ASSESSMENT REPORT 17680 MINING DIVISION: Omineca

```
SPROPERTY: Dev
LOCATION:
CAMP:
CLAIM(S): GO 2,Dev 1-4
OPERATOR(S): Westview Res.
AUTHOR(S):
REPORT YEAR: 1988, 131 Pages
COMMODITIES
SEARCHED FOR: Gold,Silver,Copper,Zinc
GEOLOGICAL
SUMMARY:
WORK
DONE:
\begin{tabular}{llcllll} 
LAT & 54 & 0900 & LONG & 126 & 12 & 00 \\
UTM & 09 & 6003617 & 682861 & & & \\
NTS & \(093 L 01 E\) & & & & &
\end{tabular}
041 New Nadina - Equity Area
GO 2,Dev 1-4
Westview Res.
Garagan, \(T\).
1988, 131 Pages
Gold,Silver, Copper, Zinc
The main part of the property is underlain by Cretaceous Goosly Lake tuffs and flows of felsic to intermediate composition, similar to those hosting the Equity Silver silver-copper-gold deposit. The rocks have been altered and mineralized with pyrite, pyrrhotite, arsenopyrite, and minor amounts of silver, copper, gold and zinc.
Drilling
DIAD \(652.6 \mathrm{~m} \quad 4\) hole(s); NQ
PETR 33 sample(s)
SAMP 350 sample(s) ;AU,AG,AS,CU,ZN,SB SOIL 260 sample(s) ;ME Map(s) - 3; Scale(s) - 1:5000
RELATED
REPORTS:
02291,02906
```


REPORT ON THE 1987

EXPLORATION ACTIVITIES
on the
DEY PROJECT, GOOSLY LAKE AREA, B.C. Omineca Mining District

Location: 1. Goosy Lake-Burns Lake Area, B.C.
2. NTS $93 \mathrm{~L} / 1 \mathrm{E}$
3. Latitude: $54010^{\prime} \mathrm{N}$

Longitude: $126^{\circ} 12^{\prime} \mathrm{W}$

NORMINE RESOURCES LTD. and WESTVIEW RESOURCESTATMD. 1000-609 West Hastings Street Vancouver, B.C., V6B 4W4

By:
TOM GARAGAN; B. Sc, FGAC AURUM GEOLOGICAL. CONSULTANTS INC. 604-675 West Hastings Street, Vancouver, B.C., V6B 4W3

February 9, 1988

1000-609 West Hastings Street

FILMED

The DEV property, consisting of 10 clalms totalling 196 units, is located 45 kilometers southeast of Houston, B.C. and is accessible by road. The claims are approximately 5 kilometers east of the Equity silver-copper deposit.

Exploration in 1986 and 1987 consisted of geological mapping, soil geochemical sampling, IP surveying and diamond drilling, totalling 652.6 meters. The central part of the clalms are underlain by propylitized and quartz-sericite altered Cretaceous Goosly Lake tuffs and flows similar to those hosting the adjacent Equity silver-copper deposit. The property is overlain by a thin, but extensive veneer of glacial till which is derived from the northeast. Soil sampling (till) on the westcentral part of the clatms has partly defined an area 2.7 kilometers long by 600 meters wide of colncident silver and copper anomalies. The source of the anomaly is interpreted to be near the north-eastside of the anomaly. The zone consists of 2 parallel northwest-trending anomalies containing values up to 9.6 ppm silver and 1873 ppm copper. In addition, two consecutive soil samples collected on the south-central part of the anomaly contain anomalous gold values of 40 and 490 ppb. Two IP anomalies (chargeability highs, resistivity lows) are associated with the geochemical anomalies. Four diamond drill holes (NQ) drilled in this area intersected moderately to strongly altered (quartz-sericite-pyrite and chlorite-calcite-pyrite) volcanic rocks with up to 15% (average $5-7 \%$) disseminated and fracture controlled pyrite and pyrrhotite with minor to trace sphalerite, chalcopyrite, arsenopyrite, galena, molybdenite, and tetrahedrite. Geochemical values within the holes are low with the best results occurring in DEV 87-4. Values in this hole are silighty anomalous in silver (3.4 ppm over 1.5 m), arsenic (6236 ppm over 0.5 m) and antimony (106 ppm over 0.5 m).

Despite the low geochemical results in the diamond drill holes, the alteration and sulphide distribution in the drill holes and surface exposures suggest the presence of a major hydrothermal system similar to Equity's. The geochemical and geophysical results indicate the presence of a sulphide system with anomalous copper and silver values. Much more exploration is therefore warranted on this property and a program of diamond drilling, further geochemical sampling and geophysics is recommended for the 1988 season. A minimum program of 2500 meters is recommended at an estimated total cost of $\$ 300,000$.

TABLE OF CONTENTS

		page \#
SUMVARY		1 /
TABLE OF CONTENTS		i i $/$
LOCATION and ACCESS		$1 /$
CLIMATE, TOPOGRAPHY and VEGETATION		$1 /$
CLAIM STATUS		$4 /$
HISTORY		$4 /$
REGIONAL GEOLOGY		5 ,
PROPERTY GEOLOGY		6
Alteration and MINERALIZATION		7
EXPLORATION		8
Introduction		81
Surveying		$9 /$
Geochemistry		9
IP Surveying		10
Diamond Drilling		11/
CONCLUSIONS and RECOMMENDATIONS		12 r
REFERENCES		$15 /$
List of Figures		
Figure 1. Location Map	1:50,000	$2 /$
Figure 2. Claim Distribution Map	1:30,000	3
Figure 3a. DEV Property South Half Compilation \& Ag Geochemistry	1:5,000	pocket
Figure 3b. DEV Property South Half Compilation \& Cu Geochemistry	1:5,000	pocket $/$
Figure 4. DEV Property North Half Compilation	1:5,000	pocket
Figure 5. DEV 87-1 Cross Section	1:1,000	pocket.
Figure 6. DEV 87-2 Cross Section	1:1,000	pocket
Figure 7. DEV 87-3 Cross Section	1:1,000	pocket-
Figure 8. DEV 87-4 Cross Section	1:1,000	pocket,

List of Appendices

Appendix A. Drill Logs
Appendix B. Analytical Results
Appendix C. Thin Section Report
Appendix D. Statement of Qualifications
Appendix E. Rock Sample Descriptions
Appendix F. Statement of Costs

This report was prepared at the request of Rick Barclay of Normine Resources Ltd. and Westview Resources Ltd. and describes the exploration carried out on the DEV property during September, 1987. The exploration consisted of geochemical sampling, geological mapping, IP surveying and diamond drilling. The results of the IP survey are only briefly summarized in this report.

LOCATION and ACCESS

The DEV property is located immediately west of Allin creek, 10 kilometers east of Goosly Lake and 40 kilometers southeast of Houston, B.C. (Figure 1). The Equity silver-copper deposit is located 5 kilometers to the west and the claims border on Equity's ground.

Access to the property is via a 45 kilometer long logging road from the Decker Lake Forest Products Mill, which is located 16 kilometers northwest of Burns Lake along Highway 16 (figure 1). Alternate access is via 19 kil ometers of logging roads (some in poor condition) from the Equity minesite.

CLIMATE, TOPOGRAPHY and VEGETATION

The climate is typical of central British Columbia with temperatures averaging 13 C in the summer and -12 C in the winter. The area receives 51 cm of precipitation annually, most of which falls during the winter (Wetherell, 1979).

The property is located near the west side of the Nechako plateau which is characterized by low relief and small rounded hills. The claims are located immediately west of Allin creek on the east side of a 1600 meter high rounded hill. An east-west tributary of Allin creek bisects the claims and the southern end of Foxy Creek bisects the northern most claims. The creeks flow throughout much of the year. Elevations on the property vary between 1125 meters in the swampy areas of Allin and Foxy creeks to approximately 1500 meters at the western edge of the property.

The property is covered by harvestable fir, spruce and pine forests with some poplar. There is very little underbrush developed on most of the property. A 2 square kilometer area has been cut near the DEV 1 and GO 2 claim boundrles.

CLAIM STATUS

The DEV property consists of 10 contiguous unsurveyed mineral claims totalling 196 units. The claims are staked on the eastern boundary of the Equity Silver Ltd. property with some overstaking. The property is located in $93 \mathrm{~L} / 1 \mathrm{E}$ of the Onineca Mining Division. The claim data are summarized below and the claim distribution is given in Figure 2.

Claim Name	\# of Units	Record \#
DEV 1	16	7018(5)
DEV 2	20	7019 (5)
DEV 3	20	7020 (5)
DEV 4	20	7021 (5)
GO 1	20	8053(11)
GO 2	20	8054(11)
GO 3	20	8102(12)
GO 4	20	9058(10)
GO 5	20	9059(10)
GO 6	20	9060(10)

Explry Date
May 21, 1990
May 21, 1990
May 21, 1990
May 21, 1990
November 3, 1988
November 3, 1990
December 8, 1989
October 21, 1988
October 21, 1988
October 21, 1988

The claims are held under option by Normine Resources Ltd. of Vancouver from Kengold Mines Ltd. of Smithers, B.C. Normine may earn a 100% interest in the property by paying $\$ 10,000$ cash (at the time of signing) and 100,000 shares in 25,000 share increments (or equivalent cash) to Kengold. The last share payment is made at the commencement of production. Kengold retains a 2.5% net smelter return on all conmercial production. Westview Resources Ltd. of Vancouver has earned 49% of Normine's interest by spending $\$ 150,000$ on the property prior to the end of 1987. Normine remains the operator.

HI STORY

The DEV claims were first staked in 1968 by Silver Standard Mines and Dorita Silver Mines (joint venture) following the discovery of the Equity silver-copper deposit by Kennco Exploration Ltd. in 1967 (Kahlert, 1987). The Equity deposit was found using soil geochemical sampling and prospecting to follow-up regional copper, zinc, and fluorine stream sediment anomalies (Wetherell, 1979) and 0.08% antimony (Church, 1985). Production on the Equity deposit commenced in April 1980 with combined reserves of 27.4 million tonnes grading $105.6 \mathrm{~g} / \mathrm{t}$ silver, 0.95 g/t gold and 0.38% copper.

Exploration by Silver Standard and Dorita consisted of line cutting, soil geochemical sampling and geophysical surveys. The soil samples were analysed for silver, copper, lead and zinc and several low-order copper and silver geochemical anomalies were defined. Frequency domain $I P$ and resistivity surveys were carri-
ed out and several metal factor $I P$ anomalles were interpreted. Several short diamond drill holes were completed, but the results were not publicized (Kahlert, 1985).

In 1964, the DEV claims were staked by Summit Oil Ltd. over the southern half of the existing property. Delbrook Mines Ltd. farmed into the property in 1970. Soil geochemical sampling and magnetic surveys were carried out by both companies. Although low order silver and copper anomalies were found, no further exploration was carried out and the ground was allowed to lapse.

The existing DEV 1 to 4 and $G O 1$ to 3 clalms were staked by Kengold Mines Ltd. in 1986 and subsequently optioned to Normine Resources Ltd.. Westview Resources Ltd. earned a 49\% interestin the property by spending $\$ 150,000$ on exploration in 1986 and 1987. Exploration in 1986 consisted of grid establishment, limited soil geochemical sampling and $I P$ and magnetic surveys. Coincident copper-silver soil geochemical and IP anomalies were defined and followed up during the 1987 season (this report). The GO 4-6 clalms were also staked during the 1987 season.

REGIONAL GEOLOGY

The DEV property is situated in the Goosly Lake area of the Intermontane Tectonic Belt, 120 killometers southeast of the Skeena Arch. The area is underlain by Lower Jurassic to Cretaceous volcanics and sediments which are unconformably overlain by Eocene to Miocene plateau basalts and andesite flows. Upper Jurassic to Miocene intrusions are present throughout the region. The regional geology has been described by Cyr et al (1984), Carter (1981) and Church (1984).

The Equity silver-copper deposits and the DEV property occur in a window of Cretaceous volcanic and sedimentary rocks within Tertiary plateau basalt and andesite flows. The Cretaceous rocks (termed Goosly Sequence) have been correlated to the Kasalka Group by Cyr et al (1984) and to the Skeena Group by Church (1984). The Goosly sequence is comprised of four distinct north-east-striking westward-dipping volcanic and sedimentary units. The lowermost unit consists of polymictic conglomerates, sandstones, siltstones and cherty argillites. These are overlain by the pyroclastic unit which consists of lapilli and ash tuffs (very fine grained version called dust tuff). The Pyroclastic unit is overlain by the Sedimentary-Volcanic division which is comprised of volcanic conglomerates, sandstones, tuffs and chert pebble conglomerates. The uppermost unlt in the Goosly sequence consists of andesite and dacite flows. The Goosly sequence is altered to varying degrees throughout and hosts the Equity silver -copper deposit.

The Goosly sequence is intruded by an Eocene multiphase gabbro-monzonite plug which is located half way between the Equity deposit and the DEV property. The intrusion is characterized by coarse, bladed, plagioclase feldspar phenocrysts. Tertiary quartz latite, fine gralned andesite and trachyandesite dykes related to the overlying volcanics cut the Goosly sequence and mineralization.

Eocene trachyandestte and andesite flows of the Goosly Lake Volcanics unconformably overlie the Goosly sequence. The gabbromonzonite plug is thought to represent a feeder to these flows. Flat lying amygdaloidal and massive basalt and andesite flows of the Eocene to Oligocene Buck Creek Volcanics unconformably overlie the Goosly Lake Volcanics and form caps to hills throughout the area.

The Equity deposit occurs mainly within the Pyroclastic unit of the Goosly sequence. It is comprised of at least 3 mineralized zones over 3 kilometers of strike length. The three zones consist of the South Tail (900 m by up to 70 m), Main (700 m by up to 90 m) and the Waterline (200 m by up to 12 m) zones. At present, the open pittable part of the South Tall zone has been mined out and the Main zone is being mined by open pit methods. The Waterline zone is considered subeconomic. Combined original reserves in the South Tail and Main zones were 27.4 milifon tonnes grading 105.6 grams per tonne silver, 0.95 grams per tonne gold, 0.38% copper and 0.08% ant imony (Church, 1985).

The mineralization occurs as disseminations and in shear, breccia and crackle zones which grade locally into lenses of massive sulphides and sulphosalts. The prominent sulphide and sulphosalts are chalcopyrite, tetrahedrite, pyrite, arsenopyrite, sphalerite and galena. Large areas of quartz-sericite, aluminosilicate, boro-sillcate and phosphate alteration assemblages are associated with the mineralization. Most authors agree (Cyr et al, 1984 ; Church, 1985 and Wetherell, 1979) that the mineralization is hydrothermal in origin and is related to the gabbro-monzonite stock. A few also suggest a possible volcanogenic origin (Kahlert, 1987 and Ney et al, 1972).

PROPERTY GEOLOGY

Very little outcrop occurs on the property. The only exposures are along Allin creek and along roadcuts at the south end of the clalms. Some outcrop is exposed in two trenches completed by Equity Silver (approx. 24N/12W; Figure 3) and in a small sump dug for the diamond drill program (approx. 22N/4+50W; Figure 3). The rest of the property is covered with forest and a thin, but extensive, veneer of glacial till. The maximum thickness of the till appears to be 10 meters (DEV 87-3), but averages

1-5 meters throughout the property. According to Ney et al (1972), the till is derlved from the northeast. The drllling of four diamond drill holes (NQ totalling 652.6 meters) has significantly improved the geological understanding of the property. The outcrop locations are given in Figure 3 and the drill sections are shown in Figures 5 to 8. The diamond drill logs are in Appendix A and thin section descriptions from drill core and surface showings are in Appendix C. The drill logs are summarized in Table 1.

Outcrop in the east-west tributary of Allin creek and within the trenches and sump consist of altered andesite and dacite tuffs and flows of the Cretaceous Goosly sequence (Equity Mine sequence). Outcrops in the creek are cut by northwest trending, steeply eastward dipping, andesite and dacite dykes.

All four drill holes intersected Cretaceous interlayered andesite, dacite and latite flows, tuffs and lapilli tuffs similar to those found in surface exposures. The units are cut by narrow unaltered dacfte and andesite dykes similar to those found in Allln creek. Feldspar megacrystic-monzonite dykes are found in DEV 87-1 \& 2 and at the bottom of 87-4. These dykes are probably related to the Tertiary Gabbro-Monzonite plug found immediately east of the Equity silver-copper deposit. The dykes found in 87-1 \& 2 are probably part of the same dyke indicating a northwest strike to the dykes. Shallow core axis intersections indicate a near vertical dip to the volcanics and dykes. Further drilling from the opposite direction would confirm this.

Outcrops on the southern part of the property consist of flat-lying, moderately-dipping, amygdaloldal basalts and basaltic andesite flows and breccias. There are some interlayered trachyandesite flows. These units are probably equivalent to the Eocene Goosly Lake Volcanics.

ALTERATION AND MINERALIZATION

The Cretaceous volcanics exposed in Allin creek, the trenches, and intersected in the diamond drill holes are moderately to strongly altered throughout. The alteration occurs over an area of at least 500 meters by 850 meters with the east, north and south margins undefined. The alteration decreases near the bottom of DEV 87-1, 2 and 4; possibly marking the western margin of the zone. Mineralization within the altered zone consists of disseminated fracture-controlled and replacement sulphides occurring in up to 15% (average $5-7 \%$) of the rocks. Detalled descriptions of the alteration minerals and mineralization is given in the drill logs and in the thin section descriptions and is only summarized here.

The prominent alteration types are calcite-chlorite-pyrite (propylitic) and quartz-sericite-pyrite alteration. These two alteration types often occur together. Epidote is often present in areas of strong propylitic alteration. Secondary potassium feldspar, tourmaline, sphene and an unidentified bright green clay are also common alteration minerals. The alteration occurs as patches, as clots and along microfractures. Pervasive alteration occurs locally. The patchy alteration is the most common, possibly reflecting the textural variation in the rocks. Feldspar phenocrysts and clasts are usually preferentially altered (mainly sericite and calcite) relative to the matrix. Propylitic alteration is more common in the andesites and gives the rocks a medium green colour. Zones of quartz-sericite alteration are usually tan to grey in colour. The sericitized and quartz flooded zones usually contain a higher percentage of sulphides.

Mineralization consists of disseminations, clots, fractures and veins of sulphides consisting of predominantly pyrite and pyrrhotite. Sphalerite, chalcopyrite and arsenopyrite also occur in trace to 1 - 2% of the rocks. Arsenopyrite and sphalerite is more common in DEV 87-3 \& 4. Trace tetrahedrite may be present in DEV 87-3 \& 4. Traces of molybdenite and galena were found associated with sphalerite in the upper parts of DEV 87-1 \& 2. The sulphide content averages 5-7 \% throughout the alteration zone, but locally occurs in up to 15% of the rock.

Several different types of veins were found throughout the volcanic package. Veins and vein breccias are up to 40 cm wide, but are usually less than 2 cm wide. The vein material consists of predominantly clear quartz and calcite with trace to 5% amethyst, fluorite, barite, dolomite, pyrite, chlorite, clay, arsenopyrite, galena and sphalerite. No consistency was seen in veins from hole to hole.

Several rounded boulders of strongly sillcified, vuggy pyritized volcanics (see DEV L-10: Thin section report) were found in the east-west tributary of Allin creek (sample \# 575253). The boulders can be found all the way up the creek to Equity's ground and are likely related to a source near the eastern margin of Equity's property.

EXPLORATION

Introduction

Exploration during the 1987 season consisted of surveying the western claim boundary, staking additional claims, soll sampling, rock sampling, IP surveying, road building and the diamond drilling of four NQ holes totalling 652.6 meters. The IP survey
consisted of some detailed followup of the 1986 program (Kahlert, 1987; Mark, 1987) and will only be summarized here. A detailed geophysical report is being prepared by Geotronics Surveys Ltd. The soil samples were taken at two locations along the grid.

The grid consists of at least a 5.7 kilometer long northsouth trending baseline which is partly flagged and partly cut. Winglines are located every 200 meters between $0+00 \mathrm{~N}$ to $28+00 \mathrm{~N}$, every 200 to 500 meters between 35 N and 44 N and every 200 meters from 100 N to 106 N (actually 13 S to 7 S) and between 700 and 1200 meters long. Most of the winglines are flagged every 50 meters, but some of the lines in the area of drilling were cut.

Claim boundarles, sample locations, silver, copper, gold and arsenic results, axes of $I P$ anomalies and drill hole locations are shown in Figures 3a, 3 b and 4. Analytical results are in Appendix B and the drill logs and cross sections are in Appendix A and Figures 5 to 8 respectively.

Surveying
An open transit survey was performed on August 27, 1987 by Eric Shade to determine the western boundary of the GO-2 and the southern GO-3 claims. To determine this, Equity's easternmost two-post claims were located and plotted relative to the GO-2 Legal Corner Post. This surveyed claim boundary is given in Figures 3 \& 4 and the survey data are filed in Normine's office.

In addition to the surveying, 3 additional GO claims (GO 46) were staked at the north end of the claim group to cover an area believed to be underlain by additional Cretaceous volcanics (Figure 2).

Geochemistry

Soil samples were collected with the aid of a mattock at 50 meter spacings on winglines in two locations on the grid. The samples were collected at 20 to 40 cm depth from the B horizon and consisted of predominantly glacial till. All soil samples were collected in gussated paper soll bags. Samples collected in these areas during the 1986 field season are also plotted to give coverage between lines 2 N and 28 N and between 32 N and 44 N . The samples collected during the 1987 season were analysed for Gold + 30 element ICP by Chemex Labs Ltd. and Min-En Labs, both of Vancouver, B.C. Samples collected during the 1986 season were analysed for Gold +6 element ICP by Min-En Labs. Seven rock grab samples from the Equity trenches, drill sump and boulders and outcrop from Allin creek were collected.

Soil sampling in the area south of the east-west tributary of Allin creek has outlined an area containing 2 parallel coincident silver and copper anomalies. The anomalies cover an area at
-9-
least 2.7 kilometers long and up to 60 meters wide. This zone trends in a northwest direction. The anomaly is open to the north, south and west and appears to be cut off to the east. The north and western extensions of the anomaly are on Equity's ground. Values within this zone are highly variable, but are up to 9.6 ppm silver $(20+00 \mathrm{~N} / 7+00 \mathrm{~W})$ and 1873 ppm copper $(4+00 \mathrm{~N} /$ $6+50 \mathrm{~W})$. Other soil values within this zone are up to 182 ppm zinc $(2 N / 0+50 \mathrm{~W}), 80 \mathrm{ppm}$ lead $(20 \mathrm{~N} / 7 \mathrm{~W})$ and 74 ppm arsenic (12N/10+50W). Two consecutive samples on line $10 \mathrm{~N}(6+50 \mathrm{~W}, 7+00 \mathrm{~W})$ contain 490 ppb and 40 ppb gold. The shape and northwest trend of this anomaly is consistent with a soil anomaly coming from a northwest striking body enriched in copper and silver which has been glaciated from a northeast direction. This pattern was also found at Equity where the source direction was interpreted to be from the northeast (Ney et al, 1972). The Equity sflver-copper deposit was found along the northeast edge of a silver soil geochemical anomaly.

Several small colncident copper and sllver anomalies occur northeast of the main anomaly with values up to 2.8 ppm silver and 61 ppm copper. The cause of these anomalies is not known.

Two grab samples of intensely silicified, vuggy and pyritized volcanic boulders found in the east-west tributary of Allincreek contain up to 1150 ppb gold, 5.8 ppm silver, 185 ppm arsenic, 474 ppm lead and 239 ppm copper. The source of these boulders is not known, but can be found in the creek right up to Equity's claim boundary and may be related to the northwest extension of the source of the silver and copper soll anomaly. Rock samples from the altered dacite and dacite tuffs in Alin creek, the trenches and the sump are only slightly enriched in arsenic (40 ppm), copper (62 ppm), sllver (0.8 ppm), molybdenum (15 ppm), lead (42 ppm) and zinc (65 ppm). These values probably reflect enrlchment related to the large alteration zone.

IP Surveying

A short IP survey was carried out by Patrick Cruikshank of Geotronics Surveys Ltd. of Vancouver as a follow-up to the 1986 survey (Mark, 1987). Dipole-Dipole (30m array) surveys at $n=5$ were preformed on lines $14 \mathrm{~N}, 18 \mathrm{~N}$ and 20 N to further define IP anomalies A + B (Mark, 1987; Kahlert, 1987). A fourth line with a 50 m array and $\mathrm{n}=3$ was done in the area (1ine 102 N) of the mercury anomaly (see Kahlert, 1987). This line was too far east to properly cover the anomaly.

IP anomaly A is well defined on lines 18 N and 20 N and IP Anomaly B is partly defined on line 18 N . Chargeability in Anomly A reaches a value of 95 ms at $\mathrm{n}=3$ in line 20N. This chargeability high is related to a resistivity high and may represent a dyke. Chargeabillty highs in this same zone related to resistiv-
ity lows are up to 68 ms at $\mathrm{n}=2$. Values in anomaly B reach a high of 26 ms at $\mathrm{n}=5$ in line 18 N . The chargeability in anomaly B increases with depth, whereas chargeablllty IN Anomaly A decreas es with depth. Diamond drilling in the area of the anomalies do not indicate a well deflned zone of sulphldes, but rather a large area of disseminated and fracture controlled sulphides.

Diamond Drilling

A total of 4 diamond drill holes (NQ core) totalling 652.6 meters were drilled on the DEV project between September 18 and 24, 1987. Diamond drill holes DEV $87-1,2$ and 4 were drllled to test IP Anomaly A and DEV 87-3 was drilled to test IP Anomaly B. Hole 87-4 was also drilled under the outcrop of altered and pyritized dacite exposed in the sump. A summary of the holes is given in Table 1. All altered rocks within the core were split at between 0.17 and 3.0 meter intervals (average 1.5 meters) and sent to Chemex Labs or Min-En Labs, both of Vancouver for Gold + 32 element ICP analyses. The results are given in Appendix A and the drill logs and gold, silver, arsenic and copper results are given in Appendix B. The drill sections are in Figures 5 to 8.

Table 1: Drill Hole Summary
Hole\# Location Total Depth Summary

DEV 87-1 $20+00 \mathrm{~N} \quad 219.8 \mathrm{~m} \quad 0$ to 165.8 m sericitized ash and $\mathrm{la}-$

$$
9+30 \mathrm{~W}
$$

DEV 87-2 17+50N 176.8 m

DEV 87-3 18+00N 141.7 m $5+70 \mathrm{~W}$
pillifuffs with some interlayered flows. Contains 5 to 15% sulphides (pyrite \& pyrrhotite w/ molybdenite, galena and sphalerite). 165.8 to 218.8: andesite-dacite flows less altered than above cut by monzonite dykes from 203.8 to 219.8

0 to 123.95: interlayered sericitized ash and lapilli tuffs w/ some flows with 5 to 15% sulphides (pyrite-pyrrhotite w/ trace sphlaerite and arsenopyrite). Alteration is more chloritic lower in the hole 123.95 to 176.8 m : andesite dacite flows and dykes w/ some tuffs less altered \& mineralized than tuff.

0 to 119 m : interlayered sericitized (locally very strongly) ash \& lapilli tuffs w/some flows \& dykes. Contains 5-15 \% sulphides (pyritepyrrhotite with trace to several $\%$

$$
\text { DEV 87-4 } 22+00 \mathrm{~N} \quad 114.3
$$

$$
9+20 \mathrm{~W}
$$

several \% sphalerite, arsenopyrite \& possibly tetrahedritel. Locally strongly altered. 119 to 141.7 m : monzonite dyke c/a approx. 15

0 to 70m: sericitized \& chloritized ash \& lapilli tuffs w/ some flows \& 5-15 \% sulphides (pyrite-pyrihotite w/ trace to several \% arsenopyrite, sphalerite \& possibly tetrahedrite) contains zones of strong silicification, more chloritized down the hole. 70 to 114.3 m : ash, welded \& some lapllli tuffs partly chloritized \& sericitized to unaltered w/ 2-7 \% sulphides (pyrite-sphalerite-pyrrhotite-arsenopyrite).

All four drill holes intersected altered tuffs and flows of the Cretaceous Goosly sequence (see Geology, and Alteration and Mineralization discussion). Mineralization within the holes consists of disseminatlons, clots and fractures of pyrite and pyrfotite with trace to several percent sphalerite and arsenopyrite and trace chalcopyrite, molybdenite, galena and possible tetrahedrite. The alteration and sulphide content appears to decrease sharply near the bottom of DEV 87-1, 2 and 4; possibly marking the western margin of the alteration zone. The sphalerite and arsenopyrite content and percentage of quartz-sericite alteration is higher in holes 3 and 4 ; possibly indicating a closer proximity to mineralization.

Geochemical values within the diamond drill holes are low with the best results occurring in DEV 87-4. Values in this hole are anomalous in silver (up to 3.4 ppm over 1.5 m) and antimony (up to $106 \mathrm{ppm} / 6.5 \mathrm{~m}$). Silver values are enrlched between 68.2 and 110.3 meters with values ranging between 0.8 and $3.4 \mathrm{ppm}(2.1$ ppm over 37.1 meters). This zone also contalns several anomalous arsenic values up to 6236 ppm over 0.5 meters and zinc values up to 156 ppm over 1.5 meters. A zone of quartz-calcite veining between 163.8 and 165.8 in DEV $87-1$ contains 161 ppb goid and 647 ppmarsenic over 2.0 meters. This is the best gold value in core on the property.

CONCLUSIONS AND RECOMMENDATIONS

The DEV property is underlain by pyritized and quartzsericite altered Cretaceous Goosly Lake tuffs and flows which are covered by a thin (0 to 15 meters; average 5 meters) veneer of glacial till. The rocks are similar to those hosting the Equity silver-copper deposit. The major difference is that the volcan-
ics on the DEV property are more propylitized and contain more flows than the mine sequence.

