PROPERTY: Louise

LOCATION:	LAT	49	0755	LONG	118	51	26
	UTM	11	5443565	364516			
	NTS	$082 E 02 W$					

CLAIM(S): Prince of Wales,Princess Louise, Louise 87
ORERATOR(S):

 Pricam Ex.AUTHOR(S):
 AEPORT YEAR: 1988, 56 Pages
 COMMODITIES
 SEARCHED FOR: Gold,Silver,Copper
 GEOLOGICAL
 SUMMARY:
 The claims are underlain by the Permian-Carboniferous Knob Hill
 Group of greenstone, chert and argillite with lesser limy sediments.
 Localized outcrops of the Kettle River Formation and scattered
 outcrops of Tertiary Marron intrusives occur. The major structure is
 the wallace Creek fault traversing east through the northern portion
 of the property. Alteration consisting of jarosite, ankerite,
 carbonate, silica and pyrite is associated with mineralization at the
 Prince of wales shaft.
 WORK
 DRNE
 Geochemical
 SOIL 996 sample(s) ;ME
 \(\operatorname{Map}(s)-7 ;\) Scale(s) - 1:5000
 ACTION:

FILE NO:

GEOLOGICALBRANCH ASSESSMENTREPORT

1987 GEOCHEMICAL SURVEY
for
PRICAM EXPLORATIONS INC.
on the

LOUISE CLAIM GROUP

Greenwood M.D.
N.T.S. 82E/2W

June 15, 1988
Vancouver, B.C.

Sookochoff Consultants Inc. Laurence Sookochoff, P.Eng.
$?$

TABLE OF CONTENTS

INTRODUCTION 1
SUMMARY 1
PROPERTY 4
LOCATION AND ACCESS 5
WATER AND POWER 6
TRANSPORTATION AND SUPPLIES 7
HISTORY 7
GEOLOGY 9
MINERAL OCCURRENCES 12
GEOCHEMICAL SURVEY 13
RESULTS 14
CONCLUSIONS 15
RECOMMENDATIONS 16
SELECTED REFERENCES 17
CERTIFICATES 19
STATEMENT OF COSTS 20
ASSAY CERTIFICATE 21

ILLUSTRATIONS

Figure 1	Location Map	
Figure 2	Claim Map	
Figure 3	Regional Geology \& Index Map	
Fig. 4	Gold Geochemistry	In pocket
Fig. 5	Arsenic Geochemistry	In pocket
Fig. 6	Copper Geochemistry	In pocket
Fig. 7	Lead Geochemistry	In pocket
Fig. 8	Zinc Geochemistry	In pocket
Fig. 9	Silver Geochemistry	In pocket
Fig. 10	Compilation Map	In pocket

ASSESSMENT REPORT
 on a
 1987 GEOCHEMICAL SURVEY
 for
 PRICAM EXPLORATIONS INC. on the
 LOUISE CLAIM GROUP

INTRODUCTION

Geochemical surveys were carried out on the Louise claim Group during the 1987 field season. The purpose of this survey was to locate indicators of possible gold mineralization which could subsequently lead to the location of economic mineral zones.

This report relates the procedures, results and conclusions drawn from the survey.

SUMMARY

The Louise property is locted in the historically renowned Phoenix Boundary Mining Camp in the Greenwood Mining Division of central southern British Columbia 500 km by road east of Vancouver, B.C. It is readily accessible from Trans-Canada Highway No. 3 and numerous secondary and logging roads.

The Phoenix Boundary Mining Camp has been actively prospected and mined since the late 1800's. The most important and active mining camp was Phoenix, 18 km east of the property, from which production totalled 27 million tons grading an average of 0.85% copper, $0.033 \mathrm{oz} /$ ton gold and $0.2 \mathrm{oz} /$ ton silver.

The property is situated within the Permo-Carboniferous Knob Hill Group (H.W Little 1983) or Attwood Group (B.N. Church 1986), a broad belt consisting of greenstone, metavolcanics, chert and argillite with lesser limey sediments. It is intruded along its northern margins by Juro-Cretaceous intrusives, which are related to the Nelson Intrusions. Small stocks and dykes of these rocks alos occur within the Knob Hill Group. A number of small Tertiary stocks and dykes intrude the Juro-Cretaceous granitic stocks and younger sediments. A major Tertiary igneous activity is represented by the Coryell Intrusions.

A strong system of east-west striking faults is present within the Knob Hill Group on the property, indicated by the Wallace Creek Fault transecting the northern section of the property. It is coincident that the known sulphide occurrences on the property and the adjacent area are mostly striking east-west, indicating the respective mineralization to be associated with the wallace Creek Fault system and subsidiary faults (Figs. 8 and 9).

In the Phoenix Boundary Mining Camp, "significant mineral production has been realized from deposits in the argillite and metavolcanics (greenstone)", which are the common rock types on the property. "This production is mostly from precious metal vein system related to faults and fractures of satellitic plutonic intrusions". The Golden crown and Winnipeg claims, two km south of the Phoenix Mine, underlain mainly by greenstone, yielded 12,914 ounces of gold, 38,800 ounces of silver and 274,507 pounds of copper.

The Copper Queen Camp, five km east of the property, shipped in excess of 3,000 tons of ore-up to 20% cu-through itermittent operations from 1896 to 1917. The respective copper mineralization is hosted by skarn deposits within the Triassic Brooklyn formation. The regional geology indicates also a deposition of the Brooklyn formation on the southern portion of the property (Fig. 4).

A gold prospect of significant economic interest occurs 550 m to the east in line with an impressive alteration zone with sulphides around the Prince of Wales shaft within the property. The gold prospect was formerly called "Mabel-Jenny showings" (1935) and has been explored by trenching, pitting and a shaft along the strike length of 100 m . An initial discovery of the showings was undertaken prior to 1910 and has been intermittently explored thereafter with a compilation of sampling results reported by Dr. A.P. Fawley, P.Eng. (1973).

The most impressive assay value reported by Gawley is a selected sample with $3.24 \mathrm{oz} /$ ton in gold. Sampling by the authors also resulted in an assay value of $0.36 \mathrm{oz} /$ ton in gold across 0.4 m in true width.

An impressive alteration zone related to the nearby Nelson or Coryell Intrusive is presented by various alteration signs at and surrounding the Prince of Wales Shaft on the property. The alteration signs include jarosite, bleaching, ankerite, carbonization, silicification and pyritization.

The 1987 localized exploration on the northeastern portion of the property resulted in the delineation of a prime multielement soil geochemical zone that indirectly correlates with the Prince of Wales shaft zone.

The easterly trending zone occurs within potentially the same structure as the wales mineralized zones east of the property.

The shaft zone is also indicated to occur at the intersection with a major northeasterly trending structure expressed by a series of magnetometer HI 's.

PROPERTY

The property consists of a contiguous located claim block of three 20 unit claims and two reverted crown grants. particulars are as follows:

Claim	Units	Record No.	Expiry Date
Louise 87	20	4978	June 24, 1991
Louise 87-2	20	5017	September 8, 1991
Louise 87-3	20	5008	August 31, 1991

Lot No.

Prin. Louise	3680	4705	August 7, 1991
Prin. of Wales	3681	4704	August 7,
Pr	1991		

Due to the overlapping of claims on the eastern portion of the claim group the property area is approximately 1400 hectares.

