LOG NO: 1205	RD.
ACTION:	
FILE NO:	

1988 DRILLING ASSESSMENT REPORT

ON THE

HOLYOAK 2 CLAIM

CHEMAINUS JOINT VENTURE

PROJECT 116

ſ	SUB-RECORDER RECEIVED	
	NOV 2 5 1988	•
	M.R. # \$ VANCOUVER, B.C.	:

Situated 10 kilometres west of Chemainus, B.C. in the Victoria Mining Division

> 48 53'N, 123 50'W NTS 92B/13W

Falconbridge Ltd.(Owner-Operator) 701-1281 West Georgia Street Vancouver, B.C.

Esso Resources Canada Limited (Owner) 1600-409 Granville Street Vancouver, B.C.

November 1988

Stanley G. Clemmer

Vancouver, B.C.

GEOLOGICAL BRANCH ASSESSMENT REPORT

11,62

TABLE OF CONTENTS

SUMMARY AND CONCLUSIONS	1
LOCATION, ACCESS, TERRAIN	2
CLAIM STATUS	4
EXPLORATION HISTORY	6
REGIONAL GEOLOGY	8
Introduction Stratigraphy of the Sicker Group	8 10
PROPERTY GEOLOGY	15
DRILLING	15
OBJECTIVES AND RESULTS OF DRILLING	16
REFERENCES	17
LIST OF PERSONEL	19
STATEMENT OF COSTS	20
STATEMENT OF QUALIFICATIONS	21

List of Appendices

Appendix 1 : Drill log and analytical results.

List of Figures

Figure	1	:	General Location		3
Figure	2	:	Holyoak-Brent Claim Locaiton		5
Figure	3	:	Regional Geology		9
Figure	4	:	Property Geology	in	pocket
Figure	5	:	Location of Drill Hole CH88-64	in	pocket
Figure	6	:	Section 31+00W	in	pocket

List of Tables

Table	1	: List of Claims	4
Table	2	: Stratigraphy of the Sicker	
		Group (Muller 1980)	10
Table	3	: Stratigraphy of the Duncan and	
		Chemainus River Area (Massey, 1988)	11
Table	4	: Buttle Lake Uplift : Stratigraphy	
		of the Sicker Group (Juras, 1987)	14

SUMMARY AND CONCLUSIONS

This report summarizes the results of a single drill hole drilled on the Holyoak-Brent claim group. The claim group is within the Chemainus Joint Venture which is a 50-50 agreement between Falconbridge Ltd. and Esso Resources Canada Ltd. The target is a volcanic-hosted polymetallic massive sulphide deposit within the Sicker Group of Vancouver Island. Examples of this deposit type are Westmin's Buttle Lake that now list production plus reserves in excess of 21 million tons averaging 2% Cu, 6% Zn, 1.7 oz/ton Ag and 0.07 oz/ton Au. Abermin Corporation on claims adjacent to the Joint Venture list geological reserves in 1986 of 837,332 tonnes averaging 3.26 g/t Au, 89.49 g/t Ag, 0.61% Cu, 3.59% Zn, and 0.81% Pb in the Lara deposit.

No significant base metal mineralization was intersected in hole CH88-64. The hole cut chloritic felsic tuffs to a depth of 47.3 and then entered gabbro and remained in gabbro to the bottom of the hole at 195.1 metres.

LOCATION, ACCESS, TERRAIN

The Holyoak-Brent claim group is located 8 to 12 kilometres west of Chemainus on southeast Vancouver Island, in southwestern British Columbia (Figure 1). Chemainus lies just east of the Trans-Canada Highway about 60 kilometres northwest of Victoria. Established deep water marine port facilites and infrastructure in Chemainus and vicinity would enhance the ecomomics of any orebodies discovered.

Access to the claim group is by MacMillan Bloedel's main haul road known as the Copper Canyon Mainline which follows the Chemainus River. The claims may be accessed via a 4X4 secondary dirt road that leaves the Copper Canyon road at mile 10.

Timber and suface rights are owned by CIP, MacMillan Bloedel and the Crown. Access permits are required and damage to timber is subject to compensation charges.

The terrain is characterized by rolling topography and deep incised creek valleys. All of the property has been logged and is in various stages of regrowth with fir, hemlock, balsam, and local pine. The vegetation varies from dense second growth to clear cut areas. Elevations vary from 500 to 1100 metres.

A mild climate prevails with warm, dry summers and autumns, and short winters. Spring and late fall are usually very wet. Higer elevations (above 1000 metres) tend to have more severe winter temperatures and heavy snowfall but most areas are clear of snow by the end of May. Dry forest conditions and extreme fire hazard usually occur from mid-July to mid-September and forest clousures during this period are common.

CLAIM STATUS

The Holyoak-Brent claim group consists of 4 claims with 46 units within the Victoria Mining Division. The status of the claims is listed in Table 1 and the location of the claims is shown on figure 2. The claims are jointly owned by Esso Resources Canada Limited and Falconbridge Ltd. The claims have all been grouped into the Holy88 Group.

Table 1 : List of Claims

CLAIM		RECORD NO		UNITS	STAKING	DATE	EXPIRY DATE					
Brent 1		163		10	May 5,	1978	May 11, 1998					
Holyoak	1	1598		8	Oct 22,	1985	Oct 31, 1998					
Holyoak	2	1599		16	Oct 23,	1985	Oct 31, 1998					
Holyoak	3	1560		12	Oct 24,	1985	Oct 31, 1998					

Expiry dates are subject to approval by Gold Commissioner.

EXPLORATION HISTORY

Early property history on the Brent-Holyoak claims has been described by Britten (1984):

"The Brent 1 mineral claim overlies what is beleived to have been the Pauper C.G. claim (L31G) crown granted in 1903. The BCDM Annual reports for 1924 and 1927 report underground development of a pyritized schist belt 60 feet wide. An undated map by Sharon Copper Mines Limited shows three parallel adits.

In 1966 and 1967 Cominco Ltd. carried out geological mapping, a geochemical soils survey and an induced polarization survey (Tikkanen 1966) on the Tot and Rum claims, for which the base metal rights were optioned from Canadian Pacific Oil and Gas Limited, who at that time controlled the E&N Railway Land grant.

Imperial Oil Limited staked the Mons 4 mineral claim in 1976 and upon surrender of the E&N mineral rights to the Crown in 1978 this claim was abandoned and restaked as the Brent 1 claim. The Oak 1, 2 and 3 claims were staked at the same time to cover anomalies outlined by a Scintrex airborne EM and magnetic survey. Imperial Oil carried out minor geological mapping, a self potential survey and drilled four holes on this block of claims now known as the Oak Group. Traces of copper in pyritic quartz-sericite schists were noted in one drill hole (78 CHEM 1) sited on the Brent claim (Sommerville 1979)."

Esso conducted geological mapping in 1984 on the Oak Group and applied this work for assessment. In 1984 Kidd Creek Mines Ltd. (now Falconbridge Ltd.) entered an option agreement with Esso Resources Canada Limited to explore the OAK group. Late in 1984 Kidd Creek Mines completed a Questor Mark IV INPUT airborne EM survey over the claim group.

In 1985 the Oak 1,2 and 3 claims were abandoned and restaked as the Holyoak 1, 2 and 3 claims. Kidd Creek Mines Ltd. conducted ground follow-up of the 1984 airborne anomalies with induced polarization surveys, geological mapping, lithogeochem, and soil sampling. Limited backhoe trenching and 1,534 metres of NQ diamond drilling was completed in 7 holes. Minor zinc mineralization was noted in a trench and a drill hole just east of Silver Creek on the Holyoak 2 claim.

After the take over of Kidd Creek Mines Ltd.,

Falconbridge Limited continued exploration in 1986 with geological mapping, soil geochemistry and induced polarization, magnetic and VLF surveys. In 1987, additional magnetic, VLF and induced polarization surveys were carried out on the Holyoak-Brent claims.

REGIONAL GEOLOGY

Introduction

Vancouver Island is made up of two allochthonous terrains known as the Insular and Pacific Belts (figure 3). The allochthonous Insular belt makes up most of Vancouver Island and is composed of a varied assortment of volcanic, sedimentary, metamorphic and plutonic rocks that range in age from early Paleozoic to Tertiary (Muller 1981). It is separated from the Mesozoic and Tertiay volcanic and sedimentary rocks of the Pacific Belt by the San Juan and Leech River faults near the southern end and west coast of Vancouver Island.

The Chemainus property is underlain by sedimentary and volcanic rocks of the Sicker Group. Clapp(1912) mapped the southern half of Vancouver Island and noted a series of deformed volcanic and sedimentary rocks that extend from Saltspring Island to Port Alberni and named them the Sicker Series. The Sooke and Duncan area was mapped by Cooke (1917) who also recognized the Sicker Series. Fyles (1955) completed mapping in the Cowichan Lake area and was the first to refer these rocks as the Sicker Group.

The Sicker Group is exposed in five separate areas on Vancouver Island (figure 3). The areas are the Buttle Lake Uplift, the Cowichan-Horne Lake Uplift, Nanoose area and two unamed areas northwest and southwest of Buttle Lake. The Chemainus project is located at the southeast end of the Cowichan-Horne Lake Uplift. The Sicker Group is thought to be the oldest rocks exposed on Vancouver Island. They are unconformalbly overlain by the Vancouver Group volcanics and The bulk of the Vancouver Group is made up of up sediments. to 4500 metres of basaltic flows and pyroclastics of the Karmutsen Formation (Muller, 1981). The preceding older rocks are intruded by the Lower to Middle Jurassic intermediate to felsic intrusive rocks referred to as the Island Intrusions. Finally these rocks are unconformably overlain by relatively undeformed shale, siltstone, sandstone, conglomerate, and locally coal of the Late Cretaceous Nanaimo Group.

FIGURE 3 : Regional Geology (after Muller 1981)

Geological sketch map of Vancouver Island.

LEGEND

_		
	CARMANAH GROUP	MIDDLE TERTIARY
	CATFACE INTRUSIONS	EARLY TO MIDDLE TERTIARY
222	METCHOSIN VOLCANICS	EARLY TERTIARY
	NANAIMO GROUP	LATE CRETACEOUS
4	QUEEN CHARLOTTE GROUP	LATE JURASSIC
S	LEECH RIVER FORMATION	EARLY CRETACEOUS
	ISLAND INTRUSIONS	EARLY AND (?) MIDDLE JURASSIC
	BONANZA GROUP	EARLY JURASSIC
	VANCOUVER GROUP	
	PARSON BAY FORMATION QUATSING FORMATION	LATE AND (?) MIDDLE
•	KARMUTSEN FORMATION	TRIASSIC
	SICKER GROUP	PALEOZOIC
	METAMORPHIC COMPLEXES	JURASSIC AND OLDER
	HOLYOAK-BRENT CLAIM	1 GROUP
	ALERT BAY - CAPE SCOTT, 92 (G.S.C. PAPER 74-8)	L - 102 I
	BUTE INLET, P2K (IN PREPA	RATION), O.P. MAP 345
	NOOTKA SOUND, 92 E (IN PRE	PARATION }
	ALBERNI 92 F (G.S.C, PAPER	68-50]
	VICTORIA, 92 B. C (FIELD WO SEE G.S.C. PAPERS 75-1A, p.21 76-1A, p. 107-111, 77-1A, p. 2	RK IN PROGRESS:
_	8UTTLE LAKE UPLIFT COWICHAN-HORNE LAKE U NANOOSE UPLIFT	P (15 T

Stratigraphy of the Sicker Group

Muller (1980) after extensive work on Vancouver Island proposed that the Sicker Group could be divided into four units as listed in Table 2. Previous work completed on the Chemainus project has used the Myra and Sediment Sill unit divisions of Muller.

Table 2 : Stratigraphy of the Sicker Group (Muller, 1980)

Buttle Lake Formation

Limestone, calcarenite, crinoidal, commonly recrystallized; interbedded with subordinate or equal thickness of calcareous siltstone and chert; some diabase sills. (thickness 400m ?) Age indicated by fossils is Pennsylvanian to Permian.

Sediment-Sill Unit (not a formational name)

Thinly bedded to massive argillite, siltstone and chert with interlayered sills of diabase. (no estimate of thickness given by Muller)

Myra Formation (new name)

Basic to rhyodacitic banded tuff, breccia and (?) lava; thinly bedded to massive argillite, siltstone, chert. (thickness estimated to be 1000m). Overlies Nitinat possibly with minor unconformity and the base of the Myra is defined by the first appearence of bedded volcaniclastic rocks. A few K-Ar age determinations indicate that an Early Jurassic thermal metamorphic event has affected the Myra formation. Age dating by U-Pb technique indicates a late Silurian to Devonian age.

