ARIS SUMMARY SHEET

District Geologist, Kamloops

Off Confidential: 89.05.11

ASSESSMENT REPORT 17715

MINING DIVISION: Similkameen

PROPERTY:

TNT LAT

LOCATION:

49 29 00 LONG 120 28 00 10 5484053

UTM

683491

NTS 092H08W TNT

CLAIM(S):

OPERATOR(S): AUTHOR(S): REPORT YEAR: Mingold Res. Taylor, K.J. 1988, 27 Pages

COMMODITIES

SEARCHED FOR: Copper, Gold

GEOLOGICAL

SUMMARY:

Copper-gold mineralization occurs within and adjacent to northwesterly trending faults cutting Upper Triassic to Lower Jurassic Nicola Group andesites and microdiorites. Within the fault zone, the rocks have been intensely kaolinized and/or sericitized and shattered. Adjacent rocks show chlorite-carbonate alteration with local epidote-ziosite. Size and attitude of mineralization is still

unknown.

WORK

DONE:

Geochemical

SOIL 150 sample(s); AU, AG, CU

'ILE: 092HSE078

LOC NO	0830	80
ACHON	, , ,	
FILE IN		***************************************

SOIL GEOCHEMISTRY REPORT FOR ASSESSMENT

ON

TNT CLAIMS, PRINCETON AREA, B. C.

Similkameen Mining Division N.T.S. Mapsheet: 92H /8W Latitude: 49⁰ 29' N. Longitude: 120⁰ 28' W.

Owner: Mingold Resources Inc.
Operator: Mingold Resources Inc.
Report by: K. J. Taylor, B. Sc.
Date: August 24, 1988

