Off Confidential: 89.05.31 istrict Geologist, Smithers MINING DIVISION: Liard ASSESSMENT REPORT 17706 Thibert -PROPERTY: LAT 58 52 03 LONG 130 22 11 LOCATION: 09 6525897 421004 UTM 104J16W 104J16E NTS CLAIM(S): E.A. 121-140, EA 43 OPERATOR(S): AUTHOR(S): REPORT YEAR: Equity Silver Mines Robertson, R.C.R. 1988, 127 Pages COMMODITIES SEARCHED FOR: Gold, Platinum SEOLOGICAL SUMMARY: Several bodies of serpentinized or quartz-carbonate altered peridotite and dunite are present along the northwest trending Thibert fault. There is a long history of placer gold production from creeks draining the fault. There is also a reported occurrence of platinum group minerals in placer concentrates. NORK Drilling DONE: 3 hole(s);NQ DIAD 460.2 m Map(s) - 9; Scale(s) - 1:5000,1:1000,1:500,1:250 SAMP 168 sample(s) ;AG,AU MINFILE: 104J 012

	LOG MA OS30 HU
	MU 12
	TABLE OF CONTENTS
	filePagePagePagePage
INTRODUCTION	
PROPERTY	
LOCATION AND	ACCESS 2
REGIONAL GEO	LOGY
PREVIOUS EXP	LORATION
1987 EXPLORA	TION PROGRAM
Introdu	etion
Diamond	Drilling
DISCUSSION	
REFERENCES	• • • • • • • • • • • • • • • • • • • •
	LIST OF FIGURES
Figure 1:	Location Map
Figure 2:	Access and Claim Distribution ULUGICAL BRANCH
Figure 3:	Regional Geology ASSESSMENT REPORT
Figure 4:	Rock Sample Locations
Figure 5:	Rock Sample Locations
Figure o:	Location of Drill Holes 8711 2
Figure 7:	Drill Section - DDH 87-1
Figure 9:	Drill Section - DDH 87-2
Figure 10:	Location of Drill Hole 87-3
Figure 11:	Drill Section - DDH 87-3
	LIST OF APPENDICES
	FILMED
APPENDIX 1:	Rock Sample Analyses
APPENDIX 2:	Diamond Drill Logs
APPENDIX 3:	Diamond Drill Core Analyses
APPENDIX 4:	Diamond Drill Core - Petrographic Report
APPENDIX 5:	Statement of Expenditures

APPENDIX 6: Statement of Qualifications

 \Box

[

 \Box

Γ

 \Box

INTRODUCTION

The Thibert Creek property of Equity Silver Mines Ltd. consists of 237 · claim units covering the Thibert fault from the north end of Dease Lake to Defot Creek, a strike length of approximately 16 miles. The claim groups follow the strike of an elevated stream channel which has recorded production of over 90,000 ounces of placer gold since its Two hard rock gold sources are noted to occur in discovery in 1873. Thibert Creek. The "Keystone Showing" is described as being on Thibert Creek between Berry and Boulder Creeks. Open cutting and stripping about 1931 is said to have exposed a zone of quartz stringers in quartz porphyry with gold values variously reported as 0.25 oz/ton over 40 feet, or 0.5 oz/ton over 20 feet. A flat packsack drill hole drilled to the south from the Boulder Pit in 1964 reportedly carried gold values in poorly recovered core. Assays by the Provincial Mineralogist in 1902 of the mon-magnetic portion of black sands from hydraulic operations in this area contained 43 percent platinum group minerals.

The 1987 work program consisted of data compilation, prospecting, rock sampling and limited geological mapping, backhoe and hand trenching in the Boulder Creek/Berry Creek area, and drilling three diamond drill holes (1510 feet: 460 meters). Two holes were drilled west of Porcupine Lake and one hole was drilled near the junction of Boulder Creek and Thibert Creek.

PROPERTY

The Thibert Creek property of Equity Silver Mines Ltd. consists of 237 units recorded in the names of Edward Asp, Daisy Asp or Equity Silver Mines Ltd. in the Liard Mining Division, British Columbia. Claims recorded in the name of Edward Asp and Daisy Asp are subject to an option agreement with Equity Silver Mines Ltd.

Table 1 shows the property composition as at August 1988:

Table 1: Claim Record Data

		No•		
Claim Name	Record Nos.	of Units	Record Date	Expiry Date
Puet 1-9	2009-2005	o	10 0-6 1000	10 0- 5 1001
RUSE 1-0	2990-3003	0	19 000 1983	19 UCE 1991
DAZ 11, 12, 32-37	3610-3617	8	3 Aug 1986	3 Aug 1991
EA 1-18	3582	18	18 Jul 1986	18 Jul 1991
EA 9, 10, 39-44	3583-3590	8	18 Jul 1986	18 Jul 1991
MAY 21-40		20	17 May 1988	17 May 1989
MAY 41-60		20	17 May 1988	17 May 1989
EA 61-78	4094	18	12 Jun 1987	12 Jun 1991
EA 81-100	4093	20	12 Jun 1987	12 Jun 1991
EA 101-120	4092	20	12 Jun 1987	12 Jun 1991
CAL 1-4	4229-4232	4	30 Sep 1987	30 Sep 1991
EQ 6 FRACTION	4238	1	30 Sep 1987	30 Sep 1991
EQ 1	4233	8	30 Sep 1987	30 Sep 1991
EA 121-140	4091	20	12 Jun 1987	12 Jun 1991
EQ 7-8	4268-4269	2	20 Oct 1987	20 Oct 1991
EQ 2	4234	6	30 Sep 1987	30 Sep 1991
EQ 3	4235	20	30 Sep 1987	30 Sep 1988
EQ 4	4236	15	30 Sep 1987	30 Sep 1988
EQ 5 FRACTION	4237	<u> </u>	30 Sep 1987	30 Sep 1988
		<u>217</u> Uni	ts	

LOCATION AND ACCESS

 $\left[\right]$

[]

Π

Ū

 \prod

 $\left[\right]$

The Thibert Creek property is located on map sheets 104-J-16 East and West, forming a west and northwest trending belt of claims extending from near Porter Landing in the east to near the junction of Adsit Creek and Canyon Creek in the west. The accessible east end of the property is approximately 65 kilometers north of Dease Lake via the Stewart-Cassiar highway. Rough bulldozer trails extend west from the head of Dease Lake and are reached from the highway by fording the Dease River. These trails serve a number of small placer gold operations and provide access to Thibert Creek (between Delure Creek and Berry Creek), Mosquito Creek, Porcupine Lake, Adsit Lake and Defot Creek. These trails were used for access by heavy equipment in the 1987 diamond drill program for fuel caching, trail widening and mobilization and demobilization of drill equipment and supplies. A Yukon Airways helicopter from Dease Lake was used for movement of supplies and personnel.

REGIONAL GEOLOGY

U

Π

U

Thibert Creek occurs along the northeastern boundary of the Atlin Terrane which is a fault-bounded area of Upper Paleozoic rocks. Many sections of this fault boundary, including the Thibert Creek area, are marked by small ultramafic bodies. Structural evidence suggests that the Atlin Terrane is a large thrust sheet affected by compressional forces and marked at least on the southern edge by thrust or reverse faults.

The upper Paleozoic rocks of the Dease Lake area have been affected by two phases of deformation. The older phase is marked by penetrative foliation and associated low grade regional metamorphism. The second and more common phase consists of crumpling associated with strain-slip clevage.

Kedahda Formation (Mississippian to Permian)

On the property this formation consists of very schistose quartzite and lesser black, platy argillite. The strike of the well developed schistosity of foliation roughly parallels the Thibert Creek Fault. The schistosity generally dips 60 to 70 degrees southerly.

These rocks contain numerous coarse-grained white quartz lenses within a 200 m to 400 m wide band south of the Thibert Fault.

3

Such lenses range up to 30 cm in width and 6 m in length but are generally much smaller. Only rare trace sulphides were noted within these lenses. No alteration was noted adjacent to the lenses.

Nazcha Formation (Upper Triassic)

 \int

 \int

 \prod

Γ

 \int

[]

 $\left[\right]$

This formation underlies the northwestern portion of the property.

The formation consists of fine grained, well bedded light grey sandstone with varying but significant amounts of black argillaceous rocks. Bedding varies from 10 cm to 1 m in thickness with occasional more massive horizons.

Exposures of this formation are found along a branch of Defot Creek in the westernmost portion of the property. At this location the formation can be divided into three units. The easternmost consists of massive to thickly bedded sandstone with less than 10 percent argillite. A central unit with alternating horizons of sandstone and argillite vary from several meters to 5 to 25 cm in thickness. The westernmost unit consists of alternating sandstone and argillite horizons but such horizons are generally 5 cm or less thick giving the rock a distinctive banded appearance. Grade bedding is readily visible within this unit with tops consistently up. Occasional sandstone horizons are up to 30 cm thick.

Proceeding southwest from Defot Creek along the above branch, one is struck by the increased crumpling, folding and shearing within the formation as one nears the Thibert Creek Fault. Two degree bedding azimuth dipping 12 degrees easterly. Similar contorted bedding is seen near sample site 61108. Despite abundant contortions and bedding as flat as 20 degrees, beds generally dip 75 degrees N.

Shonektaw Formation (Upper Triassic)

This formation occurs within the central portion of the claim group. The formation consists of augite andesite and basalt.

Only a few outcrops of this formation were observed. These formations consisted of fine grained, greenish, volcanic rocks. The greenish colour is suggestive of small amounts of chlorite and perhaps epidote. Several exposures are fractured and sheared with small amounts of ironstaining.

Limes tone

Π

 \Box

Π

Π

 \prod

 \int

 \Box

Outcrops of limestone up to 80 m wide are exposed along the upper parts of Porcupine Creek. Sporadic exposures occur for a distance of 500 m along the creek. These outcrops can be seen from a distance due to their whitish weathered surfaces.

On a fresh surface the limestone is light grey with a distinctive ribboned appearance. Such a texture is suggestive of algal layering. The limestone seems to consist of pure carbonate with no other material other than carbonate noted within the rock. Crosscutting white calcite veinlets are common. Locally the limestone appears to be partially silicified. No sulphides were noted within this formation.

Government mapping has show both the Nazcha Formation and Kedahda Formation to contain limestone lenses. The limestones seen along Porcupine Creek likely belong to the Nazcha Formation but this is uncertain.

Granodiorite (Late Triassic and Early Jurassic)

Granitic rocks, including biotite-hornblende quartz diorite, granodiorite, quartz monzonite and diorite, underlie the northern portions of several claims.

Ultramafic (Mississipian to Permian)

Ultramafic bodies in the Atlin Terrane have been divided into three types: elongate bodies occuring along the fault contacts to the Atlin Terrane, equidimensional bodies within the Atlin Terrane and bodies associated with Permo-Triassic volcanism at the northwestern end of the terrane. These rocks are described by Monger (1975): "These rocks are predominately enstatite-bearing peridotite or harzburgite and dunite; partially or wholly serpentinized, and serpentine of indeterminate origin. Locally they contain irregular lenses and layers of pyroxenite; some of which contain clinopyroxene that may form poikilitic crystals enclosing olivine grains."

The ultramafics at Thibert Creek would be classified as "alpine type" ultramafics.

The exposures of ultramafic can be divided into three types:

- a) unaltered, fine grained, black peridotite;
- b) serpentinite;
- c) quartz-carbonate-mariposite altered rock.

Peridotite

 \int

 \int

 \int

[]

 \int

 \int

Π

 \int

Γ

Π

 \int

Small pockets of black, fine grained peridotite are found within all ultramafic bodies visited. Such pockets vary from a few meters to a few centimetres in width. Occasionally such rock was seen near the outer edges of ultramafic bodies. Peridotite would comprise less than 1 percent of most ultramafic bodies.

Serpentinite

Dark green waxy serpentine comprises a significant proportion of the ultramafic rocks found between Porcupine Lake and Thibert Creek.

Quartz-Carbonate-Mariposite Alteration

The ultramafic bodies occurring along Thibert Creek consist largely of quartz-carbonate-mariposite altered rock. Many of the ultramafic bodies consist of greater than 90 percent altered rock.

Silica would appear to be by far the predominant constituent. Emerald green mariposite is present in variable amounts but is

6

also present even if in only trace amounts. Small amounts of calcite and magnesite are also present. Since magnesite often incorporates silica into its lattice and forms, a chert-like appearance, some of what appears to be silica may be magnesite and therefore the amount of carbonate may be much greater than it appears.

Outcrops of this altered rock are characteristically brightly ironstained with orange goethite. Outcrops are also often laced with abundant quartz veinlets generally less than 1 cm thick. Only very rare trace pyrite was seen in such veins. Similar networks of thin quartz veinlets were observed within sedimentary rocks adjacent to the ultramafic bodies.

PREVIOUS EXPLORATION

ĺ

[]

 \int

Π

 \int

U

Placer gold was first discovered in what is now Thibert Creek in 1873. This discovery was made by a member of a party of prospectors led by Henry Thibert, about three miles (4.8 km) above the mouth of Thibert Creek near Delure Creek. Other areas draining into and near Thibert Creek were soon found to contain gold. The creeks that were actively mined as well as Thibert and Delure included Boulder, Defot, Mosquito, Porcupine and Vowell Creeks. The production from these creeks is recorded as being more than 70,000 ounces (2,000 kg) up until 1949. Most of the production occurred before the Klondike gold rush lured away most of the local prospectors. There have been short periods of intensive work since then and presently there are a few placer operations active in the area.

About two-thirds of the gold production was from Thibert Creek where economic gold placers are restricted to rock benches 5 to 200 feet (1.5 m to 61 m) above the present stream channel.

It has been reported that concentrates from the Thibert Creek placer operations contained about 2 oz/ton platinum.

7

The only hard rock gold source noted in government literature is the Keystone showing. This is described as being on 8 claims on Thibert Creek below Berry Creek. "Open-cutting and stripping has exposed a zone of quartz stringers in quartz porphyry." The owner reported gold values up to \$5.50/ton (gold at \$17/oz) across a width of 40 feet (12 m).

This showing was not located during the 1988 field work.

The Dease Lake area was covered by reconnaissance prospecting-sampling for porphyry type deposits early in the 1970s.

During 1983-84 Noranda Exploration carried out preliminary surface exploration programs over parts of the area included in the present Thibert Creek property of Equity Silver Mines Ltd. (Gorc and MacArthur, 1984). Exploration consisted of silt, soil and rock sampling with some geological mapping. Anomalous soil sample results with values up to 430 ppb gold and 1000 ppm arsenic were located in part of their reconnaissance grid west of Porcupine Lake.

1987 EXPLORATION PROGRAM

Introduction

The 1987 exploration program consisted of compilation of data from previous exploration in the area, particularly Noranda's 1983-84 results. Detailed prospecting and rock sampling, with some limited geological mapping, were carried out in a number of areas. Area selection was largely determined by anomalous results in Noranda's program of rock and soil sampling or by presence of altered ultramafic rocks along the Thibert Fault in areas known to produce placer gold. A limited amount of backhoe and hand trenching was carried out in the Boulder Creek-Berry Creek area; both reported hardrock gold showings ore in that area. The old Keystone showing has not been located and is believed to be covered by placer tailings in the area immediately east of the Berry Creek-Thibert Creek junction.

This program identified the Porcupine and Boulder-Berry areas as principal targets; both areas appear to be zones of strong folding, shearing and extensive quartz veining (from stringers to several meters wide) where competent rock units (altered, silicified ultramafic rocks and cherty metasediments) have been dismembered by folding and occur as folded blocks within sheared black shale and serpentinite masses. Deformation seems much less intense away from these zones.

Diamond Drill Program

С

 \int

 \int

 $\begin{bmatrix}
 \\
 \end{bmatrix}$

U

In late 1987 three diamond drill holes were completed. Two holes (1010 feet, 307.8 m) were drilled west of Porcupine Lake to test rock and soil geochemical anomalies and obtain a three dimensional view of rock units underlying this area. A third hole (500 feet, 152.4 m) was drilled south from near the Boulder Creek-Thibert Creek junction to test serpentinite, quartz veins and a veined black shale unit (which carried up to 0.018 oz/ton gold in a backhoe pit).

Drilling was carried out by Caron Diamond Drilling Ltd., of Whitehorse, Yukon, using a skid-mounted Longyear 38 drill and drilling NQ size core. Drill mobilization and moving the drill from the Porcupine Lake area to Boulder Creek were hampered by the large size of the skid-mounted drill rig and by unusual fall/ winter conditions on the trails (snow overlying unfrozen muddy ground). Two bulldozers were necessary to widen trails and to move the heavier sloops up steep muddy sections of trail. A D-7 bulldozer from Murphy Contracting, Dease Lake, and a D-8 bulldozer from Canyon Contracting, Dease Lake, were used.

Location of drill holes in the Porcupine Lake area is shown in Figure 7; drill sections are shown in Figures 8 and 9. Drill logs are included in Appendix 2; analyses of split drill core can be found in Appendix 3; and petrographic descriptions of some core samples are in Appendix 4. Rock names derived from petrographic studies by Vancouver Petrographics do not always correspond with names used in the core logs. In hole DDH87-P-1 a number of loworder gold-silver anomalies were found in quartz-veined black shale.

The location of hole DDH87-B-3 is shown in Figure 10; the drill hole is shown in section in Figure 11. Drill logs are included in Appendix 2; core analyses are in Appendix 3 and petrographic descriptions of some core samples are found in Appendix 4. The upper half of this hole cut a strongly sheared serpentinite unit, with very poor core recovery. The lower section of the hole cut shales, chert, altered ultramafic and some quartz veining. A 19 foot interval from 333 to 352 feet averaged 360 ppb gold in black shales and chert with patchy quartz veining, including a 5 foot section grading 1000 ppb gold. Sporadic platinum anomalies occur in parts of the deformed serpentinite unit in the top half of this hole:

Internal (feet)	<u>Pt (ppb)</u>
118.0 - 112.2	213
136.8 - 139.3	110
145.8 - 147.0	122
186.7 - 187.2	297
258.3 - 262.0	145

All drill core is stored at the Yukon Airways helicopter base at Dease Lake.

DISCUSSION

Ω

[]

 $\begin{bmatrix} \end{bmatrix}$

 \int

Π

Ω

[]

[]

Π

 $\left[\right]$

Source rocks of the placer gold mined in Thibert Creek appear to be the narrow band of ultramafic rocks along the Thibert Fault. The only gold producing creeks in the area either follow or cross the Thibert Fault.

Best gold values were recovered from the gravels in Thibert Creek downstream from Berry Creek, with lesser concentrations at the Mosquito Creek-Thibert Creek junction and in tributary creeks such as Defot, Bear and California which cross the fault and the ultramafic units. Important areas for potential gold mineralization are zones of strong deformation, alteration and silicification of the ultramafic rocks, where fluids have been mobilized during alteration and extensive quartz veining has been produced in the ultramafic units and enclosing sedimentary units, particularly black shale horizons.

 \int

 \int

[

 \int

[]

[]

Π

 \int

 \prod

 $\left[\right]$

Π

 \int

Π

 $\left[\right]$

[]

[]

REFERENCES

[

U

[]

Ω

 \int

[]

 \int

Π

 $\left[\right]$

Π

 \prod

Π

 $\left[\right]$

J

 $\left[\right]$

Gabrielse, H., Monger, J.W.H., et al.; 1979: Geology of Dease Lake Map Area (104J). Geological Survey of Canada Open File 707.

Gorc, D. and MacArthur, R.; 1984: B.C.D.M. Assessment Report 13309.

- Monger, J.W.H., 1969: Stratigraphy and Structure of Upper Paleozoic Rocks, Northeast Dease Lake Map Area, British Columbia. Geological Survey of Canada Paper 68-48.
- Monger, J.W.H., 1975: Upper Paleozoic Rocks of the Atlin Terrane, Northwestern British Columbia and South Central Yukon. Geological Survey of Canada Paper 74-47.
- Price, M.E., 1965: Supplementary Report on the Barrington Properties situate on Thibert Creek in the Dease Lake Area. Private Report to Barrington Development Company Limited.
- Rublee, V. J. (compilee), 1986: Occurrence and Distribution of the Platinum Group Elements in British Columbia. B.C. Ministry of Energy, Mines and Petroleum Resources Open File 1986-7.

APPENDIX 1

[]

[]

D

G

[]

[]

[]

[]

[]

Ū

Π

[]

1

ROCK SAMPLE ANALYSES

.

Specialists in Hineral Environments

705 West 15th Street North Vancouver, B.C. Canada V7M 172

HONE: 5141980-5814 DR (604)988-4524

 \prod

U

i/+

Γ

TELEX: VIA USA 7601067 UC

Certificate of ASSAY

on the LEBER OF TELEVILLES

Branch Contractions

- File: Ilo/() - Date:AUDUGT (~ (*) - ForeikUCF (*)AGNAY

the sty sectors as collowing results for samples submitted.

1.31 ·	FiειD	ម ស្រុកស្រុ	0 A0 NNE 07710	N 1 11 FFM	AU G7 TONNE	ាម លក្ខាមា	5456 1442 - 1446 1446
4.5	7812-1	•••••••••••••••••••••••••••••••••••••••	2 0.01	4) if)	. 02	 ⊙, ⊜01	
:10.2	7818-2	(1) ¹ .	1 0.06	640	. 🤆 t	$O_{*}OO_{1}$	2.2
·	2318-3	:.	1 0,04		, • • j	1. (N)j	i
1.1.1	7-118-4	11.	4	411		2,001	١
\$ 55	7-818-2		ر في خ	15	_10 {	er, eret	1
/	7818-6	••••	5 0.01		.01	ز زېږې د	1
	7418-7	1.	0 0.01	- 11 C	" ሶኒ	en je en alt	7
•	7812 - 1	<u>ب</u> ابا	3 +1,++1	40	.01		10
4	7810-2	۰.		1.1	404	100 t	1
	= S · 2 - 3	۰.	e 11, 115,	£10 y	- • • 1	0.001	i
;	78.0-4	·····	· · · · · · · · · · · · · · · · · · ·	20			1
141	782-5	۰.,		45	,01	1.1.101	1
-11	29 2-6	ō,	2 0.01	1720	. 11	6,001	72
211.1	ج ، جد	:	n n, n,	1450	t	11,0001	1 -
215	アシナート	•••	4 5,07	85	. (1)	• 1 00 L	214 -
	÷₽, ÷ - 2	<u>ن</u> ،	2 0.01	15	,01	(), ()) ()	1
	7817-3	1.	v 0.03	: 20	"ŌĮ	N. 401	• •
11.	7817-4	1.	9 0,06	560	.01	ע (ייייט	1
S. 1	3817-5	. ۳	1 0.06	200		0.001	46
	7213 - 7	٤.	0.03	700	.07	0.001	4
· (]	78(1.8	2.	1 0.06	1960	······································		21
.» ·	7817-5	1.	8 0.03	1800	10 T	\circ , $\circ \circ 1$	13
·• ·	2819-2 .0	11 1.	7 0,05	1120	. 92	51.001	20
d V	1819-3 .0	07 1.	0 0.03	1130	- 1 - 1	0.001	18
ч, ^г ,	H14-4 .04	os o.	2 0.01	1060	.03	0.001	1 -
.a.;//	7814-1	о,	5 0.01	 40	, '>1	0.001	24
0,7	7814-2	Ŏ,	4 0.01	10	.01	0.001	1
812 G	78 iy - 3	i.	5 0.04	5	. 01	0.001	9
$\mathfrak{O}, \mathfrak{O}$	2814-4	ι.	0 0.03	5	.01	0.001	10
c. ~	<u> </u>	<i></i>	2 A A1	1.0	.5.4	0.001	10

Certified by

MIN-EN CABORATORIES LTD.

Specialists in Mineral Environments 705 West 15th Street North Vancouver, B.C. Canada 97M 171

HONE: (604) 980-5814 OR (604) 988-4524

 \int

G

TELE): VIA USA Terrinish UC

Certificate of ASSAY

Ling a se ULTZ GILVER MINES

Utoncion:RPM FUEERIP(1)

Files (1127 PL DetermOBU F 27.17 Type:FOCE (MTS6

e harsha mitira she collowing coulds for complete submitted.

1 }				******				
്റംബിം		s if i	جان.	N I	251.1		6. 1 . 1 for	
م درور بینی م	Ex. H	The off and the		DP M		10.7 10.000		
		0 , the effect		J- 1 1 1		0	· · · I	
$O_{A \rightarrow 221}$	HRIV-6	i	1		····		[
7.1 - 2 7.1 - 2				- C- 55			1	
				ي. 12.5	. · / L . · /		1 1 770	
	7514 - U 1011 - A	- • • · ·		1	. 04		1.1	
······································		-		-		· · · · · · · · · · · · · · · · · · ·		
- 201 - 0 2 2 M aratan	24610 × 10	•	· · · / t	ر. ر	1 1 14 1		4 [°]	
	7814-11	······		-,			-	
\mathbf{Q}^{+}	7814-12	1 -		£7.	07	in the second		
· ·	Jein-In	· · ·	1 I I I	1.1.1				
	2414-15	- A		1 - 07			2	
Un man	Nº III - No						,	
				_/ 		·····		
7 4 441	7814-17	0.7	0.01	20	.02	1 1		
34 / a : -	7814-18	<u>.</u>		5	.01	1		
	} €14 - 14	·	Ŭ. ŬI	ŝ	.02	1. (n.)		
	7814 - 20		0.01	5		11,154 E	23	
(, , ,)	2414-21		1	1.1		in site	11	
<u>U</u>						**		
<u></u> 44**	7814-104	· . 2	0.01	۴,	.01	0,001	20	
1 1 2 13	78,3 - 1A	0.2	0.01	2	201	4.001	<u>''</u>	
	7813 - 13	0.0	- O1	2	.01	્ર હો	1Ō	
	7813 - 10	1.0	6. G.		. 1	er, en ja	· (*	
	7813 - 7	1 🗅	0.04	1520	. (. "			
	7 813 ~ 3	5.4	101	₿0-	· ^ _	ing production of	1	
	ታ8፣3 – ዚ	Ŭ.6	0.02	20		പെറ്റപ്	}	
[] []	7813-5	0.2	0.01) 		94 100 B	•	
U .a. 555 -	7813-6	i.6	0,05	2	03	$\phi_{a} + \phi_{1}$	1	
_11_85a	7813-7	1.2	0.04	15	. 52	0.001		
[] [.]								
UH 357 -	7813-8	0.2	0.01	2	.01	0.001	L	
14 819	7813-9	0.4	0.01	20	.01	0.00t	l G	
F 74 858	78 13 - 10	i.0	0.03	5	.01	0.001	10	
24 860	7813 - 11	0.2	0.01	10	.01	0.001	2	
SA 861	7812-17	0.3	0, 11	10	~ 1	0.001	2	
	1.44							

Certified by_

MIN-EN LOBORATORIES LTD.

Specialists in Mineral Environments

205 West 15th Street North Vancouver, B.C. Canada V7M 1T2

PHONE: (604) 980-5814 OR (604) 988-4524

TELEX: VIA USA 7601067 UC

Certificate of ASSAY

Unation of the SHLVER MINER

ALCENE CONTRACTOR SUBJECT OR

П

ľ

Filessite F Date:AUGUST is R T pe:FUCE Auger

He brieby terring the relowing results for samples submitted.

Sampre Stampre	FIELD LU No .	ይትትን 2010 ዓ. 7 (1948) ይገ	AG QZ7 FON	 N 1 F PM	AU 571 UNNE	АЦ И.П. 1.0	enter alve Pres
<u> </u>	7813-13		ο.())	 ۱ ۱ <u>ن.</u>	.01	••••••••••••••••••••••••••••••••••••••	
1. F 13. J	7-813-14	L 24	0.05	15	.0%	σιοι]
-	7813-15	• • •	0,02	5	. U L	0.001	t
) 14 pini	7813-16	۰.	0.01	15	.02	0.001	49
14 t., u	7813-17	. •	1.01	1.CI	102	0"001	8
 	38 13-18	· · .	•،،،،،،،،				1
J	7813-19	·	1 J.	10	<u>. 0 t</u>	к., 1913.	43
	7-813-20	• / _	· ·.		_ + J E	1.1111	ъ 6
7 - : - : -	7813-21		t jug	15	,01	0.01	1
،، ل	78 13 - 22	• 0	0,00	.()	.02	1) , () () ()	16
n 1. e. 1. e. 1.	7813-23	9. <u>2</u>		70			· · · · · · · · · · · · · · · · · · ·
	7813- 34	0,4	0.01	45	,01	. чи <u>Г</u>	L - k
	7813-25	11 I	0.01	64	.01	មិតំលោរ	1
_	7813-26	·	(,,)}	1.6	.03	0.001	44 5
	-2819-1 ····	·)_ ÷	G"OI	94Q	" ()]	CP. ACT	<u>, , , , , , , , , , , , , , , , , , , </u>
ـــــــــــــــــــــــــــــــــــــ	781-1 _= == == ()		 ۱، -+دی	 18	 	······································	
]	7817-6 .001	លុុ្ក	0.01	420	. QÎ	5,001	1.
4 4 4	2814 - 22 LIVI	0.2	0.01	615	.01	0.001	
	7813-27	0.2	0.01	18	.0.3	0,001	14
7	7813-28	•)_4	0.01	၊ မ	.01	0.001	a*a'
	7813-29	0.3	••••••••••••••••••••••••••••••••••••••	 i 0	 " () 1	(), ()(),	 1
11.3.	7813-30	0.3	0.01	8	. U.S	0.001	1
	7813-31	0.6	0.02	5	.0.7	0.001	
J3&	7813 - 32	0.2	0.01	.28	. 01	o, ooj	7
1.1507	2813-33	0.5	0.01	24	• U]	0.001	Ĵ2
5- 088	7812-34	0.4	0.01	19	 . 02		1
 ↓ ↓	7813-35	0.2	0.01	16	. 01	0.001	2
_ 4 a.º.	7813-36	0.2	0.01		.01	0.001	7
1.4 891	7813-37	0.3	0,01	5	.02	0,001	1
J .4 .5 2	7813-38	0.2	10.0	4	.03	0.001	2

Gentitied by MIN-EN LABORATORILS LTD.