Soil sampling in 1986 and 1987 has outlined an area of coincident copper-sllver anomalles trending in a northwest direction. The zone consists of 2 parallel anomalies containing values up to 9.6 ppm sllver and 1873 ppm copper. Two IP anomalles are located near the eastern side of the soil geochemical anomalies and have been interpreted to represent defined zones of sulphide mineralization. Diamond drilling in this area intersected moderately to strongly altered volcanics with up to 15% disseminated and fracture controlled sulphides dispersed throughout the hole. DEV 87-3 and 87-4 appear to have a higher percentage of arsenopyrite and sphalerite mineralization and quartz-sericite alteration, possibly an indication of a closer proximity to mineralization.

The glacial till on the property has been derived from the northeast, therefore the source of the soll geochemical anomalles should be near the northeastern margin of the soil anomaly as in the case of Equity. The shape of the soll anomaly suggests that the source is a northwest trending linear body. IP anomaly B is located near and at the eastern margin of the soll anomaly and may be related to the source of the soil geochemical anomaly. In addition, the source of the sulphide enriched, strongly silicified volcanic boulders in Allin creek (with up to 5.8 ppm silver and 1150 ppb gold) may be in the area of the northwest extension of the soil geochemical anomalies and proposed source rock. Diamond drill hole DEV 87-4, the only hole drilled along the eastern margin of the anomaly intersected a very large monzonite dyke in the bottom third of the hole, negating a possible interpretation of the anomalies. The potential for locating an Equity style zone of mineralization near the eastern margin of the soll geochemical anomaly along IP anomaly B appears to be good.

The IP line run in the area of the mercury anomaly was located east of the soil geochemical anomaly and did not properly assess the anomaly. More work is required on this anomaly.

The results of the 1986 and 1987 exploration programs indicate that there is good potential for locating an Equity style deposit on the DEV property. A follow-up program of diamond drilling, grid soil geochemical sampling, geological mapping and prospecting, and IP surveying is recommended for the 1988 season.

The following program and budget is recommended.

1. Soil geochemical sampling at 50 by 25 meter spacings to fill In the grid between 1 ines 14 N and 22 N from 5 W to 10 W to define the eastern side of the soil geochemical anomaly and to define
zones of strongest enrichment. Similar sampling should also be done in the area of the gold anomaly (10W) between 8 N and 12 N from 5W to 10 W . Some glacial till profile samples should be taken with the aid of a plugger on the eastern margin of the soll anomaly to help locate the source of the anomaly.
2. Further reconnaissance soll sampling on the northern part of the property.
3. Prospecting the northern half of the property.
4. Further detalled mapping along Allin creek.
5. Further IP surveys in areas of soil geochemical anomalies defined by soil sampling in the northern half of the property. Further IP surveys to help define Anomaly B.
6. Diamond drilling a total of 2500 meters along the eastern side of the soll geochemical anomaly defined in the central of the property. The initial holes should be drilled from west to east to determine the dip of the units. The existing road may need upgrading and should be extended to Allin creek in order to have a constant water supply for the drill.

The budget for this program would be approximately as follows.

Geological \& Supervision	$\$ 15,000$
Geochemical Analyses and Sampling	20,000
IP Survey	15,000
Bulldozer	5,000
Diamond Drilling 2500 m @ $\$ 80 / \mathrm{m}$	200,000
Rentals	2,500
Camp	5,000
Supplies: field and camp	2,500
Travel and frelght	5,000
Report Preparation	5,000
Subtotal	275,000
plus approx. 10% contingency	$\underline{25,000}$
TOTAL ESTIMATED BUDGET	$\$ 300,000$

Respectively Submitted Aurum Geological Consultants Inc

REFERENCES

Carter, N.C., 1981: Porphyry Copper and Molybdenum Deposits, West Central British Columbia. B.C. Ministry of Energy, Mines and Petroleum Resources. Bulletin 64.

Church, B.N., 1985: Update on the Geology and Mineralization in the Buck Creek Area, The Equity Silver Mine revisited (93 L/ $1 W$), B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork 1984, Paper 1985-1, pages 175-188.

Cyr, J.B., Pease, R.B. and Schroeter, J.G., 1984: Geology and Mineralization at Equity Silver Mine. Economic Geology, Vol 79, pages 947-968.

Kahlert, B.H., 1987: Report on DEV Project, Omineca Mining Division, Houston, B.C. Unpublished internal company report for Westyiew Resources Ltd. and Normine Resources Ltd.

Mark, D.G., 1987: Geophysical Report on Induced Polarization, Resistivity and Magnetic Surveys over a portion of the DEV Project, Allin creek, Goosly Deposit area, Omineca M/D., B.C. Geotronics Survey Ltd. Unpublished internal report for Westyiew Resources Ltd. and Normine Resources Ltd.

Ney, C.S., Anderson, J.M. and Panteleyev, A., 1972: Discovery, Geologic Setting and Style of Mineralization, Sam Goosly Deposit. B.C. CIM Bulletin for July, 1972, pages 53-64.

Wetherell, D.G., 1979: Geology and Ore Genesis of the Sam Goosly Copper-Silver-Antimony Deposit, B.C., Unpublished U.B.C., 1979, M.Sc. Thesis, 208 pages.

APPENDIX A DRILL LOGS

aurum		geological		L CONSULTANTS INC. DIAMUIND UKIL	LUU			nule nu 87-2					raye 5 ¢ 6		
Interval		$\begin{gathered} \text { Rec'y } \\ \% \\ \hline \end{gathered}$	RQD	description	Sample No.	Interval		Core Width	Ag A_{0}		As	,	${ }^{1} 2 n$		
From	To					From	To								
1287	129.5	100													
129.5	130.3	100		Dacito-and megeronttic asin 118.4-123.4											
130.3	13275	, 100		Ande.t on in 126.2-128.25	5799	1375	134.0	1.25	1.1	25	1092	41	103		
					5800	134.0	135.5	15	0.8	5	17	41	158		
132.75	14685	5100			5812	135.5	137.0	1.5	0.8	5	1	24	142		
				Dacite-and mega, igstic $4 \sin 118.4-123.4$. highti_ allered in place to giex unit opatchy sperajance	5813	137.0	1385	1.5	0.8	5	110	44	. 93		
				133.75-143.2, is-20\% chloute as elate ifrasfuri coiot ings with s-10\%	5814	138.5	1400	15	0.6	5	232	30	. 124		
		*			5815	140.0	141.5	1.5	1.3	10	54	28	! 120		
				133.15: niaurun cdeite-py-guadz vein \because	5816.	14.5	143.0	1.5	04	5	13	28	62		
				143.2-145.5: 20% secritization. 5% chimbt, juale ceatrik altin	5817	143.0	144.5	1.5	0.4	5	65	28	71		
				with $5 \rightarrow$ \% - py-po clote and dessemenotione with oesociatid dlorite	5918	144.5	146.0	1.5	0.3	5	103	24	60		
					5819	146.0	146.85	0.85	0.2	5	153	21	51		
146.85	147.9	100			5820	18685	147.9	1.05	1.5	20	579	47	126	± 18 ppmb	
				graditicall $2-50 / 2$											
147.9	149.0	ien		Dacit and as in 11t.4-123.4	5821	147.9	149.0	1.1	1.6	5	45	4	150		
149.0	149.95	5120		Anderite us in 126.2-128.25 U12. Contarts: $/$ /月 45°	5322	149.0	149.95	0.95	1.5	5	15	42	88		
149.95	157.05	5100			5823	149.95	151.5	1.55	1.4	110	13	31	61		
					5824	151.5	153.0	1.5	1.8	5	5	40	89		
				149.95-150.3: bleacted zone with 10.25\% quatifioetms 10%	5825	153.0	154.5	15	2.4	5	32	43	117		
				Sericite at 10% py clots rcuber with only S\% chlorite	5826	1545	136.0	1.5	2.1	5	69	45	100		
				157.75: 1cm wide 2 uantz-calcite-opidote ry vein	5827	156.0	15785	1.85	25	10	73	So	88		
				Dacite anh tuff: grey-gin . aphanitic, massive. AiL. cartact c/p140											
157.8	158.75	5100			5828	157.85	158.55	0.9	2.8	5	121	72	118		
				Dacite anh tulf: grey-gen aphanitic, massive. AilL Curtact cloc 40° Patchy 15% chlate, 10% quantz and 1% spidoke alf'n. 10% putio											
						.									
				as clots and fruc anociated with quathescrisite Eleaching.											
158.75	1.62.8S	5100		Pacite.greygentutan gen; aphan.tic with $5-15 \%$ euhndeal $f_{j}-m_{g}$	5829	158.75	160.0	1.25	2.9	5	18	31	87		
				feldepar phanocrysts with race lepillit blorksize xenotithe of											
				aphanitic da: de w.th $2-5 \%$ fellepay phonoce, st: probably a flow. St 15%. 	5830	160.0	1615	1.5	1.2	5	75	74	107		

APPENDIX B

ANALYTICAL RESULTS

A! 1 -G

735 WEST !5TH ST. MATTH YAHCOMYEA, R.C. Y7M 1:2

F:LE NO: t-1214/P!+2

(634) $980-58: 4$ of $15041988-453$ - JYPE SNIL EEDCHEN OATE:DEC 1. 19然

MiA-SM LAES :CP REDOGT

705 KEST !STH ST., NRTTH YANCOUYER: B.C. 474 !T2
 FILE NO: 6-!214!?5-5 (604) $980-5914$ or $1504!989-4524$

4 TYPE S0! EEDCHE!
DATE:DEE! ! 98

GOMPANY: BEMA INT. RESOURCES. LOHPANY: BEMA INT. RESOURCES:
PROJECT NO:
AITENTIOK: ROBRRCLAYD

	Ag	AL	－999	8	㫛	最	1！	CA	Cid	CO	Cu	FE
－ 240005007	． 8	24380	22	1	280	1.4	3	29770°	． 1	－	21	44060
	1.1	22820	21	1	443	1.0	2	11460	． 7	5	43	26860
L2 $\mathrm{H}^{1+5 \mathrm{OH}}$	． 6	27560	27	19	279	1.4	1	2480	． 6	5	21	42910
L2 $2+00 \mathrm{~K}$	1.7	27910	20	3	584	1.2	2	15110	1.6	7	64	30990
L2 $2 \mathrm{H}+5 \mathrm{OH} 12$	2.4	35970	28	9	811	1.6	1	17650	． 5	11	103	39230
［2\％ $3+0001$.6	27430	24	3	366	1.2	1	6650	． 9	－	40	35480
L2N 3＋50M	． 5	16870	1	1	289	． 9	1	5820	． 5	5	33	25730
L2\％4＋00\％	． 6	19380	1	1	283	1.2	2	7080	． 1	7	24	35840
L2\％4＋50M	1.0	23230	21	1	488	1.5	1	10490	． 5	7	76	40310
L2 2 H 5＋0014	． 8	25150	2	18	138	1.6	1	8590	． 5	8	37	47670
	． 9	24670	1	1	432	1.4	1	10280	． 1	7	38	40690
L2 $2 \mathrm{~S} 6+00 \mathrm{~K}$	1.3	25080	5	2	530	1.3	2	12460	． 6	7	59	36450
L2 2 N 6 SOH	1.0	23750	3	2	347	1.4	1	10950	． 4	9	40	41570
L2N 7＋00K	1.0	23190	7	1	528	1.3	1	14680	． 3	7	40	36890
$\underline{L 24} 7+504$	． 6	24760	1	1	322	1.3	1	4410	3	9	27	39320
	2.0	22800	4	2	676	1.4	1	19130	． 9	7	93	35510
L2 $2 \mathrm{~N} 9+5 \mathrm{OH}$	． 3	19050	16	1	249	1.2	1	4500	.4	5	19	39670
L2K 9＋00\％	． 3	23220	22	1	291	1.3	1	3810	． 6	7	20	39960
L2N 9＋503	． 3	26210	1	3	433	1.6	$!$	3630	． 6	7	27	49170
$\underline{2} 2 \mathrm{~N} 10+0 \mathrm{OH}$	2	31590	28	7	341	1.6	1	2660	． 6	7	21.	49200
L2N $10+500$	． 3	28450	22	1	269	1.5	2	2530	． 3	5	18	46190
L2N 11＋001i	． 3	29650	16	7	423	1.7	1	3100	． 8	7	24	54150
L2 $11+50 \mathrm{H}$	． 3	14510	9	1	191	1.4	1	1700	． 1	4	14	47430
L2N 12＋001\％	． 7	28100	21	4	710	1.4	1	14010	． 3	6	35	38320
L4140＋50I	1.2	27970	23	4	304	1.2	2	5500	． 6	7	36	35250
［471＋00\％	． 9	25070°	22	1	261	1.1	2	4760	． 1	－	53	33650
L4N 1＋50M	1.1	38870	27	13	418	1.4	1	5210	． 8	7	60	41650
L4K $2+00 \mathrm{~K} 40 \mathrm{~K}$	1.3	36380	26	13	477	1.4	1	8510	． 8	11	79	41380
L4N $2+5011$	1． 1	26120	11	3	478	1.6	2	12320	． 2	8	35	45950
L 414	1.1	24230	1	1	362	1.1	2	9520	． 4	6	38	30070
L40 3＋501	． 5	16600	10	I	299	1.1	1	5240	1.1		33	31840
L4N $4+001$	． 8	26110	1	4	426	1.4	1	5540	． 2	8	54	38180
L4K $4+5 \mathrm{OH}$－	2.2	32610	1	12	677	1.5	1	13350	． 5	6	83	57060
L．14 5＋0011	1.8	28280	22	9	573	1.4	2	13610	． 8	7	61	38360
L44，5＋504	1.1	40570	29	18	542	1.7	2	8290	． 2	9	6	45690
［4k $6+00 \mathrm{C}$	1.5	40290	26	16	761	1.6	1	7920	． 2	9	66	39280
L4K $6+50 \mathrm{M}$	． 7	28830	22	8	409	1.4	26	3660	． 2	6	1873	40640
L4N 7＋004	1.5	23090	2	4	417	1.3	5	8390	． 7	8	56	38020
	1.5	19570	12	4	495	1.5	2	15530	.9	10	53	44060
L4N $8+004$	1.1	21190	5	2	288	1.2	1	9310	4	8	29	36400
［4in $8+5017$	． 7	－30450	24	11	－396	1.5	1	5710	4	9	29	44320
L4 9＋00\％	． 5	20130	12	1	310	1.2	2	3670	． 6	6	19	39140
L4K19＋5014	． 7	28410	16	9	384	1.4	15	3730	． 1	1	1149	40470
LAN 10＋00il	． 8	23150	13	4	889	1.4	1	4960	． 4	7	31	40550
$\underline{14 N 10+50 \% 1}$	． 5	28480	21	12	301	1.5	2	2520	．	6	27	48960
L4M IItioum	． 3	26860	15	10	476	1.5	2	4210	． 4	6	84	47080
L2N 11＋5011	1.7	30140	24	12	852	1.6	1	13520	． 4	8	66	43120
L4N 12＋00\％	2.3	29870	，	9	629	1.4	2	21510	． 3	5	134	27600
L6N $0+504$	1.0	23900	19	6	305	1.2	1	3800	． 3	6	31	36650
L6＋ $1+0 \mathrm{OH}$	1.4	21150	$!$	3	254	1.3	11	3480	． 2	7	583	42420
Wil $1+50 \mathrm{M}$	． 9	31070	23	12	291	1.5	3	4140	1	7	36	45550
L6 $2+00014$	1.4	32550	21	12	303	1.3	1	4350	． 2	7	43	35570
L6H $2+50 \mathrm{H}$	1.0	21710	5	J	260	1.2	2	5230	． 2	8	28	35940
L6K 3＋00\％	2.1	18470	3	1	550	． 9	1	20640	1.0	5	64	20760
L664 3＋504	2.3	32620	5	12	52	1.5	1	10750	． 3	8	86	40870
	1.8	24530	了	6	－515	1.0	1	16050	． 3	5	4	24840
L6N 4450M	． 8	27610	4	7	447	1.2	1	7910	． 5	9	25	31560
L6H 5＋00H－	2.6	32670	1	12	742	1.7	1	11010	1.5		105	41760
L6N 54504	． 5	11410	6	1	247	． 9	1	6430	． 5	5	23	25200
L6 6 $6+004$	． 8	21430	14	1	105	1.1	1	3230	． 4	4	35	31640

CDAPAKY: MORHINE RESDURCES PROJECT NO: DEU ATIEHTIOH: 6. MOROEER

	K	-i	滑	W	$1{ }^{1}$	H	-it	P	P1		5 S	TH
	830	18	4540	224	1	130	4	2440	19	1	JJ	-
L2N $1+00 \mathrm{~K}$	820	13	5410	460	1	210	12	670	15	-	144	1
L2 $\mathrm{I}_{1+50 \mathrm{~K}}$	640	17	3900	181		180	3	1050	10	2	32	1
L2 $2 \mathrm{C} 2+0 \mathrm{OH}$	1180	12	6660	811	1	220	14	1270	15	1	169	1
L2H $2+504$	1220	12	6220	2570	3	120	24	1580	17	1	239	1
	1300	13	6590	536	2	240	13	1320	20	2	70	1
L2 $2 \mathrm{3}+50 \mathrm{~K}$	760	11	5030	248	1	210	10	1050	17	2	56	1
L2 $24+00 \mathrm{H}$	930	11	6770	470	1	280	8	990	19	3	73	1
L2 $24+50 \mathrm{M}$	1080	12	6370	725	,	200	19	1030	18	2	121	1
L2 $2 \mathrm{H}+00 \mathrm{H}$	1470	16	7160	557	2	330	17	950	18	2	110	1
- $2-2+500$	1300	26	5880	390	1	230	13	660	16	2	129	1
L29 6+00\%	1420	15	6670	633	1	270	16	1100	22	3	144	1
L2N $6+50 \mathrm{U}$	1760	15	7290	797	1	350	15	1210	25	3	132	1
L2 2 T 700 H	1290	19	6110	607	1	190	9	1090	18	3	197	1
L2 $2 \mathrm{~T}+50 \mathrm{H}$	1210	18	6270	328	1	170	6	930	13	3	50	1
	1280	21	5640	$8{ }^{87}$	1	140	12	1130	21		254	1
L24 8+504	1210	14	4720	216	1	100	2	1370	11	3	40	1
L2N 9+00M	700	14	5620	315	1	110	1	350	11	2	49	1
L2 2 N 9 5031	1140	18	5200	356	1	110	6	1030		3	J6	1
L2 2 H 10+00\%	1080	17	4800	270	1	90	2	1140	8	2	23	1
C2\% ${ }^{\text {a }}$ 10+50\%	1050	21	3980	251	1	200	1	1670	10	2	26	1
L2 $2112+00 \mathrm{H}$	1190	22	5000	298	1	100	1	2070	9	2	23	1
L2H $11+50 \mathrm{H}$	1090	10	1630	138	1	70	1	640	11	4	30	1
L2 $2 \mathrm{~N} 12+50 \mathrm{H}$	750	36	6200	718	1	160	2	880	15	5	232	1
L4N0+50M	1260	13	7320	527	1	240	10	1110	17	2	61	1
	1330	12	6400	295	1	260	9	-60	17	3	. 55	1
L4N1+50\%	1400	18	8060	381	1	260	12	780	14	2	70	1
L4N $2+00114010$	1280	17	8970	1012	1	290	16	860	17	2	115	1
L4N $2+50 \mathrm{~K}$	980	14	6180	1202	2	200	11	1180	22	2	151	1
L44 $3+004$	890	13	5840	371	1	210	12	1130	14	2	111	1
	760	10	6420	317	1	170	13	800	16	1	63	1
L414 4 +0013	990	12	7580	580	1	180	14	970	25	1	76	1
L4N $4+50 \mathrm{H}$	1340	14	7390	724	1	140	19	990	18	6	178	,
L4H 5+00\|l	1370	13	7080	817	1	170	20	1130	18	2	163	1
L415 $5+5011$	1630	18	9160	799	1	160	16	1320	15	1	103	1
[414 $6+00 \mathrm{M}$	1340	16	7870	1178	2	100	11	1230	13	7	130	1
64 $6+5014$	1190	IJ	5380	537	1	150	11	880	20	5	60	1
L4N 7+0011	1040	14	6750	539	1	360	12	890	18	3	99	1
LaN 7+50\% 40 H	1370	12	7280	830	1	510	18	1410	25	5	146	
L4N 8+6001	1270	12	6890	392	1	300	12	1110	25	2	90	1
[40] $8+5017$	1200	17	6180	804	1	210	8	980	16	2	77	I
L4N9+004	790	12	4150	336	2	110	7	640	18	2	50	1
LIN 9+5014	800	16	5190	451	1	180	7	540	13	3	68	1
L4. 10+0041	910	13	4130	1016	1	110	5	460	20	4	61	1
L4N 10+50N	1450	28	4980	354	2	620	2	1060	12	2	29	1
L4M- $11+0$ Oix	1460	24	4750	308	1	190	2	1730	11	2	34	1
	1100	39	6950	893	2	270	15	1130	21	3	191	,
LAN $12+00 \mathrm{H}$	510	22	2960	769		120	9	1440	9	5	317	1
L6N $0+50 \mathrm{C}$	1030	13	5130	260	1	190	7	770	15	2	56	1
L6 $6+1+004$	900	10	5570	403	1	210	9	720	21	5	48	1
	1160	15	5800	260	1	240	10	1250	14	2	41	-
L6K $2+0011$	1120	15	7310	281	1	130	11	950	18		47	1
L6N $2+501 \%$	820	13	6620	399	1	190	10	1440	22	2	47	1
LSN J+00K	790	6	5300	640	2	100	19	1450	18	2	261	1
L6 6 3+50Y	1420	16	7880	817	2	170	22	1180	39	2	139	-
	-880	9	5120	781	2	100	12	960	11	1	193	-
L6N 4+501	740	25	5680	1255	2	140	14	680	17	3	110	1
L6世 $5+0011$	1240	19	7850	1718	3	150	26	1130	26	3	180	1
L6K1 $5+50 \mathrm{~K}$	190	7	5420	430	1	90	10	1170	24	1	59	,
L6N $6+004$	380	11	3080	201	1	60	2	890	12	2	65	1

fuălues in pphi	Äg	AL	AS	B	8 A	BE	81	CA	co	CO	CII	FE
［60 $6+50 \%$	1.4	25070	1	4	403	1.4	3	10750	.6	B	42	41470
L6N 7＋00H	． 6	20950	18	1	306	1.2	1	6520	． 3	7	22	36650
L6H 7＋504	1.1	22230	1	1	367	1.3	2	7930	1.2	8	27	39000
L6H $8+60 \mathrm{H}$	． 5	33000	26	10	425	1.5	2	6180	． 5	7	36	43250
L6H B $\mathrm{F}_{5} \mathrm{OH}$	1.1	28040	5	5	439	1.4	2	8980	8	9	45	41550
	． 5	27700	22	4	495	1.3	2	7120	．	\％	23	37130
L6M 9＋50K	． 7	31700	26	8	477	1.5	2	9160	． 7	8	28	42450
L．6H 10 +00 H	1.5	45360	31	18	720	1.8	2	9770	． 3	10	40	45090
L6\％10＋504	． 4	35780	20	11	310	1.7	J	2140	． 2	7	27	54340
L6H $11+00 \mathrm{H}$	2	20790	9	1	240	1.2	1	1960	． 5	4	19	57690
L6K $11+504$	3	22710	10	1	197	1.1	I	1650	． 2	4	13	36270
L．EN 12＋0031	1.0	33080	22	12	419	1.5	3	2970	． 1	8	27	46980
L8N 0＋50\％	1.1	30530	2	8	323	1.4	3	5360	． 3	8	31	41590
LaN $1+00 \mathrm{H}$	1.2	35030	23	13	326	1.3	1	4150	． 7	，	43	36620
LSM以 $1+504$	2.0	29760	1	8	476	1.4	1	12970	－1	1	60	37760
LiM $2+00611$	1.5		29	16	631	1.5	2	14470	．	7	113	－37830
L8K $2+50 \mathrm{~K}$	1.1	22180	3	3	309	1.2	5	9540	． 3	7	29	37520
L8N 3＋00\％	1.4	33220	1	11	453	1.5	3	14280	． 1	8	59	42310
LaN 3＋50\％	． 7	30880	1	8	327	1.3	2	7350	． 6	8	33	38300
L8N 4400H	1.8	29360	1	0	445	1.5	3	10210	． 7	B	79	41720
Lim $4+5001$	1.4	23610	4	3	371	1.3	4	8130	． 6	7	35	36830
L8M 5＋00H	1.7	36550	21	13	469	1.5	1	5840	． 7	9	35	43260
Lak $5+50 \mathrm{O}$	1.0	14530	7	1	462	1.2	1	19400	． 8	4	29	35670
L．8N $6+00 \mathrm{H}$	1.3	27170	2	9	398	1.4	2	9430	． 4	8	41	39760
	1.3	19340	1	1	295	1.3	5	8150	． 6	8	31	39910
Lini $7+00 \mathrm{C}$	1.3	24820	1	3	396	1.3	3	10890	． 8	8	32	30080
L8M 7＋501	2.6	37560	26	14	642	1.7	，	9830	． 3	10	59	46450
LaN B＋COM	1.3	23430	3	3	$45!$	1.3	1	7930	． 5	7	38	37580
L8M $8+50 \mathrm{OH}$	． 5	24680	1	3	338	1.3	2	5700	． 2	5	23	40450
C $\mathrm{BH} \mathrm{H} 9+0 \mathrm{OH}$	． 5	23710	1	1	387	1.3	1	5220	． 9	6	19	36200
	.6	32760	22	8	488	1.5	2	7410	.7		36	42520
LaN 10＋00以	． 6	28750	1	4	327	1.2	1	9140	.1	5	25	34550
Ler 10＋50N	2.3	41130	17	18	570	1.7	2	12750	.2	10	55	45580
L8H 11＋004	． 5	11570	10	1	140	． 6	2	1520	.1	3	11	14360
$\text { L8N } 11+50 \mathrm{H}$	1.4	33860	29	9	401	1.6	2	3960	． 6	10	38	42780
	． 3	48510°	35	21	247	2.1	2	1470	． 2	4	46	64150
LION $0+504$	． 8	16510	，	1	216	1.2	4	3050	． 8	s	25	37470
LIOH 1＋00N	1.6	30930	25	7	416	1.4	1	9960	． 1	7	67	38490
L． 10 K 1＋50\％	1.2	23870	16	1	400	1.1	1	7120	． 4	，	43	30070
L10H $2+00 \mathrm{H}$	S	15820	1	1	319	1.0	2	2990	． 4	4	20	33150
Lion $2+50 \%$	1.1	20500	9	1	282	1.4	2	9150	1.2	7	33	48600
LIOH 3＋00H	1.2	21530	5	1	375	1.2	1	12750	． 7	7	42	
LIOH 3＋50\％	1.9	36290		15	456	1.6	2	10270	． 6	12	66	43570
L10H 4＋60H1	1.0	25940	，	4	301	1.1	5	5280	． 2		27	32030
L10M 4＋504	2.3	38090	1	15	485	1.6	2	6920	． 9	9	59	48850
LiOK $5+00 \mathrm{C}$	1.1	25490	5	8	201	1.3	1	5630	． 4	6	29	42540
LIOK 545011	1.4	18790	11	2	271	1.5	2	9970	.6	9	42	48590
LIOH $6+00 \mathrm{H}$	1.8	32120	1	11	408	1.5	1	10200	． 4	8	53	41850
LION $6+504$	． 9	25080	6	6	307	1.3	1	6660	． 7	8	41	38750
LION $7+0.01$	． 9	24300	1	6	308	1.2	2	5550	． 2	1	24	36540
Lion $7+50 \bar{H}^{\circ}$.7	22630	9	2	184	1．5	2	4430	． 1	7	35	40140
LION 8＋OOK	． 9	24500	5	3	157	1.3	1	4000	． 7	5	23	35680
LIOH 8＋50\％	． 5	21680	1	1	265	1.3	2	3220	． 5	6	21	37540
LION 9＋004	1.2	26080	3	4	279	1.2	2	6580	． 3		25	35810
L1019 9＋50H	． 8	20610	2	1	310	1.0	1	5760	． 8	6	17	30280
Liow iotoun	． 9	24330	2	5	314	1.2	2	6690	． 1	7	25	37870
LION 10＋50\％	1.7	31380	6	10	513	1.4	2	8990	.6	8	45	38640
LION 11＋00\％	2.0	33210	12	11	550	1.5	1	9820	． 3	7	58	39800
LIOH 11＋5011	2.0	35380	36	11	579	1.7	1	8340	． 1	9	65	45800
LIOH 12＋00\％	1.8	22470	45	2	530	1.3	2	16200	1.5	6	17	33380

conpany: hakhine resources
MJH-EN LABS ICP REPORT
(ACT:FJI) PAGE 2 OF 3 PROJECT KO: DEU ATTENTIOH: 6. ROROEEN 705 पEST 15TH ST., MGRTH VAMCOUVER, B.C. V7H IT2 FILE KD: 7-1530/P3+4