GEOLOGICAL BRANCH ASSESSMENT REPORT

FILMED

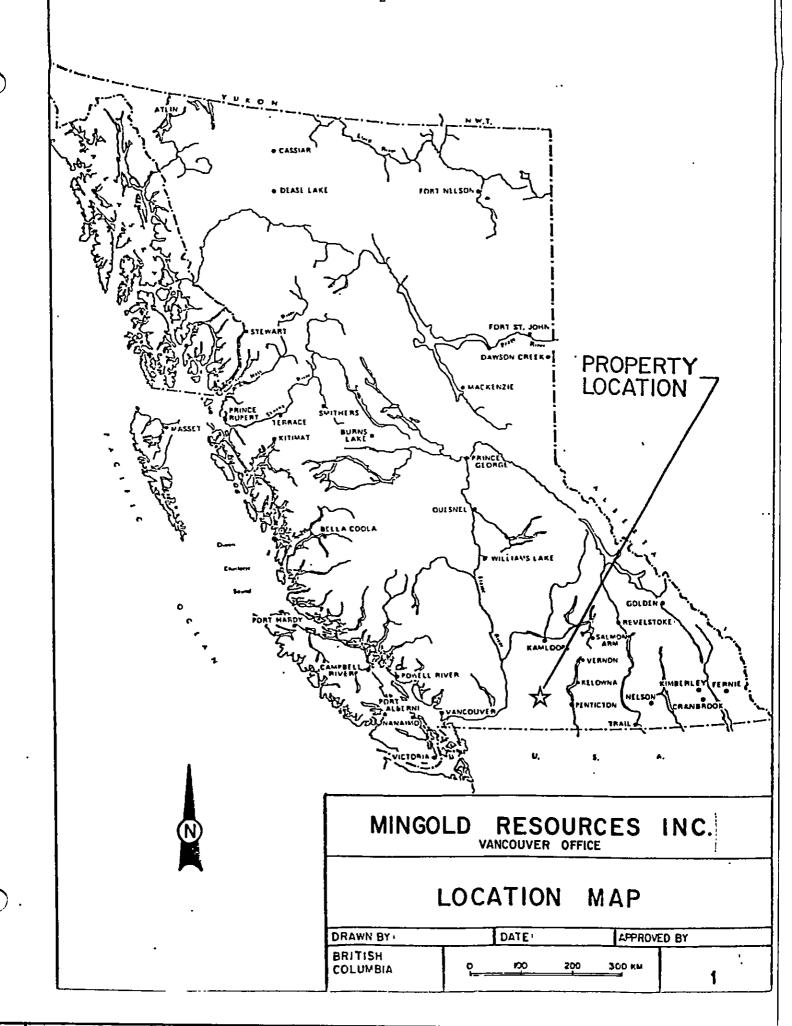
SUB-RECORDER RECEIVED

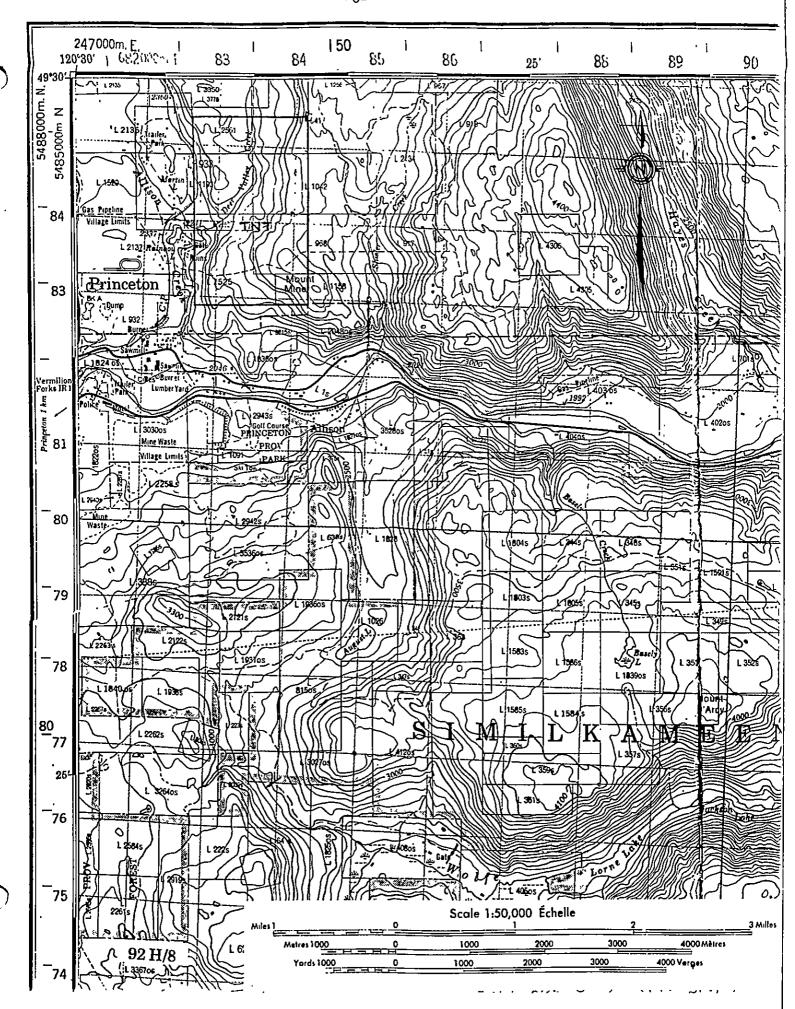
AUG 29 1988

Table of Contents	Page
Introduction	1
Location & Access	1
Claim Status & Ownership	4
History	4
Geology	8
Soil Geochemistry	10
- Sampling and Analytical Procedures	10
- Interpretation	12
Conclusions	15
Bibliography	16
Statement of Costs	17
<u>Figures</u>	
1. Location Map (1:750,000)	
2. Location Map (1:50,000)	
3. Claim Map (1:50,000)	
4. Location Map, Granby and Regal Trenches (1:25,000)	9
5. Tape and Compass Survey of Granby Trenches (1:4000)	11
6. Soil Grid Location Map (1:20,000)	13
7. Soil Geochemistry - Cu, Ag, Au (1:4000)	14
<u>Tables</u>	
1. TNT Claim Information	4
Appendices	

- 1 Statement of Qualifications
- 11 Soil Geochem Analysis Certificates

Introduction


The TNT claims consist of 15 contiguous claim units staked by Mingold Resources personnel in May of 1987. They are located 4 kilometers northeast of Princeton, B. C. on the western slopes of Mt. Miner.