The legal corner post of Louise 87 is located 1,500 meters southeast (Azimuth 170 deg.) of the southeast corner of Reverted Crown grant Louise claim post L3680. The claim posts and claim lines that were checked were determined to be located in accordance with prevailing regulations. Any legal aspects of the claims are beyond the scope of this report.

LOCATION AND ACCESS

The property is located 13 km at 287 degrees from Greenwood, B.C. or 11.5 km at 52 degrees from Rock Creek, B.C. The two communities are on the southern trans-provincial Highway No. 3 some 475 km east of Vancouver and within 10 km of the Canada-U.S. border.

Access is provided by numerous old and new logging roads, bush roads, bulldozer trails and the Nicholson Creek secondary road. The following route would provide access to the central and eastern portion of the property.

- Highway No. 3 from Midway, B.C. west for eight km
- Turn off northward, taking Ingram Mountain Road for 6.3 km
-Turn off to the northeast, following Copper Mountain Lookout Road for five to six km
-Turn off northwestward, taking bush road for 1.6 km

A four wheel drive vehicle is needed for the last 7.2 km in winter, but in the dry summer season, most of the distance can be travelled by normal motor transportation.

PHYSIOGRAPHY, CLIMATE, WATER AND POWER

The property is situated in a gently rolling wooded terrain within the Midway range of the Monashee Mountains, a part of the Columbia Mountains. The topographic relief is about 280 m from the lowest point at the confluence of Lee Creek and Davis Creek on the west (1097 mA A.S.L). The central portion of the property is comprised of an upland plateau containing Matthew Lake and numerous swamp areas. The elevation in the plateau area ranges from 1220 m to 1280 m above sea level. The property covers the headwaters of the southerly flowing Nicholson Creek and its tributaries.

The climate in the area is influenced by British Columbia Interior Dry Belt with low summer precipitation and moderate winter snowfalls. Annual precipitation is approximately 45 cm . The regional temperature ranges from -15 degrees to +40 degrees C. The fresh snow in the area occurs by mid-November and is snow free by the end of April.

Sufficient water for all phases of exploration, mining and development could be available from numerous water sources (swamps, lake and creeks) on the property.

Local hydropower and gas pipelines are located six km to the south of the property.

TRANSPORTATION AND SUPPLIES

A Canadian Pacific Railway line passes through Rock creek, Midway and Greenwood. Kelowna, 90 km northwest of, and Castlegar, 120 km east of Greenwood, are serviced daily by commercial jet airlines. Most exploration and industrial supplies are available at Grand Forks and Osoyoos, which are 36 km east and 50 km west from Greenwood, respectfully. I.M.E. in Grand Forks is one of the largest industrial machine shops in the Interior of B.C.

HISTORY

The history of the area dates back to 1891 when pioneering prospectors in the Boundary District discovered important copper deposits including the Deadwood, Motherlode and Phoenix camps, all of which are within six kilometers of Greenwood, B.C. The most active mining camp was Phoenix, which produced 27 million tons of ore from 1900 to 1919 and subsequently from 1919 to 1978, yielding 30 million grams of gold, 92 million grams of silver and 250,050 tons of copper.

The Copper Queen camp, five km east of the property, was discovered in 1894 and its production was intermittent from 1896 to 1917. In excess of 3,000 tons of ore to 20% copper were shipped from the King Solomon and Big Copper mines of the Copper Queen Camp (B.C. Annual Report of Mines, 1901 1917). Geophysical and diamond drilling programs on the Copper Queen Camp were intermittently carried out by major companies including Noranda, McIntyre, Porcupine and Riocnaex from 1955 to 1983.

On the Wales Claim Group adjacent to the east of the property (formerly Mabel, Jenny and Tyee Claims), trenching, pitting and some underground work was carried out prior to 1910. The property was intermittently explored thereafter with a compilation of sampling results reported by Dr. Allan P. Fawley, P.Eng. in 1973.

Sample results of selected vein materials attaining up to 3.24 ounces of gold, 8.4 ounces silver and 16.97% copper are reported (Fawley 1973.

An 1898 Report of Minister of Mines describes the original discovery of "small veins of rich ore" in the Prince of Wales Claim (Pricam property). Development work on the Prince of Wales consisted of a vertical shaft, approximately 30 feet deep and numerous open-cuts within a radius of 150 feet of the shaft. A 1907 Minister of Mines report (Page C 251) states that samples taken from the wales shaft-dump and open-cuts only assayed a trace of gold and silver and no copper, whilst the showings consist of massive pieces of pyrite and arsenopyrite with the appearance of "small veins of rich ore" quoted from the 1935 report of Minister of Mines.
"About half a mile west of the West Copper Cabin some development work has been done on a quartz vein impregnated with pyrite, varying from two to 12 inches in width. A picked sample of this ore assayed 2.02 oz in gold to the ton" (1907 Minister of Mines Report c 251). The location of this sample has not been verified in the field.

GEOLOGY

Regional Setting

A 1983 GSC map, 1500A, Greenwood (82E/2) by H.W. Little at a scale of $1: 50,000$ shows the general geology of the property area. The regional geology consists of twenty-two map units including metamorphic, sedimentary, intrusive and extrusive igneous rocks ranging in age from pre-Carboniferous to Tertiary that "reflect multiple episodes of deformation and igneous intrusions". The Louise claim Group occupied a portion in the central western sector of this regional geologic map.

The basement rocks of the Greenwood region consist of pre-Carboniferous Knob Hill and Attwood group rocks. The Knob Hill Group consists mainly of chert, greenstone, amphibolite and minor limestone. The Attwood Group consists of limestone with thin chert interbeds. Little places the Attwood formation below the Knob Hill. Little's Attwood Group consists primarily of sedimentary rocks, whereas Church's Attwood is comprised of metavolcanics (chiefly greenstone) and classic sediments. The system used in the present report is based on H.W. Little's map units (1983).

The Knob Hill rocks were metamorphosed, uplifted and droded and are unconformably overlain with the Brooklyn formation of Triassic rocks. The Brooklyn and its basal unit, named Rawhide Formation, are comprised of sharpstone conglomerate, carbonates, shales and cherts. The Knob Hill and Brooklyn rocks are intruded by Greenwood granodiorite related to the Cretaceous Nelson Intrusions. Subsequent to the Nelson Intrusions, the Greenwood region was extensively covered by Tertiary flows, and intruded by the Valhalla Intrusives,
quartz feldspar porphyry intrusives, Marron Intrusives and Coryell Intrusives. The Valhalla Intrusives consist of granite and quartz monzonite. The Coryell Intrusives consist of syenite, quartz monzonite, minor granite and pulaskite.

The regional tectonics consist of a series of normal faulting and low to high angle reverse faulting. In general, the western half of the Greenwood map area is characterized by north and northeast trending normal faults (Little 1983), whereas the eastern part is dominated by northwest trending block faults (Church 1986).

Mineral deposits in the Greenwood region vary, ranging from contact metasomatic skarn deposits with base metal occurences to fissure-controlled quartz veining and sulphide deposits carrying precious metal values.

Other mineral occurences of note that have received attention are the Tam 0^{\prime} Shanter epithermal mineralization associated with Tertiary faults and copper-gold mineralization hosted by listwanite-Serpentine.