Nitinat Formation (new name)

Metabasaltic lavas, pillowed or aggolomeratic, commonly with large conspicuous uralized pyroxene phenocrysts and amygdules of quartz and dark green minerals; minor massive to banded tuff. (thickness estimated to be 2000m)

Massay (1986) after completing mapping on the Cowichan-Horne Lake Uplift area now proposes a new set of formations to sub-divide the group. The new formation names are an improvement over Muller and will be adopted for the Chemainus project. The units are listed in Table 3 and are breifly described below; oldest to youngest. The following descriptions are taken from Massey(1988).

Table 3 : Stratigraphy of the Duncan and Chemainus River Area. (Massay,1988)

Upper Cretaceous

Nanaimo Group

Cedar District Formation : argillite, shale, sandstone and siltstone

Extension-Protection Formation : conglomerate, sandstone

Haslam Formation : argillite, shale, sandstone and siltstone

Comox Formation : conglomerate, sandstone, siltstone

Upper Triassic

Vancouver Group

Karmutsen Formation : mafic flows and pyroclastics, minor sediments

?Middle Devonian to Lower Permian

Sicker Group

Nitinat Formation

The oldest rocks of the Sicker Group are pyroxene-feldspar porphyritic basaltic andesites of the Nitinat Formation. The volcanics occur as agglomerates, breccias, lapilli tuffs and crystal tuffs. Flows, pillowed flows and minor bedded tuff and volcanic sandstone occur locally. This unit is equivilent to the Nitinat formation of Muller(1980). There is no age dating currently available for the Nitinat but because is lies stratigraphically below the Mclaughlin Ridge Formation it must be Late Devonian or older.

Mclaughlin Ridge Formation

The intermediate to felsic, locally mafic volcanics and volcaniclastics of the McLaughlin Ridge Formation apparently conformably overlie the Nitinat Formation. In the Duncan area and the vicinity of the Chemainus property this formation is dominantly made up of volcanic material with only minor tuffaceous sediments. Further to the south around Cowichan Lake this formation is composed of massive to lithic tuffites with interbedded sediments. The volcanic rocks yield U/Pb ages of Late Silurian to Devonian (Muller, 1980).

The Saltspring Intrusions are a group of felsic intrusions that yeild Early Devonian radiometric ages (Brandon et al., 1986) and for this reason are thought to be cogenetic with the McLaughlin Ridge volcanics. These rocks are exposed just north of the McLaughlin Ridge Formation towards the southeast end of the Cowichan-Horne Lake Uplift. They are however not seen anywhere in direct contact with the volcanics so there relationship is uncertain.

The top of the McLaughlin is marked by a distinctive purple or maroon schitose heterolithic breccia and lapilli tuff. Falconbridge geologists refer to this unit as the purple pyroclastic unit.

The Mclaughlin Ridge formation is equivilent to the lower parts of the Myra Formation of Muller (1980).

Cameron River Formation

The Cameron River Formation is a dominantly epiclastic package that forms the upper portion of the Sicker Group. Contacts with the lower volcanic units are often faulted but where present the contact is unconformable. The lower 200 metres of the unit is composed of ribbon cherts, laminated cherts and cherty tuffs. The bulk of the unit is composed of thinly bedded, turbiditic sandstone-siltstoneargillite intercalations. The Cameron River Formation is equivilent to the upper part of Muller's Myra Formation together with the sediments of the informal sediment-sill unit.

Mount Mark Formation

Massey(1988) recognizes a Buttle Lake Formation equivialent south of the Cowichan River and these calcarenites are placed in a new formation called the Mount Mark Formation. Brandon et al.(1986) report an outcrop of interbedded limestone and chert in the Copper Canyon adjacent to the Chemainus property that yields Early Permian conodonts.

Karmutsen Formation

A breif mention of the Karmutsen Formation of the Vancouver Group is necessary here. The Karmutsen basalts were deposited during an extensional event in the Late Triassic. The underlying Sicker Group rocks were dilated and intruded by numerous gabbro sills, dykes and bodies at this time. The upper half of the Sicker Group and in particuar the Cameron River Formation contains more gabbroic material than the lower half. These gabbros are the 'sill' in Muller's sediment-sill unit.

Buttle Lake Uplift Stratigraphy

The Buttle Lake Uplift Sicker Group rocks host Westmin's Buttle Lake deposits and the current stratigraphic interpretations are summarized below. Juras(1987) proposes to divide the Sicker Group rocks at Buttle Lake into several formations as listed in table 4. There is a broad similarity between the stratigraphy of the Cowichan-Horne Lake Uplift of Massey(1988) and that of Buttle Lake. Juras indicates that the Price formation may correlate with the Nitinat formation. There is at present no stratigraphic, age dating, or detailed chemical information to support this. The McLaughlin Ridge Formation of Massey(1987) correlates with the Myra Formation. The Thelwood formation probably correlates with the lower chert-rich part of the Cameron River Formation in the Cowichan-Horne lake uplift. The mafic volanics higher in the Cameron River Formation may correlate with the Flower Ridge Formation of Juras.

TABLE 4 : Bu Gi	ittle Lake Up coup (Juras,	olift : Strat 1987)	igraphy of the Sicker
Early Permian	Henshaw Formation	5 - 100m	Conglomerate, epiclastic deposits, vitric tuff
(unconformity)			
Early Permian to Pennsylvanian	Buttle Lake Formation	300m	Crinoidal limestone and minor chert
Pennsylvanian or Mississippian	Flower Ridge Format	650 + m	Moderately to strongly amygduloidal lapilli- tuff, tuff-breccia, minor tuff and flows
Early Mississippian (?)	Thelwood Formation	270 to 500 m	Subaqueous pyroclastic deposits, siliceous tuffaceous sediments, mafic sills.
Late Devonian	Myra Formation	310 to 440 m	Intermediate to felsic volcanics, volcani- clastics, minor sediments, massive sulphide mineralization.
Late Devonian or older	Price Formation	300 + m	Feldspar-pyroxene porphyritic andesite flows, flow breccia, minor pyroclastic deposits.

FROPERTY GEOLOGY

The Holyoak and Brent claims lie within the Cowichan-Horne Lake Uplift, in which lower Paleozoic Sicker Group rocks are exposed. The geology of the Holyoak-Brent claims is shown on figure 4. The claims are underlain by felsic to mafic volcanic rocks of the Myra Formation that trend northwest and dip steeply. The volcanic rocks are flanked on the north side by dark coloured pelitic and cherty sediments of the "Sediment Sill Unit" of Muller or the Cameron River Formation of Massey. These rocks are intruded by gabbro bodies that vary from less than one metre to over 100 metres in thickness. To the south the Sicker Group rocks are unconformably overlain by the Nanaimo Group sediments.

DRILLING

The drilling of hole CH88-64 was commenced on June 2 and completed on June 5, 1988. The core size was NQ and the hole was drilled to a depth of 195.1 metres.

The contractor for the job was Burwash Enterprises Ltd. of Cobble Hill, B.C. who used a Longyear Super 38 drill equipped with air cooled diesel engines. A D-6H Caterpiller tractor was used to move the drill. Site preparation was completed by a John Deer 590 Excavator contracted from Ellison Excavating Limited of Duncan, B.C.

All timber destroyed during pad construction was broken up, placed flat on the ground and often buried.

The location of drill hole CH88-64 is shown on figure 5 and a section along line 31+00W is shown on figure 6. The drill log and analytical results are listed in appendix 1. Each core run was converted to metric depth, and marked on pre-cut wooden blocks. The drill core was then sytematically photographed and logged. A dip test was taken using a single shot Sperry Sun instrument at a depth of 146.3 metres. Generally, any volcanic rock containing greater than 2% pyrite was split in less than one to two metre intervals and submitted for geochemical analysis. Each individual volcanic unit was sampled for alteration by taking a 10cm split piece of core every 1 to 2 metres through the unit and submitting this composite sample for whole rock analysis. The alteration samples do not exceed 30 metres. Whole rock samples of 10 to 20 cm of split core were collected to characterize the volcanic rock types. A skeletal core record was routinely collected of all major rock units collected. The logging was conducted using Derry, Michener, Booth, and

Wahl's LOG II computer system. Log data was entered directly into a Toshiba 1100 computer and then transfered into a Tochiba 3200 computer in the evening.

Bondar-Clegg of North Vancouver analysed the split core samples by geochemical methods for Cu, Pb, Zn, Mo, Ag, Fe, Mn, Cd, Co, Ni, As, and Ba. An HNO3-HCl hot extraction and analysis by DC Plasma were used for all elements except Au and Ba. A fire assay preparation with AA finish was used for Au and X-ray Fluorescence was used to give a total analysis for Ba. If a sample contains more than 3000 ppm Zn, 30 ppm Ag, or 1000 ppb Au then the samples are re-analysed using standard assay techniques for the respective element.

X-Ray Assay Laboratories of Don Mills, Ontario analysed the lithogeochemistry samples. The analysis includes a major oxide x-ray fluorescence package plus Cu, Zn, Ni, and Ba.

All drill core (including previous drilling) is stored on metal core racks at a farm just outside of Chemainus, at 3037 River Road.

OBJECTIVES AND RESULTS OF DRILLING

Drill hole CH88-64 was drilled to test the down dip extent of geochemically anomalous zinc mineralization in felsic volcanics intersected in 1985 drill holes and one trench just east of Silver Creek on line 31+00W. The hole was also drilled in an area of anomalous induced polarization chargeability.

No significant base metal mineralization was intersected in hole CH88-64. The hole cut chloritic felsic tuffs to a depth of 47.3 and then entered gabbro and remained in gabbro to the bottom of the hole at 195.1 metres.

REFERENCES

- Brandon,M.T., Orchard,M.J., Parrish,R.R., Sutherland Brown,A., Yorath,C.J., 1986. Fossil ages and isotopic dates from the Paleozoic Sicker Group and associated intrusive rocks, Vancouver Island, British Columbia; in Current Research Part A, Geological Survey of Canada, Paper 86-1A, p. 683-696
- Britten, R.M., 1984. Geological and geochemical report on the Oak group, Victoria Mining Division, Vancouver Island. Esso Resources, Canada Limited. 37p.
- Clapp, C.H., 1912. Southern Vancouver Island. Geological Survey of Canada Memoir No. 13. 208p.
- Clapp, C.H., and Cooke, H.C. 1917. Sooke and Duncan Map-area, Vancouver Island. Geological Survey of Canada Memoir No. 96. 445p.
- Fyles, J.T., 1955. Geology of the Cowichan Lake Area, Vancouver Island, British Columbia. British Columbia Department of Mines Bulletin No. 37. 72p.
- Juras, S.J., 1987. Geology of the polymetallic volcanogenic Buttle Lake camp, with emphasis on the Price Hillside, Vancouver Island, British Columbia. Unpubl. PhD. Thesis, UBC.
- Massey, W.D. and Friday, S.J., 1987. Geology of the Cowichan Lake area, Vancouver Island. British Columbia Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork, 1986, Paper 1987-1. p. 223-229.
- Massey, W.D. and Friday, S.J., 1988. Geology of the Chemainus River-Duncan area, Vancouver Island. British Columbia Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork, 1987, Paper 1988-1. p. 81-91.
- Muller, J.E., 1981. Insular and Pacific Belts, in Field Guides to geology and mineral deposits, Calgary '81 Annual Meeting, Thompson, R.I. and Cook, D.G., eds., Geological Association of Canada, Mineralogical Association of Canada and Canadian Geophysical Union, p. 316-334.
- Muller, J.E., 1980. The Paleozoic Sicker Group of Vancouver Island, British Columbia. Geological Survey of Canada Paper 79-30. 22p.

- Sommerville, R., 1979. Diamond drill report for holes Chem No. 1 to 6 on the Brent 1, QQ 1, Oak 2 and 3 and VV claims in the Nanaimo and Victoria mining divisions. Esso Resouces Canada Limited.
- Tikkanen, G.D., 1966. Induced polarization survey on the No. 1 grid, CPOG property, Duncan area, Victoria mining division, BCDM Assessment Report 936. 6p.
- Tikkanen, G.D., 1966. Induced polarization survey on the No. 2 grid, CPOG property, Duncan area, Victoria mining division, BCDM Assessment Report 935. 7p.

LIST OF PERSONEL

1)	Stan Clemmer Project Geologist	June 3, 1988
2)	David Money Associate Geologist	June 3 to 6, 1988
3)	Trevor Cownans Technician	June 3 to 5, 1988
4)	Bryan Cochrane Swamper	June 2, 1988

.