On September 24 and 26, 1987 a modest soil geochemistry grid was carried out over an area where prior rock sampling obtained up to 805 ppb (0.023 oz/t.) gold. The gold mineralization appears to be associated with intensely sheared and altered zones which trend northwesterly across the claims. Work was confined to the east central portion of the claims where numerous old trenches occur.

The report which follows describes the results of the soil geochemistry program along with an economic evaluation of the claim area.

Location & Access

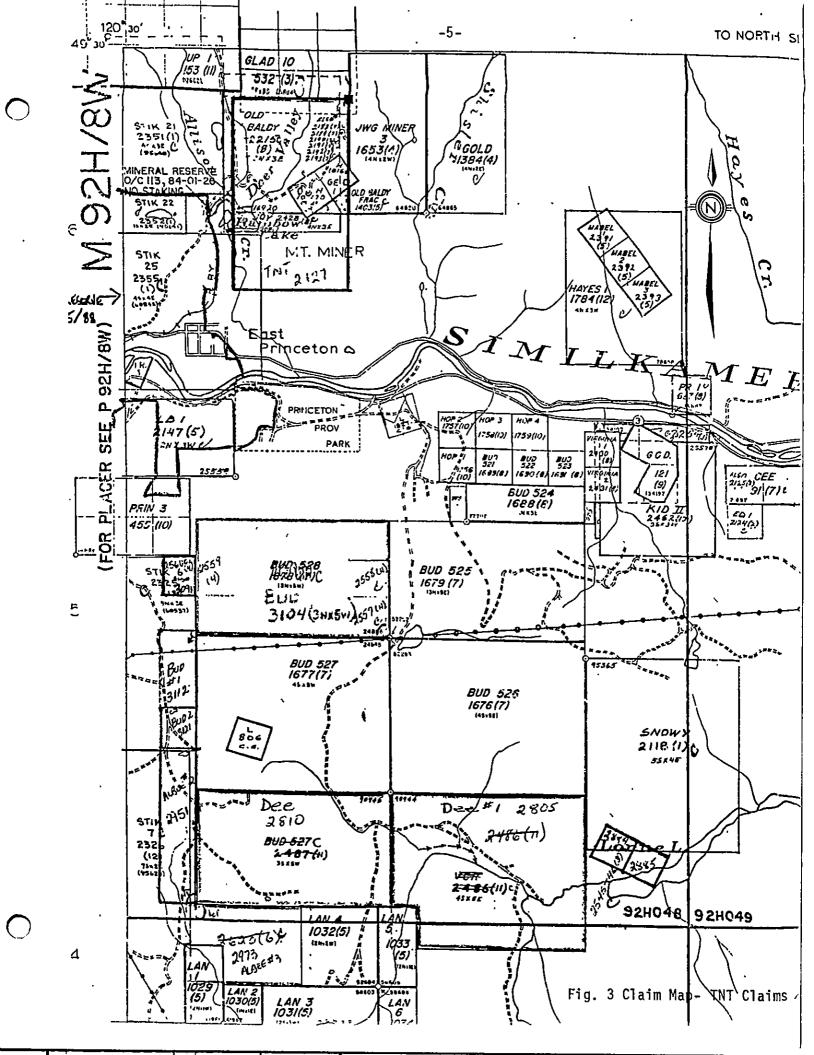
The claims occur 4 kilometers northeast of the town of Princeton, B. C. on NTS mapsheet 92H/8 (see Fig. 1 & 2). The center of the block is at latitude 49°29'N and longitude 120°28'W. The area of previous trenching and drilling and the present soil geochemistry program lies in Deer Valley along the western slopes of Mt. Miner (locally known as Bald Mtn.). Elevations range from 670 meters in the valley bottom to 1000 meters at the summit of Mt. Miner.

Access is by Hwy. 5A north from Princeton to the Old Hedley Road then east for approximately 500 meters to the Deer Valley Road (Summerland Hwy.). This is followed northward for about 6 kilometers to a gravel ranch road heading easterly up onto the slopes of Mt. Miner.

The claims occur in the southern interior dry belt where summers are very hot and dry and winters cold. Vegetation is generally sparse with open grasslands sprinkled with Ponderosa pines being the norm.