Property Geology

The property is predominantly underlain by the Knob Hill Group of rocks consisting mainly of chert (map unit 'Cpkh1') and greenstone (Cpkh 2). Near the north and south edge of the property, the Knob Hill is locally overlain by the Brooklyn Group comprised mainly of sharpstone conglomerate with cherty clasts (map unit 'mis) and Eocene Kettle River formation consisting of arkosic, feldspathic and lithic tuffaceous sediments (map unit 'Ekrs'). All the above volcanic and sedimentary sequences from the Permo-Carboniferous to Tertiary period within the property

QUATERNARY

Qu Unconsolidated sediments; till, sand, gravol and silt

TERTIARY

EOCENE
EC CORYELL INTRUSIONS: syonite, quartz monzonite; minor granito and pulaskite

Emi	MARRON FORMATION: INTRUSIVE ROCKS; Emi4 , undivided dykes, largely Intrusive equivalents of divisions Emv1, 2 and 3 but some of unknown alllity; Emi3 , diortte and diorte porphyry (equivalent to lavas of division Emv1); Emi2, syente and diorite (equivalen to lavas of divislon Emv2); Emi1, alkallne syentte, largoly rhomb-porphyry (equivalent to lavas of division Emvi)
Emv	LAYERED ROCKS (largely extrusive) Division Emv3; Emv3a, andesite; Emv3b, tulf
	Division Emv2; Emv2a, andesito and trachyandesite; Emv2b, tuff Dlvision Emv1; Emv1a, sodic trachyte in part undersaturated and minor phonollte; Emv1b'related rocks chäractorized by flow breccias and intercalated pyrociastics; Emv1c, rolated (?) trachyte

Ekrs

KETTLE RIVER FORMATION: foldspathic and lithic tuffaceous sandstone and siltstone; shale and conglomerate; minor acidic and Intermedlate pyroclastic and flow rocks

JURASSIC

AND/or CRETACEOUS

NELSON INTRUSIONS: granodiorito; minor quartz dlorite and dlorite

MIDDLE AND LOWER TRIASSIC

\qquad mTs1, sharpstone conglomerate with mainly chert clasts; local chert san dstone, and minor black argillite; mTs2, mainly butf chert sandstone with beds of sharpstone conglomerate and chert grtt; m Ks3, green argillite; mKs4,black argillite; mTs 5 , limestone conglomerate intifis; skorn

CARBONIFEROUS OR PERMIAN

Cpkh \begin{tabular}{l}
KNOB HILL GROUP. massive chert, greenstone, and amphibolite; minor

limestone or marble; locally tan or black argilite, fine-gralned

quartzite, conglomerate; CPkh1, mainly chert; CPkh2, ,Dainly greenstone;

CPkh3. mainly amphibohte; CPkh4, , ilmestone or marble; CPkh5.
quartzite; CPkh6, tan to green shale and metasilfstone

\end{tabular}

Axial	1
Axial trace of syncline (approximate)	
SHOWING, gold mineralization	

have been intruded by plutonic rocks in two ages; Juro-Cretaceous Nelson Intrusives (Greenwood granodiorite, map unit 'Jkgd') and Tertiary Coryell Intrusives (map unit 'Ec').

Within the property numerous Tertiary dykes and sills of syenite and diorite composition intrude the Knob Hill group and younger formation. These Tertiary Intrusives may be related to Marron Formation (map units 'Emi' 1-4) or Coryell Intrusions (map unit 'Ec'). The Nelson granodiorite intrusives (Jkgd') occur extensively outside the property to the northeast. Also, several granodiorite and diorite dykes seen in the line grid area are too small to be shown on a regional scale, but would be undoubtedly associated with the underlying larger stocks of the same intrusives.

The major east-west trending wallace creek fault passes through the northern sector of the claims. whilst only two northeast trending block faults are shown on Fig. 4, multiple parallel sets of $N E$ trending faulting may be concealed in the area of no exposure (map unit ' $Q u$ '). coeval with or subsequent to faulting, possible syngenetic shearing (fissure) may have developed in predominantly northeast shears. "These may have provided conduits for mineralizing hydrothermal solutions and igneous intrusions.' In this respect, Church (1986) gives the following note for the regional mineralization in relation to faulting and igneous intrusions:
"It is conceivable that the intricate and extensive fissure system of the Mt. Attwood-Phoenix area, of which lithologic and tectonic conditions are fairly similar to those of the property, provided the necessary channelways leading metalliferous solutions to the ore deposits. In this model the igneous intrusions served principally as heat engines in the process of convection and dispersion of the mineralizing solutions."

MINERAL OCCURRENCES AND ALTERATION

A handicap to geological investigation in the property is the widespread glacial till, densely forested bush, windfalls and swamps covering approximately 70% of the property area. The bedrock exposure is confined to the area north of the Wallace Creek Fault and a portion near the southern boundary of the property. Lode mineralization known to date on the property occurs as fissure fillings and replacement sulphide veins hosted by fractured and altered argillite, greenstone and chert in order of abundance. The host rocks in the vicinity of the old prospect shaft (Prince of Wales) and the current trenches are argillized, silicified, pyritized and carbonatized. Alteration in the Prince of Wales shaft also includes jarosite, bleaching, hematolimonite and ankerite.

GEOCHEMICAL SURVEX

Survey Procedure

Recce geochemical surveys were performed over the northeastern portion of the property area in a north-south, east-west grid. Samples were taken at 50 m intervals with a line spacing of 100 m . Samples were taken from the top of the B-horizion at an average depth of 20 cm . The soil was placed in brown wet-strength paper bags with the grid coordinates marked on them. The station was marked by flagging with the designated coordinates thereon. $\cdot A$ total of 996 samples were picked up.

Testing Procedure

All samples were tested by Acme Analytical Laboratories of Vancouver, B.C. The samples are thoroughly dried and 0.50 g.of material is digested with 3 ml . of $3: 1: 2 \mathrm{HCL}-\mathrm{HNO}-\mathrm{H} 2 \mathrm{O}$ at 95 degrees C for one hour. The sample is then diluted to 10 ml. with H2O. Next the sample is analyzed by atomic absorption for six metals - copper, zinc, lead, silver, gold and arsenic.

Treatment of Data

In assessing the data, the background, sub-anomalous and anomalous values were determined utilizing a statistical software program on an I.B.M personal computer.

The sub-anomalous threshold value, which is a value not considered anomalous but an indicator of potential mineralization, is taken as one standard deviation from the mean background level. The anomalous values, or the prime indicator values, are taken as two standard deviations from the mean background level.

The results of the data treatment for five selected elements were as follows:

	Au	Cu	Zn	As	Pb	Ag
Background	1.0	26	95	12	9	0.15
Sub-Anomalous	1.2	40	153	28	14	0.22
Anomalous	1.4	54	211	44	19	0.29

All values are in parts per million except gold which is in parts per billion.

RESULTS

The geochemical surveys targeted a prime area of intermittent correlative geochemical anomalies over a 400 meter strike length and associated with the Prince of Wales workings. The main anomaly at $12+00 \mathrm{E}$ and $7+50$ is of correlative, anomalous lead-zinc-arsenic values. This anomaly appears to coincident with the main structure of the Prince of Wales working.

Other areas of localized multielement anomalies occur within the survey area with the more significant at the northeast and northwest within an area adjacent to and east of the property.