Drilling Costs		
Burwash Enterprises Ltd. Moving 13 tractor hours @ 75.00/hr 20 man hours @ 22.00/hr Overburden	\$ \$	975.00 440.00
20' @ \$15.00/ft Reaming Casing	\$	300.00
18 man hours @ \$22.00/hr 9 drill hours @ \$19.00/hr	\$ \$	396.00 171.00
480' @ \$14.75/ft 140' @ \$14.75/ft Consumables Testing and hole stabilization	\$ \$ \$ \$	6,840.00 2,065.00 2,663.14 693.00
Site Preparation		
Ellison Excavating Ltd. Excavator 8hrs @ \$90.00/hr	Ş	720.00
Analytical		
X-Ray Laboratories Ltd. Whole Rock 16 samples @ \$23.49 Alteration 11 samples @ \$18.90	\$ \$	375.84 207.90
Bondar-Clegg & Co. Ltd. Geochemical Rock samples 17 @ \$23.00	\$	391.00
Labour		
Stan Clemmer, Geologist 1 day @ \$150.00 David Money, Geologist 4 days @ \$150.00 Trevor Cowans, Splitter 4 days @ \$100.00 Bryan Cochrane, Swamper 1 day @ \$120.00	ទនទ	150.00 600.00 400.00 120.00
Room & Board 9 days @ \$30.00/day	\$	270.00
Report	\$	1,000.00

Total Expenditures \$18,777.88

STATEMENT OF QUALIFICATIONS

Stanley G. Clemmer 202-856 Homer Street Vancouver, B.C.

- I received a Honours BSc. in Geology from Carleton University, Ottawa in 1978.
- 2) I have practiced my profession continuously since graduation in Canada; a period of 10 years.
- 3) I am fellow of the Geological Association of Canada.
- 4) I wrote this report and supervised the work.

Stanley G. Clemmer, BSc, FGAC

STATEMENT OF QUALIFICATIONS

- I, David P. Money, of 9977 Cochrane Cresent, Chemainus, British Columbia state that:
- 1) I graduated in 1987 with a B.A.Sc. in Geological Engineering from the University of Toronto.
- 2) I have been actively involved in mineral exploration since 1982.
- 3) I am an Associate Member of the Geological Association of Canada and a Member of the B.C. and Yukon Chamber of Mines.

Dated at Chemainus on November 22, 1988

David P. Monay David P. Money, B.A.Sc.

APPENDIX I

DRILL LOG AND ANALYTICAL RESULTS

Summary Log: DDH CH88-64 Location: 31+00 W, 1+30 S; Holyoak 2 Claim Azimuth: 180, Dip: -50 Hole Completed: June 5, 1988 Core Logged By: D.P. Money

olled
a.
from
te.
.te,
fii

PF	OPERTY: Chemainu	s J.V.		FALCONB DIAMONI	RIDGE LIMITE D DRILL LOG	HOLE No: Page Number CH88-64 1													
Ko	le Location: 31+	00 ¥ 1+30 S																	
N] A 2	S: 0928/13 sinuth: 180	UTH: Elevation: 797 m		Claim No. Holyoak Section No.: Secti								k 2 tion 31+00 West, Holyoak Claim Group							
D: SI	1p: -50 tarted: June 2, 1	Length: 195.1 988	A					Logg Dril Assa	ed By: ling Co yed By:	D.P. Honey .: Burvash Bondar-Cle	Enterp gg and	rises X-Ray	λssay						
C¢	ompleted: June 5,	1988						Core	5170-	NO									
Р	erpose: To test G	hem85-10 minerali:	zation dows	adip	DIP TE	STS				~~ <u>v</u>									
			Length		Azi- muth Dip		Azi- muth	Dip											
			146.30	178.0	-52.0														
From (m)	То (m)	!	DESCRIPTIO	4 		Sample No.	Front (m)	¶⊙ {m}	¥idth (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppæ)	۸¢ (ppm)	λu (ppb	Ba) (ppm)			
.0	 10.2 OVERBURDEN Gabbro, wh No chit ma 14.4 FELDSPAR N Pine-grain 4 mm, aven - chlorite 2 % leucop 	t ite quartz and fei irked start of cor CORPHYRITIC GABBRO ied medium green g. rage 5 to 7 %, fel: s veins with trace sene.	lsic tuff ; ing. abbro with dspars. Th pyrite. Th	pebbles ; trace to are are here is ;	and cobbles. o 10 %, 2 to minor quart approximate)) .z ¥													
14.4	 30.8 WEAKLY CHI Weakly chi 14.4 18.9 18.9 20.3 20.3 23.0 23.0 24.0 	CRITIC FEDSIC TUF, loritic felsic tuf Hedium to light g with up to 5 % ch approximately 5 % to 1 % (?) feldsp local composition contorted. There disseminated pyri Very similiar to epidotized and si 19.9 there is 2 % Very siliceous ba white bands. Ther 2 to 3 mm, quartz are rare trace py Light green seric fracture controll fine-grained grey approximately 3 % controlled calcut	F fs. rey to gre- lorite. Th- , 1 to 3 m ars, with : al banding is trace b te. 14.4 to 18 licified z. pyrrbotit nded tuff e are appr- and felds: rrhotite s itic massi ed pyrrhot mineral, . There ar e veinlets	en schis ere are m, quart: reaction . Jocall; anded an . Jocall; anded an opes. Fre e in a q with dar oximatel par crys tringers ve tuff ite and galena e trace.	tose tuff z eyes and t rims. Very y weakly d local om 19.8 to uartz vein. k green and y 5 to 7 %, tals. There with 3 to 5 very (7) as fracture	¥A01203 ¥A02055 ¥A02060 ¥ ¥A02062	14.4 22.0 23.0 24.0 25.2	30.8 23.0 24.0 25.2 26.0	16.4 1.0 1.0 1.2 .8	n/a 1 4 1	80 60 47 36 37	n/a 22 11 18 24	104 820 58 41 605	b/a (1 (1 (1 (1	n/a (5 (5 (5 (5	1130 1100 840 870 890	,		

;

Ũ

-

- -

.

.

•

PROPERTY: Chemainus J.V. HOLE No: Page Number FALCONBRIDGE LINITED CH88-64 2 DIAMOND DRILL LOG Ba Width Total Ph Zn From To Sample From To Cu λα à tr (ppm) (ppm) (ppm) (ppb) (ppm) -----BESCRIPTION------Sulphides (ppm) (m) (m.) No. (m) (m) (m) 24.0 25.2 Same as 23.0 to 24.0 without the grey mineral. but with 0.5 %, 2 to 4 mm, pyrite cubes. 25.2 30.8 Very siliceous medium green tuff with locally up to 5 % quartz eyes, 2 to 4 mm, and up to 5 %, 3 mm, epidote grains. Locally there is strong pervasive silicification. There are minor siliceous lapilli and beds (?) with strong epidotization. There are rare kink bands approximately perpendicular to the foliation. From 29.9 to JO.8 there is strong hematite on fractures. Alteration :. 14.4 30.8 YEAK PERVASIVE CHLORITIZATION. 1 20.3 22.2 STRONG PERVASIVE SERICITIZATION. 27.4 27.7 MODERATE PERVASIVE EPIDOTIZATION , very bleached. Foliations :. 14.7 : 68 degrees to core axis. 16.3 : 76 degrees to core axis. 24.0 : 69 degrees to core axis. 26.8 : 71 degrees to core axis. 29.7 : 56 degrees to core axis. Lost core :. 20.6 22.3 : 0.5 m. 28.5 29.4 : 0.2 m. 30.8 35.1 MAFIC INTRUSIVE 30.8 32.1 Fine-grained green cabbro with 2 %, 2 to 5 mm. feldspars and approximately 10 % fine-grained mafic crystals. 32.1 32.8 Fine-grained with approximately 2 % leucoxene, minor matic and feldspar crystals. 32.8 33.0 Epidotized and silicified light green with 5 % mafic crystals, up to 3 mm. 33.0 35.1 Similiar to 32.1 to 32.8 with green epidote from 34.1 to 34.4 and 34.6 to 34.8 with minor spots similiar to 32.8 to 33.0. There are local calcite veinlets, hydraulic fracture controlled with a speck of chalcopyrite at 32.1. There is a minor breccia hosted by a quartz vein from 33.75 to 33.85 35.1 39.0 FELSIC OVARTO-FELDSPAR CRYSTAL TUFF n/a 1730 Variably welded tuff, hot ash pyroclastic surge deposit ?. VA01202 35.1 39.0 3.9 n/a 149 n/a 46 n/a 2 Light green siliceous tuff, massive. There are approximately 10 % feldspar crystals, laths up to 3 mm, with minor reaction rims. There is approximately 10 to 12 * rounded and stretched quartz eyes, 2 to 5 mm, average approximately 3 mm. From 37.5 to 38 is grey with 0.5 to 1 A dissocinated pyrrhotite. There is approximately 0.5 to 1

A quartz - chlorite veins. There is very local

П

PROPERTY: Chemainus J.V. NOLE No: Page Number FALCONSRIDGE LIMITED CH88-64 3 DIAMOND DRILL LOG γιος Το Sample From To Width. Total РЪ Αu Ba Cu 2 n λσ (m) (m) ------DESCRIPTION--------No. (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (a) (m.) epidotization at the lower gabbro contact. Foliations :. 39.4 : 62 degrees to core axis. 37.6 : 34 degrees to core axis. 38.2 : 47 degrees to core axis. 39.0 39.8 MAFIC INTRUSIVE Fine-grained green mafic sill with trace calcite, and epidote veins. At 39.2 there is minor pyrchotite in a calcite vein. 39.8 47.3 FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF Light to medium grey, with local greenish tinge. Is VA01203 39.8 47.3 7.5 35 n/a 1490 n/a 84 n/a n/a massive and siliceous. Hosts 15 to 20 %, 2 to 4 mm, quartz eyes, which are elongated and rounded. Locally there are up to 3 % feldspars, 1 to 2 mm, mostly rounded, some with reaction rims and locally as laths. There are collapsed pumice lapilli, notably at 42.7 which are lighter green with stretched quartz grains in the lapilli. There is minor local epidotization and local quartz chlorite and epidote fracture controlled veinlets. Rock is a hot ash flow, surge deposit (?), and fragments are welded to various degrees. Foliations :. 40.6 : 66 degrees to core axis. 44.4 : 38 degrees to core axis. 45.8 : 62 degrees to core axis. Upper contact : 63 degrees to core axis. Bleached mafic sill from 40.7 to 41.2. 47.3 195.1 FELDSPAR PORFNYRITIC GABBRO 47.3 47.6 Fine-grained medium green chilled margin with VA01204 43.0 58.0 10.0 n/a 177 n/a 77 n/a n/a 85 fracture controlled epidote veinlets, VA01205 59.0 92.0 33.0 99 123 n/a 329 p∕a n/a n/a 47.6 52.5 Fine-grained medium green with 5 to 10 %, 1 to 5 VA01206 93.0 104.0 11.0 334 122 л/а 272 D/An/a n/a mm, feldspar clots to grains. There is minor ¥A02063 102.6 103.5 530 {5 98 $\mathbf{\Omega}$ 10 180 . 9 1 epidote and calcite veinlets. There is VA01207 104.0 120.0 16.0 n/a 548 n/a 145 n/a n/a 335 approximately 3 % ilmenite and leucoxene. VA02064 104.0 106.0 210 2.0 520 101 <1 0 < 5 5 52.6 54.6 Strongly epidotized with minor fracture VA02065 106.0 108.0 2.0 0 460 ٢5 125 (1 • 280 controlled epidote, quartz and calcite veinlets 7402065 108.0 110.0 560 22 310 2.0 ٥ <5 111 <1 with trace pyrrhotite and chalcopyrite at 53.6 VA02067 110.0 112.0 140 2.0 Ð 380 <5 97 <1 - 9 and trace chalcopyrite at 54.5 and 54.6. There VA02068 112.0 114.0 0 93 11 280 2.0 520 <5 (i is approximately 5 %, 2 to 3 mm, leucoxene and VA02059 114.0 116.0 2.0 θ 490 (5 105 <1 49 270 1 to 2 %, up to 1 mm, ilmenite. VA02070 116.0 118.0 2.0 0 580 ٢5 98 (1 31 280 VA02071 118.0 120.0 54.6 55.8 Medium grained with approximately 20 to 30 %, 1 2.0 0 580 ٢\$ 112 <1 25 280 VX02072 120.0 122.0 to 2 mm, feldspar laths and upproximately 3 % 760 <5 115 <1 44 270 2.0 0 leucoxene - ilmenite. There are minor quartz -YA01208 120.0 145.0 25.0 n/a 611 n/a 142 n/sn/a 521 chlorite veins at 55.1, 55.2 and 55.6. VA02073 136.0 137.0 390 1.0 8 420 <5 110 <1 (5 55.8 58.0 STRONG PERVASIVE EPIDOTIZATION , epidote and VA02074 137.0 138.0 1.0 \$ 376 <5 158 <1 **(**5 360

