```
\District Geologist, Smithers
```

Off Confidential: 89.06.16
ASSESSMENT REPORT 17545 MINING DIVISION: Atlin

```
LPROPERTY: South Atlin
LOCATION:
CLAIM(S):
OOPERATOR(S): Homestake Mir
REPORT YEAR: 1988, 30 Pages
    COMMODITIES
SEEARCHED FOR: Gold
    GEOLOGICAL
    SUMMARY:
    The property is underlain by Permian ultramafic intrusive rocks
    which exhibit varying intensities of alteration. The alteration
    ranges from serpentinization to complete silica-carbonate-mariposite
    alteration.
    Geochemical
    SOIL 416 sample(s) ;ME
        Map(s) - 10; Scale(s) - 1:1000
    RELATED
    REPORTS: 16535,17656
    MINFILE:
WORK
    DONE:
    LAT 59 33 00 LONG 133 41 00
    UTM 08 6601827 574435
    NTS 104N12E
    Homestake Min. Dev.
    104N 046
```

LOG NO: 0627
ACTICN:

FILE NO:

SUMMARY REPORT

SOIL. GEOLOGICAL SAMPLING
PROGRAM ON THE SOUTH ATLIN PROPERTY, 'LAKE' GROUP OF CLAIMS (YJ13 AND ADJACENT CLAIMS)

ATLIN MINING DIVISION BRITISH COLUMBIA

GEOLOGICAL BRANCH ASEESSMRNTRRPOCHT

LATITUDE: $\quad 59^{\circ} 33^{\circ} \mathrm{N}$

LONGITUDE: $\quad 133^{\circ} 41^{\prime} \mathrm{W}$
OWNER: HOMESTAKE MINERAL DEVELOPMENT COMPANY
OPERATOR: HOMESTAKE MINERAL DEVELOPMENT COMPANY

BY: DUNCAN MCIVOR
DATE: JANUARY 1988
PAGE

1. Summary and Recommendations 1
2. Introduction 1
2.1 Location, Access and Physiography I
2.2 Property Definition 1
2.3. General Geological Setting and Economic Assessment 2
2.4 Work Completed 3
3. Detailed Technical Data 3
3.1. Geological Mapping 3
3.1.1. Methods Employed 3
3.1.2. Results and Interpretation 4
4. Itemized Cost Statement and Allocation of Expenditures 7
5. Selected Bibliography
6. Author's Qualifications 14
7. Location Map, Atlin Area
8. Claim and Property Location Map
9. General Geology of the Atlin Area

LIST OF APPENDICES

1. 1:1,000 Contoured Soil Geochemistry Map, Au (East \& West Sheets)
2. 1:1,000 Contoured Soil Geochemistry Map, Ag (East \& West Sheets)
3. 1:1,000 Contoured Soil Geochemistry Map, As (East \& West Sheets)
4. 1:1,000 Contoured Soil Geochemistry Map, Sb (East \& West Sheets)
5. 1:1,000 Contoured Soil Geochemistry Map, (East \& West Sheets) Combined Base Metals ($\mathrm{Cu}+\mathrm{Zn}+\mathrm{Pb}$)
6. Raw ICP Geochemical Data

1. SUMMARY AND RECOMMENDATIONS

The South At]in Property is located immediately south of the town of Atlin, in northern British Columbia. In August of 1987 , a soil sampling survey was completed over portions of the property in an effort to;

- delineate a known mineralized showing in the northwest corner of the property, and
- assess large areas of the property known to be underlajn by a very favourable geological environment for gold mineralization.

A total of 416 samples were collected from the property, and analyzed for $A u$ and a suite of 30 elements, some of which were known to occur in intimate association with gold mineralization ($\mathrm{Cu}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{As}, \mathrm{Sb}, \mathrm{Ag}$).

The survey successfully delineated the showing in question, defining a broad strongly anomalous horizin in $\mathrm{Au}, \mathrm{Ag}, \mathrm{As}, \mathrm{Sb}$ and combined base metals (Cu $+\mathrm{Pb}+\mathrm{Zn}$) that can be traced for 250 meters.

The anomalous horizon warrants testing by power stripping or diamond drilling.

Several weaker $A u$ and pathfinder trace element anomalies were defined in other areas of the property, which warrant further more detailed sampling.
2. INTRODUCTION
2.1 LOCATION, ACCESS, AND PHYSIOGRAPHY

The South Atlin Property is located adjacent to and immediately south of the village of Atlin, in northern British Columbia. The claims are situated in the Atlin Mining Division, on NTS map sheet 104 N .12.

The property is readily accessible via a gravel road which extends south from the town of Atlin through the western portion of the property, as well as via boat, as the western edge of the property is bounded by Lake Atlin.

Relief on the property is low by local standards, rarely exceeding 20 meters. Outcrop exposure on the property is approximately 50%, the remainder of the ground being covered by a thin mantle of glacial drift. One small swamp occupies the north-central portion of the property, where hydromagnesite is currently being deposited.

2.2 PROPERTY DEFINITION

The South Atlin Property covers parts of claims YJ-13, YJ-14, and Jack 6, part of a larger grouping of claims known as the 'Lake' Group, the pertinent details of which appear below.

LAKE GROUP OF CLAIMS

CLALMS	UNITS	REC. NO.	REC. DATE
JACK 21F	1	2745	$25 / 09 / 86$
JACK 27	9	2748	$02 / 10 / 86$
JACK 28	9	2749	$02 / 10 / 86$
JACK 30A	1	2753	$16 / 10 / 86$
JACK 30B	1	2754	$16 / 10 / 86$
JACK 6	3	2723	$12 / 09 / 86$
L252 CG	1	-	$=$
L721 CG	1	-	-
YJ 12	9	2681	$05 / 08 / 86$
YJ 13	20	2682	$05 / 08 / 86$
YJ 14	3	2683	$05 / 08 / 86$

Figure 2. illustrates the location of the property with respect to these claims.

Prior to acquisition by Homestake in 1986, the only known work on the property was in 1899, when owner/operator Lord Hamilton had 29 meters of underground working completed on a showing known historically as the 'Anaconda'. The following description of the showing comes from the 'Northern B. C. Mineral Inventory', prepared by Archer, Cathro \& Associates Ltd. (1981).
"Narrow quartz stringers are associated with magnesite and carbonate altered lenses within a serpentinized Mesozoic ultramafic intrusion. A 15 to 28 cm wide quartz vein in an old crosscut strikes N and dips $72{ }^{\circ} \mathrm{W}$. Four channel samples across this vein all returned trace $A u$. Where seen on surface, this vein is highly irregular and could not be traced for any distance. Microscopic inspection of the magnesite showed that it contains minor pyrite, mariposite and occasionally galena."

Section 2.3 of this report briefly outlines the general geology of the property, and a preliminary economic assessment of the property potential.

2.3 GENERAL GEOLOGICAL SETTING AND ECONOMIC ASSESSMENT

The South Atlin Property lies near the western edge of the northwest trending Atlin Terrane, which is underlain by upper Paleozoic oceanic crustal rocks (Monger, 1975). It is correlated with the Cache Creek Group rocks of southern and central British Columbia. Within the Atlin Terrane, intermediate to mafic flows are overlain by cherts, immature clastic sediments, and thick
shallow water carbonate rocks. Discordant granitic plutons range in age from late Jurassic to early Tertiary. Remnant Tertiary volcanic and sedimentary rocks are found throughout the area.

Also within the Atlin Terrane, and co-eval or immediately post-dating the Cache Creek Group rocks, are large ultramafic bodies which define a discordant belt trending west across the tectonic fabric of the terrane. The ultramafic bodies are commonly intensely serpentinized, and in places extensively hydrothermally altered to a listwanite like assemblage of silica-carbonate-mariposite/fuchsite.

The majority of lode-type gold mineralization within the Atlin Terrane is hosted in hydrothermally altered (silica-carbonate-mariposite) ultramafic rocks proximal to their intrusive or thrust-faulted contacts with rocks of the Cache Creek Group volcanics or along major shear structures. Gold mineralization appears to be exclusively associated with quartz and quartz-carbonate vein systems within the aforementioned altered host rocks, ${ }^{-}$with in most cases a strong correlation between gold and the presence of gangue sulphides including galena, sphalerite, chalcopyrite, pyrite, and tetrahedrite.

The South Atlin Property is underlain almost exclusively by ultramafic rocks, predominantly serpentinized, but with several areas of strong hydrothermal alteration, to a silica-carbonate-mariposite bearing ultramafic rock. As such, the property has potential for hosting significantly auriferous quartz vein systems similar to those seen elsewhere in the Atlin Camp.

2.4 WORK COMPLETED

In August 1987, a total of 416 samples were collected from the property and analyzed for $A u$ and a suite of 30 additional elements. The results of this work are discussed in the following section of this report.

3. DETAILED TECHNICAL DATA

3.1 METHODS $/$ EMPLOYED

A total of 416 soil samples were collected from the property, and forwarded to Acme Analytical Laboratories in Vancouver for both multiemelment ICP analysis and gold geochemical analysis.

All samples were " B " horizon soils, which an orientation survey in the Atlin area showed to be the most reliable sampling medium in accurately reflecting underlying or proximal bedrock hosted gold mineralization.

The dispersion of gold in soll around bedrock hosted minerlization is a well documented phenoman (an excellent overview is "The Geochemistry of Gold in the Weathering Cycle", Lakin, Curtin and Hubert 1974, U.S.G.S. Bulletin 1330), and thus soil sampling in areas of thin and permeable cover is a valid exploration tool. In addition, metals associated with gold mineralization in the Atlin area ($\mathrm{Cu}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Ag}, \mathrm{As}, \mathrm{Sb}$) are equally and in some cases much more mobile in the "weathering cycle", and thus valid exploration targets. For that reason, included in this report are contoured $p l a n$ maps for $A u, A g, A s, S b$ and combined base metals $(\mathrm{Cu}+\mathrm{Pb}+\mathrm{Zn})$.

As mentioned, the purpose of the survey was two-fold. In the northwest corner of the property, two small pits expose a quartz-carbonate vein of indeterminate size and orientation, which carry highly anomalous gold and associated pathfinder trace-elements. Jn order to try and delineate this vein, very closely spaced survey lines were established over the area, at 20 meter intervals. Samples were taken along these lines at 20 meter intervals, thus providing a very detailed "square set" of data.

E1sewhere on the property, several areas of very attractive geology were outlined by mapping. (Specifically, silica-carbonate-mariposite altered ultramafic rocks, which host a majority of the lode gold mineralization in the Atlin camp). Exposure in these areas was often limited, and to more fully assess the ground, soil sample survey lines were established at 50 meter intervals, along which samples were taken at 20 meter intervals.

