copper, lead, zinc and arsenic: Three consecutive soil samples contain greater than $900 \mathrm{ppm} \mathrm{Zn}, 80 \mathrm{ppm} \mathrm{Pb}$ and 100 ppm Cu, approximately 250 meters west of the newly-discovered sphalerite-galena-chalcopyrite skarn occurrence on VIG 8. Several gold values greater than 45 ppm were returned from elsewhere along this soil line.

7.0 MINERALIZATION

The most completely investigated gold mineralization on the Head Bay property occurs in the Road Zone. This shallowlydipping system of rich pyrite-quartz-chlorite-chalcopyrite lenses is hosted by weakly sheared, coarse magnetite-rich gabbro of the Head Bay stock. These lenses are highly discontinuous in all directions, but contain up to 201.3 grams gold per tonne over a few centimeters. The best gold values are found in heavy sulphide lenses with black chloritic ribbons and shears. Trenching in 1987 exposed 38 meters of strike-length with an
average grade of 4.41 grams gold per tonne across 1.46 meters (Awmack, 1987).

Nine diamond drill holes totalling 437.1 meters were drilled in May 1988 from a single setup to test the Road Zone at depth below the 1987 trenches (Figure 6). This drilling confirmed the high gold values indicated by trenching with the best intersection grading 58.20 grams gold per tonne across 0.25 meters, but showed the Road Zone mineralization to be erratic and of limited extent. Only four holes intersected quartz-sulphide mineralization, although shearing was present in the other holes where veining would be expected. None of the holes encountered more than one quartz-sulphide lens, despite the presence of up to three in the 1987 trenches. In drill core, the Road Zone is shown to be a narrow shear or series of shears, sporadically mineralized with highly auriferous quartz-pyrite-chalcopyritechlorite veins and flanked by less than one meter of weak shearing and clay alteration with minor disseminated pyrite and chalcopyrite within unaltered diorite. Drilling shows the Road Zone's orientation to be approximately $090^{\circ} / 12^{\circ} \mathrm{S}$.

Prospecting directed at the geochemical anomalies produced by the 1987 program resulted in the discovery of banded pyritequartz float near station $13+00 \mathrm{~N} 20+00 \mathrm{E}$ on the 1987 geochemical grid, in the center of a weak three-station soil gold anomaly. Sample \#172135, taken from this float, assayed 17.00 grams gold per tonne.

Several interesting base metal skarn occurrences were discovered during 1988 in new roadcuts on the VIG 8 mineral claim (Figure 5). Sphalerite was noted over two to twenty centimeters in several skarns formed at the contact between sheared andesitic dikes and Quatsino limestone. Grab sample \#172021 assayed 18.6% zinc with 55.5 grams silver per tonne across 0.20 meters. Approximately 360 meters west of sample $\overline{\#} 172021$, a silica-
sphalerite-galena replacement of limestone at its intrusive contact with the sheared diorite of the Head Bay Stock assayed 3.42% lead. and 15.3% zinc in sample \#172172. Grab sample \#172167, taken from chalcopyrite-rich skarn nearby on the same contact assayed 8.67 grams gold per tonne with 6.13% copper. Narrow pyrite-chalcopyrite veins within the adjacent diorite are weakly auriferous, containing 350 ppb gold with 4000 ppm copper.

The magnetite skarns of the Glengarry-Stormont deposit and those extending onto VIG 3 contain locally anomalous gold values (Figure 4). Sample \#172118 contains 985 ppm gold within magnetite skarn which lacked apparent sulphide mineralization. As this sample was composed of chips taken over an area several meter's in diameter, gold mineralization may be controlled by a narrower, richer structure which was not observed.

8.0 DISCUSSION AND CONCLUSIONS

The Road Zone mineralization, while yielding impressive gold assays, has been shown by drilling to be too narrow and discontinuous to warrant further exploration.

Mineralized float assaying 17.00 grams gold per tonne has been discovered approximately 450 meters southeast of the Road Zone. No follow-up prospecting has yet been done to discover the bedrock source for this float. It is possible that this mineralization is related to the prominent northwesterly trending fracture system and gullies which extend up to the Road Zone from this point.

Zinc(-lead-copper-gold) skarn occurrences have received limited sampling over an area of 300 meters by 360 meters on the VIG 8 claim. Three highly anomalous soil samples a further 250 meters west of this area may reflect similar mineral occurrences.

The true width, areal extent and significance of these skarn showings is not yet apparent. Several weeak soil geochemical gold anomalies downslope from the skarn occurrences deserve further investigation.

A few of the geochemical anomalies from the 1987 program have been successfully traced to their sources. In particular, the discovery of mineralized float grading 17.00 grams gold per tonne in the center of three weakly anomalous soil samples (containing 60, 80 and 90 ppb gold), shows the significance of the 1987 geochemical anomalies. No satisfactory source has yet been found for several of the strongest geochemical anomalies discovered during 1987, particularly for the highly anomalous drainage on the north boundary of the VIG 3 claim and for several soil samples which contained greater than 100 ppb gold. Further prospecting will be necessary to determine their sources.