 \Box Specialists in Mineral Environments 105 West 15th Street North Vancouver, B.C. Janada VIM 112 PHONE: 5041980-5814 OR (5041988-4524 TELEX: VIA USA 7601067 SC -----<u>Certificate of</u> ASSAY COMPANY REPORTS AND MANES 山田県山 (三) 二字月 山 Jate: Gudi antional@N_0.0.015004 2 Voles Rüch - AN Ca He rentrate The control consults for samples submitted. u mol e FIELD нь нĿ ИI нU ΗЦ 11-1-11 പ്പണ്ടാക്ക GZEGNINE - GZEEDUN PPM 5710NNE No 0Z7 FUE 1.1.1 ----- -------14 BO . 7813-40 0.2 $O_{1}O_{2}^{*}$ 5 .07 0.001 4, 34 1974 7113-41 1.1 1, 05 .02 មេ 0, 0et1 11 205 $U_{\alpha} \downarrow'$ 7813-43 7 0.01 .01 Ö.OOL 1 ومنتج المؤر 7813-44 0.1 1 01 ie . 92 0.001 U 54 397 2813-45 £1. 5.205 ൂറ 0.001 - OL 1 - - - - - - - - - - - - . . --------------***** -----2813-46 · 2 1,111 . .01 0.901÷ L 2813-48 11<u>4</u> 12 11.11 .02 0.001 Ł 1.1 -213 - SV .e.2 1 (1) . . . ; 11.1.0.0 14 ÷ • 2813-51 а I · · · · · 45 1011 0.0011 1.6 0.0217 7813-56 . 01 0.001 1 --------------. ,4 'YO 7813-57 . 4 0.01.02 0.001 ĩ 51 O.4 2813-59 •) _ -L $O_{a}O_{a}^{\dagger}$ <u>____</u> o.oot **.**01 4 14 5 112 2 01 4813-60 ć . O2 0,001s. 1 ,4 ∀Q 7613 - 61 0.5 0.0111 .US 0.00151 Γ ſ Ο Certified by MIN-EN LABORATORIES LTD.

MIN Sp	-EN LABORA ecialists in Hineral	TORIES L'	TD.
DUE: 564-990-5814 OR (604)988-4524	S WEST FOR ST FEE WEER YAGEDRYPE	, 675, CENSON 1/0 (t	TELETIVIA USA 7601067 UC
n	Analytical	<u>Report</u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Machter Chrokk	M (19873		CALES ALL
	14 }		12003-000 - 25 200 12003-000 - 25 200
1 State State of the second	v – Caloria – Noroce "Rednie – Pristik Pristika		
		• • • • • • • • • • • • • • • • • • •	n na hanna an an Arthur Anna Anna Anna Anna Anna Anna Anna Anna
	an dan minaran ing karang Antarit ngrap karat minaragan Antarit ngrap	()/e5 = 11 11/ (014.	
n sea to the post of the same		round to mash - (20)
un norma e la Coelectiona de sector a bana N	93° 4 4 0150 97 1150	arded:	
Last and the second state	_		
	TOURSENSE TOURSENDIECAL ANAL (SOFT,	(S13.	
Π			
0			

Π	To:EQUITY_SILVER_MINES_LIMITED
U _	
	ATTN: Terry Heard

Е

File No. . 30279 Date ... September 10, 1987 Samples Rock

er ificate ASSAY - 4₂ 6 LORING LABORATORIES LTD.

Page # 1

Г	SAMPLE No.	OZ./TON GOLD	OZ./TON SU VER	
	" <u>Assay Analysis</u> "			-
	8- 3	/ Trace	Trace	
	8- 4	Trace	.02	
Π	8- 5	.010	Trace	1
L _	8- 6	Trace	Trace	
Ц	8- 7	Trace	.04	
Ч	8- 8	.004	.05	
Ч	8- 9	Trace	Trace	
Ų	8-10	Trace	Trace	
	8-1-A	Trace	Trace	
Ľ	8-1-B	Trace	Trace	1
	8-1-C	Trace	Trace	ł
Π	8-1-D	.002	.01	
5	8-1-E	.002	Trace	
Π	8-2-A	Trace	.07	
4	8-2-B	.002	Trace	
r	8-2-C	Trace	Trace	
Ц	8-2-D	.002	.04	
H	8-2-E	Trace	.06	
Ц	8-2-F	.018	.01	
	R-1	Trace I Hereby Certify Assays made by me upon t	Trace THAT THE ABOVE RESULTS ARE THOSE HE HEREIN DESCRIBED SAMPLES	

Rejects Retained one month.

Pulps Retained one month unless specific arrangements made in advance.

Assayer

	To:EQUITY_SILVER_MINES_LIMITED,
Π	708, 1155 West Pender Street.
<u> </u>	Vancouver, B.C. V6E 2P4
	AITN:TerryHeard

Ľ

þ

ASSAY

LORING LABORATORIES LTD.

OZ./TON OZ./TON SAMPLE No. GOLD SILVER .02 Trace R-2 .002 .05 R-3 .01 R-4 Trace Trace Trace R-5 Trace Trace R-6 Trace R-7 Trace Trace Trace 789-1 Trace 789- 2 Trace 789- 3 Trace Trace .01 789- 5 A .002 Trace 789- 5 B Trace Trace 789- 6 Trace .01 789-7 Trace Trace 789-8 Trace Trace 789- 9 Trace .01 789-10 Trace .02 789-11 Trace .05 789-12 Trace .05 789-13 Trace .01 .008 789-14 Trace 789-15 Trace I Hereby Certify that the above results are those ASSAYS MADE BY ME UPON THE HEREIN DESCRIBED SAMPLES

Page # 2

Rejects Retained one month.

Pulps Retained one month unless specific arrangements made in advance.

The States

Assayer

To:EQUITY_SILVER MINES LIMITED,
L708, 1155 West Pender Street,
Vancouver, B.C. V6E 2P4
[]
<u>ATIN: Terry Heard</u>

Π

File No. 30279 DateSeptember 10, 1987 Rock Samples

Servifirate ASSAY or

LORING LABORATORIES LTD.

Page # 3					
SAMPLE No.	OZ./TON GOLD	OZ./TON SILVER			
789-16	Trace	Trace			
789-17	Trace	Trace			
789-18	Trace	Trace			
789-19	Trace	Trace			
789-20	Trace	Trace			
789-21	Trace	Trace			
789-22	Trace	Trace			
789-23	Trace	Trace			
789-24 A	Trace	Trace			
789-24 B	Trace	Ĩrace			
789-25	Trace	. Trace			
	J Mereby Certify that assays made by me upon the hei	THE ABOVE RESULTS ARE THOSE Rein described samples			

Lejects Retained one month.

Pulps Retained one month nless specific arrangements

Sel State

Specialists in Hineral Environments

705 West 15th Street North Vancouver, B.C. Canada Y7M 1T2

ONE: (604)980-5814 OR (604)988-4524

TELEX: VIA USA 7601067 UC

Certificate of ASSAY

Company: EQUITY SILVER

Enclect:

File:7-1275/P1 Date:SEPf 12/87 Type:ROCK A5SAY

He hereby certify the following results for samples submitted.

U Samule	AG	AG	AU	ALL	·
Number	GZ TONNE		G/TONNE	0Z/TON	
[]					
U621-6	2.0	0.06	.01	0.001	
7823-1	0.2	0.01	.02	0.001	
n 823-to	0.1	0.01	.01	0.001	
823-16	0.4	0.01	.01	0.001	
7824-6	1.6	0.05	.03	0.001	
П орд7	о <i>А</i>	0.01	о <u>т</u>	0.001	***************************************
Long. (0.7	0.01	04	0.001	
7075.10	0.2	0.01	.01	0.001	
- 7020-10 Прот. I	1 1	0 04	01	0.001	
1021-1	0.2	0.01	.01	0.001	
	·· • ··				4 _ 4 4 4 4 4 4 4 4 4 4 4 4
#821- 3	0.2	0.01	.03	0.001	
821-11	0.1	0.01	.17	0.005	
9 823-2	0.4	0.01	.01	0.001	
7823-3	0.2	0,01	.04	0.001	
∏823-4	0.8	0.02	.02	0,001	
27.03.03		·	 مص		
	0.4	0.01	. UZ	0.001	
1 1027 - 4A	() 7	0.01	01	0.001	
	0.7	0.04	.01	0.001	
/020=/ /0270	0.0 č 4	0.01	, V.Z. 07	0.001	
	V.0		.00		
U_{923-9}	0.3	0.01	.01	0,001	
7823-14	1.1	0,03	.01	0.001	
1 825-12	0.8	0.02	.02	0.001	
1923-13	0.4	0.01	. Oi	0,001	
7823-14	0.2	0.01	.01	0,001	
N 823-15	 0 - 3	0_0t		0,001	
U897-17	0.2	0.01	.02	0.001	
7825-19	0 K	0.01	.01	0.001	
	0.2	0.01	- 01	0.001	
1023-20	V• Z (Z				
L 62 3 L 20	(• Q	V. V.		0.007	

Certified by____

MIN-EN LABORATORIES LTD.

Specialists in Hineral Environments

705 West 15th Street North Vancouver, B.C. Canada V7M 1T2

HONE: (604)980-5814 DR (604)988-4524

[]

 \Box

TELEX: VIA USA 7601067 UC

Certificate of ASSAY

Dompany:EQUITY SILVER Project:

File:7-1275/F2 Date:SEPT 11/8 Type:ROCK ASSAY

We hereby certify the following results for samples submitted.

umple umber	AG G/TONNE	AG OZ/TON	AU G/TONNE	AU OZ/TON	
923-21 927-22 923-23 923-24 923-25	0.5 0.7 0.2 0.6 2.1	0.01 0.02 0.01 0.02 0.02 0.06	.02 .01 .01 .03 .03	0.001 0.001 0.001 0.001 0.001	
823-26 823-27 823-28 823-29 824-1	0.3 1.8 1.4 2.2 0.4	0.01 0.05 0.04 0.06 0.01	.01 .01 .01 .05 .01	$\begin{array}{c} 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \end{array}$	
324-2 324-3 324-4 324-5 324-8	2.0 0.3 0.8 0.3 1.2	0.06 0.01 0.02 0.01 0.04	.01 .01 .01 .05 .01	0.001 0.001 0.001 0.001 0.001	
324-9 324-10 324-11 324-12 324-13	0.4 0.3 0.7 2.1 0.9	0.01 0.01 0.02 0.06 0.03	.01 .01 .01 .01 .01	0.001 0.001 0.001 0.001 0.001	
324-14 324-15 324-16 324-17 324-18	1.0 0.8 1.2 0.2 0.2	0.03 0.02 0.04 0.01 0.01	.01 .01 .04 .01 .01	0.001 6.001 0.001 6.001 0.001	
824-19 824-20 824-21 824-22	0.2 0.3 0.2 0.3	0.01 0.01 0.01 0.01	.01 .01 .01 .01	0.001 0.001 0.001 0.001	

Certified by___ MIN-EN LABORATORIES LTD.

Specialists in Mineral Environments

705 West 15th Street North Vancouver, B.C. Canada V7M 1T2

HONE: (604)980-5814 DR (604)988-4524

TELEX:VIA USA 7601067 UC

<u>Certificate of Assay</u>

Dompany:EQUITY SILVER Project: Thtention:f.HEARD

Π

File:7-1275/P3 Date:SEPT 11/87 Type:ROCK ASSAY

<u>We hereby certify the following results for samples submitted.</u>

3 (.					
Jample Number	AG G/TONNE	AG OZ/TON	AU G/TONNE	AU DZ/TON	
7825-2 7825-3 7825-4 7825-5 7825-6	0.5 0.6 0.2 0.4 0.2	$\begin{array}{c} 0.01 \\ 0.02 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \end{array}$.01 .01 .02 .01 .05	0.001 0.001 0.001 0.001 0.001	
7825-7 9825-8 7825-9 7825-10 7825-11	0.3 0.2 0.1 0.2 0.3	0.01 0.01 0.01 0.01 0.01 0.01	.02 .01 .04 .01 .01	0.001 0.001 0.001 0.001 0.001	
7825-12 825-13 825-14 7825-15 7825-16	0.2 0.3 0.2 0.3 0.3	0.01 0.01 0.01 0.01 0.01 0.01	.01 .01 .02 .01 .01	0.001 0.001 0.001 0.001 0.001	
7825-17 7825-17 7825-20 7825-21 7825-21	0.4 0.3 0.2 0.2 0.2	0.01 0.01 0.01 0.01 0.01	.01 .01 .06 .02 .01	0.001 0.001 0.002 0.001 0.001	
U825-23 7825-24 7825-26	0.5 1.0 0.5	0.01 0.03 0.01	.10 .02 .01	0.003 0.001 0.001	

Certified by_

MIN-EN LABORATORIES LTD.

MIN-EN LABORATORIES LTD. Specialists in Hineral Environments 705 West 15th Street North Vancouver, B.C. Canada V7N 1T2 ;(304)980-5814 OR (604)988-4524 TELEX: VIA USA 7601067 UC Analytical Report Company: CQUITY SILVER File:7-1275 Ctention: T.HEARD Date:SEPT 12/87 Type:ROCh ASSAY ate Samples Received :SEPT 7/87 Samples Submitted by :T.HEARD Samples Copies sent to; 1. EOUITY SILVER, VANCOUVER, B.C. 2. EQUITY SILVER, WHITEHORSE, YUKON. 3. awbjee: Prepared samples stored:.....X.... discarded:.... rejects stored:.....X..., discarded:.... Methods of analysis: AG - ACID DIGESTION-CHEMICAL ANALYSIS. AU - FIRE ASSAY. Remarks [] MORE ANALYSIS TO FOLLOW.

Ŋ

Ľ

MIN-EN	LABORATORIES	LTD.
--------	--------------	------

Specialists in Hineral Environments

705 West 15th Street North Vancouver, B.C. Canada V7M 112

DNE: 1604) 980-5914 DR (604) 988-4524

TELEX: VIA USA 7601057 UC

Certificate of ASSAY

Dashares COULTY	SILVER
Protect:	

Ctention: L. HEARD

file:7-12/6/F1 Date:SEPF 15/87 Type:ROCL ASSAY

We hereby certify the following results for samples submitted.

		 הייז	
Number R	G7 FONNE	0Z/TON	
UB21 6 7823-1	.01 .01	0.001 0.001	
B23-16	.01 .02	0.001 0.001	
7824-6	s ب 1	0.003	
	- O (, 2)	0.001 0.001	
วลวร เย ต	. • t	0.001	
<u>Ų</u>			~~~~~~~~~
Π			
L)			
[]			
n			
U			
[]			
D			
Π			
~~			
U			
ព			
L)			***************************************
Π			\mathcal{N} - 1
–			As mich
Ų		Certifie	ed by Markey///mp
			MIN-EN & ABORATORIES LTD.
U			

MIN-EN	LABORATORIES	LTD.
--------	--------------	------

Specialists in Hineral Environments 705 West 15th Street North Vancouver, B.C. Canada V78 172

ONE: 16041980-5014 OR (6041988-4524	TELEX:VIA USA 7601067 UC
n <u>Analytical</u>	Report
Dompany:EDUTTY SILVER Protect: Ctention:C.DEARD	File:7-1275 Date:SEFT 15/87 Type:ROCE ASSAr
Date Samples Received :SEPT 7/87 Monoles Submitted by :T.HEARD	
Depret on Uppret sent to: I. EDUITY SILVER, VANCOUVER, 2. EUN ROBERTSON, WHITEHORSE, 3.	B.C. YUKON/
Complex: Sieved to mesh	round to mesh arded:
$\mathbf{U} = \mathbf{F} + $	
Remarks	
0	
D	
0	

	MIN-EN Specialis 705 West 15th	LABO ts in Min Street North V	RATO eral En acouver, B.C	DRIES Vironments Canada V7K 172	LTD.	
URNE: : 5041980-5814 OR (604)9	188-4524				TELES:VIA	USA 7601067 UC
n	Certi	fica	te d	T ASS	<u>SAY</u>	
U	LVER				Filzi - 1 - Date:SEF(ਤਿਸ ਦੇ ਰਿਤਾਰ
	150N				/ype:SUL)	1-655/2893
n .	- 'I'' 'O\${CIM	100 .0301		samplet Fu	baıtted.	
U acter Manison	é Ge George (Cognina)	ola 112 - FUH G	PALI J. TOMATIE	ыр 97 - TON		
U	?. (· · • · · · · · · · · · · · · · · · · ·	. 10	. بر		
n	4 - x 2 - 1 1	· · · ·	. 12	2.004 0.001		
$U_{1} + \frac{1}{1}$	i 1 . :5	1142925 1146 4	- 944 - 1072	ាំ សូម (សូមសារ		
[]	1,1	<u></u>		(), (<i>n</i> ()		
\boldsymbol{U}_{i} , \boldsymbol{v}_{i} ,	2.5	$(1, 0)^{2}$.02 .03	9,903 9,004		
	1. V	1.11		11. NG1		
<u> </u>				<pre></pre>		
R						
<u>U</u>						
Π						
0						
[]						
r 1						
U						
Ũ	# H & 4 # # # # # # # # # # # # # # # # # #					
ri						
U						
Π				6	\mathcal{P}_{-}	1
n		A	المعارية المعار		The hour	
IJ		Lertif	ואס הא"	MIT NU T'N		
				1.1714.0714	L P RUNHIUKILD	_ ; ;, ,

Specialists in Hineral Environments

 $\left[\right]$

ThE West 15th Street North Vancouver, B.C. Canada V7M 1T2

Specialists in Mineral Environments

705 West 15th Street North Vancouver, B.C. Canada V7M 1T2

UONE: (604)980-5814 DR (604)988-4524

TELEX:VIA USA 7601067 UC

Certificate of ASSAY

Pomoro studity Silver. Protect: THOBERT CREEK Plention: R. ROBERTSON

File:7-1 07/F) Date:0CT 25/87 Type:ROCE ASSet

We berefy certify the following results for samples submitted. \frown

∦ <u>{</u>						
Sample Number	AG G/TONNE	AG ()Z/TON	AU 57 TONNE	AU DZ/TON		
>825-15 7924-6 Noo8-1 Noo8-2 71008-3	.2 ./ .8 .4 1,2	0.01 0.02 0.02 0.01 0.01 0.04	.01 .17 .01 .04 .02	0.001 0.005 0.001 0.001 0.001 0.001		
V008-4 71008-5 21008-6 1013-1 1013-2	.3 .4 1.0 .8 1.5	0.01 0.01 0.05 0.02 0.02 0.04	.03 .03 .01 .02 .03	0.001 0.001 0.001 0.001 0.001 0.001		
010-3 1013-4 71013-5 Č1013-5 Č1013-7	. 4 . 7 . 2 . ម . 4	0.02 0.02 0.01 0.02 0.01	.01 .04 .02 .02 .14	0.001 0.001 0.001 0.001 0.001 0.004		
Z1013-8	• 4	0.01	.03	0.001		
U			~~~~			
[] []						
				Ŕ	Ri mar	
		Cert.	ified by	M (N-E	N LABORATORIES	LTD.

[] MIN- Spec	-EN LABORATORIES L ⁻ cialists in Mineral Environments	rD.
705	West 15th Street North Vanceuver, B.C. Canada V7N 1Y2	
Care: (204) 700 - 3014 UR (204) 780 - 4324	Delutical Report	TELEX:VIA USA 7601067 UC
Compar ::DUNY SILVER Protect:TBIBER: CREEK Dention:R.FUGERTSON	Marycreat <u>Kepdre</u>	File:7-1707 Date:OCT 25787 Type:ROCE ASSAY
Dite Samples Received Samples Submitted by	: OCT D2787 : R.ROBERTSON	
Seport on		Geochem Samples
Copies sent to: 1. COULTY - 2. R.ROBER 3.	NILVER, VANCOUVER, Β.C. TSON, WHITEHORSE, YURDN	Assay Samoter
Amoles: Sieved to mes	h Ground to mesh	100
Prevared samples stored resects stored	:X discarded: :X discarded:	
Nethods of analysis:	AU-FIRE AG-ACID DIGESTION CHEMICAL ANALYSIS	3
Semarts		
Π		
D		
[]		
D		
0		
[]		

a idar-Clegg & Company Ltd. 130 Pemberton A North Vancouver Canada V7P 2R5 Phone. (604) 985 Telex. 04-352667

Ū

 \Box

D

ß

[]

6

[]

[]

 \int

82 7926-14

4

9

0.6

0.1

270

520

200

<5

15

<15

<2

<2

chemical b Report

mberton Ave Vancouver, B C a V7P 2R5 . (604) 985-0681 04-352667			54 S. J.	BO	ND	AR	-CL	EG	3	Geo La)(al
REPORT: 127-6	3673						DD	(17167 * 400)	C LUEN		-
ADIONII 127 -	107.0						r R	USCI; NUNE	UIVEN -	Pade	ł
SAMPLE NUMBER	ELEMENT UNITS	Cu PPN	Ag PPh	NI PPM	As PPM	Au PPB	Pt PPB	Pd PPB			
R2 7924-1		230	>50.0	860	400	90	35		-		
R2 7924-2		4	2.4	700	150	15	<15	$\dot{\alpha}$			
R2 7924-3		3	0.9	800	250	25	(15	(2			
R2 7924-4		8	0.2	850	60	<5	<15	2			
82 7924-5		20	0.1	31	14	<5	<15	<2			
R2 7925-1		20	<0.1	580	5	<5	(15	<2			
R2 7925-2		9	<0.1	104	$\overline{2}$	5	(15	(2			
R2 7925-3		2	0.2	20	5	6	40	(2			
R2 7925-4		4	<0.1	8	450	20	15	2			
R2 7926-1		2	0.1	12	10	<5	15	<2			
R2 7926-2		56	1.2	16	10	10	<15	2			
R2 7926-3		21	0.1	15	5	(5	<15	<2			
R2 7926-4		28	0.9	30	20	15	20	4			
R2 7926~5		66	0.6	34	12	5	30	4			
R2 7926-6		25	0.2	10	5	<5	30	<2			
R2 7926-7		23	0.2	8	(2	<5	 (15	0			
R2 7926-8			<0.1	3	4	<5	<15	4			
R2 7926-9		10	0.1	1100	950	(5	20	8			
R2 7926-10		46	0.2	370	5	<5	15	4			
R2 7926-11		1	0.3	470	3	<5	15	、 <2			
R2 7926-12		7	0,1	1400	 5	 <5	40	2			
R2 7926-13		4	0.6	270	2	<5	20	$\overline{(2)}$			

- uar-Clegg & Company Ltd. 130 Pemberton Ave North Vancouver, B C Canada V7P 2R5 Phone. (604) 985-0681 Telex 04-352667

Ŋ

U

[]

[]

D

 \Box

 \int

 $\left[\right]$

[

[]

 \int

[

Ĩ

Geochemical Lab Report

REPORT: 127-8673 (COMPLETE)

CLIENT: EQUILY SILVER MINES LTD. PROJEC

REFERENCE INFO:

.

ECT: NO	NE G	IVEN			SOBNITTED BY: XUBERTSON DATE PRINTED: 4-NOV-87		
ORDER		ELEMENT	NUMBER OF ANALYSES	LOWER DETECTION LINIT	EXTRACTION		METHOD
1	Cu	Copper	23	1 PPM	HNO3-HCL HOT	EXTR	Atomic Absorption
2	Ag	Silver	23	0.1 PPM	HNO3-HCL HOT	EXTR	Atomic Absorption
3	Nı	Nickel	23	2 PPM	HNO3-HCL HOT	EXTR	Atomic Absorption
4	As	Arsenic	23	2 PPK	NITRIC PERCH	LOR DIG	Colourimetric
5	Âu	Gold - Eire Assay	23	5 PPB	F IRL-ASSAY		Fire Assav AA
6	Pt	Platinum	23	15 PPB	F I RE-ASSAY		· · · · · · · · · · · · · · · · · · ·
7	Pd	Palladium	23	2 PPB	F IRE-ASSAY		
SAMPLE	IYPI	es number	SIZE FR	act ions	NUMBER	Sample	PREPARATIONS NUM
R ROC	K OR	BED ROCK 23	2 -15	i0	23	CRUSH,	PULVER12E -150 2

REMARKS: ASSAY OF HIGH Ag TO FOLLOW ON 627-8673.

REPORT COPIES TO: EQUITY SILVER MINES LTD. ROBERTSON, WALLIS & ASSOC INVUICE TO: EQUITY SILVER MINES LTD.

.....

. ... ------
Bondar-Clegg & Company Ltd. 130 Peniberton Ave No. th Vancouver B C Canada V7P 2R5 Phone: (604) 985-068 Telex 04-352667

举发

CAN SERVE

_

Certificate of Analysis

IJ	REPORT: 627-8	3673			PROJECT: NONE GIVEN	PAGE 1	
[]	SAMPLE NUMBER	ELEMENT Units	Ag Opt				
[]	R2 /924-1		9.69				
0			∾ ••••••• -	-			
IJ							
U				-			
0				•••••••••			
Ū							
		-					
Ū							
						المنظرة معامليوس مدينة الروي المنظرة ماريطوس المراويوس ال	
		•				- Alla allalayid -	
]						2	
					Registered Assayer, Provi	nce of British Colu	mbia

Bondar-Clegg & Company Ltd. 130 Pemberton Ave North Vancouver, B C Canada V7P 2R5 Phone: (604) 985-0681 Telex 04-352667

[

Ū

[]

 \Box

[

Π

U

Ū

Ł

Certificate of Analysis

T: EQUITY SILVER MINES LTD. CT: NONE GIVEN ORDER ELEMENT 1 Ag Silver SAMPLE TYPES NU R ROCK OR BED ROCK REPORT COPIES TO: EQUITY SI ROBERTSO	NUMBER OF ANALYSES 1 AUMBER SIZE FI	LOWER DETECTION LIMIT D.01 OPT RACTIONS	SI DA EXTRACTION NUMBER 1	UBHITTED BY: ROBERTSON ATE PRINTED: 9-NOV-87 METHOD SAMPLE PREPARATIONS AS RECEIVED, NO SP	NUMBF
ORDER ELEMENT 1 Ag Silver SAMPLE TYPES NU R ROCK OR BED ROCK REPORT COPIES TO: EQUITY SI ROBERTSO	NUMBER OF ANALYSES 1 AUMBER SIZE FA	LOWER DETECTION LIMIT D.01 OPT RACTIONS	EXTRACTION NUMBER	NETHOD SAMPLE PREPARATIONS AS RECEIVED, NO SP	NUMBE
1 Ag Silver SAMPLE TYPES NUL R ROCK OR BED ROCK REPORT COPIES TO: EQUITY SI ROBERTSON	1 NUMBER SIZE FI 1 2 -1	D.O1 OPT RACTIONS	NUMBER	SAMPLE PREPARATIONS	NUMBEI
SAMPLE TYPES NUL R ROCK OR BED ROCK REPORT COPIES TO: EQUITY SI ROBERTSO	NUMBER SIZE FI 1 2 -1	RACTIONS	NUMBER 1	SAMPLE PREPARATIONS	NUMBER
R ROCK OR BED ROCK REPORT COPIES TO: EQUITY SI ROBERTSO	1 2 -1!	50	1	AS RECEIVED. NO SP	
REPORT COPIES TO: EQUITY S Robertson					1
	SILVER MINES LTD. Son, Wallis & Assoc		INVOICI	E TO: EQUITY SILVER MI	NES LI
			-		

---------- - -

·-- - -- -----------

APPENDIX 2

 \bigcup

 \Box

[]

[]

0

Π

Ο

Γ

DIAMOND DRILL LOGS

DIAMOND DRILL LOG

D

6

[]

[]

Company:	Equity Silver Mines Limited	Hole No.:	DDH 87-P-1
Drilling Co.:	Caron Diamond Drilling Ltd.	Project:	Thibert Creek
Started:	25 November 1987	Code:	
Completed:	28 November 1987	Location:	Porcupine Lake Grid
Grid Co-ordina	tes:	Dip:	_550
Elevation:	4050 Feet (estimate)	Horizonta	l advance: <u>282 ft (86m)</u>
Azimuth:	0700	Vertical d	epth: <u>413 ft (126m)</u>
Depth:	500 Feet (152.4 metres)	_ Acid test:	60° (corrected) at 250'
Core size:	NQ	590	(corrected) at 500'
Logged by:	R. Robertson (Jan/88)		

Principal Unit	Sub-Unit	Description / Notes / Samples
(ft)	(ft)	
0 - 5		Overburden: casing removed.
5 - 160.5	12.0	Siltstone, shale and chert: grey to dark grey siltstone with black shale as occasional laminae and some wider intervals of sooty carbonaceous black shale. Long sections of ribbon banded grey chert with thin dark shale laminae towards base of unit. Sparse quartz veinlets occasionally in siltstone, sometimes extensive quartz veining in shale sections. Folding seen locally in siltstone; some badly sheared and deformed sections in black shale. Laminations at 30° to C.A.
	16.9 - 18.5	Lost core.
	24.5	Laminations at 90° to C.A.
	27.3 - 27.8	Black shale with abundant quartz veining, 20° to 40° to C.A.
	48.0	Laminations at 30° to C.A.
	59.8 - 62.0	Lost core.

.

