District Geologist, Smithers
ASSESSMENT REPORT 17572

Off Confidential: 89.06.08
MINING DIVISION: Liard

LOG NO: 0711	RD.
ACTION:	

Liard Hining Division

Snippaker Creek, British Columbia
FILMED
N.T.S. 104B/10W

Lat. $56^{\circ} 31.7^{\prime}$ Long. $130^{\circ} 51.8^{\prime}$
M. Holtby, A.R.C. Potter and P. Folk

Consolidated Silver Standard Hines Linited
1100 - 1199 Nest Pender Street
Vancouver, B.C.
V6EGTE OLOGICALBRANCH ASSESSMENTREPORT

PAGE NO.

1. INTRODUCTION2. LOCATION AND ACCESS
2. CLAIMS4. HISTORY5. CURRENT WORKS
3. GENERAL GEOLOGY
4. PROSPECTING OBSERVATIONS8. CONCLUSIONS AND RECOMMENDATIONS
5. COST STATEMENT
6. STATEMENT OF QUALIFICATIONS

1

1

1

2

2

2

3

7

8

9
APPENDIX

1. Certificates of Analysis and Analytical Procedures
MAPS
Location Map
Claim Map
Sample Locations

INTRODUCTION

The Morain Claim Group consists of 80 units in Linda $1-4$ mineral claims and is located at the headwaters of Snippaker Creek in northwestern British Columbia. The property was prospected and sampled on two occasions: June 25, 1987 and October 1 to October 13, 1987. Float containing polymetallic sulphides in quartz veins has been located indicating the presence of the same in bedrock on the property.

LOCATION AND ACCESS

The property is located at the headwaters of Snippaker Creek in the Iskut River area of northwestern British Columbia. The claims are centered 9 km west of Julian Lake at Long. $130^{\circ} 51.8^{\prime}$ Lat. $56^{\circ} 31.7^{\prime}$. Access is by helicopter from Stewart or, if available, from Snippaker airstrip; 90 km and 11 km , respectively, from the claims. For this programme access was via Vancouver Island Helicopters from Stewart.

CLAIMS

The claims are located in the Liard Mining Division and are grouped as the Morain Claim Group.

Claim	Units	Record Number	Record Date	Expiry Date*
Linda 1	20	4073	15 May	1989
Linda 2	20	4074	15 May	1989
Linda 3	20	4075	15 May	1989
Linda 4	20	4076	15 May	1989

[^0]

HISTORY

The ground was first staked in 1965 by Silver Standard Mines Ltd. and American Smelting and Refining Co. as part of the Betty 331-380 claims. These claims were staked to cover stream sediment geochemical anomalies and mineralization found by prospecting. The northernmost portions of the present claims cover, in part, ground staked in 1980 as the Nee claims by Bull Moose Resources Ltd. Mapping and sampling have been carried out by Bu11 Moose Resources.

CURRENT WORK

On June 25, 1987 P. Folk prospected moraines along the glacier on Linda 1 and Linda 3 claims. Between October 1 and 13, 1987 A.R.C. Potter and M. Moorman prospected on Linda 1 and Linda 3 claims. Thirty-three rock samples were collected from moraines, both lateral and medial, along glaciers on Linda 1 and 3 claims. Five soil samples were collected on Linda 3 claim.

Poor weather during the October work period caused many time delays and abortive attempts to reach the property.

GENERAL GEOLOGY

The most recent regional geological publication is B.C. Ministry of Energy, Mines and Petroleum Resources Bulletin 63, Geology and Mineral Deposits of the Unuk River - Salmon Area - Anyox Area by Edward W. Grove, published in 1986.

The claims lie in the boundary area between a satellitic body of the Hyder pluton of the Coast Plutonic Complex, on the east, and the Unuk River Formation of the Hazelton Group, on the west.

The Hyder Pluton is a widespread mass extending some 175 km south from Iskut River with extensive sateliftic plutonic masses located east of the main plutonic margin. Hyder plutonic rocks are mainly quartz monzonite, granodiorite and granite and are Tertiary or older in age.