Respectfully submitted,

Vancouver, British Columbia
June 10, 1987

APPENDIX A
 BIBLIOGRAPHY

BIBLIOGRAPHY

Awmack, H.J. (1987): 1987 Summary Report on the Head Bay Project; Report submitted to the British Columbia Ministry of Energy, Mines and Petroleum Resources for assessment credit in August, 1987.

Bancroft, M.F. (1940): Zeballos Mining District and Vicinity, British Columbia; GSC Paper 40-12.

BCMEMPR (1956): Ministry of Mines Annual Review, p. 131-133.
Cavey, George (1983): Geochemical Report on the Elaine Claims; BCMEMPR Assessment Report \#11,221.

Caulfield, David A. (1985): Prospecting Report on the Mohawk Group; BCMEMPR Assessment Report \#13,806.

Chabot, G.E. (1982): Report on Reconnaissance Geological Mapping Conducted on the TAH 2-21 Mineral Claims; BCMEMPR Assessment Report $\$ 10,157$.

Flanagan, M. (1984): Geology and Geochemistry of the TAH 22 Claim; BCMEMPR Assessment Report \#13,026.

Hoadley, J.W. (1953): Geology and Mineral Deposits of the Zeballos-Nimpkish Area, Vancouver Island, British Columbia; GSC Memoir 272.

Muller, J.E., Cameron, B.E.B, and Northcote, K.E. (1981): Geology and Mineral Deposits of Nootka Sound Map-Area, Vancouver Island, British Columbia; GSC Paper 80-16.

Robinson, J.E. (1983): Geological and Geochemical Report on the TAH Group; BCMEMPR Assessment Report \#12,058.

Ronning, Peter A. (1985): Geology and Lithogeochemistry of the TAH Claim Group; BCMEMPR Assessment Report \#13,681.

Stevenson, John S. (1950): Geology and Mineral Deposits of the Zeballos Mining Camp; BCMEMPR Bulletin No. 27.

White, G.D. and Chabot, G.E. (1981): Report on a Reconnaissance Geochemical Survey conducted on the TAH 1-19 Claims; BCMEMPR Assessment Report $\# 9,130$.

Young, G.A. and Uglow, W.L. (1926): Iron Ores of Canada, Vol. 1; GSC EG-3-1, 253 pp .

APPENDIX B

STATEMENT OF EXPENDITURES

STATEMENT OF EXPENDITURES
 HEAD BAY PROPERTY
 MAY 1-16, 1988

PROFESSIONAL FEES AND WAGES:

$$
\begin{array}{ll}
\text { Henry J. Awmack, P. Eng. } & \\
\quad \text { April } 19 \text { - June } 8 & \\
20.0 \text { days @ } \$ 300 / \text { day } & \$ 6,000.00 \\
\text { Elmer DeBock, Prospector } & \\
\text { May 1 - May } 16,1988 & \\
16.0 \text { days @ } \$ 250 / \text { day } & 4,000.00 \\
\text { Fraser Ray, Sampler } & \\
\text { May } 2 \text { May } 15,1988 & \\
14.0 \text { days @ } \$ 175 / \text { day } & 2,450.00
\end{array}
$$

\$ 12,450.00
900.00

SUBCONTRACTS:
Engineering
Drilling
1457 feet @ $\$ 20 / f t$
151 manhours @ $\$ 22$
29,140.00
3,322.00
61 coreboxes @ $\$ 5.05$
308.00

33,148.00

EXPENSES:

Recording Fees
Chemical Analyses
Materials and Supplies
Printing and Reproductions
Meals
Accomodation
Travel
Automotive Expenses
Telephone Distance Charges Courier and Telefax Freight
\$ 130.00
4,568.75 295.72 7.50 1,145.40
2,088.00
456.40
346.16
11.07
18.99
16.00

REPORT PREPARATION:

9,083.99
$1,000.00$

MANAGEMENT FEE:

$$
7.5 \% \text { on subcontracts } \$ 2,486.10
$$

$$
15 \% \text { on expenses only } \quad 1,362.60
$$

$$
===========
$$

APPENDIX C

DRILL LOGS

EQUITY
ENGINEERING LTD.
DRILL LOG

PAGE 3B of 4 PRovect:- He	PRONET:- HEAD BAY								HOLE NO. V8S-3.	
MINERALZATION DESCAIPTION		SAMPLES			Samplenumber	Assars				
		FROM	то	$\begin{aligned} & \text { I } \\ & \hline \end{aligned}$		$\begin{aligned} & A_{u} \\ & (g / t) \end{aligned}$	$\begin{aligned} & A_{y} \\ & (g / t) \end{aligned}$			
	\square									
47.25-41.45 Coarse aurit--dios sid,		41.25	47.45	0.20	172059	<001	<0.5			
play diorto with l.0em gta										
vein (a) 60° to C.A. alomg ch'oritic										
Shear. Augit \rightarrow garnet; ;'m,-ep.										
Shar. Augit \rightarrow gamel, piy-tep.										
		50.7	53.1	2.4	172060	<0.07	405			
										-