4

Π

PR	OPERT'	Y: Chemain	US J.V. Falconbridge linited Diahond drill Log					HOLE N CH88-64	o: Pa	ige Numb 4	er				
froa (m)	To (m)		DESCRIPTION	Sample No.	From (m)	То (д)	Vidth (m)	Total Sulphides	Сч (ррм)	РЪ (ppm)	Zn (ppm)	Ag (ppm)	ли (рръ	Ba) (ppm)	
			quartz flooded with minor medium grained and chloritic zones. There is trace chalcopyrite at 57.5 in chlorite.	VA01209 VA01210 VA01211	145.0 164.0 174.0	164.0 174.0 195.0	19.0 10.0 21.0	n/a n/a p/a	673 798 572	n/a n/a n/a	161 128 115	n/a n/a n/a	n/a n/a n/a	1660 974 327	
		58.0 59.5	Medium grained, similiar to 54.6 to 55.8 with chalcopyrite speck at 58.8 and 58.9, associated with minor fracture controlled epidote. There are 3 < 1 mm pyrite cubes at 59.5.	VA02075	190.2	191.4	1.2	0	250	(5	107	<1	5	110	
		59.5 92.5	Coarse grained gabbro with on average 40 to 50 4, 1 to 5 mm, feldspar laths to clots of intergrown crystals, 50 to 55 % mafric crystals and 5 % ilmenite, 1 to 4 mm crystals, average 2 mm, often associated with leucoxene rims.												
			Variably feldspar or mafic dominated, usually mafics dominate groundwass with feldspars in clots. Sulphides occur as trace locally. Chalcopyrite and pyrite occur as < 1 mm blebs associated with fracture controlled												
			chloritization of fracture controlled (3 mm calcite veinlets. Chloritization and quartz or calcite veins constitute less than 1% of the interval and are concentrated around 79.0 and 81.8.												
		92.5 102.	6 Dark green siliceous (?), slightly glassy and approximately 7 %, 3 to 4 mm, feldspar laths. There are approximately 10 to 15 % light purple to brown grains, appear to be sphene rimming ilmenite. Is not magnetic. There are up to 5 % zones with 20 % feldspar clots locally. Mafic									•			
			crystals are altered to chlorite, with some retaining elongate hornblende crystal forms. There is trace chalcopyrite throughout, some appears to be interstitial to crystals, but most is associated with fracture controlled calcite and quartz veinlets.												
		102.6 103	.5 Coarse grained gabbro with 0.25 to 0.5 % magmatic chalcopyrite, 2 to 3 %, 2 to 3 mm, ilmenite and equal mix of 2 to 5 mm feldspar and mafic crystals.												
		103,5 104	.0 Fine-grained greyish medium green with 3 %, 1 to 2 mm, epidote to feldspar grains. There is weak fracture controlled carbonatization.												
		104.0 122	O Variable coarse grained gabbro, similiar to 92.5 to 102.6. There is approximately 10 to 12 %, 1 to 3 mm, purple non- to strongly magnetic ilmenite grains. Is locally 'glassy'. Feldspars vary from 10 to 20 %, 2 to												2
			6 mm, clots and laths. There is trace to 0.5 A chalcopyrite locally, average approximately 0.25 A. Nost chalcopyrite is magmatic, i.e. interstitual to matic and feldspar grains and some is associated with minor chlorite and												a

Ū

.

•

.

•

۰.

PROPERTY: Chemainus J.V.

î

FALCONBRIDGE LIMITED DIAMOND DRILL LOG HOLE No: Page Number CH88-64 5

ŶЪ

Ζn

Åσ

(ppm) (ppm) (ppm) (ppb) (ppm)

λu

Ba

magnetic. Averages 3 %, 1 to 5 % locally, ilmenite thru the rest of the interval. There is local strong epidotization of feldspar laths with minor associated fracture controlled epidote veinlets from approximately 127 to 128 and 139.6 to 140.6. From 136.1 to 138.0 there is 5 to 7 % pyrite, 1 to 2 % pyrrhotite and trace to 0.5 % chalcopyrite, appears to be fracture controlled. There is strong hematite locally on fractures. Trace chalcopyrite in minor quartz and calcite veinlets locally.

145.8 164.0 Hedium to coarse grained with trace to 20 % feldspars, average 5 to 7 %, 1 to 2 mm, thin laths. Dominated by mafic and ilmenite crystals. Weakly to moderately magnetic with on average 3 to 5 % ilmenite. There are approximately 25 to 35 %, 2 to 4 mm, mafic crystals, probably chloritized hornblendes, in light green matrix. There is minor fracture controlled mematite.

164.0 190.2 Medium to fine-grained with approximately 60 %, 1 to 2 mm, chloritized mafic crystals in hight green matrix with approximately 3 to 5 %, approximately 1 mm, ilmenite grains and trace very fine-grained pyrite and chalcopyrite. There are minor quartz chlorite - calcite veinlets and fracture controlled epidote veinlets with small, < 1.5 mm chalcopyrite blebs. There is minor fracture controlled hematite. From 177 to 190 there are minor < 1 m zones with 5 to 10 %, 1 to 2 mm feldspars, locally epidotized, epidotization associated with fracture controlled epidote veinlets.

190.2 191.4 Shear zone, non-magnetic dark green chlorite with 10 % white guartz veins and approximately 5 % white calcite streaks. Shearing is at 60 degrees to core axis.
191.4 195.1 Same as 164.6 to 190.2.

Gabbro is locally blocky with no long runs of competent core.

Lost core :. 72.8 74.7 : 0.2 m. Sample From To Width Total Cu No. (m) (m) (m) Sulphides (ppm)

PR	OPERT	Y: Chemainus J.V. Falconbridge Limited Diamond Drill Log					NOLE N CH88-64	o: Pa	ge Numb 6	er				
From (m)	То (в)	DESCRIPTION	Sample No.	From (m)	То (m)	Viđth (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (aqq)	Ag (ppm)	Au (ppb)	Ba (ppm)	
		74.7 78.5 : 0.1 m. 120.0 120.4 : 0.3 m. 130.0 131.0 : 0.2 m. 142.0 143.0 : 0.3 m. 143.9 144.8 : 0.1 m. 149.5 150.6 : 0.2 m.												
		End of hole: 640 feet (195.1 m) on Sunday June 6, 1988 at 4:00 p.m.												
		Total lost core: 2.1 m; % Recovery = 98.9 %. Lack of dip tests due to breakdown of Sperry-Sum single shot.												

1

Ū

.

•

2

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	EROM	TQ	BA (pp#)	CU (gpe)	2H (ppm)	А() (ррв)	AU (000)	EQ (ppm)	N[(pp=)	PB (pa*)	AS (goe)	CP (or=)	MQ (ppa)		CUZN	ETS	ÊE
VA02059	22.00	23.00	1100.0	60.0	820.0	<0.5	<5.0	25.0	15.0	22.0	8.0	3.0	10.0	1320.0	7.	1.	2.
VA02060	23.00	24.00	840.0	47.0	58.0	<0.5	<5.0	20.0	6.0	11.0	130.0	<1.0	5.0	590.0	45.	4.	6.
VA02061	24.00	25.20	870.0	36.0	41.0	<0.5	(5.0	21.0	5.0	18.0	190.0	(1.0	4.0	580.0	47.	٩.	5.
VA02062	25.20	26.00	890.0	37.0	605.0	<0.5	<5.0	8.0	10.0	24.0	8.0	9.0	7.0	580.0	6.	1.	2.
VA02063	102.60	103.50	180.0	530.0	98.0	<0.5	10.0	20.0	9.0	<5.0	6.0	(1.9	5.0	480.0	84.	1.	6.
VA02064	104.00	106.00	210.0	520.0	101.0	<0.5	5.0	22.0	8.0	(5.0	<5.0	<1.0	5.0	620.0	84.	0.	7.
VA02065	106.00	108.00	280.0	460.0	125.0	<0.5	9.0	27.0	10.0	<5.0	<5.0	(1.0	5.0	820.0	79.	٥.	10.
VA02066	108.00	110.00	310.0	560,0	111.0	<0.5	22.0	23.0	8.0	<5.0	<5.0	<1.0	4.0	645.0	83.	0.	8.
VA02067	110.00	112.00	140.0	380.0	97.0	<0.5	9.0	19.0	6.0	<5.0	<5.0	<1.0	4.0	560.0	80.	٥.	6.
VA02068	112.00	114.00	260.0	520.0	93.0	(O.S	11.0	18.0	6.0	<5.0	<5.0	<1.9	4.0	510.0	65.	э.	б.
VA02069	114.00	116.00	270.0	490.0	105.0	<0.5	49.0	20.0	6.0	<5.Q	<5.0	<1.0	4.0	540.0	82.	0.	2.
1002020	114 00	110 00	250.0	580.0	98.0	<0.5	31.0	18.0	5.0	<5.0	<5.0	(1.0	3.0	\$50.0	86.	0.	6.
VA02070	118.00	120.00	280.0	580.0	112.0	<0.5	25.0	20,0	5.0	<5.0	(5.0	<1.0	4.0	535.0	Ĥ.4	0	7
VA02073	120.00	122.00	270.0	760.0	115.0	<0.5	44.0	23.0	6.0	(5.0	/5.0	<1.0	4.0	605.0	87.	0.	8.
VA02073	136.00	137.00	390.0	420.0	110.0	(0.5	<5.0	16.0	8.0	(5.0	\$.0	<1.0	3.0	900.0	79.	8.	8.
VA02074	137.00	138.00	360.0	376.0	158.0	<0.5	<5.0	20.0	8.0	<5.0	<5.0	<1.0	3.0	800.0	70.	β.	9.
VAG2075	190.20	191.40	1:0.6	250.0	107.0	<0.5	5.0	32.0	21.0	(5.0	6.0	<1.0	4.0	950.0	70.	٥.	9.

D

1

.

Page No. 1

.

.-

÷

 $\langle \cdot \rangle$

.-

SAMPLE Number	FROM	TB	15102	XAL203	ICAU	INGO	2NA20	2820	282203	21102	17205	ZMHQ	X101	SUN	BA	AI	NACA
														00 51			
VA00774	11.60	12.00	47.20	13.90	10.30	5,28	1.41	0.06	12,10	1-84	0.17	0.17	8.08	70.31	•7, 70(54.	
VA00775	15.70	16.20	62.20	14.50	1.98	4-90	3.22	1.31	6.97	0.42	0.08	0.11	3.62	99.31	/30.	54.	э.
VA00776	21.00	22.00	61,10	13.10	7.57	3.25	2.01	2.12	3.48	0.36	0.08	0.25	6.39	99.71	1450.	36.	10.
VA00777	29.50	30.00	62.50	14.30	5.72	3.46	4.20	1.03	4.91	0.42	0.08	0.10	3.23	99.95	629.	31.	10.
VA00778	32.30	32.60	45.20	15.10	9.73	6.33	1.63	0.17	13,70	2.06	0.20	0.21	5.08	99.41	143.	36.	11.
VA00779	40.20	40.50	64.90	14.40	2.94	3.20	4.75	1.75	3.75	0.42	0.09	0.07	2.62	96.89	1610.	39.	8.
VA00780	45.00	46.00	60.90	14.80	7.09	3.77	2.82	1.87	5.63	0.43	0.09	0.10	1.93	99.42	928.	36,	10.
VA00781	49,50	50.00	48.00	14.00	10.50	5.66	2.40	0.27	13.40	2.05	0.21	0.23	2.08	98.80	119.	31.	13.
VA09782	60.00	60.50	48.20	14.20	9.75	4.31	2.25	0.38	14,70	2.42	0.23	0.23	2.00	98.67	139.	28.	12.
VA00783	83.80	84.30	48.40	13.60	8.B4	4.35	2.79	0.27	15.00	2.50	0.22	0.21	2.54	98.71	122.	28.	12.
VA00764	96.00	98.50	51.80	11.70	7.27	2.85	3.31	0.53	16.00	2.55	0.44	0.23	1.93	98.61	369.	24.	11.
VA00785	115.00	115.50	47.80	11.00	7.51	3.09	2.42	0.51	18.90	3.73	0.38	0.27	2.70	98.30	275.	27.	10.
VA00786	128.00	129.00	55.80	11.20	6.03	1.53	3.02	0.71	17.10	2.05	0.62	0.27	1.62	99.95	400.	20.	9.
VA00787	147.00	148.00	50.30	10.70	6.72	1.96	1.90	0.50	20.20	2.33	1.05	0.31	3.70	99.67	1550.	22.	9.
VA00788	168.00	168,60	47.30	10.90	7.98	2.63	2.30	0.48	18.10	3.52	0.4]	0.29	5.39	99.30	1190.	23.	10
VA00789	187.00	189.00	49.30	10.70	9.33	4.13	2.76	0.34	17.90	3.39	0.30	0.26	2.00	100.41	167.	27.	12.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (Major Elements)

.