ATIENTIOH: 6.NOA				4					GE		10CT	
IVALUES IN PPM	K	L1	16	,	10	HA	N	?	P8	B	SR	iH
-6\% $6+500$	860	12	7530	552	1	230	16	ij50	$2{ }^{2}$	2	119	1
L6N 7+001	680	11	5910	946	1	140	9	970	19	2	78	,
L6K 7+5011	860	10	6910	834	,	260	14	1290	20	2	94	;
LLN 8+004	760	31	5880	401	1	200	6	550	14	6	90	1
L6N 8+50ㅐ	1110	17	8510	728	1	340	16	950	21	3	116	1
L6N 9+00H	650	15	4220	596	1	100	1	710	14	1	94	1
L6\% 9+50 ${ }^{\text {S }}$	830	17	6790	546	1	140	11	1050	13	1	119	1
L6K 10+100\%	950	16	6500	1926	3	110	9	1170	18	1	108	1
L6N 10+50N	1170	26	6150	298	1	100	4	1260	8	2	27	1
L6H $11+00 \mathrm{H}$	1340	8	3230	314	1	90	2	930	12	1	22	1
$26 \mathrm{H} 11+50 \mathrm{~K}$	1680	-	3190	221		90	-	740	5	1	11	1
L6H $22+0 \mathrm{OH}$	1160	21	6840	321	1	140	10	960	18	2	35	1
LAM O+501	1100	12	6510	359	1	270	12	1440	14	2	53	1
	1260	16	7420	321	1	140	10	860	12	1	53	1
LEM $1+500$	1330	15	7720	629	1	330	16	1130	26	4	164	1
LEM $2+00 \mathrm{C}$	1260	16	6850	622	2	150	14	1190	17	2	214	1
LQN $2+50 \mathrm{~K}$	920	16	6910	625	1	300	12	1170	25	4	100	1
LBE 3+004	1460	16	8350	792	1	230	18	1110	22	2	182	1
LAN 3+50M	1650	16	7950	543	1	210	15	1050	17	3	93	1
L984+004	1380	15	8330	580	1	300	21	960	26	2	134	1
L8M $4+50 \mathrm{~N}$	1170	14	7330	454	1	320	13	1150	25	4	98	-
Lan 5toon	1070	22	6250	308	1	170	12	1140	19	1	90	1
LAN 5+50\%	590	7	4370	478	2	130	5	1090	18	2	234	1
L8H 6+00\%	2590	,	7660	641	1	350	11	1240	25	3	95	1
LEN 6 6 50\%	1030	10	7120	637	1	390	12	1120	29	4	87	1
L80 $7+00 \mathrm{O}$	1020	13	7570	553	1	330	14	1110	25	2	117	I
LAM 7+50\%	970	16	8050	1016	,	280	17	730	17		115	1
LB4 8+006	960	14	7200	537	1	260	15	890	16	3	84	1
L8N 8+501	500	14	4730	257	,	270	6	890	15	1	60	1
L8P 9+00\%	540	13	5760	392	1	140	6	540	16	2	48	1
L8179+504	910	14	6670	876	!	140	17	1090	16	6	7	1
L8K 10+40N	640	15	4450	195	1	120	3	670	10	1	120	,
Len 10+50M	1040	22	740	500	1	230	28	610	15	1	164	1
Len $11+00 \mathrm{H}$	260	5	2260	269	,	60	7	220	,	1	19	1
L8H $11+50 \mathrm{H}$	820	15	6560	830	1	290	19	810	15	1	49	1
Lem $12+00 \mathrm{H}$	1210	34	5020	194	2	30	1	1430	9	7	13	1
LION $0+50 \mathrm{M}$	640	6	3590	188	1	90	5	610	37	4	52	i
LION ItoOM	1070	16	770	461	,	170	16	1860	24	2	150	1
LION 1+504	800	8	4070	390	1	120	1	710	19	4	121	1
LIOH $2+00 \mathrm{~N}$	760	7	2420	231	1	80	3	370	14	4	54	1
LIOH $2+50 \mathrm{M}$	920	12	6940	475	-	220	16	1500	25	4	103	1
LIOH J+60M	920	11	7020	467	1	220	16	1230	26	3	178	,
LION 3+504	1350	15	8800	1437	2	240	15	1080	30	3	168	1
L10H 4+00\%	800	15	6430	273	1	230	8	860	20	2	79	1
L1OH 4+5041	1370	17	8810	1218	2	180	17	1010	25	3	121	1
LIOM 5+00̈	880	21	6020	285	1	190	9	830	32	4	66	-
LION 5+50N	1220	14	7340	631	1	230	21	1620	37	1	104	1
LLIN b+oON	1450	15	7990	929	1	250	16	1270	23	3	136	1
LIOM $6+50 \mathrm{M}$	1000	15	6570	641	1	150	10	810	27	3	91	1
LION 7+00\%	790	16	6140	338	2	160	8	940	22	J	76	1
LIOM $7+50 \mathrm{M}$	730	12	6220	394	1	150	9	1440	22	5	33	1
LION $8+00 \mathrm{H}$	650	13	5100	229	1	190	6	1880	16	3	34	1
LIOH 8+50\%	550	10	4660	256	1	120	7	1220	18	3	$4!$	1
LIOH 9+004	720	12	6600	295	1	170	10	1430	21	J	71	1
L10H 9+5041	570	13	6740	340	1	150	11	860	16	2	74	1
Liok $10+00 \%$	1010	15	7070	411	1	150	11	1270	18	3	76	1
LION 10+50N	1170	17	8720	839	,	200	18	1250	21	J	123	1
LION 11+00\%	1150	17	7860	694	2	110	14	990	37	3	140	1
LION $11+50 \mathrm{H}$	900	25	7220	1018	1	110	20	800	30	4	150	1
L10\% $-12+004$	650	11	6710	627	1	110	22	1440	46		212	1

Min-En LABS ICP REPORT
705 MEST 15TH ST., NORTH VANCOUVER, D.C. V7H 172
(ACT: fF31) PAGE 3 OF 3
FILE Na: 7-1530/P3+4 ATTENTIDN: G. MORDEER

(VAlUES IN PP	-0-	14	6 A	N	,	CA		
	1 ----71.7	103	2	2	1	32	5	
L6N 7+00以	172.5	117	2	2	1	28	20	
L6N 7+50M	177.5	101	2	3	1	30	10	
L6N 8400N	172.9	123	1	3	1	23	5	
L681895011	1 - 73.9	88	2	1	2	29	10	
- $619+001$	$1-72.7$	117	2	2	1	18	20	
L6N 9+50M	171.5	123	2	2	2	17	50	
L6N 10+00H	181.3	142	1	2	2	11	10	
L6N 10+50\%	1102.5	143	2	2	2	25	20	
L6R $11+00 \mathrm{~N}$	1.-84.2	82	1	1	1	4	5	
LGN $11+504$	192.3	80	1	1	1	2	10	
L6N 12+004	195.3	166	2	1	2	33	5	
L8N 0+50\%	180.4	105	1	1	2	29	5	
L8N 1+00\%	171.2	128	1	1	2	20	30	
L8N 1+50N	1.70 .4	114	1	2	1	25	10	
LBN $2+00 \mathrm{Cl}$	$1-67.7$	134	1	1	2	21	10	
Lan 2+50\%	183.5	133	1	1	1	34	5	
L8M 3+OOH	177.4	140	1	2	2	24	5	
L8N 3+50H	171.7	118	1	1	2	24	10	
L.8H 4+0094	1880	102	1	2	2	29	5	
L8N $4+501$	175.0	98	2	1	1	28	5	
Lak 5t00\%	181.6	142	1	1	2	27	5	
LBH 5+50\%	236.5	71	1	1	1	10	5	
LaN 6+00M	183.2	118	1	2	2	2b	5	
L8186+5014	1 - 84.4	100	1	1	1	34	5	
L8N 7400 N	175.8	118	1	1	1	2 9	5	
L8N 7450M	384.6	176	2	2	2	27	5	
Lan botoin	$3 \quad 69.2$	85	1	1	1	26	10	
L8H $8+50 \mathrm{H}$	180.3	90	1	1	1	26	20	
L84 9+004	2.69 .4	105	1	1	j	22	10	
CEM $9+50 \mathrm{I}$	275.1	114	2	J	2	22	5	
L8N 10took	267.4	116	1	1	1	20	5	
L8K 10+50N	378.8	136	1	3	2	25	5	
L8N 11+003	226.0	49	1	1	1	9	5	
LaN 11+50N	3.77 .6	128	2	3	2	25	5	
C6I $12+000$	2 93.8	122	1	1	2	3	10	
LIOH $0+50 \mathrm{~N}$	1 8日.6	91	1	1	1	34	5	
LIOK 1+00\%	169.4	111	1	2	2	21	5	
LION 1+501	$3 \quad 60.2$	92	1	2	1	20	5	
LION $2+00 \mathrm{H}$	176.9	96	1	1	1	28	5	
[10h $2+504$	104.1	92	1	1	j	45	5	
LION 3+004	268.5	97	1	1	1	25	20	
LION 3+50N	3181.4	125	1	$!$	2	26	5	
LIOH 4+003	168.7	107	1	1	2	24	5	
L10H $4+50 \mathrm{H}$	1.79 .7	146	1	1	2	25	5	
L10A 5+00N	1 - 91.7	128	1	1	1	30	5	
LION 5+50N	1111.9	101	1	1	1	50	10	
LION $6+004$	178.8	115	1	2	2	26	5	
LIOM $6+50 \mathrm{H}$	181.5	124	1	1	2	27	490	
L10 ${ }^{\text {2 }} 7+00 \mathrm{OH}$	1.77	126	1	2	2	25	40	
LION 7+50M	279.0	89	1	1	2	26	5	
LIOH 8+0OH	179.6	96	1	2	2	28	5	
LSON 8+50H	175.2	87	1	1	1	26	5	
LIOH 9+OOH	171.7	96	1	2	1	23	10	
L104 9+504	1.64 .0	99	1	2	1	19	5	
LION 10+00	167.8	128	1	3	2	23	50	
LION 10+5011	173.3	144	1	1	2	22	5	
LION 11+00U	273.0	144	1	3	2	17	5	
LION $11+50 \mathrm{H}$	179.4	154	2	4	2	22	5	
110 N 12+001	$3 \quad 53.5$	114	1	3	1	15	5	

TYPE SOLL GEDCHEM

TVALUES IH PP	AG	AL	AS	B	－${ }^{8 月}$	－${ }^{\text {B }}$	－－－${ }^{\text {di }}$	CA	Co	CO	Ci	E
L12 ${ }^{2} 0+504$	． 9	23970	$1!$	1	364	1.1	1	4090	． 4	5	34	26590
LI2N 1＋00W	． 4	26200	17	7	240	1.4	2	4230	． 6	6	34	41620
L12 $\mathrm{H}_{1+50 \mathrm{H}}$	． 5	23570	12	4	284	1.1	3	4200	． 5	b	23	5360
L12H2400\％	． 6	27570	13	6	285	1.3	3	3300	． 6	6	20	38210
L12N $2+50 \mathrm{~N}$	． 7	29270	8	8	276	1.3	1	3580	$!$	7	$2 b$	35860
－12N $3+00 \mathrm{~N}$.6	22450	14	2	190	1.0	4	3210	． 5	6	19	32310
L12H 3＋50H	． 6	21950	15	2	221	1.0	4	4600	.2	6	18	30610
L．12N 4＋001	． 5	23350	5	3	212	1.0	2	2970	.1	5	18	29630
LI2N 4＋50M	． 4	20800	11	1	220	． 9	2	3380	． 2	5	18	27150
L12N 5＋004	4	26450	20	6	165	1.4	1	3290	1	6	36	42090
	－1．4	34440	15	12	501	1.3	1	6530	． 4	7	47	35190
L12N $6+00 \mathrm{M}$	11.8	32560	13	12	459	1.4	1	4920	． 2	8	69	39010
L12N $6+50 \mathrm{H}$	$\vdots 1.5$	27520	1	8	539	1.2	1	6100	． 5	7	46	35400
L12H 7＋00\％	－ 2.2	53500	19	13	558	1.5	2	6010	． 7	9	87	42370
L12M 7＋504	1.9	27910	－－－－－－1	1	522	1.3	1	5570	：1	7	68	36780
－ 2 L － $8+00 \mathrm{~N}$	3.3	35620	，	16	460	1.6	1	6770	． 8	6	B	39340
LI2N8＋50\％	2.2	34620	24	14	500	1.6	1	1340	． 7	11	91	41260
612H 9＋00M	1.7	23470	15	4	$35!$	1.1	1	6900	． 2	6	42	32500
Li2N 9＋50H	1.1	21240	11	1	439	． 8	3	6620	． 3	5	24	23640
$\underline{12 H 10+00 H ~}$	． 9	15400	20	1	323	． 8	3	11650	1.0	5	26	25870
［12 ${ }^{\text {a }}$－ $10+50 \mathrm{~N}$	6.6	17020	74	1	525	1.1	3	25600	1.8	7	104	21720
LI2N 11＋00K	． 3	11840	4	1	266	． 9	1	6140	． 7	5	25	27490
L12N $11+50 \mathrm{H}$	1.6	24820	8	4	582	1.2	1	11570	． 4	6	59	28360
L12N 12＋00 ${ }^{\text {c }}$.2	13770	1	1	135	1.0	1	1570	． 4	4	16	31020
L35K O＋50E	1.2	32050	12	10	378	1.4	8	7300	1	8	23	35790
－ $35 \mathrm{~F} 1+005$	1.3	29060	11	7	354	1.2	10	5760	， 3	8	19	34740
L35N， $0+50 \mathrm{OH}$	1.1	30560	9	8	347	1.1	10	5700	． 6	8	17	33040
L351 1＋00以	． 9	32760	12	10	316	1.3	4	7270	． 1	8	27	34580

L35K＿2＋00H N／S．

［35in $2+501$	． 3	58190	10	27	325	1.6	3	2940	． 7	7	17	45950
L35N 3＋004	1.7	41250	8	16	314	1.8	11	7380	． 3	12	27	50770
L35N 3＋504	1.5	41280	11	16	455	1.6	11	8690	． 3	11	23	46600
L35N 4＋00N	． 9	34160	4	9	354	1.5	9	3580	． 4	10	21	43450
L35M 44504	1.3	44140	4	18	393	1.7	6	4740	． 6	10	24	51870
L3514 5000	． 8	52050	10	24	400	1.6	5	4460	． 2	11	$2!$	44360
［35\％54504	． 8	33950	9	9	411	1.4	5	5420	． 8	8	19	38980
L35\％6＋00H	． 9	31370	7	6	393	1.4	7	5290	.2	9	27	37040
L37\％O＋50E	1.5	32900	10	9	349	1.5	10	9180	． 7	11	24	39640
L37 1 ！＋00E	1.3	23530	13	1	360	1.2	11	8490	． 3	8	19	33860
［37N 0＋001	1.1	32600	13	7	361	1.4	10	6570	． 5	9	21	38860
L37M 0450N	1.3	27600	13	4	370	1.2	10	7580	． 3	9	20	33810
［37\％1＋00以	1.7	27080	17	4	45	1.3	13	7380	． 6	10	20	39990
L37N 1＋50N	1.4	32690	14	8	348	8.5	9	6840	． 1	11	22	41700
137 $2+00 \mathrm{H}$	1.5	50480	17	23	336	2.1	5	9100	．1	15	39	50670
［37 $2+50 \%$	1.0	47120	13	20	509	1.7	6	4860	． 9	13	27	52240
L37M J＋001	N／S											
1374 3＋5014	H／S											
L37N 4＋004	． 5	32800	1	10	341	1.4	5	3140	． 3	7	21	43590
L37\％ $4+50 \mathrm{~K}$	1.0	29770	10	4	369	1.1	6	5790	2	8	22	28890
L37N 5＋004	1.0	44490	11	16	763	1.6	1	8240	． 8	10	28	42210
L37K 5＋50\％	． 4	49090	10	19	489	1.6	2	3410	． 1	8	18	49390
L37M 6＋00\％	1.0	32220	18	7	597	1.5	3	9640	． 5	10	27	41980
L42 K OT50E	1.3	25180	16	1	342	1.2	9	8690	． 1	9	21	34700
L 42 N －+ ＋00E	1.4	25880	17	1	294	1.2	11	8160	． 5	9	24	37070
［42N 1＋50E	1.8	32310	17	6	313	1.5	10	7980	． 7	10	27	41910
L42 $2+00 \mathrm{E}$	1.9	30680	18	5	375	1.4	12	10070	． 6	11	27	43840
L42S 2＋50E	1.5	30340	19	4	290	1.3	11	7490	． 3	10	25	40160
L42N 3＋00E	2.0	42620	19	14	450	1.6	12	9220	． 4	14	27	43640
L42N 0＋504	1.8	26340	$\underline{1}$	1	360	1.4	12	9570	． 6	10	27	40710

MIHEEM LABS ICP REPORT
705 WEST [5TH ST., HDRTH VAMCOUVER, B.C. V7K 172
(ACTiFJI) PAgE 2 OF 3
FILE NO: 7-1530/P5+6

ATTEHTIOH: 6. MORDEEN

(6041980-5814 OR 1604)988-4524

- TYPE SOIL GEOCHEH

DAEE:OCT 1H 1987

	K	LI	${ }^{46}$	Min	H0	HA	N!	P	P1	S ${ }^{-1}$	SR	
- 12 L	500	11	5200	582	1	110	8	1160	17	3	52	I
L.12H $1+00 \mathrm{H}$	530	16	5680	334	1	250		2240	22	2	32	1
LI2H $1+50 \mathrm{O}$	680	11	5820	457	2	160	9	1080	17	1	46	1
L12 $2+6001$	620	12	5610	255	1	150	J	1820	15	1	31	1
L12N $2+50 \mathrm{H}$	820	14	6730	545	2	180	8	1160	17	5	45	1
	700	12	5390	292	i	140	7	840	13	2	41	1
L12\% 3+50\%	710	11	5990	250	1	200	9	1140	16	1	49	1
L12 $\mathrm{N}^{\text {4 }}$ +00N	860	11	4550	188	1	130	7	590	10	1	43	1
L! $2 \mathrm{~K} 4+50 \mathrm{~K}$	580	12	5350	222	1	140	8	740	17	1	42	1
L12N 5+00\|	478	14	5290	269	1	110	9	186	19	4	23	1
	940	14	6770	512	1	150	13	950	21	6	107	!
L12K $6+00 \mathrm{H}$	1170	14	7140	586	1	140	11	980	19	2	83	$!$
L. 212 S 650\%	1040	13	6030	758	1	150	$1!$	810	20	2	日 8	$!$
L124 7+60以	1270	16	7450	886	1	150	17	940	26	3	88	1
$412 \mathrm{H} 7+50 \mathrm{H}$	1080	14	6690	615	2	160	14	940	21	2	74	1
-12N ${ }^{\text {a }}$ +00\%	1020	17	6400	571	1	120	12	1040	28	2	91	
L12N $8+50 \mathrm{~K}$	1090	16	7070	1459	1	110	14	690	52	4	100	1
L122 9+00\%	910	12	5640	521	1	130	9	1000	20	3	95	1
L12 ${ }^{\text {¢ 9 }}$ +50\%	790	12	4040	747	1	90	3	750	16	2	98	1
L12 $10+00 \mathrm{H}$	690	15	6470	502	1	110	12	870	3	2	146	1
- 1212 l - $10+5014$	240	3	2380	3578	5	50	42	1360	24	4	290	
L12H $11+00 \mathrm{H}$	790	4	3010	357	1	130	12	790	13	2	59	!
L12\% 11+50\%	580	14	4500	1188	3	100	32	1200	17	1	119	$!$
L12\% 12+0011	550	4	3060	423	1	80	5	410	15	2	21	$!$
L35 0450E	990	13	8230	429	1	490	15	1050	9	5	107	1
-35] $1+000$	890	16	7140	35	2	420	13	790	8	1	94	1
LJ5N 0450H	970	13	7230	322	2	320	14	1020	12	1	${ }^{88}$	1
L35 $1+00 \mathrm{H}$	880	12	7740	482	1	330	23	1010	3	4	96	1

L3SH 1+OON
L3SN $1+50 \mathrm{~N}$

- $33512+000$	H/5											
-35M $2+500$	- 570	9	5700	277	1	190	19	3720	5	5	38 98	I
L35N 3+00\%	1310	19	10700	612	1	460	19	1460	11	6	98	
LJ5K 3+50\%	1130	15	9260	421	1	670	18	1250	8	7	113	1
L354 4+0014	800	15	6500	348	2	380	13	1180	5	6	61	
L354 $4+50 \%$	1050	18	8800	366	2	270	20	2490	4	5	68	$\underline{1}$
	720	11	6740	296	1	330	17	1340	13	6	80	1
L35N 5+504	760	11	6950	261	2	370	14	1220	4	6	75	I
L351 $6+00 \mathrm{~K}$	850	11	6700	395	2	360	13	1010	12	5	98	!
L37M O+50E	1100	13	10720	707	I	590	19	1230	13	5	140	1
L371 1+005	1030	10	8690	335	1	660	15	1020	13	1	144	1
- 37 F - $0+00 \mathrm{il}$	980	14	8910	410	2	530	14	820	9	6	123	
LJ7H $0+50 \mathrm{~K}$	1050	11	8610	386	1	690	14	930	11	1	128	!
L37N $1+00 \mathrm{H}$	1010	11	8990	320	,	750	17	1000	15	1	129	I
L37N 1+50\%	980	14	9830	728	,	500	19	790	12	6	106	1
L37 $2+004$	1090	19	12130	1078	1	260	25	1110	7	6	111	1
L37 ${ }^{\text {2 }}$ +504	870	11	9500	379	3	-39	30	1960	16	6	81	
L37M 3+00\%	N/S											
L374 3+50M	N/S											
L374 4+0011	780	10	5030	616	1	210	6	3400	5	5	41	1
L37\% 4+50.4	940	11	5930	353	1	350	11	820	10	4	95	1
- 377 M 5+00ї	1050	12	8050	822	2	320	12	1240	10	6	101	1
L37\% 5+50\%	490	12	6280	256	1	150	13	4110	11	5	35	1
L37 $6+0001$	1070	13	7280	1029	1	380	14	1190	17	,	159	.
L22N O+50E	1120	10	8700	320	1	910	17	1010	13	1	243	,
L22H 1+00E	1120	11	8630	401	1	870	20	780	14	1	205	-
L422	1050	13	9480	428	2	730	24	880	13	1	200	1
L42 $2+00 \mathrm{E}$	1250	12	10210	385	1	920	24	1350	11	2	243	1
L42N $2+50 \mathrm{E}$	1030	14	9490	349	1	860	22	580	9	3	184	1
L4213 3 OOEE	1210	14	9590	493	2	950	22	1430	7	1	257	1
L42N 0+50H	1220	11	9030	432	1	950	22	1130	15	4	272	1

COAPAHY: MORMIME RESOURCES
PROJECT HD: DEU
ATTENTION: G. MORDEEN

COKPAHY: HORNIHE RESOURCES
PROJECT ND: DEU ATTENTIOH: 6 . MORDEEK

ATTENTIOH: G. MORDEEN			(6041980-5814 0R 1604)988-4524					TYPE SOIL GE0CHEI			DATE:OCT 11. 1987	
TVGUVETMP丽!	A	Al	AS	-	BA	BE	-1	CA	CD	6	cu	FE
-42N $1+00 \mathrm{~N}$. 9	29110	9	6	327	1.3	,	8340	. 4	8	20	35220
L42 $2 \mathrm{~L}+50 \mathrm{~K}$. 7	25600	10	2	360	1.2	6	8530	.6	G	17	32410
L42H $2+00 \mathrm{H}$. 7	24780	4	1	288	1.2	7	7370	. 7	7	18	31980
L42\% $2+5014$	1.2	27820	8	3	389	1.2	9	9180	. 6	9	16	33830
- $42 \mathrm{2H} 3+00 \mathrm{O}$	1.4	56430	11	26	352	1.7	7	7250	. 6	11	30	45410
	1.3	42050	8	14	444	1.6	9	7780	. 5	11	23	41320
L42N $4+00 \mathrm{H}$	1.7	59310	5	29	399	2.0	\square	4920	. 2	13	28	52670
L42N $4+50 \mathrm{H}$	1.0	55710	11	24	507	1.4	6	5130	. 3	11	24	39650
L42M $5+00 \mathrm{~K}$	1.0	42270	9	15	381	1.5	5	5060	. 4	8	17	41430
L42N $5+50 \mathrm{H}$	1.3	53390	3	24	409	1.9	7	2940	-	11	23	57760
	1.0	48450	-	20	425	1.6	5	2850	. 3	10	22	47760
L42K 6+5014	. 9	48910	9	20	339	1.6	6	2500	. 6	3	19	50710
L42 7 7004	1.6	46250	8	20	356	1.7	7	5250	. 4	18	26	50460
L4414050E	1.0	25950	14	2	274	1.3	7	7790	. 5	8	21	34920
L44K $1+00 \mathrm{E}$	1.2	30250	21	6	448	1.4	6	12210	. 6	9	25	37000
-44M 1 [50E	1.0	26820	8	4	291	1.2	8	6450	. 1	7	19	33420
L44* $2+00 \mathrm{E}$	1.0	24810	15	3	324	1.3	9	8010	. 2		19	37750
L44N 2450E	1.2	28770	10	6	453	1.5	${ }^{8}$	9610	. 3	11	24	44380
L44N 3+00E	1.0	31770	14	7	272	1.4	,	6190	. 2	9	23	39070
- $444 \mathrm{H} \mathrm{O}+504$	1.1	26980	13	3	265	1.3	10	6160	. 2	10	21	39050
-44M $1+00 \mathrm{OH}$	1.2	29690°	1	6	288	1.4	8	9000	. 5	9	25	39240
L44N 1+50H 40M	1.4	38780	19	13	249	1.8	6	13940	. 2	13	36	41340
L44H2+00M 40M	1.4	40680	17	15	262	1.9	5	13970	. 4	12	33	42020
L44 2 2 50 H	1.4	29690	16	5	335	1.3	10	11270	. 1	,	27	34520
L444 3+001												
C447 3 5 5017	1.0	29590	9	6	403	1.4	8	5750	. 5	10	21	10890
L4K 4 400W H/S												
L44N $4+50 \mathrm{~K}$. 8	25720	13	,	276	1.1	9	5490	. 2		16	52350
L44K 5+00H	. 9	30850	7	5	378	1.2	8	6510	. 3	8	17	34110
L442: $5+501$	9	36200	-	9	593	1.2	7	6120	. 5	9	17	34200
L44\#\# $6+00 \mathrm{CH}$	1.1	31640	7	6	380	1.2	6	5960	. 4	8	17	35900
L44\% $6+50 \mathrm{~N}$. 8	36150	7	8	392	1.2	3	5460	. 3	8	18	35730
L44K 7+00K	. 8	43530	7	15	525	1.4	5	3650	. 1	10	18	42470

COMPANY: HORKINE	RCES				SS	REPORT					31) P	2 Of 3
PRONECT HI: DEU			705 MEST	15TH ST.	TH	COIVER	, B.C. U7K	T2			E N0: i-	1530/P7+8
ATTESTION: G, KOR				1604198		41988	4524	1 IYPE	SOIL GEOCHEM	+	DATE: OCT	11. 1987
IVALUES IH PPK	K	LJ	16	NK	H8	NA	NI	P	PB	58	5 R	TH
L42N 1+003	900	14	9260	463	1	510	23	1040	14	1	210	1
L42N $1+50 \mathrm{H}$	990	12	8390	306	,	480	20	1350	8	4	211	1
L42N $2+00 \mathrm{H}$	930	10	8400	308	1	520	18	910	9	j	199	1
L42k 2+50\%	1060	10	9010	335	1	620	17	1300	14	J	222	1
L424 3+00H	1050	15	9560	345	1	380	27	2300	16	7	89	1
L42N 3+50H	1040	14	9920	931	1	410	25	1440	6	6	145	-
L42 $4+00 \mathrm{~K}$	1060	19	10890	1115	1	280	24	1450	17	7	91	!
L42N 4+50M	1050	16	10580	307	3	200	30	1550	5	0	125	i
L42N 5+001	610	10	5970	260	1	300	8	1810	3	7	77	1
L42H 5+504	900	15	8450	320	1	200	18	3030	15	9	72	1
L2\% $6+00 \mathrm{H}$	800	13	7600	415	-	250	20	1760	13	6	65	1
L42 ${ }^{\text {d }}$ +50N	780	12	6140	259	2	140	8	3830	12	7	40	,
L42H 7+003	1080	14	11920	1912	2	220	22	1220	17	B	96	1
L44N O+50E	860	11	9290	402	1	530	22	450	15	2	191	,
L44N 1+00E	1070	13	10870	443	1	620	31	1220	8	1	280	1
1441200	770	14	8410	252	1	450	19	440	8	1	183	1
144132+00E	880	12	8770	470	1	610.	26	900	9	1	163	1
L44N 2+50E	1100	14	9740	504	1	680	31	1350	12	1	213	1
L44N 3 +00 E	920	14	9850	456	2	410	23	530	14	2	176	. 1
L41N 0+504	850	15	9660	497	1	590	26	470	12	2	176	1
[44त1 $1+0011$	970	13	10600	410	1	490	28	610	13	2	203	1.
L44 1+5013 40H	990	15	12830	1139	1	530	36	910	12	1	180	1
144N 2+00N 40K	1000	15	11970	1195	2	300	33	960	13	1	199	1
L44N $2+50 \mathrm{H}$	1060	11	10280	368	1	690	25	1220	12	1	252	1
L4423+00H N												
[44N $3+50 \mathrm{~N}$	860	8	6940	490	2	570	21	1170	9	1	89	i
L44K 4t00\%												
L44N 4+50H	780	10	7330	435	1	380	15	930	15	1	124	1
L44N 5+001	820	10	7700	278	1	410	18	1230	11	6	141	1
L44! 5+50H	800	9	6920	255	1	400	20	1340	12	$!$	163	1
L44n 6400 H	720	12	8720	320	1	200	20	1200	13	4	117	1
L44N 6+50H	800	12	9230	308	2	190	19	1060	7	5	136	1
L44K 7+00H	670	11	7600	270	1	200	23	1570	12	5	121	1

COMPRYY: HORHINE RESOURCES PROJECT NO: DEU ATIENTIOH: G, MORQEEE
hIN-EN LABS ICP REPORT
705 HEST 157 H ST., NORTH VAYCOUVER, B.C. V7H IT2
(604)980-5814 OR (604) $988-4524$ IYPE GOIL GEOCHER