Appendix 1 through 5 contains contoured plan maps of the geochemical results for $\mathrm{Au}, \mathrm{Ag}, \mathrm{As}, \mathrm{Sb}$ and the combined base metals $\mathrm{Cu}+\mathrm{Pb}+\mathrm{Zn}$. The raw ICP geochemical data appears in Appendix 6. The contoured plan maps are at the same scale ($1: 1000$) and orientation as the geology plan map of the property, and can be overlaid for interpretational purposes.

3.2 Results and Interpretation
 Gold

The most prominant anomalies on the property occur in the northwest corner, around the pits exposing the mineralized quartz-carbonate vein(s). A series of very strong highs, to 875 ppb Immediately adjacent to the pits, to as high as 665 ppb along strike, define a distinct anomalous horizon trending at $120^{\circ}-300^{\circ}$ with, a strike length of 250 meters. This represents a very significant anomaly, which warrants a stripping or drill testing program.

Elsewhere on the property, there are a few scattered "bullseye" type targets, most of them only weakly anomalous. Two may be of some signficance;

- at L1+50E, $0+80 \mathrm{~S}, 128 \mathrm{ppb} \mathrm{Au}$
- at L9+50E, $5+20 \mathrm{~S}$, 119 ppb Au

Both these warrant some detailed infill soil sampling to determine their vailidity and extent.

Stlver

Again, the most prominant anomalies on the property occur in the northwest corner, around the pits exposing the mineralized quartz-carbonate vein(s). A series of strong highs, from up to 109.6 ppm immediately adjacent to the pits, to 10.3 ppm along strike, define a district anomalous horizon trending at $300^{\circ}-120^{\circ}$ for a strike length of 200 meters.

A few other anomalies warrant further attention, notably;

- at $L 0+20,1+60 N$, an anomaly trending at 300° for 60 meters, with values as high as 3.6 ppm Ag .
- at LO+40E, $0+60 \mathrm{~N}$, an anomaly trending at 30° for 50 meters, with values as high as 1.8 ppm .

A11 other anomalous values are 1 or 2 point bullseyes.

Arsenic

Arsenic values are in general elevated over most of the property. The most significant anomalous horizon coincides with the $\mathrm{Au}-\mathrm{Ag}$ anomalies around the pit exposing the mineralized quartz-carbonate vein(s), with values as high as 398 ppb adjacent to the pits, to 585 ppm along strike. The arsenic nicely defines the same, trend and strike length to the feature, $120^{\circ}-300^{\circ}$ for 200 meters.

There are several other prominant anomalies on the property;

- from LO+40E, $1+60 \mathrm{~N}$, an anomaly trending at 30° for 50 meters, with a high of 115 ppm As.
- at L1E, $0+20$, an east-west trending anomaly with a strike length of 50 meters and a high of 140 ppm As.
- at L7E, 4+40S, an east-west trending anomaly 100 meters long, with a high of 73 ppm .
- at $L 7+50 \mathrm{E}, 1+20 \mathrm{~N}$, a 50 -meter east-west trending anomaly as high as 300 ppm .
- at' L3E, $1+60 \mathrm{~S}$, a bullseye of 330 ppm As.

Antimony

The most prominant $S b$ anomaly is a localized high immediately around the pits exposing the mineralized quartz-carbonate vein(s), with values to 32 ppb Sb.

A few bulleyes are present elsewhere on the property, the most notable at L7E, $1+20 \mathrm{~N}$, with 23 ppb Sb .

Combined Base Metals $(\mathrm{Cu}+\mathrm{Pb}+\mathrm{Zn})$
The most prominant base metal high is again adjacent to the pits exposing the mineralized quartz-carbonate veins(s), a sample of which ran 13,390 ppm CBM. Again, a prominent anomalous horizon trending at $300^{\circ}-120^{\circ}$ is defined over a strike length of 200 meters, and coincides with $A u, A g$, $A s$ and $S b$ anomalies.

Several other significantly anomalous trends appear in the data, notably;

- at LO+20E, trending at 30° for 60 meters, an anomalous horizon with values as high as 759 ppm.
- at LO+20W, trending west for 50 meters, an anomalous horizon with values as high as 975 ppm .
- at L2+50E, $1+60 \mathrm{~S}$, trending east for 100 m , an anomalous horizon with values as high as 548 ppm .
- at L7E, $1+20 \mathrm{~N}$, a bullseye of 542 ppm .
- at L7E, 4+20S, a bullseye of 536 ppm .

Obviously, the most significant anomalies are those with a multielement expression and significant strike length. The horizon around the pits exposing mineralized quartz-carbonate vein(s) is hugely anomalous in $A u, A g$, As, Sb and base metals $\mathrm{Cu}-\mathrm{Pb}-\mathrm{Zn}$, and has a distinct orientation and strike length of $300^{\circ}-120^{\circ}$ and 200 to 250 meters. This horizon, in all probability, is a direct reflection of the vein orientation, and warrants a power stripping or diamond drilling program.

Other multi-element anomalous horizons include;

- at L7E, $1+20 \mathrm{~N}$, highly anomalous values of $\mathrm{CBM}, \mathrm{Sb}$, and As. Although lacking an $\mathrm{Au}-\mathrm{Ag}$ expression or strike length, this area warrants more detailed infill soil sampling.
- at L7E, from $4+20$ to 4+40S, anomalous values of As and CBM's warrant more detailed infill soil sampling.
- at $\mathrm{L} 2+50 \mathrm{E}$, $1+60 \mathrm{~S}$, an east trending anomaly with elevated $A s$ and CBM's warrants more detailed infill soil sampling.
- at $L 0+40 \mathrm{E}, 0+60 \mathrm{~N}$, an anomalous horizon trending at 30° for 50 meters and carrying elevated $A g$, $A s$, and CBM values, warrants more detailed infill soil sampling.

4.0 ITEMIZED COST STATEMENT AND ALLOCATION OF EXPENDITURES

4.l Itemized Cost Statement

The following expenses were incurred as a direct result of the exploration work described in this report.

1) Salaries and Wages

Duncan McIvor: (Report Preparation)
December 4, 5, 1987
2 days @ $\$ 115.00 /$ day $\quad \$ 230.00$
Stephen Gill:
August 23-26, 1987 (4 days)
September 1-7, 1987 (7 days)
11 days @ $\$ 65.00 /$ day
$\$ \quad 715.00$
SUB TOTAL $\$ 945.00$
+20\% BENEFITS, ETC. 189.00

TOTAL SALARIES \& WAGES
$\$ 1,134.00$
2. Analytical Costs

> 416 soil samples, analyzed for Au and a suite of 30 additional elements $@ \$ 12.00 /$ sample
3. Food and Accommodation Costs
$@ \$ 35 /$ day per man $x 11$ days $\$$
4. Transportation Costs

Fuel and Maintenance on one truck, 11 days
$@ \$ 12.50 /$ day
Airfare, Vancouver-Whitehorse-Vancouver (Sephen Gill)
$\$ \quad 600.00$
$\$ \quad 737.50$
5. Miscellaneous Costs

- flagging tape, sample bags, mylar, etc.
$\$ \quad 100.00$
TOTAL EXPENDITURES

4.2 Allocation of Expenditures

The above reported expenditures are allocated based approximately on the number of samples taken from the following claims;

CI.AIM	REC. DATE	REC. NO.	UNITS	ALLOCATION
JACK 6	12/09/86	2723	3	\$3,674.25
YJ 13	05/08/86	2682	20	\$2,939.40
YJ 14	05/08/86	2683	3	\$ 734.85

The expenditures are being applied to the "West Group" of claims, as outlined on the "Statement of Exploration and Development".

DMc/mm

Aitken, J.D.
1959: Atlin map area, B.C. Geological Survey of Canada, Memoir 307.
B.C. Department of Mines Annual Report: 1901, p. 757-759

1902, p. 984
1903, p. H38
1904, P. H44
1905, p. G77-78
1933, p. A78 - A79
Larkin, Curtin and Hubert
1974: The Geochemistry of Gold in the weathering cycle, U.S. Geological Survey Bull 1330.

McIvor, D.F.
1987: Summary report of mineral exploration activity on the Pictou Property, AtIin Mining District, British Columbia Homestake Mineral Development Company Ltd. in-house report.

Monger, J.W.H.
1975: Upper Paleozoic rocks of the Atlin Terrane, Northwestern British Columbia and South-Central Yukon; Geological Survey of Canada, Paper 74-7.

Ronning, P.A.
1986: Summary Report; Diamond Drilling and Geophysical work, Arent 1 and Arent 2, Beama and Adjacent Claims, North and South Claim Groups, Yellowjacket Property, Atlin Mining Division. HMDC assessment report on file at the B.C. Ministry of Mines.

I, Duncan Forbes McIvor, do hereby state that;

- I am a graduate of the University of Waterloo, and hold an Honours Bachelor of Applied Science degree.
- I have been practising my profession as an exploration geologist on a full time basis since 1982.
- I have personal knowledge that all information presented in this report is true and accurate.

 this leach is partinl for an fe ca flacr me ja if 8 y and limited fer ha ahd k．an detection limit jy ice is 3 pph．

－ 20 MESH，PUGVERIEED $+3 / 87$
ASSAYER．ACRE／FI．DEAN TOYE．CEFTIFIED E．C．ASSAYER
HOMESTAKE MINERAL FFOJECT－FA－S710 File \＃87－4002 Fago 1