Principal Unit	Sub-Unit	ם	escription / Notes / Samples		
(ft)	(ft)				
	68.0	Laminations at 6	50° to C.A.		
	75.4 - 76.0	Quartz - calcite 40º and parallel	e veins to 2 cm in grey siltstone. Veins at to C.A.; laminations at 65° to C.A.		
	85,5	Laminations at 2	30° to C.A.		
85.5 - 106.0 Predominantly black shale with and seams parallel to lamination			plack shale with minor fine pyrite as blebs lel to laminations.		
	92.5 - 93.0	Laminations at (60-70° to C.A.		
102.0 – 103.0 Grey chert bands; quartz veir black shale laminations (at 70- creamy feldspar and calcite subparallel to C.A. and parallel			ds; quartz veining (up to 1 cm wide), with inations (at 70-90° C.A.) with minor quartz, ar and calcite in thin veinlets (1 mm) .A. and parallel to laminations.		
	104.5 - 106.0	Lost core.			
	106.0 - 111.0	Pale grey chert and siltstone, most core badly broken. Some white clay.			
		108.0 - 109.0	Lost core.		
	111.0 - 160.5	Interbanded che 2 cm wide; shal show strong pin patchy white qu	ert and black shale. Chert bands 2 mm to e bands 1mm to 5mm; folded. Shale bands ch and swell around fold hinges. Occasional lartz veins.		
		118,5	Laminations at 55° to C.A.		
		120.0 - 121.0	Lost core.		
		124.0	Laminations at 90° to C.A.		
		128.3 - 129.3	Broken black shale.		
		129.3 - 131.0	Lost core.		
		136.0 - 138.5	Abundant white quartz veins with thin veinlets of creamy feldspar(?).		
		141.0	Laminations at 10° to C.A.		

. []

[]

[]

[]

Principal Unit	Sub-Unit	ם	Description / Notes / Samples				
(ft)	(ft)						
		147.5 - 149.0	Lost core.				
		156.0	Laminations at 45° to C.A.				
		159.2 - 160.5	Lost core.				
160.5 - 163.9		Altered ultramafic rock: Pale grey-green siliceous rock with quartz, carbonate (ankerite)? and minor mariposite. Trace malachite. Fine grained brecciated and veined texture. Upper and lower contacts broken.					
163.9 - 166.5		Chert and black shale: As 111.0 - 160.5. Laminations at 30-40° to C.A.					
	164.2 - 166.0	Lost core.					
166.5 - 194.7		Altered dacites plagioclase phe biotite phenocr chlorite or seri quartz phenocry Matrix pale buf lower contact s colour, texture,	Pale cream to white colour with 10% nocrysts (white, clay altered, 2-5mm), 5% ysts (pale cream - pale green, altered to cite, 1-3mm), and trace partially resorbed ysts (2-7mm), minor disseminated hematite. f, aphanitic, altered. Upper contact broken, harp (at 40° to C.A.), very little variation in mineralogy. May be dyke or sill.				
	167.1 - 169.4	Lost core.					
	184.5 - 187.2	Lost core.					
	193.5 - 194.5	Colour and grain	n size banding (1-2 cm) at 40 ⁰ to C.A.				
194.7 - 207.4	195.7 - 197.0	Mixed black st predominantly t portion and alt thin bands of c (5mm-5cm) are grey chert (2m folding and shea Lost core.	hale / chert and altered ultramafic units: black shale and chert (interbanded) in upper bered ultramafic below. In central section guartz-ankerite / magnesite-mariposite rock interbanded with bands of black shale and nm-5cm). Banding probably results from aring.				

•

[]

[]

[]

[]

Principal Unit	Sub-Unit	Description / Notes / Samples
(ft)	(ft)	
	197.8 - 199.6	Lost core.
	202.0	Laminations at 50° to C.A.
207.4 - 227.0		Altered ultramafic rock: highly siliceous grey-green quartz - ankerite / magnesite-mariposite rock with (commonly) brecciated and healed appearance. Locally abundant mariposite. Trace hematite. Upper and lower contacts gradational with thin films or laminae of black shale persisting over several feet. Late crosscutting veinlets of quartz and of magnesite.
227.0 - 231.0		<u>Black shale / chert</u> : broken section. Gradational into altered ultramafic above (interbanded); lower contact in broken core.
	228.5 - 230.0	Lost core.
231.0 - 236.0		Altered ultramafic rock: as 207.4 - 227.0.
236.0 - 243.0		<u>Mixed black shale / chert and altered ultramafic units</u> : as 194.7 - 207.4 but chert more abundant than shale here. Altered ultramafic predominant throughout. Both contacts gradational. Black shale partings at 236.0 at 40° to C.A. and at 45° to C.A. at 243.0. Deformed grey chert crosscut by thin white quartz veinlets.
243.0 - 266.0		<u>Black shale / chert</u> : interbanded black shale and grey chert. Quite deformed, chert often as pods in shale. Abundant white quartz as veinlets in chert and as larger veins and segregations. Late fractures offset quartz veinlets.
	243.0 - 244.0	Late fractures 10° to C.A.
	244.5 - 246.0	Lost core.
	249.0	Banding 900 to C.A.
	254.0	Late fractures 20° to C.A.

D

Page 5.

Principal Unit	Sub-Unit	Description / Notes / Samples
(ft)	(ft)	
266.0 - 267.0		Altered ultramafic rock: pale grey fine grained siliceous quartz - ankerite / magnesite-mariposite rock. Brecciated and healed texture. Thin magnesite veinlets. Sharp contacts: Upper - 35° to C.A.; Lower - 55° to C.A.
267.0 - 272.5		Black shale / chert: interbanded; most bands less than 1 cm.
	269.4 - 270.2	Altered ultramafic rock. Upper contact 90° to C.A.; Lower contact 50° to C.A.
272.5 - 277.7		Altered ultramafic rock: as previous sections. Several bands and pods of black shale/chert unit incorporated. Crude foliation in altered ultramafic varies from parallel to perpendicular to C.A. Occasional pyrite blebs to 5mm. Irregular upper contact and sharp lower contact both at 30° to C.A.
277.7 - 291.5		<u>Black shale / chert unit</u> : Strongly banded with chert predominanting in upper section, becoming shaller downwards. Several sections of altered ultramafic incorporated, including both contact zones and 10 cm sections at 282 and 285. Note: bands and lenses of unidentified buff to pale pink-brown fine grained material in banded shale/chert sequence at 283 and 287-288. Sharp lower contact at 55° to C.A.
	280.0	Banding at 15-20° to C.A.
	290.0	Banding at 40° to C.A.
291.5 - 296.0		<u>Altered ultramafic rock</u> : as in previous sections. Note: typical foliated, brecciated, healed appearance. Occasional pyrite blebs to 5mm. Minor black shale as thin films towards base.
	294.0	Late shear zone at 30° to C.A.

[]

ĺ

[]

Ū

Page 6.

Principal Unit	Sub-Unit	Description / Notes / Samples
(ft)	(ft)	
296.0 - 309.5		Mixed black shale / chert and altered ultramafic unit: similar to previous sections. Chert more abundant than shale; quite strongly deformed and sheared. Most chert is in elongate lenses and pods rather than continuous bands or beds. Approximately 25% of section is altered ultramafic in pieces up to 20cm long. Banding varies from $30-90^{\circ}$ to C.A. Sharp lower contact at 30° to C.A. Note: in shale and chert unit between $300.0 - 306.0$ quite common pink-brown material in bands and lenses (as $287-288$ above). Material is fine grained, quite hard (H = 5-6), often mixed with quartz, pearly lustre, sometimes wispy, fibrous texture.
309.5 - 313.3		<u>Altered ultramafic rock</u> : as previous sections, minor amounts of incorporated black shale/chert. Foliation at 312.0 is at 50° C.A. Sharp lower contact at 40° to C.A.
313.3 - 500.0		<u>Black shale / chert</u> : Similar to previous sections, but much more variable in lithology and extent of deformation. Chert abundant down to 368.5 (generally 30-50% to 368.5 and almost absent below). Considerable intermixed altered ultramafic rock as lenses, pods, laminae; forms up to 10% of section down to 350 but absent below. Generally, deformation very strong in upper part of interval, as extreme shearing probably with high load pressure. Local flaser texture; structures probably relate to regional thrust faulting. Sheared rocks generally very competent; hardly any broken or lost core in this unit. Below 368.5 rocks are virtually undeformed, competent black argillites with short sections of feldspathic greywacke; rare thin seams of fine pyrite in argillite.
	318.0	Banding at 50° to C.A.
	327.3 - 332.5	Strong flaser texture, oriented 25° to C.A. Cherty bands dismembered and elongated (clasts from 1mm to 2cm) in black argillaceous matrix. Some small clasts of altered ultramafic rock.
	341.5	Banding / foliation at 35° to C.A. cut by later faulting parallel to C.A.

 $\left[\right]$

[]

[

Γ

Ū

Ū

[]

[]

Page 7.

Principal Unit	Sub-Unit	Description / Notes / Samples
(ft)	(ft)	
	352.0	Sheared interbanded black shale and chert oriented 30° to C.A. becoming parallel to C.A. at 353.0.
	368.5	Structures at 40° and 60° to C.A. Sharp change to undeformed black argillites with minor calcite (lesser quartz) veinlets (virtually no calcite above this contact).
	376.8	Few small pyrite blebs with patchy calcite veinlets.
	396.4 - 401.8	Pale buff-grey feldspathic greywacke (small angular quartz, feldspar and black shale fragments in clay-rich matrix). Sharp upper contact at 90° to C.A. Sheared lower contact at 40° to C.A.
	406.0	Greywacke bands (1cm) define bedding in black argillite at 40° to C.A.
	410.0 - 412.0	Lost core.
	416.0 - 416.5	1-2 cm quartz-calcite veins in black argillite at 20 ⁰ to C.A.
	429.5 - 430.0	Fine grained greywacke or siltstone; bedding defined by thin laminae of black shale at 40° to C.A.
	441.0	Bedding defined by thin (less than 1cm) siltstone bands in black argillite at 40° to C.A.
	447.0	Bedding of thin siltstone bands in black argillite at 35° to C.A.
	457.0	Siltstone bands in black argillite define bedding at $45-50^{\circ}$ to C.A.
	460.0 - 467.4	Note thin calcite-serpentine veinlets and coatings on fracture surfaces; locally with minor chlorite or mariposite. Narrow siltstone bands occasionally show dark spotting; looks like early stage hornfelsing.
	467.4 - 476.7	Primarily fine grained siltstone and greywacke with lesser amounts of black argillite. Note that siltstone sometimes has buff or pink-brown colour like material at 287-288 and 296-309.5.
	472.0	Bedding at 45° to C.A.

 \Box

[]

[]

Ū

[]

 $\left[\right]$

Û

Ū

Page 8.

Principal Unit	Sub-Unit	Description / Notes / Samples
(ft)	(ft)	
	479.5 - 485.0	Section of quite strongly deformed and sheared argillite siltstone - chert. Foliation at 60° to C.A.
	485.0 - 492.3	Coarse grained greywacke. Note strong increase in grain size in basal 10-15 cm (clasts to 3cm; grains to 3-4mm) although actual contact to finely laminated argillite and siltstone below is 1cm fine grained siltstone. Bedding at 200 to C.A.
	495.0 - 497.5	Coarse grained greywacke. Sharp lower contact (minor fault and calcite-quartz vein) at 25° to C.A.
	497.5 - 500.0	Mixed greywacke and black argillite.
		END OF HOLE

[]

[]

D

Ū

Ū

Ū

[]

[]

Ū

Ο

Berr		D .	• - •	Core Rec	covered	RQ	D
No.	(feet)	(f ee t)	(feet)	feet	%	feet	%
1	5 - 22.5	5 - 8	3	2.5	83	0.4	16
		8 - 12	4	3.5	87	1.7	49
		12 - 16	4	3.7	92	0.3	8
		16 - 18	2	0.9	45	-	-
		18 - 19.2	1.2	1.0	67	-	-
		17.7 - 22.7	3	3.0	100	0.8	27
2	22.5 - 41.2	22.5 - 25.5	3	2.3	77	0.3	13
		25.5 - 31	5.5	5.0	91	1.8	36
		31 - 35	4	3.3	83	0.8	24
		35 - 39	4	3.4	8 <i>5</i>	1.5	44
3	41.2 - 58.8	39 - 44	5	4.2	84	1.6	38
		44 - 46	2	1.8	90	1.3	72
		46 - 51	5	5.0	100	4.0	80
		51 - 56	5	5.0	100	2.8	56
4	58.8 - 77.8	56 - 61	5	3.8	76	1.4	37
		61 - 64	3	2.0	67	_	-
		64 - 66	2	1.9	95	-	-
		66 - 72	6	5.3	88	2.4	45
		72 - 76	4	3.8	95	1.8	47
5	77.8 - 93.8	76 - 82	6	6.0	100	3.3	55
		82 - 87	5	5.0	100	1.2	24
		87 - 91	4	3.6	90	-	-
		91 - 94	3	3.0	,100	0.8	27
6	93.8 - 110.5	94 - 96	2	1.7	8 <i>5</i>	-	
		96 - 100	4	3.5	88	0.3	8
		100 - 102	2	1.8	90	-	-
		102 - 106	4	2.5	62	-	-
		106 - 109	3	2.0	67	0.3	15
7	110.5 - 126.5	109 - 111	2	1.8	90	0.3	17
		111 - 114	3	2,4	80	-	-
		114 - 116.5	2.5	2.0	80	-	-
		116.5 - 121.5	5	4.0	80	0.7	17
		121.5 - 126	4.5	4.5	100	0.8	18
8	126.5 - 143.5	126 - 127.5	1.5	1.2	80	-	-
		127.5 - 131	3.5	1.8	51		-
		131 - 133	2	1.8	90	-	
		133 - 136	3	2.4	80	-	-
		136 - 141	5	5.0	100	1.8	3.6

Ū

Ū

Π

Π

[

[]

CORE	RECO	VERY	/ ROD
------	------	------	-------

Π

[]

IJ

[]

 \Box

Π

[]

[

Γ

Ū

D				Core Rec	covered	RQ	D
No.	from - To (feet)	(feet)	Interval (feet)	feet	%	feet	%
9	143.5 - 161.3	141 - 144.5	3.5	2.8	80	0.5	18
		144.5 - 149	4.5	3.0	67	1.2	40
		152.5 - 156	3.5	3.5	86 100	-	- 46
		156 - 160.5	4.5	3.2	71	1.2	38
10	161.3 - 179.8	160.5 - 166	5.5	3.7	67	0.9	24
		166 - 168	2	1.1	55	-	-
		168 - 173.5	5.5	4.1	75	1.6	39
		1/3.3 - 1/7.3	4	3.2	80	0.7	22
11	179.8 - 195.2	177.5 - 182.5	5	4.2	84	0.7	17
		182.5 - 184	1.5	0.8	53	-	-
		184 - 189.5	5.5	2.8	51		-
		187.J - 174.J)	4.8	96	2.2	46
12	195.2 - 213.8	194.5 - 197	2.5	1.2	48	-	-
		197 - 199	2	0.8	40	-	-
		199 - 204	2	4.4	88	1.4	32
		204 - 208 206 - 211	5	4.6	92	0.7	15
13	213.8 - 232.0	211 - 214	3	2.8	93	0.9	32
	21510 - 25210	214 - 216.5	2	*	*	*	*
		216.5 - 221.5	5	4.5	90	3.8	84
		221.5 - 226	4.5	4.1	91	3.5	8 <i>5</i>
		226 - 228	2	1.7	85	0.4	23
		228 - 229 229 - 231	1	0.5	20 50	-	-
		231 - 232	1	1.0	100	0.4	- 40
14	232.0 - 248.0	232 - 234.5	2.5	2.5	100	13	52
~ ·	17110 21010	234.5 - 237	2.5	2.5	100	0.8	32
		237 - 238	1	1.0	100	-	-
		238 - 242	4	3.4	8 <i>5</i>	0.4	12
		242 - 246	4	2.5	63	0.6	24
		246 - 247.2	1.2	1.4	93	-	-
15	248.0 - 264.5	247.5 - 252.5	5	4.5	90	-	-
		252.5 - 256	3.5	3.5	100 *	1.1	<u>_</u> 31
		261 - 266	5	4.6		1.7	37

[

IJ

IJ

 \Box

Π

Π

IJ

Π

[]

Ū

Box	E T-	D		Core Re	overed	RQ	D
No.	(feet)	(feet)	(feet)	feet	%	feet	<u>%</u>
16	264.5 - 282.0	266 - 271	5	4.8	96	1.9	40
		271 - 276	5	4.4	88	2.0	45
		276 - 281	5	5.0	100	2.9	58
17	282.0 - 300.2	281 - 286	5	5.0	100	1.5	30
		286 - 291	5	4.8	96	3.8	79
		291 - 296	5	4.8	96	3.0	62
18	300.2 - 318.9	296 - 301	5	4.8	96	1.9	40
		301 - 306	5	4.8	96	1.1	23
		306 - 311	5	5.0	100	1.2	24
		311 - 316	5	4.2	84	1.0	24
19	318.9 - 335.5	316 - 321	5	4.8	96	1.1	23
		321 - 326	5	4.4	88	0.7	16
		326 - 331	5	5.0	100	1.6	32
		331 - 336	5	4.8	96	1.5	31
20	335.5 - 353.5	336 - 341	5	4.8	96	2.3	48
		341 - 346	5	4.4	88	2.8	64
		346 - 351	5	4.8	96	1.7	35
21	353.5 - 370.7	351 - 356	5	4.8	96	2.7	56
		356 - 361	5	5.0	100	3.3	66
		361 - 366	5	5.0	100	1.9	38
		366 - 371	5	4.9	98	2.3	47
22	370.7 - 388.2	371 - 376	5	4.4	88	2.4	55
		376 - 381	5	4.7	94	2.6	55
		381 - 386	5	5.0	100	2.5	50
23	388.2 - 406.3	386 - 391	5	4.6	92	1.9	41
		391 - 395	4	3.8	95	1.4	37
		395 - 400	5	4.8	96	2.4	50
		400 - 405	5	4.7	94	2.7	57
24	406.3 - 425	405 - 406.5	1.5	1.5	100	-	-
-		406.5 - 407.5	1.0	1.0	100	0.7	70
		407.5 - 412	4.5	2.5	55	1.2	48
		412 - 416 h12 h10	4	3.6	90	1.4	39
		410 - 418 418 - 473	۲ 5	2.0	100	0.8	40
		TIC - 747	,	2.0	100	7.17	50

Dav	E T.	D	.	Core Rec	<u>covered</u>	RQ	D
No.	(feet)	(feet)	(feet)	feet	%	feet	
25	425 - 441.8	423 - 426	3	2.8	93	0.7	25
		426 - 429	3	2.7	90	, 0.7	26
		429 - 433	4	3.7	93	1.7	20 46
		433 - 437	4	4.0	100		
		437 - 441	4	3.8	95	_	_
		441 - 443	2	1.5	75	0.3	20
26	441.8 - 459.7	443 - 446	3	3.0	100	1.3	43
		446 - 451	5	5.0	100	3.2	64
		451 - 455	4	3.7	92	1.5	40
		455 - 460	5	5.0	100	3.4	68
27	459.7 - 476.8	460 - 463.5	3.5	3.2	91	1.1	34
		463.5 - 468	4.5	4.5	100	1.2	27
		468 - 472.5	4.5	3.8	84	0.6	16
		472.5 - 476	3.5	3.5	100	0.3	9
28	476.8 - 495	476 - 479.5	3.5	3.3	94	0.7	21
		479.5 - 484.5	5	5.0	100	0.3	6
		484.5 - 489.5	5	5.0	100	3.2	64
		489.5 - 495	5.5	5.3	96	1.5	28
29	495 - 500	495 - 500	5	4.4	88	2.6	59

END OF HOLE

*Note: Samples removed for assay before core logged.

[]

E

[]

Ū

 Γ

 \sum

Π

Π

[

DIAMOND DRILL LOG

Γ

[]

[]

Company:	Equity Silver Mines Limited	Hole No.:	DDH 87-P-2
Drilling Co.:	Caron Diamond Drilling Ltd.	Project:	Thibert Creek
Started:	28 November 1987	Code:	
Completed:	2 December 1987	Location: P	orcupine Lake Grid
Grid Co-ordina	.tes:	Dip:	-500
Elevation:	4050 Feet (estimate)	Horizontal adv	vance: <u>328 ft (100m)</u>
Azimuth:	1040	Vertical depth	a:387 ft (118m)
Depth:	510 Feet (155.4 metres)	Acid test:	52 ⁰ (corrected)
Core size:	NQ	at	315 feet
Logged by:	R. Robertson (Dec/87)	·	

Principal Unit	Sub-Unit	Description / Notes / Samples
(ft)	(ft)	
0 - 10		Overburden: casing removed.
10 - 25 ,		Siltstone / shale: dark grey, laminated, carbonaceous in places. Laminations parallel to C.A. down to 17.5 then 35- 45° to C.A. Locally strong folding and shearing concentrated in carbonaceous sections. Thin quartz veinlets (1-2mm) parallel to laminations and widely spaced (1-5cm), with short sections of intense quartz veining as veinlets in stockwork and ladder formation, especially in carbonaceous shale (22-25 ft). Lower contact 25° to C.A.
25 - 29		Serpentinite: Pale grey, talcose, foliated 45° to C.A. Sparse pyrite as tiny cubes in quartz veinlets and matrix.
29 - 52		<u>Carbonaceous black shale</u> : sheared, quartz veined, strongly deformed. Minor disseminated pyrite.
	40.5 - 42.2	Lost core.
52 - 74		Serpentinite: pale grey, talcose, foliated, locally strongly deformed and quartz veined (55-60 ft). Occasional short shaly sections. Foliation generally 35-50° to C.A.

Principal Unit	Sub-Unit	Description / Notes / Samples
(ft)	(ft)	
74 - 82.5		<u>Carbonaceous black shale</u> : transitional upper contact with some pale grey serpentinite down to 76.5 ft., then deformed, quartz veined black shale to lower contact. Trace pyrite throughout. Note mariposite with quartz veining at 79 ft.
82.5 - 85.5		Altered ultramafic rock: pale grey-green, foliated with quartz and magnesite stringers and veinlets, minor mariposite. Locally oxidized. Several thin black shale lenses suggest upper contact near-parallel to C.A.; foliation is 50-60° to C.A. and lower contact 90° to C.A.
85.5 - 92.5		Black shale: generally quite siliceous and competent down to 90 feet, then more carbonaceous and sheared. Thin quartz veinlets abundant. Note: several 1cm lenses and stringers of altered ultramafic rock with some malachite staining at 86-87 ft.
92.5 - 94.0		Lost core.
94 - 97		Altered ultramafic rock: pale grey green, locally oxidized, foliated. Thin lenses and bands of black shale. Quartz- carbonate (magnesite?) - mariposite rock with quartz - magnesite veinlets and stringers. Lower contact - irregular zone of brecciation and veining.
97 - 110.7		Black shale: variable from broken, sooty, carbonaceous shale to paler grey more siliceous shale. Abundant quartz veinlets and stringers. Foliation variable - commonly 50- 60° to C.A. Short sections of pale siliceous altered ultramafic rock at:
	98.2 - 100.2	Contacts 50° to C.A.
	101.5 - 103.5	Lost core.
	105.2 - 106.0	Contacts 90° to C.A.
110.7 - 112.0		Lost core.
112.0 - 122.0		<u>Altered ultramafic rock</u> : pale grey green, foliated, locally oxidized. Very siliceous. Quartz-mariposite (minor magnesite?) rock with wispy, irregular stringers and veinlets of quartz with lesser amounts of magnesite. Foliation varies from 45-90° to C.A. Lower contact 30° to C.A.

[]

[]

[]

Π

Page 3.

1

ì

Principal Unit	Sub-Unit	D	escription / Notes / Samples
(ft)	(ft)		
	118.0 - 118.8	Black shale with	quartz veins, contacts at 50-60° to C.A.
	118.8 - 120.0	Zone of brecci mostly quartz w mariposite.	ation healed by quartz veining. Zone is with minor patches of black shale and some
122.0 - 132.5		Black shale: st and carbonaceou particularly at:	trongly deformed, most of interval is sooty us. Quartz veinlets and stringers abundant
		122.0 - 123.5	55° to C.A., with thin lenses of altered, siliceous, ultramafic rock (1-2cm).
		125.0 - 126.0	
		128.7 - 129.5	With thin lenses of siliceous, altered ultramafic rock.
		130.0 - 131.0	as above.
		132.0 - 132.5	Quartz veinlets (2-3mm) at 60 ^o and parallel to C.A.
	127.5 - 128.2	Lost core.	
		Lower contact a	t 65° to C.A.
132.5 - 246.0		Serpentinite: gi Widespread dev altered areas a Foliation strong veinlets and str and lesser mage often subparalle foliation. Foliat	reen-grey variably serpentinized perioditite. relopment of talc and serpentine. Least are dark coloured and strongly magnetic. but very variable on small scale. Abundant ingers (1mm-1cm) throughout; mostly quartz nesite. Wispy, irregular and discontinuous, el to foliation. Stronger veinlets crosscut tion and veining generally 30-70° to C.A.
	132.5 - 133.2	Strongly silicifie shale zone betw serpentinite belo	ed contact area (90% quartz) with 3cm black een lower contact (450 to C.A.) and normal ow.
	204.2 - 205.5	Zone of shearing	g and gouge, foliation 60 ⁰ to C.A.
	205.5 - 207.0	Lost core.	

[]

[]

Principal Unit	Sub-Unit	Description / Notes / Samples
(ft)	(ft)	
	215.2 - 217.0	Lost core.
	238.0	Foliation 20-30° to C.A.
	246.0	Foliation 45° to C.A.
246.0 - 276.0		<u>Altered ultramafic rock</u> : pale grey-green, foliated, non- magnetic, siliceous rock with some mariposite. Magnesite and mariposite most abundant in areas or brecciation healed by strong quartz veining. Gradational upper contact (over few cm); no change in foliation at contact. Alteration rock clearly formed from serpentinite. Locally oxidized. Strongest veining at: 256-257, 261-277. Note: core loss in broken oxidized zone at 267. Lower contact (at 276.0) to black shale very irregular, subparallel to C.A.
276.0 - 277.0		Lost core.
277.0 - 281.0		Black shale: sooty, carbonaceous black shale. Deformed and badly broken. Foliation 40° to C.A. Abundant quartz veinlets and stringers.
281.0 - 510.0		Siltstone and shale: grey laminated siltstone with variable amounts of black carbonaceous shale, often as thin laminae or locally thicker sections (noted below). Quartz veinlets quite sparse (1-5mm); most abundant zones of quartz veins concentrated in intervals of carbonaceous shale.
	285,2 - 286,0	Lost core.
	286.0	Foliation / lamination at 40° to C.A.
	295.0	Foliation / lamination at 30° to C.A.
	308.0	Foliation / lamination at 40° to C.A.
	308.5 - 310.0	Lost core (in black shale).
	313.5	Foliation / lamination at 25° to C.A.; note 5 mm quartz- feldspar vein parallel to laminae.