L44H 3+004

Pruject ko: dev			7MS MEST 15TH ST., MORTH VACCOUVEK. 8.C. V/M 112						IPE SOIL GEOCHEN		Hile mus $1-1 / 131 \mathrm{mla}$		
ATIEHTION:				16041980	$80-581408$	41988-							
	A6	AL	A ${ }^{\text {S }}$	B	BA	㫙	B1	LA	CO	C0	CO	CV	FE
LiA 050 M	. 8	25200	3	18	327	1.2	4	4770	. 5		b	19	32680
L14 100\%	. 9	25110	5	16	231	1.3	1	3200	. 7		6	19	38880
L14 150 K	1.1	40080	19	29	398	1.6	1	5430	. 7		11	29	47630
41420011	. 9	25770	18	18	300	1.5	4	6010	. 6		10	41	43070
L14 250\%	1.1	31450	17	23	$32!$	1.6	2	5320	. 6		10	39	47420
-14300\%	1.8	26000	19	19	460	1.4	2	11230	1.5		9	43	37900
414 350k	. 8	24710	16	18	286	1.4	5	4760	. 6		9	29	42540
114400%	1.2	23970	17	17	326	1.3	2	4300	1.2		7	32	37780
1.14 450\%	1.1	23250	16	16	378	1.2	2	7940	1.3		7	43	32070
- 14 500\%	1.1	22750	13	17	268	1.2	4	4550	. 6		7	27	36730
-14-55014	. 5	25880	10	18	168	1.1	1	1820	. 2		4	24	33860
L14 600\%	. 6	16410	8	11	168	1.0	4	1740	1.0		5	22	30900
14465012	2.5	26310	20	21	468	1.3	2	9230	. 9		7	48	35190
$1.14750{ }^{\text {a }}$. 6	20760	17	14	349	1.4	2	3480	1.3			38	41910
L14 85015	4	12700	1	7	.-...-212	. 9	2	4580	1.1		5	21	27170
L14 900\%	.6	22170	13	18	189	1.3	1	4060	.6		6	35	39320
L149501	. 8	17930	9	12	273	1.1		5010	. 5		b	31	32620
4.1410001	1.0	26600	20	20	189	1.4	1	3760	. 6		7	40	44040
11410501	1.6	23690	16	18	245	1.6	1	4000	. 8		6	31	50220
1411004	1.2	19620	1	13	- 244	1.2	1	2230	8		6	39	36070
-19 1150 C	2.6	23 310	15	20	---205	. 9	1	2560	1.0		4	4	24620
114.1200\%	. 1.2	25790	21	19. 195	1.3	1	3900	. 5		6	42	36730
216 050\%	1.0	16890	10	11	. 194	1.0	8	2140	. 7		6	16	29630
416 10041	. 8	27400	9	19	- 189	1.2	4	1570	. 1		6	18	37390
416 150M	1.8	59840	20	45	- $6 .$.	1.9	1	5020	: 6		17	57	54320
-17-200\%	. 7	$2{ }^{2} 150$	12	16	----258	1.0	2	2190	. 3		6	21	29940
L16 25011	. 9	25600	13	18	807	1.2	4	3140	. 4			20	36320
L16 300\%	.7	29610		21	173	1.1	2	2260	. 6		6	23	33550
416 35011	. 2	28450	8	24	4214	1.7	,	1680	. 8		4	18	54160
L16 400	8	24910	10	18	8.	1.1	1	4230	. 6		6	29	31460
[16-450\%	. 7	19780	-	21	-----204	1.1	2	4700	. 7		5	30	53260
L16 500\%	. 4	16020	9	14	1195	. 9	1	3000	. 8		5	29	28520
16.550 H	. 8	13680	5	10	158	1.2	,	1560	. 6			37	37820
41660011	. 8	17820	9	12	12294	1.2	,	3850	-8		5	44	36480
L16 650\%	. 8	23140	15	15	5 -..-300	1.2	1	4210	--.-.-. ${ }^{3}$		6	43	35970
-116700\%	2.2	35090	9	26	---3-38	1.4	1	5100	------3		6	78	37400
4167504	1.2	25890	7	18	8295	1.2	1	5580	-3		6	42	33470
21680011	. 9	25210	13	17	7270	1.2	1	5110	-3		6	45	35000
41685016	. 4	20580	1	12	253	. 9	,	4290	-1		4	29	25200
L16.900H 20 M	1.3	23450	10	15	5 -----333	1.1	1	10030	-----3		6	38	30220
-16950\% 40 M	1.9	38490	30	28	- $-\cdots---195$	1.7	2	9600	------7		9	94	46770
L161000W	2.1	45280	34	38	8598	1.8	1	10870	- . ${ }^{\text {c }}$		11	97	48770
L16 1050\% 40M	1.6	27130	22	20	0365	1.9	1	9180	O 1.4		9	58	57830
L.16 1600\%	1.7	22820	.	17	7318	1.3	2	8460) 1.6		8	73	37470
+16 -1150	1.8	31850	26	22	2.	1.6	1	5860	---... 5	5	9	98	45760

PROJECT NOI DEV ATTEHTION:			70^ MEST 15 TH ST., MORTH YAHCOUVER, B.C. V7H IT2 (604) $980-5814$ 0R (604)988-4524									
	K	II	H5	Hix	no	НА	Hi		PB	S日	SR	IH
\cdots	670	12	- 7780	246	1	240	-	1150	11	1	58	1
1441001	600	12	4910	220	1	120	5	1930	12	1	34	1
L14 150\%	870	13	7730	397	1	250	14	1960	6	6	69	1
114200 N	1040	11	7010	522	1	260	13	1540	23	3	57	1
L14 250\%	1150	14	6950	430	1	260	10	1790	23	3	58	1
	1150	13	7340	771	1	250	16	1236	23	3	125	1
11435011	930	11	6020	405	2	310	13	1680	15	2	45	1
L14 400\%	880	13	6380	349	1	150	14	780	23	3	60	1
114 45014	880	12	6120	487	1	180	16	1110	23	4	91	1
L145004	820	16	5610	368	1	150	11	930	16	3	59	1
[14 550 M	610	12	3670	159	2	120	1	840	16	2	28	1
214600 H	690	6	3760	192	1	110	6	790	15	3	28	1
L14 650\%	920	13	6640	646	1	160	13	1200	20	4	118	1
144750%	690	15	5310	317	1	100	10	570	30	1	55	,
L14 8501	500	8	5110	261	1	110	10	1010	20	1	40	$\underline{1}$
Lia 900\%	940	11	6080	265		-530	8	1350	30	4	32	I
414 95014	630	13	4740	309	1	120	10	460	22	2	64	1
L14 1000\%	960	12	5850	484	1	150	8	1300	30	1	36	1
L14 105014	830	19	5570	262	1	120	7	1660	22	5	4	,
L14 1100 X	280	8	3910	. 917	2	110	6	890	25	4	40	1
Li4 1150 W	910	11	5010	218	1	130	9	970	17	2	4	1
41412001	1120	13	7210	335	1	150	13	1270	33	5	31	1
L16 05011	610	7	3780	193	1	170	7	530	14	3	36	1
L16 10014	610	12	3630	201	1	140	2	1080	10	3	22	1
L16. 150 H	1510	19	9650	3045	4	110	15	1050	22	1	81	1
-116 $2000{ }^{\text {in }}$	840	10	4330	307	2	140	5	520	10	3	36	
4.16 25011	920	13	5130	242	1	170	5	1140	18	2	32	,
416 300W	860	11	5550	209	2	140	7	1280	13	$?$	26	1
416350 H	870	16	3600	155	1	110	1	5230	10	3	16	1
L16 400	810	12	5840	425	1	190	8	1060	13	3	45	1
-116-450\%	700	14	5710	269	1	120	7	760	24	3	35	1
416 500\%	500	12	4830	382	,	70	8	880	31	3	24	1
L16 550\%	570	7	2790	213	1	80	3	1090	27	3	18	,
L16 600\%	760	12	5550	321	1	120	9	770	23	1	45	1
L66-60\%	900	12	6310	496	1	140	8	860	24	1	49	1
-116 700011	1550	14	7310	662	1	140	11	740	19	2	68	1
416 750\%	890	12	6540	489	1	160	10	1020	19		59	1
L16 800\%	810	14	6770	385	1	140	9	990	19	3	55	1
L.1685014	780	9	4730	241	1	130	9	420	12	2	57	1
L16 9004 20 H	890	12	5780	492	1	150	12	1110	$\frac{14}{25}$	2	127	1
[16-950M" 40M	1480	19	7870	1097	2	160	21	1350	25	4	128	1
41610001	1600	21	9240	1411	2	160	24	1640	20	4	168	1
416 10501 40K	970	19	10240	809	1	170	21	1400	31	6	99	1
L16 1100%	890	17	7440	649	1	230	26	1170	29	4	102	1
11611501	1040	33	5940	477	2	110	23	1150	28	1	98	1

2 ${ }^{\text {晨 }}$						imidnjo		
$\sum^{8 R}$		ニ゙トツ゚さ			N8～NNO．			m8N： invini
豆	$\begin{aligned} & 909090 \\ & \vee \vee \vee \vee V \end{aligned}$	$\left\lvert\, \begin{aligned} & \circ ㅇ ㅇ ㅇ ㅇ ㅇ ㅇ ㅡ ㅇ ~ \end{aligned}\right.$	응ㅇㅇㅇ은	$\begin{aligned} & ㅇ ㅇ ㅇ ㅇ ㅇ ㅇ ㅇ ㅏ ㄴ ~ \end{aligned}$	$\dot{\log } \mathrm{V} V \mathrm{O} V \mathrm{O}$		$\begin{aligned} & \text { 옹ㅇㅇㅇㅇ } \\ & \vee \vee \vee \vee ㅁ ~ \end{aligned}$	
$\cdots 8$	우N․․ $00^{\circ} 0^{\circ}$		べッに～゚ 100000	$00^{\circ 0}$	ㄲํำ～～ －0000		～～ロ～～～ －0000	
\％害	$\vec{v} \stackrel{\rightharpoonup}{v} \vec{v}$ v				$\vec{v} \stackrel{\rightharpoonup}{\text { a }}$－$\vec{v}$			vvvvv
38	애유융	애우ㅇㅠㅠㅇㅜ	우우ㅇㅠㅜㅇ			융융응	으응ㅇㅇ	웅웅ㅇㅇ
\square°		へス8゙ず		＋	ベッデ～～	ズットか $\dot{m+m i n i m}$	$\overrightarrow{\ddot{C O}} \mathrm{OM}$	
\％复	ベャッジ		の日がッ\％	べらがった	が馬が	－\％	$\cdots \begin{gathered}\text { ¢ } \\ \text { の }\end{gathered}$	Oロサロロ
已慁	ずNが	NさNNO			꾺	さニかっため		
3	유ำกN	NO～NOP	OQNNT	OMNーO	ベベヘベヘ	त－		
J 岩	oioó VVVVV	0000 VVVVV	$00^{\circ \circ} 0$ vVVVV		oóo 0 VVVVV	nñnnn vVvVV	－0000 vVVVV	$\left\|\begin{array}{lllll} n & n & n & n \\ 0 & 0 & 0 & 0 & 0 \\ v & v & v & v & v \end{array}\right\|$
$3 R$	－～～～～～～ mががが				¢¢べñ	へ̧nmo		
百息	$\hat{V N v i v N}$	NHNNH vVVVV	HNHNH $\vee \vee \vee \vee v$	$\underset{V V V V V}{V N T}$	Vrvenve	$\left\lvert\, \begin{aligned} & \text { arvonvo } \\ & V\end{aligned}\right.$	$\hat{V} \underset{V}{V} \underset{V}{V} V$	
\＆	nunnn	nぞ．nn	0nnnn	nnnoo	100nno	$\left\lvert\, \begin{array}{ll}n \sim n \\ 00000\end{array}\right.$	nnnno	$\left\lvert\, \begin{array}{ccc}n & 0 & 0 \\ 0 & -0 & 0 \\ -0 & 0 & -1\end{array}\right.$
思息	응ํㄱㅜㅜ융		O으융ㅇㅇㅇ	O800\％	1융융융	\％్లి유ㅇㅠㅠㅠ		
＜㮩	SタPmm	9n90\％	우ำ幺幺	으ィッカ			－98989	～n909\％
会息	MrNan $00^{\circ \circ \circ}$			\|rurr rur rur				
こ		Mロッロが \|riviva		ํㅜ～응 ヘنNivi		م\%	ロ～iono －Nóㅇ	
$\begin{aligned} & \text { 总空 } \\ & \text { 至 } \end{aligned}$	vvvvv	かんnnの VVVVV		いのいいの VVVVV	$\vee \vee \vee \vee v$	のいいのか UVVVV	nnnnn VVVVV	nのnいい V
${ }_{\text {a }}^{4}$			NNNNN		N్సָ			
E 8		ƠƠOOOOOO						
				品莒荷号号号		会会苔告品		

[^0]

OLII	O＜－1	$01>$	＋10	$1>$	01	$99^{\circ} \mathrm{E}$	1τ	02	81	5．0＞	Of＇	マ＞	$5 \cdot 0>$	062	sot	$\tau^{\circ} \mathrm{O}$	56．1	s＞	$3 \Sigma 2$	502	OILS
0101	Sc． 1	$01>$	51.0	$1>$	01	\rightarrow tr．	\％	62	t	$5 \cdot 0$	s\％＇	2＞	$5 \cdot 0>$	$0 ¢ 1$	55	2．0	S $L^{\circ} \mathrm{i}$	$5>$	1 ct	soz	6025
ss9	60^{-1}	OI	61%	$1>$	O1	2L＇z	9 c	¢ $¢$	$\varepsilon 1$	$5 \cdot 0\rangle$	$20 \cdot 5$	z＞	$5 \cdot 0\rangle$	Ozt	06	\％－0	19.1	$5>$	tiz	s02	5025
CLL	5c＊	OI	21\％	$1>$	01	Hic	os	－	\＆1	5.0	1\％＇E	z＞	$5 \cdot 0>$	021	Of	$2 \cdot 0$	E＜${ }^{-1}$	$5>$	Ifz	soz	L0LS
25 2	61 1	oz	H0	$1>$	O1	18＇z	8ε	82	11	$5 \cdot 0>$	$16^{\circ} \mathrm{Z}$	2＞	$5 \cdot 0>$	09	OS	$2 \cdot 0$	29.1	$5>$	¢¢ 2	sot	$90<5$
924	くで1	Oz	410	$1>$	01	$10^{\circ} \mathrm{C}$	6 C	く	21	$5 \cdot 0>$	06.2	2＞	$5 \cdot 0>$	oze	02	ナ0	2L＇I	$5>$	scz	soz	SOLS
が\％	とで1	oz	510	$1>$	OI	โ8＇\％	SE	18	11	$5 \cdot 0>$	28．2	$2>$	$5 \cdot 0>$	OSt	51	$2 \cdot 0$	59.1	$5>$	8 cz	Sot	5025
148	59－1	OI＞	51.0	$1>$	OI	＋c：	It	＊s	51	$5 \cdot 0>$	2L＇C	2＞	$5 \cdot 0>$	Ot	¢	$2 \cdot 0$	$20 \cdot 2$	$5>$	ctz	S0z	cols
629	OE＇1	01	$2 \tau \cdot 0$	$1>$	Of＞	$16^{\circ} \mathrm{Z}$	8ε	ct	21	$5 \cdot 0>$	56．2	て＞	$5 \cdot 0>$	OfI	021	$2 \cdot 0$	58.1	$5>$	ter	S02	2025
695	2E•1	01	62.0	$1>$	01	56.7	15	68	1	¢．0＞	56．2	と＞	$5 \cdot 0>$	Olt	5ε	$\stackrel{0}{0}$	66．1	$5>$	s¢	502	1025
OSL	6c•2	$01>$		$1>$	O1	$5 c^{\circ} \mathrm{T}$	61	68	t	$5 \cdot 0>$	「「゙「	て	¢ 0 \％	OzE	02	2－0	¢0＇t	s $>$	152	s0t	0025
$1{ }^{12}$	ci－2	$01>$	reo	$1>$	01	$68^{\circ} \mathrm{F}$	2τ	88	12	$5 \cdot 0>$	$12 \cdot \varepsilon$	2＞	$5 \cdot 0>$	006	ss	$2 \cdot 0$	$28 \cdot 2$	$5>$	Ecz	soz	6695
126	55－2	O1＞	Ef\％	$1>$	O！	66°	＋	96	61	$5 \cdot 0\rangle$	76\％	て＞	$5 \cdot 0>$	Ofs	0τ	\％ 0	ot＇	$5>$	erz	502	8695
O＋1	8c＊ \boldsymbol{z}	Oi＞	92%	$1>$	01	OL＇${ }^{\text {c }}$	4	［L	41	$5 \cdot 0>$	95＇\％	と＞	$5 \cdot 0>$	0801	ot	\％＇0	£ $\iota^{\circ} \mathrm{Z}$	$5>$	Ifz	soz	L695
529	くで1	$01>$	$66^{\circ} 0$	$1>$	OI	$66^{\prime} 2$	12	18	21	$5 \cdot 0$	で「	$\tau>$	$5 \cdot 0>$	$0 \% 6$	O¢	r．o	96.1	51	12z	sot	9695
016	ヒ1て	01＞	18.0	$1>$	OI	11\％	12	401	82	$5 \cdot 0>$	$68^{\circ} \mathrm{C}$	2＞	¢\％${ }^{\text {\％}}$	OS¢	OS	$\stackrel{\circ}{0}$	08.2	s＞	tez	s0t	s69s
586	Os： 2	$01>$	62%	$1>$	OI	O1＇\％	18	511	と	$5 \cdot 0>$	90°	$2>$	$5 \cdot 0>$	005	Ss	$2 \cdot 0$	69.2	$s>$	1cz	soz	\＄695
cr 8	80\％	$01>$	$61^{\circ} 0$	$1>$	O1 $>$	$26^{\circ} \mathrm{C}$	12	59	12	$5 \cdot 0>$	08＇\％	そ＞	$5 \cdot 0>$	OS 1	st	＋0	2\％1	$5>$	1¢\％	502	¢695
156	Oc－1	$01>$	Of． 0	$1>$	01	11＇\％	てع	2L	81	$5 \cdot 0>$	Lf\％	2＞	$5 \cdot 0>$	OII	SL	\％＇0	15．1	s $>$	scz	soz	2695
586	20＊2	O1＞	810	$1>$	ot	11\％	12	SL	61	$5 \cdot 0>$	20．	と＞	$5 \cdot 0>$	Ofi	SE	$2 \cdot 0$	＋L＇t	s＞	ecz	soz	1695
868	て1「	$0 \mathrm{O}>$	c20	$1>$	Or	O1＇	し2	$\boldsymbol{f 1 I}$	02	$5 \cdot 0>$	59.2	て	$5 \cdot 0>$	062	$5>$	\％ 0	$16^{\circ} \mathrm{t}$	$5>$	scz	soz	0695
5511	くE＊	Of $>$	$11^{\circ} \mathrm{O}$	$1>$	Of $>$	O1＇t	0τ	sit	22	$5 \cdot 0>$	25\％	2＞	$5 \cdot 0>$	ost	51	$t \cdot 0$	88.1	$s>$	Icz	Sot	6895
－28	E6－1	O1＞	12%	$1>$	O1 $>$	$9{ }^{\text {\％}}$	22	621	61	$5 \cdot 0>$	$95^{\circ} \mathrm{T}$	と＞	$5 \cdot 0>$	coz	5	$\tau \cdot 0$	29.1	$s>$	ect	soz	2895
Orot	O＇${ }^{\text {－}}$	$01>$	tio	$1>$	01	55＇\％	91	211	と2	0.1	2\％＇t	2＞	$5 \cdot 0>$	$0<1$	s $>$	$2 \cdot 0$	$16^{\circ} 1$	$5>$	IE τ	sot	L895
618	で「て	$01>$	2\％O	$1>$	$0 \mathrm{I}>$	32＇t	12	$2 ¢ 1$	¢	s．0＞	$\varepsilon<\cdot \varepsilon$	2＞	$5 \cdot 0>$	OL	or	$2 \cdot 0$	$\mathrm{fi}^{\text {c }}$	01	¢¢ 2	soz	9895
OOZ1	5c＊	$01>$	510	$1>$	O $1>$	$96^{\circ} \mathrm{C}$	81	cti	61	$5 \cdot 0>$	89．\％	2＞	$5 \cdot 0>$	012	59	\％O	－$\cdot 2$	01	2 cr	soz	5295
5tel	cs：z	$01>$	12.0	1	01	$12 \cdot$	it	sti	Ot	$5 \cdot 0$	＋it	$\stackrel{\square}{7}$	$5 \cdot 0>$	0011	52	$2 \cdot 0$	$18 \cdot 2$	$5>$	\％ 5 \％	502	1295
5921	＊ $\boldsymbol{*}^{-2}$	$01>$	61.0	$1>$	ot	20＇\％	12	121	81	$5 \cdot 0$	$\mathrm{Si}^{\circ} \mathrm{b}$	－	$5 \cdot 0>$	ost	51	2．0	ss－z	s＞	ett	soz	ce9s
S60t	65－2	$01>$	č\％	$1>$	Ot	25＇\％	2ε	1ヵ1	t	$5 \cdot 0$	$6 L^{\circ} \mathrm{E}$	$\stackrel{ }{ }$	$5 \cdot 0>$	09\％	or	2．0	06.2	$5>$	ect	soz	2895
258	62^{\prime}	$01>$	61.0	$1>$	ot	$26^{\circ} \mathrm{L}$	or	İI	12	5%	O2．$\%$	2	$5^{\circ} \mathrm{O}>$	Ott	or	$2 \cdot 0$	くナ＇z	$5>$	efz	soz	1895
OSt	6で「	$01>$	410	$1>$	Ot	92．＇	12	rtil	ヶ2	$5 \cdot 0>$	L6．	\dagger	5.0	∞	or	2•0	ss．z	$5>$	scr	soz	0895
crs	ビ「と	ol $>$	21.0	$1>$	Ot $>$	per	โ	681	22	$5 \cdot 0$	$89 \cdot 2$	$r>$	$5 \cdot 0>$	$0 ¢ 1$	51	$2 \cdot 0$	¢c\％	$5>$	scr	soz	6295
Sist	1＊「て	$01>$	01.0	$1>$	01	$1 \%^{\circ}$	＋	2¢1	－	$5 \cdot 0>$	59.2	$\stackrel{ }{ }$	$5 \cdot 0$	026	or	2．0	$95 \cdot 2$	$5>$	scr	sor	s 295
Otst	62＇z	01	01.0	$1>$	ol	$68^{\circ} \mathrm{F}$	5ε	Eft	Oz	$5 \cdot 0>$	$\mathrm{ct}^{-} \boldsymbol{\tau}$	ம	$5 \cdot 0$	ozt	02	$2 \cdot 0$	$6 \mathrm{c} \cdot \mathrm{r}$	5	esz	sot	LL95
est	$55^{\circ} \mathrm{O}$	0ε	Of． 0	$1>$	$01>$	$20 \cdot 2$	92	is	6	$5 \cdot 0>$	$6 \%^{\circ} \mathrm{z}$	2	$5 \cdot$	002	SE1	2．0	06%	$5>$	etz	Soz	9295
019	$69^{\circ} 0$	o！$>$	52%	1	O1 $>$	$9 \mathrm{c} \cdot \mathrm{c}$	6 C	or	12	$5 \cdot 0>$	6r＇t	τ	$5 \cdot 0$	$0+9$	scr	20	or＇I	s $>$	ecz	sor	sc9s
c92	$89^{\circ} 0$	of	$22 \cdot 0$	$1>$	Ot $>$	sizz	15	6	4	$5 \cdot 0>$	56.0	\boldsymbol{z}	$5 \cdot 0$	061	51	$2 \cdot 0$	$98 \cdot 0$	$5>$	ert	sor	－ 295
Os 6	21－1	02	5 sco	$1>$	Oi＞	$10 \cdot 6$	18	58	11	$5 \cdot 0$	¢ $6 \cdot 1$	2	$5 \cdot 0>$	001	os	$2 \cdot 0$	86.0	$5>$	scz	sot	cLes
cs\％	$82 \cdot 1$	02	25．0	$1>$	Oi $>$	ャ゙と	18	12	61	$5 \cdot 0>$		と＞	$5 \cdot 0>$	os 1	or	$\boldsymbol{r} 0$	$20 \cdot 1$	01	ecz	soz	2L95
（2）	O＜－1	02	850	$1>$	ot $>$	29＇¢	2ε	16	12	$5 \cdot 0>$	$00 \cdot 1$	－	${ }^{\circ} \mathrm{O}>$	061	O	2．0	62^{-1}	$5>$	$8 ¢$	soz	1＜95
and	\％	ard	\％	umd	codd	¢	wodd	ursa	mod	und	\％	und	und	und	urd	und	\％	v4＊as		100	NOILIIEOSAG
6\％	3	\cdots	I	${ }^{\text {H }}$	ω	9．	∞	J	∞	m	0	14	$\bullet \square$	4	TV	\％v	1V	qud ny		Ixd	atakvs

To : NORMINE RESOURCES LTD.	Page No. S-A Tot. Pages s
boX 9609 W. hastings ST., 10TH FLOOR Vancouver. b.c. V6B $4 \mathrm{w} / 4$	
pioject: duv Commetis: ATTN: О NORDINE	
OF ANALYSIS	A8723915

COMPAMY：RORMIDE RESOUKCES
PRDJECT NO：DEV
hin－ek Lhes alf meruni
705 HEST IETH ST．，NORTH YAMCOUVEF，B．C．VTM 172
FILE NC：T－iJJU／Fi－？ GTTETIOH：S．QOEDAN／G．YOREEEN
（604）92（－5814 0R（604） $888-4524$
－TYPE ROCK GECHEK

CVALIES IN PPM）	AG	4	45	8	明	S	EI	6	0	co．	0	FE．
5759－－－－－	1.6	22320	a	t	E5	1.5	E	2600	2.1	a	32	1050
5760	1.9	25460	84	11	46	1．6	10	3250	3.3	：	4	43350
5731	¢．9	25016	is	16	1：1	［． 5	i	－7ex	3.2	：2	3	4：774
5762	2.5	24160	7	11	50	：, 5	13	37354	3.4	15	3	404：
5763	12	5936	23	$!$	57	3	5	星里	－9	2		
5764	$2 .!$	26610	－	： 0	75	－ 6	15		1．8	16	\％	4 tac 0
5765	1.4	25630	158	10	177	1.7	．	372\％	3.6	14	3	$5 \% 450$
5765	． 6	24960	！0！	3	48	1.6	：	207\％	2.7	it	$\stackrel{8}{7}$	45620
5767	． 5	26170	$1!5$	7	125	1.7	1	3205\％	3.7	13	：	4E3i4
5756	． 5	23340	115	t	． 85	18，	\pm	3260	3． 2	3	\％	¢5360
57¢	！ 9	2796	30	－	47	1.6	9	$2{ }^{2}$	1.9	E	9	564
5770	2.0	20220	15	＇	40	1.7	15	25230	2.3	！	：	50×70
5771	． 7	26920	J2	9	807	¢． 5		37120	3.1	：	2	4，00
5772	． 8	20410	23	5	：294	1．3	1	31130	2.2	7	30	$3 \mathrm{~S}: 20$
5775	1.0	27990	201	12	64	2.0	\pm	49770	4.3	14	3	5740
577	1.2	18450	194	$\stackrel{\square}{6}$	St	4.5	3	－ 32660	4.0	10	71	4E70
5775	1.6	20470	88	8	41	1.6	4	33300	3.5	11	79	45570
5776	1.3	26400	89	12	53	1.8	2	35480	3.9	11	52	5895
5777	． 9	22500	127	7	217	1.2	1	28010	3.5	10	38	3150
5778	1.0	22930	1135	9	165	2.3	2	3！ 850	14.7	15	77	73510
5779	1.9	24900	199	10	32	1.6	6	29680	5.4	13	5	48690
5780	1.8	21520	64	5	20	1.3	10	22750	4.0	10	36	37220
5781	1.9	16600	175	4	64	1.5	8	30250	4.4	12	E	42200
5782	1.8	20510	297	1	65	1.6	5	37570	6.0	12	$6!$	47420
5783	2.1	25890	138	10	47	1.6	13	31230	3.5	13	4	47350
5784	2.6	29120	28	15	32	1.6	14	29070	3.9	13	42	43470
5765	2.5	24910	79	10	49	1.6	13	31410	3.7	15	52	46520
5786	2.1	17240	86	，	54	1.7	11	18050	5.7	17	5	5375
5787	1.5	17310	65	2	4	1.6	7	17420	3.1	15	31	$55_{5}^{51 \%}$
5786	1.6	22：30	41	6	29	1.4	1	17120	3.1	14	29	43500
5769	1.9	21090	52	9	41	1.3	10	19850	3.3	15	33	55786
5790	2.3	20650	119	7	54	1.6	17	19950	3.8	19	53	50916
5791	2.1	17650	96	5	50	1.4	16	23030	4.2	15	45	46150
5792	2.1	21160	171	7	58	1.6	12	28710	4.7	15	44	50810
5793	8	25220	166	9	117	1.4	2	39790	3.6	10	32	4238
5794	． 7	25696	$8{ }^{\text {8 }}$	8		1.6	1	37020	3.8	10	5	45910
5795	． 7	21930	192	，	97	1.6	1	36510	4.4	9	33	$\$ 190$
5796	.7	24030	885		224	1.7	2	46720	10.4	$1:$	62	4874
5797	． 4	22490	208.	5	224	1.6	2	35790	4.9	11	47	48320
5798	8	24070	11	8	668	1.6	1	41799	4.9	1	37	45320
5799	1.1	27490	1692	9	559	1.7	－	58250	$10^{9} 9$	10	$4!$	4720
5800	． 8	31170	17	13	250	1．5	1	45970	3.6	？	41	＋229
58.2	． 8	29150	1	$!1$	663	1.4	2	：7700	2.4	$?$	24	399\％
5813	． 8	29000	110	11	362	1.6	1	42710	4.0	11	4	ie346
5614	． 6	26800	232	10	988	1.6	2	35780	4.8	10	3	$45{ }^{5} 2$
5615	1.3	26 2650	5	14	4	［． 1.	3	49020	3.6	9	23	42373
5915	． 4	18410	13	J	345	1.2	1	23650	1.9	5	20	3176\％
5817	.4	18260	65	2	595	1.5	：	32060	2.5	5	25	3317%
5918	． 3	15590	103	1	179	1.1	！	27090	2.6	5	24	7895
$5 ¢ 19$	2	14700	153	1	48	1.1	1	25750	2.5	5	21	30540
－5820	1.5	22040	579	5	61	1.6	4	24340	3.4	15	48	4576
5521	1.6	23910	45	B	41	： 4		13370	3.4	15	41	45526
5822	1.5	19260	15	3	49	1.4	8	12170	2.7	14	42	45000
5823	1.4	15760	13	1	46	1.2	9	14200	2.6	！	$3!$	37720
5224	1.8	16140	5	1	42	1.3	15	14190	1.6	：	40	40450
585	2.4	17640	32	3	40	1.4	16	16020	2.6	16	4	${ }^{3} 3030$
5826	2.1	18960	69	3	44	1.4	15	15220	2.8	15	45	4350
5827	2.5	20520	75	6	46	1.4	it	15250	3.0	15	50	46090
5828	2.9	24760	121	10	58	1.6	17	22580	3.3	15	72	＋1914
5829	2.9	28920	18	15	3	1．5	15	－29220	2.7	14	$3!$	14446