SAMPLET	$\begin{gathered} \mathrm{MO} \\ \mathrm{PPH} \end{gathered}$	$\begin{gathered} \text { CU } \\ \mathrm{PPM} \end{gathered}$	$\begin{gathered} P B \\ P P 月 \end{gathered}$	$\begin{gathered} 2 N \\ P R K \end{gathered}$	$\begin{gathered} \text { AE } \\ \text { PPA } \end{gathered}$	$\begin{gathered} \mathrm{MI} \\ \mathrm{PPM} \end{gathered}$	$\begin{gathered} C O \\ \mathrm{CPK} \end{gathered}$	$\underset{\mathrm{PPH}}{\mathrm{MN}}$	$\begin{gathered} \text { FE } \\ 2 \end{gathered}$	$\begin{aligned} & \text { AS } \\ & \text { PPM } \end{aligned}$	$\begin{gathered} \text { U } \\ \text { PPi } \end{gathered}$	$\begin{gathered} \text { AU } \\ \mathrm{PP} \end{gathered}$	$\begin{gathered} \mathrm{TH} \\ \mathrm{PPK} \end{gathered}$	$\begin{array}{r} \text { SR } \\ P P H \end{array}$	$\begin{gathered} C D \\ P P M \end{gathered}$	$\begin{gathered} \text { SB } \\ \text { PRH } \end{gathered}$	$\begin{gathered} \text { II } \\ \text { PHin } \end{gathered}$	$\begin{array}{r} Y \\ P P M \end{array}$	$\begin{array}{r} C A \\ 2 \end{array}$	$\begin{aligned} & P \\ & Z \end{aligned}$	$\begin{aligned} & \text { LA } \\ & \text { PMM } \end{aligned}$	$\begin{gathered} \text { CR } \\ \text { PPM } \end{gathered}$	$\begin{gathered} M 6 \\ Z \end{gathered}$	$\begin{gathered} J A \\ P P M \end{gathered}$	$\begin{aligned} & \text { I! } \\ & \vdots \end{aligned}$	$\begin{array}{r} 1 \\ P F M \end{array}$	$\stackrel{A 1}{2}$	$\begin{gathered} H A \\ I \end{gathered}$	$\begin{aligned} & x \\ & Z \end{aligned}$	PPK	$\begin{aligned} & \text { AUI } \\ & \text { Ppg } \end{aligned}$
LO＋00E 1＋10N	3	64	32	152	． 2	396	53	1318	4.75	30	5	ND	3	112	1	8	2	41	1.13	． 189	15	144	2.00	270	． 01	19	． 53	． 01	． 12	1	2
LOFOOE 0490H	1	64	4	94	． 2	437	35	． 22	2.53	23	7	HD－	2	103	1	1	3	19	2.31	． 145	5	84	1.16	185	． 01	2	． 31	． 01	． 05	I	1
LO＋00E O＋50N	7	57	23	119	1	727	45	632	8.37	115	5	HD	4	21	1	18	\％	100	． 23	． 137	33	270	． 87	141	． 03	2	1.12	01	． 05	1	1
LO＋00E O＋40M	6	45	13	77	． 1	1268	79	1315	8.66	35	5	HD	2	38	1	10	2	44	． 11	． 213	9	293	3.97	195	． 01	5	． 67	． 01	． 04	1	1
LO＋00S $0+20 \mathrm{~N}$	1	24	9	81	． 1	1534	95	1242	6．85	27	5	ND	1	21	1	16	2	19	． 36	． 103	3	269	12.49	16 ？	． 01	6	． 52	． 01	． 03	1	1
LO＋00E O＋00\％	3	38	43	14	.9	824	43	1464	4.67	161	5	ND	1	24	1	9	2	20	． 41	． 087	4	230	11.52	145	． 01	1	． 39	． 01	． 26	1	1
LO＋00E Cthos	4	57	2	40	． 1	058	72	847	5.71	16	5	HD	2	50	1	2	2	52	． 10	． 059	13	291	3.44	221	． 04	2	1.30	． 02	． 06	1	2
LO＋ $00 E$ O＋20S	2	23	15	48	． 1	394	32	423	4.30	11	5	KD	1	30	1	2	2	14	． 46	． 029	7	167	1.08	00	． 06	2	1.19	． 02	． 03	1	1
LO＋00E 1＋00S	3	28	10	57	． 1	1977	119	2728	10.43	16	5	H0	1	32	1	20	2	24	． 46	． 118	3	553	11.77	168	． 01	6	． 61	． 01	． 03	1	5
L0＋20E 1＋205	3	57	2	32	． 1	2090	196	1257	日． 60	2	5	ND	1	15	1	8	2	27	． 26	．03t	2	465	14.87	174	． 01	2	． 42	． 01	． 01	1	4
LOLSOE 1＋6OH	5	74	30	156	． 7	117	10	1944	9.50	11	5	ND	14	123	1	2	2	138	1.18	． 297	56	167	2.28	429	． 18	8	2.24	． 01	． 48	1	2
LO＋50E ！＋40M	3	44	1	109	． 1	446	34	1103	4.61	10	5	KD	3	52	1	2	2	55	． 69	． 131	13	38	1.68	377	． 07	4	1.53	． 02	． 18	1	
L0＋50E $1+20 \mathrm{~N}$	1	46	3	190	.5	470	44	1687	4.37	15	9	H9	3	59	1	2	2	49	． 19	10	13	152	2.15	306	． 05	12	1.34	． 03	． 14	1	
LO＋50E 1＋00\％	4	47	10	74	． 3	489	51	1273	6.97	43	5	H0	4	47	1	7	2	77	． 76	．178	25	214	1.87	286	． 03	d	．${ }^{1}$	． 01	． 09	1	3
LO＋50E O＋80N	1	38	4	137	.3	166	31	2730	3.06	10	5	MD	2	34	1	2	2	49	． 61	． 083	9	81	． 77	300	． 06	－	1.11	． 02	． 07	1	3
LO＋50E 0＋50H	1	20	1	54	． 1	502	62	1149	6.57	35	5	ND	3	12	1	2	2	52	． 17	． 044	5	381	1.87	71	． 04	6	． 13	． 01	． 04	1	1
L0 0 S $050+40 \mathrm{H}$	1	43	7	72	1	1071	71	1928	6.68	13	5	HD	1	47	1	6	2	26	． 64	． 135	5	316	4.	194	2	2	86	． 01	． 02	1	1
LO＋50E O＋20	2	25	5	204	－． 1	1111	75	1845	7.83	24	5	HD	1	36	1	5	2	27	． 49	． 157	3	741	6.25	251	． 01	1	． 76	． 01	． 03	1	1
LOLSOE OLOOM 9	2	21	2	61	． 1	457	44	887	4.65	11	5	ND	1	31	1	6	2	54	． 14	． 010	7	276	5.22	178	． 06	14	1.14	． 03	． 10	1	1
LO＋50E 0＋205 \％	1	24	7	72	． 5	393	38	788	4.01	11	6	ND	3	38	2	4	2	49	． 52	． 096	1	227	4.12	255	． 07	14	1.08	． 03	． 10	1	
LO＋50E 0440S P	2	22	7	47	． 1	412	38	573	4.70	17	5	ND	2	28	1	2	2	57	． 39	． 048	8	322	3.45	158	． 07	4	1.27	． 03	． 07	1	1
LO＋50E O＋60S	1	25	7	59	． 1	1823	127	1957	6.14	4	5	KD	2	19	1	13	2	45	． 11	． 152	2	761	12.13	15 ？	． 01	2	．9	． 01	． 02	1	
LI＋00E $1+40 \mathrm{~N}$	1	11	10	27	． 1	100	11	319	2.62	6°	5	NO	1	17	2	2	2	55	． 29	．02！	7	6	．68	102	． 08	7	1.00	． 01	． 04	1	
L1＋00E $1+20 \mathrm{H}$	7	48	1	109	． 5	1293	75	1432	9.41	15	5	ND	5	86	1	2	2	105	． 80	． 118	26	270	1.97	218	． 01	3	． 97	． 01	． 04	1	
L1＋00E $1+00 \mathrm{H}$	2	43	7	216	． 1	1918	97	1438	10.11	27	5	ND	3	44	1	2	3	38	． 30	． 252	11	289	2.08	282	． 03	3	1.57	． 01	． 04	1	
LI＋COE $0+8$ OH	5	53	11	225	． 2	1！8！	118	3043	10.01	103	5	MD	3	31	1	5	2	36	． 49	． 271	7	210	2.15	278	． 02	10	1.12	． 01	． 05	1	8
L1＋00E 0＋60\％	1	7	2	11	． 1	67	3	41	． 04	4	5	HD	1	109	1	2	2	1	2.37	． 109	2	11	2.09	55	． 01	24	． 07	． 01	． 03	1	1
L1＋00E 1 ）+40 K	1	7	2	8	． 5	50	2	70	． 06	3	5	ND	1	95	．	2	1	1	2.13	． 078	2	1	1.70	45	． 01	24	． 06	． 01	． 02	1	
L1＋00E $0+2 \mathrm{ON}$	1	14	2	11	． 4	56	7	501	． 36	2	5	ND	1	92	1	2	5	4	1.98	． 085	2	17	1.63	5	． 01	11	． 26	． 02	． 10	1	1
L1＋00E 0） 0 OH	1	34	$!$	115	． 2	150	20	511	3.98	10	5	HD	6	32	1	2	2	63	． 37	． 130	45	93	． 35	4	． 02	2	． 64	． 01	． 10	1	
Li＋OOE 0＋20S	3	18	16	62	． 1	1675	247	1117	17.76	140	5	ND	2	72	1	2	3	46	． 83	． 423	10	721	2.58	314	． 01	$!$	． 55	． 01	． 04	$!$	1
L1＋00E O +40 S	2	22	11	42	． 2	570	69	720	5.12	62	5	ND	2	21	1	2	3	59	． 34	． 057	7	294	1.52	125	． 06	－	1.03	． 02	． 10	1	2
$\mathrm{L}+\mathrm{SOE} 2+6 \mathrm{H}$	2	33	2	61	． 3	98	13	418	3.58	7	5	ND	5	38	1	2	2	65	． 71	． 035	11	73	.94	226	10	5	1.9	． 02	． 01	1	
L1＋50E 2＋4）M	1	1	2	27	． 2	74	$!$	31%	2.10	5	5	ND	2	19	3	3	2	50	． 35	． 023	7	58	． 45	118	． 09	6	$\stackrel{.}{1.50}$	． 01	． 15	1	1
L1＋50E $2+20 \mathrm{H}$	1	20	8	52	． 6	83	17	790	4.39	4	5	NO	5	42	3	3	2	59	． 61	． 077	14	50	． 51	118	． 01	6	1.50	． 01	． 5	1	
	2	46	17	114	． 4	104	18	1124	3.83	7	5	H0	3	51	2	2	2	45	． 77	． 069	12	83	1.10	313	． 10	5	2.40	． 02	． 25	1	1
STD C／AL－S	18	62	35	151	7.2	67	28	1029	4.02	38	21	7	40	49	18	16	20	57	． 46	．084	37	60	． 83	176	． 08	30	1.75	． 06	． 12	13	51

$\mathrm{L2}+50 \mathrm{E} 1+20 \mathrm{~N}$
L2+50E $1+00 \mathrm{H}$ $12+50 \mathrm{E} 0+80 \mathrm{~N}$ L2+50E O+6OH L2+50 $0+40 \mathrm{~K}$

L2+50E D+20N L2+50E $0+00 \mathrm{H}$ L2+50E $1+2+20 S$ $L 2+50 \leq 0+405$ L2+50: ! ! +bus

L2+50E 0+805
L2+50E: +1) $0 S$
$2+50 \varepsilon 1+205$
$2+50 E 1+405$
$2+50 E$!+605
$2+50 \mathrm{E} 1+\mathrm{BOS}$
3+50E $2+$ IOOM 3+00E 2anoh L+00E 1+90N

L3+00E $1+40 \mathrm{~N}$ L3+COE $1+20 \mathrm{~N}$
L3+00E $1+00 \mathrm{H}$ L3+00E 0+80M L $3+00 E 0+80 \%$