[]

[]

[]

[

[]

[]

Page	5,
------	----

Principal Unit	Sub-Unit	Description / Notes / Samples
(ft)	(ft)	
	317.0	Wavy laminations sub-parallel to C.A.
	320,0	Laminations 40° to C.A.
	321.5	Broken 2cm quartz-feldspar vein, sub-parallel to C.A.
	334.0	Lamination 55° to C.A.
	338.0	Laminated 50° to C.A.; 1-2cm quartz-feldspar veins 70° to C.A., with dip in opposite sense to laminae.
	351.5	Laminations at 30° to C.A.
	356.9 - 357.9	Broken section of black shale with some quartz veinlets.
	357.9 - 359.0	Lost core.
	363.0	Laminations at 50° to C.A.
	366.5	1-2 cm quartz-feldspar veins at 80° to C.A.
	368.0	Square (5cm) angular clast of white vein quartz in zone of crumpled and brecciated grey siltstone.
	408.0	Laminations at 45-50° to C.A.
	412.5 - 415.7	Lost core.
	422.0 - 422.6	Patchy quartz-feldspar veins to 2 cm in area where laminations change from 50° to C.A. (above) to 75° to C.A. (below) and change back to 50° to C.A. within 0.5 ft.
	427.0 - 427.6	Narrow zone of brecciated siltstone with abundant thin quartz veinlets.
	433.0	Laminations at 45° to C.A.
	442.0	Laminations at 45°-55° to C.A.
	467.0	Laminations at 60° to C.A.
	474.5 - 478.0	Zone of abundant quartz veining; strongest in sheared black shales from 474.5 to 476.5, but continuous in broken grey siltstones below

 $\left[\right]$

[]

Π

[]

[]

Principal Unit	Sub-Unit	Description / Notes / Samples
(ft)	(ft)	
	482.5 - 483.0	Zone of gouge in sheared black shale with quartz veinlets.
	491.0 - 492.5	Stronger quartz veining as stringers and patches in area of stronger deformation and increased black shale content.
	493.5	Laminations at 35 ⁰ to C.A.
	503.0	Laminations at 45° to C.A.
	508.0 - 510.0	Broken core in interval of quartz veined black shale.
510.0		END OF HOLE

 $\left[\right]$

[

[]

Γ

[]

Π

D

 \Box

[]

D

Π

Û

DDH-87-P-2

CORE RECOVERY / RQD

 $\left[\right]$

[]

[]

Û

 \Box

[

[

Ū

[]

	_ _	_	u -	Core Rec	overed	RQ	<u>D</u>
Box No.	From – To (feet)	Run (feet)	Interval (feet)	feet	%	feet	%
1	10 - 27	10 - 11.5	1.5	0.5	33	-	-
		11.5 - 15.5	4	3.5	88	1.2	34
		15.5 - 16.5	1	1.0	100	-	
		16.5 - 21.5	5	3.5	70	0.7	20
		21.5 - 22	0.5	0.5	100		-
		22 - 24	2	1.5	75	-	-
2	27 - 44.5	24 - 29	5	5.0	100	1.5	30
		29 - 30,5	1.5	1.3	87	-	-
		30.5 - 35.5	5	4.0	80	-	-
		35.5 - 40.5	5	5.0	100	2.0	40
		40.5 - 45	4.5	2.8	62	-	-
3	44.5 - 61	45 - 50	5	5.0	100	2.0	40
		50 - 52 . 5	2.5	2.5	100	-	-
		52.5 - 55.5	3	2.8	93	0.5	18
		55.5 - 59.5	4	3.7	92	1.4	38
4	61 - 76	59.5 - 62	2.5	1.8	72	0.4	22
		62 - 65	3	2.3	77	-	_
		65 - 68	3	3.0	100	0.8	27
		68 - 69.5	1.5	1.5	100	_	-
		69.5 - 71.5	2	1.8	90	0.7	39
		71.5 - 73	1.5	1.5	100	-	-
5	76 - 94.8	73 - 79	6	5.6	93	2.0	36
-		79 - 83	4	3.5	87		-
		83 - 88	5	5.0	100	1.1	22
		88 - 92	4	2.9	72	1.2	41
6	94.8 - 113	92 - 95	3	1.5	50	_	-
		95 - 97.5	2.5	2.5	100	0.5	20
		97.5 - 105	7.5	5.6	75	-	
		105 - 110	5	5.0	100	2.8	56
		110 - 112	2	0.7	35		-
7	113 - 131	- 112 - 115	3	2.5	7 1	-	-
•		115 - 120	5	4.9	98	1.5	31
		120 - 125	5	4.5	90	1.2	27
		125 - 127.5	2.5	1.6	64		

CORE	RECO	VERY	/ ROD
------	------	------	-------

[]

Π

[]

[]

[]

IJ

[]

	-	_	• . •	Core Rec	covered	RQ	<u>D</u>
Box No.	From – To (f ee t)	Run (feet)	Interval (feet)	feet	%	feet	%
8	131 - 1 <i>5</i> 0	127.5 - 132	4.5	3.3	73	-	-
		132 - 137	5	5.0	100	3.8	76
		137 - 142	5	4.1	82	0.7	17
		142 - 147	5	5.0	100	3.2	64
		147 - 152	5	5.0	100	3.5	70
9	150 - 168.8	152 - 157	5	5.0	100	4.5	90
		157 - 162	5	4.8	96	2.6	54
		162 - 167	5	4.6	92	3.1	67
10	168.8 - 187	167 - 172	5	4.7	94	1.9	40
-		172 - 177	5	4.5	90	1.3	29
		177 - 182	5	5.0	100	4.3	86
		182 - 189	5	5.0	100	3.1	62
11	187 - 207.5	187 - 192	5	4.6	92	3.4	74
		192 - 197	5	4.4	88	2.8	58
		197 - 202	5	4.8	96	2.5	52
		202 - 207	5	3.5	70	1.8	51
12	207.5 - 227	207 - 212	5	4.8	96	2.8	58
		212 - 217	5	3.2	64	0.5	16
		217 - 222	5	4.7	94	2.1	45
		222 - 227	5	4.7	94	2.3	50
13	227 - 246	227 - 232	5	4.5	90	2.1	47
		232 - 237	5	4.8	96	2.5	52
		237 - 242	5	4.7	94	3.3	70
		242 - 247	5	5.0	100	2.1	42
14	246 - 265	242 - 252	5	4.7	94	2.7	57
		252 - 257	5	4.3	86	2.0	47
		257 - 262	5	5.0	100	3.7	74
15	265 - 283	262 - 267	5	4.8	96	3.2	67
		267 - 268	1	0.3	30	-	-
		268 - 269	1	0.8	80	0.4	50
		269 - 272	3	2.7	90	2.2	81
		272 - 277	5	4.0	80	2.7	67
		277 - 281	4	3.4	8 <i>5</i>	-	-
16	283 - 300	281 - 286	5	4.2	84	1.7	40
		286 - 291	5	4.6	92	3.0	65
		291 - 295	4	4.0	100	1.8	45
		295 - 300	5	4.8	96	1.0	21

DDH-87-P-2

CORE RECOVERY	/ RQD
---------------	-------

[]

 $\left[\right]$

[]

[]

[]

Π

[]

[]

[]

[]

Π

Γ

Π

Berr	Eners Tr	From To Dun		Core Rec	covered	RQD	
No.	(feet)	(feet)	(feet)	feet	%	feet	%
17	200 219 5	200 202	2	17	05	0.7	<i>t</i> , 1
17	500 - 518,5	302 307	2 5	1./	62 02	0.7	41
		307 - 310 5	35	2 0	92 57	1./	57
		310.5 - 315.5	5	5.0	100	2.5	50
		315.5 - 317	1.5	1.0	67	-	-
18	318.5 - 335.5	317 - 321.5	4.5	3.8	84	1.9	50
		321.5 - 324	2.5	2.2	88	0.7	32
		324 - 327.5	3.5	3.5	100	1.1	31
		327.5 - 332	4.5	4.0	89	1.2	30
19	335.5 - 351.5	332 - 337	5	5.0	100	2.2	_
		337 - 339	2	2.0	100	-	-
		339 - 343.5	4.5	4.2	93	1.8	43
		343.5 - 347.5	4	4.0	100	1.3	-
		347.5 - 351.5	4	3.6	90	0.6	17
20	351.5 - 370	351.5 - 356.5	5	4.2	94	2.2	47
		356.5 - 359	2.5	1.4	56	-	-
		359 - 361	2	1.7	85	-	-
		361 - 366	5	4.9	98	1.8	37
		366 - 371	5	5.0	100	3.4	68
21	370 - 387.5	371 - 373.5	2.5	2.0	80	0.3	15
		373.5 - 378.5	5	5.0	100	2.7	54
		378.5 - 383	4.5	4.5	100	1.6	26
		383 - 388	5	5.0	100	1.3	26
22	387.5 - 405	388 - 390	2	2.0	100	1.7	8 <i>5</i>
		390 - 395	5	5.0	100	2.8	56
		395 - 398.5	3.5	3.2	91	-	
		398.5 - 402	3.5	3.2	91	2.3	72
23	405 - 425	402 - 407	5	4.7	94	3.3	70
		407 - 411	4	4.0	100	1.3	32
		411 - 415	4	1.5	38	-	-
		412 - 417	2	1.3	6) 97	0.5	56
		417 - 420 420 - 425	5	2.6 4.8	87 96	1.4	- 29
24	425 442	1175 1170	4	2 0	95	0 4	21
24	422 - 443	422 - 427 1120 1121	4 5	2.0 5 0	100	17	21
		427 = 424 h2h h20	ך ר	5.0 5.0	100	2 1	54 62
		424 - 427 429 - 444	5	5 D	100	2.1	52
		427 - 444	2	0.0	100	4.0)/

DDH-87-P-2

_				Core Rec	overed	RQ	D
Box No.	From - To (feet)	Run (feet)	Interval (feet)	feet	%	feet	%
25	443 - 459.5	444 - 446.5	2.5	2.1	84	-	_
		446.5 - 447.5	1	0.9	90	-	-
		447.5 - 451	3.5	3.0	86	0.8	27
		451 - 453.5	2.5	2.1	84	-	-
		453.5 - 458.5	5	4.8	96	3.0	62
26	459.5 - 478	458.5 - 462.5	4	4.0	100	1.5	37
		462.5 - 467.5	5	4.8	96	0.9	19
		467.5 - 472	4.5	4.5	100	2.4	53
		472 - 475	3	2.6	87	1.3	50
		475 - 478	3	2.8	93	0.4	14
27	478 - 495	478 - 480	2	2.0	100	-	-
		480 - 484	4	4.0	100	0.5	12
		484 - 489	5	5.0	100	1.9	38
		489 - 494	5	5.0	100	1.0	20
28	495 - 510	494 - 498	4.	4.0	100	1.0	25
		498 - 503	5	4.8	96	2.2	46
		503 - 508	5	5.0	100	2.7	54
		508 - 510	2	2.0	100	-	-

CORE RECOVERY / RQD

Π

 \Box

Γ

Π

END OF HOLE

DIAMOND DRILL LOG

 $\left[\right]$

[]

Π

Π

[]

[]

Company:	Equity Silver Mines Limited		Hole No.:	DDH 87-B-3
Drilling Co.:	Caron Dian	ond Drilling Ltd.	Project:	Thibert Creek
Started:	16 Decer	nber 1987	Code:	
Completed:	21 Dec	cember 1987	Location:	Boulder Creek
Grid Co-ordina	tes:		Dip:	-50°
Elevation:	2850 Fee	t (estimate)	Horizontal ac	dvance: <u>321.5 ft (98m)</u>
Azimuth:	2	150	Vertical dept	h:
Depth:	500 Feet (15	2.4 metres)	Acid test: <u>5</u>	1° (corrected) at 250'
Core size:		NQ		
Logged by:	R. Rober	tson (Jan/88)		
Principal Unit	Sub-Unit	Descript	tion / Notes / S	amples
(ft)	(ft)		<u> </u>	
0 - 42.5		Overburden: large b Drill hole collared o operations. Casing ren	oulders of vari on coarse taili noved.	ious local rock types. ings from old placer
42.5 - 278.4		Serpentinite: green almost black. Modera minerals and some tak of black partially se section down to 255.3 very little coherent r core recovery from 4 geological or structura of core loss and broke 278.4 is almost 90%.	colour, variable tely to strongly c after peridotite rpentinized pe b is strongly sh- rock and extens 2.5 - 255.3 is al information in en core. Core	e from pale green to magnetic. Serpentine te; a few short sections ridotite. All of the eared and broken with sive core loss; overall only 37%. Very little n this interval because recovery from 255.3 -
42.5 - 278.4	42.5 - 46.3	Serpentinite: green almost black. Modera minerals and some tak of black partially se section down to 255.3 very little coherent r core recovery from 4 geological or structura of core loss and broke 278.4 is almost 90%. Lost core.	colour, variable tely to strongly c after peridotit erpentinized pe b is strongly sh cock and extens 2.5 - 255.3 is al information in en core. Core	e from pale green to magnetic. Serpentine te; a few short sections ridotite. All of the eared and broken with sive core loss; overall only 37%. Very little n this interval because recovery from 255.3 -
42.5 - 278.4	42.5 - 46.3 48.0 - 51.5	Serpentinite: green almost black. Modera minerals and some tak of black partially se section down to 255.3 very little coherent r core recovery from 4 geological or structura of core loss and broke 278.4 is almost 90%. Lost core.	colour, variable tely to strongly c after peridotit erpentinized pe 3 is strongly sh cock and extens 2.5 - 255.3 is al information in en core. Core	e from pale green to magnetic. Serpentine te; a few short sections ridotite. All of the eared and broken with sive core loss; overall only 37%. Very little n this interval because recovery from 255.3 -
42.5 - 278.4	42.5 - 46.3 48.0 - 51.5 53 - 56.2	Serpentinite: green almost black. Modera minerals and some tak of black partially se section down to 255.3 very little coherent r core recovery from 4 geological or structura of core loss and broke 278.4 is almost 90%. Lost core. Lost core.	colour, variable tely to strongly c after peridotit erpentinized pe b is strongly sh cock and extens 2.5 - 255.3 is al information in en core. Core	e from pale green to magnetic. Serpentine te; a few short sections ridotite. All of the eared and broken with sive core loss; overall only 37%. Very little n this interval because recovery from 255.3 -

Pa	ge	2.
	-	

Principal Unit	Sub-Unit	Description / Notes / Samples
(ft)	(ft)	
	59 - 60.5	Lost core.
	62 - 64.8	Lost core.
	67 - 70.8	Lost core.
	73 - 7 <i>5</i> .8	Lost core.
	78.6 - 84.1	Lost core.
	86.5 - 91.7	Lost core.
	92.0 - 95.0	More competent section. Foliation at 40° to C.A., few narrow quartz stringers at 93.0.
	96.3 - 98.8	Lost core.
	104.0 - 110.5	Lost core.
	113.4 - 115.5	Lost core.
	115.5 - 117.0	Serpentinized peridotite.
	117.0 - 118.0	Lost core.
	118.0 - 119.0	Serpentinized peridotite.
	121.2 - 122.6	Lost core.
	124.8 - 130.4	Lost core.
	134.2 - 136.8	Lost core.
	139.3 - 145.8	Lost core.
	147.0 - 155.6	Lost core.
	158.2 - 165.0	Lost core.
	166.0	Shear surfaces at 100 to C.A.
	167.0 - 170.0	Lost core.

[]

[]

Γ

[]

Π

IJ

Π

[]

[]

[]

[]

[]

Page 3.

Principal Unit	Sub-Unit	Description / Notes / Samples
(ft)	(ft)	
	172.0 - 174.7	Lost core.
	178,3 - 186,7	Lost core.
	187.2 - 192.3	Lost core.
	193.0	Shear surfaces subparallel to C.A.
	194.4 - 197.6	Lost core.
	198.3	Blue black serpentinized peridotite with shear surfaces at 30-35° to C.A.
	198.8 - 200.2	Lost core.
	201.5	Black serpentinized peridotite with shear surfaces at 30° to C.A.
	202,5 - 207,2	Lost core.
	209.0 - 213.5	Lost core.
	213.5 - 215.5	Strongly serpentinized peridotite; shear surfaces at 10° and 45° to C.A.
	216.7 - 220.8	Lost core.
	223.3 - 229.4	Lost core.
	234.6 - 240.8	Lost core.
	243.3 - 251.3	Lost core.
	252.0 - 254.5	Lost core.
	257.0 - 258.3	Lost core.
	258.3 - 261.8	Sheared dark-green serpentinite; much more competent than most sections higher in hole. Foliation/shearing at 35-40° to C.A.
	261.8 - 274.0	Strongly serpentinized peridotite, very competent core. Abundant veinlets of serpentine minerals, talc, albite(?). Foliation/veining at 30-40° to C.A. Sharp lower contact at 60° to C.A.

Γ

IJ

[]

[]

Γ

[

[]

Π

[]

 $\left[\right]$

[

[]

[]

[]

[]

Page 4.

Principal Unit	Sub-Unit	D	escription / Notes / Samples
(ft)	(ft)		
	274.0 - 275.3	Grey chert; app contact at 20° t quartz veining (t	ears brecciated and deformed. Sharp lower o C.A. Minor black shale component. Some to 1 cm) at 35° to C.A.
	275.3 - 276.2	Sheared serpentinite; shear surfaces at 20 ⁰ to C.A. Sh irregular lower contact; subparallel to C.A.	
,	276.2 - 276.8	Deformed chert	with minor black shale.
	276.8 - 278.4	Red-green serpentinite. Competent, strongly foliated a to C.A. Red hematite colour towards base of int Sharp lower contact at 50° to C.A.	
278.4 - 479.6		Black shale / chert / siltstone / sandstone: stron deformation evident in sections of carbonaeous black shale otherwise little evident deformation in competent unit Minor quartz veinlets throughout with local zones of stron quartz veining. Core generally very competent; hig recovery except in some black shale sections.	
	278.4 - 284.8	Banded chert w at upper contac Banding 20 ⁰ to C	ith lesser amounts of black shale; deformed ct to serpentinite. Minor quartz veining. C.A.
	284.8 - 287.5	Lost core.	
	287.5 - 313.0	Pale grey sand quartz - feldsp C.A. with occa to C.A.	lstone / greywacke with ubiquitous wispy ar veinlets in tension gashes at 40-70° to sional cross fractures (and veins) subparallel
		296.5 - 297.5	Lost core in short section of black shale with thin quartz veins.
		298.0	Black shale films on fracture surfaces parallel and 20° to C.A.
		300.0 - 301.0	Possible faint bedding indicated by coarser grain size and thin shaley laminae at 15° to C.A.
		313.0	Sharp lower contact at 50° to C.A.

[]

[]

Γ

Γ

[]

[]

[]

Page 5.

Sub-Unit	D	escription / Notes / Samples
(ft)		
313.0 - 315.3	Irregular grey of abundant white to C.A. Sharp lo	chert bands with thin coaly black shale and quartz lenses and pods, all oriented 35-50° ower contact at 50° to C.A.
315,3 - 335,5	Carbonaceous b finely laminate irregular quartz folded; shiny co 2mm) of pyrite	lack shale, with lesser amounts of pale grey, d siltstone, grey cherty pods and locally, z veinlets. Shale is somewhat sheared and aly appearance. Occasional small blebs (1- in shale.
	315.7 - 317.0	Lost core.
	317.0 - 320.1	Strong slip surfaces in sheared black shale from 15° to parallel to C.A.
	320.1	Sharp contact to quartz-veined black shale (much less deformed) with veins and banding in shale 60-80° to C.A.
	323.0 - 325.0	Strong folding defined by siltstone bands and quartz stringers. Overall orientation 30-50° to C.A.
	329.0 - 331.0	As 323.0 - 325.0 but orientations subparallel to C.A.
	335.5	Broken core; contact not seen.
335.5 - 340.5	Grey-white che green chloritic disseminated f subparallel to C at base.	ert and quartz bands and lenses with grey- shale as lesser component. Trace finely pyrite in green shale. Folded; bands C.A. at top of section changing to 60° to C.A.
340.5 - 352.0	Coaly black s abundant patch shearing. Man 60-70° to C.A.	hale (with some chert and siltstone) and ny quartz veining. Strongly folded; some y structures at 5-30° to C.A. with some at
352.0 - 409.5	Grey banded si chert and patch 365.3 has occa some shearing	litstone with lesser amounts of black shale, by quartz veining. Shaly section from 361.0 - usional small pyrite blebs. Strongly folded; g, especially in shaly sections. Many
	Sub-Unit (ft) 313.0 - 315.3 315.3 - 335.5 335.5 - 340.5 340.5 - 352.0 352.0 - 409.5	Sub-Unit D (ft) 313.0 - 315.3 Irregular grey of abundant white to C.A. Sharp let t

[]

[]

[]

 \square

[]

Γ

 \Box

[

Γ

=

Principal Unit	Sub-Unit	Description / Notes / Samples				
(ft)	(ft)					
		structures 30-4 30-40° to C.A. C.A.	0° to C.A. Some fold hinges have limbs at with crest of open fold hinge subparallel to			
		376 . 0 - 38 5. 0	Section of black shale with abundant quartz veins and lenses at 10-40° to C.A.			
		388.5 - 395.0	Strongly sheared earthy and gougy black shale with some banded shale/chert/quartz vein sections. Late shear surfaces at 35° to C.A.			
		407.0	Banding in siltstone/chert sequence at 10° to C.A.			
	409.5 - 410.5	 .5 Altered ultramafic rock. Very siliceous, with less amounts of carbonate and mariposite. Upper contact broken core; lower contact (at 20° to C.A.) to quartz vei black shale. .5 Black shale with minor siltstone component; extensive t quartz veins. Strongly deformed; late shear surfaces at to C.A. Core very broken. 413.9 - 417.3 Lost core. 				
	410.5 - 418.5					
	418.5 - 424.0	 Siltstone with minor black shale and some quartz of Core very broken. Attitudes vary from subparallel to 50° to C.A. Black shale with abundant thin quartz veins and Lesser amounts of siltstone and chert. Severa sections with quartz veins up to 5 cm wide. Cor broken in shaly sections. Whole interval is strongly and sheared. 				
	424 . 0 - 479.6					
		424.3 - 430.3	Lost core.			
		430.3 - 430.9	Broken quartz veins to 5 cm. Contacts 65° to C.A.			
		431.5 - 433.3	Lost core.			
		433.3 - 442.0	Foliation and late shear and fracture surfaces at 45-65° and 20° to subparallel to C.A.			

[]

[]

Π

0

[]

Π

 \Box

Γ

[]

Π

[]

[]

[]

Γ

Principal Unit	Sub-Unit	Description / Notes / Samples					
(ft)	(ft)						
		446.0 - 448.2	Lost core.				
		452.0 - 453.0	Lost core.				
		454.0 - 460.0	Attitudes vary from subparallel to C.A. to 65° to C.A.				
		470.0 - 475.0	Late fractures at 20° and 55° to C.A. Banding/foliation varies from parallel to C.A. to 80° to C.A.; most commonly subparallel to 40° to C.A.				
		475.0 - 479.0	Banding and late shear surfaces at 30-45° to C.A.				
		479.6	Sharp lower contact at 30° to C.A.				
479.6 - 493.9		Altered ultram carbonate - r magnesite veinl of broken quart 489.0 - 491.2. C.A.	<u>afic rock</u> : grey-green siliceous quartz - nariposite rock with patchy quartz and lets. Foliation 60-80° to C.A. Short sections tz veined black shale at 482.0 - 482.8. and Sharp lower contact to grey chert at 50° to				
493.9 - 500.0		<u>Siltstone / cher</u> and lenses. Si fractures parall	rt / black shale: with usual thin quartz veins haly sections are badly broken. Some late lel to C.A. but most are 30-50° to C.A.				
	496.2 - 497.7	Massive white 10-15 ⁰ to C.A. shale at upper o	quartz vein, with minor feldspar. Contacts Abundant fine pyrite in 1 cm wide band in contact.				
500.0		END OF HOLE.					

[]

[]

Ο

 \Box

 \Box

[]

[]

 $\left[\right]$

Γ

[]

 \Box

[]

Γ

D

[]

[]

 \square

[]

Π

 \Box

Γ

Berry France Tr		D		Core Rec	covered	RQD	
No.	(feet)	Run (feet)	Interval (feet)	feet	%	feet	%
1	0 - 42	9 - 11	2	1.2	60	-	-
		11 - 13	2	0.7	3 <i>5</i>	-	-
		13 - 14.5	1.5	0.4	27	-	-
		14.5 - 20	5.5	1.0	18	-	-
		20 - 26	6	3.0	50	-	
		20 - 28 28 - 29	2	1.3	6) 70	-	-
		29 - 32	3	1.2	70 40	-	-
		32 - 33.5	1.5	1.0	67	-	-
		33.5 - 42	8.5	2.6	30	-	-
2	42 - 72.4	42 - 47.5	5.5	1.7	31		-
		47.5 - 52	4.5	1.0	22	-	-
		52 - 54.5	2.5	1.0	40	-	-
		54.5 - 57	2.5	0.8	32	-	-
		57 - 62	5	3.5	70	-	-
		62 - 67	2	2.2	44	-	-
		6/ - /Z 72 77	5	1.2	24	-	-
		12 - 11	J	2.2	44	-	-
3	72.4 - 100.3	77 - 80	3	1.6	53	-	_
		80 - 85.5	5.5	1.4	25	_	-
		85.5 - 86	0.5	0.5	100	-	-
		86 - 90	4	0.5	12	-	-
		90 - 92	2	0.3	15	-	-
		92 - 94	2	2.0	100	-	-
		94 - 98	4	2,3	57	-	-
4	100.3 - 129	98 - 102	4	3.2	80	_	
•		102 - 107	5	2.0	40	-	_
		107 - 112	5	1.5	30	-	_
		112 - 115	3	1.4	47	-	
		115 - 117	2	1.5	75	-	-
		117 - 119.5	2.5	1.5	60	-	-
		119.5 - 122	2.5	1.7	68	-	
		122 - 124	2	1.4	70	-	-
		124 - 129	5	0.8	16	-	-
5	129 - 171.5	129 - 132	3	1.6	53	-	_
		132 - 135	3	2.2	73	-	-
		135 - 138	3	1.2	40	-	-
		138 - 142	4	1.3	32	-	-
		142 - 147	5	1.2	24	-	-
		147 - 152	5	0	0	-	-

 $\left[\right]$

[

[]

Π

 \Box

Π

 \square

 \Box

Π

Π

[]

Γ

Π

D				Core Rec	covered	RQD	
No.	(feet)	Run (feet)	Interval (f c et)	feet	%	feet	%
		152 - 157	5	1.4	28	-	_
		1 <i>5</i> 7 - 162	5	1.2	24	-	-
		162 - 167	5	2.0	40	-	-
		167 - 172	5	2.0	40	-	-
6	171.5 - 208	172 - 177	5	2.3	46	_	_
		177 - 182	5	1.3	26	-	_
		182 - 187	5	0.3	6	-	-
		187 - 192	5	0.2	ů,	~	_
		192 - 194	2	1.7	85	-	-
		194 - 196	2	0.4	20		-
		196 - 198	2	0.4	20	-	-
		198 - 199 . 5	1.5	0.8	53	-	-
		199.5 - 202	2.5	1.8	72	-	-
		202 - 204	2 '	0.5	25	-	-
		204 - 208	4	0.8	20	-	-
7	208 - 237	208 - 212	4	1.0	25	_	_
•		212 - 215.5	3.5	2.0	57	_	_
		215.5 - 218	2.5	1.2	48	_	_
		218 - 222	4	1.2	30		-
		222 - 226	4	1.3	32	-	
		226 - 232	8	2.6	32	_	
		232 - 237	5	2.6	52	0.4	15
8	237 - 266.3	237 - 242	5	12	24	_	
Ŭ	237 20013	247 - 247	5	1 3	26	_	-
		247 - 252	5	0.7	14	_	_
		252 - 257	5	2.5	50	_	_
		257 - 262	5	3.7	74	_	_
		262 - 267	5	4.9	98	3.2	65
9	266 3 - 284 1	767 _ 777	5	43	86	2 2	74
,	200,9 - 207.1	207 - 272	5	4.5	94	2.4	7 4 56
		277 - 282	5	4.7	94	2.9	62
10	29/1 202	202 207	F	2.0	E/		
10	204.1 - 303	202 - 201 207 - 202	5	Z.S	26	-	-
		201 - 272 202 202	ン ル	4.)	9U 07	2.8	62
		272 - 270 796 - 709	4	2.J 2 A	8/ 27	U./	20
		270 - 277 299 - 202 5	25	2.0	07 Q1	07	- 22
		277 - JUZIJ	J.J.	2.2	71	0./	22

 $\left[\right]$

 \Box

 \Box

[]

0

Ū

Ū

Π

Ū

[]

[]

Γ

 \Box

Π

[]

[]

				Core Recovered		ROD	
Box No.	From - To (f ce t)	Run (f ee t)	Interval (f ee t)	f ce t	%	feet	%
			-				
11	303 - 321.7	302.5 - 305	2.5	2.5	100	_	_
		305 - 309	4	4.0	100	1.9	- 48
		309 - 312	3	2.6	87	1.3	50
		312 - 317	5	3.7	74	2.0	54
		317 - 319	2	1.8	90		-
		319 - 323	4	4.0	100	0.4	10
12	321.7 - 338.3	323 - 328	5	4.8	96	1.8	37
		328 - 333	5	4.0	80	-	-
		333 - 335.5	2.5	2.0	80	-	-
13	338.3 - 355.3	335.5 - 340.5	5	5.0	100	1.5	30
		340.5 - 343	2.5	2.3	92	-	-
		343 - 346	3	2.7	90	-	-
		346 - 349.5	3.5	3.5	100	1.0	29
		349.5 - 352	2.5	2.5	100	1.7	68
14	355.3 - 372	352 - 357	5	5.0	100	3.1	62
		357 - 361	4	4.0	100	1.3	32
		361 - 366	5	4.8	96	2.3	48
		366 - 368	2	1.7	85	0.7	41
		368 - 369.5	1.5	1.0	67	-	-
15	372 - 387	369.5 - 374.5	5	4.8	96	1.2	25
		374.5 - 377.5	3	2.4	80	-	-
		377.5 - 382	4.5	4.2	93	-	-
		382 - 385	3	2.7	90	-	-
16	387 - 403	385 - 390	5	4.3	86	-	-
		390 - 395	5	4.5	90	1.0	22
		395 - 400.5	5.5	5.5	100	1.3	24
		400.5 - 402	1.5	1.5	100	1.3	87
17	403 - 420.5	402 - 407	5	4.8	96	2.2	46
		407 - 410	3	2.6	87	-	-
		410 - 415.5	5.5	3.9	71	-	-
		415.5 - 418.5	3	1.2	40	-	-
18	402.5 - 442.7	418.5 - 422	3.5	2.2	63	-	-
		422 - 427	5	2.3	46	-	
		427 - 431.5	4.5	1.2	27	-	-
		431.5 - 437	5.5	3.7	67	-	-
		437 - 438.5	1.5	1.3	87		<u>ب</u> بد
		438.2 - 442	3.5	3.3	94	0.7	21

_	From - To (feet)	Run (feet)	Interval (feet)	Core Recovered		RQD	
Box No.				feet	%	feet	%
19	442.7 - 460.3	442 - 447	5	4.0	80	0.8	20
		447 - 452	5	3.8	76	1.2	32
		452 - 456.2	4.5	3.5	78	-	
	,	456.5 - 461.5	5	4.7	94	1.4	30
20	460 3 - 476	461 5 - 466	45	<i>μ</i> ο	80	0.6	15
20	10012 - 170	401.7 - 400	4.2	7.0	67	0.0	12
		400 - 470	5	5.0	100	1.7	12
		470 - 475	<i>,</i>	2.0	100	1.2	24
21	476 - 492.4	475 - 480	5	4.7	94	0.8	17
		480 - 485	5	5.0	100	1.9	38
		485 - 490	5	4.6	92	2.5	54
		490 - 492	2	1.3	65		-
	100 h 500	100 kor	•				
22	492.4 - 200	492 - 495	3	2.5	83	1.2	48
		495 - 497	2	1.5	75	0.4	27
		497 - 500	3	2.1	70	-	

END OF HOLE

 \Box
APPENDIX 3

.

 $\left[\right]$

 \Box

Γ

Ū

Ū

Ū

Π

Û

Π

Π

IJ

 \Box

Π

DIAMOND DRILL CORE ANALYSES

.