COMFAHY: MORMIS
PROJECT KD: BEY
Kith-Eh Labs ICP mepght
705 HEST I5TH ST., NORTH VANEOUVER, B.C. V7K 172
Fite N0: 7-1530/81+2
(6041989-5814 自. $1604198 \mathrm{~g}-5524$

- TYPE GOEK GEDCHEX. - JATE:OCT 5, 1987
ATTENTIOH: F. EOEDAH/G. HORDEEN

hanel lhbs thr refuri
705 HEST ISTH Si., NORTH VALCOUVER, B.C. V7K ITZ
(6041960-5814 OR 1604)988-4524
GTIEHTEOM: R, BOEFAK/G.NDREEN

PROJECT NO: DEY

Inblirati rmac 4 ur \downarrow
FILE NO: 7-[530/P344

IVALUES IH PPM	1		H8	\%	40	HA	HI	f	P	¢	Sh	IH'
- 5830	580	48	19240	845		370	21	1890	38	2	122	1
5831	800	46	20660	928	1	210	2	1330	45	4	92	1
5832	1330	29	14660	291	2	226	:3	2370	22	5	16	i
5833	1220	36	14990	1086	1	196	12	20!0	22	!	268	i
5834	1790	38	15510	937	2	180	2t	22\%	32		\% 5	1
5835	1850	31	16440	820	2	210	8 c	2560	43	3	207	i
583	1740	40	16050	881	1	200	60	2430	37	1	2!	1
5837	1540	28	14620	694	1	200	12	1646	40	t	150	1
5838	1760	26	12620	65:	1	250	3	1990	32	5	170	1
5839	1690	23	11750	653	1	230	1	1920	35	2	-140	i
5860	1220	27	11860	674	1	300	16	1780	35	3	142	-
5841	1220	11	13690	535	2	270	17	1530	24	2	159	i
5812	1220	14	15670	685	2	250	22	1650	31	1	147	$!$
5845	1040	12	15920	757	1	220	52	i440	32	5	215	$!$
5844	690	14	19000	1016	1	200	5	1400	20	2	229	i
5845	676	17	19790	1035	1	170	51	1340	36	1	257	1
5846	1180	14	18050	356	1	170	51	1330	31	4	230	1
5847	1300	15	14210	851)	1	70	12	1040	33	20	500	$!$
5848	1050	15	18800	662	1	250	71	1340	22	21	178	1
5849	850	25	23620	672	1	480	14	1310	33	1	208	1
5850	630	30	24610	757	2	50	72	1370	25	1	236	I
5901	1110	18	20910	739	1	250	83	1400	25	1	184	,
5902	-790	24	22540	799	1	340	74	1340	35	1	243	1
5903	570	17	21990	784	1	250	72	1190	Ji	5	190	1
5904	920	15	20340	776	1	280	99	1360	37	3	204	1
5905	900	15	21040	604	1	280	96	1380	31	3	278	1
5906	1050	15	20280	795	1	250	83	1300	36	2	281	1
5907	920	15	20250	830	2	250	65	1440	33	5	254	1
5908	710	16	21360	858	1	260	67	1450	31	2	262	1
5909	580	30	23400	726	2	990	100	1510	29	1	330	1
5910	1400	19	22920	阿	1	240	96	1390	36	1	266	1
5911	1500	16	19490	785	1	270	82	1490	33	1	300	1
5912	710	33	27000	756	2	1220	95	1370	35	6	3 J 3	
5913	1310	18	23150	850	2	330	07	1570	37	1	303	1
5914	990	22	25780	922	2	330	E2	1400	31	5	288	1
5915	1200	17	24340	906	1	$2{ }^{2} \mathrm{O}$	89	1420	31	4	267	1
5916	1350	19	22650	914	1	240	106	1460	33	2	273	1
5917	14 iv	20	18570	601	i	210	92	1360	35	5	299	$!$
5918	1470	21	20660	928	1	240	93	1320	36	4	385	1
5919	1290	18	19800	839	2	190	85	1520	11	5	323	1
5920	1430	15	17860	790	1	240	69	1500	40	1	247	1
5921	1350	16	19740	758	2	260	78	1460	47	5	260	,
5922	1520	12	20576	713	!	240	71	1560	5	1	269	1
5923	1380	20	19550	748	1	240	60	1370	85	1	257	1
5924	1300	18	21490	871	1	230	63	1350	59	2	302	1
5925	1400	23	26350	776	1	260	74	1460	98	4	296	-
5926	1580	25	21500	1074	1	310	83	1570	45	3	297	1
5927	1820	21	20960	1102	1	300	59	:430	37	2	273	1
5928	1860	14	14910	855	7	340	30	2470	34	3	320	1
5929	1750	13	12470	763	6	380	30	2790	40	3	35b	1
5930	1720	14	12 z 20	724	6	550	37	2810	38	3	325	1
5931	2110	13	10610	654	7	320	$3!$	2540	34	3	33 B	1
5932	2200	17	12950	606	7	310	37	2660	33	5	309	1
5933	2000	29	18480	680	1	240	62	1480	41	5	225	
5934	2350	17	13080	593	7	320	36	2360	33	56	361	1
-5935	2260	26	18240	923	2	450	68	1520	34	48	267	1
5936	2060	26	20230	1015	2	390	77	1400	35	11	314	1
5937	1970	32	21960	1097	1	570	92	1360	35	21	346	1
5938	2360	20	14770	570	2	270	65	1470	31	16	280	1
5939	1809	19	[3250	422	2	409	1	1420	30	10	201	

PREXECT HO: DEL
705 HEST 15in Si., NORTH HANCOUVER, B.6. V7M 172
FILE K0: 7-1530/P3+4 ATTENTION: E, SGEDAN/G. HORDEES (604) 980 -5814 GR (804)988-4524 - TYPE ROCH. EETOCHEH TATE:GCT S 1997

	A_{6}	AL	AS	8	8	可	Bi	Ca	CO	\％	Cij	fi
－59\％	． 2	16770	183	1	－ 220	1.4	！	33800	3.2	4	1	37270
5941	． 3	16710	915	：	431	i．5	2	42096	9.7	4	17	42320
5912	.4	17910	368	J	316	1.3	2	\＄2530	4.5	；	19	52450
5943	12	17410	108	$!$	$9!$	！．i	1	28110	2.4	；	： 6	459 yiv
5744	． 5	20510	337	3	111	1.7	2	34540	5.2	$=$	36	49740
5945	4	29190	94	10	48	1.9	！	26610	3.2	ij	4	54520
5946	． 5	19690	396	2	1771	1.4	2	43990	5.8	10	19	36790
5947	． 1	21110	68	5	219	1.6	2	11490	2.5	8	22	\＄5490
5518	． 3	20450	27	2	64	1.6	！	24630	2.5	ε	24	43640
5949	． 5	25550	35	旦	112	2.0	1	26380	2.8	1	2	5346
－5750	． 3	23300	61	4	46	1.7	2	27750	3.0	\％	$\hat{2}$	48250
5951	． 2	22460	98	5	50	1.7	1	25770	3.3	11	ご	49095
5952	． 5	18740	27	，	77	1.4	2	27600	1.8	，	13	37014
5953	1.4	18220	9	2	76	1.2	7	22410	2.8	10	18	37：50
5954	1.3	19390	13	1	72	1.4	5	26420	2.3	11	$2 ?$	36
5955	． 7	19390	55		44	1.6	2	35020	3.4	10	45	4190
5956	． 5	17900	451	1	79	1.6	1	41770	6.2	9	34	42180
5957	.6	21000	26	5	63	1.8	2	37520	2.6	10	52	51520
595E	． 4	20860	16	4	$5]$	1.9	1	34150	2.1	12	65	55310
5959	． 7	28670	115	11	49	1.9	2	45420	4.0	11	39	53120
5960	． 6	23440	47	6	45	1.6	1	5 35360	2.1	10	25	4630
5961	1.0	25990	55	8	47	1.9	1	42400	2.2	11	31	53676
5962	1.2	23880	26	7	46	1.7	3	36630	3.2	12	32	50500
5963	1.5	27580	15	9	51	1.8	4	30640	2.9	13	29	51700
5964	1.12	23600	3	b	51	1.8	9	37440	2.0	19	33	51840
5965	2.1	24090	15	6	52	1.7	11	33500	2.9	13	24	417630
5966	． 9	23940	5	7	51	1.7	2	38200	2.9	11	27	47990
5967	． 7	27610	38	10	47	4.7	1	40500	2.2	$1!$	23	42440
5968	． 5	29580	1279	11	39	1.7	1	32710	13.4	10	17	49300
5969	． 5	23850	154	5	46	1.4	1	30170	3.4	11	15	37610
5970	1．0	27330	55	16	54	2.1	3	44330	3.2	13	27	59070
5971	． 8	26970	343	12	52	1.9	3	43670	5.3	：2	$2!$	53560
5972	1.0	23850	22	9	72	1.8	3	41220	2.3	12	22	52370
5973	． 9	27820	26	10	92	1.6	2	34140	2.6	8	22	46406
5971	1.1	29100	14	14	72	2.1	1	39660	2.1	10	43	60469
5475	1.2	24980	2	7	74	2.0	3	36260	3.1	13	29	61580
5976	． 6	24530	68	6	427	1.4	1	32370	3.3	5	15	38090
5977	． 3	10420	34	1	！456	． 5	1	29860	1.1	4	5	1：6！ 0
5976	． 1.1	23070	944	4	414	1.1	1	32660	11.6	10	40	47190

CORPhtit: MORNINE RESOUACES
Klit-EK LABS IEF REPORT
(ACT:F31) PfGE 1 DF J
FRNECT NO: DEL
705 WEST ISTH ST., KORTH YAKCOUYER, B.C. V7K $1 / 2$
FILE KO: 7-1534/P1+2
ATIENTION: R GOEDAN/G, HORDEEH

	A6	A	AS	B	8 A	-	61	CA	Cis	C0	CV	FE
-57790	. 8	21696	473	?	338	1.4		26646	7.3	5	20	57950
5980	.7	23089	151	7	200	1.5	1	29420	3.9	5	20	45038
5¢a:	. 5	$2 \mathrm{aja0}$	13:	4	297	1.3	1	27050	4.4	5	24	573E0
5982	2.1	27280	6236	10	22\%	1.9	$!$	48680	63.2	11	3i	5297\%
$598{ }^{\circ}$. 8	22910	30E	5	499	1.6	1	41120	4.1	8	36	43440
5964	1.6	24230	47	i	76	1.6	!	42470	3.a	! 1	31	49300
5995	1.0	23560	142	5	$6!$	1.7	!	30390	3.9	11	35	47520
5986	1.6	20270	168	3	59	1.6	5	27570	4.1	19	42	46650
5987	2.2	24290	18	;	64	1.7	10	27720	3.2	14	41	46750
5888	3.1	22760	2	6	60	1.7	17	30360	2.9	16	50	49090
59 ¢9	2.7	18540	11	2	$7!$	1.5	18	22100	2.5	:16	42	44490
5990	3.2	13880	4	2	88	1.6	22	20730	2.5	17	46	48450
5991	3.0	18820	t	2	66	1.7	22	19880	3.4	19	54	52116
5992	2.6	14120	19	1	36	1.3	20	22510	2.6	16	46	39410
5993	2.8	1710	11	1	56	1.4	21	19290	3.0	17	5	42430
5994	3.4	23336	32	11	59	1.6	19	52470	4.4	16	43	45320
5995	2.6	24900	59	9	103	1.7	12	44590	3.7	14	42	46110
5996	1.2	21180	863	6	311	1.5	1	65110	9.6	10	25	42350
5997	2.7	23250	27	12	154	2.0	15	31830	3.0	18	48	60060
5998	2.9	19890	19	10	101	1.6	17	30120	2.7	16	41	47400
5999	2.5	15180	23	1	60	1.3	18	25390	2.3	16	41	39540
6000	1.0	21700	443	6	162	1.3	,	87020	5.6	10	27	37070
5851	2.5	17560	31		157	1.4	17	31860	3.4	16	37	39880
5852	2.2	15030	17	1	65	1.3	15	20420	2.7	15	40	36830
5953	. 9	25440	57	9	74	1.4	1	39430	2.3	i	17	35960
5834	2.1	13610	15	2	57	1.3	16	23850	2.6	15	43	38950
5855	1.9	13780	20	1	54	1.3	13	21720	2.6	15	40	37310
5856	1.0	22380	71	:	56	1.5	1	41700	2.4	10	35	42950
5957	1.7	25:70	43		169	1.7	6	31460	2.8	14	37	48590
5858	. 9	25040	616	10	51	1. 6	38	41860	7.0	12	43	48810
5659	2.0	15390	26	3	63	1.4	15	24910	2.9	17	36	40390

APPENDIX C

THIN SECTION REPORT

Report for: Gary Nordin, Normine Box 9, 900-609 West Hastings Street, VANCOUVER, BC. V6B 4W4

PO. BOX 39
8887 NASH STREET FORT LANGLEY. BIC. VEX 1 JO

PHONE (604) 888-1323
Invoice 6871
November 1987

Summary:

1) General

The samples are from a moderately to strongly altered zone in a volcanic terrain dominated by andesite flows and lesser latite and dacite flows, flow breccias, and cuffs. Plagioclase phenocrysts commonly are partly altered to sericite and calcite. Hornblende phenocryst are altered completely, mainly to chlorite-calcite-sericite. Biotite phenocrysts are sparse, and altered to muscovite, chlorite, and calcite. The rocks commonly contain replacement patches of one or more of the following: calcite, quartz, chlorite, pyrite, pyrrhotite, marcasite. Veins are dominated by calcite, quartz, marcasite, pyrite, chlorite, and minor base-metal sulfides. K-feldspar alteration is widespread, mainly of groundmass plagioclase textures in thin section are obscured by dusty opaque to semiopaque inclusions, possibly of iron and ti-oxides, such that generally, K-feldspar cannot be recognized optically. Its: identification and distribution is interpreted from the stained offcut blocks. Some carbonate has moderate to high relief, and may be dolomite or ankerite. Dolomite is described in a few sections, However, even some of the high-relief carbonate reacts with cold dilute HCl , indicating that it is calcite. Thus, optical distinction of dolomite may be erroneous, and it would be best to consider all the carbonate alteration as being of one type.

2) Sample Descriptions

A brief description of samples is listed in the following table, including rock type, main alteration minerals, and main vein types. Alteration minerals are those in discrete replacement patches and not those altering plagioclase and hornblende phenocnysts.

Sample No.

Vein Minerals

$$
\begin{aligned}
& \mathrm{Ca}, \mathrm{Qz} \\
& =\text { Rep Min } \\
& \mathrm{Qz} \\
& \mathrm{Qz}, \mathrm{Marc} / \mathrm{Py}, \mathrm{Ca} \\
& \mathrm{Ca} \\
& =\text { Reply: Min } \\
& \mathrm{Q}, \mathrm{PY},(\text { Enid })
\end{aligned}
$$

Sample No.

Replacement Minerals

Ca,Ch1, Po, Qz,K
Q,Apy,Chl,Apat,Ca
Qz,Ch1,Ser,Ca,Marc K,Marc,Kaol
$\mathrm{Ca}, \mathrm{Py}, \mathrm{ChI},(\mathrm{Qz}$ 'r K, Fluor)
Ca,Qz,Py/Marc, Chl,K
Ca, Po/Marc, Qz,Chl
Act, Ca, Qu
Ca

Vein Minerals

Py/Marc, Ca
Ca(Dol)
= Rep. Min.

Qz,Marc,Ca,Chl, Kail
$=$ Rep. Min. (-K)
= Rep. Min.
Ca, Ry, Sphe
Ca

Lev L-10 Allan Cr. A Lt Allan Ck. Tribe. ?

Qu, By
Nev Sump (22N,9W) D
Po, Chl,Qz., K
list Creek,50m E D t
Equity Pit 1
D(?) x
Qz,Sl, (Cpy,Py, Gal, Tet)
Q

Equity S Tail Pit $D(?) \quad \mathbf{Q z}$
Equity S Tail FW D By, Ser

Suffixes (if no suffix = flow)
A andesite
D dacite
L latite
Di diorite
Rd rhyodacite
t tuff
Lt lapilli tuff
x breccia
fix flow breccia
\emptyset porphyry (over 35% phenocrysts)

Minerals

Act	actinolite
Any	arsenopyrite
Ca	carbonate, dominantly calcite
ChI	chlorite
Dol	dolomite(?)
Fluor	fluorite
K	K-feldspar
Marc	marcasite
Po	pyrrhotite
Dy	pyrite
Oz	quartz
SI	sphalerite
Sphe	sphene
Ser	sericite
Tet	tetrahedrite
Ba	barite
Gal	galena

John G. Payne

Contact: Dacite/Andesite with replacement patches of Calcite-Marcasite-Chlorite-Quartz, and veinlets of Calcite and of Quartz
The sample is partly a porphyritic dacite and partly a porphyritic andesite. Along their contact is a large replacement patch dominated by marcasite-chlorite. Other replacement patches are dominated by calcite or quartz. Late veinlets are oc quartz and of calcite.
dacite (20-25\% of sample)
phenocrysts

plagioclase	$17-20 \%$
groundmass	
plagioclase	$45-50$
quartz	$20-25$
chlorite	$5-7$
Ti-oxide	$1-\frac{1}{2}$
pyrrhotite	0.5

Plagioclase forms anhedral, commonly ragged phenocrysts averaging $0.2-0.7 \mathrm{~mm}$ in length, with a few up to 1 mm long. Alteration is moderate to dusty semiopaque and slight to patches of calcite and flakes of sericite.

The groundmass is dominated by equant, anhedral grains of plagior clase and quartz averaging 0.02-0.05 mm in sïze, Quartz commonly is con'centrated in patches, which grade into coarser grained replacement quartz. Chlorite forms interstitial, extremely fine grained patches. Ti-oxide forms disseminated, irregular patches up to 0.1 mm in size.
andesite (40% of sample)

phenocrysts plagioclase groundmass	$30-35 \%$
plagioclase	$55-60$
chlorite	$5-7$
quartz	$1 \frac{1}{2}-2$
Ti-oxide	$1-1 \frac{1}{2}$

Plagioclase forms subhedral, prismatic phenocrysts averaging 0.7.1 mm in size, with a few up to 3 mm long. Alteration is similar to that in the dacite, except that calcite is more abundant, especially in larger phenocrysts, and sericite commonly is more abundant.

Groundmass plagioclase forms equant grains averaging $0.01-0.03 \mathrm{~mm}$ in
size; they are altered moderately to sericite and calcite. Chlorite forms interstitial patches of extremely fine grain size, Ti-oxide forms irregular patches as in the dacite, Quartz occurs in interstitial patches of very fine grain size, which locally grade into coarser grained replacement patches.

Adjacent to the marcasite-chlorite replacement patch, the groundmass is altered completely to marcasite, leaving relic plagioclase phenocrysts surrounded by irregular aggregates of very fine grained marcasite.
replacement (35% of sample)

marcasite	$40-45 \%$	sericite	0.38
calcite	$20-25$	pyrrhotite trace	
chlorite	$15-17$	chalcopyrite trace	

quartz 15-17.
sphene l

Marcasite forms anhedral to submosaic aggregates of fine grain size, mainly in a large patch in the center of the section. Most of these grains have slight anisotropism. Intergrown with these are patches of similar size as the grains, in which marcasite forms extremely fine grained aggregates of high anisotropism. These patches contain extremely fine grained inclusions of non-reflective material; they are interpreted as having formed by replacement of pyrrhotite. A few patches of marcasite-pyrrhotite exist away from the main patch. The main patch is gradational into the zone of andesite strongly altered in the groundmass to marcasite (possibly original pyrrhotite) with low anisotropism.

Interstitial to marcasite in the large patch is very fine grained chlorite with minor sericite. Chlorite also forms similar intergrowths nearby with calcite.

Ti-oxide occurs as clusters of extremely to very fine grains within the main marcasite patch, and it is possible that they represent relics around which marcasite replaced the rest of the rock.

Calcite forms fine to medium grained patches, in part alone, and in part intergrown with chlorite and lesser sericite.

Quartz commonly occurs alone or with mfnor calcite, chlorite, and Ti-oxide in patches up to a few mm across (average less than 1 mm), with grain size locally up to 1.5 mm , and averaging $0.05-0.1 \mathrm{~mm}$.

Sphene occurs in one calcite-rich patch as a few elongate, subhedral grains up to 0.5 mm long. It is slightly altered to Ti-oxide.

Pyrrhotite forms a very few inclusions up to 0.03 mm in size in marcasite.

Chalcopyrite forms a very few grains up to 0.03 mm across.
The rock is cut by a veinlet up to 0.5 mm wide of very fine grained quartz with minor sericite-chlorite, and by a few veinlets up to 0.1 mm in size of calcite. The latter appear to be truncated at the edge of the large marcasite-chlorite patch.

The rock contains phenocrysts of plagioclase and hornblende in a groundmass of plagioclase/K-feldspar with lesser biotite, quartz, apatite, calcite, Ti-oxide, and pyrite.
phenocrysts

plagioclase	$40-45 \%$
hornblende	$10-12$
apatite	minor

groundmass
plagioclase/K-feldspar 30-35
biotite 4-5
quartz \quad lita
Ti-oxide/ilmenite $1 \frac{1}{2}-2$
calcite 2-3
apatite 0.3
pyrite 0.3
plagioclase forms anhedral to euhedral prismatic phenocrysts averaging l-l.5 mm in size. Some grains are slightly compositionally zoned. One grain gave a composition of An50 by the Carlsbad-albite-twin method. Alteration of plagioclase is slight to calcite and minor sericite.

Hornblende forms equant to prismatic grains up to 2 mm in length. They are altered completely, mainly to pseudomorphic tremolite. Some grains contain patches of calcite or chlorite.

Apatite forms a few prismatic grains up to 1 mm in length.
The groundmass is dominated by equant, anhedral plagioclase/ K-feldspar grains averaging 0.05-0.15 mm in size. K-feldspar and dusty hematite probably are secondary after plagioclase. K-feldspar was not seen in thin section in the stained offcut block it is seen to be abundant throughout the groundmass.

Biotite forms disseminated grains and clusters of grains up to 0.5 mm in size (of clusters): individual grains are extremely fine, unoriented, and medium orange in color.

Quartz forms interstitial patches and single grains averaging $0.05-0.2 \mathrm{~mm}$ in grain size. Extinction commonly is slightly wavy.

Ti-oxide and ilmenite occur in patches up to 0.3 mm in size. Ilmenite forms cores surrounded by Ti-oxide. Ti-oxide (probably after sphene) forms skeletal patches up to 0.7 mm in size, intergrown with much less silicates.

Apatite forms subhedral to euhedral prismatic grains averaging $0.15 \div 0.3 \mathrm{~mm}$ in length,

Calcite forms irregular replacement patches up to 1 mm in sizze. Some contain moderately abundant, anhedral grains of pyrite from 0.020.05 mm in size.

Pyrite forms disseminated grains averaging $0,03-0.15 \mathrm{~mm}$ in size; it is moderately concentrated with calcite and with Ti-oxide.

The rock is cut by a discontinuous veinlet up to 0.02 mm wide of quartz-calcite.

The rock is a slightly porphyritic latite with plagiolcase phenocrysts in a groundmass dominated by plagioclase, K-feldspar and chlorite. It is replaced by patches and veins of calcite-chlorite-marcasite-(quartzsphene).
phenocrysts

plagioclase	$4-5 \%$	
groundmass		
plagioclase/K-feldspar	$40-45$	
chlorite	$8-10$	
quartz	$1 \frac{1}{2}-2$	
Ti-oxide	$1-1 \frac{1}{2}$	

groundmass
plagioclase/K-feldspar 40-45
quartz $\quad 1 \frac{1}{2}-2$
Ti-oxide

replacement patches,	veins
calcite	$20-25 \%$
chlorite	$7-8$
marcasite	$7-8$
quartz	$1 \frac{1}{2}-2$
sphalerite	minor
chalcopyrite	trace
sphene	$1-1 \frac{1}{2}$

The rock contains a few plagioclase phenocrysts from 0.5-1 mm in length, and one cluster of anhedral grains 1.8 mm across. Alteration is slight to locally moderate to patches of calcite with minor. chlorite.

The groundmass is dominated by irregular, prismatic grains of plagioclase averaging $0.05-0.15 \mathrm{~mm}$ in length, with a few up to 0.5 mm long. K-feldspar occurs with plagioclase, either as very fine, interstitial grains or as replacement of plagioclase. Feldspars are altered to dusty opaque such that distinction of K -feldspar is impossible in thin section. In the stained offcut block, K-feldspar is seen to be most abundant away from the replacement veins and patches.

Intergrown with feldspars in the groundmass are extremely fine grains and patches of grains of chlorite.

Quartz forms very fine to extremely fine grained patches, commonly associated with chlorite interstitial to feldspars.

Ti-oxide forms extremely fine grained patches and disseminations, in part probably after sphene. Patches are up to 0.3 mm in size. Some of the sphene in the rock may be primary, although much of it is spatially associated with calcite.

The replacement patches and veins are up to a few mm across and consist of very fine to locally medium grained aggregates of calcite/ aragonite(?), with lesser patches of extremely fine to very fine grained chlorite, irregular patches of marcasite and a few concentrations of quartz: and of sphene.

Calcite patches range from less than 0.1 mm in the groundmass to up to a few mm across. In some patches, carbonate has an elongate, prismatic habit of grains up to 0.5 mm in lengthe these may be aragonite.

Chlorite forms a few large patches up to a few mm across, mainly very fine grained, and mainly surrounded by calcite,

Marcasite is concentrated inn patches up to a few man across, mainly as submosaic aggregates averaging $0.1 r 0,2 \mathrm{~mm}$ in grain size. Some patches contain abundant, extremely fine grained inclusions of silicates. Quartz occurs in one large patch up to $\$.5 \cdot \mathrm{~mm}$ across of anhedral, slightly interlocking grains from 0.05-0.3 mm in size. In this same replacement patch, moderately abundant sphene grains from 0,1-0,2 mm in size are intergrown with calcite and chlorite. Elsewhere, sphene forms clusters of grains and single grains of similar sizei some of the clusters are moderately altered to Ti-oxide. Quartz also occurs as scattered grains averaging $0.07-0.15 \mathrm{~mm}$ in size in some calci.terrich replacement patches.

Apatite forms a few anhedral to subhedral gnains up to 0.1 mm in size, mainly associated with quartz.,

One cluster of marcasite contains interstitial patches of sphalerite up to 0.25 mm in grain size. Sphalerite contains abundant exsolution blebs of chalcopyrite. Chalcopyrite also forms a few grains up to 0.05 mm in size associated with pyrrhotite in another part of the section.

Sphalerite is dark orange in color and semiopaque.
The rock is cut by a late vein up to 0.2 mm in width of very fine to fine grained calcite, along whose margins are abundant patches of very fine grained marcasite. The vein contains a few grains of quartz up to 0.1 mm in size.

The rock contains patches dominated by dolomite-sericite, which were later replaced partly by quartz, and which are cut by an irregular vein of quartz replacement. Ti-oxide, apatite, and pyrite are prominent minor minerals. The original nature of the rock is uncertain, but it probably was dominated by plagioclase.

dolomite	$20-25$
sericite	$20-25$
quartz	$35-40$
Ti-oxide	$2-2 \frac{1}{2}$
pyrite	$1 \frac{1}{2}-2$
apatite	$1 \frac{1}{2}-2$
pyrrhotite	trace
chalcopyrite trace	

Relic patches of altered host rock are dominated by extremely fine grained sericite patches, which appear to have been replaced by irregular patches and grains up to 1.5 mm in size of dolomite. Dolomite grains are equant in outline and commonly porphymoblastic in nature.

Quartz occurs in two main modes. An early(?) quartz replacement event pervasively altered the rock, producing a texture of very fine grained quartz patches with minor to moderately abundant interstitial patches dominated by sericite and lesser dolomite. More intense quartz replacement produced coarser grained quartz. aggregates averaging $0.05-0.35 \mathrm{~mm}$ in grain size, and a few quartz grains up to 1 mm in size, with minor interstitial calcite and sericite.

Ti-oxide is concentrated in patches up to 1 mm in size, in which it forms extremely fine grained aggregates intergrown with sericiter dolomite; these patches may be secondary after sphene.

Pyrite forms clusters of subhedral grains up to 0.6 mm in size. A few grains contain an inclusion up to 0.02 mm in size of pyrrhotite. Chalcopyrite occurs along the border of one pyrite grain as a grain 0.03 mm across.

Apatite is abundant as clusters of irnegular, commonly ragged equant to prismatic grains averaging $0.02-0.05 \mathrm{~mm}$ in size, with a few up to 0.15 mm across. It occurs most commonly in quartz.rrich patches.