	\pm									
										--
										-
										-.
	+i									----
										-
61.0-61.6 Two 0,5-1.0 m calcit-		61.0	61.6	0.6	172061	<0.07	<0.5			
quartz veins in lithle-utterd diomt.										---
Lonal ep.d.to. 30° to $C A$.	1									
	H									
	-									
	H									--.
	\#									---
	\square									
	+									
	1i1									
	$+$									
	H									
E2										

EQUITY
ENGINEERING LTD.

DAILLLOG

page	of			PROUECT:				HOLE NO.					
		$\begin{aligned} & \text { y } \\ & \text { O} \\ & \underline{1} \\ & \hline \end{aligned}$	$\begin{array}{l\|} \hline \stackrel{w}{w} \\ \stackrel{\rightharpoonup}{2} \\ \stackrel{\rightharpoonup}{5} \end{array}$	geological description	alteration								
$\left[\begin{array}{l} \text { 茝茝 } \end{array}\right.$					A	B	c	D	E		$\stackrel{3}{2}$		
-				- . --.. --. - - ---									
5			\therefore	-.....- - -.-.-......--							1	-	
E			-..--- --- --... - --	\cdots	-.	-:	-	\because	-	-		
E-					-								
E					-				-				
\%					-	-				-			
E				---------------........	-								
F					-				-			\cdots	
5					-					-	-		
E					-	$=$	-		-	\cdots	\cdots		
\square					-	--	$=$	-	-			-	
E													
\%					\cdots				\square	+			
5					$=$		-						
E					-		+	+	!				
Y					-	-	\pm	+	.	-			
5									-		--1		
5				- - - -	$!$							-	
${ }_{2}$				---- --			1,						
E			\therefore		-		1	$+$					
5			\therefore		-		1		-				
E				...-	\bigcirc							\because	
F-				-----	-	-	-		-	-	-	\cdots	
I					-		Y		-	-			
E			--		\square							-	
F		--	-		!		1						
E		\because	\because		$!$								
E			\because		\square		+						
$\sqrt{7}$			\square	,	-					\%			
E		\because	\because		\div			$+$		\square			
F			\cdots										
$\underline{\square}$		\cdots	\square		-			-				\because	
E					-		-		-	-	-	\cdots	
F				-	=				-	-	-	\therefore	
-										-			
E		-	\cdots		-			\cdots					
E			$:$	- -	-		\because	\because					
F					-	-	\cdots						
E		\cdots	-		-			\therefore					
E			\cdots		1 -		\cdots		-				

EQUITY
ENGINEERING LTD.
DRILL LOG

EQUITY
ENGINEERING LTD.
DRILL LOG

$L_{\text {Page }}$	OF			PROECCT:				HOLE No.				3	
				GEOLOGICAL DESCAIPTION	Atieation								
F			-		. - .-. . - --. --.- --......	-		-					
E			\because		F-				-				
[
E					\square								
6					$\#$		$=$						
					-		-	-					
$[$					-								
E					\pm	\pm							
T					$\underline{\square}$			-					
\underline{E}					\square								
E			-		\because	-		-					
E						\pm	\pm	\cdots					
5			\therefore	-	\square			-					
E				-									
$\frac{1}{7}$					\square								
E					\mp								
E						-							
			-		\because								
F				---_--	\pm								
[-								
E			\cdots										
\underline{F}					+								
E					\because	\pm							
E					+	-							
E					-	:							
-				-- ------									
E			\because			± 1							
$\frac{F}{F}$													
F					-								
E				-----------.......	$E=$							6	
					\square	7							

EQUITY

ENGINEERING LTD.

mineralization DESCRIPTION

24.95-25.05 D...n't, unaltert but whth rave

50% quart, 25% py, 15% cpy 10% dark green chlarit,
25.97-26.04 Wemicly claranliored diont

$32.42-32.90$ Weably clay-allered dio.t with 1% dissem pqite Up to 10% py for 3 cm around veins and shears

EQUITY
ENGINEERING LTD.
DRILL LOG

PAGE	of		PROECT:				Hoie no.				
			GEOLOGICAL DESCRIPTION	ALIEATITON							
					c						
F		-		$\underline{-2}$			i				
5		\cdots									
E					-						
							-				
E				$\underline{\underline{-1}}$	$\underline{ }$			-			
[
F											
[-						
E					\square						
			--. --								
					\square						
	\therefore										
			. .----	\square	\#						
		\because			\square	-	4				
E		\cdots		1	\pm	\pm	-				
E					+	7					
5											
					\pm	\cdots					
				\square		\pm					
[i	\pm					
					$+$	1					
[
E						1					
$\sqrt{7}$		-	--				-				
5					+						
[-			\pm					
E			-	\pm							
[:			-							
E											
[\cdots	E		\because					
E			-	-	-						
[\cdots					
		\cdots									