Specialists in Mineral Environments 705 West 15th Street North Vancouver, B.C. Canada V7M 112

PHONE: (604)980-5814 OR (604)988-4524

Π

TELEX: VIA USA 7601067 UC

Certificate of GEOCHEM

Company:EQUITY SILVER MINES Troject: Attention:R.ROBERTSON/T.HEARD

File:8-120/Pt Date:FEB 7/88 Type:ROCK GEOCHEM

He hereby certify the following results for samples submitted.

Sample Number	AG PPM	AU-FIRE PPB	
87P 1001 87P 1002 87P 1003 87P 1003 87P 1004 87P 1005	2.1 1.8 1.1 1.7 1.8	3 19 6 12 7	
87F 1006 87F 1007 87F 1008 87F 1008 87F 1009 87F 1010	0.8 1.7 1.4 1.3 1.5	13 55 235 183 6	
B7F 1011 B7F 1012 B7F 1013 B7F 1014 B7F 1015	1.2 1.1 0.6 1.7 1.4	7 13 8 6 4	
87F 1016 87F 1017 87F 1018 87F 1018 87F 1019 87F 1020	3.8 2.3 1.7 1.8 1.5	8 12 15 10 8	
87P 1021 087P 1022 087P 1023 87P 1024 087P 1025	1.1 0.9 2.1 1.7 3.1	21 6 5 4 13	
U87F 1026 87F 1027 D87F 1028 87F 1029 87F 1029 87F 1030	3.9 1.8 1.4 1.7 1.8	11 8 6 7 6	
[] []		Certified hy	Burniah

Specialists in Hineral Environments

705 West 15th Street North Vancouver, B.C. Canada V7M 1T2

HONE: (604)980-5814 DR (604)988-4524

 \int

TELEX:VIA USA 7601067 UC

<u>Certificate of GEOCHEM</u>

Company: EQUITY SILVER MINES Project:

Attention: R. RODERTSON/T. HEARD

File:8-120/P2 Date:FEB 7/88 Type:ROCM GEOCHEM

1

<u>We hereby certify</u> the following results for samples submitted.

J }			
Sample Alumber	AG PPM	AU-FIRE PPB	
67P 1031 67P 1032 D17P 1033 67P 1034 87P 1035	0.8 1.1 2.4 3.6 2.1	5 4 3 12 9	
87F 1036 879 2001 87P 2002 87F 2003 87F 2003 87F 2004	2.0 1.6 3.1 1.3 1.2	20 8 13 25 28	
7P 2005 7P 2006 87P 2007 87P 2007 87P 2008 \$7P 2009	1.8 1.7 2.9 0.8 6.3	20 45 88 135 8	
87P 2010 R7P 2011 87P 2012 87P 2013 R7P 2013	1.8 1.7 1.1 1.3 1.2	14 31 4 7 35	
87F 2015 87F 2016 87F 2017 87F 2017 87F 2018 87F 2019	1.3 1.6 0.8 0.7 0.7	25 18 11 32 17	
87F 2020 87F 2021 87F 2022 87F 2022 87F 2023 87F 2023 87F 2024	1.2 2.2 1.1 2.1 0.6	6 62 45 85 23	

Certified by

Specialists in Mineral Environments

705 West 15th Street North Vancouver, B.C. Canada V7M 1T2

HDNE: (604)980-5814 DR (604)988-4524

[]

Ŀ

Ũ

 $\left[\right]$

 \Box

TELEX: VIA USA 7601067 UC

<u>Certificate of GEOCHEM</u>

Company:EQUITY SILVER MINES Project: Ditention:R.ROBERTSON/T.HEARD

File:8-120/P3 Date:FEB 7/88 Type:ROCK GEOCHEM

<u>We hereby certify the following results for samples submitted.</u>

·			
Sample	AG	AU-FIRE	
Number	F'FM	PPB	
U7P 2025	4.2	49	
87P 2026	2.1	17	
U7P 2027	1.9	12	
U7P 2028	3.7	6	
87P 2029	1.8	13	
B7P 2030 37P 2031 B7P 2032 B7P 2033 B7P 2033 B7P 2034	1.9 2.0 1.7 1.1 0.9	40 29 49 21 23	***************************************
7P 2035 7P 2036 87P 2037 87P 2038 7P 2038 7B 3001	1.0 1.7 2.3 2.2 2.1	20 72 16 59 8	
878 3002	2.0	11	
78 3003	2.4	17	
378 3004	1.1	6	
878 3005	1.6	3	
878 3006	1.2	5	
47B 3007	3.8	4	
87B 3008	1.0	10	
87B 3009	2.0	2	
87B 3010	1.6	11	
87B 3011	2.0	8	
37B 3012	1.5	1	
97B 3013	2.4	6	
87B 3014	2.0	5	
37B 3015	2.5	13	
87B 3016	2.2	4	

Certified by_

Specialists in Hineral Environments

705 West 15th Street North Vancouver, B.C. Canada V7M 1T2

HONE: (604)980-5814 OR (604)988-4524

Γ

Ω

 $\left[\right]$

 \Box

TELEX: VIA USA 7501067 UC

Certificate of GEOCHEM

Company: EQUITY SILVER MINES Project:

httention:R.ROBERTSON/T.HEARD

File:8-120/P4 Date:FEB 7/88 Type:ROCK GEOCHEM

<u>He hereby certify</u> the following results for samples submitted.

			· · · · · · · · · · · · · · · · · · ·
Sample	AG	AU-FIRE	
Number	PPM	PPB	
CB7B 3017	2.4	2	
B7B 3018	2.0	7	
CB7B 3019	2.1	4	
CB7B 3020	2.2	1	
G7B 3021	2.0	1	
07B 3022 37B 3023 87F 3024 07B 3025 97B 3025 97B 3024	1.7 0.8 1.0 2.2 2.3	8 3 7 4 10	· · · · · · · · · · · · · · · · · · ·
97B 3027	2.4	9	
7B 3028	2.0	1	
87B 3029	2.3	3	
87B 3030	2.1	3	
97B 3031	2.0	4	
87B 3032	2.1	11	
87B 3033	2.3	5	
87B 3034	2.7	7	
87B 3035	2.0	9	
87B 3036	2.3	4	
US7B 3037	1.8	15	
87B 3038	1.7	88	
D37B 3039	1.5	19	
D37B 3040	2.1	10	
87B 3041	2.0	18	
87B 3042 87B 3043 87B 3043 87B 3044 97B 3045 87B 3045	1.9 1.6 2.0 1.2 1.7	28 94 1000 163 118	

Certified by MIN-EN LABORATORIES LTD.

Specialists in Hineral Environments

705 West 15th Street North Vancouver, B.C. Canada V7M 172

PHONE: (604)980~5814 OR (604)988-4524

[]

TELEX:VIA USA 7601067 UC

Certificate of GEOCHEM

Company:EQUITY SILVER MINES Froject: Attention:R.ROBERTSON/T.HEARD

File:8-120/P5 Date:FEB 7/88 Type:ROCK GEOCHEM

<u>We hereby certify the following results for samples submitted.</u>

/ \			
Jample Number	AG F'PM	AU-FIRE PPB	
878 3047 878 3048 978 3049 878 3050 878 3051	2.4 2.0 1.0 2.3 1.6	154 48 137 35 30	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
878 3052 878 3053 878 3054 878 3055 878 3055 878 3056	2.0 1.0 1.2 0.8 2.0	12 13 19 23 20	
878 3057 878 3058 878 3059 978 3060 878 3061	1.0 1.0 2.0 1.9 1.8	21 12 48 32 26	
87B 3062 87B 3063 87B 3064 87B 3065 87B 3066	1.7 1.2 1.4 2.0 2.6	7 3 18 24 11	
878 3067 878 3068 878 3069	1.3 2.2 1.7	9 152 6	
<u>[</u>			
0	• 	~ <i></i>	\sim 1
		Certified by	Burnaih

MIN-EN	LABORATORIES	L.TD.
--------	--------------	-------

Specialists in Hineral Environments 705 West 15th Street North Vancouver. B.C. Canada V7M 1T2

HONE: 1604) 980-5814 OR (604) 988-4524

Ĺ

TELEX: VIA USA 7601067 UC

Analytical Report

Company:EOU(TY SILVEP MINES rolect: Attention:R.ROBERTSON/T.HEARD	File:8-120 Date:FEB 9788 Type:Ruth GEOCHEM
Bate Samples Received :FEB 2/88 Bamples Submitted by :R.ROBERISON/T.HEARD	
Report on	
Conversent to: 1. EQUITY SILVER MINES. VANCOUVER. B.C. 2. 3.	
Samples: Sieved to mesh Ground to me	sh
Brevared samples stored:X discarded:	• • • • • • • • • • • • • • • • • • • •
Rethods of analysis:	
AG-ACID DIGESTION CHEMICAL ANALYSIS. AU-FIRE GEOCHEM.	
Nemarks	
Π	
Π	
D	
Π	
Π	
C	

Specialists in Mineral Environments

705 West 15th Street North Vancouver, B.C. Canada V7M 1T2

PHONE: (604)980-5814 OR (604)988-4524

}]

U

 $\left[\right]$

TELEX: VIA USA 7501067 UC

Certificate of GEOCHEM

Company:EQUITY SILVER MINES Protect: Attention:RONALD C.R.ROBERTSON

File:8-120/P1 Date:MAR 2/88 Type:ROCK GEOCHEM

He hereby certify the following results for samples submitted.

Bample Number	PD PPB	PT PPB	
B7P 1007 B7P 1008 B7P 1009 B7P 1017 B7P 1018	3 2 1 1 7	6 2 1 1 93	
87P 1019 B7P 1020 B7P 1021 B7P 1022 F7P 1023	2 2 2 2 2 2 2 2	4 9 3 9 7	
B7P 1024 B7P 1025 B7P 1025 B7P 1028 B7P 1029 B7P 2008	2 1 2 3 1	1 18 1 1 1 2 1 2 1	
B7P 2009 R7P 2010 B7P 2011 S7P 2012 B7P 2013	3 2 2 2 2 1	1 1 21 1 1	
B7P 2016 B7P 2017 B7P 2017 B7P 2018 B7P 2019 B7P 2020	2 1 2 2 2 2	1 4 20 5 10	
87P 2021 87P 2022 87P 2023 87P 2023 87P 2024 87P 2025	2 2 3 2 1	19 3 18 2 19	

Certified by

Specialists in Mineral Environments 705 West 15th Street North Vancouver, B.C. Canada V7N 172

PHONE: (604) 980-5814 OR (604) 988-4524

ו

Į

TELEX: VIA USA 7601067 UC

Certificate of Geochem

Company:EQUITY SILVER MINESFile:8-120/P2Project:Date:MAR 2/88Attention:RONALD C.R.ROBERTSONType:ROCK GEOCHEM

Ye hereby certify the following results for samples submitted.

Samp	ופ פר	PD PPB	PT PPB	
87P	2026 2027 2028 2079 2030	3 2 2 2 3	11 3 38 1 1	
87P 87P 87P 87P 87P 87P	2001 2002 2003 2003 2034 2035	2 4 5 2 3	6 21 4 12 1	
87P 87P 87P 87P 878 878	2036 2037 2038 300 (3 2 3 1 2	17 1 2 2 83	
B7B B7B 87B 97B 97B	3003 3004 3005 3006 3007	1 2 2 3 3	2 11 1 1 24	۱
878 378 3 378 3 878 3 878 3	3008 3009 3010 3011 3012	2 6 2 2 4	22 11 12 1 12	
878 978 978 878 878	3013 3014 3019 3016 3017	7 5 2 3 2	213 30 7 110 122	

Certified by

Specialists in Hineral Environments 705 West 15th Street North Vancouver, B.C. Canada V7M 132

PHONE: (604)980-5814 DR (604)988-4524

TELEX:VIA USA 7601067 UC

Certificate of Geochem

Company:EDUITY SILVER MINES

Attention: RONALD C.R. ROBERTSON

File:8-120/P3 Date:MAR 2/88 Type:ROCK GEOCHEM

<u>We hereby certify the following results for samples submitted.</u>

Sample Number	ପମ୍ଭ ମୁକ୍ୟ ମୁକ୍ୟ	PT PB	 	 	
878 3018 878 3019 878 3020 878 3021 878 3022	1 3 2 2 3	1 1 12 1 297			
B7B 3023 B7R 3024 B7B 3025 B7B 3026 B7B 3027	2 2 4 7 2	1 21 58 54 10		 	
B7B 3028 7B 3029 87B 3030 F7B 3031 B7B 3032	3 5 2 4 33	38 23 32 22 88	 	 	
978 3033 878 3034 878 3035 878 3035 878 3036 7378 3044	ద ద 4 7 కు	145 1 51 23 33	 		
878 3045 878 3046 978 3047 878 3048 878 3049	10 2 3 2 1	5 39 54 1 3	 	 	
U978 3065 878 3066 878 3067 878 3068 878 3068 878 3069	1 3 4 1 3	9 36 1 28 1	 		
				 1	······

Certified by

MIN-EN LABORATORIES LTD. Specialists in Hineral Environments 705 West 15th Street North Vancouver, B.C. Canada V7N 172 2HONE; (604)980-5814 DR (604)988-4524 TELEX: VIA USA 7601067 UC ************ Analytical Report pompany:EQU(TY SILVER MINES File:8-120 Protect: Date: MAR 3/88 Attention:RONALD C.R.ROBERTSON Type: PULP GEOCHEM Date Samples Received : MAR 1/88 Bamples Submitted by :R.ROBERTSON Report on Geochem Samples $\left[\right]$ Samples Copies sent to: 1. EQUITY SILVER MINES. VANCOUVER, B.C. 2. R.ROBERTSON, VANCOUVER. B.C. з. Samples: Sieved to mesh Ground to mesh Prepared samples stored:.....X..... discarded:..... resects stored:..... discarded:..... Methods of analysis: PD PT-FIRE Remarks l \prod []

	COMPANT: EQUITE SH	A A E H A F H E	S			МІМ-ЕМ ЦА	NBS ICP A	EPORT		ACT;F31 PAGE 1 OF 1
	PROJECT NO:			705 WEST	I STH	ST NORI	TH VANCO	JVER, 8.C. V™H	172	FILE NO: 8-120/P1+2
	ATTENTION: R.ROBER	TSON/T, HE	ARD		(604	1980-5814	DR (604	1988-4524	+ TYPE ROCK GEOCHEI	A + DATE:FEB 17. 1988
نب)	VALUES IN PPN 1	AS	CU	NI NI	P8	ZN	£.R			
	87P 1001	33	51		77	65	·			
n	878 1002	57	40		24	40 1.1	01			
	071 1002 070 1003	40	17/	ז יד	20	00	16			
C)	075 1000 070 1004	40	136	/6	25	162	/5			
_	878 1009 878 1005	17	1/5	121	33	230	64			
	020 1001	13	138	114		240	67			
U	877 1005	21	145	118	27	248	84			
	878 1007	50	83	23	30	94	95			
	87P 1008	28	51	20	34	53	210			
	87P 1009	407	17	947	21	36	399			
U	87P 1010	16	4	22	21	40	142			
	87P 1011	10	4	14	17	29	141		*********	
	87P 1012	15	1	23	14	29	105			
	87P 1013	4	j	8	11	30	101			
	87P 1014	7	2	71	15	32	177			
-	87P 1015	68	13	290	32	47	275			
	87P 1016		18		70	121	114			
\square	87P 1017	26	67		74	57	(50			
	878 1619	27	4	516	14	10	141			
n	87P 1019	17	77	100	70 70	70	201			
12	070 1070	7	- JD { L	9V7 DIA	20	9.) 20	201			
U	075 1020	;,,		01V			222			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	878 1023	15	32	876	10	27	3/4			
Π	877 IV22	14	5	96/	21	25	402			
U	878 1023	4	8	463	23	24	385			
	B7P 1024	9	50	299	29	52	137			
	87P 1025	16	<u> </u>	<u>919</u>	15		345			
	87P 1025	6	53	24	25	-63	63			
U	87P 1027	22	53	129	27	63	82			
	87P 1028	16	9	945	19	23	291			
	879 1029	14	11	932	19	17	297			
U	87P 1030	10	76	i4	16	84	52			
	879 1031	12	40	6	30	60	83			
_	87P 1032	11	81	10	22	61	61			
[]	87P 1033	2	72	12	20	82	58			
C	87P 1034	5	77	6	23	98	72			
_	B7P 1035	2	90	8	24	97	67			
Π	87P 1036	10	89	}	25	95	71			~ = = = = = = = = = = = = = = = = = = =
U	87P 2001	5	135	7	44	124	81			
	87P 2002	5	127	11	34	105	57			
	87P 2003	[7	(07	54	29	189	209			
	87P 2004	5	59	18	23	135	122			
	97P 2005	17	67	26	26	133	196			
	87P 2006	14	67	25	31	158	144			
	87P 2007	16	48	19	33	150	198			
U	87P 2008	q	76		24	900 97	154			
	070 7000	10	50	4	75	40	207			
	070 70 10		JB	7 7		77	170			
1	070 7ATI	17	71	70	10	11	120			
\cup	07F 2011	12	71	37	३८ 74	101	137			
	0(F 10)1 070 00(7	100	32	932	21 21	52	233			
	07P 2013	103	12	765	24	50	268			
	B/Y 2014			R13	18	52				
	877 2015	35	64	327	34	134	308			
	87P 2016	250	16	965	26	36	428			
	87P 2017	200	25	84B	23	42	389			
U	87P 2018	75	64	363	34	107	298			
	87P 2019	149	10	1024	- 19	22	336			
	87P 2020	96	5	1009	32	21	440			
	87P 2021	203	26	889	30	54	340			
	87P 2022	115	5	1079	23	17	334			
—	87P 2023	116	69	503	40	134	231			
11	87P 2024	53	94	109	30	176	225			
U –										

	COMPANY: EQUITA	SILVER MINE	5		I	MIN-EN LA	ABS ICE REPORT	1	- 31	SETT PAGE 1 OF 1
11	PROJECT NO:			705 WES	1 15TH	ST. NOR	TH VANCOUVER.	8.C. V78 1T2	ור	FILE NO: 9-120/PT+4
[_]	ATTENTION: R.RO	RERTSON/T, HE	ARD		(604	980-581	OR (604)988-	4524 +	TYPE ROCK GEOCHEM +	DATE: FEB 12. 1988
_	IVALUES IN PPH	AS AS	CU	NI	PB	7 N	CR			
11	878 2025	20	46	677	28	98	300		9 - 4 - 6 - 7 + 6 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	
U	87P 2026	15	14	898	22	34	569			
	87P 2027	12	10	815	19	23	714			
	877 2028 030 0000	11	7	939	20	22	766			
	878 2029	19	10	775		19	706			
	878 2030 978 7031	343	9	1273	6	18	579			
	878 2031	197	7 5	1210	10	15	282			
	87P 2033	115	., S	1921	10	12	549			
	878 2034	160	3 5	1027	19	16	444 701			
	87P 2035	217	8		23		300			
11	87P 2036	28	98	45	19	82	232			
L	87P 2037	114	65	12	27	65	117			
_	B7P 2038	22	83	14	19	76	158			
[]	878 3001	33	13	1198	18	41	1331			
L	878 3002	10	14	1329	19	30	B44		******	
	87B 3003	14	12	1554	2	28	793			
Π	978 3004	17	11	1442	7	31	900			
U	87B 3005	3	13	1467	54	26	754			
	8/8 3005	4) 	····- <u>7</u>	1385	15		780			
	575 30V7 575 3007	12	,	1437	12	24	//8			
	078 JUNO 978 JUNO	J 7	12	1 100	19	23	840			
	878 3010	1	14	1070	7 19	20 37	007 012			
	878 3011	13	.ч В	1434	15	30 70	585			
	878 3012	······	<u>-</u>	1524	10	32	591			
	87B 3013	24	, B	1136	13	30	683			
-	87B 3014	22	6	1395	7	31	790			
	87B 3015	23	11	1347	10	30	724			
U U	878 3015	10	6	1367	15	33	919			
_	87B 3017	26	19	1407	14	39	1449			
	878 3018	31	36	1233	25	50	1293			
	878 3019	18	9	1429	13	38	1147			
	878 3020	5	4	1549	9	29	837			
	87B 3021	15		1422	5	38	1240			
U	878 3022 070 7007	30 77	10	[344	14	39	1377			
	070 TADA	30	1	1314		44	1492			
	070 3024 070 3025	31	1 2	1330	19	38	1317			
U	979 3025	52 16	8	1000	16	20	070			
	878 3027			1234		34	1248			
	878 3028	18	9	1307	7	34	1271			
	978 3029	29	15	1130	12	45	1427			
~	878 3030	19	Ц	1252	10	38	1255			
n	87B 3031	54	29	<u>i 355</u>	20	58	1654			
]	878 3032	27	44	670	21	51	752			
	87B 3033	31	15	1187	15	33	1064			
0	87B 3034	26	16	1301	14	37	1193			
	87B 3035	36	19	1125	19	41	1231			
U	8/8 3036	18		<u> </u>	<u>1/</u>	40	670		*****	
~	0/0 3VJ/ 878 7870	20 17	0/ 57	72	22	¥0 12	17V 177			
	979 3030 979 3039	27 34	33 175	7#	24 07	00 197	00 1//			
U	878 3640	20 29	100	10	71 71	711 779	78 175			
	878 3041	20	90) 90	35	90 91	235	474 90			
Π	878 3042	·	130	71	17	173	88			
Ľ	878 3043	28	131	, 75	37	230	127			
	87B 3044	82	49	7	29	66	131			
	87B 3045	31	65	35	30	149	133			
U	878 3046	27	- 56	31	29	176	200			

_	COMPANY: EQUITY SIL	VER HINES			MIN-E	N LABS 1	CP REPORT		ACTIFIC PAGE 1 AC 1
	PROJECT NO:			705 NEST	ISTH ST	NORTH V	ANCOUVER, B.C.	V7N 172	
	ATTENCION: R.ROBERT	SON/T.REAG	0		(604)980-	5814 OR	(604)988-4574	 TYPE BUCK SEACHER 	FILE NU: 6-120783
	VALUES IN PPH 1	AS	Cü	NI	PB	28	CR		* UNILITED 11. 1988
	878 3047	23	68	27	31	154	{51		*****
	878 3048	30	64	28	24	126	155		
U	878 3049	21	61	15	17	60	252		
	878 3050	29	89	60	33	181	123		
Π	878 3051	62	12	1029	25	27	357		
L	978 3052	28	80	117	28	154	131	*	
	97R 3053	24	115	84	28	178	42		
	87B 3054	24	90	4B	22	128	214		
11	87B 3055	24	84	35	17	144	131		
	878 3056	36	83	54	30	264	149		
-	878 3057	23	75	32	25	547	171		*************************
11	878 3058	22	72	32	18	136	186		
	87R 3059	24	47	30	16	88	21 8		
	978 3060	32	68	41	32	149	169		
Π	87B 3061	24	64	30	24	90	241		
	87B 3062	35	59	52	30	92	176		
	87B 3063	33	80	39	24	108	245		
	B78 3064	33	66	43	28	131	223		
	878 3065	264	13	785	14	25	338		
	878 3066	334	13	1017	21	22	380		
_	87R 3067	42	72	80	26	105	147		
	878 3068	321	17	7 79	23	26	240		
IJ	878 3069	29	69	50	24	76	215		

[]

[]

[]

[

[]

MIN-EN LABORATORIES L Specialists in Hineral Environments 705 West 15th Street North Vancouver, B.C. Canada V7H 172	_TD.
PHONE: (604)980-5814 DR (604)988-4524	TELEX:VIA USA 7601067 UC
Analytical Report	
Company:EQUITY SILVER MINES	File:8-120R
ttention:R.ROBERTSON/T.HEARD	Type:ROCK GEOCHEM
P	
Date Samples Received :FEB 2/88	
R, RUBER SUDMITTED BV :R, RUBER SUN/1, HEARD	
L'eport on	Geochem Samples
	Assay Samples
Copies sent to: 1. EQUITY SILVER MINES, VANCOUVER, B.C. 2. R.ROBERTSON, VANCOUVER, B.C. 3. Damples: Sieved to mesh	
Prepared samples stored:X discarded:	
Methods of analysis:	
6 ELEMENT TRACE ICP	
Remarks	

Π

Bondar-Clegg & Company Ltd. 130 Pemberton Ave Notth Vancouver, B C Canada V7P 2R5 Phone: [604] 985-068] Telex. 04-352667

° 0.0

國政府

1

Π

 \Box

Π

_ _

Π					~						
-	REPORT: V88-	N3772.0						P	ROJECT: THIBERT	PAGF	1
	SAMPLE Number	ELFMENT UNITS	Au 3Ng PPR	Pt PPB	Pd PPN	Ag PPN	Cu PPM	N1 PPN	Ås PPM		
	02 87-P-1 21	4-215	<5	21	4	0.1	2	1600	<2		
] (D2 87-P-1 25	7-258	20	20	6	0.2	45	500	390		
	D2 87-P-1 25	8-259	<5	20	4	<0.1	45	200	140		
-	D2 87-P-1 25	9-2611	9	20	4	<0.1	75	40	20		
	02 87-P-1 26	n-261	10	30	4	<0.1	40	30	13		

.

• •

- - - -____ ---------- -

------ ------. --- -

Bondar-Clegg & Company Ltd. 130 Pemberton Ave North Vancouver, B C Canada V7P 2R5 Phone (604) 935 0681 Telex 04-352667

L

Π

Π

C

С

U

Geochemical Lab Report

REPORT: V88-D3772.A (COMPLETE)

CITENT: FOUTTY STIVER MINES LTD. PROJECT: THIBERT **REFERENCE INFO:**

Side Sec

SUBMITTED BY: R. ROBERTSON DATE PRINTED: 8-JUN-88

ORDER	EL	EMENT	NUMBER OF Analyses	LOWER Detection limit	EXIRACTION		METHOD	
1	Au 30g	Gold 30 grams	5	5 PPB	FJRF-ASSAY		Fire Assay A	4
2	Pt	Platinum	5	15 PPB	FIRE-ASSAY		·	
3	Pd	Palladium	5	2 PPR	FJRE-ASSAY			
4	Ag	Silver	5	0.1 PPN	HN03-HCL HOT EX	IR	Atomic Absor	otion
5	Cu	Copper	5	1 PPM	HN03-HCL HOT FX	TR	Atomic Absor	otion
6	Ni	Nickel	5	2 PPN	HN03-HCL HOT EX	IR	Atomic Absor	otion
7	Â9	Arsenic	5	2 PPM	NITRIC PERCHLOR	DIG	Colourimetrie	;
SAMPLE	TYPES	NUMBER	SIZE FR	RACTIONS	NUMBER S	AMPLE	PREPARATIONS	NUMBER
D DRI	LL CORE	5	2 -15	 50	5 0	RUSH,F	 PULVERIZE -150	5

REPORT COPIES TO: FRUJTY STLVER MINES 1 TD. ROBERTSON, WALLIS & ASSOC

- ---- - ---- -

- -

. .