Claim Status & Ownership

The TNT claims consist of 15 contiguous units (See Fig. 3) staked under the modified grid system by Mingold Resources Inc. on May 15, 1987. The claims were subsequently recorded on June 4, 1987 and are 100% owned by Mingold Resources Inc.. Complete claim information is given in Table 1 below:


Table 1 - TNT Claim Information

Claim Name	No. of Units	Date Staked	Date Recorded	Record No.	Expiry Date	Mining Division
TNT	15	May 15,1987	June 4, 1987	2927	June 4, 1989*	Similkameen

^{*} The expiry date shown includes the current assessment work for which the Statement of Work was submitted on May 11, 1988.

<u>History</u>

The earliest known work on the area of the TNT claims was in 1905 (Preto, 1974) however no details are known.

In 1929, W. C. McDougall of Olalla staked the area as the REGAL claims. Some diamond drilling was done in the area of previous development work however recovery was poor and grades of copper were too low.

No known activity occurred from 1930 to 1950. From 1951 to 1962, the Granby Mining Co. Ltd. held the ground, however no details of any of the work is available. Preto (1974) mentions that Granby did considerable trenching, some diamond drilling and geochemical and geophysical surveys.

In 1962, E. Mullins and G. Burr of Princeton restaked the main workings as the G.E. and VI claims. They were subsequently optioned by Climax Copper Mines Ltd. in 1963 who carried out geophysical surveys, including I.P., geological mapping and 1077 meters of diamond drilling in an unknown number of holes.

Granby reoptioned the claims in 1965 and drilled 41 percussion holes totalling 1792 meters. They also increased the ground holdings to 72 claims. From 1965 to 1970, no recorded work was done and the ground reverted back to Mullins and Burr.

In 1970, Joy Mining Ltd. optioned the ground and increased the land position to 343 claims (G.D., DOT, ML, etc.). 152 meters of trenching and \$\frac{1}{2}\$ sq. mile (.012 hectares) of stripping was done. Saracen Mines Ltd. appears to have operated the property for Joy in 1971. They carried out surface geological mapping at approximately 1:20,000, 103 kilometers of soil geochem at 30.5 meter spacings (estimated 3377 samples), 200 stream sediments, 37 kilometers of I.P., 3 diamond drill holes totalling 457 meters and constructed

an acid leach plant for copper recovery. Reserves were reportedly "several hundred thousand tons of oxide-sulphide copper mineralization averaging about 0.50% total copper. The acid leaching of some highly oxidized material around the old Regal trenches was apparently unsuccessful.

In 1973, Bethlehem Copper Corp. optioned the claims and drilled 5 widely spaced diamond drill holes. They returned the ground to Mullins and Burr in 1974 and apparently most of the ground was allowed to lapse.

In 1977, Quintana Minerals Corp. restaked part of the area as the BTU claims and did 10 kilometers of linecutting and I.P..

J.M.T. Services Corp. restaked the eastern portion of the area as the JWG Miner and OLD BALDY claims in 1979. They drilled 4 short percussion holes totalling 68 meter that year.

In 1980, Superior Oil Co. and J.M.T. drilled 2 diamond drill holes on the IRLYBIRD claims which are presumed to be in the same area as the JWG MINER claims. Somehow the JWG MINER claims were included in ground influenced by the 1980 uranium moratorium and remained in limbo until their release in 1987.

In 1987, Mingold Resources Inc. staked the TNT claims which cover the western portion of the old REGAL - G.E. claims. Rock sampling of several

of the old trenches indicated anomalous gold values to be accompanying some of the copper mineralization. The gold appears to be related to several northwesterly trending fault zones which contain primarily oxide copper mineralization. A soil geochem survey was subsequently carried out over the trenched area which is the subject of this report.

Geology

The TNT claims occur within a northerly trending belt of highly fractured and altered andesitic volcanic rocks of the Upper Triassic - Lower Jurassic Nicola Group. This is the southern end of the Quesnel Trough structural regime where correlative Takla Group volcanics prevail. This lineal belt is well known for it volcanic hosted copper porphyry mineralization. In recent years, the gold potential of the belt has been the main focus of exploration especially since the discovery of the QR deposit in the Horsefly-Likely area.