EQUITY
ENGINEERING LTD.
DRILL LOG

Page	OF		PROECT:				Hole no.				
			GEOLOGICAL DESCRIITTON		altantia	ation					
					c						
-		-	.-.-.. - .-.....-......-	-							
5		-					-				
E			$\cdots-\cdots$	-	-	\%	\square	-			
[
E				θ	-	-					
[--------------1	θ				-			
E											
\square											
E								\pm			
$\underline{6}$											
E											
8											
5				+		\pm		H			
F		\cdots		\pm		\pm		-			
\underline{Y}		\cdots		-				-			
E				T	T	-		\because	\pm		
[--.--	$1 ;$							
E				+	$\underline{1}$	-		\%			
5				\square	\cdots	\pm		-			
				\square		-					
F		\cdots	$\cdots-$------------	F	T	E					
		\cdots	.. --------	\bigcirc	\square						
				-	-						
				+		\pm					
E		\square			\pm			-			
			-			;					
E	$=$	\square				+					
								-			
			- - -					-			
E		\square						-			
F		\cdots	-- -----	F							
F						1	-				
F	\because		- . ..-------.....-			.					
	-				\therefore	\cdots					
				上1:	\because	-					

EQUITY
ENGINEERING LTD.
DRILL LOG

EQUITY
ENGINEERING LTD.
DRILL LOG

PAGE／B Of 5 PRONECT：HEAD	PRONECT：HEAD	Bay							HOLE NO．VE8－「？	
MINERALIZATION DESCAIPTION		SAMPLES			SAMPLE NUMBER	assays				
		FROM	T0	甹		Au g / t	$\begin{aligned} & \mathrm{Ag} \\ & \mathrm{gHt} \end{aligned}$			
	\square									
4.30 0．5cm limemitic fault gouge		4，20	4.50	0.30	172095	＜0．07	＜0．5			
Weak clay－py envelope for 1 em．										
Weak chay envere	1									
	$+1$									－－－－
										－－．－
	$\xrightarrow{+1}$									－－
										－－
	\ddagger									
．	$\#$									－－－
	－									
－	－18									
	1									
11．30－11．60 unaltered diocite with										
1\％disseminate pyrite．		11.30	1160	0.30	172096	00.07	<0.5			
la disscminat．pyrite										\cdots
	＋									
	1									
	H1									
	1									
	$\stackrel{H}{1}$									
	$+$									－
	－									
										－－
										－－
										－－
										．－－
	＋1									
	$\underline{+1}$									
	＋i＋							．－－		
$\cdot \square$	$\xrightarrow{+17}$									
2	H									

PACE $2 B$ of 5 Prouect: $H_{\text {EA }}$	O B^{\prime}									
			amples					sars		
mineraliztion DESCAIITTON		from	то	$\begin{array}{\|l\|} \hline \frac{1}{5} \\ \hline \end{array}$	SMMPE NMMBEA	$\begin{array}{\|l\|} \mathrm{Au} \\ \mathrm{~g} / \mathrm{t} \end{array}$	\|la $\begin{aligned} & \text { g } \\ & \mathrm{g}\end{aligned}$			
	\#									---
	-									-
	\cdots									
										-
	+									
30.4-30:9 Eroten, ruety, <18 pi		30.40	30.90		172097	<0.07	<0.5			
30.4-30.7 -roten, wexy,										
										--.
	\cdots									-
										-
	\square									
	+									
	\#		-		-					
-	\#									
	든	37.15	38.30		${ }^{12098}$	<0.07	<0.5			
especially in vein envelopes	+									-
	H									
	\square									
	\#									

	i									
	-									
	+									
	\#				-					
	!									
	H									
	\#									weenme

LPAGE $4 A$

APPENDIX D

ROCK DESCRIPTIONS
$\overrightarrow{\text { EQUITY }}$ ENGINEERING LTD.

Sampler Aback
Date $M_{\text {may 2-15, }}$ 1988

Geochemical Data Sheet - ROCK SAMPLING
UTS \qquad $92 E / 15 E$
Location Ref \qquad
Air Photo No \qquad

EQUITY
ENGINEERING LTD.
Sampler FiA Heríur I'
Date

Geochemical Data Sheet - ROCK SAMPLING

Project
Property lllGIT

NTS \qquad
Location Ref \qquad Air Photo No \qquad

EQUITY ENGINEERING LTD.