HOLE NO. CH88-64 WHOLE ROCK SAMPLES

Page No. 1

2

0

\$

1

ļ

.

.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (major elements)

SAMPLE																	
NUMBER	EROM	TO	\$\$ IO 2	IAL203	ICAO	1860	1¥A20	1×20	XFE203	XT 102	19205	1940	TLOI	SUM	ВА	AI	NACA
										·							
UA01201	14.40	30.80	61.10	14.20	5.49	3.02	3.00	2.06	4.65	0.42			3.70	97.65	1130.	37.	8.
VA01202	35.10	39.00	64.20	14.70	4.41	3.19	3.94	1.64	5.61	0.45			1.62	99.76	1730.	37.	В.
VA01203	39.80	47.30	62.60	14.90	6.55	3.36	3.02	2.22	5.14	0.43			2.31	100.53	1490.	37.	10.
VA01204	48.00	58.00	49.00	13.70	11.10	4.62	1,81	0.27	13.50	1.90			3.15	99.06	85.	27.	13.
VA01205	59.00	92.00	48.40	13.70	9.43	4.54	2.58	0.31	15.60	2.58			2.00	99.14	123.	29.	12.
VA01206	93.00	104.00	16.80	11.40	8.86	3.29	2.96	0.53	17.10	3.14			4.93	99.01	272.	24.	12.
VA01207	104.00	120.00	48.90	11.10	7.69	3.03	2.62	0.59	18.90	3.94			2.08	98.85	335.	26.	10.
VA01208	120.00	145.00	54.10	11.30	6.48	1.59	3.12	0.64	17.40	2.08			2.62	99.33	521.	19.	10.
VA01209	145.00	164.00	50.60	10.90	6.88	2.20	2.52	0.67	19.00	2.60			2.54	97.91	1660.	23,	9.
VA01210	164.00	174.00	47.40	10.30	7.62	3.16	2.23	0.44	18.10	3.70			3,31	96.76	974.	27.	10.
VA01211	174.00	195.00	50.20	10.70	8.25	3.85	2.68	0.39	17.70	3.42			2.31	29.50	327.	28.	11.

0

•

:

-

. . .

HOLE NO. CHEB-G4 ALTERED SAMPLES

Page No. 1

1

Bondar-Ciegg & Company Ltd. 130 Pemberion Ave North Vancouver, H.C. Canada V7P 2R5 Phone: (604) 985 0681 Felex: 04 352667

and the second second second States of the N

Geochemical Lab Report

3

CLIENT: FALCONBRIDGE LIMITED PROJECT: 605-116

REPORT: V88-04422.8 (COMPLETE)

SUBNITTED BY: D.P. MONEY DATE PRINTED: 30-JUN-88

REFERENCE INFO:

in conpilm July 27/83

UNDER			HOLDER OF			USTIAN	
	1	LERENI	ANAL YSES	DETECTION LIMIT	EXTRACTION	METHOD	
1	Au	Gold - Fire Assay	193	5 PP8	FIRF-ASSAY	Fire Assay AA	
2	Ag	Silver	193	0.5 PPN	HN03-HCL HOT FXT	PLASHA ENTSSION SPEC	
3	As	Arsenic	193	5 pph	HN03-HCL HOT EXT	R PLASNA ENTISSION SPEC	
4	Cd	Cadmium	193	1 PPN	HN03-HCL HOT EXT	R PLASHA ENISSION SPEC	
5	Co	Cobalt	193	1 PPH	HN03-HCL HOT EXT	R PLASHA ENISSION SPEC	
6	Cu	Copper	193	1 PPN	HN03-HCL HOT EXT	R PLASHA ENTISSION SPEC	
7	Fe	Iron	193	0.05 PCT	HN03-HCL HOT EXT	R PLASHA ENISSION SPEC	
8	ňo	Nanganese	193	1 PPN	HN03-HCL HOT EXT	R PLASMA ENTISSION SPEC	
9	Кo	No lybdenua	193	1 PP#	HN03-HCL HOT EXT	R PLASMA EMISSION SPEC	
10	Ni	Nickel	193	1 PPH	HN03-HCL HOT EXT	PLASHA ENISSION SPEC	
11	РЬ	Lead	193	5 PPM	IN03-HCL HOT EXT	PLASHA ENTSSION SPEC	
12	Zn	Zinc	193	1 PPM	HN03-HCL HOT EXT	PLASMA ENTISSION SPEC	
13	8a	Barium	193	20 PPH		X-RAY Fluorescence	
14	Ρt	Platinum	10	15 PP8	FIRE-ASSAY		
15	Pđ	Palladium	10	2 PPB	FIRF-ASSAY		
SAMPLE	TYPES	NUMBER	\$17E FF	ACTIONS	NUMBER SAL	PLE PREPARATIONS NUMBER	
D DRT	il cor	F 192	2 -15	0	193 65	SAY PREP 193	
		1/2			47.2 160		
Remark	s: Ass On	AY OF CU AND Zn >3000 V88-04472.6.	opm 10 FOLIC	n ml			
remark: Report	s: Ass on coptf	AY OF CU AND Zn >3000 V88-04422.6. S TO: MR. N. VON FERSE MS. PAT WHITING	opan 18 FOLIC	n m	INVOICE TO	MR. N. VON FERSEN	
remark: Report	s: Ass on Coptf	AY OF CU AND Zn >3000 V88-04472.6. S TO: MR. N. VON FERSE MS. PAT WHITING MR. D. MONFY	ppm T0 F0L10 N	n m	INVOICE TO	HR. N. VON FERSEN	
remark: Report	s: Ass on coptf	AY OF CU AND Zn >3000 V88-04472.6. S TO: MR. N. VON FERSE MS. PAT WHITING MR. D. MONFY	ppm T0 F0L10	n m	INVOICE TO	HR. N. VON FERSEN VA02054-620-	72 8
remark: Report	S: ASS ON COPTE	AY OF CU AND ZA >3000 V88-04472.6. S TO: MR. N. VON FERSE MS. PAT WHITING MR. D. MONFY	ppm TO FOLIC	n m L	INVOICE TO	ИР. N. VON FERSEN VA02054-6207 JA08235-0840	72 в 8 њи
remark Report	S: ASS ON COPTF	AY OF CU AND Zn >3000 V88-04422.6. S TO: MR. N. VON FERSE HS. PAT WHITING MR. D. MONFY	opun 10 FOLIC	n m	INVOICE TO	NR. N. VON FERSEN VAO2054-0207 JAO 8235- 0840	72 д 8 њу

Bondur-Clegg & Company Etd. 130 Perniberton Ave North Vancouver, B C Canada V7P 2R5 Phone, 4004 985 0603 Telev: 04 352667

2

تحاد

 Δ

J

REPORT: V88-C	4422.0	·· •					Ρ	ROJECI: 6	05-116		PAGE 1A		· · · .
sampi e Number	EI ERFNT UNITS	Au PP9	Ag PPhi	As PPM	Cd PPH	Co PPM	Cu PPH	Fe PCT	itin PPN	No PPN	Ni PPh	Рь PP11	
D2 VA02054		s	<0.5	<5	<1	25	49	6.40	1320	7	53		· · · · · · · · · · · · · · · · · · ·
D2 VA02055		<5	<0.5	<5	<1	19	70	5.60	940	6	26	<5	
D2 VA02056		<5	<0.5	<5	<1	20	78	7.00	760	8	19	6	
D2 VA02057		<s< td=""><td><0.5</td><td>21</td><td>1</td><td>5</td><td>46</td><td>2.45</td><td>800</td><td>19</td><td>18</td><td>18</td><td></td></s<>	<0.5	21	1	5	46	2.45	800	19	18	18	
D2 VA02058		G	<0.5	120	<1	7	48	2.80	900	12	19	17	
02 VA02059		<5	<0.5		3	25	60	2.32	1320	i)	15	22	
D2 VA02060		ও	<0.5	130	<1	20	47	5.60	590	5	6	11	
D2 VA02061		S	Ø .5	190	<1	21	36	5.60	580	4	5	18	
D2 VA02062		3	<0.5	8	9	8	37	1.82	580	7	10	24	i
D2 VA02063		10	<0.5	6	d	20	530	5.50	480	5	9	ও	
50 HAR20//				· · · · ·			г. г.ао		/00				· · · · ·
DZ VAUZUSA		2	(0.5	0	(1	22	520	7.20	620	2	8 40	S (S	
DZ VRUZUSO		7	<0,5	() ()	12	27	469 670	7.50	8211	э ,	10	(5	
UZ VRUZ066		22	<u.5< td=""><td>(S) (C)</td><td>(1 </td><td>23</td><td>260</td><td>8.uu</td><td>64D</td><td>4</td><td>ð ,</td><td>C) L</td><td></td></u.5<>	(S) (C)	(1 	23	260	8.uu	64D	4	ð ,	C) L	
UZ VRUZU6/		4	<u.5< td=""><td>C (</td><td>a a</td><td>17</td><td>380</td><td>6.40</td><td>561</td><td>4</td><td>6</td><td>S</td><td></td></u.5<>	C (a a	17	380	6.40	561	4	6	S	
DZ VRDZD60		13	\$4.5	0	1>	18	520	5.40	510	4 	. .	G	
D2 VA82869		49	<0.5	< 5	đ	20	490	6.50	540	4	6	്ര്	
D2 VA02070		31	<0. 5	<5	<1	18	580	6.20	550	3	5	<5	
D2 VA02071		25	<0.5	<5	<1	20	580	6.80	535	4	5	<5	
D2 VA02072		44	<0.5	ও	<1	23	760	7.80	605	4	6	<5	
D2 VAD8235	,	73	<0.5	32	<1	2	12	2.00	1560	7	4	6	:
07 0408236			 <0.5 	74	d	· 2 · ·	10	2 25	1680	9		4 5	
D2 UA08237		34. 74	<0.5 <0.5	24	d	2	14	2 00	940	6	3	7	
D2 VA08238		18	(1.5	15	<u>را</u>	3	11	1.55	765	3	3	6	
D2 VA08239		5	<0.5	6	<1	3	11	1.35	710	4	3	8	
D2 VAD8240		1?	<0.5	21	<1	2	11	2.26	970	6	4	12	
D2 HAD92/1			<0 C					·	000			,	،
D2 VH00241		3	78.5	20		2	14	2 00	990 940	4	د د	10	
D2 UA08242		75	<0.5 <0.5	20		2	10	1 28	530	4	ч Э	10	
D2 VA00243		5	<0.5 <0.5	ری ج	×t	2	, 9	1.20	715	4	3	6	
D2 VA08245		S	<0.5	6	<1	3	8	1.22	615	3	3	<5	ļ
D2 HAB9247	· · · · · · · · · · · · · · · · · · ·	···· , ···		30			40	4.97	7/0				······
D2 VAU0240		р с	(0.5	20	~ ~ ~	2 2	10 C	1.25	740	4	4 2	11	
D2 UA08247		נ	20.5	12	×1	2 5	נ ר	1.0%	790 510	4	2	0 /5	
D2 11/09240		, 27	20.J	11	NL 21	1	1	1.00	230 249	4 1	د ۲	ر. د	
02 VRU0297		12	<0.0 20 S	e E	NI 71	2	0	1.70	018 000	ب ت	9 7	0	
UL VHUQLIU		12		7	N1 	2	0 	00.1	700	נ 	9	¢	
D2 VA08251		16	<0.5	10	<1	2	8	1.52	930	4	4	6	
D2 VA08252		ও	<0.5	<s< td=""><td><1</td><td>2</td><td>4</td><td>1.00</td><td>570</td><td>4</td><td>3</td><td>5</td><td></td></s<>	<1	2	4	1.00	570	4	3	5	
D2 VA08253		20	<0.5	7	<1	9	28	2.25	855	3	15	8	
02 VA08254		< <u>s</u>	<0.5	<5	<1	3	4	1.28	598	3	3	5	
D2 VA08255		<u>د</u>	<0.5	11	<1	5	17	1.70	750	4	7	10	

Bondar-Clogg & Company Ltd. 130 Penderion Ave North Vancouver, B.C. Catuda V7P 2R5 Phone, 6041 985-0881 Telev: 04 352667

- .