LJ $300 \mathrm{EO} 0+6 \mathrm{CH}$ LJ+00E $0+20 \mathrm{H}$ J+00E 0400n
LJ+00E 0+205
$13+00 E 0+405$
$3+00 E 0+605$
L3+00E 0+10S
L3+00E ! + 005
LJ+00E $1+2$ リS
13+00E ! +40S
LJOUE $1+$ +US
TD C/AU-S

1	15	3	85	.1	105	13	311	2.53	6	5	ND	4	28
1	35	10	92	.3	135	20	934	3.62	8	5	ND	5	42
1	19	11	75	.1	510	52	1436	5.64	15	5	ND	2	29
1	27	2	68	.1	1442	79	1072	6.35	21	5	ND	2	36
2	30	13	70	.1	701	60	1207	5.24	15	5	HD	3	58

2
2
2
2
2

2	53	.51	.056	10
2	15	.65	.045	13
2	50	.39	.092	8
2	43	.59	.005	8
2	61	1.24	.051	12

$\begin{array}{rr}91 & .93 \\ 99 & 1.30 \\ 295 & 2.06 \\ 371 & 7.25 \\ 274 & 4.37\end{array}$ 184
344
274
177 .10
.13
.03
.03
.05
$\begin{array}{cccc}3 & 1.45 & .02 & .05 \\ 3 & 2.13 & .02 & .16 \\ 2 & .04 & .01 & .05 \\ 2 & .03 & .01 & .06 \\ 6 & 1.17 & .02 & .11\end{array}$

1	2
1	2
1	2
2	2
1	2

50	1.85	.124	73
36	1.58	.116	15
17	.59	.132	1
42	.69	.222	16
59	.88	.144	17

73	131	1.31
15	61	.02
6	357	2.70
16	80	.97

305
236
322 .05
.03
.04
.06
.05

8	1.02	.05	.06
8	1.31	.03	.05
8	1.39	.02	.07
6	1.43	.02	.07
2	.04	.02	.05

.47
.07
.11
.08
$\begin{array}{ll}3 & .08 \\ 5 & 1.22\end{array}$
.11
.12
.13
.15
.00$\begin{array}{ll}.02 & .10 \\ .02 & .05 \\ .03 & .25 \\ .02 & .09 \\ .01 & .05\end{array}$
.02
.03
.02
.03
.02 21 $\begin{array}{llll}1 & 2 & 2 & 45 \\ 2 & 2 & 19 \\ & 3 & 2 & 32 \\ 2 & 2 & 17 \\ & 2 & 4 & 37\end{array}$
.08
.12
.09
.04
.05
.08
.12
.09
.04
.05
2
2
2
18
2
2
2
2
18
2
31
31 48 48

L3+00E 1+305	1	15	4	164	. 1	783	52	1901	5.10	12	5	HD	2	54	1	11	2	40	. 71	. 148	11	146	5.24	323	. ${ }^{\text {S }}$	3	. 0	. 02	.10	1	1
L3+00E $2+00 \mathrm{~S}$	1	43	4	114	. 1	187	22	1435	J.04	3	5	HD	1	47	1	2	2	41	. 77	. 106	!0	${ }^{\circ}$	1.1°	415	. $\%$	2	. 5	. 9 ?	.!?	!	1
L3+5¢@ $2+00 \mathrm{H}$	1	39	14	:03	. 2	102	15	504	4.34	10	5	ND	6	35	1	4	4	72	. 54	. 053	15	0	!.46	292	. 12		2.70	. ${ }^{2}$. 27	1	$\underline{1}$
L3+SOE ! +90N	1	15	2	50	.	76	10	222	2.09	5	5	HD	2	28	1	2	4	4	. 46	. 010	${ }^{\text {a }}$	98	1.nn	15?	.!	2	1.00	. 02	. ${ }^{0}$	1	5
L3+50E $!+60 \mathrm{~N}$	1	17	2	66	. 1	52	b	237	1.75	2	5	ND	2	25	1	2	2	38	. 45	. 032	10	38	. 04	!23	.1?	10	$1.0{ }^{\circ}$.02	. 3	1	3
LJ+50E 1+40N	1	14	5	61	. 3	73	8	210	2.33	4	5	30	3	32	1	2	2	43	. 53	.035	11	87	1.30	148	. 11	4	1.70	. 22	. 11	1	2
L3+50E 1+20N	1	19	2	65	. 1	73	13	361	2.84	8	5	ND	2	44	1	2		49	. 61	. 041	10	83	1.21	100	. 10	2	1.57	. 02	. 14	1	1
L3+50E 1+00\%	1	20	-	45	. 1	73	8	233	2.32	*	5	ND	1	52	1	2	2	42	. 79	. 027	19	54	. 31	158	. 05	5	1.48	. 02	. 12	I	1
L? + S0E O O P0N	1	60	4	198	. 2	197	22	1403	3.11	8	5	HD	4	35	2	2	4	51	. 50	. 045	17	$7 \bigcirc$. ${ }^{\circ}$?2!	. 0°	$\stackrel{5}{5}$	2.08	. 13	. 15	1	1
L3+50¢ $3+50 \mathrm{~N}$	1	27	13	74	. 1	92	12	395	3.41	10	5	ND	〕	42	1	2	2	59	. 72	. 048	12	B2	1.17	$2!5$. 0	2	2.0	. 2	.	1	$!$
	1	13	7	65	. 3	19	10	513	2.12	2	5	ND	3	25	3	2	2	44	. 42	. 042	10	47	. 57	193	.00	4	. 90	. 02	. 06	1	1
L3+50E 9+20\%	1	19	11	180	. 1	119	22	- 54	2.87	2	5	KD	2	20	1	2	3	30	. 2^{9}	.04日	6	162	1.10	2? 6	. 05	5	1.91	. 92	. 02	!	1
L3+50E O+00N	1	11	2	42	. 1	19	12	548	2.19	6	5	MD	2	25	1	2	2	42	. 43	. 030	10	62	. 67	156	. 08	12	. 98	. 02	. 02	1	1
L3+50E O+20S	1	14	!	61	. 1	53	10	549	2.30	4	5	HD	3	2 B	3	2	2	52	. 46	. 032	10	55	. 69	192	. 10	5	1.40	. 02	. 04	1	2
L3+50E O+40S	1	12	2	36	. 1	121	10	304	2.55	7	5	HD	1	26	1	2	2	51	. 39	. 038	8	12	. 80	123	. 08	2	1.32	. 02	. 03	1	1
LJ+50E 0+605	1	38	13	70	. 3	133	24	835	4.38	4	5	HD	2	52	2	2	3	93	. 67	. 050	18	240	2.30	307	. 13	3	1.96	. 03	. 07	1	1
L3+50E 0+00S	1	16	7	43	.1	184	16	552	2.55	2	5	ND	1	23	1	2	2	41	. 37	. 022	!	75	1.14	162	. 07	3	1.56	. 02	. 04	1	1
LJ+50E 1+00S	1	1	4	33	. 1	40	7	251	1.46	2	5	M0	2	19	3	2	2	37	. 33	. 025	B	46	. 47	95	. 07	9	. 77	. 02	. 03	1	1
L3+50E $1+20 \mathrm{~S}$	1	17	2	44	. 2	122	17	412	2.54	5	5	MD	1	30	1	2	2	44	. 43	. 049	${ }^{6}$	106	1.07	169	. 04	4	1.01	. 02	. 04	1	7
L3+50E $1+405$	1	25	10	36	. 1	293	12	146	2.63	10	5	KD	3	32	1	2	2	45	. 57	. 041	16	74	1.11	85	. 11	2	1.00	. 03	. 04	1	7
LJ+50E 1+60S	1	25	10	43	. 2	307	17	511	3.21	7	5	HD	4	40	1	2	2	52	. 69	. 052	14	103	2.41	124	. 12	3	1.22	. 03	. 06	1	1
L3+50E 1+805	1	30	6	352	. 1	204	21	147	2.74	2	5	MD	1	27	3	2	2	27	. 39	. 120	7	135	1.39	273	. 04	2	. 97	. 02	. 06	I	1
L3+50E $2+005$	1	37	6	49	. 2	545	53	1208	6.70	14	5	NO	2	47	1	5	2	45	. 56	. 156	16	363	2.54	318	. 03	5	. 82	. 01	. 07	1	1
16+00E $3+00 \mathrm{H}$	1	12	3	46	. 1	44	9	204	2.28	4	5	N0	2	20	3	2	2	44	. 37	. 027	6	65	. 56	107	. 08	3	. 96	. 02	. 09	1	1
L6+00E 2+80M	1	12	3	58	. 1	87	11	371	2.50	.	5	ND	3	26	1	2	2	47	. 51	. 064	B	89	. 94	127	. 0	2	1.08	. 02	. 09	1	1
L6+00E 2+60M	1	10	2	41	$\cdot .1$	47	8	294	2.04	4	5	MD	2	22	1	2	2	43	. 41	. 056	9	65	. 67	162	. 10	3	1.18	. 02	. 08	1	1
L6+00E 2+40N	1	14	3	53	. 1	64	9	384	2.33	6	5	\%	3	23	1	2	2	46	. 45	. 045	9	73	. 70	136	. 09	6	1.07	. 02	. 09	1	1
L6+00E $2+20 \mathrm{~N}$	1	13	2	\$20	. 1	93	14	193	2.57	3	5	KD	3	24	2	2	2	41	. 40	. 074	8	78	. 65	192	. 08	2	. 8.4	. 02	. 08	1	1
L6+00E $2+00 \mathrm{~K}$	1	17	6	131	1	130	21	1177	2.73	5	5	ND	2	29	1	2	2	42	. 49	.07!	9	67	. 74	204	. 07	2	1.10 76	. 02	. 08	1	1
LS+00E 1+4OK	1	10	11	81	. 2	O1	14	455	$1 . \% 6$	2	5	M0	3	19	4	2	2	32	. 30	. 024	6	60	. 48	157	. 06	5	. 76	. 01	. 04	$!$	1
L6+00E 1+60	1	11	5	29	. 1	149	19	575	1.95	3	5	HD	1	18	2	2	2	25	. 21	. 059	6	108	. 78	200	. 04	2	. 72	. 02	. 03	2	1
L6+00E $1+4 \mathrm{UK}$	2	22	12	65	. 2	231	27	151	4.96	8	5	HD	2	37	2	2	3	51	. 44	. 077	9	12B	1.28	343	. 01	2	1.14	. 01	. 12	1	1
L6+00E $1+20 \mathrm{~N}$	1	34	8	63	. 3	203	35	1769	4.59	45	5	ND	4	55	1	2	2	56	. 73	. 018	13	138	1.38	312	. 07	7	1.25	. 02	$\cdot 17$	1	5
L6+00E 1+00K	1	33	10	85	. 2	332	58	184	5.79	26	5	ND	5	54	2	3	2	45	. 64	. 143	20	204	1.81	484	. 0 ?	8	1.08	. 02	. 2	1	27
L $6+00 \mathrm{E}$ O+80N	1	50	15	77	. 3	504	58	1401	6.98	100	5	ND	3	40	3	2	2	49	. 37	.0E]	14	\bigcirc	. 50	235	. 04	8	. 6	. 02	. 04		
L6+00E O+60M	2	41	11	73	. 1	147	21	663	3.77	4	5	ND	10	59	1	2	2	17	. 74	. 131	46	160	1.62	337	. 09	2	1.17	. 01	. 10	1	1
STO C/RU-S	19	62	37	135	7.1	19	29	1064	4.28	42	20	7	41	51	19	17	20	60	. 49	. 089	38	61	. 8°	15?	. 08	37	1.96	. 06	. 13	14	53