The Lower Jurassic Unuk River Formation consists of thick-bedded epiclastic volcanic rocks and lithic tuffs, with closely associated pillow lavas, carbonate lenses, and thin-bedded siltstones. Thin, massive volcanic flows are limited in extent. In the Snippaker Creek area Unuk River Formation rocks have been extensively deformed.

PROSPECTING OBSERVATIONS AND ANALYTICAL RESULTS

June 25th - P. Folk

Samples 83034-42 are all andesites or andesitic tuff in medial moraine on Linda 1 and 3 claims. Source of moraine is a ridge between the main glacier on Linda 1 claim and a hanging glacier on the north side of Linda 1 claim.

```
83034 - Au 125 ppb, Ag 44 ppm, Cu 56 ppm
83035 - Au 100 ppb, Ag 51 ppm
83036 - Au 45 ppb, Ag 48 ppm
83037 - Au 135 ppb, Ag 72 ppm
83038 - Au 750 ppb, Ag 8.02 oz/T, Cu 285 ppm, Pb 1.12%, Zn 3.76%
83039 - Au <5 ppb, Ag 1.5 ppm
83040 - Au 165 ppb, Ag 71 ppm
83041 - Au 250 ppb, Ag 3.46 oz/T
83042 - Au 0.04 oz/T, Ag 5.5 oz/T, Zn 2.95%, Cd 0.027%,
    and 32 element I.C.P.
```

October 1 to $13-A . R . C$. Potter

Medial and lateral moraines sampled on Linda 1 and 3 claims.

North medial moraine - noted a large number of silicified limestone boulders, sparsely to well mineralized with polymetalifc sulphides mainly in quartz veins.

Sample

121701 - silicified limestone breccia; Au 1200 ppb , 32 element I.C.P. $-\mathrm{Zn}>10,000 \mathrm{ppm}$.

121702 - leached, honeycomb quartì; $\mathrm{Au}<5 \mathrm{ppb}, \mathrm{Ag} 1.1 \mathrm{ppm}$.

121703 - chalcopyrite and minor polymetallics; Au < $5 \mathrm{ppb}, 32$ element I.C.P.

121704 - polymetallics; Au 375 ppb , 32 element I.C.P. $-\mathrm{Ag} 150 \mathrm{ppm}, \mathrm{Pb}>10,000 \mathrm{ppm}, \mathrm{Zn}>10,000 \mathrm{ppm}$.

121735 - same site as 121704 but better mineralization; Au $1350 \mathrm{ppb}, 32$ element I.C.P. - Ag 116 ppm, $\mathrm{Cu} 9770 \mathrm{ppm}, \mathrm{Pb} 1955 \mathrm{ppm}, \mathrm{Zn} 5740$ ppm.

121705 - quartz veins in limestone, 5% sulphides, pyrite, chalcopyrite, trace galena; Au $1170 \mathrm{ppb}, 32$ element I.C.P. - Ag $195 \mathrm{ppm}, \mathrm{Cu} 5460$ ppm, Pb 2050 ppm, Zn 2710 ppm.

121706 - andesitic tuff, pyrrhotite in quartz veins; Au $15 \mathrm{ppb}, \mathrm{Ag} 1.8$ ppm.

121707 - head of north moraine, trace polymetallics, sphalerite; Au 225 ppb, 32 element I.C.P. Ag 58 ppm, Pb 3060 ppm, Zn 8730 ppm.

North lateral moraine and boulders below hanging glacier - tuffs and calcareous sediments with polymetallics in quartz veins.

Sample

121708 - calcareous, minor pyrite; Au < $5 \mathrm{ppb}, \mathrm{Ag} 0.6 \mathrm{ppm}$.

121709 - calcareous, silicified, pyrite, sphalerite; Au $645 \mathrm{ppb}, 32$ element I.C.P. - Ag $58 \mathrm{ppm}, \mathrm{Pb} 4100 \mathrm{ppm}, \mathrm{Zn}>10,000 \mathrm{ppm}$.

121710 - 5 cm quartz vein in pyritiferous sediment; Au $50 \mathrm{ppb}, \mathrm{Ag} 2.7 \mathrm{ppm}$.

121711 - silicified calcareous sediment 1% pyrite; Au 70 ppb ; Ag 10.3 ppm.