REPORT: V88-0	4422.0					PROJECT: 605-116 PAGE 1B
sample Number	element Units	Za PP i 1	Ba PPM	Pt PP8	Pd PPB	en e
D2 VA82054		87	830			
D2 VA02055		73	330			
D2 VA02056		89	650			
02 VA02057		88	900			
D2 VA02058		60	1100			
D2 VA02059		820	i 100	• •		
D2 VA02060		58	840			•
D2 VA02061		41	870			
D2 VA82062		605	8 9D			
D2 VA02063		98	180	25	55	
02 8002044		181	210	C15	<u>40</u>	· · · · · · · · · · · · · · · · · · ·
D2 UAG2045		125	280	30	80	
02 VA02003		115	200	<15	75	
D2 9802000		411	510	45	76	
D2 UAD2007		03	240	15	45	
UZ VHUZ1900		,,	200	13	4J .	
02 1002029	•	165	270	15	100	
02 VH02007		68	220	Z15	001	
02 VH02070		112	200	/15	120	
02 VH02071		112	200	×1.5	70	
D2 VA08235		30	650	X15	70	
	•••••••••					······································
D2 VA08236		33	630			
D2 VA08237		28	720			
D2 VA08238		24	870			
D2 VA08239		34	950			
D2 VAD8240		65	/00			· · · · · · · · · · · · · · · · · · ·
D2 VAD8241		46	830			
D2 VA08242		42	840			
D2 VA08243		41	940			
02 VA08244		42	898			
D2 VA08245		32	880			
D2 UA08266	· · · · · · · · · · · ·	30	770			
D2 U008247		17	838			
D2 UA18248		18	820			
D2 VAN8249		25	730			
D2 VA08250		24	750			
D2 UAD8251	 	2%	729			
D2 0002.11		24	830			
D2 VH007.32		74	0.307 1871			
02 8008254		ъ. ъ.	810 810			
D2 UA82255		بەر. 1\/	820			
DT AH04513		40	V2U			

Bondiz-CLgg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. Canada V7P 283 Phone: (604) 985-0681 Telex: 04-352667

Geochemical Lab Report

En compile July 27/88

REPORT: V28-04798.0 (COMPLETE) REFERENCE INFO: SURMITTED BY: D.P. MONEY CLIENT: FALCONBRIDGE LIMITED PROJECT: 605-116 MATE PRINTED: 15-JUL-88 NUMBER OF LOWER ORDER ELEMENT ANALYSES DETECTION LIMIT EXTRACTION HETHOD l Au Gold - Fire Assay 237S PPB F I RE-ASSAY Fire Assay AA 2 237 69 Silver 0.5 PPM HNO3-HCL HOT EXTR PLASMA EMISSION SPEC 3 237 As 5 PPN PLASMA EMISSION SPEC HNO3-HUL HOT EXTR Arsenic 237 ٤đ Cadaium 1 PPM HN03-RCL HOT EXTR PLASMA EMISSION SPEC 4 5 Co Cobait 237 1 998 HNC3-HCL HOI EXTR PLASMA EMISSION SPEC 237 6 Cu Copper 1 PPM HN03-HCL HOT EXTR PLASMA EMISSION SPEC 7 Ee Iron 237 0.05 PCT HN03-HCL HO1 EXTR PLASMA EMISSION SPEC 8 Ħа 237 1 PPM HN03-HCL HOT EXTR PLASMA EMISSION SPEC Mangapese 9 fio Molypdenus 237 1 198 HNU3-HCL HOT EXTR PLASMA EMISSION SPEC 10 Ni Nickel 237 } 29h HNO3-HCL HOT EXTR PLASMA EMISSION SPEC 11 85 Lead 237 5 PPK HNU3-HEL HOT EXTR PLASMA EMISSION SPEC 12 Zo 237 Zinc 1 228 HNO3-HCL HOT EXTR PLASMA EMISSION SPEC 13 Ba 237 Sarium 20 PPM X-RAY Fluorescence 14 Pt 15 PPB Platinum 10 FIRE-ASSAY 15 Pd Palladium 10 2 898 F1RE-ASSAY SIZE CONCTIONS ------ NUMBER SAMPLE PREPARATIONS - HUMPER R ROCK OR BED ROCK 2 ~150 237 237 ASSAY PREP 237REPORT COPIES TO: MR. N. VON FERSEN INVOICE TO: NR. N. VON FERSEN MS PAT WHITING MR. D. HONEY *ladu* VA02073-02226-HT-VA08409-08491 -

Bondar-Clegg & Company Lid. 130 Pemberion Ave. North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-0681 Telex: 04-352667

Geochemical Lab Report

REPORT: V88-()4798.0						P	ROJECT: 6	05-116		PAGE 1A		
Sample Number	element UNITS	Au PPB	Ag PPH	As PPM	C d PPM	Co Pth	Cu PPH	Fe PCT	n PPK	Ho PPH	Ni PPH	Рь Ррн	
R2 VA02073		(5	<0.5	<5	<1	16	420	7.60	900	3	8	<5	
R2 VA02074		<5	(0.5	(S	$\langle 1 \rangle$	20	376	8.50	800	3	8	<5	
R2 VA02075		5	<0.5	6	Ω	32	250	9.20	950	4	31	<5	
R2 VA02076		<5	<0.5	₹5	$\langle 1 \rangle$	24	155	6.05	1340	3	56	(5	
R2 VA02077		<5	<0.5	7	a	24	158	5.60	. 1320	3	52	<5	
R2 VA02078		(5	<0.5	<5	4	24	190	5.30	710	3	52	<5	
k2 VA02079		<5	<0.5	<5	$\langle 1 \rangle$	22	180	4.80	595	2	48	<5	
R2 VA02080		<5	<0.5	(5	$\langle 1 \rangle$	10	270	2.45	245	2	36	<5	
R2 VA02081		<5	<0.5	5	Ω	24	150	5.80	1000	3	t2	<5	ĺ
R2 VA02082		<5	(0.5	<5	<1	26	190	5.60	820	3	60	(5	
k2 VA02083	·····	<5	<0.5	<5	<1	30	340	5.20	650	2	43	<5	
R2 VA02084		<5	<0.5	<5	$\langle 1$	28	750	5.60	850	3	44	<5	ļ
R2 VA02085		<5	<0.5	<5	Δ	20	30	3.35	1150	1	23	<5	
R2 VA02086		20	<0.5	<5	$\langle 1 \rangle$	22	1820	4.20	1280	2	28	<5	
R2 VA02087		<5	<0.5	<5	Q	24	23 _	3.85	1220	3	28	<5	
k2 V402088		27	<0.5	<5	41	26	2600	5.90	1150	2	32	<5	7
R5 VA02089		<5	<0.5	<\$	$\langle 1 \rangle$	30	92	5,55	750	2	37	(5	
R2 VA03090		7	<0.5	<5	(1	32	360	5.95	1000	3	45	<5	
k2 VA02091		<5	<0.5	<5	()	22	80	4.85	730	2	25	<5	ļ
R2 VA02092		G	(0,5	<5	1	32	460	5.20	900	2	30	<5	
k2 VA02093		<5	<0.5	(5	<u>(</u>]	12	1080	2.15	410	2		<5	
R2 VA02094		<5	<0.5	5	(1	4	63	1.30	310	19	25	<5	
R2 VA02095		<5	<0.5	<5	$\langle 1 \rangle$	6	18	1.80	210	5	25	<5	
R2 VA02096		<5	<0.5	<5	$\langle 1$	6	88	1.90	150	4	32 -	<5	
R2 VA02097		<5	(0.5	<5	4	2	120	0.80	95	76	20	<5	
R2 VA02098	and the second second second	< S	<0.5	20	<u>(</u>]	24	124	4.10	1600	3	26		
82 VA02099		<5	<0.5	<5	$\langle \mathbf{i} \rangle$	20	40	4.00	590	4	14	<5	
R2 VA02100		<5	<0.c	<5	<1	20	40	3.50	560	4	12	(5	
R2 VA02101		<5	<0.5	<5	$\langle 1 \rangle$	20	5	0.70	130	2	6	<\$	- 1
R2 VA03102		<5	0.8	<5	(1)	16	120	2.75	310	2	8	ġ	
k2 VA02103		13	<0.5	<5	<1	20	260	2.45	320	1	8	(5	
R2 VA02104		16	<0.5	<5	a	38	170	2.10	220	2	9	6	
R2 VA02105		{ 5	<0.5	<5	$\langle 1 \rangle$	8	5	0.50	60	4	7	<5	
R2 V902106		<5	<0.5	<5	$\langle 1 \rangle$	4	4 -	0.30	50	6	4	13	
R2 VA02107		<5	<0.5	<s`< td=""><td><1</td><td>2</td><td>4</td><td>0.25</td><td>40</td><td>7</td><td>2</td><td>77</td><td>•</td></s`<>	<1	2	4	0.25	40	7	2	77	•
R2 VA02108		(5	<0.5	<5	< <u> </u>	(1	4	0.20	20	16	4	59	
22 VA02109		<5	<0.5	<5	<1	G	4	0.20	30	16	2	35	
R2 VA02110		6	<0.5	<5	$\langle 1 \rangle$	\sim	4	0.20	25	19	2	35	ļ
R3 VA02111		<5	<0.5	<5	Ω	$\langle 1 \rangle$	4	0.15	30	15	4	47	
R2 VA02112		(5	<0.5	(5	\mathbf{C}	$\mathbf{D}_{\mathbf{r}}$	4	0.20	20	5	4	67	

Bondar-Clegg & Company Ltd.

130 Pemberion Ave. North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-6681 Telex: 04-352667

_

Geochemical Lab Report

REPORT: V38-	04798.0				PR0JEC1: 605-116	PAGE 1B
Sample Number	ELEMENI Za UNIIS PPN	bə PPN	Pt PPB	998 1998	· · · · · · · · · · · · · · · · · · ·	
R2 V402073	110	390	<15	<2		
R2 \\402074	158	360	<15	$\langle 2 \rangle$		
R2 VA02075	107	110	<15	20		
R2 VA02075	85	100	<15	15		
R2 VA02077		90 	<15	15		
R2 VA02078	77	250	<15	20	·····	
R2 VA02079	70	90	<15	20		
k2 VA02080	32	20	<15	25	·	
R2 VA02081	75	30	<15	15		
k2 VA02082	70	250	(15	15		
R2 VA02083	42	90	анан талын Т		· · · · · · · · · · · · · · · · · · ·	
k2 VA02084	46	250				
R2 VA02085	56	60				
R2 VA02086	54	120				
R2 VA02097	42	30				
R2 VA02088	42	120				
R2 VA02089	51	190				
R2 VA02090	55	150				
R2 VA02091	50	110				
R2 VA03092	82	250			ander der einer eine der die der ander einen eine der der einen einen einen versten einen einen einen einen eine	
R2 VA02053	35	40				
R2 VA02094	20	90				
R2 VA02095	34	1000				
R2 VA02096	30	290				
R2 VR02097		240		• • · • • • • • •_	· · · · · · · · · · · · · · · · · · ·	
R2 VA02098	175	360		+ · · - ++- ·, ··-,+,		
R2 V802099	39	1100				
k2 VA02100	• 38	3100				
82 VA02101	8	1400				
R2 VA02102		2900		_ ,	· · · · · · · · · · · · · · · · · · ·	
R2 VA02103	17	3500				
R2 VA02104	15	2300				
R2 VA02105	5	2800			\$	
R2 VA02105	3	1700				
R2 VA02107	4	1400				578. 1
R2 VA02109	5	2400				
82 VA02109	4	1900				
R2 VA02110	5	2600				
82 VA02111	4	2400				1
KZ V802112	7	2500				

in computer supt 11/02

CONNECTED REPENT

CERTIFICATE OF ANALYSIS

REPORT 5391

TO: FALCONBRIDGE LIMITED ATTN: N. VON FERSEN 701-1281 WEST GEORGIA STREET VANCOUVER, BRITISH COLUMBIA V6E 3J7

CUSTOMER No. 1282

DATE SUBMITTED 20-Jun-88

Total Pages 4

REF. FILE 1764-05

74 SPLIT CORES Proj. 605-116

WRMAJ % WRMIN PPM METHOD WR WR

0.01 10.