Geochemical Data Sheet - ROCK SAMPLING
UTS \qquad
Sampler $\frac{0 / 42 / 27}{06 / 05 / 88}$
Project \qquad
Property HEAD BAY
Location Ref \qquad
Air Photo No \qquad

EQUITY
ENGINEERING LTD.
Geochemical Data Sheet - ROCK SAMPLING

NTS
Location Ref
Air Photo No \qquad

EQUITY
 ENGINEERING LTD.
 Geochemical Data Sheet - ROCK SAMPLING

Sampler $\frac{2.14 .2}{10 / 05 / 88}$

NTS
Location Ref
Air Photo No \qquad

NTS \qquad
Project
Property．＿＿＿＿＿＿＿＿＿＿

Location Ref Air Photo No
\qquad

SAMPLE NO．	LOCATION	SAMPLE TYPE		DESCRIPTION			ADDITIONAL OBSERVATIONS	ASSAYS					
			$\begin{array}{\|c\|c\|} \text { Width } & \text { True } \\ & \\ & \\ \hline \end{array}$	Rock Type	Alteration	Mineralization		Av	Ag	Cu	Pb	Zn	
$\begin{aligned} & 172 / 63 \\ & 13 / 05 / 89 \end{aligned}$	VIGr	hael		SKarn	SKarn	hemaだド トリガブく		<5	0.2				
$1 7 2 \longdiv { 6 }$	1	－	7	－ $\mathrm{yP}^{\text {cose }}$	Fathe	mogontiyt							
172164	\％	＇ 1		DYK，	Hyたiv	ドソバイ゙		<5	0.3				
172165	11	＇／		Storn	5Toren	magneti	\％	<5	0.1				
172166	\star	／	2	Tontersive	Veirrs	Chateo		350	2.8	4000			
$172 / 67$	／	／1		DyRE Intevsive	$\begin{gathered} \text { Contict } \\ 20 \mu, \end{gathered}$	Rymio		867	62.0	＞10000	8	5030	
172168	／1	／		Shern in diettu		spier． quiener		90	200	193		＞10000	
172164	／／	$1 /$				＇Sicres：	7	65	3.8				
$172 / 70$	／	／＇		STann	stionn	Avorofir	－．	515	15.2	7600			
ノイスバ1	ノ	1	，	r	／1	Anognets		20	0.2				
117172	／／	F／oxt		多右	¢tz	$\begin{aligned} & \text { Zorré } \\ & \text { aphes/ } \end{aligned}$		$\begin{aligned} & 0.14 \\ & 9 / 4 \end{aligned}$	60.0	617	$5100{ }^{\text {c }}$	71000	
						Comornar							
$\begin{aligned} & 172173 \\ & 14 / 05 / 48 \\ & \hline \end{aligned}$	NG8	Gouge		Fororsime	shedr	－	＊	895	0.5				
122125	\％	Roer		SKurn	5KOwn	nogner	7	25	0.3				
172125	／／	$1 /$		Lim－ston	$\begin{aligned} & \text { Contorat } \\ & \text { Altem lioun } \end{aligned}$	Pynitc		25	0.1				
172136	$1 /$	／／		5Kern	5iliciki $=$	4410～0 sphele		45	10.3	980	9900	710000	
172137	1	$1 /$		dyNe	472 Drins	$\begin{aligned} & \text { challo } \\ & \text { sphal. } \end{aligned}$		15	1.4	1430			
172178	$1 /$	$1 /$		＇r	$\begin{aligned} & \text { Pyrip } \\ & \text { veis } \end{aligned}$	Pryiyt		25	02				
172179	11	$/$		Drowile	＂1	＇／		10	01				

EQUITY
ENGINEERING LTD.

Geochemical Data Sheet - ROCK SAMPLING

Project
Property

NTS \qquad Location Ref Air Photo No \qquad

$\begin{aligned} & \text { SAMPLE } \\ & \text { NO. } \end{aligned}$	location	SAMPLE	$\begin{aligned} & \text { Sample } \\ & \text { Widlh True } \\ & \text { Width } \end{aligned}$	DESCRIPTION			additional observations	ASSAYS						
				Rock Type	Alteration	Mineralization		Av	A_{s}	Cu				
$\begin{aligned} & 172180 \\ & 41 / 05188 \end{aligned}$	JGE	Roe/K		nyfte	pyretized	Prich		20	O_{2}					
$\begin{aligned} & 172 / 81 \\ & \hline \end{aligned}$	$1 /$	"		Congronest	"	'		15	0.1					
172182	"	/	7	SKorn	$\begin{array}{\|l\|} \hline \text { epsoche } \\ \text { symatized } \end{array}$	pynite		10	1.4	420				
			-											
			\square											
			\square											
			\square											
			\square											

APPENDIX E

CERTIFICATES OF ANALYSIS

CERTIFICATE OF ANALYSIS A8815517

CERTIFICATE OF ANALYSIS A8815517

*Page No.
Tot. Pages.
Date $\cdot 12-\mathrm{MAY}-88$
Invoice \#.I-8815156
Invoice H.I-8815156