HOMESTAKE MINERAL PFOJECT-FA-S710 FILE * $87-40 \% 2$

Let00e 0t40	1	33	2	43	. 1	9.9	68	2136	5.09	11
L6+00E $\mathrm{O}+2 \mathrm{Na}$	1	53	¢	$1{ }^{1} 3$.1	517	18	834	2.90	7
$\underline{-2}+00 \leq 0+00 \mathrm{H}$	1	21	6	14	. 2	118	46	800	4.83	11
L 4 +50E 3+5VM	1	7	4	44	. 1	! 2	12	400	2.14	3
L6+50E 2+80H	1	12	4	124	. 6	6	14	1044	2.20	4
L6+50E 2+bins	1	6	2	64	. 5	39	4	115	1.04	2
L6+50E $2+40 \mathrm{~N}$	18	12	2	4	. 2	35	1	2	. 10	3
L6+50E 2+20N	2	35	2	82	. 4	135	11	298	2.50	7
L+ $+50 \mathrm{E} 2+60 \mathrm{H}$	1	31	19	168	. 3	370	25	961	2.83	8
L6505	1	27	11	172	. 2	546	30	967	2.41	7

L6+50E $1+60 \mathrm{H}$
$6+50 E$
$16+50 E$
$1+420 \mathrm{M}$
LSt50E $1+$ DOM L6+50E $0+80 \mathrm{H}$

Lb+50E $0+60 \mathrm{~K}$
L $6+50 \mathrm{E} 0+40 \mathrm{~N}$ $L 6+50 E 3+105$
$6+50 E 4+005$ L $6+50 E$ 4+20S
$L 6+50 E 4+40 S$
$L C+50 E ~$
$L+60 S$
$L+50 E ~$
$L+80 S$
$L+50 E$
$L+40 S$
$L 6+50 E$
$5+60 S$
L6+50E 5+305 p
7+00E $3+00 \mathrm{~K}$
L7+UOE $2+8 \mathrm{OH}$
L7+OOE $2+60 \mathrm{~N}$
L7+00E 240\%
$17+00 E$
$2+20 N$
$2+00 E$
$2+1004$
2700E $2+100 \mathrm{M}$
L7+00E $1+80 \mathrm{~N}$
$\mathrm{~L} 7+00 \mathrm{E}$
$1+60 \mathrm{H}$
L7 $7+00 \mathrm{E} 1+40 \mathrm{~N}$
L7+00E $1+20 \mathrm{H}$
STD C/AU-S PFK PPK PPK PFM PFM PPM PPK PPM 2 PPh PPM PFM PM

L7+00E 1+JON	1	29	11	59	. 1	313	25	788	3.23	11	5	H0	3	43	1	2	2	47	. 52	. 036	10	${ }^{0}$	2.13	355	. 06	2	1.70	. 02	. 08	2	1
L7+00E O+SON	3	18	14	59	.!	1292	77	1500	8.77	10	5	HD	4	42	1	2	2	64	. 50	. 041	\%	352	3.43	$16!$. 05	2	1.21)	. 01	. 94	1	2
L7+00E 0+50N	1	30	2	6	. 2	137	7	413	. 58	4	5	KD	1	206	1	2	2	-	3.10	. 091	3	21	1.51	198	. 01	?	. 32	. 02	. 03	1	1
L7+00E 0+40K	2	F9	3	1	. 1	642	12	31	. 49	3	5	kD	1	155	1	2	4	17	2.61	. 053	3	38	1.14	133	. 01	8	. 20	. 01	. 01	1	1
L7+COE O+20N	2	11	2	4	.1	65	1	10	. 05	3	5	ND	1	106	1	2	3	1	2.12	. 084	2	10	:. 92	32	. 01	12	. 05	. 01	. 02	1	1
L7+00E 3+60S	1	40	10	214	. 1	909	48	2243	3.81	18	5	ND	1	49	3	3	2	31	. 66	. 171	9	12!	2.45	259	. 07	3	1.05	. 02	. 03	4	3
L7+00E 4+00S	1	24	10	55	. 4	256	19	659	2.22	4	5	MD	1	39	1	2	3	27	. 50	. 071		184	1.54	359	. 03	3	. 79	. 02	. 07	1	2
L7+00E $4+205$	2	46	15	475	. 2	318	41	1594	4.40	26	5	N0	3	4	1	2	2	61	1.00	. 110	17	196	1.50	345	. 07	2	1.23	. 02	. 08	!	1
L7+00E $4+405$	1	38	23	134	. 3	145	31	1099	5.75	73	5	ND	15	65	1	3	2	124	. 44	. 128	59	229	2.70	59	. 25	2	2.55	. 01	. 66	1	1
	1	32	12	282	.1	226	$3{ }^{\text {3 }}$	2042	I. 27	$!$	5	ND	1	38	1	2	2	45	. 50	. 089	6	179	1.52	325	. 06	2	. B°	. 02	. 0 ?	1	1
-																															
L7+00¢ 5+005	2	20	12	93	.1	217	30	703	3.41	17	5	HO	2	34	1	2	2	52	. 55	. 068	7	194	2.04	186	. 07	2	1.18	. 02	. 05	2	3
L7+00E 5+205	1	14	7	71	. 2	106	15	497	2.68	12	5	HD	1	14	1	2	2	45	. 18	. 065	7	111	1.24	158	. 07	2	1.05	. 02	. 05	2	1
L7+00E 5+40S	1	28	4	146	. 1	216	30	1145	3.08	10	10	H0	5	25	1	2	3	45	. 37	. 103	8	14?	1.61	283	. 07	4	1.18	. 05	. 07	1	1
L7+00E 5+60S	1	28	10	12	. 1	295	25	169	3.42	7	5	H0	1	17	1	4	2	47	. 31	. 060	6	218	3.79	144	. 07	5	. 04	. 02	. 07	1	1
L.7+50E $\mathrm{J}+00 \mathrm{~N}$	1	7	10	43	. 2	36	4	127	1.33	5	5	HD	2	18	1	4	3	- 30	. 37	. 057	8	59	. 61	121	. 09	3	. 77	. 02	. 06	1	1
L7+50E 2+80M	1	14	13	99	. 3	72	12	373	2.01	5	5	KD	J	24	1	2	2	40	. 43	. 036	9	73	..$^{\circ}$	173	. 0°	2	1.06	. 02	. 08	2	1
L7+50E 2+80H P	1	17	12	138	. 3	99	20	1452	2.43	4	5	ND	2	32	1	2	3	43	. 50	. 057	8	74	. 66	254	. 07	2	. 97	. 02	. 07	1	1
L7+50E $2+40 \mathrm{~N}$	1	13	5	129	1	146	20	748	2.73	8	5	ND	3	28	2	2	3	42	. 46	. 054	7	91	. 3	207	. 07	3	. 87	. 02	. 07	1	2
L7+50E 2+20H	1	17	2	57	.4	158	19	1031	2.49	5	5	KD	2	26	2	2	2	3%	. 36	. 046	8	80	. 35	185	. 05	2	. 32	. 01	. 06	1	1
L7+50E $2+$ OUM	1	14	E	134	. 6	112	29	1264	3.84	11	5	KD	2	32	1	2	2	12	. 45	. 081	4	135	1.54	$2!2$. 06	2	1.21	. 02	. 08	1	1
L7+50E [1880 N	1	18	$?$	58	.1	253	29	1271	3.07	6	5	ND	1	29	1	2	2	34	. 42	. 046	6	86	1.10	230	. 05	2	. 80	. 02	. 05	1	1
L7+50E [1+60N	1	20	1	45	. 1	481	46	1085	4.99	11	5	ND	2	34	1	2	2	43	. 43	. 052	7	202	1.46	209	. 05	2	. 82	. 02	. 04	1	2
L7+50E $1+40 \mathrm{H}$	1	10	16	98	. 3	290	41	1569	7.42	193	5	MD	4	48	1	2	2	95	1.03	. 135	27	96	. 63	351	. 01	2	1.02	. 01	. 06	1	5
L7+50E $1+20 \mathrm{~K}$	1	21	9	234	. 1	922	56	1136	7.03	300	5	NO	5	43	1	2	3	70	. 29	. 117	11	360	1.17	357	. 02	2	1.44	. 01	. 06	1	1
L7+50E $3+805$ Y	1	11	2	2	.3	32	1	13	. 08	2	5	ND	1	46	1	2	2	2	1.07	. 051	2	12	1.29	76	. 01	b	. 07	. 01	. 01	1	1
L7+50E 4+00S	1	21	3	163	- .1	49	6	178	1.28	3	5	ND	1	35		2	5	20	. 52	. 036	5	122	1.47	104	. 05	3	. 68	. 02	. 09	1	3
L7+50E 4+20S	1	43	5	36	.1	321	12	367	1.90	7	5	ND	3	116	1	2	2	32	1.37	. 048	7	110	1.59	156	. 04	5	. 85	. 02	. 05	1	11
L7+50E 4+40S	1	30	7	40	. 1	349	21	406	3.53	14	5	HD	3	45	1	2		52	. 74	. 044	5	205	3.23	157	. 06	5	1.11	. 02	. 06	1	1
L7+50E 4+60S	1	23	2	61	. 1	421	14	906	1.01	4	5	ND	1	50	1	2	4	14	. 83	. 100	5	46	1.01	190	. 02	7	. 40	. 02	. 06	1	2
L7+50E 4+105	1	13	7	48	.2	10	5	213	. 50	2	5	MD	1	65	1	2	4	$?$. 99	. 044	2	48	. 71	122	. 02	10	. 23	. 02	. 07	1	1
L7+50E 5+00S	1	22	4	56	. 1	142	22	936	2.49	3	5	KD	2	37	1	2	3	37	.50	. 078	7	132	1.15	244	. 06	5	. 89	. 03	. 09	1	1
L8400E 3+00K	1	12	15	57	. 3	4	10	42 B	2.13	3	5	1 D	5	23	,	6	2	47	. 38	. 028	9	73	.62	210	. 10	2	1.09	. 02	. 08	1	1
L8+00E $2+\mathrm{BOH}$	1	13	2	54	. 5	57	B	265	1.15	8	6	N0	5	26	1	2	3	12	. 40	. 027	10	77	. 85	153	. 11	5	1.02	. 02	. 11	1	1
L8+00E 2+60N	1	1	9	27	. 2	36	5	102	1.32	4	5	N0	3	20	3	2	2	37	. 36	. 031	8	52	. 55	127	. 09	5	. 80	. 02	. 05	3	1
L8+00E $2+40 \mathrm{H}$	1	12	5	58	. 3	76	11	517	2.12	3	5	MD	3	24	1	2	2	43	. 39	. 040	8	81	. 65	168	.10	3	. 87	. 02	. 07	3	1
L8400E 2+20\%	3	30	13	11	. 2	180	13	410	3.06	10	5	ND	5	41	1	2	2	53	. 59	. 045	14	82	1.17	2\%2	. 10	2	1.89	. 03	. 15	1	2
STD C/Av-S	19	63	40	132	7.3	69	29	1047	3.94	41	18	7	40	52	16	16	20	57	.44	. 098	39	63	. 82	113	. 09	33	1.70	. 06	. 13	12	48