• • • • • •

INVOICE TO: FOUTTY SILVER MINES LTD. ROBERTSON, WALLIS & ASSOC

<u>TQ</u>	MPLE NUMBER	White (************************************	2 1 1.8 1.8	Box ukon Y1A 403) 668 A 5 3 5 3 5 3 40	5474 5H4 6970 NALYSE Cu 51 49	FOI Ni	TYPE: 1	II (1.5 	CLIENT:	-
<u>TQ:</u> SAN I SAN I Z J I I I I I I I I I I I I I	MPLE NUMBER	White (ећагsе, Үн <i>Ррм</i> <i>2</i> 1 1.8 1.1 1.9 1.8	ukon Y1A 403) 668 A A S 3 3 5 3 440	5H4 6970	FOI Ni	NI	pp Pd	IPB V D.	PROJECT CODE: BEOLOGIST: ' SAMPLER: '` REPORT NO: 8/120	
<u>TO:</u> <u>SAN</u> <u>I</u> <u>Z</u> <u>3</u> <u>4</u> <u>5</u> <u>6</u> <u>7</u> <u>6</u> <u>9</u> <u>10</u> <u>11</u> <u>12</u> <u>13</u> <u>14</u> <u>-</u>		2012 12 13 57 14 12 13 57 13	<u>ррм</u> 21 1.8 1.1 1.9 1.8	As 33 53 40	NALYSE Cu 51 49	FOI	ZN	IPS Pd	AB V D.	SAMPLER: 12	<u> </u>
SAA I Z SAA I Z J I I I I I I I I I I I I I	MPLE NUMBER	2015 2017 2017 2017 2017 2017 2017 2017 2017	С Ррм 2 1 1.8 1.1 1.9 1.8	As 33 53 40	NALYSE Ci 51 49	FOI Ni	ZN	115 Pd	APB D.	SAMPLER: 1	
SAN 1 2 3 4 5 6 7 6 9 10 	MPLE NUMBER	2 2 19 19 19 10 12 7 13	ррм 2 1 1.8 1.1 1.9 1.8	As 33 53 40	NALYSE Gr 51 49	FOI Ni II	ZN	115 Pd	10.	REPORT NO 8/120	
SAA 1 2 3 4 5 6 7 6 10 11 12 13 14		19 19 12 7 13	2 1.8 1.1 1.9 1.8	As 33 53 40	Gr 51 49	Ni 11	ZN	PL	1'01	الباللية فسرا	-
1 2 3 4 5 6 7 6 9 10 11 12 13 14		: 19 12 7 13	2 ·R · ·9 ·8	33 53 40	51	- 11	1	• <u>·</u>	1/t	feit(then 1)	H <u>e</u>
2 3 4 6 7 6 9 10 		19 6 12 7 13	1.8 1.1 1.9 1.8	53 40	49	-	65	-	<u> </u>	32.2-87.0	Ro
3 4 8 6 7 8 9 10 11 12 13 14		6 12 7 13	1.1 1.9 1.8	40		<u> 9</u>	66	-	<u> </u>	87.0-41.0	26
4 6 7 6 9 10 11 12 13 14		12 7 13	1.9		136	76	162		<u>.</u>	910 - 14.0	ZT
6 7 6 10 11 11 12 13 14	, , , ,	7	1.8	17	175	121	230	-	ļ —	940-960	<u></u> ‡3.
6 7 9 10 11 12 13 14		13	• · · · · · · · · · · · · · · · · · · ·	15	158	114	240	-	ļ —	760-1000	29
7 8 9 10 11 12 13 14	*	07	8.0	21	145	//8	248			NC C - 102 C	20
• • 10 11 12 13 14			17	50	83	23	94	3	6	102.0 - 104 5	211
9 10 11 12 13 14		235	14	28	51	20	53	2	2	1360-134.5	41
10 11 12 13 14	. Y C 1	183	1.3	407	/7	947	36	1	<u> </u>	161-5-163 11	43
11 12 13 14		6	15	16	4	22	40		 	1605-171.0	ςc
12		7	12	10	4	14	29		-	171.0 - 173 5	
13		13	1 • 1	15	/	23	29		<u> </u>	173.5-177.5	52
14		8	5.6	4	/	8	30	-	ļ	177.5- 182.5	54
	(بر 	6	1 • 7	7-	2	2/	32		ļ	182.5- 184.5	: .
	· ·	4	1.4	88	13	290	<i>47</i>	-	<u> </u>	187.2-189.5	ς.,
*		8	3.8		18	2	121			189-5 - 194-7	51
<u> </u>	·	_12	2 · 3	26	62	111	57	1		194.7-197.3	59
		15	1.7	23	44	85	48	7	93	199.6 - 244.0	608
19	19	·0	1.8	17	38	409	43	2	<u> </u>	204.0 - 207.4	62
20	4/ 1320	8	15	3	16	810	29	2	9	207.4-211.6	63
21		21	11	16	12	826	27	2	3	211.0 - 214.0	64 :
22	·····	6	0.9	.14	5	967	23	2	9	215-0 - 221-5	65 9
23			2.1	4	8	961	24	2	7	221.5-227.0	67'
24	<u>ــــــــــــــــــــــــــــــــــــ</u>	¥	1 7	9	50	299	52	2	<u> </u>	227.0-231.0	69
25		13	3.1	16	6	919	22	١	18	231.0 - 236 C	70
24	<u>²</u> ₁₉	<u> </u>	3.9	6	53	24	63			247.5-252.5	75-
27	27	8	1.8	22	53	129	63			252.5 - 256.0	רר
28	يد <u>(</u>	ь	1.4	16	9	945	23	2		291.5-296 2	38
29	21	<u> </u>	17	14	"	932	17	3	L L	3095-3133	94 .
30 × 1	+1130	6	18	10	76	14	84			3766 - 381.0	114
ERSIZE:	<u> </u>		D	ATE SAMP	LED'	<u>, , , , , , , , , , , , , , , , , , , </u>	د. <i>ل</i> ر			IMATE	
LPSI	~~ ~ ~ ~ ~		D	ATE SHIP		1 4 ,	. ~.				

0

1	ROBERTSON, V	VALLIS	& ASS	OCIAI	ſES	i				BHEET NONO	1
				Box	5474	BAMPLE	TYPE: 💆	1.	<u> </u>	CLIENT	
	Λ.	Wł -	nitehorse, Y	(403) 668	5H4 -6970	FRACTIC)Nº		•	PROJECT CODE	
<u>ro</u>		<u>، </u>	· (,~			1				SEOLOGIST	<u>. </u>
			······································							SANPLER	
1		PP 0	PAM A		WALYS	E FOI		ррЬ	PYD.	REPORT NO	
	3	1	14	#5	- Cur		22	Pa	P+	feit	۱ h
$\left \cdot \right $	<u> </u>	5	8.0	/2	40	6	60			3964 - 401.8	IZO
-			1.1		8/	/0	8/		 	401.3 - 406 5	122
			1.4		+2	$\frac{n}{1}$	82	┣┈───	<u> </u>	406 5- 410 0	,23 ·
		- <u>}</u>	5.6	\$	++	6	98	 		412.2 - 416 1	125
┝┷┼			2.1	2	90	8	97	 	 	416 - 423.0	1.5
└ •		20	2.0	/0	89		95		┣───	460.0.4674	
┝╶┼	<u> </u>	8	1.6	5	135	7	124		<u> </u>	115-165	1:5
		13	3-1	5	/27	//	106		-	165-22 z	50
		25	1.3	17	107	<u>\$4</u>	189			220-25-0	6.7 -
		~~	1.2	6	57	18	135			29.0.35.5	8.ප
<u>-''</u> +		20	1.8	/7	67	_26	/33		_	35.5-405	10 ୧
		45	<u> /·)</u>	14	67	25	158	-		422-45.0	12 1
		- 87	29	16	68	/9	150	-		45.0 - 52.0	127
14		135	8.0	9	76	4	83	1	2	52.2 - 53.5	158
			6.3	/2	58	4	68	3	<u> </u>	2.2.2.	169
		14	1.8	7	63	3	77	2	<u> </u>	57-5-65-6	181
		31	/ +	13	71	39	101	2	21	+4.0 - 74.0	2_
	· · · · · · · · · · · · · · · · · · ·	6	//	155	52	432	82	2		79.6-32.5	24 (
19	'	<u>}</u>	/.3	101	/2	966	30	. 1		32.5-35.5	251
20	1.4		/-2	35	28	815	52		-	82.2-33.0	26
21		25	/ 3]2	64	327	134	-		チョン・ イン 5	Z6.
		8/	/6	250	16	965	36	2	_ 1	14.c - 97 c	28.0
			0.8	200	25	848	42	1	4	970-101.5	29.0
24		32	0)	75	64	363	107	2	20	1035-110.7	31.5
43	17	/구	0.9	149	10	1024	22	2	5	112 6 - 115.0	34.1
26	5+ X L 2 2 2	6	/.2	96	5	1009	2/	2	10	115.0 - 118.0	35 c
27	· · · · · · · · · · · · · · · · · · ·	61	2.2	203	26	889	54	2	19	118.6 - 120 C	36 0
20		45	1.1	115	5	1079	17	2	3	120 0 - 122 0	366
29	·	85	2.1	116	69	503	134	3	18	122.0-1250	37 2
30	_ 14	23	0.6	53	94	109	176	2	2	125.0 - 127.5	38
/ERS 2	iti		D	ATE SAMP	LED'		-	_ (08T EST		

	RUDERISUN, W	White	& ASS	Box ukon Y1A (403) 668-	5474 5H4 6970	SAMPLE FRACTIO	TYPE:	·	1=	CLIENT:
<u>ro</u>	<u> </u>	- (7	<u> </u>			1				SEOLOSISTI A
		· · · ·								SAMPLER: 1. hr.fr
	r	110		X	NALYS	E FOI		115	no b	REPORT NO
	SAMPLE NUMBER	Au	1Ag	As	a	Ni	2~	Pd	14	fect
-		49	4·2	20	46	677	98	1	19	1287-132.5
2		17	2.1	15	14	898	34	3	11	132 5-137.0
3		12	1.9	12	10	815	23	2	3	137.0 - 142.0
4		6	3.7	11	7	939	22	2	38	142.0 - 147 0
8	<u> </u>	13	1.8	19	10	775	19	2	1	242.0 - 246.0
•	- A 2 .	45	1.9	191	9	1273	18	3	1	246.0 - 252 0
7		29	2 2	168	9	12/0	16	2	6	252.0 - 257.0
•		68	/ 7	/87	5	1157	15	4	21	257-6-262.0
•			11	115	5	1024	16	5	4	262.0 - 263.0
10	ر. 	23	59	160	5	990	16	2	12	268.0 - 272.0
п		20	10	2/7	8	615	20	3	1	272.0 - 274.0
12		72	19	28	98	45	82	3	17	214.0 - 25/10
13		lь	2.3	114	66	12	65	2	7	474.5 - 4786
14	13R = 2	59	2.2	22	83	14	76	3	2	5030 - 5/62
18		8	2·/	33	13	1198	41	1	τ	463-45 2
14		11	20	10	14	1329	30	2	83	515-53.0
17		[7	24	/¥	12	1554	28	,	2	56 2 - 57.
10	· ·	6	11	/+	11	1442	3/	2	11	60 5 - 62.0
19		3	1.6	3	13	1467	26	2	1	64.8 - 67.0
20	·-	5	1.1	4	÷	1385	25	3	1	70 8 - 73.0
21		4	3.8	12	<u></u>	1437	24	3	2.6	75.8- 78.6
22		10	1.0	5	12	1360	29	2	22	84.1 - 80.5
23	•	2	2.0	≁	12	1396	26	6	11	41.7 - 96 3
24	-	<u> </u>	1.6	11	14	1449	33	2	12	48 8 - 104 U
25	11	8	2.0	13	8	1434	29	2	1	110.5-113 4
24	14		1.5	9	9	1524	32	4	12	115.5- 112.0
27		6	24	24	8	//36	30	2	213	118.0 - 121.7
28		5	20	22	6	1395	31	5	30	122 6 - 126 8
29		13	25	23	//	1347	30	2	2	134.4- 124.7
30	• . *	u i	22	10	6	/36-2	33	3		136.8 - 1213.2
	·····	K		4		-1				

-

÷

DATE REBULTS RECEIVED

		Whi	tehorse, Yu	1kon Y1A 403) 668-	5H4 -6970	FRACTIO	N:	!		PROJECT CODE	
<u>ro :</u>	<u></u>									SEOLOSIST:	
		· 41· 1	19.2							SAMPLER	
ſ		. npb	PPM	Å	NALYSE	F01		P15	Alb.	REPORT NO -	ר
	SAMPLE NUMBER	Au	A3	As	L Cu	N'	2~	Pd	Pt	Feet	1
		2	24	26	19	1407	39	2	122	145.2-147 0	• • •
	<u></u>	9	2.0	31	36	1233	50	. /	/	155.6-158.2	47
3		4	2./	18	9	1429	38	3	/	165-0 - 164 0	~ ~
-		<u> </u>	22	5	4	1549	29	2	12	1700-172.0	57
	· · · ·	<u> </u>	2.0	15	3	1422	38	2	/	174.7 - 173.3	53
•		2	1.7	30	10	1344	39	_3	297	1367-1372	52
		3	0.8	36	7	1314	44	2	1	142.3 - 144 4	58
		+	/ 0	31	5	1330	38	2	21	1976-148.8	63
•		4	22	32	6	1356	36	4	58	200 2 - 202.5	6.
10	······	10	23	16	8	1058	28	-	54	207-2 - 20416	. ,
-11	· · · · · · · · · · · · · · · · · · ·	9	24	29	8	1234	34	2	10	213.5- 2167	-5
12	· · ·	1	2.0	/8	9	1307	34	3	38	220 3-2233	63
13		3	2.3	29	15	1130	45	5	23	229.4 - 2346	69
14	ى	3	2.1	19	11	1252	38	2	32	240 3- 243.3	22
18	-	6	20	<i>S</i> 4	29	1355	58	4	22	251.3 - 252.0	24
10	<u></u>		21	27-	44	670	51	33	88	2545-257.0	÷د[
17		5	23	31	15	1187	33	6	145	258-3- 262 2	ਮ
18	٠.	9	2.7	26	16	1301	37	6	1	262.0 - 267.0	^{بر} د [
1.		9	20	36	19	1125	41	4	51	267-0- 274.0	
20		4	2.3	18	34	695	40	÷	23	2+4.0 - 2+3.4	
21	L	15	18	20	67	72	95			273.4- 282.0	
22		88	17	27	53	22	66			3130-3153	75
23		19	15	26	135	74	227			315.3 - 314 0]
24	· · · · · · · · · · · · · · · · · · ·	10	21	28	107	49	238			319.0 - 32.3.6]
25	4	18	20	24	28	35	213			3230 - 3270]
26	14 <u>-</u>	28	1.9	21	130	71	173			327.0 - 333.0]
27	1- j.	94	16	28	131	75	230			333.0 - 335.5	1
20	4	1000	20	82	49	7	66	6	33	335.5- 340 5	1
29	4 %	163	1.2	31	65	35	149	10	5	3405 - 346.0	1
30	849 142	118	1.7	27	66	31	/76	2	39	146.0- 352.0	1
	<u>_</u>	· · 1	A			·····	r.			<u></u>	1

	ROBERTSON, W	ALLIS	& ASSO	OCIAT	ES	SAMPLE	TYPE: -			LEHERT HONO		
	· .	Whit -	ehorse, Yu (4	Box Ikon Y1A 403) 668-	5474 5H4 6970	FRACTIO	NI		<u>.</u>			
10	<u>.</u>	<u>~.</u>				}				SEOLOSIST	•••	
		-				FO				SAMPLER:		
	SAMPLE NUMBER	Au	Aa	Ac	GL GL		2.1	101	1/10	Con t	ר	
1	· · · · · ·	150	2.4	2 1	68	22	152	2		74.4.5 . 74.5.7		
Ł	••	48	20	30	64	29	(26	2	1	276-2-382-0	٦,	
3		137	10	21	6/	15	60	1	3	3 = 2 - 4 - 3 = 5 - 4	1	
4		35	23	29	89	60	181			3435-3.75.2	┨"	
\$		30	1.6	62	12	1029	27		F	409.5-410 5	- .,	
•		12	20	28	80	117	154			4105 - 413 4	1	
7		, ,	19	24	115	84	/२८			4173-4185	יין	
•		4	12	24	90	4.8	128			43: 3 - 431 5],,	
•		23	08	24	34	35	144			433 3 - 433.5]0	
10		20	20	36	83	54	264			433 5-442.6		
n.	-	21	15	23	75	32	147			442.0 . 446.0		
12		12	10	22	72	32	136			4482-452.4]9	
13		48	20	24	47	30	88			453.2 - 452.5]0	
14	·	32	19	32	68	41	149			456 5- 461.5		
18	· · ·	26	1.8	24	64	30	90			461.5 - 466 0		
16	· · · · · · · · ·	7	/ >	35	69	52	92			466 c - 470 c		
17		3	12	33	80	39	/08	-		4700-475.0	4	
18		18	1.6	33	66	43	13/			475-0 - 479.6-	4	
19		- 24	2.0	264	13	285	25	/	9	479.6 - 455.0	4	
20	·	<u></u>	2.6	334	13	1017	22	3	36	485.0 - 489.0		
21		9	1.3	42	72	80	105	4	. /	484.0 - 491.2	4	
22		12	2.2	32/	/7	799	26		28	491.2 - 493 9	-	
			<u>··</u>	29	69	50	76	3	(4934-500 ()	-	
24											┥	
**											┥	
24 77				<u> </u>							┥	
•' • -				<u></u>					<u> </u>	· · · · · · · · · · · · · · · · · · ·	-	
									 	· · · · · · · · · · · · · · · · · · ·	-	
											┥	
••		l				ليسرا				L	1	
/En 1	BIZE:	,	D	ATE SAHI	LED:	•		'	COST EST	(IMAYE)	•	
	·	······	0	ATE SHII	PED:			<u> </u>	NVOICE	<u> </u>		
			D	ATE REN	LTS RECE	IVED:						

APPENDIX 4

 $\left[\right]$

Π

[]

D

Π

U

 \Box

Π

Γ

 \Box

Γ

Π

Π

DIAMOND DRILL CORE - PETROGRAPHIC REPORT

.

U

Π

Π

Π

 \Box

Π

 \prod

Π

 \Box

Π

Π

 $\left[\right]$

Π

Vancouver Petrographics Ltd.

JAMES VINNELL, Manuscr JOHN & PAYNE Pa D Geologist

P.O BOX 39 8887 NASH STREET FORT LANGLEY BC VOX 1JO

PHONE (604) 888-1323

Invoice 7263 March 1988

Report for: Ronald Robertson, Robertson, Wallis & Associates, 708 - 1155 West Pender Street, VANCOUVER, B.C., V6E 2P4

Copy + Invoice to: R.T. Heard, Equity Silver Mines Ltd., 708 - 1155 West Pender, VANCOUVER, B.C., V6E 2P4

Project: Equity Silver Mines - 1987 Core Samples

Samples: 87-P-1 -179, -193.5, -197.3, -223, -287, -288, -301.5, -399, -462, -492.3 -58.5, -65, -94.5, -120.1, -138, -160, -223, -245, -247, 87-P-2 -272.5, -363 87-B-3 -266, -3Ø1, -481, -487

Summary:

The rocks are divided into the following types:

Porphyritic Latite/Dacite Dike 1.

Phenocrysts of plagioclase and much fewer of biotite, quartz, and hornblende are set in a groundmass dominated by plagioclase with lesser sericite, quartz, dolomite, and in part, K-feldspar. Mafic phenocrysts are altered completely to muscovite/sericite-dolomite-(Ti-oxide). Plagioclase is altered slightly to sericite and dolomite.

87-P-1 179

87-P-1 193.5 flow banded, coarser grained bands with K-feldspar, finer grained band without

2. Altered Ultramafic Rocks

ranging from serpentinized peridotite and dunite to talc-carbonate altered rocks to dolomite-quartz-sericite altered rocks; altered rocks mostly contain relic chromite. Serpentinite contains magnetite (partly altered to hematite); some samples show relic magmatic textures. Strongly altered rocks commonly strongly sheared and tightly folded. Veins of serpentine, carbonate, talc and quartz are common. A few samples contain quartz-barite Arsenopyrite, pyrite and much less chalcopyrite form minor veins. dissemination grains in many of the altered ultramafic rocks.

(continued)

SAMPLE PREPARATION FOR MICROSTUDIES . PETROGRAPHIC REPORTS . SPECIAL GEOLOGY FIELD STUDIES

2A. Serpentinite

[

 \bigcup

Π

[

Γ

Π

Π

Γ

In a few samples relic magmatic textures are preserved. With increasing degree of deformation, these are destroyed as serpentine is recrystallized.

87-P-2	160	dunite/peridotite; patchy alteration to magnesite-talc
87-P-2	223	dunite; patches and veins of magnesite-talc
87-P-2	245	dunite; more strongly altered to magnesite-tal
87-B-3	266	peridotite; olivine-orthopyroxene; veins of carbonate-talc

2B. Carbonate-Talc Alteration

Carbonate probably is magnesite; however, optical properties cannot distinguish it from dolomite. Carbonate is indicated as magnesite in talc-carbonate alteration, and as dolomite or carbonate in carbonate-quartz-(sericite) alteration. Ankerite is tentatively distinguished on the basis of higher relief. Likewise, talc and sericite are similar optically; talc is indicated in talc-magnesite alteration, and sericite (and locally mariposite) is indicated in rocks with quartz.

87-P-2 245 with relics of serpentine

- 2C. Dolomite-Chert Alteration (sericite noted where abundant)
 - 87-P-1 197.3 abundant dolomite-quartz veins, no chromite
 - 87-P-1 223 brecciated dolomite; mariposite seams; two unidentified sulfides, no chromite
 - 87-P-2 94.5 veins of dolomite-quartz, quartz-barite
 - 87-P-2 120.1 quartz-barite veins
 - 87-P-2 138 ankerite-quartz-sericite; quartz-barite veins
 - 87-P-2 247 minor quartz-barite veinlet, minor pyrite

87-P-2 272.5 breccia; carbonate-quartz altered ultramafic rock fragments in quartz-carbonate-chalcedony groundmass

- 87-B-3 481 quartz-dolomite veins
- 87-B-3 487 dolomite-quartz-sericite; dolomite-(kaolinite quartz) veins

С

3. Chert with Dolomite-Quartz Replacement

[]

Π

Π

These samples are dominated by chert, cut by veins and replacement patches of dolomite-quartz. They probably have a different origin from the samples in Group 2, but similarities to the dolomitic-quartz-sericite alteration assemblage suggest that they may be related.

87-P-1 287 seams of carbonaceous opaque and of pyrite

87-P-1 288 seams of sericite-opaque-quartz with lenses of andesite; veins of dolomite-(kaolinite)

4. Dacite to Andesite Crystal Tuff, Tuffaceous Sediments

Rocks contain angular fragments of plagioclase, lesser quartz, and much less other minerals in an extremely fine grained tuffaceous groundmass.

- 87-P-1 399 abundant fragments of andesite flow; dolomitic groundmass; dolomite and calcite veins
- 87-P-1 462 andesitic tuffaceous sediment; veinlets of chlorite-calcite
- 87-P-1 492.3 bedded andesite tuff, one graded bed; veins of calcite-(chlorite-quartz-pyrite)
- 87-P-2 65 sheared cherty dacite tuff; ankerite alteration, quartz-ankerite veins
- 87-P-2 363 metamorphosed dacite tuff, brecciated, with veins of ankerite
- 87-B-3 301 metamorphosed dacite crystal tuff, quartz-dolomite veins

5. Volcanic Flow Rocks

- 87-P-1 301.5 andesite flow, wispy seams of pyrite; replacement patches of dolomite, and lenses of quartz-dolomite
- 87-P-2 58.5 metamorphosed dacite (?) : quartz-albite-sericiteankerite-pyrite alteration; quartz-(dolomite) veins

Citin Glayne

√John G. Payne 986-2928

87-P-1 179 Porphyritic Latite/Dacite

Γ

Π

Π

 \int

Π

 $\left[\right]$

Π

 \bigcup

Π

The rock contains phenocrysts of plagioclase and lesser biotite, quartz and hornblende in a groundmass of very fine grained plagioclase with lesser sericite and much less dolomite and quartz. Alteration of plagioclase phenocrysts is slight to moderate to sericite and lesser dolomite. Mafic phenocrysts are altered to muscovite-dolomite.

phenocrysts	
plagioclase	17-20%
biotite	3-4
hornblende	1
quartz	1
Ti-oxide	Ø.2
groundmass	
plagioclase	5Ø-55
sericite	17-20
dolomite	4-5
quartz	2-3

Plagioclase forms subhedral to euhedral phenocrysts up to 2 mm in size and clusters of similar phenocrysts. Composition probably is oligoclase. Alteration is variable from slight to moderate to extremely fine grained sericite and lesser patches of dolomite.

Biotite forms ragged to subhedral flakes up to 1.5 mm in size. It is altered completely to pseudomorphic muscovite with lenses and patches of dolomite and minor lenses of Ti-oxide parallel to cleavage.

Quartz forms a few anhedral phenocrysts, commonly with subrounded and slightly embayed borders. Most are from 0.1-0.3 mm in size, and one large one is 2 mm long.

Hornblende forms subhedral to euhedral phenocrysts from Ø.5-Ø.8 mm in size. It is replaced completely by dolomite with lesser sericite and minor Ti-oxide.

Ti-oxide forms scattered, equant patches averaging $\emptyset.1-\emptyset.2$ mm in size, with a few up to $\emptyset.4$ mm across.

In the groundmass, plagioclase forms anhedral, slightly interlocking grains averaging 0.03-0.1 mm in size. Sericite forms ragged flakes and clusters of flakes averaging 0.05-0.1 mm in length. Dolomite forms irregular patches averaging 0.2-0.3 mm in size, and a few up to 0.9 mm across. Quartz forms disseminated grains averaging 0.02-0.05 mm in size. Apatite forms subhedral prismatic grains up to 0.12 mm long. Pyrite forms an extremely fine grained lens in one biotite flake. It also occurs in some patches of Ti-oxide, probably as a replacement of Ti-oxide or parent ilmenite.

<u>87-P-1 193.5</u> Color-Banded Porphyritic Latite

Į

C

Ľ

F

[

The rock contains phenocrysts of plagioclase and minor biotite, quartz, and hornblende in a groundmass of plagioclase with minor K-feldspar and quartz, commonly concentrated in lenses, patches of ankerite and minor disseminated pyrite. Color banding (in hand sample) from pale to medium greyish green probably is caused by variation in grain size of the groundmass, with the darker color existing in layers with the finer grained groundmass.

pnenocrysts		
plagioclase	12-15%	
quartz	<pre>1- 2 (more in offcut block than i</pre>	n
biotite	Ø.5 thin section)	
hornblende	Ø.5	
apatite	trace	
Ti-oxide	trace	
groundmass		
plagioclase	60-65	
K-feldspar	10-12	
quartz	3-4	
sericite	4- 5	
dolomite	3-4	
apatite	Ø.2	
pyrite	Ø.1	

Plagioclase forms subhedral to euhedral phenocrysts from Ø.7-1.5 mm in average size. It is altered slightly to locally moderately to sericite. Cores of many phenocrysts are replaced completely by patches of extremely fine grained kaolinite with minor to moderately abundant dusty Ti-oxide and/or hematite.

Quartz forms a few equant to elongate phenocrysts up to 2 mm in size. It is more abundant in the stained offcut block than in the thin section.

Biotite forms a few subhedral phenocrysts up to 1 mm in size. It is replaced completely by muscovite with patches of dolomite and disseminated euhedral grains of Ti-oxide.

Hornblende forms a few euhedral phenocrysts in clusters up to 1 mm across. It is altered completely to extremely fine grained sericite with patches of dolomite/ankerite, and disseminated, euhedral equant grains of Ti-oxide and prismatic apatite.

Apatite forms a few elongate prismatic phenocrysts up to $\emptyset.3$ mm long. Ti-oxide forms equant patches up to $\emptyset.4$ mm in size.

The groundmass is variable. At one end of the section, layers are dominated by extremely fine grained (0.01-0.02 mm) plagioclase, with moderately abundant sericite and irregular patches of ankerite/dolomite. At the other end, the groundmass is somewhat coarser grained, consisting of equant, slightly to strongly interlocking plagioclase and K-feldspar grains averaging 0.07-0.15 mm in size, with minor quartz averaging 0.03-0.07 mm in size. Plagioclase is altered slightly to moderately to sericite, and dolomite forms irregular replacement patches. Dusty hematite is common, and is concentrated in certain grains. Apatite forms subhedral to euhedral prismatic grains averaging 0.03-0.07 mm in length. Pyrite forms disseminated anhedral to subhedral grains averaging 0.03-0.15 mm in size.

Quartz is concentrated in a few pods and lenses up to $\emptyset.3$ mm in size. These are aggregates of very fine grains. A few of these patches also contain dolomite and/or K-feldspar.

87-P-1 197.3 Siliceous Dolomite with Abundant Veins of Dolomite-Quartz: Probably Altered Ultramafic Rock

The rock is an extremely fine grained aggregate of quartz and dolomite, with wispy, contorted seams of carbonaceous opaque with minor pyrite. It is cut by very abundant veins of dolomite and/or quartz of at least three ages. The original rock type is uncertain because of the absence of chromite. However, based on similarities with other samples, it probably was an ultramafic rock.

quartz	20-25%
dolomite	30-35
carbonaceous opaque pyrite veins	1 Ø.1
dolomite	30-35
quartz	8-10

Π

С

Γ

[]

Π

Π

Ω

 $\left[\right]$

The rock consists of extremely fine grained $(\emptyset.\emptyset05-\emptyset.\emptyset15 \text{ mm})$ cherty quartz intergrown with finer grained $(\emptyset.\emptyset02-\emptyset.\emptyset1 \text{ mm})$ dolomite. The ratio of these two minerals varies moderately, and in places it appears that quartz-rich zones were replaced by dolomite.

The rock contains irregular, wispy, contorted seams up to $\emptyset.05$ mm wide dominated by carbonaceous opaque with scattered anhedral grains of pyrite averaging $\emptyset.01$ mm in size. Pyrite locally is concentrated in patches of quartz-rich rock up to $\emptyset.8$ mm across as grains up to $\emptyset.02$ mm in size. Elsewhere it forms anhedral to euhedral disseminated grains averaging $\emptyset.01$ mm in size.

A few sets of veins range from less than $\emptyset.\emptyset2$ to over 2 mm in width. These consist of various combinations of dolomite and quartz. Grain size in the veins ranges from extremely fine to fine (locally up to $\emptyset.8$ mm). Many of the veins are lensy and discontinuous on the scale of the thin section.

Some early-formed, banded, possibly replacement veins of cryptocrystalline dolomite up to $\emptyset.9$ mm wide are cut by veins up to $\emptyset.4$ mm wide of extremely fine grained ($\emptyset.\emptyset1-\emptyset.\emptyset2$ mm) dolomite.

The largest vein zone consists of very fine to fine grained dolomite with much less quartz; it was sheared strongly in a banded zone, in which dolomite was recrystallized to an extremely fine grained granular aggregate.

One vein up to 2 mm wide consists of fine grained quartz and dolomite in variable but overall about equal amounts. It has a center-line up to Ø.15 mm wide of extremely fine grained dolomite.

87-P-1 223 Brecciated Dolomite with Mariposite(Cr-mica)-Rich Seams: Probably Replacement of Oltramafic Rock; Two Unidentified Sulfides

The rock is a fine to medium grained dolomite which was strongly brecciated and granulated. Seams rich in mariposite (Cr-mica) and lesser pyrite and carbonaceous opaque are common. The original rock probably was ultramafic, but no relic chromite is present to confirm this hypothesis. Two unidentified reflective minerals are present, one similar to chalcopyrite but strongly anisotropic (possibly cubanite), and the other with no distinctive properties, may be a sulfide or sulfo-salt.

dolomite	80-85%
mariposite	5→ 7
quartz	3-4
Mineral X	Ø.4
Mineral Y	Ø.1
carbonaceous(?) opaque	0.2
Ti-oxide	trace
veins	
dolomite-(quartz)	4-5

Ω

 \Box

 \Box

Dolomite forms patches up to a few mm across of grains averaging $\emptyset.2-\emptyset.5$ mm in size. These are strained strongly. and partly recrystallized to subgrain aggregates. They cut by abundant fractures of, and surrounded by extremely fine grained dolomite, which was formed by granulation of the coarser grained aggregate.

Quartz forms extremely fine grained patches scattered through the rock. Many of these have a chert texture.