A few elongate sulfide patches up to 0.15 mm in length appear to be of very fine grained pyrite, which may be secondary after pyrrhotite.

The rock is strongly altered and dominated by extremely fine grained sericite. It appears to have contained scattered plagioclase phenocrysts. It is partly replaced by very fine grained quartz in irregular patches. Early veins are dominated by quartz with lesser marcasite/pyrite and calcite. Late veinlets are of calcite.
phenocrysts

$$
\text { plagioclase } \quad 3-5 \%
$$

groundmass
sexicite/kaolinite 65~70

quartz	$7-8$	(replacement patches)
pyrite	0.5	
Ti-oxide	0.3	

veins

The rock contains a few prismatic plagioclase phenocrysts up to 0.7 mm in size. These are replaced completely by sericite showing a slightly preferred orientation.

The groundmass is dominated by extremely fine grained sericite/ kaolinite, with minor interstitial, extremely fine grained quartz, and minor to moderately abundant dusty T-oxide. Sericite forms irregular patches of slightly coarser grain size intergrown with minor to moderately abundant, very fine grained quartz.

Quartz is concentrated moderately in irregular, very fine grained patches, associated with much less sericite and pyrite; these patches probably are of replacement origin.

Pyrite forms disseminated grains from $0,02-0.2 \mathrm{~mm}$ in size, with coarser grains commonly subhedral to euhedral in outiine.

Ti-oxide is variably distributed through the rock as dusty grains; it is concentrated in some quartzrrich patches and in some zones with minor relic plagioclase.

The rock contains veins up to a few mm wide of very fine to fine grained quartz, with lesser Fe-sulfides and calcite. Pyrite/marcasite forms clusters of equant, subhedral grains averaging $0.1-0.2 \mathrm{~mm}$ in size, and also forms larger patches up to 1.5 mm in size of very fine grained anhedral aggregates. Associated with the latter are minor to moderately abundant patches of extremely fine grained marcasite, distinguished by having strong anisotropism, whereas pyrite/marcasite in coarser aggregates is only slightly anisotropic.

Calcite forms interstitial grains up to 0.3 mm in size between subhedral quartz grains in the core of one large vein.

Late veinlets averaging 0.05-0.1 mm in width consist of very fine to fine grained calcite.

In the main veins, chalcopyrite forms scattered grains and clusters of grains associated with pyrite/marcasite. Grain size of chalcopyrite is up to 0.1 mm . One patch of base-metal sulfide 0.2 mm across adjacent. to a pyrite-marcasite patch is dominated by galena(?) with a thin rim (0.02 mm wide) of chalcopyrite. Another patch of pyrite/marcasite contains a grain of colorless sphalerite 0.15 mm across.

A few phenocrysts of plagioclase are set in a groundmass dominated by plagioclase with lesser K-feldspar, chlorite, and calcite. Pyrite forms disseminated grains. Quartz forms patches of uncertain origin. The rock is cut by a late calcite vein.
phenocrysts plagioclase groundmass

plagioclase	$60-65$		
K-feldspar	$7-8$		
chlorite	$7-8$	sphene	0.3%
calcite	$7-8$	chalcopyrite trace	
pyrite	$1 \frac{1}{2}-2$	sphalerite	trace
Ti-oxide	$1-1 \frac{1}{2}$	apatite	trace
patches	$4-5$	(chlorite, calcite)
quartz			
vein	0.3		
calcite	0.3		

Plagioclase forms equant to prismatic, euhedral phenocrysts from $1-2 \mathrm{~mm}$ in size. Alteration is complete to very fine grained calcite and much less disseminated to patchy sericite and/or chlorite.

The groundmass is dominated by prismatic, slightly interlocking plagioclase grains averaging $0.1-0.3 \mathrm{~mm}$ in length, and finer grained interstitial patches of feldspars and of chlorite. Alteration of plagioclase is moderate to calcite-sericite, and possibly to epidote. The distribution of k -feldspar is see best in the stained offcut block: it could not be distinguished from plag̣ioclase in thin section because of the alteration. It is possible that Krfeldspar was formed by replacement of plagioclase.

Chlorite forms interstitial patches of extremely fine to very fine grain size. It is mainly pale green in color, with a few patches being medium green.

Calcite forms irregular replacement patches up to 0.6 mm in size, either alone or locally with quartz and $/$ or sphene,

Pyrite forms disseminated grains averaging $0.07<0,12 \mathrm{~mm}$ in size; they are subhedral to anhedral in outline, and many are intergrown with very fine grained plagioclase, Ti-oxide, quartz, and chlorite,

Ti-oxide forms extremely fine grained patches up to 0.07 mm in size.
Sphene occurs in a few patches, mainly with calcite as subhedral to anhedral grains averaging $0.05-0.1 \mathrm{~mm}$ in length.

Chalcopyrite forms a very few grains up to 0.03 mm in size.
Sphalerite forms fewer grains averaging 0.01 mm in siize, mainly associated with chalcopynite, or pyrite,

Apatite forms a very few prismatic grains up to 0.0 Z mm across in quartz.

The rock contains moderately abundant patches up to 1 mm in size of very fine to fine grained quartz, and locally minor chlorite and calcite. One patch appears to be recrystallized to an aggregate of anhedral, slightly interlocking grains from $0.01-0.03 \mathrm{~mm}$ in grain size. The rock is cut by a tension-fracture-filling veinlet of very fine to fine grained calcite; the vein is up to 0.2 mm wide.

The groundmass of the rock is slightly flow bandedi this is produced by subparallel orientation of groundmass plagioclase,

The rock contains minor plagioclase phenocrysts in a variable groundmass containing plagioclase, K-feldspar, and patches rich in quartz and/or calcite. Pyrite forms disseminated grains and clusters. phenocrysts

plagioclase groundmass	$4-5 \%$	fragments (?) quartzite	minor
plagioclase			
K-feldspar	$8-10$		
quartz	$7-8$		
calcite	$7-8$		
pyrite	$3-4$		
Ti-oxide	0.3		
pyrrhotite	trace		
apatite	minor		

Plagioclase forms subhedral prismatic phenocrysts averaging 0.51.2 mm in length. These are altered slightly to moderately to patches of calcite and disseminated sericite. A few coarser patches (up to 2 mm in size) consist of intimate aggregates of extremely fine to very fine grained calcite and lesser sericite, these may be after plagioclase phenocrysts. Some phenocrysts contain minor patches of $\mathrm{K}-\mathrm{feldspar}$.

The groundmass in the freshest part of the sample is dominated by prismatic grains of plagioclase averaging $0.05-0.1 \mathrm{~mm}$ in size, with anhedral interstitial feldspar averaging $0.01-0.03 \mathrm{~mm}$ in size. Groundmass plagioclase grains are slightly interlocking and irregular in outline. K-feldpar is intergrown with plagioclase, but cannot be identified in thin section except as mentioned above,

Quartz occurs in two main modes which are somewhat gradational, It forms interstitial grains averaging $0,02=0.05 \mathrm{~mm}$ in size, commonly concentrated in patches up to 2 mm across, and commonly associated wi.th sericite after feldspars. Other smaller patches averaging $0,2 \times 0.5 \mathrm{~mm}$ in size are dominated by very fine grained quartz with minor chlorite/ sericite and Ti-oxide. A few of these have subhedral outlines, suge gesting that the patches may be secondary after original hornblende phenocrysts. An alternate interpretation would be that the patches were formed by replacement. Several langer patches of very fine to fine grained aggregates of quartz., with lesser sericite, calcite, and opaque, also may have been formed by replacement,

Calcite forms disseminated patches averaging $0.05<0.1 \mathrm{~mm}$ in sizeit these were formed by replacement of plagioclase, A few larger patches (up to 1.5 mm) consist of very irregular medium to coarse grains of calcite.

Pyrite forms disseminated grains and clusters of grains averaging $0.1-0.3 \mathrm{~mm}$ in size. Most are very irnegular in outline and intergrown with groundmass. Inclusions of groundmass are common. Pyrite was formed by replacement of the rock.

Ti-oxide forms disseminated grains in the groundmass averaging 0.01 r 0.02 mm in size.

Pyrrhotite occurs in a few pyrite grains as subrounded inclusions from 0.02-0.05 mm in size: pyrite grains contain up to 3 inclusions of pyrrhotite.

Apatite forms irregular grains up to $0,3 \mathrm{~mm}$ in size in the cores of a few quartz-rich patches.

Much of the groundmass is slightly to moderately altered to sericite, and in places is obscured by semiopaque sericitercarbonater. Ti=oxide. The rock contains a few fragments (?) up to 1 mm in size of fine grained quartz aggregates showing moderately strained extinction.

The rock contains plagioclase and lesser hornblende phenocrysts in a groundmass dominated by plagioclase. Replacement veins and patches are dominated by calcite with lesser chlorite and marcasite. Phenocrysts are altered strongly to completely, plagioclase being replaced by calcite-sericite and hornblende by chlorite-calcite-(Ti-oxide).

| phenocrysts | | replacement patches, veins | |
| :--- | :---: | :--- | ---: | :--- |
| plagioclase | $25-30 \%$ | calcite | $17-20$ |
| hornblende | $4-5$ | marcasite | $3-4$ |
| groundmass | | chlorite | $3-4$ |
| plagioclase | $25-30$ | quartz | 0.2 |
| calcite | $4-5$ | K-feldspar | $3-4$ (in halos) |
| chlorite | $4-5$ | pyrrhotite | trace |
| sericite | $3-4$ | chalcopyrite trace | |
| quartz | $1-1 \frac{1}{2}$ | | |
| Ti-oxide | l- $\frac{1}{2}$ | | |
| apatite | 0.2 | | |

Plagioclase forms subhedral to euhedral phenocrysts up to 3 mm in size. They are strongly to completely altered to fine grained calcite and extremely fine grained sericite.

Hornblende phenocrysts are up to 1.2 mm in size. They are altered completely to very fine grained chlorite and calcite. Many also contain moderately abundant T T-oxide concentrated along cleavage directions in the original hornblende.

The groundmass is dominated by irnegular, slightly interlocking plagioclase grains with dominantly prismatic outlines, averaging 0.1-0.2 mm in length. Grains are altered to dusty semfopaque. Interstitial to these are anhedral grains of somewhat smaller size.

Intergrown with groundmass plagioclase are very fine grained patches of chlorite and of quartz, and extremely fine grained patches of Ti-oxide. Ti-oxide also is concentrated in a few patches up to 0.5 mm across, in part associated with hornblender in these it is intere grown with extremely fine grained chlorite and lesser quartz. Calcite forms irregular replacement patches ranging widely in size and grain size.

Apatite forms one anhedral, prismatic grain 0.5 mm across, at one end of which is an aggregate of extremely fine ($0.01-0.03 \mathrm{~mm}$), equant apatite grains up to 0.5 mm across. Intergrown with apatite is dusty semiopaque of unknown composition.

Chalcopyrite forms a very few anhedral grains up to 0.03 mm in size.

Replacement patches and veins up to $2, \mathrm{~mm}$ in width are dominated by fine to medium grained calcite, with clusters up to 1 mm in size of very fine to fine grained, subhedral marcasite, and patches of very fine grained chlorite. Quartz forms scattered subhednal grains up to 0.1 mm in size enclosed in calcite. Pyrrhotite forms a very few subrounded inclusions up to 0.03 mm in size in marcasite. Chalcopyrite forms one equant grain 0.1 mm across in a calcite replacement patch in a plagior clase phenocryst. Krfeldspar occurs as very fine grained aggregates in halos about many of the veins; halos are up to about 0.5 mm in width. K-feldspar was not recognized in thin sectioñ its presence in indicated by the stained offcut block.

Phenocrysts of plagioclase and lesser ones of biotite, hornblende, apatite and Ti-oxide/chlorite occur in a very fine grained groundmass dominated by K-feldspar and plagioclase. Replacement patches up to 2 mm across contain calcite, pyrite, chlorite, quartz, and marcasite.

phenocrysts	
plagioclase	$17-20 \%$
biotite	$3-4$
hornblende	$\frac{1}{2}-1$
Ti-oxide/chlorite	$1 \frac{1}{2}-2$
apatite	0.2
groundmass	
K-feldspar	$35-40$
plagioclase	$25-30$
chlorite	$4-5$
quartz	$2-3$
Ti-oxide	0.3

replacement	patches
calcite	$2-3 \%$
pyrite	1
quartz	1
chlorite	0.5
chalcopyrite	trace

pyrite minor zircon trace

Plagioclase forms subhedral to euhedral, prismatic phenocrysts from one to several mm long. Alteration is variable from slight to almost complete to patches of calcite and disseminations of sericite and dusty opaque.

Biotite forms slender flakes up to 1.7 mm in length. It is altered completely to pseudomorphic muscovite on chlorite, with minor to abundant lenses of calcite parallel to cleavage of original biotite, and with moderately abundant T-oxide along cleavage planes.

Hornblende (?) forms a few clustens of equant, subhedral to euhedral grains averaging $0.2-0.3 \mathrm{~mm}$ in size. These are replaced completely by pseudomorphic chlorite and patches of calcite. Other patches, which may represent original hornblende or sphene phenocrysts, are replaced completely by intergrowths of about equal amounts of Ti-oxide and chlorite. These are up to $0 . Z \mathrm{~mm}$ in size.

Apatite forms a few subhedral prismatic phenocrysts up to 0.5 mm in size. Smaller grains commonly are associated with hornblende.

The groundmass is dominated by a veny fine gnained aggregate of equant K-feldspar grains and equant to prismatic plagioclase grains averaging $0.03-0,07 \mathrm{~mm}$ in size, with prismatic plagioclase up to 0.12 mm long. Chlorite forms very fine grained interstitial patches and grains. Quartz forms very fine grained patches up to 0.15 mm across and single grains intergrown with feldspars. Tiroxide forms extremely fine grained patches. Zircon forms a few subhedral to subrounded: grains from 0.020.1 mm in size. Pyrite forms scattered anhedral to subhedral grains averaging $0.02-0.03 \mathrm{~mm}$ in size.

The rock contains a few replacement patches up to 2 mm across. Many patches consist of calcite with lesser quartz, and a few consist of chlorite and quartz. One large patch is dominated by a coarse grain of pyrite with lesser calcite and minor chlorite surrounding it. Marcasite occurs in a few patches up to 0.5 mm in size. It forms extrev mely fine grained aggregates intergrown with minon nonrreflective material, probably secondary after pyrrhotite. Chalcopyrite forms a very few grains up to $0,03 \mathrm{~mm}$ in size near the border of the pyrite megacryst (chalcopyrite is in calcite).

The rock contains abundant phenocrysts of plagioclase and minor ones of hornblende and apatite in a very fine grained groundmass dominated by plagioclase with much less K -feldspar and chlorite. Replacement patches are of calcite-quartz-(chlorite), with one large patch of pyrite surrounded by calcite and chlorite.

phenocrysts	
plagioclase	$20-25 \%$
hornblende	$1-1 \frac{1}{2}$
apatite	0.1
groundmass	
plagioclase	$40-45$
K-feldspar	$10-12$
chlorite	$5-7$
quartz	$1 \frac{1}{2}-2$
Ti-oxide	$1 \frac{1}{2}-2$
pyrite	0.3
chalcopyrite	trace

replacement	patches
calcite	$3-4 \%$
pyrite	$1-1 \frac{1}{2}$
chlorite	0.7
quartz	0.7
Ti-oxide	0.1

Plagioclase forms euhedral to subhedral prismatic phenocrysts up to 3.5 mm long. It is altered moderately to strongly to calcite-sericite(chlorite), with prominent dusty opaque. Calcite is very fine to fine grained, and commonly forms interlocking grains. Sericite is extremely fine grained. Chlorite is concentrated in subrounded to irregular patches of very fine grain size: subrounded patches commonly have a radiating texture. Chlorite is pleochroic from pale to light or medium green.

Hornblende forms a few subhedral grains up to 1.5 mm in .size. It is altered completely to aggregates of very fine grained chlorite with lesser calcite, and much less quartz and riroxide.

Apatite forms a few subhedral ppismatic grains up to 0.4 mm long. These have abundant fluid(?) inclusions averaging $0.01-0.02 \mathrm{~mm}$ in size.

The groundmass is dominated by plagioclase, with prominent prismatic grains from 0.l-0.25 mm in length surrounded by and intergrown with anhedral grains of moderately smaller grain size. K-feldispar occurs with groundmass plagioclase, probably mainly in the interstitial material. Grains contain moderately abundant dusty opaque, K-feldspar was not identified in thin sectionz its presence is indicated by the stained offcut block.

Chlorite forms extremely fine grained patches scattered through the groundmass.

Quartz forms very fine grains and clusters of a few grains in interstitial patches up to 0.15 mm in size,

Ti-oxide forms a few patches up to 0. Zum in size in which i.t is intimately intergrown with chlorite and plagioclase, It also forms abundant disseminated patches of extremely fine grain size up to 0.04 mm across.

Pyrite forms subhedral to euhedral grains up to 0.3 mm in size.
Some larger ones contain abundant tiny silicate inclusions.
Chalcopyrite forms a few grains from $0.03-0.07 \mathrm{~mm}$ in size.
The replacement patches average $1-1,5 \mathrm{~mm}$ in size, and consist of very fine to fine grained aggregates of calcite and quartz with minor chlorite and Ti-oxide. One large patch contains several pynite grains up to 1.5 mm in size surrounded by calcite wi.th lessen patches of chlorite and minor quartz, the last mainly within pyrite. Pyrnhotite forms two grains 0.03 mm in size in one large pyrite grain.

The rock contains plagioclase phenocrysts and lesser ones of hornblende in a very fine grained groundmass dominated by plagioclase with lesser tremolite/actinolite and chlorite. The rock contains patches up to a few mm across of replacement quartz. It is cut by a vein of quartz-pyrite. K-feldspar forms replacement patches in plagioclase phenocrysts and is moderately abundant in the groundmass; it appears to be depleted along the vein in a zone up to a few mm wide.
phenocrysts

plagioclase	$25-30 \%$
hornblende	$3-4$
apatite	0.3
Ti-oxide	0.5
groundmass	
plagioclase	$35-40$
K-feldspar	$7-8$
chlorite	$4-5$
tremolite/actinolite	$2-3$
Ti-oxide	$\frac{1}{2}-1$
sphene	trace
pyrrhotite	0.3
pyrite	0.3

$$
\begin{gathered}
25-30 \% \\
3-4
\end{gathered}
$$

$$
\text { apatite } \quad 0.3
$$

$$
\text { Ti-oxide } \quad 0.5
$$

groundmass
tremolite/actinolite 2-3
Ti-oxide
pyrrhotite

$$
0.3
$$

pyrite

Plagioclase forms subhedral to euhedral phenocrysts averaging 1-2 mm in length, with a few up to 3 mm long. Composition from the Carlsbad-albite twin method is An 47. Plagioclase is altered slightly to K-feldspar and calcite patches, and commonly contains dusty semiopaque inclusions and clusters of pyrrhotite.

Hornblende forms subhedral phenocrysts up to 1.3 mm in size. It is altered completely to ragged pseudomorphs of tremolite/actinolite of very pale green color.

Apatite forms euhedral to subhedral prismatic grains up to 0.35 mm long, in part associated with hornblende phenocrysts. Apatite commonly contains dusty semiopaque/opaque inclusions.

Ti-oxide forms subhedral patches up to $0,5 \mathrm{~mm}$ in size, possibly after sphene.

The groundmass is dominated by plagioclase ranging from prismatic grains up to 0.15 mm long to anhedral, interstitial grains less than 0.05 mm across. Dusty semiopaque/opaque inclusions are common. Krfeldspar was not identified in the groundmass, but the stained offcut block indicates that it is moderately abundant. It probably occurs in the interstitial grains and to a lesser extent replacing coarser groundmass plagioclase.

Chlorite forms patches up to 0.1 mm in size of extremely fine grains, mainly interstitial to plagioclase, and partly associated with tremolite/actinolite.

Tremolite/actinolite forms disseminated grains averaging 0.05-0.1 mm in length. Both it and chlorite are moderately concentrated in a diffuse halo about the vein.

Ti-oxide forms extremely fine grained, disseminated patches averaging less than 0.03 mm in size. Sphene forms a very few grains up to 0.05 mm across with hornblende.

Pyrrhotite forms irregular patches of gnains up to $0,3 \mathrm{~mm}$ in size. Pyrite forms scattered cubic grains from $0,05<0,10 \mathrm{~mm}$ in size. Chalcopyrite forms a very few grains up to 0.02 mm in size with pyrite.
(continued)

The rock contains subrounded to irregular patches up to a few mm across of quartz. These consist of aggregates of very fine to fine grains, and some show moderately wavy extinction. Along the borders of a few are concentrations of tremolite/actinolite and pyrite. Textures suggest that the patches are of replacement origin; however, an alternate interpretation is that they are recrystallized quartz phenocrysts. This latter interpretation is not favored because of the overall composition of the rock, and because of the similarity in texture of this quartz to that in the vein.

The vein averages $1-1.5 \mathrm{~mm}$ in width. Its center is dominated by very fine to fine grained quartz. Pyrite is concentrated towards and along the margin as subhedral grains up to 0.4 mm in size. Grains commonly contain minor to abundant silicate inclusions. Epidote forms a few subhedral prismatic grains up to 0.2 mm long associated with quartz. Outwards from the vein are patches of quartz-pyrite, and a few patches in which pyrite forms extremely fine grained aggregates intergrown irregularly with the host rock. Calcite forms a very few grains up to 0.05 mm in size with quartz in the vein.

The rock contains plagioclase phenocrysts in a groundmass dominated by plagioclase and K-feldspar, with moderately abundant replacement patches of dolomite, and scattered amygdules of quartz-chlorite-(calcite). A few large patches dominated by sericite with minor ri-oxide and quartz may be secondary after mafic phenocrysts. Pyrite is disseminated thruout.
phenocrysts
plagioclase
groundmass plagioclase
K-feldspar dolomite quartz pyrite Ti-oxide amygdules quartz chlorite calcite Ti-oxide
$20-25 \%$
$25-30$
$12-15$
$8-10$
$2-3$
$4-5 \quad$ (+ trace of pyrrhotite)
0.1
$1-1 \frac{1}{2}$
0.5
trace
trace

Plagioclase forms prismatic phenocrysts from $0.2-1 \mathrm{~mm}$ in length. They appear to be oligoclase-andesine in composition. Alteration is moderate to dusty sericite and scattered patches of dolonite.

The groundmass is dominated by an extremely fine grained aggregate of plagioclase and lesser K-feldspar. Plagiolcase is similar to that in the phenocrysts, and ranges in habit from lathy to anhedral. K-feldspar was identified from the stained offcut block; it forms extremely fine grained aggregates intergrown with groundmass plagioclase.

Dolomite forms disseminated patches averaging $0.03-0.07 \mathrm{~mm}$ in size, and is concentrated around some patches of sericite-quartzr(Ti-oxide). as irregular grains up to 0.6 mm across.

Quartz occurs as interstitial grains and patches averaging 0.02-0.05 mm in size.

Pyrite forms irregular, in part skeletal grains averaging 0.1-0.2 mm in size, with a few up to 1 mm across. Grain borders are very irregular and commonly subrounded. Many grains contain moderately abundant inclusions of host rock, and one grain contains an inclusion 0.02 mm across of pyrrhotite.

Tiroxide forms disseminated grains averaging $0,01 \mathrm{~mm}$ in size.
Several patches in the groundmass contain more abundant and slightly coarser grained sericite than normal. Some of these patches also contain quartz and calcite/dolomite. Patches commonly are sunnounded by irnegular grains of dolomite up to 0.6 mm across. These patches commonly contain moderately abundant Tiroxide as disseminated, extremely fine grained patches. They may be secondary after hornblende phenocrysts.

Amygdules up to 0.7 mm in size have sharp, curved smmothly to irregular outlines. They are dominated by an outer zone of very fine grained, submosaic quartz, with a core of extremely fine grained chlorite with lesser sericite and local patches of dolomite Quartz. commonly has grown perpendicular to walls of the patch. Sheet silicates and minor T-oxide form extremely:fine grained patches in the cores.

Andesite Flow; Replacement Patches of Calciter Chlorite-(Quartz); Veins of Marcasite/Pyriter(Calcite)
The rock contains scattered plagioclase phenocrysts in a groundmass dominated by plagioclase and K-feldspar, which commonly shows flow-banding defined by parallel orientation of plagioclase laths. Replacement patches up to a few mm across are dominated by chlorite and calcite, with a few dominated by quartz. Veins consist mainly of pyrite/marcasite, with irregular halos in which the sulfide is intimately intergrown with the host rock in braided textures.

phenocrysts

plagioclase	$3-4 \%$
groundmass	
plagioclase	$30-35$
K-feldspar	$15-17$
chlorite	$4-5$
quartz	I- $1 \frac{1}{2}$
Ti-oxide	$1-1 \frac{1}{2}$
pyrite/marcasite 00.5	
pyrrhotite	minor

$$
\begin{array}{lc}
\text { replacement patches } \\
\text { chlorite } & 12-15 \% \\
\text { calcite } & 15-17 \\
\text { quartz } & 1 \frac{1}{2}-2 \\
\text { pyrite/marcasite } 0.5 \\
\text { barite(?) } 0.1 \\
\text { veins \& alteration halos } \\
\text { pyrite/marcasite } 7-8 \\
\text { calcite } & 0.5
\end{array}
$$

Plagioclase forms scattered phenocrysts from $0.7-1.2 \mathrm{~mm}$ in average length. These are altered moderately to strongly to sericite and calcite, with minor patches of quartz and pyrite/marcasite.

The groundmass is dominated by lathy plagioclase grains averaging 0.05-0.1 mm in length. These commonly show a moderate foliation caused by flow-banding during cooling of the magma. Interstitial to these is an extremely fine grained aggregate of K-feldspar, plagioclase, and lesser chlorite, with moderately abundant, extremely fine grained Ti-oxide interstitial to plagioclase laths. Pyrite/marcasite forms disseminated, irregular patches up to 0.1 mm in size. Pyrrhotite locally forms a few grains up to 0.1 mm in size.

The rock contains irregular replacement patches dominated by extremely fine grained chlorite and fine to very fine grained calcite. Some of these contain patches of very fine grained quartz and fine to very fine grained pyrite/marcasite. Barite (?) occurs as clusters of grains in cores of a few patches: grains are up to 0.25 mm in size. Optical and physical properties are a moderate relief (about that of apatite), low birefringence (slightly greater than that of quartz), parallel extinction, weak cleavage, soft).

A few veins up to 1 mm in width consist of pyritelmarcasite, generally with weak anisotropism, A few patches also consistiof very fine grained aggregates of pyrite/marcasite. Bordering the veins and in places comprising the entire vein are extremely fine grained lenses and fracture filling seams of pyrite/marcasite intimately intergrown with groundmass plagioclase or with calcite. Calcite also occurs as lenses up to 0.5 mm wide and 2 mm long in the core of the sulfide veins.

Chlorite forms a few lenses up to 1.2 mm long and 0.2 mm wide; these are extremely fine grained, and some contain clusters of Tiroxide grains of extremely fine grain size.

The rock contains phenocrysts of plagioclase and minor ones of biotite in a groundmass dominated by plagioclase with interstitial patches of chiorite. K-feldspar and dolomite occur in irregular patches the former may be in part primary and in part secondary, and the latter is secondary. Sulfides are dominated by pyrrhotite with lesser pyrite. Late veinlets are of dolomite.

phenocrysts		veinlets	
plagioclase	$20-25 \%$	dolomite	minor
biotite	$1-1 \frac{1}{2}$		
apatite	minor		
groundmass			
plagioclase/K-feldspar	$35-40 \%$		
chlorite	$10-12$		
dolomite	$17-20$		
quartz	$3-4$		
pyrrhotite	$3-4$		
pyrite	$1-1 \frac{1}{2}$		
Ti-oxide	0.3		
sphalerite	trace		
chalcopyrite	trace		

Plagioclase forms prismatic phenocrysts averaging 0.3-0.8 mm in size, with a few between 1.0 and 2.5 mm long. Many larger phenocrysts are altered strongly to completely to fine grained dolomite with much less extremely fine grained sericite. Some phenocrysts contain patches of secondary chlorite.

Biotite forms slender phenocrysts up to 1.2 mm long. These are altered completely to either pseudomorphic muscovite or to dolomite, each with moderately abundant intergrown Ti-oxide.

Apatite forms a few prismatic phenocrysts up to 0.4 mm long, in part associated with biotite pheoncrysts, It also forms unusual patches up to 0.3 mm long of very fine grained aggregates of equant, anhedral grains.

The groundmass is dominated by very fine grained feldspars in equant to slightly prismatic grains averaging 0.02-0.04 mm in size. Chlorite forms interstitial patches of extremely fine grain size. Dolomite occurs in part of the section as irregular patches up to 1 mm in size, replacing both groundmass and plagioclase phenocrysts. It is uncertain whether K-feldspar is associated with dolomite as a replacer ment of plagioclase, or if it is primary. Probably much of the K-feldspar is secondary.

Quartz occurs in patches up to 0.3 mm in size, mainly as very fine grained aggregates. It also occurs as inregular grains and aggregates scattered through the groundmass, with grain size from $0.02-0.05 \mathrm{~mm}$. Some quartz may be of secondary origin.

Sulfides commonly are associated with dolomite and minor quartz. Pyrrhotite forms irregular patches up to 1 mm in size of very fine to fine grains moderately intergrown with dolomite and groundmass silicates. Pyrite forms euhedral to subhedral grains averaging 0.1 mm in size, with one large composite grain 0.8 mm across. Sphaleri.te occurs in one patch as grains up to 0.2 mm in size intergrown with quartz and minon chalcopyrite. Chalcopyrite also forms a few grains up to $0,05 \mathrm{~mm}$ in size with pyrrhotite.

Ti-oxide is concentrated in several patches up to $0,7 \mathrm{~mm}$ in size where it forms 20-30\% of the patch, intergrown with chlorite and plagior clase.