On the TNT claims, the main area of copper mineralization is located north of Mt. Miner in the vicinity of the Granby trenches (see Fig. 4). This area is underlain by highly fractured and altered Nicola andesites and coeval pyroxene microdiorites. Mineralization consists of disseminations and fracture fillings of chalcopyrite and pyrite. The western Granby trenches are cut by two zones of intensely sheared, bleached and oxidized rock trending northwesterly (see Fig. 5). These probably represent major fault zones up to 100 meters wide and may be the source of the gold mineralization encountered in rock sampling. All primary rock features have been destroyed and only oxide copper minerals are visible.

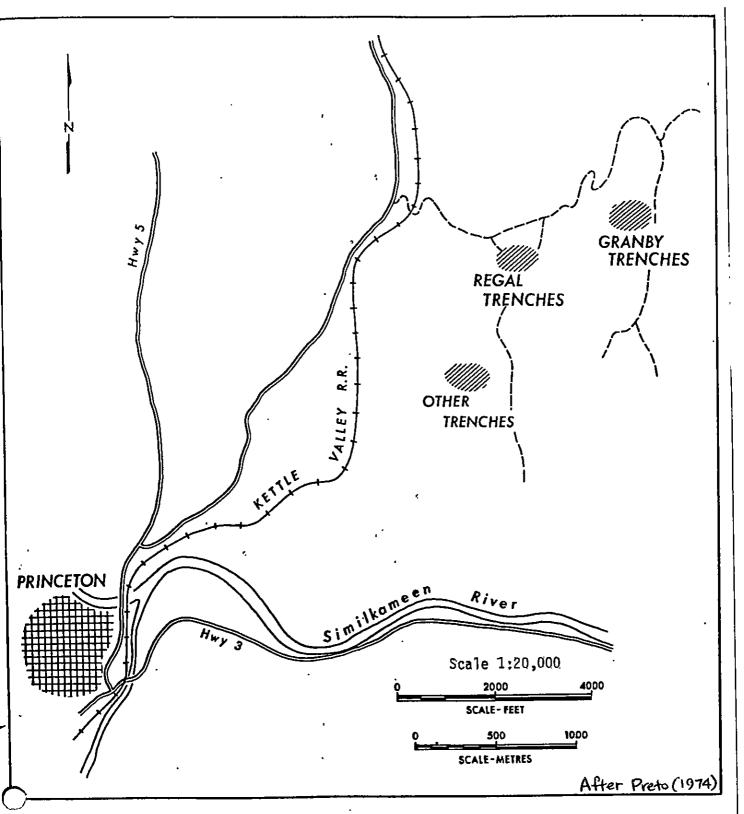
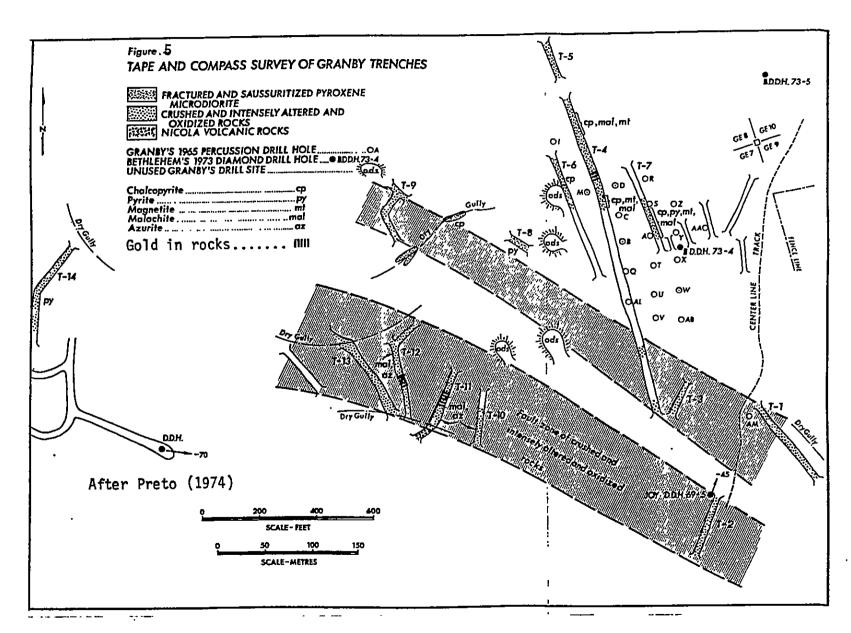


Fig. 4 Location map, Granby and Regal trenches, GE, VI claims.