121712 - calcareous sediment, quartz veins with sphalerite and pyrite; Au $915 \mathrm{ppb}, 32$ element I.C.P. $-\mathrm{Zn}>10,000 \mathrm{ppm}$.

121713 - ruggy, leached; Au $10 \mathrm{ppb}, \mathrm{Ag} 0.1 \mathrm{ppm}$.

121714 - calcareous breccia, silicified, 1% polymetalifcs; Au $5 \mathrm{ppb}, 32$ element I.C.P. - Pb 1060 ppm, Zn 1805 ppm.

121715 - tuff with quartz veins, minor polymetalifcs; $A u<5 \mathrm{ppb}, 32$ element I.C.P.

121716 - tuff with honeycomb quartz, minor sulphides; Au $290 \mathrm{ppb}, 32$ element I.C.P. - Ag $74 \mathrm{ppm}, \mathrm{Pb} 4570 \mathrm{ppm}, \mathrm{Zn} 8820 \mathrm{ppm}$.

Southern medial moraine on Linda 3 claim - 10% pyrrhotite in volcanics, rare chalcopyrite.

Sample

121717 - buff weathering breccia with quartz infilling; Au $30 \mathrm{ppb}, \mathrm{Ag} 0.4$ ppm.

121718 - cherty tuff, minor quartz and pyrite; Au $15 \mathrm{ppb}, \mathrm{Ag} 0.2 \mathrm{ppm}$.

121719 - rusty quartz; $\mathrm{Au} 30 \mathrm{ppb}, \mathrm{Ag} 0.5 \mathrm{ppm}$.

121720 - honeycomb quartz, minor sulphides; Au $60 \mathrm{ppb}, \mathrm{Ag} 1.1 \mathrm{ppm}$.

121721 - tuff, pyrite and pyrrhotite; $\mathrm{Au} 10 \mathrm{ppb}, \mathrm{Ag} 0.2$ ppm.

121722 - porphyry intrusive; Au 5 ppb , Ag 0.1 ppm.

121723 - aplitic quartz vein, Au 800 ppb , Ag 18.7 ppm.

South lateralimoraine on Linda 3 claim - prospected but no sulphides were found and no samples were analyzed.

Soll samples SSO-4 were taken north of the glacier on the north end of Linda 3 claim. Gold values ranged from 10 to 35 ppb .

Prospecting of glacial moraine on the Linda 1 and 3 mineral claims has revealed the presence of calcareous sediments and tuffs with gold bearing quartz veins hosting sphalerite, galena, chalcopyrite, pyrite and pyrrhotite.

The source of these polymetallic sulphide bearing boulders appears to be either beneath the hanging glacier on the north side of the Linda 1 claim or along the ridge between the hanging glacier and the main glacier on Linda 1 claim.

It is recommended that further sampling and prospecting be undertaken along the inferred source area to locate mineralization in place.

COST STATEMENT

```
1. Salaries - Field
    P. Folk - June 25, 1987 (1 day @ $200) = $200.00
    A.R.C. Potter - October 1-7 and 11-13 = $1,250.00
    Prospector (10 days @ $125)
    M. Moorman - October 1-7 and 11-13 = $870.00
    Assistant (10 days @ $87)
2. Meals and Accommodation
    21 man-days @ $35.20
    739.20
```

3. Truck rental and fuel 584.69
4. Supp1ies 33.93
5. Helicopter (Vancouver Island Helicopters) 3,624.12
June 25 \$ 971.55
Oct. 4 1,001.12
```Oct. 5 1,251.40Oct. \(11 \quad 400.05\)
```

6. Assays and analysis (Chemex Labs) 580.25
Invoice
```A8725126 - 13 rock Au, Ag analysis \(\$ 156.00\)
```

A8725251 - 5 soil Au, 32 element ICP 74.25
A8725125 - 11 rock Au, 32 element ICP 181.50
A8719691-8 rock Au, Ag; 2 Cu ; $1 \mathrm{~Pb}, \mathrm{Zn}$ 100.00
A8719693-1 rock Au, 32 element ICP 16.50
A8721804-3 rock $\mathrm{Ag}, 1 \mathrm{Au}, \mathrm{Cd}, \mathrm{Pb}$, 52.00 2 Zn assays
660.00
7. Report Preparation
M. Holtby 2 days @ $\$ 225=\$ 450$ Drafting 1 day @ $150=150$
Supplies 60