DETECTION LIMIT

VA00771-00786-VA01188-1203-VA02422-2441-VA02857-2878-

> X-RAY ASSAY LABORATORIES LIMITED CERTIFIED BY

DATE 16-AUG-88

SAMPLE \ %	\$102	AL 203	CAO	MGO	NA2O	K20	FE 203	MNO	T 102	P205	CR203	LOI	SUM
VA00771	45.0	16.7	10.0	2.45	2.92	1.83	10.3	0.23	0.82	0.44	<0.01	9.39	100.2
VA00772	69.3	14.1	3.26	1.27	2.15	3.58	2.26	0.09	0.24	0.07	<0.01	3.54	100.1
VA00773	71.6	12.5	2.76	1.27	4.10	1.88	2.62	0.09	0,23	0.05	<0.01	2.77	100.0
VA00774	47.2	13.9	10.3	5.28	1.41	0.06	12.1	0.17	1.84	0.17	<0.01	6.08	98.6
VA00775	62.2	14.5	1.98	4.90	3.22	1.31	6.97	0.11	0.42	0.08	<0.01	3.62	99.4
VA00776	61.1	13.1	7.57	3.25	2.01	2.12	3.48	0.25	0.36	0.08	<0.01	6.39	99.9
VA00777	62.5	14.3	5.72	3.46	4.20	3.03	4.91	0.10	0.42	0.08	<0.01	3.23	100.1
VA00778	45.2	15.1	9.73	6.33	1.63	0.17	13.7	0.21	2.06	0,20	<0.01	5.08	99.5
VA00779	64.9	14.4	2.94	3.20	4.75	1.75	3.75	0.07	0.42	0.09	0.01	2.62	99.1
VA00780	60.9	14.8	7.09	3.77	2.82	1.87	5.63	0.10	0.42	0.09	<0.01	1.93	99.6
VA00781	48.0	14.0	10.5	5.66	2.40	0.27	13.4	0.23	2.05	0.21	<0.01	2.08	98.9
VA00782	48.2	14.2	9.75	4.31	2,25	0.38	14.7	0.23	2.42	0.23	<0.01	2.00	98.8
VA00783	48.4	13.6	8.84	4.35	2.78	0.27	15.0	0.21	2.50	0.22	<0.01	2.54	98.8
VA00784	51.8	11.7	7.27	2.85	3.31	0.53	16.0	0.23	2.55	0.44	<0.01	1.93	98.8
VA00785	47.8	11.0	7.51	3.08	2.42	0.51	18.9	0.27	3.73	0.38	<0.01	2.70	98.5
VA00786	55.8	11.2	6.03	1.53	3.02	0.71	17.1	0.27	2.05	0.62	<0.01	1.62	100.2
VA01188	70.2	14.8	2.61	0.82	1.58	2.81	2.56		0.30	• • •		3.47	99.3
VA01189	69.3	14.8	3.57	0.70	1.61	3.41	2.17		0.29			4.16	100.2
VA01190	72.0	14.0	2.44	0.70	3.39	2.98	1.87		0.26	•••		2.70	100.5
VA01191	44.7	12.8	10.1	9.23	1.95	0.40	8.45		0,60	•		10.5	98.8
VA01192	70.1	13.8	2.51	0.94	3.37	2.97	2.33		0.26			3.00	99.4
VA01193	70.1	14.8	2.19	1.02	3.21	3.04	2.37		0.27			2.77	99.9
VA01194	70.4	14.2	2.58	1.09	3.33	2.45	2.25		0.27			2.85	99.6
VA01105	61 7	15.2	3 24	3, 11	3,00	2.02	5.81		0.43			3.77	99.4
VA01196	72.1	14.0	1.46	0.70	5.14	2.14	1.80	- • •	0.20			1.93	99.6
VA01197	47.9	16.0	9.69	2.59	3.68	1.53	8.86		0.59			8.77	99.7
VA01198	71.3	9.30	6.16	1.23	0.53	2.28	4.16		0.40	· · -		3.47	99.0
VA01199	67.6	13.9	3.91	1,19	2.51	3.38	2.61		0.28			3.77	99.3
VA01200	71.9	12.9	2.23	1.36	2.94	2.80	2.37		0.23			2,93	99.8
VA01201	61.1	14.2	5.49	3.02	3.00	2.06	4,66		0.42			3.70	97.8
VA01202	64.2	14.7	4.41	3.19	3.94	1.64	5.61		0.45	• • •		1.62	100.0
VA01203	62.6	14.9	6.55	3.36	3.02	2.22	5.14		0.43			2.31	100,7
VA02422	78.5	13.9	0.32	0,23	0.27	2.93	1.16	<0.01	0.17	0.04	<0.01	2.31	100.0
VA02423	79.7	10.5	0.70	0.33	0,15	2.45	2.03	0.03	0.15	0.04	<0.01	2.31	98.6
VA02424	77.4	13.0	0.75	0.53	0.15	3.08	1.13	0.04	0.19	0.04	<0.01	2.16	98.7
VA02425	70.8	15.0	2.21	1.02	0.33	3,19	2,37	0.07	0.27	0.07	<0.01	3.70	99.2
VA02426	73.8	12.7	2.06	1.24	0.19	3.02	1.60	0.10	0.18	0.04	<0.01	4.77	99.8
VA02427	70.8	13.4	3.08	1,65	0,14	3.01	2.27	0.11	0.24	0.06	<0.01	4.47	99.4
VA02428	44.5	11.8	11.1	6.26	<0.01	0.25	12.1	0.22	1.77	0.15	0.02	11.2	99.5
VA02429	73.9	12.9	1.93	1.19	0.15	3.06	1.57	0.09	0.19	0.04	<0.01	4.00	99.2
VA02430	72.9	13.4	2.28	1.25	0.20	3.10	1.52	0.10	0.19	0.04	<0.01	3.85	99.0
VA02431	74.0	11.6	2.20	1.35	0.05	2.97	2.15	0.17	0.22	0.06	<0.01	3.77	98.8
VA02432	65.5	13.9	4.96	2.02	0.28	1.93	5.12	0.37	0.37	0.12	<0.01	4.85	99.5
VA02433	70.2	13.7	3.91	1.60	0.28	2.37	2.17	0.14	0.18	0.05	<0.01	5.31	100.1
VA02434	70.9	13.2	2.92	1.55	0.22	3.06	2.48	0.11	0.26	0.07	<0.01	4.39	99.3
VA02435	43.7	13.0	9.68	6.78	<0.01	0.08	13.6	0.19	2.03	0.17	0.02	11.3	100.6
VA02436	68.9	14.1	3.46	1.75	0.25	3.17	2.24	0.12	0.26	0.06	<0.01	5.62	100.1
VA02437	75.3	13.3	1.30	1.00	0.16	3.41	1.41	0.08	0.26	0.06	<0.01	3.31	99.8
VA02438	76.4	11.9	1.19	0.93	0.19	2.95	2.20	0.07	0.15	0.04	<0.01	2.77	99.1
VA02439	43.3	15.0	11.5	3.91	0.70	1.11	10.7	0.17	0.87	0.14	<0.01	12.9	100.4

XRF W.R.A. SUMS INCLUDE ALL ELEMENTS DETERMINED. FOR SUMMATION, ELEMENTS ARE CALCULATED AS OXIDES

X-RAY ASSAY LABORATORIES LIMITED 1885 Leslie Street Don Mills Ontario M3B 3J4 (416)445-5755 Fax (416)445-4152 Tix 06-986947 Member of the SGS Group (Société Générale de Surveillance)

SAMPLE \ PPM	RB	SR	Y	ZR	NB	BA	NI	CU	ZN
VA00771	27	248	25	40	<10	667	<10	102	63 1
VA00772	. 87	217	21	98	<10	1180	12	64	49
VA00773	43	204	2/	84	16	707	13	112	4.5
VA00772	45	270	10	00	17	20	100	777	07
VAUU774	14	204	17	01	13	47	109	373	72
VAUU775	57	114	12		11	730	20	100	22
VA00776	38	242	16	53	11	1450	15	84	79
VA00777	24	244	<10	60	<10	629	25	92	48
VA00778	<10	242	20	93	13	143	80	219	93
VA00779	46	105	21	64	13	1610	21	109	51
VA00780	62	220	10	0.4	<10	028	22	94	37
1100700			17				62		
VA00781	18	196	14	86	20	119	66	211	94
VA00782	<10	199	<10	126	22	139	29	244	97
VA00783	<10	204	<10	124	14	122	31	289	93
VA00784	<10	179	27	266	39	369	<10	332	103
VA00785	<10	165	21	197	27	275	<10	475	128
VA00786	<10	223	49	397	38	400	<10	533	141
VA01188						1090	<10	40	31
VA01180						1200	<10	38	31
VA01100						004	<10	35	27
VA01101						730	127	115	50
VAUTION						737	127		20
VA01192				• • •		1030	<10	50	36
VA01193						1080	<10	60	205
VA01194	• • •					1070	<10	63	67
V601105						671	27	104	59
VA01196						709	<10	30	15
110								20	
VA01197				•••		588	<10	16	67
VA01198		• • •	· · ·	• • •		1270	27	126	83
VA01199						1120	<10	37	41
VA01200	•••					992	<10	42	39
VA01201		•••				1130	17	65	132
V601202						1730	24	105	76
VA01202						1/00	24	70	54
VA01203					10	1490	-10	70	-10
VAU2422	66	54	<10	01	10	1030	< 10	58	<10
VA02423	12	106	<10	54	< 10	1550	12		34
VA02424	63	35	18	97	<10	2090	<10	51	19
VA02425	68	79	11	99	14	1240	<10	59	35
VA02426	72	30	14	84	<10	938	<10	31	24
VA02427	58	16	22	97	17	1150	<10	35	106
VA02428	22	14	15	76	17	106	81	100	555
VA02429	71	41	16	84	<10	978	<10	30	18
1102427	,,	••							10
VA02430	63	48	16	87	<10	918	<10	27	26
VA02431	64	49	<10	79	23	1650	<10	25	54
VA02432	51	35	16	92	20	640	14	44	166
VA02433	52	50	<10	113	15	1110	<10	29	35
VA02434	91	56	26	94	10	1260	<10	48	60
VA02435	24	146	30	88	20	50	87	113	87
VA02432	75	.40	20	108	17	1270	<1∩	.,. ۲0	20 20
VA02430	79	יד- כד	54 54	01	24	1130	~10	20	70
VA024J1	10	34	20	71 47	10	2070	17	20	102
VAU2438	04	20	510	20	16	2070	<u>د</u> ا مد	27	104
VAUZ43Y	22	112	2 4	20	\$10	447	20	וכ	04