\square KE
$\%$$\quad \begin{array}{r}3 A \\ \hline\end{array}$ $\begin{array}{rrrrrrr}\text { TI } & B & A L & N A & K & H & \text { AUI } \\ Z & P P M & Z & Z & \% & F P G & P P 5\end{array}$

L8+00E 2+00N	1	12	2	77	. 1	139	15	423	2.46	2	5	HD	1	24	1	3	2	40	. 44	. 025	6	81	. 91	124	. 09	2	. 92	. 02	. 04	1	3
L8+00E $\mathrm{I}+\mathrm{BOH}$	1	8	2	88	. 1	158	19	624	2.05	5	5	HD	1	20	1	2	4	25	. 36	. 045	5	82	1.15	119	. 05	3	. 58	. 02	. 02	1	1
L8+00E 1+60N	1	23	2	76	. 2	193	23	769	4.12	7	5	\%	3	31	2	3	2	50	. 54	. 080	$!$	96	1.14	168	. 07	¢	1.20	. 02	, 05	1	2
L8+00E $1+40 \mathrm{M}$	1	12	2	50	. 1	65	10	414	2.31	2	5	ND	2	21	1	2	2	16	. 28	. 026	9	62	. 86	183	.11	2	1.30	. 02	. 06	1	1
[1+00E $\mathrm{J}+2 \mathrm{ON}$	1	13	2	49	. 1	89	11	415	2.30	2	5	ND	1	22	1	2	2	42	. 39	. 026	7	71	. 75	161	. 10	2	1.15	. 02	. 05	1	1
L8+00E 1+00H	1	20	5	48	. 1	321	33	1621	4.22	6	5	HD	1	23	2	2	2	50	. 32	. 050	7	238	1.86	291	. 05	8	1.19	. 02	. 92	1	7
L8+00E 0+80H	1	19	2	79	. 1	645	55	1253	5.75	13	5	HD	1	33	3	5	2	13	. 38	. 076	6	223	4.61	231	. 04	7	1.05	. 01	. 04	1	1
LR+00E O+GUK	1	23	2	110	.1	286	21	734	3.64	12	5	ND	1	2 B	1	2	2	54	. 39	. 063	10	87	1.25	255	. 06	2	1.49	. 02	. 04	1	2
L8+00E O-40N	1	8	2	22	. 1	98	11	306	1.94	2	5	HD	1	16	1	3	3	28	. 21	. 015	6	60	. 68	101	. 06	7	. 67	. 02	. 02	1	2
LB+JOE 0+20k	1	48	2	78	. 2	138	11	432	3.74	9	5	ND	3	58	1	2	2	57	. 91	.03b	15	75	1.80	294	. 06	7	2.20	. 02	. 11	1	1
LOTUOE O+00\%	1	50	2	95	. 3	1515	2	705	3.11	7	5	HD	1	32	3	2	2	19	. 57	. 091	8	57	2.84	118	. 03	14	. 25	. 02	. 03	1	3
Latjoe j+bus	1	20	2	70	. 3	229	31	1488	3.40	4	5	HD	1	27	3	2	2	41	. 47	. 064	4	175	2.38	258	. 05	10	. 92	2	.00	1	1
Letoue 4+00S	1	38	2	114	. 1	221	40	2908	3.26	5	5	ND	1	36	3	2	2	43	. 56	. 074	7	142	1.82	364	. 05	12	1.25	. 02	. 08	1	1
L8+00E $4+205 p$	1	18	3	55	. 1	405	39	951	4.23	1	5	HD	1	21	1	1	2	39	. 33	. 060	3	252	5.41	154	. 05	10	. 95	. 02	. 06	2	1
L8+00E 4+40S	1	20	2	62	.1	187	21	807	2.20	5	5	ND	1	23	I	2	J	32	. 31	. 045	6	108	1.51	139	. 09	2	.33	. 03	. 04	2	1
L8+OOE 4+bus P	1	20	5	170	1	225	20	914	2.33	3	5	HD	2	31	1	2	2	27	. 52	. 068	5	143	2.52	169	. 04	3	. 7	. 02	. 05	1	1
L8+00E 4+80S	1	52	2	98	. 2	331	22	543	1.97	4	8	HD	2	24	4	3	5	31	. 37	. 038	12	91	1.32	$12!$. 06	4	1.03	. 22	. 05	1	1
L8+50E $3+805$	1	15	5	341	. 2	149	22	784	2.94	2	5	HD	1	13	1	2	4	42	. 21	. 059	6	152	1.4	256	. 06	4	1.37	. 02	. 05	1	21
L8+50E 4+00S	1	18	5	82	. 5	225	26	767	3.17	2	5	HD	1	30	1	2	2	38	. 34	8	4	153	1.57	218	. 05	4	$\cdot 15$. 02	. 05	2	1
Lf+50E 4-20S	1	12	2	41	. 1	119	16	443	2.66	2	5	WD	1	32	4	2	2	38	. 41	. 032	4	137	. 95	146	. 05	2	. 75	. 01	. 05	2	1
L8+50E 4+40S	1	20	2	55	. 1	200	14	631	2.00	3	5	N0	1	49	1	2	2	2	.44	. 042	3	114	2.60	156	. 04	9	.62	. 02	. 06	1	1
LO+50E $4+605 P$	1	124	2	72	. 1	495	5	157	1.34	2	5	H2	1	95	1	2	2	15	1.81	. 090	8	56	1.69	231	. 02	7	. 67	. 02	. 02	1	1
L8+50E 4+105	1	162	2	239	. 6	777	d	244	1.21	4	5	$N \mathrm{~N}$	1	103	1	2	2	12	2.11	. 098	10	53	1.53	22 ?	. 02	8	. 64	. 02	. 04	2	1
L8+50E 5+005	1	47	5	$5!$. 1	111	11	434	2.87	13	5	ND	3	44	1	4	2	$5!$	1.12	. 054	12	46	1.03	148	. 08	2	1.25	. 03	. 08	1	3
L8+50E 5+205	1	91	10	19	. 3	140	14	951	2.32	3	5	ND	1	50	1	2	2	34	1.16	. 046	8	85	. 94	262	. 06	8	. 95	. 02	. 11	1	3
L9+00E 5+005	1	14	2	145	$\cdot .2$	145	30	1540	2.35	2	5	ND	1	19	1	2	2	22	. 26	. 047	4	129	1.20	161	. 03	2	. 59	. 02	. 06	1	1
L9+00E 5+20S	1	6	2	30	.1	56	8	145	1.62	2	5	H0	1	13	1	2	2	25	. 24	. 018	4	87	. 40	64	. 07	2	. 58	. 01	. 04	2	1
L9+00E 5+40S	1	16	4	50	. 2	270	28	787	3.98	4	5	HD	1	15	1	2	3	45	. 24	. 033	5	263	1.19	226	. 06	2	1.13	. 01	. 02	1	29
L9+00E 5+60S	1	34	2	45	. 1	891	40	1219	4.50	14	5	H0	1	35	1	4	2	36	. 65	. 099	8	217	2.13	274	. 03	5	1.09	. 01	. 05	1	29
L9+00E 5+80S	1	26	2	174	. 4	123)	84	1373	5.54	10	5	HD	1	32	1	4	2	27	. 46	. 090	5	313	工. 52	215	. 03	:	. 80	. 02	. 03	1	6
L9+00E ${ }^{\text {d }}$ +00S	2	13	13	142	. 4	141	31	1693	5.01	36	5	HD	3	68	1	5	2	55	. 74	. 148	15	102	. 97	372	. 06	2	1.12	. 01	. 15	4	1
L9+50E 5+005	1	51	3	406	. 1	1515	35	1224	2,22	2	5	H1	1	51	3	2	2	14	. 96	. 159	5	9	3.39	237	. 02	8	. 67	. 01	. 03	1	1
L? 9 50E 5+20s	1	23	8	96	. 3	201	29	1454	2.90	5	5	H0	1	31	1	2	2	28	. 55	. 087	5	180	1.15	235	. 04	8	. 66	. 02	. 10	1	119
L9+50E 5+40S	1	36	2	261	. 1	557	42	1127	3.91	2	5	HD	1	16	3	2	2	30	. 63	. 120	7	161	1.81	327	. 04	5	1.04	. 02	. 05	2	2
L9+50E St+0S	1	10	5	31	. 1	83	11	502	1.17	2	5	ND	1	15	1	4	J	28	. 28	. 014	5	110	. 66	7	. 08	2	. 64	. 01	.0さ	2	
L9+50E 5+8US	1	28	2	70	. 2	110	18	100	2.48	7	5	ND	1	23	1	3	2	42	.39	. 032	7	115	1.07	160	. 08	2	1.01	. 01	. 05	1	1
Sto C/All-S	17	59	36	132	6.9	67	27	1032	4.12	37	20	7	40	4	19	14	20	57	. 46	. 098	37	61	. 85	175	. 08	36	1.80	. 05	. 12	11	51

 GEウCHEMICAL ICF ANALYSIS

Masten
nts. AILL: Recurin
 this leach is partill for hy fe ca pla cr mg an it i wand limited for ka and k. au detection limit iy ice is j Pm.
$\square \square \square$
HONE 253-3158