STATEMENT OF QUALIFICATIONS

I, Max H. Holtby, residing at 103-1026 Queens Avenue, New Westminster, B.C. hereby certify that:

1. I graduated from the University of British Columbia in 1972 with a B. Sc. in Honours Geology.
2. I am a Geological Association of Canada Fellow and Geological Society of Malaysia Member in good standing.
3. I have worked since graduation as an exploration geologist and in mine management in Canada, Malaysia and Liberia, West Africa.

Max H. Holtby, F.G.A.C.

CERTIFICATE OF QUALIFICATYONS

Peter G. Folk, P.Eng.

I hereby certify that:

1. I graduated from the University of British Columbia

- in 1971 with a B.A.Sc. degree in geological engineering.

2. I am a member in good standing of the Association of Professional Engineers of the Province of British Columbia.
3. I have worked since graduation as an exploration geologist and mine geologist in Canada and the United States.

P. G. Folk, P.Eng.

Statement of Author's Qualifications

I, Alden R.C. Potter, of 6708 Kneale Place, Burnaby, B.C., do hereby certify that:

I completed Grade Seven at the Blue Hawk School, Peace River School District 3559, Alberta, in 1947.

I have been employed as a Professional Prospector since 1956.

APPENDIX 1

Certificates of Analysis and Analytical Procedures

To : CONSOLIDATED SILVER STANDARD MINES LIMITED
11th Floor, 1199 W. HASTINGS ST. VANCOUVER, B.C.
V6E 3TS
Project : 103
Commits: ATTN: R. QUARTENMAIN

CERTIFICATE OF ANALYSIS A8719693

To : CONSOLIDATED SILVER STANDARD MINES LIMITED
11 th Floor, 1199 W. HASTINGS ST. VANCOUVER, BC V6E $3 T 5$

Page No. : I-B
Tot. Pages: I
Date Pages: $120-A U G-87$
Invoice \#: I-8719693
Invoice : I-871
PoO.
:NONE
Project : 1033
Comports: ATTN: R QUARTERMAIN

Chemex Labs Ltd.
Anabytionl Chomists * Geochemista * Reglatered Assayers
212 EROOKSBANK AVE. NORTH VANOOUVER, RRITISH COLUMBIA. CANADA V7J-2CI

PHONE (604) 984-0221
To: CONSOLIDATED SILVER STANDARD MINES LIMITED
llth Floor, 1199 W. HASTINGS ST.
VANCOUVER, B.C.
V6E 3T5
A8719693
Comments: ATTN: R QUARTERMAIN

CERTIFICATE A8719693

CONSOLIDATED SILVER STANDARD MINES LIMITED PROJECT : 1033
P.O. : NONE

Semplea abmitted to our $1: b$ in Vancouvor. BC. Thif report wai printed on 20-AUG-37.

SAMPLE PREPARATION		
Chemex	Numpr SNMELES	description
$\begin{aligned} & 205 \\ & 238 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Rock a core: Ring ICF: Aqua regia digestion