The rock contains minor dolomite veinlets avenaging $0.02-0.05 \mathrm{~mm}$ in width.

Plagioclase and hornblende form a few phenocrysts in a very fine grained groundmass dominated by plagioclase and K-feldspar, the latter of replacement origin. The rock contains coarser grained replacement patches dominated by calcite and pyrrhotite with lesser quartz and minor chlorite.

phenocrysts	
plagioclase	$7-8 \%$
hornblende	$2-3$
groundmass	
feldspars	$65-70$
quartz	$1-I \frac{1}{2}$
Ti-oxide	$\frac{1}{2}-1-1 \frac{1}{2}$
pyrrhotite	$1-1$

replacement patches
calcite $\quad 7-8 \%$
pyrrhotite $3-4$
quartz
chlorite $3-.4$
sphalerite minor
chalcopyrite trace

Plagioclase forms subhedral pheoncrysts averaging 0.4-0.7 mm in length, with a few from 1 to 2 mm long. Alteration is slight to moderate to dusty opaque and patches of calcite and sericite.

Several patches up to 1.5 mm in size consist of extremely fine grained aggregates of quartz with or without chlorite and/or calcite. Some of these have subhedral outlines, suggesting that they are replacements of hornblende phenocrysts.

The groundmass is dominated by lathy to prismatic plagioclase grains fnom 0.05-0.1 mm in length, intergrown with anhedral, finer grained K-feldspar and plagioclase. K-feldspar was not identified in thin section, but its abundant presence is indicated in the stained offcut block. The texture of the groundmass suggests that the rock is an andesite; hence, the $\mathrm{K}-\mathrm{feldspar}$ must represent replacement of plagioclase.

Quartz forms scattered interstitial grains and patches averaging 0.03-0.05 mm in grain size.

Ti-oxide forms disseminated, extremely fine grained patches up to 0.03 mm in size.

Pyrrhotite forms disseminated grains averaging 0.02-0.1 mm in size.
The rock contains replacement patches up to a few mm across. Many of these are dominated by fine grained calcite, with abundant pyrrhotite in coanser grained patches in the cores of the replacement zones, and as abundant, very fine grains intengrown irregularly with calcite and groundmass feldspars along the borders of the patches. Chlorite occurs mainly outwards from the zones of calciteropaque as very fine grained aggregates. Quartz occurs in a few patches with calcite and pyrrhotite, especially the lange patch in one corner of the section, in which quartz forms a patch up to 1.5 mm across of grains averaging $0.03-0.07 \mathrm{~mm}$ in size. Quartz. also occurs in patches up to 1.7 mm in size of very fine to fine grained aggregates, without or with only minor other replacement minerals.

Sphalerite forms one irregular patch 0.3 mm across intergrown with groundmass feldspars. Associated with sphalerite and locally elsewhere are a few grains of chalcopyrite averaging 0.02 (mm in size. Sphalerite is deep red brown in color, indicating a high iron content.

The rock contains fragments up to 2 cm in size of andesite and dacite in an extremely fine grained groundmass dominated by plagioclase and K -feldspar. Replacement patches are dominated by one or more of calcite, chlorite, and quartz. Because of the difficulty of distinction of some fragments from groundmass, the fragments and groundmass between them are described together.

phenocrysts	
plagioclase	$7-8 \%$
groundmass	
plagioclase	$35-40$
Krfeldspar	$20-25$
quartz	$4-5$
chlorite	0.5
:pyrrhotite	$1-1 \frac{1}{2}$
Ti-oxide	0.3

replacement patches	
calcite	$15-17 \%$
quartz	$4-5$
chlorite	$3-4$
pyrrhotite minor	
sphalerite minor	

Plagioclase forms phenocrysts averaging $0.5-1.2 \mathrm{~mm}$ in length, with a few up to 3 mm long. Most are subhedral to euhedral, prismatic grains. Alteration is moderate to locally strong to extremely fine grained, disseminated sericite, and to patches of very fine grained calcite.

The groundmass is variable in texture. In a few andesite fragments the groundmass contains prominent prismatic grains of plagioclase up to 0.12 mm in length enclosed in and intergrown slightly with finer grained, irregular grains of plagfoclase and K-feldspar. Elsewhere, the groundmass is very fine to extremely fine grained, and dominated by slighly interlocking aggregates of feldspars and much less quartz. Quartz commonly is concentrated in patches up to 0.1 mm in size. Chlorite forms scattered extremely fine grained patches. Ti-oxide forms disseminated, extremely fine grained patches up to 0.03 mm across. Pyrrhotite forms disseminated, anhedral grains and aggregates from 0.020.15 mm in size.

Replacement patches are up to a few mm across. Calcite forms anhedral, ponphyroblastic grains up to $I .5 \cdot \mathrm{~mm}$ in size. Quartz commonly is concentrated in patches up to 0.7 mm across of grains from 0.05 0.15 mm in size. Chlorite is concentrated in patches up to 2 mm across of extremely fine grained aggregates; in part intergrown alohg borders of patches with calcite.

Pyrrhotite and sphalerite form a few concentrations of grains in the replacement patches, with grain size up to 0.15 mm .

The original rock contains plagioclase phenocrysts in a groundmass of plagioclase and lesser chlorite. Early replacement consist of quartz and chlorite. Later replacement and veins are dominated by calcite, with lesser patches of chlorite and pyrite/marcasite, with minor barite and quartz.
phenocrysts

plagioclase	$4-5 \%$
groundmass	
plagioclase	$15-20$
chlorite	$5-7$
Ti-oxide	0.5
replacement	$10-12$
quartz	$8-10$
chlorite	$35-40$
calcite	$3-8$

chalcopyrite	trace
pyrrhotite	minon
barite (?)	$I-1 \frac{1}{2}$

Plagioclase forms subhedral to euhedral, elongate prismatic phenocrysts up to 1.5 mm long. They are altered strongly to sericite, with or without calcite.

The groundmass is dominated by prismatic plagioclase grains up to 0.12 mm in length, and by anhedral plagioclase and chlorite grains from 0.02-0.05 mm in size. Tiroxide forms disseminated patches averaging $0.02-0.05 \mathrm{~mm}$ in size, with a few up to 0.1 mm across. *

Quartz forms early, pervasive replacement as grains averaging 0.030.1 mm in size. Some patches of quartz are up to 1.5 mm in size. Interstitial to quartz. is minor to moderately abundant chlorite. Chlorite forms very fine grained replacement patches up to 1 mm in size, in part associated with quartz and in part associated with calcite.

Calcite forms irregular to subhedral prismatic grains up to 1.5 mm in size replacing the rock. The presence of abundant prismatic grains suggests that some of the carbonate'may be aragonite.

The rock is cut by a diffuse vein zone up to a few mu wide, which is very similar in texture to some of the replacement patches, Calcite is dominant as fine to coarse grained aggregates. Pyrite/marcasite is concentrated along the axis of the vein as extremely fine to medium grained aggregates. The sulfide grains occur in two main modes. Subr mosaic aggregates of equant grains average $0 . I-0.2 \mathrm{~mm}$ in grain size: these have very weak to no anisotropism. Some extremely fine grained aggregates, intergrown with minor non-reflective material have slight to moderate anisotropism.

Barite(?) forms patches of grains up to 0.8 mm in size in the core of the vein, associated with calcite and sulfides. Grains are up to 0.5 mm in size, and have moderate relief and low birefringence. Cleavages at 90° locally are present.

Chalcopyrite forms scattered, anhedral grains up to 0.12 mm in size.
Pyrrhotite forms a few patches of grains up to 0.2 mm in size, and forms a very few inclusions up to 0.03 mm in si.ze in pyrite.

* Groundmass plagioclase is altered slifghtly to moderately to sericite of extremely fine grain size.

Porphyritic Andesite with Replacement Patches of Calcite-ChloriterPyrrhotite and lesser ones with Quartz; K-feldspar replacement of groundmass plagioclase
The rock contains very coarse phenocrysts of plagioclase and moderately abundant ones of apatite in a very fine grained groundmass dominated by plagioclase and K-feldspar, the latter of replacement origin. Replacement patches are dominated by calcite with lesser chlorite and pyrrhotite, with fewer patches also containing quartz.
phenocrysts
plagioclase
apatite
groundmass plagioclase

30-35 K-feldspar chlorite
17.-20

replacement patches	
calcite	$8-10 \%$
chlorite	$2-3$
pyrirhotite	$2-3$
quartz	$2-3$
sphalerite	trace
chalcopyrite	trace

Ti-oxide 2-3 quartz
$20-25 \%$
$1-1 \frac{1}{2}$
$30-35$
$17-20$
$3-4$
$2-3$
0.3

8-10\%
2- 3
2- 3
2- 3
trace
trace 0.3

Plagioclase forms phenocrysts up to 15 mm in length; they are altered moderately to strongly to calcite and sericite.

Apatite forms subhedral to euhedral prismatic grains up to 0.75 mm in length.

The groundmass contains lathy plagfoclase grains up to 0.15 mm in length in a much finer grained groundmass of plagioclase, K-feldspar, and minor chlorite. K-feldspar was not identified in thin section; its presence is indicated by the stained offcut block. Ti-oxide forms abundant disseminated patches up to 0.03 mm in size and a few patches up to 0.6 mm across in which it is intergrown with about the same amount of chlorite. Quartz forms interstitial grains up to 0.07 mm across.

Replacement patches up to several mmacross are dominated by fine to medium grained calcite with lesser chlorite and pyrrhotite. Chlorite commonly is concentrated near borders of patches as very fine grained aggregates. Pyrrhotite forms patches up to 1.5 mm in size of very fine to fine grains, and is more common as disseminated grains averaging $0.03-0.1 \mathrm{~mm}$ in size. In some patches, chlorite and calcite are intimately intergrown. Sphalerite forms a few patches up to 0.1 mm in size. Chalcopyrite forms scattered grains up to 0.03 mm across.

Other replacement patches up to 0.7 mm in size are dominated by very fine to fine grained quartz. Patches up to $l, 5 \mathrm{~mm}$ in size have an outer zone of quartz enclosing very fine grained cores of calcite and/or chlorite. Some of these contain minor pyrrhotite grains up to 0.1 mm in size.

The rock contains fragments up to 1.7 mm in size dominated by plagioclase phenocrysts, hornblende phenocrysts, and extremely fine grained altered rocks of uncertain origin. Replacement patches are of two main types: quartz-rich, and quartz with variable amounts of arsenopyrite, chlorite, and lesser calcite and apatite.
fragments

$$
\begin{array}{ll}
\text { plagioclase } & 5 \div 7.8 \\
\text { hornblende } & 2-2 \frac{1}{2}
\end{array}
$$

$$
\text { rock } \quad 1-2 \text { (probably up to } 5-10 \% \text {, but cannot be distinguished }
$$

groundmass
plagioclase/sericite 55-60\%

$$
\text { calcite } \quad 15-17
$$

$$
\text { chlorite } \quad 4-5
$$

$$
\text { quartz } \quad 2-3
$$

$$
\text { Ti-oxide } \quad 0.5
$$

patches
a) quartz 5- Z
b) quartz-arsenopyriterchlorite-(calciterapatitersphalerite-pyrrhotite

Plagioclase forms phenocrysts up to 1.5 mm in sizez alteration is strong to patches of calcite and disseminated flakes of sericite.

Hornblende forms prismatic pheoncrysts up to 1.7 mm in length. It is altered completely to extremely fine grained chlorite with lesser sericite, calcite, and Tiroxide.

A few fragments of rock consist of aggregates of very fine grained quartz intergrown with lesser.pale brown chlorite. Other fragments contain more abundant chlorite with minor Tiroxide and quartz.

The groundmass (and some rock fragments consist of extremely fine grained plagioclase, partly altered to sericite, and partly replaced by very fine to medium grained, porphyroblastic patches of calcite. Pale brown chlorite forms irregular patches and diisseminations of extremely fine grain size. Quartz forms patches of very fine grains. Ti-oxide forms disseminated, extremely fine grained patches up to 0.03 mm in size.

One type of replacement(?) patch is dominated by quartzi patches are up to 1,2 mm across. Quartz forms very fine to fine grained aggregates, commonly with wavy extinction. Most patches contain abundant dusty opaque inclusions in a thick core zone, and-minor ones in a thin rim; the zone of inclusions is superimposed on quartz grains which extend from the core to the interior of the patch.

Other patches up to $1,8 \mathrm{~mm}$ in size are dominated by very fine to fine grained quartz, and contain locally abundant arsenopyrite and chlorite, and minor calcite. Arsenopyrite forms grains up to 0.5 mm . in size : a few larger ones contain an inclusion up to $0,08 \mathrm{~mm}$ in size of pyrrhotite. Some arsenopyrite are skeletal outlines rimming patches of chlorite or calcite near coarse patches of arsenopyrite, Chlorite generally is interstitial to quartz. Calci.te forms a few patches of grains associated with arsenopyrite. A few patches consist of arsenopyrite and chlorite. Apatite occurs as extremely fine grained aggregates in a few patches, mainly associated only with quartz. Sphalerite forms a few grains up to 0.1 mm in size in a patch: which contains the largest arsenopyrite grain; sphalerite contains minor exsolution bleba of chalcopyrite. Chalcopyrite forms dissëminated grains up to 0.03 mm in size.

The rock is a slightly porphyritic andesite dominated by plagioclase. It contains fragments up to several mm across of fine grained diabase (?) with minor plagioclase and hornblende phenocrysts in a groundmass of lathy plagioclase and interstitial chlorite. Replacement patches in andesite are mainly quartz-chlorite-(sericite-calcite), and in diabase are mainly calcite-marcasite/pyrite-chlorite.

andesite (75\% of total)	
phenocrysts	
plagioclase	$4-5 \%$
groundmass	
plagioclase	$60-65$
chlorite	$5-7$
Ti-oxide	$1-1 \frac{1}{2}$
quartz	$\frac{1}{2}-1$
apatite	minor

diabase (l0\% of total)	
phenocrysts	
plagioclase	
hornblende	$1-1 \frac{1}{2} \%$
groundmass	
plagioclase	$4-6$
chlorite	$2-3$
Ti-oxide	0.2

replacement patches

1) 3% of total

quartz	$2-2 \frac{1}{2}$
chlorite	0.5
sericite	0.3
calcite	minor
marcasite/pyrite	trace

2) 12% of total

calcite	$4-5 \%$
marcasite	$2-3$
chlorite	$2-3$
pyrite	minor
quartz	minor
Sphalerite	minor
chalcopyrite	trace

In the andesite, plagioclase forms euhedral prismatic phenocrysts up to 1 mm in length. Alteration is strong to sericite. The groundmass contains prismatic plagioclase grains from $0.05-0.2 \mathrm{~mm}$ in length in a extremely fine grained aggnegate of equant plagioclase, with patches of chlorite. Groundmass plagioclase is altered moderately to sericite. Ti-oxide forms disseminated spots up to $0,03 \mathrm{~mm}$ in size. Quartz. forms scattered, commonly subrounded grains averaging $0.05<0.1 \mathrm{~mm}$ in size. Apatite forms a few ragged prismatic grains up to 0.2 mm in length i: dusty inclusions are common.

In the diabase, plagioclase and hornblende each form minor prismatic phenocrysts up to 1.3 mm in length. Plagioclase is altered completely to sericite and hornblende is altered completely to chloritercalcite. The groundmass is dominated by prismatic plagioclase averaging 0.1-0.2 mm in length with 20-25\% interstitial chlorite patches, and dissemianted spots of Ti-oxide.

Quartz-rich replacement patches, mainly in the andesite, are up to 1 mm in size. They are dominated by very fine to fine grained quartz., with scattered patches of very fine grained chlorite. Sericite is concentrated along the borders of some patches as extremely fine to very fine grained aggregates. Calcite forms a few patches up to 0.05 mm in size. Marcasitelpyrite forms equant grains up to 0.05 mm in size.

Calcite-rich replacement patches occur in the diabase; they are up to a few mm across and ane dominated by fine to medium grained calcite, with patches of very fine grained chlorite and: fo very fine to fine grained quartz, Sulfides occur in cores of patches, Marcasite forms patches up to 0.5 mm across of extremely fine grained aggregates after pyrrhotite, and also forms one large patch 1.5 mm across of grains averaging $0.05-0.2 \mathrm{~mm}$ in size. The former have moderate to high anisotropism and the latter have slight anisotropism.

Pyrite forms a few subhedral to euhedral grains from 0.03-0.1 mm in size intergrown with marcasite patches formed by replacement of pyrrhotite. Sphalerite occurs along borders of marcasite and away from iron sulfides as anhedral grains up to 0.18 mm across. It commonly contains minor, tiny exsolution blebs of chalcopyrite. Chalcopyrite also forms scattered anhedral grains from $0.01-0.02 \mathrm{~mm}$ in size, mainly associated with marcasite.

The calcite-rich replacement patches commonly occur in the centers of the diabase fragments; this and the slightly zoned nature of the patches themselves give the patches in hand sample a strongly zoned appearance.

Dev 87-03 141.7m
Porphyritic Andesite, Altered to K -feldspar; cut by veins of Quartz-Marcasite-(Chlorite-Kaolinite). and of Calcite-Sidderite(?)-Marcasite-Chlorite
The rock contains phenocrysts of plagioclase, hornblende, and minor apatite in a very fine grained groundmass dominated by plagioclase with much less chlorite. Plagioclase is moderately altered to K -feldspar, and moderately to strongly replaced by sericite and calcite, Hornblende is replaced completely by chlorite-(calcite- Ti-oxide). Veins up to 0.5 mm wide are dominated by quartz-marcasite or calcite-marcasite.
phenocrysts

plagioclase	$20-25 \%$
hornblende	$8-10$
apatite	$1-1 \frac{1}{2}$
groundmass	
plagioclase	$25-30 ?$
K-feldspar	$20-25 ?$
chlorite	$7-8$
calcite	$1 \frac{3}{2}-2$
Ti-oxide	$1-1 \frac{1}{2}$
quartz.	0.5
marcasite	0.3
pyrite	trace

veins and replacement patches

1) quartz-marcasiter(chlorite-kaolinite)

3-4\%
2) calcite-marcasiter(chlorite-quartz)

1- $1 \frac{1}{2}$
3) marcasiterkaolinite-(chlorite) 0.5\%

chalcopyrite	trace
sphalerite	trace

Plagioclase forms euhedral prismatic phenocrysts up to 4 mm in length. Alteration is moderate to dusty opaque patches, and moderate to strong to sericite and/or calcite.

Hornblende forms subhedral to euhedral pheoncrysts from $0.3-2.5 \mathrm{~mm}$ in size. It is altered completely to aggregates of very fine to extremely fine grained chlorite, with scattered concentrations of Ti-oxide. Some grains contain abundant tiroxide along cleavage of original hornblende. Some large grains contain abundant patches of very fine to fine grained calcite intergrown with chloritei calcite commonly contains abundant dusty opaque inclusions.

Apatite forms subhedral to euhedral prismatic grains up to 0.5 mm in length. Dusty inclusions are common, giving grains a color zonation from colorless to light brown or greyish brown.

Groundmass feldspar forms prismatic to irregular grains from 0.030.1 mm in length, with grain size coarser towards one side of the section. Locally, grains are moderately oriented to produce a flow foliation, Plagioclase is altered moderately to K -feldspari the latter was not recognized in thin section, but is abundant as indicated by the stained offcut block.

Chlorite forms interstitial patches of extremely fine grain size. Calcite forms irregular replacement patches, mainly near the carbonater rich vein. Tiroxide forms disseminated patches averaging $0.01-0,02 \mathrm{~mm}$ in size, and a few coarser aggregates up to 0. I mm across. Quartz. forms scattered grains and patches of grains averaging $0.05-0.1 \mathrm{~mm}$ in grain size, Marcasite forms disseminated, irnegular patches up to 0.1 $m m$ across. Pyrite forms a few euhedral to subhedral grains up to 0,07 mm across.

A few veins are dominated by patchy aggregates of quartz and maracsite of very fine grain size. Marcasite occuns in two modes, as extremely fine grained replacements of pyrnhotite, and as very fine grained, subhedral to submosaic aggregates..Anisotropism is slight to moderate. Chlorite forms a few patches of very fine grains. Kaolinite forms patches up to 0.15 mm in size of aggregates of equant grains averaging 0.002 mm in size. A replacement patch $1,7 \mathrm{~mm}$ across is dominated by marcasite with interstitial kaolinite and minor chloritei textures are as in the veins.

One vein is dominated by carbonate with lesser marcasite and minor chlorite and quartz. Calcite is concentrated along the centerline of the vein.as discontinuous lenses. Bordering this is a zone dominated by extremely fine grained carbonate with high relief (possibly siderite). Marcasite forms lenses along the vein, in part on one side of the carbonate vein, and in part occupying the entire width of the vein. Textures are as in the quartz-rich veins. Chlorite and quartz each form scattered patches of very fine to extremely fine grains (chlorite). Adjacent to the vein, the groundmass is replaced by irregular patches of calcite. Also sericite is more abundant than further away from the vein.

Associated with patches of marcasite are scattered grains of chalcopyrite and sphalerite averaging 0.02 mm in size.

One replacement patch 0.5 mm long consists of chlorite and sericite in very fine grained aggregates, with each mineral occupying one side of the patch.

Andesite Flow Breccia: Replacement patches of Carbonate and of QuartzrPyrite-Chlorite-(Fluorite).
The rock contains fragments up to 1 cm in size of one type of andesite flow enclosed in a second type of andesite flow. Replacement patches of carbonate are mainly restricted to the second type of andesite, whereas those dominated by quartz, pyrite and/or chlorite occur in both rock types.

fragment	17-20\%
main rock	
phenocrysts	
plagioclase	$8-10 \%$
hornblende	$1-2$
groundmass	
plagioclase	$35-40$
K-feldspar	$3-4$
chlorite	$12-15$
Ti-oxide	1
replacement patches	
carbonate	$10-12$
quartz	$\frac{1}{2}-1$
pyrite	$1 \frac{1}{2}-2$
chlorite	$1 \frac{1}{2}-2$
fluorite	minor

The fragment contains phenocrysts of plagioclase up to 1.7 mm in length and of hornblende up to 2.5 mm long. Plagioclase is altered slightly to patches of very fine grained quartz and caleite. Phenocrysts and groundmass contain abundant dusty semiopaque. Hornblende phenocrysts are replaced completely by extremely to very fine grained aggregates of sericite, chlorite, quartz, and Tiroxide, with a few coarser grains of quartz, or to irrequiar intergrowths of carbonate and chlorite. The groundmass is dominated by equant plagioclase and much less chlorite and quartz grains averaging $0,01-0.03 \mathrm{~mm}$ in size. Pyrite occurs as replacement grains up to 0.5 mm in size in both types of phenocrysts and in the groundmass.

The main rock contains phenocrysts of plagioclase up to 1.2 mm in length. Alteration is moderate to strong to irregular patches of calcite, chlorite, quartz., pyrite, and fluorite, Hornblende phenocrysts up to 1 mm across are replaced by intimate intergrowths of extremely fine grained chlorite and very fine grained carbonate.

The groundmass is dominated by lathy to equant plagioclase grains averaging 0.03-0.07 mm in size, with moderately abundant interstitial chlorite and disseminated spots of Ti-oxide, Krfeldspar is concentrated near one corner of the section (as seen in the stained offcut block). Replacement patches up to a few mm-across are dominated by irregular, fine to medium grained carbonate grains, commonly with porphyroblastic textures. The mineral is calcite andjor dolomiter relief is higher than normal for calcite, yet the grains react moderately with dillute, cold HCl.

Other replacement patches up to 1 man in size are of very fine to fine grains and aggregates of one or more of quartz., pyrite, chlorite, and fluorite. Pyrite commonly forms subhedral to euhedral cubic grains and a few patches up to 0.7 mm across, Locally associated with pyrite is minor marcasite, distinguished by slight to moderate anisotropism and whiter color than adjacent pyrite. Fluorite forms. anhedral, equant grains up to 0.3 mm across.

The rock contains phenocrysts of plagioclase in a groundmass dominated by plagioclase with lesser K-feldspar. Replacement patches and veins are of very fine to fine grained calcite, quartz, and pyrite/ marcasite. Chlorite is concentrated moderately in a diffuse halo bordering a large vein zone.

phenocrysts plagioclase	$10-12 \%$
groundmass	
plagioclase	$40-45$
chlorite	$5-7$
K-feldspar	$10-12(?)$
Ti-oxide	$\frac{1}{2}-1$

> replacement patches, veins
> calcite $10-12$ quartz $4-5$
> pyrite/marcasite $4-5$ chalcopyrite trace chlorite $1-1 \frac{3}{\frac{1}{2}}$ (in halo)

Plagioclase forms anhedral to locally subhedral prismatic to equant grains averaging $0.1-0.7 \mathrm{~mm}$ in size. Alteration is slight to locally moderate to patches of calcite and of K-feldspar.

The groundmass contains scattered prismatic grains of plagioclase up to 0.15 mm in size in a variable intergrowth of equant plagioclase averaging $0.01-0.03 \mathrm{~mm}$ in size (locally $0.03-0.05 \mathrm{~mm}$), with much less interstitial grains and patches of chlorite. K-feldspar was not identified in thin section except in plagioclase phenocrysts; the stained offcut block indicates that it is moderately abundant except near the main vein zone. Tiroxide forms a few patches up to 0.2 mm across and abundant disseminated patches averaging $0.01-0.02 \mathrm{~mm}$ in size.

The rock contains replacement patches up to 1.5 mm in size dominated by very fine grained quartz with lesser pyrite/marcasite and calcite. Quartz patches are common with plagioclase phenocrysts. Calcite forms irregular replacement patches of grains averaging $0.03-0.08 \mathrm{~mm}$ in size. Pyrite/marcasite forms anhedral to subhedral patches of grains up to 0.2 mm in size, mainly associated with quartz. The sulfide has slight anisor tropism. Locally anhedral sulfide grains surround euhedral quartz grains. Chalcopyrite forms a few patches up to 0.03 mm in size.

The main vein zone is up to 3 mm wide and dominated by very fine to fine grained calcite, with patches of pyrite/marcasite up to 1 mm in size, and minor quartz, mainly associated with pyrite/marcasite, The vein is of replacement origin, and contains relic patches of groundmass plagioclase. Chalcopyrite forms a few grains up to 0.05 mm in size, mainly associated with pyrite/marcasite. In a halo up to 0.5 mm wide bordering the vein, chlorite is moderately concentrated in lensy patches in the groundmass as very fine to extremely fine grained aggregates.

Pyrite/marcasite forms a very few wispy seams of extremely fine grains. These are up to $1,5 \mathrm{~mm}$ long and 0.02 (mm wide.

The rock contains phenocrysts of plagioclase and much less horne blende in a variable groundmass dominated by plagioclase and chlorite. Replacement patches and veinlets are dominated by calcite with lesser pyrrhotite/marcasite and much less quartz and chlorite.
phenocrysts plagioclase hornblende groundmass plagioclase chlorite Ti-oxide pyrrhotite chalcopyrite
' replacement patches, veinlets
$15 \div 17.8$
$1 \frac{1}{2}-2$
40~45
10-12
1-1年
1-1年
trace
calcite 17-20\%
pyrrhotite/marcasite 4-5
quartz.
chlorite
sphalerite
sericite

2- $2 \frac{1}{2}$
1-1
trace
minor

Plagioclase forms subhedral to euhedral prismatic phenocrysts up to 2.5 mm in length, and anhedral, ragged phenocrysts up to 0.8 mm in size. Alteration is variable, with larger phenocrysts strongly altered to calcite and minor quartz and pyrrhotite, and smaller ones slightly altered to calcite and containing abundant dusty semiopaque.

Hornblende forms a few subhedral prismatic phenocrysts up to 1 mm in size. It is altered completely to extremely fine grained aggregates of sericite and chlorite with lesser quartzrich patches. Chlorite is pale brown in color.

The groundmass is variable, suggesting that two types of andesite are present. Much of the sample has a groundmass of very variable grain size, with abundant coarser grains ranging from $0.05=0.5 \mathrm{~mm}$ in length in an extremely fine grained groundmass. Elsewhere in the sample, the groundmass is dominated by extremely fine grained aggregates of plagior clase and chlorite e chlorite appears to be more abundant in this zone than in the one with coarser plagioclase.

Ti-oxide formsdisseminated patches up to 0.03 mm in size,
Pyrrhotite forms disseminated, anhedral grains and patches from $0.03-0.1 \mathrm{~mm}$ in average size. Chalcopyrite forms a very few grains up to $0,05 \mathrm{~mm}$ across.

The replacement patches are irregular in outline and up to several mm across. Calcite forms very fine to fine gnained aggregates. Pyrrhotite occurs in patches up to 1 mm across of very fine grained aggregates, Some of these are freshi others are moderately to completely replaced by secondary Fe-sulfides (marcasite 7 pyrite). These are extremely fine grained and dusty in appearance, with lower reflectivity than pyrinor tite. In a few patches, well developed botryoidal replacement textures were developed on the scale of $0.1 \times 0.15 \mathrm{~mm}$ in size, Marcasite forms a few patches of subhedral to submosaic grains i patches are up to 0.6 mm in size, with grains averaging $0.05-0.2 \mathrm{~mm}$. Marcasite also forms a few aggregates. of extremeky fine grains with non-reflective material intergrown along subparallel seams, Most marcasite probably is secondary after pyrrhotite : the exception might be the subhedral to submosaic aggregates.

Quartz. is concentrated in a few patches, mainly with marcasite, as anhedral grains averaging $0.03-0.07 \mathrm{~mm}$ in size.

Chlorite forms extremely fine grained patches of pale brown flakes.
Sphalerite occurs in a few patches of subhedral marcasite as grains up to 0.2 mm in length. It is deep redrbrown in color.

The rock is cut by a late vein up to $0,3 \mathrm{~mm}$ wide of very fine to fine grained calcite \quad unlike most calcite in the rock, this vein is. free of dusty hematite(?) inclusions. A late veinlet up to 0.05 mm in width consists of extremely fine grained sericite.