CONCLUSIONS

It is concluded that the pyrite-pyrrhotite-arsenopyrite mineralization on the prince of Wales shaft is a western extension of the gold prospect (former Mabel-Jenny showings) where the assay results of $0.36-3.62$ ounces per ton in gold, were obtained from the current and previous sampling.

This area should be explored in detail to select prime localized target areas for diamond drilling.

On a regional geology basis, the property overlies the Knob Hll Group rocks where they have been faulted, surrounded or apparently intruded at depth by granodiorite and diorite. The geology is in a favorable enviornment, especially near the contact zones at depth, for the formation of base metal or precious metal skarn mineralization.

The 1987 exploration was confined to a limited line-grid area on the northeast, covering only one-tenth of the total claim area. The remainder of the unexamined property should be geologized on a reconnaissance basis to locate potential zones of mineralization similar to the wales zone. The geology is also conductive for potential volcanogenic mineralization related to the argillite-diorite (extrusive?) units.

It is postulated and concluded that all the forgoing findings are the surface expressions of epithermal vein systems within a favourable geological enviroment similar to the area of past production from polymetallic sulphide and precious metal deposits in the Greenwood Mining Division. The property warrants an additional exploration program of geological mapping, geophysical (I.P) and geochemical survey to test the known vein system and to search for other economically viable vein systems. Dependent upon the results of the above program, test drilling should be initiated.

RECOMMENDATIONS

It is recommended that a two stage work program be implemented. The program would consist of detailed geological mapping, detailed geochemical surveys, I.P. and follow up diamond drilling.

Vancouver, B.C.
June 15, 1988

SELECTED REFERENCES

CHURCH, B.N. - Geology and Mineralization in the Mount Attwood-Phoenix Area, Greenwood, B.C. Notes to accompany preliminary Map No. 59 *Map Scale - 1:25,000.

FAWLEY, A.P. - Midway Copper Group of Westbridge Mining Co. Ltd (N.P.L), July 1973.

KIM, H. 1975 - Geology of the Quadrangle between Midway and Grand Forks; the Granby Mining Company Ltd. Report, pp. 64 .

LEROY, O.E. 1912 - Geological Survey of Canada Memoir No. 21.

LITTLE, H.W. 1983 - Geology of the Greenwood Map-Area G.S.C. 79-29 *Map Scale - 1:5,000.

MCNAUGHTON, D.A. 1945 - Greenwood-Phoenix Area, B.C. G.S.C. *Paper 45-20 *Map Scale - 1 inch to 800 feet.

MINDEP FILES - Computer retrieval mineral inventory files on B.C. including entry 82E/SW 020-028 (Phoenix). B.C. Ministry of Energy, Mines and Petroleum Resources.

MINISTER OF MINES ANNUAL REPORTS
1898 p. 1118, 1906 p. 254, 1928 p. 251, 1939 p. D5.

MONGER, J.W.H - Early Tertiary Stratified Rocks, Greenwood Map Area, B.C. Dept. of Energy, Mines \& Resources Paper 67-42.

NAGMIN (North American Gold Mining Industry News) January 24, 1986, p. 4 "Kettle River's Activity Continues in Greenwood Camp and 1986" (including quotes from Dr. J.T. Fyles); December 13, 1985, p. 10, "Dentonia's Geological Mapping Reveals New Data on Jewel Vein".

PAXTON, J. 1980 - Mining Potential of the Phoenix Area, Grand Forks, B.C., unpublished report.

SAWYER, J.D. - Summary Report on Mineral Properties in the Boundary District, Greenwood Mining Division, B.C. for Kettle River Mines Ltd., May 25, 1981.

SOOKOCHOFF, L. - 1983 Assessment Report on a Diamond Drill Program on the Golden Crown Property for Consolidated Boundary Exploration Ltd., March 27, 1984.

SOOKOCHOFF, L. \& H. KIM - 1987 Report on the Geological, Geophysical and Geochemical Exploration on the Set Claims for Ossa Resources Ltd.

CERTIFICATE

I, Laurence Sookochoff, of the city of Vancouver, in the Province of British Columbia, do hereby certify:

That I am a Consulting Geologist and principal of Sookochoff consultants Inc. with offices at 609-837 West Hastings St, Vancouver, B.C., V6C 186.

I further certify that:

1. I am a graduate of the University of British Columbia (1966) and hold a B.Sc. degree in Geology
2. I have been practising my profession for the past twenty-two years.
3. I am registered and in good standing with the Association of Professional Engineers of British Columbia.
4. The information for this report was obtained from sources as cited under selected References and from the supervision of the exploration surveys reported on herein.
5. I have no direct, indirect or contingent interest in the property described herein or in the securities of Pricam Explorations Inc. noforioratexpect to receive any.

Vancouver, B.C.
June 15, 1988

PRICAM EXPLORATIONS INC．
Louise Claim Group
Geochemical Survey
Statement of Costs

The field exploration and associated work to the geochemical survey on the Louise claim group，Greenwood Mining Division was performed during the period of September 15， 1987 to November 10， 1987 to the value of the following：

Contract－Kettle River Management

Assay：Acme Analytical 996 samples＠$\$ 6.75$ ，723．00

Draughting：Geo－Comp

Engineering and Supervision：
L．Sookochoff，P．Eng．

Associated costs of travel etc．

Report and associated costs
$2,325.00$
\＄2，400．00
$\$ 10,250.00$
$1,150.00$ $3,550.00$
\＄25，348．00

ニニニニニニーニニッニニ

APPENDIX I

ASSAX CERTIFICATES
 －SAKME TYFE：SOIL
＊
$\geq m$
至川 응응응

8909
$\% 8$

응 응
옹응응

 －世 ※ さ さ －～～

号客霉出
$\because=\vec{n}$
NTNNT
$\Leftrightarrow \vec{F}$
\qquad
\qquad
\qquad
 m
 욷오줒웅 のにが
\qquad

$\stackrel{+}{4}$
杰尝：
코충
娌至
F

2輩

百怠
온

SAAPLEI

OL．FILE 87～5520
$=7$ 줄 $x=0$
※上昭果영옹옹5258\％刃 刃 刃心N M 刃
앙옹농
응옹옹 항으응홍웅옹空
NHMNN m出客刍果気苞을是カッ～＋$\underset{y}{ッ} \underset{y}{*}$꾸ํㅗํํํํ品発沓코ッロッ$\because 5$NまツツNM M Mーッ NN$\pm \underline{n} 9$ 응꼭
 产莒宫응옹옹흘옹無客管莫응웅옹옹큭옹ㅇㅇㅇがッがッジ웅웅$\underset{\sim}{\because} \underset{\square}{\square} \underset{\square}{\square}$$\because \underset{y}{9} \because \rightarrow$
NNNNN
NNNNN $0:$－ャ우얘$N \sim N \neq N$NN Nisウデ꾸웅が地が～～～』月ッタッが～～～$\cdots m+m$운뭊웆온룻윳율웆뵾오울요웊웆 물
いにいいのルぃいにのがいいぃか-4

$$
F \underset{\sim}{F} \underset{\sim}{\infty}+
$$品品品息※示产$\stackrel{\rightharpoonup}{\mathbf{i}}$8 8$\because \circ=9$ 으웅

$$
\Rightarrow \theta=
$$농으N$\boldsymbol{y}=$

$$
\because \because \because \because
$$

$$
\because \because \because
$$

$$
\because \because \because \because
$$

$$
\because \because \because \square
$$OR 日N以に会以$\cdots 515 N$©

З웆톤$m m=n m$응․－$\rightarrow+$－nis
$\because \leftrightarrow M M \leadsto M O-M N$ n $-\infty=0$
－