ANALYTICAL PROCEDURES

CHEMEX CODE	Number SAMPLES	DESCRIPTION	MLTHOD	DETECTION LIMIT	UPPER L.IMIT
100	1	Au ppb: Fuse 10 t eample	FA-AAS	5	10000
921	1	Al \%: 32 element. soil \& rock	ICP-AES	0.01	15.00
922	1	Ag ppm: 32 slement. soil 2 rock	ICP-AES	0.2	200
923	1	As ppm: 32 elemont. soll 4 rock	ICP-AES	5	10000
924	1	Ba ppm: 32 slement, coil ${ }^{\text {a }}$ (rock	YCP-AES	10	10000
925	1	Be ppm: 32 elemont, coll 4 rock	ICP-AES	0.5	100.0
926	1	Bi ppm: 32 clement, soil tock	ICP-AES	2	10000
927	1	Ca \%: 32 clement, soll \& rock	ICP-AES	0.01	15.00
928	1	Cd ppm: 32 element, sofl thect	ICP-AES	0.5	100.0
929	1	Co ppm: 32 element, soil rock	ICP-AES	1	10000
930	1	Cr ppm: 32 slement. eoil \& rock	ICP-AES	1	10000
931	1	Cu ppm: 32 element, eoil 4 rock	ICP-AES	1	10000
932	1	Fe \%: 32 element, soil $\frac{4}{}$ roek	ICP-AES	0.01	15.00
933	1	Ga ppm: 32 element, soil ${ }^{\text {a }}$ rock	ICP-AES	10	10000
951	1	Hg ppm: 32 element, soil $\&$ rock	ICP-AES	1	10000
934	1	工 \%: 32 element, wil a rock	ICP-AES	0.01	10.00
935	1	La ppm: 32 element, soil 4 rock	ICP-AES	10	10000
936	1	Mg ¢\% 32 element, soil ${ }^{\text {b }}$ rock	ICP-AES	0.01	15.00
937	1	Mn ppm: 32 sloment, coll 4 rock	ICP-AES	1	10000
935	1	Mo ppm: 32 element, soll a rock	ICP-AES	1	10000
939	1	Na क: 32 element, soil a rock	ICP-AES	0.01	5.00
940	1	Ni ppm: 32 element, soll 1 rock	ICP-AES	1	10000
941	1	P ppm: 32 element, woil \& rock	ICP-AES	10	10000
942	1	Pb ppm: 32 element, soil s rock	ICP-AES	2	10000
943	1	Sb ppm: 32 element, soil 2 rock	ICP-AES	5	10000
952	1	Se ppm; 32 element, coil ${ }^{2}$ rock	ICP-AES	10	10000
944	1	Sr ppm: 32 element, coil at rock	ICP-AES	1	10000
945	1	Ti \%: 32 element, soil ${ }^{\text {e }}$ rock	ICP-AES	0.01	5.00
946	1	T1 ppm: 32 element, soil \& rock	ICP-AES	10	10000
947	1	U ppm: 32 element, soil t rock	ICP-AES	10	10000
948	1	V ppm: 32 element, soil 4 rock	ICP-AES	1	10000
949	1	W ppm: 32 element, soil at rock	ICP-AES	5	10000
950	1	Zn ppm: 32 element, soil ${ }^{\text {a }}$ rock	ICP-AES	1	10000

Chemex Labs Ltd
Analytionl Chemitets Geochembat：Regtatored Absayera
212 EROOKSBANK AVE．NORTH VANCOUVRR， BRITISH COLUR IIA，CANADA V7I－2C1

FHONE（604）9：4－0221

To ：CONSOLIDATED SILVER STANDARD MINES LIMITED
11th Floor， 1199 W．HASTINGS ST VANCOUVER，B．C． V6E 3TS
Projec：：LINDA
Comments：O ：A．R．C．FOTTER

CERTIFICATE OF ANALYSIS A8 725126

Oismatim		为为	5mo								
			发								
		\％	㫛								
		$\frac{10}{a b i}$									

Chemex Labs Ltd.
Anulytiond Chemiote * Geochemiste - Reglatered Aesayers
212 GROORSBANK AVE. NORTH VANCOUVER. BRITISH COLUNBIA, CANADA V7J-2C

PTONE (604) 984-0221
To : CONSOLIDATED SILVER STANDARD MINES LIMITED
llh Floor, 1199 W. HASTINGS ST.
VANCOUVER, B.C.
V6E 3T5
Comments: C: A. R C. POTTER

CERTIFICATE A8725126

CONEOLIDATED EILVER BTANDARD MINES LIMITED PROJECT : L.JNDA
 P.O.\% : CtO3
 Samples abmitied to our lab in Vanconver, BC. TMit report vae printed on 3-NOV-87.