HOMESTAKE MINERALS FFRJECT-FA-5710 File \# $87-3891$ Fage 1

samplei

L0t6013 $3+80 \mathrm{~N}$	2	49	15	194	． 5	148	45	2017	1.15	13	5	HD	4	126	4	3	2	24	1.39	． 267	7	39	． 36	288	． 01	12	． 52	． O	． 07	1	1
20＋60） $3+60 \mathrm{k}$	3	161	73	1320	1.3	224	53	3013	7．81	40	5	HD	7	152	28	2	2	99	1.74	． 299	26	131	1.22	738	． 04	4	1．65	． 11	． 15	1	
Lotain $3+4$ H	1	38	25	174	.4	235	31	1212	3.92	25	5	HD	3	55	2	2	2	56	． 86	． 141	10	88	1.05	261	． 07	1	$1.3!$	．${ }^{11}$	． 14	1	2
LOtion $3+2 \mathrm{OK}$	1	34	15	［18	． 4	131	31	1656	4.15	12	5	N0	5	80	1	5	2	44	． 31	． 098	19	220	1.89	397	． 16	t	1.87	． 05	20	1	
LO＋6UK $3+00 \mathrm{H}$	1	41	15	112	． 3	539	46	1485	3.63	7	5	KD	2	42	1	2	2	45	． 54	． 082	d	196	1.45	567	． 04	2	1.06	． 01	． 04	1	
Lotux 2＋iuk A	1	40	17	175	． 2	591	2d	1376	3.34	5	5	H0	2	84	1	2	2	39	1.15	． 187	7	74	1.67	644	． 03	13	． 01	． 11	． 07	1	i
LiOtaur $2+6 \mathrm{ON}$	1	34	26	104	． 2	559	37	721	d．25	16	5	KD	2	51	1	2	2	56	． 63	． 144	13	208	1.48	373	． 03	3	1.01	． 01	． 07	1	2
LOt60 $2+40 \mathrm{H}$	1	5s	7	140	． 2	435	33	673	3.31	10	5	HO	2	62	1	2	2	31	． 69	． 074	9	154	1.09	346	． 05	2	1.20	． 02	05	1	1
L0460x $2+20 \mathrm{~K}$	1	11	18	59	.4	368	51	1446	2.92	9	5	ND	3	79	2	2	2	28	1.17	． 132	7	139	1.32	497	． 05	7	． 7	． 01	． 09	1	1
L0＋60以 $2+00 \mathrm{Na}$	1	114	20	643	． 6	171	2	2919	2.41	11	5	H0	2	95	15	2	2	17	1.41	． 104	6	32	36	388	． 03	3	．6？	． 03	． 09	1	
LO＋6UK $1+80 \mathrm{C}$	1	48	4	72	． 3	540	30	727	3.64	13	5	ND	3	75	1	2	2	57	． 49	． 069	4	114	1.65	257	．08	19	1.40	． 14	． 10	1	2
L0＋4UK $4+00 \mathrm{H}$	1	17	10	12	． 2	596	55	1032	6.12	10	5	HD	2	23	1	2	2	38	． 25	． 090	5	499	3.74	165	．${ }^{0}$	14	．${ }^{\text {c }}$	． 01	． 04	1	1
L0＋40K 3＋80N	1	46	$1{ }^{\circ}$	62	． 3	113	39	1178	7.06	45	8	N0	16	75	1	2	2	123	． 71	． 295	81	111	． 85	367	． 07	16	1.25	． 01	． 09	1	
Lutail $3+4 \mathrm{OH}$ R	1	55	29	238	． 5	260	66	3099	3.74	11	5	HD	3	83	7	2	2	37	． 95	． 175	12	94	． 64	578	． 04	17	． 78	． 0 ？	10	$!$	1
LO＋40¢ $3+40 \mathrm{CH}$	1	215	10310	2745	109.6	638	99	2813	12.57	348	5	MD	3	122	91	32	$2 b$	28	1.16	． 284	7	216	1.1	281	． 12	3	． 64	． 01	．07	8	5
10＋40以 $3+20 \mathrm{~K}$	2	4	531	370	5.6	235	54	2450	8.31	89	5	ND	3	101	11	5	2	69	． 77	． 210	12	4	． 52	112	．03	13	． 80	． 01	．1：	1	
L0＋40N 3＋00N	1	27	35	53	． 4	121	14	517	1．91	7	5	KD	1	29	1	2	3	28	． 35	． 074	7	85	． 74	25°	． 05	13	． 0 ？	． 02	． 04	1	11
10＋40以 $2+50 \mathrm{H}$	1	63	20	100	． 7	424	46	2044	5.54	49	5	ND	2	122	2	3	2	36	1.17	．186	9	4	1.89	570	． 03	1	． 75	． 01	． 10	1	
L0＋40K $2+60 \mathrm{~K}$	1	77	34	466	1.4	170	46	2186	12.10	51	5	HD	10	112	2	2	2	121	1.02	． 258	S0	60	． 68	367	． 01	$?$	1.44	． 01	． 08	1	
LO＋401 $2+40 \mathrm{M}$	2	47	17	101	． 4	442	48	1843	3.55	13	5	ND	2	55	1	2	2	40	． 10	．14	B	17	1．52	32°	．03	5	（i）	． 0	．	1	
L0＋40y $2+20 \mathrm{H}$	1	57	9	68	.4	402	40	1651	6.79	9	5	KD	2	41	1	4	2	129	． 76	． 037	4	208	5.66	324	． 05	12	3.84	． 01	． 05	1	
LO＋40M $2+00 \mathrm{M}$	1	48	54	673	． 1	193	53	2311	4.34	20	5	ND	2	52	5	2	2	36	． 73	． 096	1	126	1.27	361	． 03	4	1.45	． 01	． 04	2	
LO＋40 $1+18 \mathrm{H}$	1	43	77	237	1.3	350	30	1157	3.00	14	5	ND	2	77	2	2	2	30	1.60	． 141	10	74	1.52	235	． 02	23	． 61	． 01	． 11	1	
LOt20N $3+8 \mathrm{OH}$	1	21	71	93	． 3	441	51	1144	5.56	11	5	ND	2	40	1	4	2	51	． 53	． 097	9	313	3.74	26 ？	． 04	8	1.02	． 01	． 07	1	
L0＋20 $3+60 \mathrm{~N}$	1	33	18	54	． 4	203	44	1756	4.53	14	5	HD	3	49	1	2	2	63	． 47	． 082	20	173	2.10	129	． 08	17	1.31	． 0	． 09	1	
L0＋20N 3＋40k	3	48	34	110	1.5	329	40	1195	1.27	185	5	ND	7	72	1	9	2	151	． 95	． 134	37	327	3.42	43	． 19	2	3.14	． 01	． 10	1	
LO＋20N $3+2 \mathrm{OH}$	2	78	22	135	1.0	164	38	1372	7.69	50	5	MD	5	148	1	5	2	89	1．13	． 245	31	157	2.03	140	． 03	1	1.52	.01	． 07	1	
LO＋20k 3＋00k	2	50	31	77	． 5	201	38	1605	8.25	44	7	NO	5	77	2	2	2	75	． 62	． 145	22	93	． 56	371	． 01	11	1．25	． 01	． 05	1	
LO＋20N2＋80N	1	21	15	144	1	224	25	1617	4.84	13	5	ND	2	124	1	2	2	31	． 97	． 111	12	47	． 44	757	． 01	2	1.02	． 01	． 15	1	
LO＋2042 $2+\mathrm{CUH}$	1	23	23	64	． 2	243	33	969	5.37	30	5	ND	3	\＄5	1	2	3	65	.63	． 069	15	140	1.00	251	． 05	8	1.24	．0！	． 5	1	
L0＋20Y $2+40 \mathrm{~N}$	1	16	8	43	． 2	873	68	851	5.71	18	5	$n 0$	1	36	1	2	2	29	.48	． 084	3	128	6.20	175	． 02	18	1.33	． 01	． 05	1	
L0＋20） $2+20 \mathrm{~K}$	3	31	22	79	． 7	527	50	1009	1.74	23	5	HD	8	81	1	5	2	168	． 27	． 153	4	404	6.10	361	． 27	22	4.04	． 01	． 09	1	
L0＋20N $2+00 \mathrm{~N}$	1	69	11	163	． 7	123	29	1928	6.37	14	5	ND	7	189	2	2	2	10	2.53	． 267	11	88	1.28	401	． 05	11	1.14	． 01	． 35	1	
LO＋2OM $1+3 \mathrm{OH}$	1	31	8	173	． 1	113	16	165	1.99	9	5	NO	2	74	2	2	2	34	1.34	． 096	9	54	1.15	136	． 05		． 60	． 02	． 10	1	
LO＋20K $1+60 \mathrm{~K}$	1	75	329	216	3.1	496	56	1450	5.21	38	5	HD	2	97	1	2	2	57	1.27	．136	18	198	2.15	402	． 06	7	1.24	． 01	． 10	1	
LOE 4＋00M	1	11	24	41	． 2	316	23	397	3.16	9	5	ND	2	$2 \dot{6}$	1	2	2	43	． 33	． 028	＊	224	2.11	11%	． 0	5	． 87	． ll	． 03	${ }^{2}$	5
STD C／AU－S	18	61	40	134	7.0	49	28	1040	4.11	40	18	7	39	51	18	17	22	59	． 48	． 088	38	61	． 85	180	． 08	37	$1.7{ }^{\circ}$	． 06	13	12	