Dev 87-04 78.3m Slightly Porphyritic Andesite with Replacement Patches of Actinolite-CalciterQuartz and veins of Calciter Pyrite-Sphene-(Actinolite), PyriterCalcite, and Calcite.

The rock contains plagioclase and much lesser hornblende phenocrysts in a groundmass dominated by plagioclase and actinolite. It contains replacement patches of actinolitercalciterquartz. up to 1 mmacross. A large vein and related patches is dominated by pyrite and calcite with lesser actinolite and sphene. Smaller veinlets are dominated by calcite and/or pyrite.

phenocrysts	
plagioclase	$7-1 ; 8 \%$
hornblende	minor
groundmass	
plagioclase	$60-65$
actinolite	$15-12$
K-feldspar	$4-5$
Ti-oxide	$1-1 \frac{1}{2}$
pyrite	minor:
chlorite	minor
chalcopyrite	trace

Plagioclase forms prismatic, subhedral phenocrysts averaging 0.71.2 mm in size. Alteration is moderate to very fine grained calcite and extremely fine grained actinolite, with moderately abundant dusty semiopaque. Some grains are replaced almost entirely by calcite.

Hornblende forms a very few, subhedral, equant phenocrysts up to 0.5 mm across. They are altered completely to calcite-chlorite with minor Ti-oxide.

The groundmass is dominated by plagioclase grains averaging 0.030.1 mm in size. Habit ranges from anhedral, slightly interlocking grains to minor prismatic grains. Alteration is similar to that in the phenocrysts Actinolite forms ragged, stubby prismatic grains averaging 0.05-0.07 mm in length. K-feldspar was not recognized in thin section; it is distrir buted in patches in the rock as a replacement of plagiociase (see stained offcut block). Tiroxide forms disseminated patches averaging 0.02-0.07 mm in size, with a few up to 0.15 mm long. Pyrite forms scattered, euhedral to subhedral grains averaging 0.07 molimm in size. Chlorite occurs in one lens 1 mm long as extremely fine grains', Chalcopyrite forms a very few, equant, irregular grains up to 0.1 mm in size.

The: rock contains several replacement patches up to 1.5 mm in size dominated by fine grained (0.07 .0 .15 mm) actinolite with lesser calcite and quartz. Some patches are dominated by calcitè these are mainly near the main vein. Pyrite forms irregulan replacement patches near the main vein.

The main vein ranges from $0.3-2 \mathrm{~mm}$ in with. Much of it is dominated by a very fine grained aggregate of pyrite, with moderately abundant interstitial grains of quartz and of actinolite/tremolite, In parts of the vein and in patches along its border, pyrite forms extremely fine grained, braided aggregates intergrown intimately with the groundmass. Calcite is abundant in patches in the vein, and forms replacement patches along its borders. Actinolite forms scattered ragged prismatic grains up to 0.2 mm in length. Sphene is concentrated in patches with pyrite as anhedral to euhedral grains from $0.1-0.3 \mathrm{~mm}$ in average size,

A sharply defined vein $0.06<0.1 \mathrm{~mm}$ in width is dominated by extremely fine grained pyrite and by calcite. In places they occupy separate parts of the vein, and elsewhere, calcithe cores are nimmed by wispy selvages of pyrite. Late calcite veinlets are from 0,01r0,03 mm in width.

The rock contains phenocrysts of plagioclase and lesser ones of hornblende in a groundmass dominated by plagioclase. Calcite forms replacement patches in the groundmass, and a few veinlets up to 0.1 mm in width. Disseminated sulfides include pyrite and pyrrhotite. Hornblende phenocrysts are replaced by orange biotite.
phenocrysts

plagioclase	$7-8 \%$
hornblende	$3-4$
groundmass	
plagioclase	$75-80$
chlorite	$2-3$
calcite	$8-10$
pyrite	$1 \frac{1}{2}-2$
pyrrhotite	$\frac{1}{2}-1$
quartz	0.5
Ti-oxide/ilmenite 0.1	
chalcopyrite trace	

The rock contains fragments up to 1 cm in size dominated by two varieties of andesite in a groundmass of plagioclase-quartz-sericite. Pyrite forms disseminated grains and patches.

Andesite A contains scattered plagioclase phenocrysts up to 0.7 mm in size in a groundmass dominated by lathy plagioclase from 0.05-0.1 mm in length, with 5-10\% sericite and minor pprite and Ti-oxide. Quartz forms a few replacement(?) patches up to 0.5 mm across of very fine grains, with minor associated sericite and pyrite.

Andesite B contains abundant plagioclase phenocrysts from 0.5-2.5 mm in length in a groundmass dominated by sericite. Pyrite and Ti-oxide form scattered grains up to 0.2 mm in size., and quartz forms a few replacement patches.

Andesite C consists of lathy plagioclase from $0.05-0.1 \mathrm{~mm}$ in grain size with abundant interstitial Tiroxide, and with amoeboidal patches up to 0.2 mm across of quartz and sericite intergrowths,

Smaller fragments from Andesite A: and Andesite B consist of plagior. clase grains, and patches of sericiterrich groundmass.a

Several fragments up to 0.5 mm in size consist of very fine grained aggregates of quartz.

One unusual fragment $1,5 \mathrm{~mm}$ across: contains a core with abundant carbonaceous (?) opaque surnounded by irnegulan patches of sericite and of very fine grained apatifte. Outwards from these are spheroidal partial rims of quartz up to 0.02 mm wide. Another patch consists of a clusteriof apatite up to 0.2 mm in grain size adjacent to patches of sericite.

Several fragments (?) up to 1 mm in size are dominated by cryptor crystalline aggregates of unknown composition and light to mediaim brown color; these are intergrown with lesser sericite.

A very few fragments up to 0.25 mm in size are of quartz. grains.
The fragments are set in an extremely fine grained groundmass dominated by plagioclase with lesser sericite (possibly of replacement origin). Pyrite forms disseminated grains and concentrations of grains averaging $0.02-0.02 \mathrm{~mm}$ in size, with a few up to 0.4 mm across, Some larger grains contain moderately abundant inclusions of Tiroxide and/or silicates. Tiroxide forms disseminated, extremely fine grains.

Quartz forms a few patches up to 1 mm long of very fine grain size; these appear to be of replacement origin.

Chalcopyrite occurs in one patch as an aqgregate $0,25 \mathrm{~mm}$ long of very fine grains adjagent to a grain of Tiroxide of similar size.

The rock is cut by a discontinuous pynite veinlet up to 0.03 mm in width.

Dev L-10 Allan Ck. Trib. Quartz-(Pyrite) Replacement
The rock is strongly replaced in various stages by quartz and much less pyrite, with relic Ti-oxide clusters in the least altered rock. Abundant cavities are lined by euhedrally terminated quartz grains.

quartz	
extremely fine grained	$10-15 \%$
very fine grained	$30-35$
fine to medium grained	$40-45$
pyrite	$3-4$
Ti-oxide	0.2
sphalerite	trace
calcite	trace
cavities	$5-7$

The least altered rock consists of extremely fine grained (0.01-0.03 mm) aggregates of quartz, with moderately abundant Ti-oxide as clusters of subhedral grains averaging $0.01-0.02 \mathrm{~mm}$ in size. No original textures are preserved to indicate the nature of the parent rock.

These zones grade into coarser grained zones ($0.03-0.07 \mathrm{~mm}$) of anhedral quartz, with minor to locally abundant euhedral to subhedral grains of pyrite averaging $0.05-0.2 \mathrm{~mm}$ in size. Ti-oxide forms disseminated grains and concentrations, generally in lesser abundance than in the extremely fine grained quartz. Calcite occurs as wispy, extremely fine grained intergrowths in some quartz graitns.

Most strongly replaced rock consists of fine to medium grained quartz with minor pyrite and no Tr-oxide. These zones have euhedral terminations against cavities. The cavities are up to several mm across.

Pyrite grains are up to 0.4 mm in size (averaging $0.05-0.2 \mathrm{~mm}$). Associated with one patch of pyrite grains is an interstitial grain of sphalerite 0.15 mm across. Sphalerite is pale orangish grey in color, indicating a low iron content.

Associated with pyrite in one cluster is a grain of Tiroxide 0,05 mm across.

Dacite with replacement patches of PyrrhotiteChloriterQuartz.
The rock contains minor phenocrysts of plagioclase in an extremely fine grained groundmass dominated by plagioclase, with lesser quartz and minor K-feldspar and chlorite. Replacement patches and veinlets consist of pyrrhotite, chlorite, and quartz.
phenocrysts

plagioclase	$\frac{5}{2}-\mathrm{Fq}$		
groundmass			
plagioclase	$70-75$	K-feldspar	$4-5 \%$
quartz	$12-15$		
chlorite	$3-4$		
Ti-oxide	1		
pyrrhotite	$2-3$		
pyrite	minor		
chalcopyrite	trace		
apatite	trace		

Plagioclase forms a few prismatic to anhedral phenocrysts from 0.51.5 mm in length. They are irregularly replaced by groundmass and quartz.

The groundmass is very variable in texture, suggesting that the rock may be tuffaceous in origin. Some patches up to 1.5 mm in size are dominated by equant plagioclase grains averaging 0.05 mm in size. Much of the groundmass consists of plagioclase aggregates averaging 0.010.03 mm in grain size. Quartz occurs in a varfety of textures. It forms a few patches up to 0.5 mm in size of extremely fine grained aggregates. More commonly it is intergrown with plagioclase as grains averaging 0.020.03 mm in size i quartz is moderately concentrated in patches up to 1.5 mm in size. Locally, quartz forms quartz-rich patches with grain size from 0.03-0.05 mm. A few patches up to 1.5 mm in size are most probably of replacement origin; these consist of grains from 0.05-0.15 mm in size.

Chlorite forms extremely fine, disseminated grains and patches in the groundmass, and is concentrated in replacement patches up to 1 mm in size, in which it is intergrown with quartz and pyrrhotite.

Ti-oxide forms disseminated grains averaging $0.01,0.02 \mathrm{~mm}$ in size, and is concentrated in a few patches from $0.1-0.7 \mathrm{~mm}$ in size. In some of these patches i.t is associated with pyrrhotite.

Pyrrhotite forms disseminated grains, patches and a few veinlets with grain size averaging $0,03-0.15 \mathrm{~mm}$. Patches are up to 0.6 mm across. pyrrhotite veinlets are discontinuous and up to 0.05 mm wide.

Pyrite forms minor disseminated euhedral cubic grains from 0.03 0.06 mm in size.

Chalcopyrite forms a very few anhedral grains from 0.01-0.03 mm in size.

Apatite forms a very few ragged, prismatic grains up to 0.1 mm long.
K-feldspar is concentrated in irregular patches (see stained offcut block). It was not identified in thin section, but is suspected to occur in some quartz-bearing patches. It probably is a replacement of plagioclase in plagioclaserrich patches.

The rock contains fragments of plagioclase and biotite phenocrysts, and patches of dacite and of quartz aggregates in an extremely fine grained groundmass dominated by plagioclase and sericite, with moderately abundant disseminated pyrite and minor sphalerite. Veinlets are of very fine grained quartz.
fragments

plagioclase	$20-25 \%$
dacite(?)	$5-7$
biotite	0.5
quartz aggregates 0.5	
Ti-oxide	minor

groundmass
veinlets
quartz
$1 \frac{1}{2}-2 \%$
plagioclase/sericite 60-65
pyrite 3-4
Ti-oxide 0.2
zircon trace
replacement patches sphalerite 0.1

Plagioclase forms anhedral to subhedral phenocrysts from 0.3-1.2 mm in average size, with a few up to 3.5 mm across. Alteration is slight to moderate to patches and disseminated grains of sericite.

Dacite(?) forms equant fragments averaging $0.1-0.3 \mathrm{~mm}$ in size. These are altered completely to extremely fine grained, equant sericite with moderate limonite giving the fragments a pale to light brown color. Many fragments are rimmed by slightly coarser grained flakes of sericite.

Biotite forms ragged flakes from 0.3 rl mm in size. Alteration is complete to pseudomorphic muscovite and minor to maderately abundant Ti-oxide. A few fragments consist of subparallel aggregates of extremely fine grained sericité these may be secondary after biotite or hornblende.

A few fragments up to 1 mm in length are dominated by quartz grains averaging $0.05-0.08 \mathrm{~mm}$ in size, with minor interstitial seric@te and scattered opaque.

Ti-oxide forms a few prismatic grains and clusters of grains from $0.2-0.6 \mathrm{~mm}$ in length, These probably are pseudomorphic after sphene, and consist of aggregates of extremely fine grains.

The groundmass is dominated by extremely fine grained ($0.01-0.02 \mathrm{~mm}$) plagioclase, moderately replaced by sericite.

Pyrite forms disseminated patches and single grains, mainly anhedral to subhedral in outiline, and averaging $0,05-0,1 \mathrm{~mm}$ in size, Larger patches up to 0.5 mm across commonly have rounded outlines, and some are C-shaped.

Ti-oxide forms disseminated grains averaging 0.01-0.02 mm in size.
zircon forms a few anhedral to subhedral equant to prismatic grains from $0.03-0.1 \mathrm{~mm}$ in size.

One plagioclase phenocryst is replaced in part by an irregular patch up to 1 mm across of very fine grained sphalerite, with minor exsolution blebs of chalcopyrite averaging 2 microns in diameter.

The rock is cut by a few veinlets up to 0.15 mm in width of quartz grains averaging $0.05-0.08 \mathrm{~mm}$ in size.

A few fragments consist of aggregates of a few plagioclase grains and smaller biotite grains. The former are from $0.5-1.2 \mathrm{~mm}$ in average size, and the latter are equant, averaging 0.2 mm in size. Some of these also contain patches of extremely fine grained sericite, similar to those fragments described as dacite(?). An alternate interpretation of the dacite(?) fragments is that they are altered hornblende.

Equity Pit 1
Brecciated Dacite(?) in Kaolinite-rich Groundmass: Veins and Replacement Patches of Quartz.-Sphaleriter (Chalcopyrite-Pyrite-Galena-Tetrahedrite)
The rock contains fragments from $0.1-20 \mathrm{~mm}$ in size dominated by sericite, and probably originally an aphanitic dacite flow. They are set in a groundmass of kaolinite with disseminated pyrite. Veins and a few replacement patches are dominated by quartz and sphalerite, with local concentrations of chalcopyrite, galena, tetrahedrite, and pyrite. One vein contains an unusual patch duminated by ti-oxide.

Fragments are dominated by extremely fine grained sericite, with scattered coarser grained patches, commonly associated with replacement patches of quartz. Some coarser grained sericite patches (averaging 0.030.05 mm in grain size) contain a few randomly oriented grains up to 0.15 mm in length of acicular amphibole(?), now replaced completely by extremyly fine grained sericite. Pyrite and Ti-oxide form scattered grains and patches from $0.02-0.07 \mathrm{~mm}$ in average size.

The groundmass is dominated by equant grains of kaolinite averaging $0.005-0.01 \mathrm{~mm}$ in size. These are stained pale to light brown by limonite. Sericite may be present as intimate intergrowths with kaolinite. Pyrite forms disseminated, anhedral to euhedral grains averaging 0.020.07 mm in size, with a few up to 0.15 mm across. Pyrite is concentrated locally in patches up to a few mm across, in which it ferms disseminated grains in kaolinite, Tiroxide forms disseminated gnains averaging 0.01 r 0.03 mm in size, with a few up to 0.02 mm acnoss. Basermetal sulfides are very rare in the groundmass proper, and are mainoy restricted to replacement patches and veins.

The rock contains a few veins up to 1 mm in width dominated by quartz. and sphalerite, Quartz mainly forms very fine grained aggregates, commoniy oriented perpendicualr to vein walls, and occunring along the border of the vein. Sphalerite is concentrated in the core of the veins as anhedral grains averaging $0,05-0.25 \mathrm{~mm}$ in size. These contain minor to abundant exsolution blebs and trains of blebs of chalcopyrite, Possibly two stages of exsolution occurred, with much finer grained blebs occurring between the coarser trains of chalcopyrite.

In some patches in the veins, intimate intergrowths of sphalerite, chalcopyrite, galena, and tetrahedrite form aggregates averaging 0,03r0,1 mm in grain size. Chalcopyrite, galena, and tetrahedrite are particularly intimately intergrown. Pyrite forms scattered subhedral grains up to 0.7 mm in size associated with some of the basermetal patches. Chlorite occurs surrounding and locally intergrown with patches: of base metal sulfides in one veini chlorite forms flakes averaging $0,03<0,05 \mathrm{~mm}$ in size,

Ti-oxide occurs in a patch up to 0.8 mm widde and 2.5 mm long associar ted with one vein of sphaleriterquartz, Tiroxide forms extremely fine equant grains intergrown with much less sericite. The patah grades rapidly out into the host rock (sericite) with modenately abundant tiroxide at one end, and at the other end ends abruptly at a quartzesphalenite vein. The relative ages of the two is uncertain. One quartzrsphalerite vein contains moderately abundant groundmass sericite associated with sphalerite in the core of the vein.

The rock is an extremely fine grained, mottled dacite(?) altered completely to sericite with minor quartz, Ti-oxide, and opaque. Quartz forms replacement patches. The rock is brecciated, and the fragments are healed by aggregates of quartz-sulfides. Pyrite and arsenopyrite both appear to be brecciated further, and healed by Mineral X, probably a sulfo-salt. Mineral Y is associated with Mineral X, and is of unknown composition.

sericite	$35-40 \%$
quartz	$1 \frac{1}{2}-2$
Ti-oxide	0.1
opaque	0.5
veins	
\quad quartz	$17-20$
pyrite	$20-25$
arsenopyrite	$7-8$
Mineral X	$4-5$
Mineral Y	$2-3$
tremolite	0.3
sericite	0.3

The rock fragments are slightly mottled, with patches of extremely fine grained sericite-plagioclase(?) surrounded by slightly coarser grained sericite. Possibly the rock is similar to the footwall dacite flow, but is more strongly altered. Alteration is somewhat coarser grained along the border of the veins.

Quartz forms disseminated grains averaging $0.01-0.03 \mathrm{~mm}$ in size. It also forms a few very fine grained patches of probable replacement origin; these probably are related in origin to the veins.

Ti-oxide forms disseminated spots averaging $0.01-0.02 \mathrm{~mm}$ in size. Pyrite forms disseminated qrains from $0.02-0.03 \mathrm{~mm}$ in average size, with a few coarser patches up to 0.4 mm across.

The veins contain patches of very fine to fine grained quartz. In some of these, tremolite forms moderately abundant acicular grains up to 0.1 mm in size. In others, quartz. is: free of inclusions. Sericite forms irregular patches associated with some quartz patches.

Pyrite forms anhedral grains and aggregates up to a few mm in grain size. In places, pyrite is granulated along inregular breccia veinlets to very fine to extremely fine grained fragments

Arsenopyrite forms aggregates of very fine to fine grains of subhedral to euhedral outlines. They commonl occur along borders of pyrite aggregates, and are intergrown moderately with Mineral X on the other side of the patches, Arsenopyrite locally is brecciated and granulated.

Mineral X forms aggregates associated with arsenopyrite, and commonly is interstitial to arsenopyrite and less commonly to pyrite. It was not affected by the brecciation (indicating that it was later than the sulfide brecciation) or it flowed and recrystallized during brecciation. Patches are up to a few mm across, and commonly contain euhedral grains of quartz. from $0.05-0.2 \mathrm{~mm}$ in size. The mineral is medium grey in color, moderately hard, and isotropic. It may be tetrahedrite, Mineral Y is commonly intergrown coarsely with Mineral X. It is slightly lighter grey in color, moderately soft, and slightly anisotropic. It probably is a sulfosalt.

The rock contains subrounded grains and aggregates of very fine grained plagioclase, possibly formed by devitrification, in an extremely fine grained groundmass of sericite/plagioclase. Pyrite and lesser sericite form replacement patches in cores of larger plagioclase aggregates. Veinlets of chlorite-(quartz) are discontinuous and have prominent chlorite-rich halos.
plagioclase grains, aggregates 35-40\% groundmass

$$
\text { plagioclase/sericite } \quad 60-65
$$

Ti-oxide
0.5
quartz 0.1
replacement patches

pyrite	0.3
sericite	0.1

sericite 0.1
veinlets
chlorite-(quartz) 0.1
Plagioclase forms subrounded grains averaging 0.05-0.1 mm in size. These are evenly distributed through the rock. Associated with them are aggregates of similar grains and patches up to 1.5 mm long of slightly finer grained aggregates of submosaic to irregular texture. These patches may have formed by devitrification of the groundmass. In some of the larger patches, pyrite and lesser sericite form very irregular neplacement patches up to 0.7 mm in size of grains averaging 0.02-0.05 mm . Sericite commonly occurs along borders of pyrite patches as unoriented, extremely fine grained flakes.

The groundmass is dominated by extremely fine grained plagioclase, moderately replaced by sericite flakes. Quartz forms scattered grains up to 0.05 mm in size. Ti-oxide forms uniformly disseminated grains averaging 0.01-0.02 mm in size, and a few patches up to 0.05 mm across.

The rock is cut by a few discontinuous veinlets up to 0.05 mm wide of extremely fine to very fine grained chlorite with lesser patches of quartz. Bordering the veins in a zone up to 0.1 mm wide, the wallrock is moderately replaced by extremely fine grained chlorite.

APPENDIX D
 STATEMENT OF QUAL IFICATIONS

STATEMENT OF QUALIFICATIONS

I, THOMAS GARAGAN, hereby certify that:

1. I am a geologist with Aurum Geological Consultants Inc. of 604-675 West Hastings Street, Vancouver, B.C. and I supervised the work described in this report.
2. I obtained a Bachelor of Science degree with Honours in Geology from the University of Ottawa, Ontario, in 1980.
3. I am a fellow of the Geological Association of Canada (F3819) and a member of the Mineralogical Association of Canada and the Yukon Professional Geoscientists Society.
4. I have been engaged in mineral exploration and geological survey mapping on a full and part time basis for 10 years, of which 7 have been spent on mineral exploration programs in the Canadian Cordillera.
5. I have no interest in the claims or securities of Westriew Resources Ltd. and Normine Resources Ltd. nor do I expect to obtain any.
6. I consent to the use of this report in a company report or statement, provided that no portion is used out of context in such a manner as to convey a meaning differing materially from that set out in the whole.

DATED at Calgary, Alta., this Thomas Garagath, B.Sc., FGAC 1988.

APPENDIX E

ROCK SAMPLE DESCRIPTIONS

APPENDIX F STATEMENT OF COSTS

Statement of costs

1. Labour:

Project Supervision, Data Compilation; Normine Resources \& Bernie Kahlert.

Bernie Kahlert, P. Eng.: 7 days @ $\$ 300 /$ day Gary Nordin, B.Sc.: 14.75 days @ $\$ 300 /$ day

Subtotal
\$ 2,100.00
4,425.00
\$ 6,525.00

Project Supervision, Geological Mapping and Report Writing; Aurum Geological Consultants Inc.

Tom Garagan, B.Sc., FGAC: 28 days @ \$225/day \$6,300.00
Pat Garagan, B.Sc.: 0.5 days @ $\$ 180 /$ day 90.00

Harmen Keyser, B.Sc., FGAC: 0.5 days @ $\$ 225 /$ day 112.50

Doug Rawsthorn, B.Sc., P.Geol.: 3 days @ \$200/day
600.00

Subtotal
$\$ 7,102.50$
Soil Sampling, Prospecting, Surveying, Expediting, etc; CJL Enterprises.
L.B. Warren (Supervisor): 16.5 days @ $\$ 200 /$ day
\$ 3,330.00
E. Shaede (Supervisor): 11 days @ $\$ 200 /$ day 2,200.00
D. Anderson (Sampler,Prospector, Cook): 27 days
@ \$125/day
3,375.00
A. Cardinal (Sampler, Prospector): 12 days
@ \$125/day
1,500.00
D. Stroet (Geophysical Helper, Sampler,

Core Splitter):14 days @ \$125/day
1,750.00
K. Stroet (Geophysical Helper, Sampler,

Core Splitter):6 days @ \$125/day
750.00
C. Anderson (Sampler) 2 days @ $\$ 125 /$ day
$\underline{250.00}$
Subtotal
\$13,125.00
Total Labour
\$26,752.50
2. Drilling:

Tonto Drilling of Burnaby, B.C.
Footage: 2,141 ft NQ,NW @ \$22.75 to \$23.50/ft \$48,956.00
Hourly Charges: Move, Set Casing, Water supply
Survey
7,175.00
Materials:
Mob/Demob:
3,271.00
4,000.00
Total Drilling Charges
\$63,402.00

3. Bulldozer:

D-6 cat rental from Larry Palmer of Burns Lake, B.C.
23 days @ \$200/day
4. Tree Snipper \& Removal \& Truck for Cat Mob: Road Building

Smokey Logging Ltd.:
Monolith Holding Ltd:
Tweedsmuir Trucking:
Total Road Work
4. Geochemistry:

Min-En Laboratories Ltd.
252 soil samples for 31 element ICP
@ $\$ 6.50 / \mathrm{sample}$
252 soil samples for Au wet @ $\$ 4.50 / s a m p l e$
252 soil sample preps @ \$0.90/sample
190 rock \& core samples for 31 element ICP @ $\$ 6.50 / \mathrm{sample}$
190 rock \& core samples for $A u$ wet
@ $\$ 4.50 /$ sample
252 rock \& core preps @ \$0.90/sample
Rush Charges:
Shipping Charges:
Subtotal
Chemex Labs Ltd.
171 rock/core samples:Au FA/AA+32 element ICP @ \$13.50/sample
171 rock/core sample preps @ \$3.00/sample - 6\% client discount

Shipping Charges
Subtotal
Total Geochemical Costs

Aurum Geological Consultants Inc.:
4x4 Nissan:22 days @ \$50/day
Fuel:

5. Truck Rental \& Fuel

CJL Enterprises Ltd.
33 vehicle days @ \$65/day

Subtotal

\$ 1,356.44
\$ 2, 145.00

$$
\$ 2,884.05
$$

$$
4,200.00
$$

$$
2,392.30
$$

\$ 9,476.35

$$
\begin{array}{r}
\$ 1,638.00 \\
1,134.00 \\
226.80 \\
\\
1,235.00 \\
\\
855.00 \\
171.00 \\
1,152.75 \\
309.42 \\
\hline
\end{array}
$$

$$
\$ 2,308.50
$$

$$
513.00
$$

$$
\text { - } \quad 169.29
$$

$$
\underline{228.72}
$$

$$
\$ 2,880.93
$$

\$ 9,602.90
Bernie Kahlert: $\$ \quad 238.09$ \$ 3,739.53
6. Geophysics: Geotronics - IP survey
2 man crew + instruments Sept 14-17, 1987
6 days @ $\$ 1200 /$ day
Mob/Demob fixed charge
\$ 7,200.00

$$
\underline{2,000.00}
$$

Total Geophysical Costs$\$ 9,200.00$
7. Field and Camp Expenses: food,flagging tape,maps,radios,survey equipment rental, etc.

Aurum Geological Consultants Inc:
CJL Enterprises Ltd.:

Total Field Expense
8. Travel Expenses:
Aurum Geological Consultants Inc:Normine Resources Inc:
Bernie Kahlert:Total Travel Expenses

$$
\$ 2,654.61
$$9. Shipping Expenses: Reports,Gear, Parts

Aurum Geological Consultants Inc: \$ 148.50
Canadian Airlines: 110.65
Direct Express:52.30Regal Express:11.90
\$ 377.17

$$
2,037.74
$$

$$
\begin{array}{r}
239.70 \\
\hline
\end{array}
$$

3,334.98

$$
\$ 3,381.44
$$

Regal Express:
11.90

Total Shipping Expenses

\$ 323.35
10. Report Preparation Costs: Photocopying, Reproductions, binding, drafting

Aurum Geological Consultants Inc:
Linda G. Connor Drafting:
Vancal Reproductions:
Western Reproductions:
DES O'Shannessy:
$\$ 1,181.11$

Bernie Kalhert: 488.75
138.36
405.34 267.50
6.50
$\$ 2,487.56$
11. Thin Section Study:

Vancouver Petrographics:

12. Telephone:

Aurum Geological Consultants Inc:
\$ 28.07
B.C. Te1
455.38

Total Telephone Costs \$
483.45
Total Costs for Assessment Purposes: $\$ 138,435.69$
Total Costs Actually Filed $\$ 135,425.86$

GEOLOGICAL RRANCH ASSESSMENTREPORT

17,680
 legeno

D dacite flows . dykes
dacite tutf
DAT dacite ash tuft
dacite dyke
AND andesite flows. dykes
monzonite
--- geological contact
\because overburden
2,5.75,23 assay ag.au.as,cu
Normine Resources Lid.
DEV PROPERTY
GO 2 CLAIM
DEILL SECTION $87-1$

GEOLOGICALBRANCH ASSESSMENTREPORT
 17,680

LEGEND
O dacite flows dykes
DT dacite tuff
DAT dacite ash tuff
OD dacite dyke
AND andesite flows dykes
TAD trachytic-andesite.
dacite
Mn monzonite

~~~ foult
--- geological contact
\(\because: \%\) overburden
s, \(, 32, z^{\prime}\) assay-ag, au,as, \(c u\)



GEOLOGICALBRANCH ASSESSMENTREPORT 17,680

\section*{LEGEND}
dacite flows dykes
dacite tutis
dacite ash tuti
dacite dyke
andesite flows. dykes
geological contact
overburden
assay ag.au,as,cu
\begin{tabular}{|c|}
\hline Normine Resources Ltd. \\
\hline OEV PROPERTY \\
GOZ CLAIM \\
ORILL SECTION \\
DEV \(87-4\) \\
\hline L22N, 9.20 W \\
AZM \(270^{\circ}\) \\
SCALE \(1: 1000\) \\
\hline Aurum Georogical Cons. inc. Fig. 8 \\
\hline
\end{tabular}
~~~


[^0]: Project : SHV
 Cosmels: ATTN; O NORDINE