\qquadM－NㅗNMris

$$
m
$$

$6+00 E ~$
$6+500 E$
$1+000 \mathrm{~K}$－－＋－
予室 $6+00 E$ O 0 OOH ＋50E 5 ＋CON委高
崖
岂晏

 $6+50 \mathrm{E}+50 \mathrm{~N}$
 $6+50 \mathrm{E}$
$6+0 \mathrm{OH}$
$6+50 \mathrm{E}$
$7+50 \mathrm{M}$

$\overbrace{=2}^{2}$

$$
\simeq \mathrm{me}
$$

 홍ㅎㅇㅇㅇㅇㅇㅇㅇ角色莫 웅우웅 후응ㅇㅇㅇㅇ

$$
\dot{\alpha}
$$

 흥옹․․․․
앙홍응응 $\because 8$

※ 뜬
3 a
-
-
-
응ㅇㅇ응 웅앙흉

 앙N ッががm のふたが
ジがッシ
\qquad NNNMN NNMNN $N A$ ＂A
ゅ

mmMmN
을 운 룰 올

뭊 웃오옹줒
뭇뭊웆울문
是果蚖旦早
ルッルッル
Mロッル
$N N=N M$

연뭄옹멍혁

ت

옹
\cdots
－ロ ローコニ

ㅋN品留上

に湯にが品

옹옹옹
 홍ㅇㅇㅇ。

$\Rightarrow \approx \approx=$
 M M M O M M M M홍옹\because

M～～N

 $\underset{\sim}{\because} \because \because$ NNNNF MNNNN NONNN

 $\underset{y}{*} \underset{\sim}{\circ}$ \rightarrow 붑

 MnNmen NNNEN MNTNN MNNNN MNNNN $\cdots 8$ $\cdots \rightarrow+\rightarrow \quad \rightarrow \infty$

务柺果 NMNN NNNNN ハールード
NNNNNN 9

8589
옹ㅋ․․․․
응

 NNOMN MNMN∞

웅웅 울물율물 울 불 운욜完 운 은 을

운웅울울
오올울 울물 rswions mos NN以ルッ
 MG © M M M

NㅗㅋN
茄
禺器 N

\Rightarrow ㅍ․ \because
$\because \because \because \because \square$
오응
$\because \because \because \because$

＂か0に

으역

－・ー ー ー
$\approx \mathrm{NANA}$
$N=N \mathrm{~N}$
No：N
오 웆눌

 $7+50 E$ 15＋50N

$7+50 \mathrm{E}$
$7+5+0 \mathrm{OH}$
$7+50 \mathrm{E}$
$7+50 \mathrm{E}$
$7+5 \mathrm{OH}$
$7+50 \mathrm{E}$
$10+50 \mathrm{~K}$
$7+50 \mathrm{E}$
$10+00 \mathrm{H}$