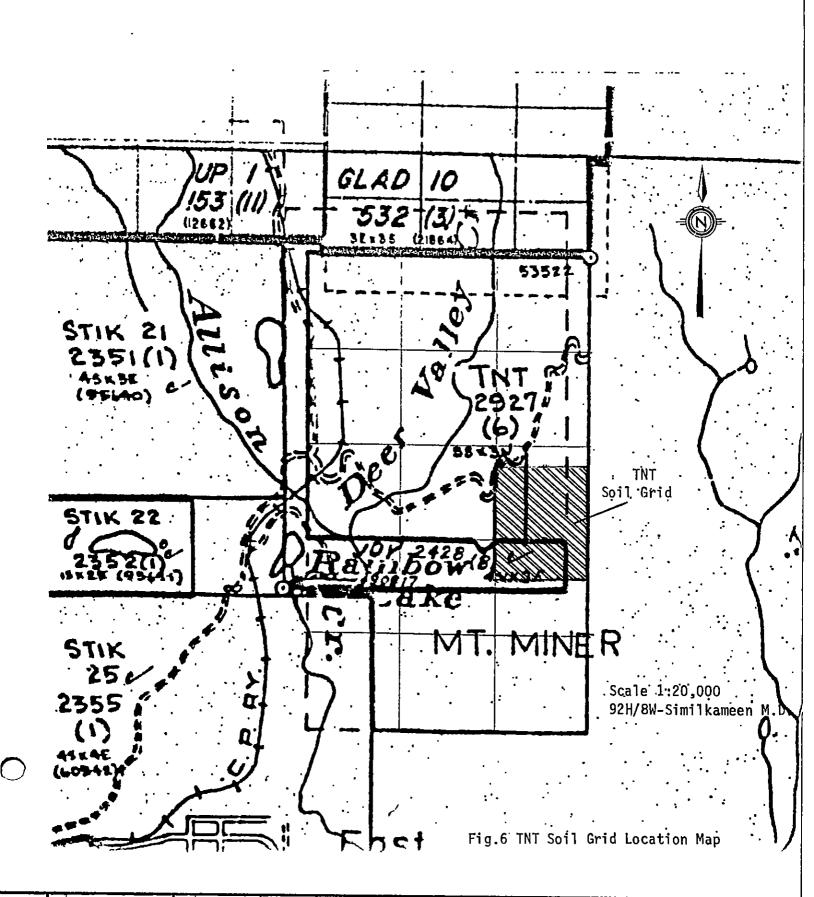

On the Regal trenches similar oxide type mineralization is found. This mineralization reportedly occurs as part of a landslide block which presumably originated upslope in the Granby trenches area. This material is reported to contain several hundred thousand tons of oxide-sulphide copper mineralization averaging about 0.50% total copper (Preto, 1974). Caprock is Middle Eocene Princeton Group which occurs to the north of the Regal trenches. The contact with the Nicola rocks is not exposed.