CERTIFICATE OF ANALYSIS A8815156

To. EQUITY ENGINEERING LTD.
406-675 W. HASTINGS ST.
VANCOUVER, BC
V6B 1N2
Project : head bay
Corments.
CERTIFICATE OF ANALYSIS A8815516

Chemex Labs Ltd
Analyilcal Chemists * Geochemists * Reglstered Assayers 212 EROOKSBANK AVE, NORTH VANCOUVER. 12 DROOKSBANK AVE , NORTH VANCOUVER
DRITISH COLXMBIA. CANADA V7J-2CI

PHONE (604) 984-022;

To : EQUITY ENGINEERING LTD.
406-675 W. HASTINGS ST.
VANCOUVER, BC
V6B IN2
Comments:
CERTIFICATE OF ANALYSIS A8815516

CERTIFICATE OF ANALYSIS A8815515

CERTIFICATE OF ANALYSIS A8815515

\qquad
Chemex Labs Ltd.
Anslyitical Chemists * Geochemists * Reglstored Assayers
212 bROOKSBANK AVE NORTH VANCOUVER. BRITISH COLLMMIA, 'CANADA V7I-2C1

PHONE (604) 984-0221

```
TO EQUITY ENGINEERING LTD.
406-675 W. HASTINGS ST.
VANCOUVER, BC

CERTIFICATE OF ANALYSIS A8815515


\section*{Chemex Labs Ltd.}

CERTIFICATE OF ANALYSIS A8815515


CERTIFICATE OF ANALYSIS A8815154


Chemex Labs Ltd.
To - EQUITY ENGINEERING LTD.
406 - 675 W . HASTINGS ST. VANCOUVER, BC
**Page No. : 1 Tot. Pages: I

12 BROOKSBANK AVE NORTH VINCOUVER BRITISH COLIMBIA, CANADA V7I-2CI

\section*{CERTIFICATE OF ANALYSIS A8815909}
 212 bROOKSBANK AVE NORTH VANCOUVER, BRITISH COLLPBIA, CANADA V7J-2C1

PHONE (604) 954-0221

To - EqUITY ENGINEERING LTD
\(406-675 \mathrm{~W}\) HASTINGS ST.
VANCOUVER, BC

\section*{V6B IN2}

Project : HEAD bAY
Corments.

CERTIFICATE OF ANALYSIS A8816153


\section*{CERTIFICATE OF ANALYSIS A8815522}


\section*{Chemex Labs Ltd. \\ Analytical Chemists * Geochemists * Reglistered Assayers} 212 BROOKSBANK AVE, NORTH VANCOUVER, BRITISH COLKMBIA.' CANADA V7J-2C1 PHONE (604) 984-022!

To. EQUITY ENGINEERING LTD.
406-675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2
roject : HEAD BAY
Comments.

\section*{CERTIFICATE OF ANALYSIS A8815522}

\(\qquad\)

APPENDIX F

ANALYTICAL PROCEDURES

Chemex Labs Ltd
Analytical Chemists * Geochemists * Reglstered Assayers
212 BROOKSBANK AVE , NORTH VANCOLIVER, bRITISH COLUNBIA, CANADA V7J-2CI

PHONE (604) 9R4-0221

\section*{To: EQUITY ENGINEERING LTD.}

406-675 W. HASTINGS ST.
VANCOUVER, BC
V6B IN2
Comments.

\section*{CERTIFICATE A8815515}

EQUITY ENGINEERING LTD
PROJECT : HEAD BAY
PO\# : KNLE8-0
Samples submitted to our lab in Vancouver. BC. This report was printed on 27-MAX-88.


ANALYTICAL PROCEDURES
\begin{tabular}{|c|c|c|c|c|c|}
\hline CHEMEX CODE & \begin{tabular}{|c} 
Number \\
SAMPLES
\end{tabular} & DESCRIPTION & METHOD & \begin{tabular}{l}
DETEĊTION \\
LIMIT
\end{tabular} & \begin{tabular}{l}
UPPER \\
LIMIT
\end{tabular} \\
\hline 100 & 134 & Au ppb Fuse 10 g sample & FA-AAS & 5 & 10000 \\
\hline 2 & 134 & Cu ppm: HNO3-aqua regia digest & AAS & 1 & 10000 \\
\hline 4 & 134 & Pb ppm \({ }^{\text {H }}\) HO3-aqua regia digest & AAS-BKGD CORR & 1 & 10000 \\
\hline 5 & 134 & Zn ppm: HNO3-aqua regia digest & AAS & 1 & 10000 \\
\hline 6 & 134 & Ag ppm: HNO3-aqua regia digest & AAS-BXGD CORR & 0.2 & 200 \\
\hline 13 & 134 & As ppm: HNO3-aqua regia digest & AAS-HYDRIDE/EDL & 1 & 10000 \\
\hline
\end{tabular}

Chemex Labs Ltd.
Analytical Chemists * Geochemists * Reglstered Assayers
212 brooxsbank ave, NORTH VANCOUVER. BRITISH COLYMEIA, CANADA V7J-2C1

PHONE (6n4) 984-0221

To: EQUITY ENGINEERING LTD.
406-675 W. HASTINGS ST.
VANCOUVER, BC
V6B IN2
A8815517
Comments:

\section*{CERTIFICATE A8815517}

EQUITY ENGINEERING LTD
PROJECT : HEAD BAY
P.O : KNLE8-0I

Samples submitted to our lab in Vancouver. BC. This report was printed on 23-MAY-\& 8.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{SAMPLE PREPARATION} \\
\hline \begin{tabular}{l}
CHEMEX \\
CODE
\end{tabular} & N(MBER SAMPLES & DESCRIPTION \\
\hline 207 & 50 & Assay: Crush,split,pulv -140 \\
\hline
\end{tabular}
* NOIE 1:

The 32 element ICP package is suitable for trace metals in coil and rock amples. Elements for which thenitric-aqua regiz digestion is possibly incomplete are: Al. Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Tí. T1. W.

\section*{ANALYTICAL PROCEDURES}


Chemex Labs Ltd
Analyical Chomists 212 BROOKSBANK AVE NORTH VANCOUVER BRITISH COLIMBIA, CANADA V7J-2CI

PHONE (604) 984-0221

To: EQUITY ENGINEERING LTD.
406-675 W. HASTINGS ST.
VANCOUVER, BC
V6B 1N2
A8816153
Cormenis:

CERTIFICATE A8816153

EQUITY ENGINEERING LTD
PROJECT - HEAD BAY
POW : KNL 1801
Samplec submitted to our lab in Vancouver, BC This repori was printed on 6-JUN-88.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ SAMPLE } \\
\hline \begin{tabular}{c} 
CHEMEX \\
CODE
\end{tabular} & \begin{tabular}{c} 
NMMBER \\
SAMPLES
\end{tabular} & DESCRIPTION \\
\hline 214 & 7 & Received sample as pulp \\
\hline
\end{tabular}
- NOTE 2:

The 32 element ICP packate is anitable for trace metals in soil and rock samples Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mz, Na, Sr, Ti. T1, W.

\section*{ANALYTICAL PROCEDURES}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline CHEMEX CODE & NMMBER & \multicolumn{4}{|r|}{dfascription} & MFI & \begin{tabular}{l}
DETECTI \\
L.imit
\end{tabular} & \begin{tabular}{l}
UPPER \\
I Imit
\end{tabular} \\
\hline 301 & 2 & & \% & HClO4-HNO3 & digestion & AAS & 0.01 & 1000 \\
\hline 312 & 2 & Pb & \% & HClO4-HNO3 & digestion & AAS & 0.01 & 100.0 \\
\hline 316 & \(s\) & Zn & 9 & HClO4-HNO3 & digection & AAS & 0.01 & 100.0 \\
\hline
\end{tabular}

Chemex Labs Ltd.
Anatytical Chomists * Geochemists * Reglstered Assayers
212 BROOKSBANK AVE NORTH VANCOUVER. BRITISH COLEMBIA. CANADA V7I-2CI

PHONE (604) 984-0221
TO: EQUITY ENGINEERING LTD.

\section*{CERTIFICATE A8815522}

EQUITY ENGINEERING LTD
PROJECT : HEAD BAY
PON -KNL88-01
Samples submitted to our lab in Vaxicouver. BC. This report was printed on 23-MAY- 88.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{SAMPLE PREPARATION} \\
\hline CHEMEX CODE & NMBER SAMPLES & DESCRIPTION \\
\hline 207 & 2 & Ascay: Crush,split,pulv -140 \\
\hline 238 & 2 & ICP: Aqua regia digestion \\
\hline
\end{tabular}
* NOTE 1 :

The 32 element ICP packase is suitablefor trace metals in soiland rockeamples Elementif for which the aitric-aqua regia digection is positiblincomplete are: Al, \(\mathrm{Ba}, \mathrm{Be}, \mathrm{Ca} . \mathrm{Cr}, \mathrm{Ga}, \mathrm{K}, \mathrm{La}, \mathrm{Mg}, \mathrm{Na}, \mathrm{Sr}, \mathrm{Ti}\) Tl. W.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{ANALYTICAL PROCEDURES} \\
\hline \[
\begin{aligned}
& \text { CHEMEX } \\
& \text { CODE }
\end{aligned}
\] & NLMBER & DESCRIPTION & METHOD & \begin{tabular}{l}
DETECTION \\
LIMIT
\end{tabular} & \begin{tabular}{l}
IPPER \\
L. IMI T
\end{tabular} \\
\hline 399 & 2 & Au s/tonne: \(1 / 2\) assay ton & FA-AAS & 007 & 50000 \\