 $105+L 305+L$
$1600+1$
$305+L$

종
崖

\bigcirc	SODKOCHOFF										PROJECT-ABEEX				FILE \# 87-55こ0							$\begin{gathered} C R \\ P P R \end{gathered}$	$\begin{array}{r} 35 \\ 2 \end{array}$	$\begin{array}{r} \text { SA } \\ \text { PPK } \end{array}$	$\begin{array}{r} \text { II } \\ \text { I } \end{array}$	$\begin{array}{r} \text { ! } \\ P P M \end{array}$	$\begin{gathered} \text { AL } \\ \text { I } \end{gathered}$	$\begin{array}{r} \text { NA } \\ \text { I } \end{array}$	KI	$\underset{P P M^{\prime}}{ }$	Woe o
SAKPLEI	N0	C13	PJ	2.	Af	HI	CO	Ma	F5	AS	U	AU	IH	SR	[0	S	BI	V	CA	?	LA										
	PPK	PPM	PPM	PPM	PPK	PP/	PPK	PP\%	1	PM	P9M	PPA	PPK	PPK	PPM	PFn	PPM	PPY	1	1	PPY										
7+50E 1+50N	1	$3!$	17	87	. 3	21	8	363	2.72	5	5	H0	4	21	1	2	2	49	. 34	. 063	18	32	. 50	173	. 12	6	2.45	. 02	. 08	1	
7+50E $1+00 \mathrm{H}$	1	29	17	97	. 1	16	?	1281	2.58	4	5	ND	1	37	1	2	2	43	. 39	. 148	15	48	. 45	114	. 05	9	1.87	. 02	. 08	1	
7+50E $0+50 \mathrm{~N}$	1	61	7	117	. 1	22	11	440	2.40	4	5	ND	1	28	1	2	2	56	. 38	. 069	3	18	. 55	91	. 09	4	1.49	. 03	. 07	1	
7+50E O+00K	1	34	14	45	. 2	11	5	442	1.70	2	5	ND	2	21	1	2	2	32	. 22	. 105	9	13	. 24	125	. 10	7	2.17	. 03	. 05	2	
$8+00515+00 \mathrm{H}$	1	11	9	28	. 1	5	3	97	1.26	2	5	ND	2	22	1	2	2	25	. 11	. 001	6	B	. 10	56	. 05	5	1.00	.03	. 03	2	
1+00E 14+50\%	1	12	2	5	. 1	2	1	34	. 37	2	5	ND	1	45	1	2	2	10	. 49	. 005	3	1	. 03	18	. 02	2	. 27	. 04	. 02	2	
8+00E 14+00K	1	17	13	77	. 2	7	5	501	1.81	3	5	WD	3	50	1	2	2	32	. 27	. 232	12	12	. 16	159	. 07	5	1.55	. 03	. 06	1	
8+00E 13+50N	1	22	14	44	. 1	11	4	292	1.74	2	5	ND	5	54	1	2	2	26	. 19	.114	22	13	. 22	161	. 08	3	2.60	. 03	. 07	1	
8+00E $13+00 \mathrm{~K}$	1	17	13	60	. 3	10	4	297	1.85	3	5	N0	4	28	1	2	2	31	.13	. 094	15	13	. 19	113	. 08	4	2.32	. 02	. 04	1	
1+00E 12+50K	1	16	12	11	. 1	-	4	204	1.72	2	5	N(4	28	1	2	2	28	. 11	. 120	11	12	.17	108	. 08	3	2.15	. 02	. 04	1	
1+00E 12+00N	1	14	14	56	. 1	10	4	293	1.71	2	5	ND	5	24	1	2	2	27	. 10	. 106	13	14	. 17	127	. 08	2	2.16	. 02	. 06	,	
8+00E 11+50K	1	14	13	57	. 1	11	4	244	1.65	2	5	ND	3	32	1	2	2	26	. 14	.111	10	12	. 18	129	. 08	4	2.18	. 03	. 05		
8+OOE 11+00N	1	12	11	5	. 1	9	4	294	1.42	3	5	ND	4	24	1	2	2	25	.10	. 123	9	11	. 17	112	. 07	3	1.85	. 02	. 07	1	
I +00 E 10+50\%	1	19	10	15	. 1	10	1	327	1.77	2	5	NO	4	34	1	2	2	29	. 16	. 138	16	14	. 20	156	. 08	2	2.13	. 03	. 07	1	
+ $+00510+00 \mathrm{~K}$	1	11	11	54	. 2	1	4	288	1.74	2	5	ND	5	27	1	2	2	27	.12	. 107	15	12	. 19	130	. 08	2	2.35	. 03	. 07	1	
1+00E 9+50H	1	15	10	35	. 2	7	3	177	1.41	2	5	ND	2	31	1	2	1	26	. 14	. 013	18	12	. 21	78	. 06	2	1.21	. 03	. 06		
$8+00 \mathrm{E} 9+00 \mathrm{~N}$	1	30	15	73	. 1	15	d	695	1.85	15	5	ND	1	32	1	2	2	35	. 21	. 074	14	16	. 24	164	. 07	3	1.91	. 03	. 07	1	
1+00E 8+50	1	$3!$	12	II	. 1	16	6	445	1.86	5	5	NI	5	29	1	2	2	33	. 15	. 016	13	21	. 28	139	. 07	2	1.53	. 02	. 06	,	
1+COE 8+004	1	34	7	55	. 1	21	1	341	2.52	8	5	ND	5	49	1	2	4	52	. 11	. 030	22	35	. 48	118	. 09	2	1.24	. 02	. 14	1	
1+00E 7+50N	1	26	1	98	. 1	21	6	497	1.96	1	5	ND	3	32	1	2	2	32	. 12	. 137	12	11	. 28	231	. 07	3	1.69	. 02	. 07	1	
d+00E 7+00K	1	10	6	69	. 2	6	3	589	1.08	5	5	ND	1	15	1	2	2	22	. 08	. 040	5	10	. 14	100	. 05	2	. 72	. 02	. 04	1	
SHOE $6+50 \mathrm{~N}$	1	17	10	56	. 2	9	5	265	1.95	2	5	ND	5	39	1	2	2	38	. 16	. 088	17	16	. 22	153	. 07	2	1. 11	. 02	. 06	1	
C+COE 6+00N	1	18	8	79	. 4	9	4	44	1.72	6	5	ND	4	26	1	2	2	30	.13	. 132	16	13	. 19	141	. 07	2	1.87	. 03	. 05	1	
SHOEE 5+50M	1	1	4	49	. 1	3	2	213	1.13	3	5	ND	1	15	1	2	2	22	. 09	. 118	4	1	. 07	93	. 05	2	. 72	. 02	. 03	2	
8+00E 5+00M	1	19	\dagger	72	.2	14	5	477	1.15	4	5	ND	4	23	1	2	2	33	. 14	. 069	13	14	. 21	151	. 08	3	2.09	. 03	. 06	1	
2+00E 4+50N	1	11	9	46	. 2	12	4	283	1.80	3	5	10	3	27	1	2	2	37	. 15	. 027	9	18	. 25	112	. 07	5	1.07	. 02	. 07	2	
8+00E 4+00N	1	21	10	15	. 2	11	5	220	2.05	4	5	ND	5	24	1	2	2	41	. 14	. 097	21	16	. 22	111	. 09	2	l.tid	. 02	. 07	1	
8+00E J+50	1	18	11	55	. 1	10	4	220	1.80	3	5	10	5	23	1	2	3	34	. 13	. 076	13	15	. 20	111	. 01	4	1.11	. 02	. 06	1	
$8+00 \mathrm{E}^{\text {J }}+00 \mathrm{~N}$	1	16	6	56	.1	1	4	275	1.80	2	5	ND	4	29	1	2	2	33	. 17	. 063	13	16	. 21	110	. 01	5	1.74	. 02	. 07	1	
1+00E $2+50 \mathrm{~N}$	1	18	15	64	.2	10	5	360	1.19	6	5	N0	5	23	1	2	2	35	. 16	. 072	13	15	. 22	115	. 08	4	1.64	. 02	. 09	1	
1+00E 2+00N	1	11	13	90	. 1	7	4	736	1.51	3	5	N0	3	36	1	2	2	27	. 24	. 101	26	11	.17	121	. 02	1	1.76	. 03	. 06	1	
I+COE 1+50N	1	18	11	87	. 1	15	5	441	1.77	5	5	N0	4	32	1	2	2	30	. 24	. 114	14	22	. 27	159	. 08	4	1.77	. 03	. 10	1	
8+00E $1+00 \mathrm{~N}$	1	43	12	72	.2	17	6	446	1.93	2	5	ND	6	29	1	2	3	31	. 39	. 024	28	21	. 29	154	. 08	5	2.02	. 04	. 08	1	
8 +00E O+50 ${ }^{\text {c }}$	1	27	1	12	. 1	17	7	887	1.77	5	5	ND	1	19	1	2	2	36	. 26	. 041	9	24	. 53	141	. 05	3	1.56	. 03	. 09	1	
$8+00 E 0+00 \mathrm{~K}$	1	33	12	66	.1	14	1	474	1.81	5	5	WD	3	24	1	2	3	33	. 22	. 095	12	18	. 29	135	. 08	3	1.95	. 03	. 07	1	
2+50E $15+00 \mathrm{~N}$	1	14	8	54	. 1	$!$	1	251	1.62	2	5	ND	5	35	1	2	2	28	. 19	.088	12	13	. 21	126	. 07	3	1.56	. 03	.OB	1	
STD 6	19	59	43	132	7.1	67	29	1157	4.12	40	19	8	39	$5!$	11	18	23	57	. 46	. 085	31	61	. 86	179	. 06	34	1.91	. 06	. 14	12	

웅옹응 Nㅡㅇ응응

25문출

分点琞里 いたまーシ
 かたの出男

 \rightarrow－－－－
Mm＝

$\qquad$$M M \sim M$

Nㅜㅇ웅욱
영NN
下ヨプ

＊ー゚․
윽우웅
ッッジッ
－がッま

－응

ー－－－－－
\Rightarrow 도ํ

\＃in
$\cdots=$
\qquad
$\qquad$$\pm$ 年$-$

온읏옹옹
気ご気畐 可皃

 $:$日～が品
ックッウか出出湯 5
あ
ミロN゙ロ

 PHOE $10+$ COK

た

 든

 온
镸
崖崖 $\underset{\sim}{\sim}$
$\begin{array}{ll}7+505 & 1+504 \\ 7+50 E & 1+00 \mathrm{H} \\ 7+50 \mathrm{E} & 0+50 \mathrm{~N} \\ 7+50 \mathrm{E} & 0+00 \mathrm{~N} \\ 1+00 \mathrm{E} & 15+00 \mathrm{~N}\end{array}$

＋00E $12+50 \mathrm{~N}$

重古品－-7
ニー～
$=x$
20me实 ${ }^{m}$

포…
옹응응 동ㅎㅇ웅
응흥ㅎㅇㅇ
훙응옹응

ーローロ
$\rightarrow-$
$\rightarrow \mathrm{N}$

끙꽁응
Nㅡㅇ옹

옹홍․․․

$\stackrel{8}{8}$

FM
息

© ㅗㅗㄹ

－・ダ․

－포

끙흥응
홍홍훙

융응엉Nㅇㅇ융융
동응 융을 영
호옹응을
$\because \underset{\square}{\because} \because$
ががが湯
ふ우～폄
NNNNN
NNNMN
$N M M N N$