CORRECTED REPORT

CERTIFICATE OF ANALYSIS

REPORT 5549

TO: FALCONBRIDGE LIMITED ATTN: N. VON FERSEN 701-1281 WEST GEORGIA STREET VANCOUVER, BRITISH COLUMBIA V6E 3J7

CUSTOMER No. 1282

in computing Say 115/33

DATE SUBMITTED 4-Jul-88

REF. FILE 1902-D3

Total Pages 10

205 S.CORES Proj. 605-116

		METHOD	DETECTION	LIMIT
WRMAJ	010	WR	0.01	
WRMIN	PPM WR		10.	
		, con		
		1	1. m	

DATE 16-AUG-88

X-RAY ASSAY LABORATORIES LIMITED CERTIFIED BY

Ç

SAMPL	ε \ %	\$102	AL 203	CAO	MGO	NA20	K20	FE203	MNO	1102	P205	CR203	LOI	SUM
VA008	37	65.4	15.0	4.72	1.75	3.05	1.47	3.30	0.08	0.31	0.09	<0.01	4.93	100.3
VA008	38	72.5	14.0	1.99	0.46	6.22	1.67	1.38	0.03	0.21	0.05	<0.01	2.00	100.6
VA008	39	51.6	18.5	9.31	3.92	3.28	0.21	8.29	0.13	0.69	0.25	<0.01	3.93	100.2
VA008	40	72.6	14.9	3.17	0.92	2.53	2.28	1.62	0.05	0.28	0.07	<0.01	1.62	100.3
VACO8	41	72.9	13.0	2.97	1.79	3.21	1.11	2.75	0.10	0.24	0.07	0.02	1.54	99.B
11000	••		13.0	2.77		5.2.		2.15	00	0.64	0.07	0.02		
VA008	42	48.8	13.9	10.0	4.46	1.83	0.31	15.2	0.24	2.47	0.23	<0.01	2.31	99.9
VA008	43	47.6	11.3	7.42	3.65	2.56	0.41	19.8	0.27	3.83	0.30	<0.01	Z.31	99.6
VA008-	44	51.6	17.3	3.10	4.12	4.81	3,69	8.83	0.19	0.71	0.39	<0.01	3.54	98.5
VA0084	45	53.0	17.3	6,82	2.00	2.93	2.90	8.28	0.25	0.51	0.51	<0.01	5.31	100.0
VA0084	46	55.9	17.3	5.56	2.15	4.73	1.75	7.64	0,19	0.53	0,51	<0.01	3.70	100.2
N4 000	/ *	c , (1C 7	4 00	• 94	2.24	2.74	7 0/	0.40	0.90	0.70	.0.04	7 70	100 7
VAUUO	47 79	77.0	10.0	0.00	1.00	2.21	2.14	7,94	0.10	0.60	0.32	<0.01	(.)Y	100.5
VAUUA	48	12.0	12.5	4.00	0.62	0.77	دد.د	1.22	0.09	0.18	0.04	<0.01	4.70	99.7
VAUUA	49 	45.0	14.7	11.2	5.24	0.90	2.95	8.40	0.20	0.73	0.19	0.01	12.9	100.5
VA008;	50	71.9	13.1	2.90	1.01	1.74	2.71	1.86	0.06	0.21	0.05	<0.01	4.00	99.7
VA0085	51	49.5	17.5	5.72	3.64	2.54	2.71	10.2	0.24	0.92	0.44	<0.01	6.31	99.9
VA0085	52	46.6	14.1	11.0	6.58	1.70	0.18	13.6	0.21	1.76	0.16	0.01	3.70	99.7
VA0085	53	60.2	17.1	3.62	1.75	4.64	2.81	6.50	0.18	0.29	0.26	<0.01	2.08	99.7
VA0085	54	47.1	16.4	7.43	3.20	2.83	2.27	11.1	0.23	0.90	0.42	<0.01	8.00	100.0
VA0083	55	46.7	16.6	8.00	2.85	3.09	2.03	10.6	0.25	0.88	0.43	<0.01	8.23	99.8
VA0089	56	47.9	17.8	6.69	2.91	3.99	2.95	10.2	0.24	0.70	0.55	<0.01	7.93	100.0
				••••						••••			,	
VA0085	57	53.8	17.1	4.97	2.59	2.35	3.00	8.49	0.18	0.68	0.42	<0.01	6.31	100.1
VA0120	04	49.0	13.7	11.1	4.62	1.81	0.27	13.5		1.90			3.16	99.1
VA0120	05	48.4	13.7	9.43	4.54	2.58	0.31	15.6		2.58			2.00	99.Z
VA0120	06	46.8	11.4	8.86	3.29	2.96	0.53	17.1		3.14			4.93	99.1
VA0120	70	48.9	11.1	7.69	3.03	2.62	0.59	18.9		3.94			2.08	99.0
	10	6/ 1	11 7		1 50	7 13	0.44	17 /		3 AB			2 4 2	00 F
VA0120	20	24.1	11.5	0,40	1.37	5,12	0.04	17.4		2.00	• • • •		2.02	99.3
VAUIZU	J9	50.0	10.9	0.85	2.20	2.52	0.07	10.0	•••	2.00	•••		2.34	98.2
VAUTZ	10	47.4	10.8	1.02	5.10	2.23	0.44	18.1		3.70			3.35	97.0
VAUTZ	! 1	50.2	10.7	8.25	5.85	2.68	0.39	17.7	•••	3,42	•••		2.31	99.6
VA0121	12	47.0	14.6	11.1	4.69	2.20	0.32	12.3		2.33			5.00	99.6
VA0121	3	48.3	14.6	10,7	5.14	2.40	0.32	12.4	• • •	2.29		• • •	3.47	99.7
VA0121	14	47.0	13.3	10.8	6.03	2.22	0.24	12.9		2.29	.		4.31	99.2
VA0121	15	47.9	13.7	11.1	6.05	2.14	0.19	13.4		2.45			2.54	99.5
VA0121	16	45.8	17.4	10.3	3.80	3.68	0.68	11.7		0.74			5.16	99.3
VA0121	17	47.0	16.6	12.0	5.34	3.15	0.15	10.6	• • •	0.71	• • •		2.16	97.7
VA0121	18	42.Z	17.1	18.4	3.21	0.78	0.34	13.4	• • •	0.58			3.85	99.9
VA0121	19	45.0	16.4	10.9	4.51	3.21	0.90	12.3		0.68	•••	•••	5.39	99.3
VA0122	20	42.8	16.0	13.3	4.77	2.09	0.39	13.0	•••	0.70	•	•••	6.31	99.4
VA0122	21	44.7	15.7	16.4	4.41	0.94	0.38	12.0		0.53	• • •	•	4.23	99.3
VA0122	22	60.3	17.6	3.98	1.91	6.82	0.41	5.73	•••	0.30			2.54	99.6
VA0122	7	47 5	16.0	2 97	1 29	6 33	1 74	0.44		0 75			2 42	100 7
VA0122	- -	10.7	10.7	2.07	1.20	3 (7	1 07	0.00		0.33			1 30	100.3
VA0122	54	47.1	10.9	1.72	2.07	2.03	7 / 1	0.91		0.70			4.37	90.U
VAU122	23	13.4	13.2	1.73	0.52	1.04	3.41	1.71		0.25	•••	•••	2.41	98.4
VAUIZZ	(ð	12.5	14.0	2.79	0.68	1.22	3.75	0.86		0.27			3.02	99.9
VA0122	27	74.2	15.3	2.37	0.35	3.12	2.58	0.58		0.25	•••		Z.47	99.5
VA0122	28	76.6	12.1	1.30	0.32	3.65	2.05	0.54		0.24		• • • •	1.77	99.0
VA0122	29	51.4	23.7	2.58	1.75	0.04	7.75	3.51		0.86			6.00	98.0
VA0123	50	67.9	14.0	3.39	1.19	1.48	3.50	2.15		0.30			4,93	99.1
VA0123	1	49.5	18.3	6.19	2.81	1.58	3.93	8.37		0.67		•••	7.00	98.5
VA0123	2	59.9	17.4	2.53	2.39	6.84	1.55	4.72		0.31		 .	2.62	98.4

XRF W.R.A. SUMS INCLUDE ALL ELEMENTS DETERMINED. FOR SUMMATION, ELEMENTS ARE CALCULATED AS OXIDES

X-RAY ASSAY LABORATORIES LIMITED 1885 Leslie Street Don Mills Ontario M3B 3J4 (416)445-5755 Fax (416)445-4152 TIx 06-986947 Member of the SGS Group (Société Générale de Surveillance)

SAMPLE \ PPM	RB	SR	¥	ZR	NB	BA	NI	CU	ZN
VA00837	31	325	<10	97	17	960	<10	 24	49 🗸
VA00838	14	184	40	115	<10	621	<10	13	27
VA00830	17	569	<10	<10	<10	153	22	104	57
VA00840	70	281	<10	88	16	1480	<10	26	85
¥X00040	75	201	20	00	<10	761	<10	18	63
VAU0841	\$5	252	24	99	<10	201	×10	10	43
VA00842	<10	248	<10	133	15	105	35	199	85
VA00843	35	154	36	167	19	225	14	177	116
VA00844	36	222	20	58	10	896	14	66	180
VA00845	60	750	16	84	10	1010	<10	19	83
VA00846	30	840	33	100	<10	895	<10	12	69
VAD08/7	57	744		77	<10	707	<10	27	88
VA00047	23	200	44	40	<10	1250	<10	20	20
VA00848		230	17	27	10	1230	×10 07	20	29
VA00849	60	332	13	25	<10	532	23	21	20
VA00850	54	175	18	71	11	1080	<10	<10	51
VA00851	61	289	37	71	<10	688	<10	31	93
VA00852	<10	396	20	74	36	138	80	117	82
VA00853	48	528	26	131	14	1400	<10	24	57
VA00854	36	447	24	58	12	638	<10	23	82
VA00855	42	368	20	65	13	567	<10	<10	85
VA00856	48	332	18	74	15	687	<10	<10	82
				• •					
VA00857	70	424	32	86	18	751	<10	<10	59 /
VA01204						85	48	59	87
VA01205				•		123	31	229	97
VA01206			• • • •			272	<10	209	103
VA01207		• - •				335	<10	401	117
						501	.10		4.00
VAUTZUS	• • •		•••	•••		221	<10	400	115
VA01209	•••			• • -		1660	<10	558	130
VA01210	• • •					974	<10	632	108
VA01211	•••				•••	327	14	474	107
VA01212		- • •				85	52	225	74
VA01213						147	66	285	77
VA01214						97	93	239	84
VA01215				.		72	71	217	76
VA01216						230	43	134	46
VA01217	• • •					77	34	17	45
									.
VA01218	• • •					10	17	15	34
VA01219			• • •	•••		160	28	<10	42
VA01220					• • •	123	37	258	62
VA01221		- • •				142	53	45	44
VA01222			•••			397	<10	40	28
V601223						1460	<10	20	20
VAN1224						1120	18	61	72
VAN1669						1510	210	210	16
VAU1223						1500	~10	<10	15
VAU1220					•	1090	~10	17	17
VAU1227						2000	<10	21	10
VA01228						3940	<10	18	14
VA01229						3450	34	20	18
VA01230						2010	<10	14	13
VA01231			•••			1440	12	120	39
VA01232					- • •	1400	<10	46	42

X-RAY ASSAY LABORATORIES LIMITED 1885 Leslie Street Don Mills Ontario M3B 3J4 (416)445-5755 Fax (416)445-4152 TIx 06-986947 Member of the SGS Group (Société Générale de Surveillance)

-00			e0		
	· ·			-	

.

 $\frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) \left(\frac{1}{2} + \frac{1}{2} +$

shallow

+

10N	0 1+0(+0 20	 1+0
			CH88-64
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	······································
			The same

SILV			
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
······································			
· · · · · · · · · · · · · · · · · · ·			
1x			
- -			
00N)0 1+0	+0 200	1+(
· · · · · · · · · · · · · · · · · · ·	<u>_</u>		

	30 (msec)		
	20 (msec)		
	18 (nsec)		
	I		
- Schlumberger array I.P. chargeability	ي.		IFCEND
-0 Gradient array I.P. chargeability			MAJOR ROCK HNITS
2.001			
2+00N 3+(JUN		11 Nanaimo Sediments
			9 Felsic Intrusive Rocks
			8 Intermediate Intrusive Rocks
	9	00 –	7 Mafic Intrusive Rocks
			6 Ultramafic Intrusive Rocks
			4 Felsic Volcanic Rocks
			3 Intermediate Volcanic Rocks
			2 Mafic Volcanic Rocks
			1 Ultramafic Volcanic Rocks
			POOK LINET LETTER OUNLEERS
			ROCK UNIT LETTER QUALIFIERS
	2 b		The second letter indicates the type of rock; if omitted a dash should be inserted if a third letter is used.
	8	00 —	A Tuff K Wacke
			B Lapilli Tuff L Conglomerate C Tuff Breccia M Chert
			E Pillowed Flow O Limestone
			G Pillow Breccia P Exhalite/Sulphides G Pillow Breccia Q Tuffaceous Sedimer
SILVER CREEK			I Argillite S Medium Grained J Siltstone T Coarse Grained
			The third and fourth letters are placed in alphabetical
			order; they are optional and further define the rock.
			A Quartz Phyric J Melanocratic B Feldspar Phyric K Bedded
			C Quartz—Felspar Phyric L Chloritic D Mafic Phyric M Graphitic
	7		E Mafic—Feldspar Phyric N Calcareous F Amygdaloidal O Argillaceous
			G Spherulitic P Siliceous/Cherty H Variolitic Q Sheared
			S Lithic
			SYMBOLS
			Control Overburden
			Bedding
			Z Foliation mm Fault
			▲ Stratigraphic top
	6	00	• vaoizes Whole rock sample
			Significant intersections
			— — Geological contact (inferred)
			u Unconformity py Pyrite FZ Fault zone cpy Chalcopyrite
			FB Fault breccia po Pyrrhotite
			ga Galena
			GEOLOGICAL BRANC
			AGGEGGMENT RETOR
	5	00 —	17410
			1/1047
			0 20 40 60 80 M
			SCALE 1 : 1000
			FALCONBRIDGE LIMITED
NOTE: COLLAR LOCATIONS ARE			CHEMAINUS JOINT VENTURE
BASED ON CHAINED FIELD COORDINATES	•		Vancouver Island, British Columbia
			SILVER CREEK AREA •
	4	00 —	· SECTION 31+00 WEST
			HOLE CH88-64
			WORK BY: DPM CLAIM: HOLYOAK 2
2+00N 3+	. 00N		DATE OF WORK: JUNE 1988 PROJECT NO: FIG
	<u> </u>		DATE DRAWN: NOV 22 1988 N.T.S. NO.: 0928/13W

*

н 1

.

•

_ · · · · ·

•

•

- .

F