SAMPLE PREPARATION		
$\begin{aligned} & \text { CNEMEX } \\ & \text { CODE } \end{aligned}$	Mumber sancles	description
205	13	Rock a core: Ring

ANALYTICAL PROCEDURES

To : CONSOLIDATED SILVER STANDARD MINES LIMITED
11th Floor, 1199 W. HASTINGS ST.
VANCOUVER, B.C.
V6E 3T5
Project : LINDA
Compenta: CC: A. R. C. FOTTER

Page No. : 1-A
Tot. Pages: 1
Dase : 3-NOV-87
Invoice A: 1 -8725125
P.O. :C1033

CERTIFICATE OF ANALYSIS A8725125

To : CONSOLIDATED SILVER STANDARD MINES LIMITED
I1th Floor, 1199 W. HASTINGS ST.
VANCOUVER, B.C. V6E 3T5
Project : Lirma
Commets: OC: A. R. C. POTTE

Page No. : 1-B
Tot. Pases:
Dite : 3-NOV-87
Invoice : I-8725125
P.O. :Cl033

CERTIFICATE OF ANALYSIS A8 725125

Chemex Labs Ltd.
Analytionl Chemiste * Geochemists - Repistered Assayer
212 BROOKSEANK AVE NORTH VANOOUVER,
BRITISH COLUMBIA, CANADA V7J-2CI
PHONE (604) 984-0221

TO: CONSOLIDATED SILVER STANDARD MINES LIMITED
llth Floor, 1199 W. HASTINGS ST.
VANCOUVER, B.C.
V6E 3T5
A8725125
Comments: CC: A C POTTER

CERTIFICATE A8725125

CONBOLIDATED SILVER STANDARD MINES LIMITED PROJECT : LINDA
P.O.E :C1033

Samples efbemited to ovr labin Vancorver, BC IMin report ver printed on 3-NOV-s7.

ANALYTICAL PROCEDURES

$\begin{aligned} & \text { CHEMEX } \\ & \text { CODE } \end{aligned}$	$\begin{gathered} \text { NUMBER } \\ \text { SAMPLES } \end{gathered}$	descriflion	METHOD	DETECTION LIMIT	UPPER LIMIT
100	11	Au ppb: Fuse 10 g sample	FA-AAS	5	10000
921	11	Al \%: 32 element, soil \& rock	ICP-AES	0.01	15.00
922	11	A ${ }^{\text {c }}$ ppm: 32 element, soil 4 rock	ICP-AES	0.2	200
923	11	As ppm: 32 clement, soil * rock	ICP-AES	5	10000
924	11	Da ppm: 32 element, soil a rock	ICP-AES	10	10000
925	11	Be ppm: 32 element, coil 4 rock	ICP-AES	0.5	100.0
926	11	Bi ppm: 32 element, coil \& rock	ICP-AES	2	10000
927	11	Ca \%: 32 olement, soil 4 rock	ICP-AES	0.01	15.00
928	11	Cd ppm: 32 element, coil 2 rock	ICP-AES	0.5	100.0
929	11	Co ppm: 32 element, coll at rock	ICP-AES	1	10000
930	11	Cr ppm: 32 element, soil $\&$ rock	ICP-AES	1	10000
931	11	Cu ppm: 32 eloment, soll \& rock	ICP-ARS	1	10000
932	11	Fe \%: 32 element, soll 4 roek	ICP-AES	0.01	15.00
933	11	Ga ppm: 32 element. soil $\&$ rock	ICP-AES	10	10000
951	11	Hs ppm: 32 element, coil \& rock	ICP-AES	1	10000
934	11	I \%: 32 element, soll th rock	1CP-AES	0.01	10.00
935	11	La ppm: 32 element, soil 1 rock	ICP-AES	10	10000
936	11		ICP-AES	0.01	15.00
937	11	Mn ppmi 32 element, soil 2 rock	ICP-AES	1	10000
931	11	Mo ppmi 32 element, toil k rock	ICP-AES	1	10000
939	11	Na \%: 32 element, soil at rock	ICP-AES	0.01	5.00
940	11	Ni ppm: 32 element, soil 4 rock	ICP-AES	1	10000
941	11	P ppmi 32 element, soil at rock	ICP-AES	10	10000
942	11	Pb ppm: 32 slement. soil ${ }^{\text {a }}$ (rock	1CP-AES	2	10000
943	11	Sb ppm: 32 element, soil $\&$ rock	1CP-AES	5	10000
952	11	Se ppm: 32 loment. Eoll a rock	ICPGAES	10	10000
944	11	Sr ppm: 32 olement, soil 4 rock	ICP-AES	1	10000
945	11	Ti \%: 32 elemont, soil 2 rock	ICP-AES	0.01	5.00
946	11	T1 ppm: 32 slement, soil $\&$ rock	ICP-AES	10	10000
947	11	U ppm: 32 olement, soil ${ }^{\text {a }}$ rock	ICP-AES	10	10000
948	11	V ppm: 32 element, soll * rock	ICP-AES	1	10000
949	11	W ppm: 32 element, soil at rock	ICP-AES	5	10000
950	11	Zn ppm: 32 element, soil a rock	ICP-AES	1	10000