\hline 921 & 2 & AI क: 32 element. soil \& rock & ICP-AES & 0.01 & 15.00 \\
\hline 922 & 2 & As ppas 32 element. soil \& rock & ICP-AES & 0.2 & 200 \\
\hline 923 & 2 & As ppm: 32 element. soil 2 rock & ICP-AES & 5 & 10000 \\
\hline 924 & 2 & Ba ppm: 32 element, soil \(\&\) rock & ICP-AES & 10 & 10000 \\
\hline 925 & 2 & Be ppm: 32 element. soil theck & ICP-AES & 0.5 & 100.0 \\
\hline 926 & 2 & Bi ppm: 32 element. soil t rock & ICP-AES & 2 & 10000 \\
\hline 927 & 2 & Ca \% 32 element. soil \& rock & ICP-AES & 0.01 & 1500. \\
\hline 928 & 2 & Ca ppm: 32 element. soil \& rock & ICP-AES & 0.5 & 100.0 \\
\hline 929 & 2 & Co ppm: 32 element. soil \& rock & ICP-AES & 1 & 10000 \\
\hline 930 & 2 & Cr ppm: 32 element. soil * rock & ICP-AES & 1 & 10000 \\
\hline 931 & 2 & Cu ppm: 32 element. soil \({ }^{\text {a }}\) rock & ICP-AES & 1 & 10000 \\
\hline 932 & 2 & Fe \%: 32 element. soil \& rock & ICP-AES & 0.01 & 15.00 \\
\hline 933 & 2 & Ga ppm: 32 element. soil th rock & ICP-AES & 10 & 10000 \\
\hline 951 & 2 & \(\mathrm{Hg}_{8} \mathrm{ppmi} 32\) element. soil \(\&\) rock & ICP-AES & 1 & 10000 \\
\hline 934 & 2 & \(\mathbf{x}\) \%: 32 clement, soil \& rock & ICP-AES & 0.01 & 10.00 \\
\hline 935 & 2 & La ppm: 32 element, soil * rock & ICP-AES & 10 & 10000 \\
\hline 936 & 2 & ME \%: 32 element, soil a rock & ICP-AES & 0.01 & 15.00 \\
\hline 937 & 2 & Mn ppm: 32 element. soil \(k\) rock & ICP-AES & 1 & 10000 \\
\hline 938 & 2 & Mo ppm: 32 element soil at rock & ICP-AES & 1 & 10000 \\
\hline 939 & 2 & Na \%: 32 element. soil \& rock & ICP-AES & 0.01 & 5.00 \\
\hline 940 & 2 & Ni ppm: 32 element, sorl th rock & ICP-AES & 1 & 10000 \\
\hline 941 & 2 & P ppm: 32 element. soil \& rock & ICP-AES & 10 & 10000 \\
\hline 942 & 2 & Pb ppm: 32 element, soil \& rock & ICP-AES & 2 & 10000 \\
\hline 943 & 2 & Sb ppm: 32 element. soil \& rock & ICP-AES & 5 & 10000 \\
\hline 958 & 2 & Sc ppm: 32 elements. soil \& rock & ICP-AES & 1 & 100000 \\
\hline 944 & 2 & Sr ppm: 32 element. soil \& rock & ICP-AES & 1 & 10000 \\
\hline 945 & 2 & Ti \%\%: 32 element, soil \& rock & ICP-AES & 0.01 & 5.00 \\
\hline 946 & 2 & Tl ppm: 32 element. soil \& rock & ICP-AES & 10 & 10000 \\
\hline 947 & 2 & U ppm: 32 element, soil \& rock & ICP-AES & 10 & 10000 \\
\hline 948 & 2 & V ppm: 32 element, soil at rock & ICP-AES & 1 & 10000 \\
\hline 949 & 2 & W ppm: 32 element, soil \(\&\) rock & ICP-AES & 5 & 10000 \\
\hline 950 & 2 & Zn ppm: 32 element. soil \({ }^{\text {d }}\) rock & ICP-AES & 1 & 10000 \\
\hline
\end{tabular}

\section*{APPENDIX G}

\section*{ENGINEER'S CERTIFICATE}

\section*{ENGINEER'S CERTIFICATE}
• I, HENRY J, AWMACK, of \(308-1510\) Nelson Street,
Vancouver, in the Province of British Columbia, DO HEREBY
CERTIFY: CERTIFY:
1.

THAT I am a Consulting Geological Engineer with offices at Suite 406, 675 West Hastings Street, Vancouver, British Columbia.
2. THAT I am a graduate of the University of British Columbia with an honors degree in Geological Engineering.
3. THAT I am a member in good standing of the Association of Professional Engineers of British Columbia.
4.

THAT.this report is based on work carried out under my supervision, government publications and on reports filed with the Province of British Columbia.

DATED at Vancouver, British Columbia, this \(13^{!L}\) day of June, 1988.



```