NB～N

$\cdots 0 \infty=-\infty$
的にいか
옻을오붖웅

NNNNN

은
도즐

응

号

2

> 鱼

온

Sarputi

＋

页
崖
汕

而 $9+00 \mathrm{E} 14+50 \mathrm{~K}$

$9+00 \mathrm{E} 11+5 \mathrm{CK}$

＋00E $9+00 \mathrm{H}$

∞	$\cdots \cdots-\cdots$	$\rightarrow \rightarrow-m$－	ツ－ーツ	$\rightarrow \mathrm{MNDT}$		\cdots	$\cdots \rightarrow+$	\rightarrow－－－	$\cdots \cdots$
$\times \mathrm{H}$	웅ㅎㅇㅇㅎㅇㅇ	등훙			¢	\cdots 궁	웅ㅇㅇㅇㅇㅇㅇㅇ․		E－
空		\％			\％	\％\％		\％＇\％\％	흉
편		昜品							－80
\cdots	$\rightarrow+\cdots$		に＊＊m＝	－－mm－	\cdots	のmm	＋－nmo	－－－＋	\cdots
$\cdots \cdots$		¢8\％		항하웅유응	5 앙	${ }_{5}^{\circ} \mathrm{O}$	응흥응ㅎㅎ		$\stackrel{80}{9}$
页			家禺式男学		N	웅 옥			$\cdots \mathrm{E}$
是m	픆․	～ップッ	$\because \underset{\sim}{\because}$	ำ	육	고ㄱㅜㅜ		퍼꺠	กั！
돌	こッチッツ	ニーーツ＊			$\because \mathrm{F}$				\cdots
5 管	MツーN	¢ \％nm	かったの』		＊	へ界			$\cdots ワ$
	응훙응성			욱웅엉읔	볻	응융			\％
㐌 离以	끅으뀨ํ				\because	\cdots	OFFが	乐誌诃号	\div
＊ $\boldsymbol{*}$－					月	学患か	以ヵ品号	BF\％N\％	Nis
－	NNMNM	nnemer	nNmNe	NNMNM	N	nnm	nnenm	nnmme	\cdots
j 色至	NHNNT	NNNNM	nmenm	nmmmer	Nm	MNN	Nommon	NMNNN	$\cdots=$
趸 ¢			ロッ＊	吅がッロ	Nion	〒	F\％		$\pi i n$
¢ 志牫	の＊m＊＊	ぃい \rightarrow－	$\rightarrow *$－	のー＊Nか	응	∞	ロッーロッ	$\cdots \mathrm{mon}$	\cdots
$\underset{\square}{\square}$	우숮우ㅇㅜㅜ울		웆 是오웇오	우ㅁㅜㅜ뭊웆보	뭊 랄	오 뭋 분			옹
$\frac{0}{4}$	いかわいめ		いいにが	ッぃッが	$\cdots \cdots$	いぃm		のぃぃぃゅ	$\cdots=$
夏 如䐴	우는응	－＋NMN		$\sim m+m$	4	NNN	NMN＊		$\cdots 8$
或 㛧以			$\text { 䫆 } \underset{\sim}{*} \underset{\sim}{0}$		－			응훙 N	－90
		がいが			号守	開号号			唵
은 졸				のッレッツ			－いn	mmm＋m	－
		以ニツmm	－0－0－9		$0 \sim$	以	－ローヅッ	ッロッツ	± 5
寀琼	$\because \because \square$	Mr ？－	$\because \rightarrow \square マ マ$	$\because \because \because \because$		$\cdots \because$		$\because \because \because \because$	～N
页畐		皆上＊ッ8			$\overrightarrow{i n}$	ORO	乐出上寺		ค욱
E	－N゚	－ッMロッ		ハMn	\cdots	$\cdots-$	－$=0-0$		응
式壴			ッッッニッ	－R～N	\bigcirc	No		二品和和	븡
压	$\rightarrow \rightarrow-\square$	$\rightarrow m=9 \rightarrow$	いーツーツ	いいいいか	\cdots	$\cdots \cdots$	$\rightarrow \rightarrow-\cdots$	$\cdots \rightarrow-\cdots$	\rightarrow－
	镸页胥页要 发曻岁出岁卉志志点	吉吉志志 索至志						不页页页豆 岁容岁峇岁 	

$x-1$ 춫
펴N

$+\omega+6$

웅ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ

N～N N N
NッM M M－
廹

옹웅웅

范

＂天品品品

$\stackrel{\sim}{\mathrm{H}}$ ON

的 -9.9
$\because \because \because \because$

示號合

$\because \operatorname{mon} \rightarrow \sim \sim \mathrm{H}$

©

온둔

10400E $2+50 \mathrm{~K}$

严

 $10+25 E 5+25 K$
$10+25 E$
$10+25 E+000 \%$

～ッ～～～

戸が

のッゴが
$\pm 0 \rightarrow \pi$
n N N N
$\mathrm{N}=\mathrm{NO}$
＂
rry

$\because \rightarrow \square$
呈ずが

혀N 品

心N\＆N心
$\rightarrow 509$
MNFNN
Mッロー
ニッシ
\qquad
\qquad

$11+5050+100 \mathrm{~N}$

 $\begin{array}{ll}1+50 E & 0+120 \\ 12+00 E & 15+00 \mathrm{~N} \\ 12+00 E & 14+50 \mathrm{~N} \\ 12+00 E & 14+00 \mathrm{H}\end{array}$ 2＋00E 13＋00N 2＋00E
$2+00 E ~ 10+00 N$
$2+00 E ~$

$9+50 N$ | 종 |
| :--- |
| 4 |
| 号 |予

 12＋00E 5＋50K
 $12+00 \mathrm{E}^{4+00 \mathrm{~N}}$
$12+00 \mathrm{E}^{3+50 \mathrm{~K}}$
∞
\sim
포응ㅆㅇㅇㅇㅇ응 옹옹

［ \mathbf{I} m
兵
폰
$\geqslant 2$

우걖
$\because ツ \infty$
曻答훙 흥
봉포ㅇㅡㅡㄱ 뭉
 ふキ色か

Nットゥi
$\because 8$
우N Nㅜㅁ
 NHNNMN \qquad nonntan
NHNNN NA
完榮
8

に㤩に요
今ゥmmm
M～M
Mrm \rightarrow
是

 $\cdots \pi$
 $\rightarrow \infty$

＊にがッ
まのが
B옼N

ज

可合合角

－気号気云

いがッのシ
のローニニニ

5
글
m

NサーN二

のーがーか
＊的思
ークッー・ー
事边気
엉오오ํ

 N～NOF

응응킁 응응ㅇ․ㅇ

옹군웅 응오응号号品品淢 $N m+m+$ 으으음ㅁ응
 우두ำ
 ＝

옹흐옹․․
星富吉管志

 －ッ～ニ

흥응응명융

 $\cdots \rightarrow m m m$ 불요 울온

응응훙

$m N+\infty$

$\because \mathrm{M}$
응응응 $\stackrel{\square}{\circ}$

혹옹붕웅웅 오온킄․

훙웅ㅇㅇ우웅
응

 デ 9 ${ }^{1}$ 4 － 으ㅇㅗㅗ웇문문
뭊ㅇ \cdots

 $\rightarrow \rightarrow M m N$ $13+00 E$
$13+00 E$
$10+500 \mathrm{~N}$
9 $13+00 \mathrm{E} 9+0 \mathrm{OH}$
$13+00 \mathrm{E}$
$13+00 \mathrm{E}$
$8+500 \mathrm{H}$
ニのカ～～～カ