To : CONSOLIDATED SILVER STANDARD MINES LIMITED
11th Floor, 1199 W . HASTINGS ST. VANCOUVER, B.C

Project: 1033
Commenis: ATTN: R. QUARTERMAIN

Page No. : 1
Tot. Pages: 1
Date :14-SEP-87
Invoice :I-8721804
P.O. :NONE

CERTIFICATE OF ANALYSIS
A8 721804

llth Floor, 1199 W. HASTINGS ST
VANCOUVER, B.C
V6E 3T5
Comments: ATTN: R QUARTERMAIN

CERTIFICATE A8721804

CONSOLIDATED SILVER STANDARD MINES LIMITED PROFECT: 1033
P.O. : NONB

Samples ubmitted to our lab in Vancouver, BC. This report vas printed on 14-SEP-87

SAMPLE PREPARATION		
	\|inmer	desaution
224	3	Roctived mmplo an polp

ANALYTICAL PROCEDURES

To : CONSOLIDATED SILVER STANDARD MINES LIMITED Ith Floor, 1199 W . HASTINGS ST. VANCOUVER, B.C V6E 3T5
Project: 1033
Project: 1033
Commais: ATMN: R. QUARTERMAIN

Page No. : 1

CERTIFICATE OF ANALYSIS A8 719691

llth Floor, 1199 W. HASTINGS ST
VANCOUVER, B.C.
V6E 3T5
Comments: ATTN: R QUARTERMAIN

CERTIFICATE A8719691

CONSOLIDATED SILVER STANDARD MINES LIMITED FROJECT : 1033
P.O. : NONE

Samples dumitied to our lab in Vancouver, BC. This report wat printod on 20-AUG- 7 .

SAMPLE PREPARATIN		
Chitand COOE	NLMERR SAMPLES	DESCRIPTION
205	8	Rock 4 cors: Ring

To : CONSOLIDATED SILVER STANDARD MINES LIMITED llth Floor, 1199 W. HASTINGS ST. VANOOUVER, B.C

Date : 3-NDV-87
Invoice : I-872525I
P.O. :Cl033 V6E 3T5
Project : LINDA
Corments: ©C: A.R.C. POTTER
CERTIFICATE OF ANALYSIS A8725251

TO : CONSOLIDATED SILVER STANDARD MINES LIMITED 11th Floor, 1199 W . HASTINGS ST. VANCOUVER, B.C. V6E 3T5
Projocs : LINDA
Compin: \propto C: A.R.C. POTTER

CERTIFICATE OF ANALYSIS A8725251

Chemex Labs Ltd.
Arabtion Chemite + Ceochemists - Roplatered Aseayers
212 BROOKSHANK AVE. NORTH VANCOUVER:
勆TISH COLUNDIA, CANADA V7I-2C1
FHONE (604) 984-022:
To: CONSOLIDATED SILVER STANDARD MINES LIMITED
llth Floor, 1199 W. HASTINGS ST.
VANCOUVER, B.C.
V6E 3T5
A872525 1
Commets: CC: A.R.C. POTTER

CERTIFICATE A8725251

COKSOLIDATED EILVER ETANDARD MINES LIMITED PROJICT : LINDA
P.O. :CiO33

Samplea inbmitted to onr inb in Vancouver, BC. Tlife report vae printed on 3-NOV-it.