A few coarser grained patches and veins consist of fine to very fine grained dolomite intergrown with minor to moderately abundant very fine grained, subhedral quartz.

Mariposite forms extremely fine grained aggregates concentrated in moderately crenulated seams up to $\emptyset.4$ mm wide. It is pale green in color, with optical and textural properties similar to those of sericite. Associated with mariposite are seams of dusty opaque (carbonaceous?) and scattered patches up to $\emptyset.1$ mm in size of Ti-oxide.

Mineral X forms lenses up to $\emptyset.2 \text{ mm}$ in length of anhedral grains averaging $\emptyset.\emptyset2-\emptyset.\emptyset3 \text{ mm}$ in size. In some patches it is intergrown coarsely with Mineral Y. Mineral X is light yellow in color, with low hardness, moderately high reflectivity and strong anisotropism. The mineral which best fits these properties is cubanite

Mineral Y occurs with Mineral X as described above, and also is the major reflective mineral in one patch of coarser dolomite-(quartz), in which it forms one equant grain Ø.13 mm across and several much smaller ones. It is light grey in color with moderate reflectivity, isotropic nature, and low hardness. Several sulfides and sulfo-salts have these properties.

The elemental components of these minerals could be determined using the electron microscope.

87-P-1 287 Chert cut by Veins of Dolomite and Quartz, with Seams and Patches of Carbonaceous Opaque and of Pyrite, one Plagioclase-rich Lens

The rock contains two main types of chert, which are replaced largely by patches and veins of dolomite and quartz. The rock is cut by seams up to as few mm wide dominated by sericite, carbonaceous opaque and cherty quartz. Plagioclase is concentrated in one lens up to 1.5 mm wide. Pyrite and carbonaceous opaque form disseminated patches.

chert		25-30%
quartz		20-25
dolomite		30-35
sericite		7-8
plagioclase		2-3
carbonaceous	opaque	3-4
pyrite	_	Ø.5
chalcopyrite		trace

Much of the original rock consisted of extremely fine grained, massive chert with grain size from $\emptyset.\emptyset\emptyset3-\emptyset.\emptyset1$ mm. It is strongly replaced and cut by coarser grained quartz and dolomite patches and veins, respectively. Replacement quartz is up to $\emptyset.5$ mm in size, and contains abundant dusty opaque inclusions. Dolomite is mainly very fine to extremely fine grained.

At one end of the section, chert is cryptocrystalline $(\emptyset.\emptyset02-\emptyset.\emptyset05 \text{ mm})$, and shows a prominent foliation marked by dusty seams of carbonaceous opaque. It is cut by abundant early veins of extremely fine grained dolomite from $\emptyset.\emptyset2-\emptyset.3$ mm in width, and some later veins of very fine to fine grained dolomite averaging $\emptyset.1-\emptyset.4$ mm wide. The pink-brown mineral in hand sample is dolomite.

The rock is cut by irregular, in part crenulated seams up to a few mm wide dominated by extremely fine grained sericite mixed with dusty to very fine grained carbonaceous opaque and lesser quartz. Other seams and veinlike zones are dominated by very fine grained dolomite. Some contain minor grains of pyrite and of chalcopyrite up to 0.03 mm in size.

Pyrite is concentrated in disseminated patches up to 0.6 mm across, commonly surrounded by and intergrown with quartz. Pyrite forms anhedral to euhedral grains averaging 0.02-0.1 mm in size. Quartz commonly is oriented perpendicular to crystal faces of coarser pyrite grains. Chalcopyrite forms disseminated grains up to 0.03 mm in size in dolomite and quartz aggregates.

One large patch up to 3 mm across and a few smaller ones consist of very fine to extremely fine grained carbonaceous opaque. Along borders of the large patch and in the smaller patches opaque grains are intergrown with and surrounded by dolomite and quartz. Carbonaceous opaque also forms disseminated patches up to 0.2 mm in size away from the main clusters.

A lens up to 2 mm wide and 3 mm long contains abundant anhedral equant plagioclase grains averaging $\emptyset.1-\emptyset.2$ mm in size. Intergrown with plagioclase is minor interstitial quartz. The lens is brecciated and replaced slightly to moderately by dolomite, with lesser sericite and carbonaceous opaque. Another lens up to 2 mm long consists of very fine grained prismatic to lathy plagioclase from $\emptyset.05-\emptyset.15$ mm long in a groundmass of anhedral, equant plagioclase averaging $\emptyset.002-\emptyset.005$ mm in size, with abundant dusty Ti-oxide concentrated in interstitial seams.

87-P-1 288 Chert Replaced by Quartz-Dolomite, Cut by Seams of Sericite-Opaque-(Quartz) containing Lenses of Andesite; Veins of Dolomite-(Kaolinite)

The sample is similar to Sample 87-P-1 287. Chert is replaced strongly by quartz and lesser dolomite patches. The rock contains seams of sericite-opaque, associated with which are lenses of andesite dominated by plagioclase, and veins of dolomite. A few late veins are of dolomite-(kaolinite).

chert	12-15%	
quartz	50-55	
dolomite	20-25	
sericite	5- 7	
carbonaceous	opaque 1- 2	
plagioclase	3-4	(andesite)
Ti-oxide	minor	
pyrite	minor	
chalcopyrite	trace	
veins		
dolomite-kac	linite Ø.5	

Chert forms relic patches up to 2 mm across. These contain zones averaging 0.002-0.005 mm in grain size, which grade upwards in size to less abundant patches averaging 0.02-0.05 mm in grain size. Dolomite forms veinlets and replacement patches in chert. Chert is replaced in large patches by fine to medium grained quartz with lesser dolomite. Quartz shows strained extinction and contains moderately abundant dusty opaque.

The rock is cut by seams up to a few mm across containing seams of sericite-carbonaceous opaque-quartz, lenses of plagioclase-rich andesite, subrounded fragments of chert, and veinlike zones of dolomite. Plagioclase-rich lenses contain prismatic phenocrysts up to Ø.2 mm long in a sparse to abundant groundmass of extremely fine grained plagioclase with locally minor to moderately abundant dolomite, sericite, and carbonaceous opaque.

Dolomite forms seams of very fine to extremely fine grain size parallel to and possibly in part replacing sericite-rich seams.

Pyrite forms disseminated grains up to 0.07 mm in size, mainly concentrated in sericite-rich seams. Chalcopyrite forms disseminated grains averaging 0.02-0.03 mm in size, with a few up to 0.1 mm long.

The rock is cut roughly perpendicular to foliation by veins up to $\emptyset.2 \text{ mm}$ wide dominated by very fine grained dolomite, with a few patches up to $\emptyset.2 \text{ mm}$ across of extremely fine grained kaolinite. Some dolomite veins cutting quartz are truncated against seams of sericite/ carbonaceous opaque.

L [

Π

Π

Γ

 \Box

87-P-1 301.5 Andesite Flow, Replaced by Dolomite, with Lenses of Dolomite and of Quartz-(Dolomite)

The rock is a very fine grained andesite flow dominated by lathy plagioclase in a groundmass of extremely fine grained plagioclase with lesser chlorite, dolomite, and Ti-oxide. Pyrite is concentrated in wispy, contorted seams and patches. The rock is replaced by dolomite; where replacement is strong, the color of the rock is light grey. The rock contains replacement lenses (veinlets) of dolomite and of quartz-(dolomite).

plagioclase	50-55%
chlorite	5-7
Ti-oxide	Ø.5
pyrite	1- 2
chalcopyrite	trace
dolomite	30-35
quartz	4-5

Π

[

Π

Γ

 $\left[\right]$

Γ

Plagioclase forms unoriented, lathy grains from Ø.1-Ø.3 mm in length. Some are slightly warped, and a few are replaced by guartz.

The groundmass is extremely fine grained $(\emptyset.\emptyset\emptyset2-\emptyset.\emptyset1 \text{ mm})$, and consists of plagioclase, dolomite, chlorite, and minor Ti-oxide. Chlorite forms clusters of colorless flakes with low birefringence. Dolomite forms irregular replacement patches throughout the rock. Where dolomite replacement is strong, chlorite is replaced completely, and the rock has a pale grey color. The outlines of zones of strong dolomite replacement are sharp in the hand sample, but much less obvious in thin section. Ti-oxide forms disseminated grains averaging $\emptyset.\emptyset\emptyset5-\emptyset.\emptyset1$ mm in size.

Pyrite is concentrated in wispy, in part strongly contorted seams averaging $\emptyset.05-\emptyset.1$ mm in width. One patch up to a few mm across contains very abundant pyrite, mainly as anhedral to subhedral grains averaging $\emptyset.02-0.04$ mm in size, with a few up to $\emptyset.2$ mm across.

Chalcopyrite forms a very few grains averaging 0.01-0.03 mm in size, mainly associated with dolomite.

Dolomite forms replacement lenses up to 1.5 mm wide of very fine grained aggregates. Quartz forms a few lenses up to 1 mm wide of very fine to fine grained aggregates, commonly partly replaced by dolomite and cut by veinlets of dolomite.

87-P-1 399 Andesite Tuff with Dolomite Alteration and Dolomite-Calcite Veins

The rock contains fragments of plagioclase phenocrysts, andesite flow, chlorite-(opaque), leucoxene, and minor andesite tuff in a groundmass of extremely fine grained dolomite. It is cut by discontinuous veins up to 1 mm wide of dolomite and/or calcite.

rragments	
plagioclase	10-12%
andesite flow	25-30
andesite tuff	minor
chlorite-rich	2-3
chlorite-(opaque)	1-2
leucoxene	1
groundmass	
dolomite	40-45
pyrite	1
veins	
dolomite	7-8
calcite	2-3
quartz	Ø.1

Π

Π

Π

Γ

Π

Π

Plagioclase phenocrysts and crystal fragments average 0.3-0.5 mm in size, with a few up to 1 mm long. Some are relatively fresh, and others are altered slightly to moderately to dolomite. A few are altered moderately to sericite. Dolomite veinlets are common in larger phenocrysts.

Fragments of andesite flows are from Ø.3-Ø.7 mm in size. They are characterized by an extremely fine grained groundmass of plagioclase and chlorite with minor Ti-oxide. Many contain phenocrysts of plagioclase from Ø.1-Ø.3 mm in size. A few are dominated by very fine grained prismatic plagioclase.

Several fragments up to 1 mm long are dominated by extremely fine grained chlorite. Other fragments up to $\emptyset.2$ mm across consist of chlorite and moderately abundant Ti-oxide; these probably are secondary after hornblende.

Leucoxene forms anhedral patches up to Ø.3 mm in size.

Pyrite forms a few clusters averaging 0.2-0.3 mm across of grains averaging 0.05-0.1 mm in size. One much larger cluster up to 1.7 mm long and 0.8 mm wide contains abundant anhedral to subhedral pyrite grains and fragments surrounded by groundmass dolomite.

The original groundmass and parts of many of the fragments are replaced by a groundmass of extremely fine grained dolomite.

The rock is cut by numerous veins and veinlets of carbonate. Most of these are discontinuous on the scale of the thin section. Many show textures suggestive of shear deformation after vein emplacement. Veins range from dolomite-rich (commonly strongly sheared) to calcite rich (generally coarser grained and less strongly sheared). One calcite-rich vein contains a few patches of very fine grained quartz.

A few late seams of calcite up to 0.03 mm wide are post-deformation.

<u>87-P-1 462</u> Andesite Tuffaceous Sediment cut by Veinlets of Chlorite-Calcite

The rock contains angular fragments of plagioclase in an aphanitic groundmass probably of andesitic composition, and containing dusty brown to opaque material which gives the rock its black color. It is cut by veins and veinlets dominated by chlorite and others dominated by calcite. Pyrite form lenses with framboidal textures.

20-25%
0.5
Ø.3
minor
60-65
5- 7
Ø.3
minor
minor
4-5

Ω

Γ

Plagioclase forms angular fragments averaging $\emptyset.\emptyset2-\emptyset.\emptyset3$ mm in size. These most probably are fragments of phenocrysts from an andesitic source. A few lenses contain much more abundant fragments averaging $\emptyset.\emptyset3-\emptyset.\emptyset8$ mm in size. As well as plagioclase, these lenses contain fragments of brown volcanic glass(?), chert, and quartz grains. Elsewhere in the rock quartz forms scattered equant fragments averaging $\emptyset.\emptyset2-\emptyset.\emptyset3$ mm in size.

The fragments are set in a groundmass of uncertain composition (because of its grain size $[\emptyset.\emptyset\emptyset]-\emptyset.\emptyset\emptyset5 \text{ mm}]$), probably dominated by plagioclase and lesser chlorite. Brown semiopaque/opaque forms dusty disseminations of varying intensity, and is moderately concentrated in lensy patches and lenses in parts of the section. Locally it forms dense patches up to $\emptyset.3 \text{ mm}$ in length.

The rock contains an unusual J-shaped lens 1 mm long and Ø.12 mm wide of extremely fine grained silica.

Pyrite forms disseminated grains averaging $\emptyset.\emptyset05-\emptyset.\emptyset1$ mm in size. A few lenses from $\emptyset.2-\emptyset.4$ mm long, and one irregular veinlike zone up to 1.2 mm long contain framboidal pyrite aggregates ranging in diameter from $\emptyset.\emptyset01-\emptyset.\emptyset08$ mm. A few patches up to $\emptyset.\emptyset6$ mm across contain subhedral cubic pyrite grains $\emptyset.\emptyset08$ mm in size in a sparse groundmass.

Chalcopyrite forms disseminated grains averaging $\emptyset.\emptyset1-\emptyset.\emptyset2$ mm in size, both in the rock and in the veins.

Ti-oxide forms a few equant grains averaging 0.02 mm across.

The rock is cut by veins up to $\emptyset.8 \text{ mm}$ wide of very fine to extremely fine grained chlorite with minor to moderately abundant patches of very fine grained calcite. Other veins are dominated by calcite; these are mainly less than $\emptyset.2 \text{ mm}$ wide, but locally widen rapidly to $\emptyset.8 \text{ mm}$ (at the edge of the section).

No evidence was seen to suggest that the rock was hornfelsed.

87-P-1 492.3 Bedded Andesite Tuff cut by Calcite-(Chlorite-Quartz-Pyrite) Vein and Calcite Veinlets

The rock contains three main beds of andesite tuff, ranging from extremely fine to fine grained. The central layer shows well developed graded bedding. The rock is cut by a vein of calcite with lesser chlorite and much less quartz and pyrite, and several veinlets of calcite.

coarse layer (fragments average Ø.3-1 mm in size)

15-20%
15-20
10-12
5-7
3-4
2-3
20-25
2-3

Π

Ū

Π

 \int

 $\left[\right]$

Plagioclase grains are phenocrysts from andesite flows. Alteration is variable, with most grains altered slightly to sericite and/or calcite.

Andesite fragments are of several types. Many have plagioclase phenocrysts in an extremely fine grained groundmass of plagioclase and much less chlorite and opaque. In some fragments, groundmass plagioclase is well oriented. Grain size of the groundmass ranges from extremely fine to very fine, and textures range from subhedral to moderately interlocking. Some andesite fragments are altered moderately to calcite, and others are replaced strongly to completely by sericite or carbonate. From the stained offcut block, several fragments are seen to contain K-feldspar. This mineral was not identified in thin section. Its presence indicates that some of the volcanic fragments are of latite composition.

A few fragments up to 1.7 mm in size are dominated by extremely fine grained chlorite. The largest contain patches up to 0.7 mm in size of slightly coarser grain size and which contain minor to abundant pyrite inclusions; these may represent original mafic phenocrysts. They are surrounded by finer grained chlorite.

A few fragments up to 1 mm across are of single grains of calcite/dolomite.

The groundmass is too fine to identify optically. It probably is dominated by plagioclase and lesser chlorite, with moderately abundant dusty opaque.

Pyrite occurs in several fragments as disseminated, extremely fine grains and aggregates, and forms a few patches of even finer grains in the groundmass. It is concentrated in one patch 1 mm long as anhedral grains and aggregates of grains from Ø.Ø1-Ø.Ø3 mm in size.
central layer

[]

Ū

 \int

 $\left[\right]$

Ţ

Grains are mainly of plagioclase composition, with a few of muscovite, chlorite, Ti-oxide and of apatite. Except at the bottom of the layer, grains are very angular. Grain size ranges from an average of $\emptyset.1-\emptyset.3$ mm at the base of the layer rapidly to $\emptyset.05-\emptyset.1$ mm, and then gradationally to $\emptyset.\emptyset1-\emptyset.\emptyset3$ mm near the top. Plagioclase is fresh to slightly altered to sericite and/or calcite. Pyrite forms moderately abundant disseminated grains in the middle of the layer. The groundmass is aphanitic and probably composed of plagioclase and chlorite. Calcite forms minor to moderately abundant irregular replacement patches up to $\emptyset.1$ mm in size. Dusty opaque is concentrated in a few wispy patches.

finest layer

This layer is slightly banded with minor gradation in grain size between sublayers. Angular fragments dominated by plagioclase average $\emptyset.03-0.07$ mm in size, with a few grains over $\emptyset.1$ mm long in the coarser grained sublayers. Sericite forms a few patches up to $\emptyset.2$ mm in size; their origin is uncertain. The groundmass consists of plagioclase and chlorite with moderately abundant dusty brown semiopaque/opaque, and with minor to moderately abundant replacement patches up to $\emptyset.1$ mm in size of calcite. Pyrite forms scattered framboidal clusters and seams parallel to foliation.

The rock is cut by several discontinuous veinlets from $\emptyset.\emptyset2-\emptyset.15$ mm in width of extremely fine grained calcite with scattered grains and clusters of pyrite up to $\emptyset.\emptyset5$ mm across.

The largest vein is mainly in the coarsest grained layer where it averages 0.8 mm wide. It is dominated by extremely fine to very fine grained calcite, with a core zone containing abundant very fine grained chlorite and lesser patches of very fine to extremely fine grained quartz. Pyrite forms several clusters of subhedral grains averaging 0.03-0.07 mm in size. One contains an inclusion of chalcopyrite 0.015 mm long. The vein narrows rapidly in the next bed, breaking into two braided, somewhat diffuse veinlets of calcite.

87-P-2 58.5 Meta-dacite (?) with Quartz-Albite-Sericite-Ankerite Pyrite Alteration and Quartz-(Dolomite) Veins

The rock was strongly replaced and deformed; as a result it is uncertain what if any of the present textures and minerals are original. Thus the origin of the rock is uncertain. It contains seams rich in sericite with lesser ankerite and pyrite-(chalcopyrite), and layers and patches dominated by coarser grained, generally strongly strained quartz and lesser albite and ankerite. Late veins are of quartz and minor dolomite.

quartz	50-55%
albite	12-15
sericite	8-1Ø
ankerite-(dolomite)	12-15
pyrite	1- 2
chalcopyrite	minor
Ti-oxide	Ø.2
veins	
quartz	5-7
dolomite	1

[]

Π

Π

Ū

 \int

 \int

Π

 \Box

Quartz is most abundant as coarse grained replacement patches. These were strongly strained and partly recrystallized to very irregular subgrain aggregates. Some of the subgrain aggregates have a prominent foliation, indicating a high degree of shearing. Quartz also forms extremely fine to very fine grained patches intergrown with sericite and ankerite.

Albite forms anhedral grains averaging 0.2-0.7 mm in size. It is strained slightly, and albite twins commonly are discontinuous and slightly warped. Grains are fresh. Except for the presence of albite twins, albite is optically almost identical to quartz.

Ankerite forms extremely fine to very fine grained patches intergrown irregularly with finer grained, recrystallized quartz. Some of these have subhedral, rhombic outlines. Ankerite is characterized by very high relief. Dolomite forms coarser grained patches up to 1 mm across with grains up to Ø.2 mm in size. It is tentatively distinguished from ankerite by lower relief.

Sericite is concentrated in irregular seams up to a few mm wide. In these it is intergrown with lenses and patches of extremely to very fine grained quartz and very fine grained albite, and patches and lenses of dolomite/ankerite. Carbonaceous opaque is concentrated in wispy seams and lenses.

Pyrite forms euhedral cubic grains averaging $\emptyset.1-\emptyset.2$ mm in size, associated with sericite and extremely fine grained quartz, and less commonly with dolomite. Finer grained, anhedral pyrite forms irregular patches and lenses associated with sericite, and possibly associated with carbonaceous opaque. A few patches up to 1.5 mm across contain abundant extremely fine to very fine anhedral to euhedral grains of pyrite. A few larger pyrite grains contain an inclusion up to $\emptyset.\emptyset2$ mm across of chalcopyrite.

Ti-oxide forms a few equant grains up to 0.05 mm in size, and aggregates of much finer, anhedral grains, mainly associated with sericite. It is concentrated in a few lenses up to 0.4 mm long associated with sericite-rich seams.

Chalcopyrite forms disseminated grains up to 0.1 mm in size, commonly associated with pyrite.

The rock is cut by a few, late, subparallel veins up to Ø.8 mm wide of fine to very fine grained quartz and minor to moderately abundant dolomite. Quartz grains are unstrained, indicating that the veins were formed after deformation.

<u>87-P-2 65</u> Sheared Cherty Dacite Tuff with Ankerite Alteration, cut by Quartz-Ankerite Veins

ĺ

Π

 \int

Π

Π

[

 \prod

 $\left[\right]$

Γ

 \Box

 \Box

Π

The rock contains crystal fragments of quartz and plagioclase in an extremely fine grained, well foliated groundmass dominated by cherty silica, with lenses of sericite, patches of ankerite, and disseminated pyrite. Veins parallel and perpendicular to foliation consist of quartz and much less ankerite.

fragments			
plagioclase	3-4		
quartz	1-2%		
groundmass			
chert	45-50	Ti-oxide	0.2%
sericite	8-1Ø	apatite	trace
ankerite	12-15	chalcopyrite	trace
pyrite	1-2	Mineral Y	trace
veins			
l) quartz	5~ 7	carbonaceous opaque	minor
ankerite	1- 2	chalcopyrite	trace
pyrite	minor		
2) calcite	trace		

Quartz and plagioclase form anhedral crystal fragments averaging $\emptyset.07-0.2$ mm in size, with a few up to 0.3 mm across. Plagioclase is altered slightly to moderately to sericite. A few sericite-rich patches may represent completely altered plagioclase crystal fragments.

The groundmass is dominated by extremely fine grained quartz (0.003-0.008 mm). Sericite forms seams and lenses parallel to foliation. Coarser grained sericite (after plagioclase?) forms a few patches and lenses up to 0.3 mm wide. Ankerite forms extremely fine grained patches disseminated through the rock.

Pyrite forms a few euhedral grains averaging $\emptyset.07-0.15$ mm in size, and more abundant anhedral to subhedral grains averaging $\emptyset.02-0.03$ mm across. It is concentrated in a few lenses parallel to foliation as subhedral to euhedral grains from $\emptyset.03-0.1$ mm in size. Chalcopyrite forms anhedral patches up to $\emptyset.05$ mm in size. Associated with the largest cluster of chalcopyrite grains is a grain $\emptyset.04$ mm across of an unknown sulfide(?). It is moderately reflective (slightly less than chalcopyrite), with low hardness, a light grey color, and isotropic nature. It may be the same mineral as Mineral Y in sample 87-P-1 223, and is grouped with it.

Ti-oxide forms lenses with subrounded outlines up to 0.15 mm in size, and disseminated, extremely fine grained patches and seams.

Apatite forms equant grains averaging 0.03-0.05 mm in size. Opaque seams up to 0.05 mm wide are moderately abundant. Most are parallel to foliation, and those few which cross foliation are tightly crenulated. They contain minor patches of Ti-oxide and pyrite intergrown with non-reflective opaque (possibly carbonaceous).

The veins are up to 1.5 mm wide and are dominated by very fine to fine grained quartz, with moderately abundant ankerite and minor pyrite. The main vein which crosscuts foliation at about 90 degrees appears to be cut by the largest vein parallel to foliation. The latter contains patches which are strongly strained and in part recrystallized to foliated subgrain aggregates. Ankerite forms subhedral grains up to 0.3 mm long in the large vein parallel to foliation. Pyrite forms a few clusters uptown 0.25 mm in size of subhedral grains. Chalcopyrite forms a very few anhedral grains from 0.005-0.015 mm in size. Carbonaceous opaque forms a few equant patches up to 0.05 mm in size in one quartz-rich vein. Calcite forms a few late veinlets up to 0.02 mm wide.

87-P-2 94.5 Cherty Dolomite Replacement of Ultramafic Rock; cut by Veins of Dolomite-Quartz and of Quartz-Barite

The rock consists of very fine grained dolomite with lenses and patches of extremely fine grained chert, with minor disseminated pyrite. Minor relic chromite patches indicate that the parent was an ultramafic rock. It is cut by veins up to a few mm wide of dolomite-quartz and veinlets up to $\emptyset.2$ mm wide of guartz-barite.

dolomite	8Ø-85%				
chert	10-12				
pyrite	Ø.5				
arsenopyrite	Ø.2				
chromite	Ø.7				
sericite	trace				
veins					
dolomite-(quartz)	4-5	(17-20%	in	hanđ	sample)
quartz-barite-(sulfide)	2-3				

Γ

Ω

 \Box

Π

 \int

 \int

[]

Π

Π

Dolomite forms anhedral aggregates averaging 0.03-0.1 mm in size. Chert forms very irregular interstitial patches up to 1 mm in size; grains are strongly interlocking and average 0.01-0.02 mm in size. Some chert patches contain minor interstitial flakes of sericite/mariposite (suggested because po green color in hand sample; grains too small to show color in thin section).

Pyrite forms disseminated, subhedral grains averaging $\emptyset.02-\emptyset.05$ mm in size, with a few up to $\emptyset.15$ mm across.

Arsenopyrite forms disseminated subhedral cubic grains averaging $\emptyset.\emptyset2-\emptyset.\emptyset3$ mm in size; it is distinguished from pyrite by its much white color. Anisotropism is too weak to recognize.

Chromite forms disseminated anhedral grains and clusters of grains averaging Ø.1-Ø.3 mm in size, with a few up to 1 mm long. It is isotropic with a deep red-brown color. One cluster of chromite(?) Ø.2 mm across consists of anhedral "grains" up to Ø.15 mm in size. If it were originally chromite, it was altered to an unknown mineral (probably a variety of Fe oxide) which is opaque, with very low reflectivity, and very hard. "Grains" appear to be made up of cryptocrystalline aggregates.

The major vein in hand sample is present only in one corner of the section. It is dominated by medium to coarse grained dolomite with patches of very fine to locally fine grained quartz in fracture-filling seams and veinlets cutting across coarser grained dolomite.

Smaller veinlets up to $\emptyset.2 \text{ mm}$ wide are dominated by very fine to fine grained quartz. One of these also contains abundant very fine grained barite, mainly in the core of the veinlet. This veinlet also contains scattered patches of pyrite and chalcopyrite-hematite(?) up to $\emptyset.06 \text{ mm}$ in size. One lensy patch dominated by very fine grained quartz contains several ragged barite grains up to $\emptyset.3 \text{ mm}$ in size.

87-P-2 120.1 Sheared Cherty Ankerite/Dolomite Replacement of Ultramafic Rock;Disseminated Arsenopyrite and Pyrite; Quartz-Barite Veins

The rock is a strongly sheared cherty carbonate rock dominated by ankerite/dolomite with seams of sheared quartz. It contains relic patches of chromite, which indicate that the parent rock was ultramafic. Arsenopyrite and pyrite form disseminated grains. Veins up to Ø.3 mm wide of very fine to fine grained quartz-barite cut across the foliation.

87-90%
5-7
1- 2
Ø.3
Ø.3
Ø.2
2-3

 $\left[\right]$

 \int

Π

 \int

[]

Π

Π

Γ

Π

Ankerite/dolomite forms very fine to fine grained aggregates, which show a moderate to strong foliation, and commonly appears to have been very strongly sheared. Shearing is concentrated along wispy seams, in which carbonate is strongly granulated. These seams probably also contain minor mariposite, which accounts for the green-colored seams parallel to foliation. A few carbonate-rich layers up to a few mm across contain slightly coarser grained, generally unstrained grains; these may be metamorphic segregations, which were formed after much of the shearing occurred.

Quartz occurs in wispy seams and patches. Most patches show a very strong foliation produced by intense shearing, with extremely fine grains in parallel orientation. Textures in some of these patch are more typical of sericite than quartz. Other patches are unstrained and consist of extremely fine grained cherty aggregates with moderately interlocking grain borders. A few patches show textures suggestive of tight folds.

Chromite forms ragged lenses and equant grains from Ø.05-1 mm in size. Grains have a deep red-brown color, and are fractured and in part corroded.

Mariposite forms a patch Ø.15 mm long of extremely fine grain size (0.002-0.005 mm) enclosed in a lens of guartz.

Arsenopyrite and pyrite form anhedral to locally euhedral grains averaging 0.02-0.1 mm in size. These are moderately concentrated in seams parallel to foliation.

Late veins up to Ø.3 mm in width are dominated by very fine grained quartz, with several patches of very fine grained barite.

87-P-2 138 Altered Ultramafic Rock: Ankerite-Quartz-Sericite-Magnetite-(Chromite-Barite-Phlogopite-Chlorite); veins of Quartz-(Barite) and of Ankerite/Dolomite

The sample is a well foliated and strongly altered ultramafic rock. Relic patches (dark in hand sample) are dominated by quartz, sericite, and Fe-oxides. Lighter colored replacement patches and veinlike zones are dominated by ankerite. Chromite forms relic grains and clusters of grains. The rock is cut by a few late veins of quartz-(barite) and of ankerite/dolomite.

ankerite	65-70%
quartz	10-12
sericite	10-12
magnetite/hematite	4-5
chromite	1
barite	0.3
phlogopite	Ø.2
chlorite	0.2
veins	
quartz-(barite)	1- 2
ankerite/dolomite	Ø.3

Ankerite forms aggregates of very fine to locally fine grains. Many finer grained aggregates show moderate to strong shearing. Some coarser grained veinlike zones are probably late metamorphic segregations; these are very fine to fine grained, and generally unsheared. Some of these contain minor patches of quartz and of barite.