－・ッツト
부요
\Rightarrow の心か心

$\rightarrow N \rightarrow-\rightarrow$

壱気容

ーーーーー
\qquad
\qquad
\qquad
\qquad
\qquad

7	のー－ー
$\times \mathrm{me}$	쿵％
줒N	
－${ }^{1+}$	$\stackrel{9}{\sim}$
	$\rightarrow \mathrm{ra}$

웅웅웅항홍옹$9 \because$
 끙엉응 등응 응 홍응 응 흥
 Norin 桇 No：$\because m \quad \because 6$
든 $\therefore+\infty=$
紫趽总边뀬는눈옹․․․옹흥ㅎㅎㅇ옹옹ㅇㅇㅇ항동홍 홍ㅇㅇㅎㅇ응9
엉옹NN
NFまF！ 웅표 영
 ロッが～～ 78
 $\because \pi$
 흥옹옹 승훙흑웅 성Nㅓㅇ옹 동응․․․ 荢
 꼮 N゙ 꾺 ㄲ․ $\stackrel{8}{\square}$＂～8Nis
NOMNNNMNNNN：
\qquad2.75
.97
1.46
1.73
2.15出m$8 \mathbf{8}$号無空会－Mー～ースがににの$\because \because \because \because$$\because \because \because \because$$\because \because \because: ~ ? ~$$\because M$$N \rightarrow=9$읔ツ－Mrニッ－＊- 요
모츨$1+00 \mathrm{E}+00 \mathrm{H}$$14+00 E 5+00 \mathrm{~N}$
$14+00 \mathrm{E} 5+50 \mathrm{~N}$
$14+00 \mathrm{E}$
$14+0 \mathrm{ON}$
$14+00 \mathrm{E}$
$3+50 \mathrm{~N}$14＋90E 3＋004否$14+00 E 0+504$$14+00 E 0+00 \mathrm{~N}$
 $14+25 E \quad 16+75 \mathrm{~K}$
$14+25 E \quad 16+50 \mathrm{~K}$
$14+25 E 16+25 \mathrm{~K}$产勇14＋25E $15+00 \mathrm{~K}$14＋25E $14+00 \mathrm{~N}$
$14+50 E 17+001$
$14+50 E 16+75 K$14＋50E $16+60 \mathrm{X}$14＋50E $15+75 \mathrm{M}$
STD C
－－－＂

으뭉웅웅
둥웅
웅ํ응쏙

웅엉ㅇㅇㅇ

$\rightarrow N m m m$
\therefore 웅NN

등응엉응
－MNMN

$\rightarrow \operatorname{cic}_{\substack{0 \\ 0}}^{\circ}$
$\rightarrow \underset{\sim}{\bullet} \rightarrow$

ベ

鱼三品思

5
今合宫
옹。
 부으쿨 ㅝㅜ～～～～
 $\pi=M m=$ $\underset{\sim}{y} \simeq \sim \rightarrow$

$\vec{\sim}$

き兑色三

二云
ㅇNNM

$\underset{y}{y} \rightarrow \boldsymbol{y}$

NMNSNO
웅영응등
홍응옹 Nㅡㅇ
雨 $\because \because$
$\underset{\sim}{\circ} \underset{\sim}{\circ} \underset{\sim}{\circ}$
$\stackrel{0}{-}$
そだッ
ஸ̣

훌ㄹ․․․

N N N N
を安色皆

吅品需学
울 NㅜN
요N

NNNNN

NNNNN
on
NM
NN
$-\infty$

NMONA
がかに
F
＊N～N
～N哭
M
$\cdots \rightarrow-\infty$

울뭎룬뫂을
우ㅈㅜㅜ온온모
웆뭉울
욜오올올
－
옹ㅇㅇㄹㅇㅛ
皇
\qquad の～

ーーッル気 옵NN

－N゚ッツ
コニシャ～
士ロッツッ
명
 N

に

nim

Mo mon
＊ッがッ

$\because 88 \%$

N $\because \because$
$\because \because \because \because$
$\because \infty$

옹

白面句

$\pm \infty=N+$

보응

\cdots 앙

모옹
＂がゥ

오늘
$14+50 \mathrm{E}$
$12+00 \mathrm{~K}$
$14+50 \mathrm{E}$
$1+5+50 \mathrm{~K}$
$14+50 \mathrm{E}$
$11+00 \mathrm{~K}$ $14+50 E$
$14+50 E$
$10+00 K$

옹N․ㅇ 둔

F郘色草号
돈즐
$\pm 玉$

タ여윢

－

ก

NMMMM
果
 जッツ心N $\cdots N=\cdots$㤐宫品 응

 かいがいいN玉羔 0
必 $=\underset{\sim}{\circ}$
为盆風 Nがッロ $\because \because \because \because$
＂Nが
 $\because \because M \rightarrow$
$\underset{\sim}{\square} \underset{\rightarrow}{\square} \underset{\sim}{\square}$
NOMNO
天示 MNMNO 8080

 $\because \underset{\sim}{\because} \because$ 우웅웅 NNNNN

吅点高会

NNN여N

关客 흥

 NONNN

今品禺品
NNNNN NNNNN

NNNNN $\because ー ー ー ル ~$
～～N以
F

$\because \because M \rightarrow$
$\rightarrow \square \because \because$
$\because \because M N$
$\because \because \because$
$\because \because \because \square$
$\because M$
果三三白分

ショロロシ
흐묵
\qquad

二ロロッ

군ํํํํํㅜㄴ
흥․․․․․
 － －－－ー－ 잉호오․

タッロッチ
궁ํㅇํㄱ
5

홍웅으운

 $\rightarrow-\infty-\infty$
$\cdots \rightarrow M m m$
－$+\cdots$
훈훅․․
©

回场 $\vec{\sim} \underset{\sim}{n}=\underset{\sim}{*}$

ット円

$\Leftrightarrow-90$
$\therefore 7$

MNNNN NNMNN

NNMNNNNNTN
\％
©
会空

ジッ～が

$\underset{\sim}{\infty} \boldsymbol{\sim}$

FOR
$\% \pi$

오뫂 모룰 울
브웆 을 로 뭊

コ皆

－－＝$-=$ Fin＋m
 늦둘 N！N？
$\rightarrow \because \rightarrow \square$

젠돈

三和管客㤨
象馬过下：

 －
 $\because \because \because \square$ $\because \because M M$ 표心品 $\cdots \rightarrow \square=\square$
 －玉 \boldsymbol{m} －$\because \underset{\sim}{\sim}$ $\approx \infty \quad 0 \rightarrow \infty$ $-\div$
로․日思が心NGMの
 $n-N M$

古出出

$16+00 E 17+00 K$
$16+00 E 16+75 K$

 $16+00 E$ 15＋0OK

LEGEN

Sub Anomalous 'hreshold value: 28 ppm
Anomalous threshold value: 44 ppm

PRICAM EXPLORATION INC.

LOUISE CLAIM GROUP
GREENOOD M.D.
ARSENIC GEOCHEMISTRY

PRICAM EXPLORATION INC.

LOLISE (LALM GROUP GREFNIFOOD M.D.
Sub Anomalous Threshold Value: 40 ppm

COPPER GEOCHEMISTRY

$\underset{\substack{\text { schal } \\ i .5000}}{ }$
Sookochoff consultants Inc.