WAMPEE PREPARATEON		
CHIMBX CODE	Munging	DESCRIPTION
$\begin{aligned} & 202 \\ & 2.38 \end{aligned}$	5	Dry, dieve - 50 mesh, tave rejec: ICP: Aqua regia digestion

- Norts 1:

The 32 elament'-iciopaetase ta sitable for trace metalititicitioil and rock eamplet. Elemente for which thenitric-aqua resia Aftetion is positbly incomplete are: Al, Aa, Be, Ca, Cr, Ga, K, La, Ms, $\mathrm{Na}, \mathrm{Sr}, \mathrm{T}$, T1. W.

ANALYTICAL PROCEDURES

$\begin{aligned} & \text { CHDMEX } \\ & \text { CODE } \end{aligned}$	$\begin{gathered} \text { NUMBER } \\ \text { SAMPLES } \end{gathered}$	DESCRIPTION	METHOD	DETECTION LIMIT	UPPLR LIMIT
100	5	Au ppb: Fuet 10 s eample	FA-AAS	5	10000
921	5	Al \%: 32 element, soil 2 rock	ICP-AES	0.01	15.00
922	5	As ppm: 32 element. eil \& rock	ICP-AES	0.2	200
923	5	As ppm: 32 elemont, toil $\&$ rock	ICPMAES	5	10000
924	5	Ba ppm: 32 eloment, soil ${ }^{\text {a }}$ sock	ICP-AES	10	10000
925	5	Be ppm: 32 element, coil $\&$ rock	ICP-AES	0.5	100.0
926	5	Bi ppm: 32 element, toil \& rock	ICP-AES	2	10000
927	5	C. \%: 32 element, woil theck	ICP-AES	0.01	15.00
928	5	Cd ppmi 32 element, eoil ${ }^{2}$ rock	ICP-AES	0.5	100.0
929	5	Co ppm: 32 slement, coil 2 rock	ICP-AES	1	10000
930	5	Cr ppm: 32 slement, soil ${ }^{\text {a }}$ (rock	ICP-AES	1	10000
931	5	Cu ppm: 32 slement, soil $\&$ rock	ICP-AES	1	10000
932	5	Fe \%: 32 element soil \& rock	ICP-AES	0.01	15.00
933	5	Ga ppm: 32 elemont, coil $\&$ rock	ICP-AES	10	10000
951	5	H\% Ppm: 32 element, soil 2 rock	ICP-AES	1	10000
934	5	K \%: 32 element, coil $*$ rock	ICP-AES	0.01	10.00
935	5	La ppm: 32 slement, toll 4 rock	CCPMES	10	10000
936	5	Ms \%: 32 eloment, eoil 4 rock	ICP-AES	0.01	15.00
937	5	Mn ppm: 32 eloment, soil s rock	1CP-AES	1	10000
935	5	Mo ppm: 32 viement, soll 2 rock	1CP-AES	1	10000
939	5	Na \%: 32 element, coil ${ }^{2}$ rock	ICP-AES	0.01	5.00
940	5	Ni ppm: 32 element, soil 2 rock	1CP-AvS	1	10000
941	5	P ppm: 32 oloment, soil at rock	1CP-AES	10	10000
942	5	Pb ppm: 32 element, soil t rook	ICP-AES	2	10000
943	5	Sb ppm: 32 clament, soil 4 rock	ICP-AES	5	10000
952	5	Se ppmi 32 element, soil a rock	ICP-AES	10	10000
944	5	Sr ppm: 32 eloment, coil at rock	ICP-AES	1	10000
945	5	Ti \%: 32 element, soil $\&$ rock	ICP-AES	0.01	5.00
946	5	T1 ppm: 32 element, soll i rock	ICP-AES	10	10000
947	5	U ppm: 32 element, coil 4 rock	ICP-AES	10	10000
948	5	V ppm: 32 element, toil * rock	ICP-AES	1	10000
949	5	W ppm: 32 element, soil $\&$ rock	ICP-AES	5	10000
950	5	Zn ppm: 32 element, moil theck	ICP-AES	1	10000

[^0]: *

 Expiry date includes assessment credits for work in this report.