Quartz, with sericite and Fe-oxides, is concentrated in lensy patches showing a prominent foliation. Quartz commonly is extremely fine grained, and commonly appears to have been sheared strongly. A few patches of very fine grained quartz are unfoliated and unstrained.

Sericite forms extremely fine to very fine grained aggregates, generally unfoliated and in part with grains oriented perpendicular to foliation. A few fine grained seams of sericite are oriented parallel to foliation. Phlogopite forms a few ragged grains from 0.1-0.3 mm in size; pleochroism is from colorless to pale brown.

Chlorite forms slender flakes up to Ø.1 mm long intergrown in some patches of extremely fine grained quartz.

Magnetite forms equant grains averaging $\emptyset.\emptyset3-\emptyset.\emptyset8$ mm in size, strongly concentrated in lenses with quartz and sericite. In a few lenses, magnetite averages $\emptyset.\emptyset1-\emptyset.\emptyset3$ mm in size. Magnetite is altered moderately to strongly to hematite; alteration is in irregular patches and is concentrated along borders of grains.

Chromite forms a few ragged, fractured grains up to 0.9 mm in size, some of which are concentrated in clusters up to 2.5 mm across. It ranges in color from deep red brown to opaque. It is altered slightly along grain borders and fractures to hematite.

Barite forms anhedral, commonly ragged grains from $\emptyset.1-\emptyset.3$ mm in average size, commonly intergrown with ankerite.

The rock is cut by a few late veinlets up to 0.15 mm wide of quartz, mainly parallel to foliation, and up to 0.1 mm wide of ankerite/dolomite cutting foliation.

Π

Π

[]

 \int

Π

Π

Π

 \Box

 $\left[\right]$

 \Box

 \prod

 \Box

87-P-2 160 Dunite/Peridotite altered to Serpentine-Magnetite; Patchy Alteration to Magnesite-(Talc)

The rock is dominated by serpentine with irregular patches of magnetite, formed by alteration of olivine (and possibly pyroxene), and minor relic chromite. Later alteration to carbonate (magnesite?) and talc is concentrated in seams and patches.

serpentine	75-80%
magnetite	4-5
chromite	Ø.5
carbonate (magnesite?)	10-12
talc	5-7

 \Box

 \int

Π

 \int

G

Π

Serpentine forms extremely fine to medium grained aggregates. Finer grained, more irregular serpentine aggregates are secondary after olivine. Some coarser grained patches may represent original phenocrysts of pyroxene. Other coarser grained zones form veins up to a few mm wide. Some veins show extremely finely laminated growth zoning in serpentine crystals or aggregates. Serpentine veins are common loci for later veins of carbonate and/or talc.

Magnetite is concentrated in veinlike lenses and patches averaging $\emptyset.05$ mm wide, and in irregular lenses. Grains are very fine to extremely fine, and are replaced slightly to moderately by hematite.

Chromite forms clusters up to 1.5 mm long of anhedral grains averaging $\emptyset.2-\emptyset.4$ mm in size. It ranges in color from deep red-brown to opaque. Commonly it is altered slightly along grain borders to hematite.

Carbonate (probably magnesite - based on composition of rock) is concentrated in veinlike zones up to 0.5 mm wide and in patches averaging 0.1-0.3 mm across. Some veinlike zones have thin borders of extremely fine grained talc. Elsewhere, talc forms similar veinlike zones of extremely fine grain size. It also occurs as thin selvages along fractures in masses of serpentine. In coarser grained serpentine patches and veinlike zones, talc appears to replace serpentine gradually; this is indicated by a gradual increase in birefringence of the mineral from 1st-order white typically of serpentine to 1st-order yellow and red and low 2nd-order colors more typical of talc.

<u>87-P-2 223</u> Dunite: Altered to Serpentine-Magnetite; Late Patches and Veins of Magnesite-(Talc)

The rock is a dunite (or possibly peridotite) which was altered completely to serpentine-magnetite with minor relic chromite and local concentrations of chlorite. The serpentine appears to have been sheared and recrystallized, in part forming coarser veinlike zones. Later veins and replacement patches are of carbonate (magnesite) and minor talc.

serpentine	83-87%
magnetite	5-7
chromite	Ø.5
arsenopyrite	0.2
pyrite	Ø.1
chlorite	1
carbonate (magnesite?)	7-8
talc	Ø.1

 \Box

Π

 \int

 \Box

Π

Γ

Serpentine forms extremely fine to very fine grained aggregates in random orientation and extremely fine to medium grained aggregates in parallel orientation. None of these appears to preserve the original texture of the ultramafic rock, suggesting that the rock was strongly sheared and recrystallized. The interference color of serpentine ranges from 1st-order grey to bright 1st-order yellow, the latter occurring in some of the coarser grained recrystallized zones. It may suggest a slight alteration of serpentine towards talc.

Magnetite forms disseminated grains, moderately concentrated in clusters and lenses up to a few mm long. Grain size averages 0.02-0.1mm. Grains are relatively fresh, with local alteration to hematite. Locally serpentine forms rims up to 0.1 mm wide of subparallel grains growing perpendicular to some large patches of magnetite.

Chromite forms a few anhedral, corroded grains up to 0.6 mm in size. Color ranges from very dark red-brown to opaque. It is altered slightly to moderately on grain borders to hematite.

Arsenopyrite and lesser pyrite form disseminated grains averaging Ø.Ø1-Ø.Ø3 mm in size, and wispy lenses up to Ø.2 mm long along cleavage in coarser grained serpentine.

Chlorite is concentrated in one patch 2.5 mm across as a few subhedral grains up to 0.8 mm long and much more abundant, very fine grains surrounded by and intergrown with serpentine. Textures suggest that an original mafic mineral (possibly phlogopite was replaced by chlorite, which was then deformed partly replaced by serpentine.

Carbonate (probably magnesite) forms irregular, braided, extremely fine grained veins up to 0.4 mm wide. Locally associated with carbonate are lenses up to 0.05 mm wide and 0.2 mm long of extremely fine grained talc.

87-P-2 245 Altered Dunite: Serpentine-Magnetite, and Carbonate (Magnesite?)-Talc

The rock is sheared and recrystallized, with development of a strong foliation and abundant microscopic drag folds. It contains lenses dominated by serpentine and others dominated by carbonate-talc. Magnetite is concentrated in lenses in both types of alteration assemblage. Chromite forms relic grains surrounded by serpentine.

serpentine	20-25%
magnetite/hematite	3-4
chromite	1- 1.5
carbonate (magnesite?) 30-35
talc	35-40

Г

Π

 \int

 \Box

Γ

Serpentine forms lenses up to 1 mm wide of extremely fine to fine grained aggregates. One shows tight folding. Some larger lenses are cut by veinlets up to Ø.1 mm wide of carbonate.

Magnetite forms lenses and seams up to $\emptyset.7$ mm wide of grains from $\emptyset.03-0.2$ mm in size. Most are altered moderately to strongly to hematite. Finer grained ($\emptyset.01-0.03$ mm) magnetite is concentrated in seams parallel to foliation; it is altered strongly to completely to hematite.

Chromite forms corroded, relic grains from Ø.2-Ø.8 mm in size, alone or in clusters of a few grains, mainly surrounded by serpentine. It is deep red-brown in color. Many grains have irregular cores of chromite surrounded by secondary magnetite, which in turn is altered slightly to moderately to hematite along grain borders.

Talc forms lenses and seams paralleled to foliation. Grain size ranges widely, from extremely fine grained aggregates to flakes up to 1 mm in size. Some coarser grained flakes show internal folding.

Carbonate is concentrated in seams parallel to foliation as very fine to extremely fine grains. In some it is intergrown intimately with extremely fine grained talc. Some seams of carbonate, with or without talc interlayers, show tight folds.

87-P-2 247 Cherty Carbonate Alteration of Ultramafic Rock; Late Veinlets of Quartz-(Barite)

The rock is strongly folded, and dominated by carbonate with much less cherty quartz and minor pyrite. Folds are outlined by bands of differ composition and/or texture, and are up to several mm across. Scattered grains of chromite indicate that the parent was an ultramafic rock. The dark grey color of seams (in hand sample) is caused by extremely fine grained carbonate with minor pyrite. A few late veinlets up to Ø.1 mm wide are of quartz and lesser barite.

carbonate	85-87%
quartz	7-8
chromite	1
pyrite	1- 2
Ti-oxide	minor
apatite	trace
late patches	
quartz-carbonate	2-3
veinlets	
quartz	Ø.3
barite	Ø.1

Carbonate (magnesite or dolomite/ankerite) forms very fine to locally fine grained aggregates. Extremely fine grained ankerite(?) is concentrated in lenses with quartz and in recrystallized seams; it is distinguished from the main carbonate by higher relief (although this may be partly apparent because of the fine grain size). A few late veinlike zones of coarser carbonate (white in hand sample) are slightly coarser grained; in some grains are oriented subperpendicular to the length of the "vein".

Quartz forms wispy lenses of extremely fine grain size. In some, grains are strongly sheared and recrystallized parallel to foliation. In others, grains are equant and moderately interlocking with typical cherty textures. One lensy zone 5 mm long and up to 1 mm wide consists of extremely fine grained cherty silica with a banded texture; intergrown with it parallel to foliation are lenses and veinlets of carbonate. A few patches and dissemination grains of quartz 0.05 mm in size are intergrown with coarser grained carbonate.

Chromite forms relic, commonly fractured and corroded, equant grains up to 0.6 mm in size. It is red brown in color. Some grains are altered along borders slightly to moderately to magnetite. Patches of pyrite occur in some fractures.

Pyrite forms clusters and disseminated grains averaging $\emptyset.02-0.05$ mm in size, with a few up to $\emptyset.1$ mm across. These commonly are concentrated in lenses with extremely fine grained carbonate.

A few patches up to 2 mm across are of very fine to fine grained quartz and lesser carbonate; these probably formed during late recrystallization.

Ti-oxide forms scattered equant grains up to $\emptyset.03$ mm in size. Apatite occurs in a very few patches of quartz as anhedral, equant grains averaging $\emptyset.01-0.02$ mm in size.

The rock is cut by a late veinlet up to 0.1 mm wide of very fine grained quartz and lesser barite.

87-P-2 272.5 Breccia: Carbonate-Quartz Altered Ultramafic Rock Fragments in a Groundmass of Quartz-(Carbonate) with minor Chalcedony and Arsenopyrite

The rock contains angular fragments from 0.3-2 mm in size of several types, mainly carbonate-(chert). The presence of scattered chromite grains indicates that the parent was ultramafic. The groundmass is dominated by extremely fine to very fine grained quartz and lesser carbonate, with minor patches of chalcedony and disseminated grains of arsenopyrite. A late veinlet is of quartz.

fragments	
carbonate-cherty quartz	35-40%
quartz-(carbonate) vein	3-4
chromite	Ø.1
groundmass	
quartz	40-45
carbonate	7-8
vein quartz	3-4
chalcedony	Ø.4
arsenopyrite	Ø.2
pyrite	trace
hematite	trace
veins	
quartz-carbonate seam	l- 2
quartz	Ø.4

Fragments up to 2 mm in size are of carbonate or carbonate-cherty quartz. Carbonate is mainly very fine grained, and commonly shows a preferred orientation. Cherty quartz shows textures similar to those in other samples of carbonate-quartz alteration. These include mainly unoriented grains averaging $\emptyset.\emptyset\emptyset2-\emptyset.\emptyset\emptyset5$ mm, and patches with strong foliation and similar to slightly coarser grain size. Some foliated chert contains lenses of carbonate.

A few patches from 1 to 3 mm across of very fine to fine grained quartz and minor carbonate appear to be fragments.

Chromite forms angular grains up to Ø.3 mm in size, either as fragments or as relic grains in chert-carbonate alteration. Chromite is fractured strongly.

The groundmass of the breccia is dominated by extremely fine to very fine grained quartz with minor to moderately abundant carbonate. In slightly coarser grained patches, subhedral prismatic quartz grains up to $\emptyset.15$ mm long are common. A few patches up to 1.5 mm across of very fine to locally medium grained quartz appear to be late-formed replacement patches. Locally, chalcedony forms patches up to 1 mm in size of radiating to subparallel aggregates of grains averaging $\emptyset. \emptyset5- \emptyset.1$ mm in length.

Arsenopyrite forms disseminated subhedral to euhedral grains averaging $\emptyset.03-\emptyset.07$ mm in size. Pyrite forms anhedral to subhedral grains averaging $\emptyset.02-\emptyset.03$ mm in size.

A few interstitial patches consist of dense, dark red-brown hematite(?) showing very low reflectivity.

The rock is cut by a seam up to 0.3 mm wide of extremely fine grained chert and carbonate.

Late veinlets up to Ø.2 mm wide are of very fine grained quartz.

 \Box

87-P-2 363 Metamorphosed Dacite Tuff, Brecciated and cut by Veins of Ankerite

The rock contains scattered fragments of quartz and lesser plagioclase in an extremely fine grained groundmass dominated by cherty quartz and sericite with lesser ankerite. The rock is brecciated along seams dominated by dusty opaque. It is cut by veinlets up to $\emptyset.5$ mm wide ($\emptyset.5$ mm in hand sample) of ankerite.

fragments	
quartz	2-3%
plagioclase	1
Ti-oxide	minor
apatite	trace
groundmass	
cherty quartz	40-45
sericite	20-25
ankerite	17-20
pyrite-marcasite	1
chalcopyrite	trace
dusty opaque	4-5
veinlets	
l) early quartz	1
2) late ankerite	3-4

Γ

Quartz and lesser plagioclase form angular to subrounded fragments from $\emptyset.1-\emptyset.2$ mm in average size. Ti-oxide forms a few equant fragments up to $\emptyset.13$ mm across. Apatite forms a very few equant fragments up to $\emptyset.05$ mm in size.

The groundmass is dominated by extremely fine grained, chert quartz and sericite, with lesser patches and seams of ankerite. Dusty opaque (possibly carbonaceous) forms wispy seams and irregular patches. In hand sample, these appear to be concentrated in the matrix of an irregular breccia, and in part are associated with early-formed seams and veinlets of ankerite.

Pyrite is concentrated in a few clusters up to 0.9 mm long as subhedral to euhedral grains up to 0.2 mm in size. Many grains contain abundant tiny silicate inclusions. Some similar clusters up to 0.3 mm across are aggregates of anhedral, extremely fine grained marcasite.

Chalcopyrite forms anhedral grains from $\emptyset.\emptyset1-\emptyset.\emptyset2$ mm size, and is concentrated locally in clusters of grains up to $\emptyset.\emptyset5$ mm across associated with very fine grained carbonate.

A few early, discontinuous veinlike zones and patches are of very fine grained quartz with much less carbonate.

Late, somewhat irregular, replacement and crosscutting veins averaging 0.2-0.3 mm wide are of extremely fine grained ankerite.

87 -B-3 266 Peridotite: Olivine and Orthopyroxene Altered to Serpentine-Magnetite; Veins of Carbonate and Talc

The rock is a medium to coarse grained peridotite dominated by olivine with lesser orthopyroxene and minor intercumulus chromite. Olivine is altered completely to serpentine and patches of magnetite, orthopyroxene is altered to serpentine, and chromite is altered to hematite. Original textures are well preserved. Early veinlets are of serpentine and late veins are of carbonate and of talc.

olivine (serpentine)	65-70%	veins		
orthopyroxene (serpentine)	17-20	serpentine	1-	28
chromite	1- 2	carbonate-talc		
magnetite (secondary)	3-4	(chalcopyrite)	3 -	4
pyrite	Ø.3	talc	1 -	2
chlorite	minor			

Olivine forms an aggregate of fine to medium grains; these are replaced by serpentine showing typically replacement textures controlled by fractures in olivine grains. Magnetite (after olivine) occurs in disseminated grains in, and interstitial patches between altered olivine grains.

Clinopyroxene forms clusters of anhedral to subhedral prismatic grains up to 3.5 mm in length. They are replaced by pseudomorphic serpentine. Some are slightly bent and broken.

Γ

1

Chromite forms interstitial (intercumulus) grains between olivine grains. Size ranges widely from Ø.1-2.5 mm. Chromite is altered completely to opaque Fe-oxides of extremely fine grain size and low reflectivity. These in turn are replaced by wispy veinlets of hematite with higher reflectivity. Locally surrounding the largest two patches of chromite is minor chlorite showing brown interference color. This is bordered by larger zones of serpentine/chlorite showing bright blue anomalous interference color.

Magnetite is concentrated in seams and patches as anhedral grains averaging Ø.Ø2-Ø.1 mm in size. Although the optical properties suggest that magnetite is unaltered, the low magnetism of the rock suggests thailand is moderately replaced by hematite.

Pyrite and marcasite/pyrite form disseminated anhedral grains and clusters averaging 0.02-0.05 mm in size.

Veins are of four main types. Early veins averaging Ø.1-Ø.3 mm in width are of fine to medium grained serpentine.

Carbonate (ankerite or magnesite) forms extremely fine to very fine grained veins up to 1.3 mm wide. Some of these veins contain minor to abundant patches of a pale to light brown mineral (probably a phyllosilicate) which forms "flakes" up to 1.5 mm in size of cryptocrystalline aggregates in subparallel orientation. The mineral has very low apparent birefringence, but that may be because it is so fine grained. A patch a few mm across near the largest carbonate vein consists of coarse grained serpentine-talc, with interference color ranging from 1st-order grey (typical of serpentine to 2nd order yellow (typical of talc). A few of the veins contain a trace of chalcopyrite as grains up to 0.05 mm in size.

A few veins up to 0.2 mm wide are dominated by very fine to fine grained talc. Talc also forms extremely fine grained veinlets and seams, in part associated with carbonate; in these, talc is pale brown in color, suggesting that the brown mineral described above also may be talc.

One banded veinlet up to Ø.1 mm wide consists of finely banded, light brown, cryptocrystalline talc(?). Apparent age relations are ambiguous. This vein cuts a vein of coarser grained talc and itself is cut by an extremely fine grained carbonate vein, which appears to be cut by the coarser grained talc vein!

<u>87-B-3 301</u> Metamorphosed Dacite Crystal Tuff, cut by Quartz-Dolomite Veins

The rock contain fragments of plagioclase and quartz crystals in an extremely fine grained groundmass of plagioclase-quartz and lesser sericite and ankerite. It is cut by a few veins of quartz-dolomite. In the hand sample (not in the thin section) are veins up to 2.5 mm wide of fine grained dolomite-quartz.

30-358
8-10
Ø.3
Ø.3
trace
35-40
4-5
4-5
Ø.3
Ø.5
minor
trace

 \Box

 \Box

 \Box

Π

 $\left[\right]$

quartz-dolomite-(apatite-kaolinite) 5- 7

Plagioclase and quartz form subangular grains averaging $\emptyset.1-\emptyset.25$ mm in size, with a few up to $\emptyset.5$ mm across. Plagioclase is altered slightly to moderately to sericite.

A few fragments are of extremely fine grained plagioclase/quartz with minor to moderately abundant dusty opaque; these may be fragments of intermediate volcanic rocks.

Zircon forms a very few anhedral grains up to Ø.05 mm in size.

The groundmass is dominated by extremely fine grained plagioclase and lesser quartz, with minor to moderately abundant sericite and lesser ankerite.

Pyrite forms patches up to $\emptyset.2 \text{ mm}$ long of extremely fine grained aggregates, and disseminated grains averaging $\vartheta.\vartheta_3-\vartheta.\vartheta_8 \text{ mm}$ across. A few spheroidal patches up to $\vartheta.5 \text{ mm}$ across are of framboidal, extremely fine grained pyrite (less than $\vartheta.\vartheta\vartheta_2 \text{ mm}$). One patch $\vartheta.1 \text{ mm}$ across consists of abundant tiny framboidal aggregates.

Ti-oxide forms lenses from $\emptyset.1-\emptyset.25$ mm long of extremely fine grained to locally very fine grained aggregates.

Carbonaceous opaque forms wispy seams up to 0.05 mm wide concentrated in a zone up to 1 mm wide. In this zone, graphite forms a few seams up to 0.5 mm in length of flakes up to 0.07 mm across.

Several veins averaging Ø.2-Ø.7 mm wide consist of very fine grained quartz and carbonate in varying proportions. One vein contains a few grains of apatite up to Ø.25 mm long, and a few patches up to Ø.15 mm across of extremely fine grained kaolinite. A few veins contain minor chalcopyrite grains up to Ø.05 mm in size. Numerous veinlets up to Ø.1 mm in width are of extremely to very fine grained carbonate.

87-B-3 481

Π

 \Box

 \Box

 \Box

 $\left[\right]$

Π

181 Dolomite-Quartz Alteration of Ultramafic Rock; Replaced by Quartz and cut by Quartz-Dolomite Veins

The rock is patchy in texture and consists of dolomite with much less, commonly cherty quartz. Minor relic chromite patches indicate that the parent rock was ultramafic. The rock is replaced by irregular patches of very fine to fine grained quartz, and cut by a few veins up to 1 mm wide of coarser grained quartz and dolomite.

dolomite	60-65%
quartz	4-5
chromite	0.2
pyrite	0.2
arsenopyrite	Ø.1
magnetite/limonite	0.2
Ti-oxide	minor
veins	
quartz	25-3Ø
dolomite	3-4
chalcedony	minor

Dolomite forms a very fine grained, moderately to well foliated aggregate, with local coarser grains up to 0.3 mm in size. Intergrown with dolomite are minor patches of cherty to very fine grained quartz up to 1 mm in length.

Chromite occurs in one lensy patch 1.2 mm long as fragments up to \emptyset .1 mm in size surrounded by soft, non-reflective, extremely fine grained opaque. Its presence indicates that the original rock was ultramafic. A second lens \emptyset .6 mm long contains abundant fragments of magnetite averaging $\emptyset.\emptyset05-\emptyset.\emptyset2$ mm in size surrounded by dense, non-reflective opaque. Textures are similar to those in the chromite-rich lens, suggested that the magnetite may have been formed by replacement of chromite.

Pyrite and arsenopyrite each form disseminated anhedral to euhedral grains averaging $\emptyset. \emptyset2 - \vartheta. \emptyset5$ mm in size. A few euhedral pyrite grains are up to $\emptyset.18$ mm across. Pyrite is concentrated moderately in one patch up to $\emptyset.6$ mm across, in which it forms anhedral grains from $\emptyset. \emptyset1 - \emptyset. \emptyset7$ mm in size. Arsenopyrite is concentrated moderately in a few wispy seams as grains from $\emptyset. \emptyset05 - \emptyset. \emptyset1$ mm in size.

Ti-oxide is concentrated in a cluster Ø.3 mm across of anhedral grains up to Ø.04 mm across.

Veins up to 1 mm in width consist of fine to very fine grained quartz and dolomite. Finer grained quartz forms replacement patches, in part association with and grading textural and spatially into the veins. One vein contains a band of extremely fine grained dolomite and quartz; associated with dolomite is a seam containing abundant extremely fine grained arsenopyrite.

Locally, veins contain patches of very fine grained chalcedony up to $\emptyset.3 \text{ mm}$ in size.

<u>87-B-3 487</u> Dolomite-Quartz-Sericite-Altered Ultramafic Rock; Cut by Dolomite-(Quartz-Kaolinite) Veins

The rock is strongly sheared and moderately warped to locally tightly folded. It consists of very finely banded dolomitic and much less quartz, with a few seams rich in sericite. A few relic lenses of chromite indicate that the parent rock was ultramafic. Veinlets are dominated by dolomite, with lesser quartz and/or kaolinite.

dolomite	70-75%
quartz	12-15
sericite	5-7
chromite	Ø.1
pyrite/marcasite	Ø.3
arsenopyrite	Ø.1
Ti-oxide	Ø.1
veins and veinlets	
dolomite	7-8
kaolinite	1
quartz	1
marcasite/pyrite	minor

Π

 $\left[\right]$

Π

Dolomite forms extremely fine to very fine grained aggregates variably intergrown with seams rich in quartz and/or sericite. Dolomitic forms irregular coarser grained patches and lenses averaging $\emptyset.1-\emptyset.2$ mm in grain size.

Quartz forms a variety of textures. Many seams and lenses are extremely fine grained, and show textures indicative of strong shearing. Quartz forms a few very fine grained patches averaging 0.3-0.8 mm in size; the origin of these is uncertain.

Sericite is concentrated in a few seams up to 1 mm wide, mainly intergrown with quartz. Tight folds on the scale of $\emptyset.3-1$ mm are best defined by thin interbanded zones of quartz-sericite and dolomite.

Chromite forms a few lenses up to 1 mm long containing equant angular fragments from $\emptyset.\emptyset2-\emptyset.\emptyset7$ mm in size. The matrix between the fragments is extremely fine grained dolomite.

Pyrite and much less arsenopyrite form disseminated anhedral to euhedral grains averaging $\emptyset.\emptyset2-\emptyset.\emptyset7$ mm in size. A few lenses up to $\emptyset.4$ mm long consist of extremely fine grained aggregates of arsenopyrite and marcasite. A few opaque-rich seams parallel to foliation contain abundant pyrite grains averaging $\emptyset.\emptyset05$ mm in size.

Ti-oxide forms scattered grains up to 0.1 mm in size, and clusters up to 0.15 mm in size of extremely fine grains.

The rock is cut by numerous veinlets averaging $\emptyset.05-0.4$ mm in width of dolomite. A few of these at one end crosscut the foliation, and appear to be slightly strained. Larger veins up to a few mm across occur in the hand sample.

One lensy vein up to 1 mm wide has an outer zone of very fine grained dolomite, and a core up to $\emptyset.6$ mm wide of extremely fine grained ($\emptyset.002-0.005$ mm) kaolinite with scattered to moderately abundant patches of dolomite. Furthered along this vein are clusters up to $\emptyset.4$ mm long of very fine grained marcasite/pyrite.

A few veins are of very fine grained dolomite and quartz.

One vein averaging $\emptyset.1-\emptyset.2$ mm wide and dominated by very fine grained quartz contains a few patches up to $\emptyset.1$ mm across of extremely fine grained kaolinite.

APPENDIX 5

.

 \Box

Π

 \Box

[]

Γ

Π

 \Box

Π

Π

.

STATEMENT OF EXPENDITURES

STATEMENT OF EXPENDITURES

Allocation of costs between CAL and RUST groupings: 1.

CAL group - 1,000 ft. drilled, 74 core samples RUST group - 500 ft. drilled, 69 core samples

2. Drill Expenditures

 $\left[\right]$

Γ

 \Box

Π

E

Γ

[]

 $\left[\right]$

 $\left[\right]$

Π

Π

 \Box

Π

 \Box

3.

		CAL Group	RUST Group
	Ed Asp, Dease Lake: sloop rental 15 Nov - 31 Dec = \$2,500	\$ 1,675.00	\$ 825.00
	Invoice 2275	3/ 3/9.00	_
	Invoice 2275	7,839,00	40.615.00
	Invoice Jan/88	-	4,719,00
	Canyon Contracting, Dease Lake:		
	D8 bulldozer, etc.	9,312.00	-
	17 1ê tê	4,416.00	5,625.00
	10 IF II	-	2,689.00
	Murphy Contracting, Dease Lake:		
	D7 bulldozer, etc., and fuel caching	7,500.00	-
	Welson Adverse Deservations	42,452.00	20,909.00
	Tukon Alrways, Dease Lake:	18 561 74	-
	= 19.0 hours	10,501+74	12,288,29
	South Dease Services: groceries	500.00	400.00
	Robertson, Wallis & Associates:		
	Project management, personnel, camp	12,522.00	-
	vehicles, expediting	6,117.00	20,506.00
		\$145,243.74	\$108,576.29
3.	Sampling and Assaying		
	Min-En Laboratories, Vancouver:	\$ 1.612.09	\$ 1,503,16
	Freight: core samples	215.40	200.84
	Robertson, Wallis & Associates:		
	Jan./88 Core logging and sampling	3,784.00	3,324.00
		\$ 5,611,49	\$ 5,028,00
		<u>+),011011</u>	<i>• • • • • • • • • •</i>
4.	Petrographic Studies		
	Vancouver Petrographics, Fort Langley	\$ 1,165.00	\$ 573.75
5.	TOTAL EXPENDITURES	\$152,020.23	\$114,178.04

STATEMENT OF QUALIFICATIONS

APPENDIX 6

[

Π

STATEMENT OF QUALIFICATIONS

I, Ronald C. R. Robertson, hereby certify:

That I am a self-employed consulting geologist with business addresses at Box 5474, Whitehorse, Yukon, and 1560-701 West Georgia Street, Vancouver, British Columbia, and that I supervised the 1987 diamond drill program described in this report;

That I obtained a Bachelor of Science degree with First Class Honours in Geology from the University of Aberdeen, Scotland, in 1970 and subsequently carried out graduate studies in economic geology at McMaster University, Hamilton, Ontario, and at Queen's Unversity, Kingston, Ontario;

That I have engaged in mineral exploration for 18 years, of which 10 years have been on programs in the Yukon Territory, British Columbia and Alaska;

That I am a fellow of the Geological Association of Canada (Number F4858) and a member of the Society of Economic Geologists, the British Columbia-Yukon Chamber of Mines and the Canadian Institute of Mining and Metallurgy.

Dated at Vancouver, British Columbia, this 10th day of August, 1988.

handled CM Rola Toom

Ronald C. R. Robertson, F.G.A.C.

20 m	etres			
NES LII	MITED			
PROJECT NTS: 104 JIGE				
DDH 87-P-2 EA - FACING N				
sociates	FIGURE			
NE, 1988				

.