HOMESTAKE MINERALS FROJECTートA－ラ710 FILE＊87－3B41

SAhtLea	n0	CU	P！	2 H	A6	$n]$	CO	H	FE	AS	U	AU	IH	S8	CO	58	11	v	CA	P	LA	Cf	16	VA	11	8	AL	$N{ }_{\text {Nar }}$		＊	
SAncta	H\％	PH／	PH／	PYM	frh	P\％	P9月	PPh	2	PP\％	PPK	PFR	Prn	PrM	PFK	PPM	PP／	9\％h	2	2	PFA	\％$\%$	2	P\％K	2	PHs	2	1	2	\％r\％	rys
LOE 3＋HON	1	32	11	78	.4	566	30	527	2.86	4	5	HD	1	40	1	2	2	33	． 50	． 073	－	276	1．91	194	． 04	15	1．0）	． 01	． 06	1	1
LOE J＋60K	1	35	13	52	． 1	202	18	385	3.12	14	5	N0	6	42	1	2	4	54	． 94	． 060	14	127	1.62	140	． 06	：	1.04	． 02	． 07	1	5
LDE 3＋4uN	J	33	47	18	． 2	556	38	${ }^{4} 10$	5.18	37	5	ND	8	40	1	2	2	71	． 52	． 101	20	215	2.81	174	． 07	6	1.57	． 41	． 10	1	16
LUE $3+2 \mathrm{OH}$	3	6	304	234	7.7	235	42	1996	9.78	85	5	ND	y	117	3	0	14	76	1.23	． 269	34	127	1.33	：13	．0ic	2	1.01	． 01	． 11	1	60
LUE $3+00 \mathrm{H}$	7	68	201	284	10.3	717	56	2637	12.71	585	5	N0	10	75	4	6	2	80	． 57	． 165	38	149	1.37	174	． 02	2	1.13	． 11	． 18	1	300
LOE 2＋BOH	1	47	99	198	． 7	260	24	1320	3.52	26	5	HD	3	131	1	2	2	38	1.55	． 160	12	104	1.33	402	． 03	14	． 87	． 01	． 13	1	1
LOE 2＋60\％	1	49	21	114	． 3	425	26	862	4.15	24	5	ND	5	14	1	2	2	56	1.42	． 135	16	154	2.09	271	． 07	11	1.24	． 02	． 15	1	3
LOE 2＋40H A	7	24	1	11	． 1	351	5	53	． 30	2	17	H0	1	245	1	2	3	7	3.84	．081	2	17	1.38	279	． 01	16	． 18	． 02	．02	1	1
LOE 2＋2OHA	1	26	13	73	． 2	355	10	479	1.04	6	5	ND	1	152	1	2	3	16	3.12	． 106	6	18	1.64	290	． 01	17	． 35	． 01	． 03	1	2
LOE $2+00 \mathrm{C}$	1	43	2	11	.3	871	24	643	4.97	24	5	W	10^{-}	134	1	3	2	74	2.04	． 202	27	202	3.44	245	．！ 1	2	1.61	． 04	． 10	1	1
LOE 1＋BON	1	$3!$	14	73	.1	908	47	740	1．96	6	5	N0	4	80	1	2	1	24	． 14	． 058	8	92	1.43	263	． 04	！	． 87	． 03	．69	1	1
LOE 1＋60N	1	$6!$	21	141	． 2	540	80	314\％	3.23	－	5	HD	1	107	4	2	3	$2!$	1.47	． 151	8	144	2.26	464	． 02	8	． $7!$	． 01	． 12	1	1
LO＋20E 4＋00\％	1	20	8	63	． 3	194	22	592	3.17	9		MD	4	32	1	2	5	53	． 17	． 044	10	154	1.77	253	． 07	5	1.54	． 01	． 08	1	3
LO＋20E $3+8 \mathrm{OH}$	1	13	22	51	． 3	347	27	462	4.08	8	，	HD	4	20	1	2	3	47	． 28	． 036	8	310	2.64	217	． 05	6	1.08	． 01	－施	1	2
LO＋20E 3．60N	2	21	12	87	． 5	161	21	107	2.57	8	5	ND	3	17	1	2	5	41	． 20	． 038	－	139	1.14	278	． 05	5	1.08	． 02	． 04	1	1
LO＋20E 3＋40N	1	10	26	93	． 3	252	31	1591	3.73	21	5	H0	2	34	3	2	3	50	．${ }^{1} 1$	．13：	10	139	． 73	404	．us	6	1.17	． 01	． 07	1	1
LO＋20E 3＋20N	1	86	16	360	1.0	416	39	$164{ }^{\circ}$	2.42	10	7	ND	4	11	13	2	2	31	．${ }^{7}$	． 183	13	62	． 52	118	． 04	5	． 68	． 01	． 11	1	1
LOt $20 t 3+00 \mathrm{~N}$	1	35	10	71	． 1	141	15	612	3.16	16	5	HD	7	40	1	2	4	62	． 51	． 035	14	82	． 6	182	． 04	34	1.58	． 03	． 07	1	2
L0420E $2+40 \mathrm{Ha}$	2	56	22	546	． 1	1171	137	2887	8.66	17	5	ND	4	74	13	2	2	44	． 78	． 221	10	332	1.48	675	． 03	5	1.17	． 01	． 04	1	1
LO＋20E $2+60 \mathrm{M}$	1	30	11	287	.1	10.3	11	1634	3.70	7	5	H	2	43	2	5	2	26	1.14	． 138	5	378	5.60	57？	． 02	12	． 74	． 01	． 64	1	1
LO＋20E 2＋40N	1	47	33	110	． 2	393	36	1100	5.19	14	5	$N(1)$	7	39	2	2	4	76	． 42	．08\％	30	173	1.57	343	． 07	${ }^{3}$	1.60	． 01	． 11	1	1
LO＋20E $2+20 \mathrm{H}$	1	32	14	11	． 3	157	34	1479	5.02	21	5	ND	5	33	1	2	3	45	． 32	． 153	20	153	． 44	334	． 04	15	1.27	． 02	.10	1	1
LO＋20E $2+00 \mathrm{~N}$	，	32	9	117	1	427	57	1417	4.40	11	5	ND	，	93	1	2	3	32	1.13	． 172	4	419	2.61	371	． 02	2	． 85	． 01	． 07	1	1
LO＋20E $1+10 \mathrm{~K}$	12	6	23	138	． 5	139	46	2325	12.60	47	1	ND	13	60	2	5	2	119	． 70	． 207	40	219	2.25	591	． 11	4	2.00	． 01	． 51	1	1
LOt20 $1+60 \mathrm{~N}$	2	69	19	475	． 6	133	22	2068	3.92	15	5	ND	3	137	6	2	2	39	2.00	． 146	14	43	． 18	84！	． 02	4	．？2	． 01	． 17	2	1
L0＋40E 4＋00M	1	16	10	67	． 1	253	33	936	3.52	10	5	ND	3	34	1	2	3	43	． 45	． 038	4	233	2.16	249	． 0	3	1.15	． 01	． 08	1	1
LOL40E $3+80 \mathrm{~N}$	1	16	15	67	． 1	483	58	1299	6.03	34	5	H9	5	28	1	2	3	50	． 39	． 056	8	395	2.16	305	． 04	6	1.18	． 01	． 04	1	1
L0＋40t $3+60 \mathrm{~K}$	2	21	5	84	． 3	353	41	885	5.10	20	5	MD	5	35	1	3	3	51	． 39	． 069	9	261	2.32	$2^{\circ} 0$	． 01	8	1.30	． 01	． 07	1	1
L0＋40E 3＋40K	1	14	9	50	． 1	94	5	33	． 65	2	5	ND	2	26	1	3	2	13	． 31	． 042	6	85	． 04	202	． 03	5	． 51	． 02	． 04	1	3
LO＋40E 3＋20M	1	27	19	70	． 6	722	48	1222	9．23	63	5	M9	4	40	1	3	2	55	． 13	． 084	7	456	4.47	371	． 02	6	1.16	． 01	． 64	I	5
L0＋40E 3＋00H	1	133	752	1437	3.4	451	75	4877	5.78	103	5	N0	7	112	24	2	2	55	． 85	． 152	29	106	． 13	965	． 03	2	1.64	． 01	． 06	3	6
LO＋40E $2+60 \mathrm{H}$	1	32	35	174	1	635	72	2141	5.31	16	5	ND	2	41	1	4	2	43	． 47	． 113	1	420	3.19	512	． 03	6	． 2	． 01	． 07	1	1
LO＋40E $2+40 \mathrm{~N}$	2	35	6	289	.9	421	57	1525	9.04	48	5	KD	5	128	2	2	2	91	． 95	． 186	25	258	1.70	337	． 08	2	1.71	． 01	.10	1	1
LO＋40E 2＋20\％	1	25	23	124	． 1	234	48	1384	4.94	16	5	MD	4	39	1	2	4	44	． 40	． 121	15	213	1.57	282	． 03	17	1.31	． 02	． 0 ？	1	1
LOtuee 2＋OUn	1	38	36	112	． 3	257	53	2527	5.38	16	5	ND	4	47	2	2	5	63	． 48	． 101	12	223	1．41	601	． 05	4	1.35	． 01	． 0 ？	1	1
LO＋40E 1＋80K	1	42	153	564	1.0	77	29	219	7.11	18	5	ND	4	59	20	2	2	29	． 61	． 106	11	31	． 25	46	． 01	2	． 64	． 01	． 10	1	1
Stid c／au－s	19	63	43	131	7.5	72	28	1059	4.07	44	23	7	44	52	20	18	22	61	． 47	． 094	11	84	． 84	179	． 0 ？	33	1.77	． 06	． 13	11	51

5RALLEA

LIOAIE $1+60 \mathrm{H}$
 Lu*SOE S+EMN (0 +20) $3+6 \mathrm{OH}$ LO+LnE $3+40 \mathrm{~N}$

L0+40E 3+20n	2	27	7	117	. 1	500
LOP60E 3-CON	1	21	9	160	. 2	795
LOt60E 2-80\%	3	73	20	171	. 5	342
STIEEDE 248i)	1	20	9	250	. 1	473
	1	29	-	6°	. 2	135

60	1877	6.21	16
11	2334	7.00	1
54	3073	6.24	4
59	1834	7.20	12
20	710	3.63	13

LO+50E $2+\mathrm{CON}$ LO 3 OE $i+80 \mathrm{~N}$ LO+6CE $1+60 \mathrm{~N}$ LO+2DE $4+00 \mathrm{H}$ LO +8 EE $3+80 \mathrm{~N}$

LOLIOE $3+60 \mathrm{H}$ LO 0 OOE $3+30 \mathrm{H}$ LOt $0+8 \mathrm{E} 5+20 \mathrm{~K}$ O480E $2+80 \mathrm{~N}$

LO+10E $2+40 \mathrm{~N}$	1	29	4	71	. 3	265	20	719	3.43	25
LOTEOE 2+20N	1	37	5	58	. 2	131	16	511	3.60	23
LO+80E $2+00 \mathrm{~N}$	1	33	13	72	. 2	508	37	1025	5.45	41
LO+80E 1+80K	1	34	13	138	. 5	95	21	1708	5.17	21
CO+8OE $1+60 \mathrm{~N}$	2	30	7	160	. 4	57	31	1741	6.74	11

LIE $4+00 \mathrm{~K}$	1	20	3	24	.3	176	15	249	2.64	9
LIE $3+60 \mathrm{H}$	1	22	7	82	.1	162	13	248	2.31	15
LIE $3+60 \mathrm{~K}$	1	16	2	56	.1	184	20	441	3.45	13
LIE $3+40 \mathrm{H}$	1	24	5	60	.4	178	25	830	3.57	15
LIE $3+20 \mathrm{H}$	1	14	2	35	.1	103	12	502	2.83	11

5
5
5
5
5

LIE $3+00 \mathrm{~N}$
LIE $2+80 \mathrm{~N}$
LIE $2+60 \mathrm{~N}$
LIE $2+40 \mathrm{~N}$
LIE $2+20 \mathrm{~N}$

LIE 2+00K
STD C/RU-S