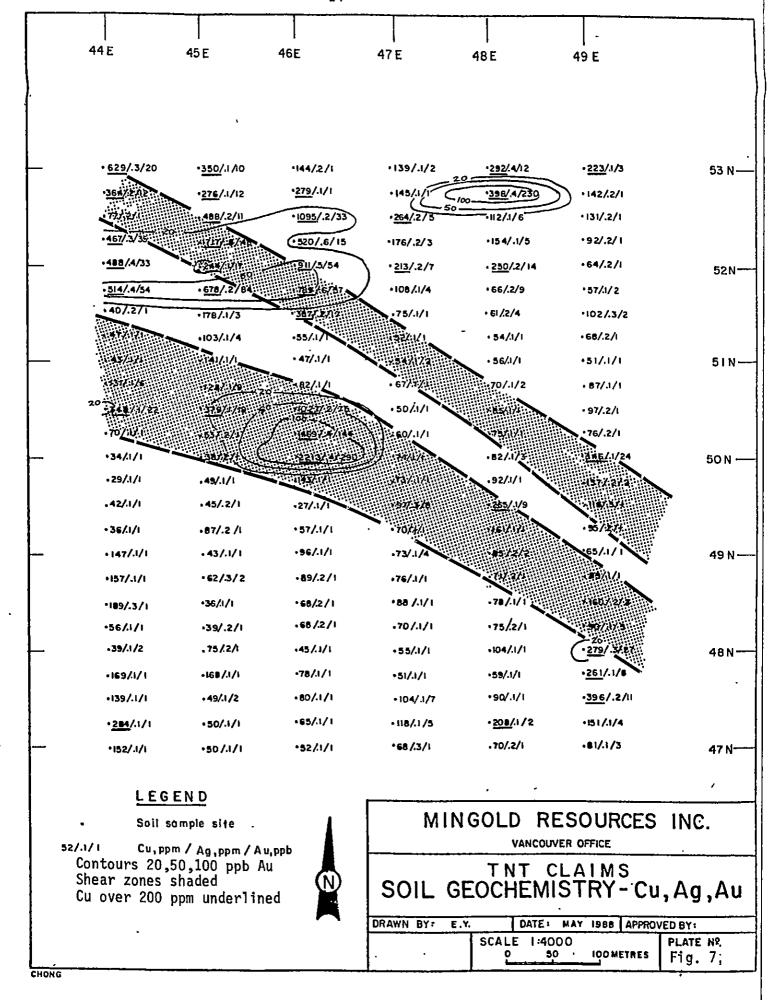
Soil Geochemistry

The soil sampling program on the TNT claims was confined to the area of the old Granby and Regal trenches. Previous rock chip sampling of the trenches by Mingold indicated the presence of anomalous value in gold principally in trench T-11 (See Fig. 5). A grid 500 meters by 600 meters was put in using the northern end of trench T-3 as a tie-point. This was designated 50N-49E. Six north-south lines (44E to 49E) were flagged in 100 meters apart using a hip-chain and compass extending from 47N to 53N. A total of 150 samples were collected.

Sampling and Analytical Procedure

Samples were collected every 25 meters from a depth of 10-15 cm and then placed in a gussetted Kraft soil envelope. Soils were gray brown to reddish brown, silty to sandy material generally considered as part of the "B" horizon. Some "C" horizon samples were taken in trenched areas. Samples


were air-dried and then shipped to Acme Analytical Labs in Vancouver for geochemical analysis for copper, silver and gold. Gold was analysed by atomic absorption with a 1 ppb detection limit. A 10 gram sample is ignited at 600° C, digested with hot aqua regia, extracted by MIBK and then analysed by a graphite furnace atomic absorption unit. Copper and silver were analysed by ICP with 1 ppm and 0.1 ppm detection limits respectively. In this technique a 0.5 gram sample is digested with 3 mls. of 3-1-2 HCI-HNO₃-H₂O at 95°C for one hour and then diluted to 10 ml. with water. This leach is then analysed by a standard ICP unit.


Interpretation

The location of the soil grid in relation to the claim boundaries is shown in Fig. 6. The copper, silver and gold values are shown in Fig. 7 with the gold values contoured at 20, 50 and 100 ppb. Copper values over 200 ppm are underlined. Silver seems to be relatively insignificant.

Gold anomalies appear to be closely associated with the sheared zones interpreted by Preto. These zones are shown on Fig. 7 for reference. Only a single spot high of 230 ppb is unrelated to the shearing. Although the gold is proximal to the shear zones, it is not widespread but rather is concentrated in two main areas.

Copper anomalies show a similar but somewhat wider dispersion pattern than gold as would be expected by its greater solubility. The better gold

values are invariably coincident with the higher copper values however, not all high copper values carry significant gold. This suggests that gold and copper share a common mineralizing event with gold erratically dispersed within the system.

It is too early in the exploration scheme to make any viable economic evaluation of the property. Earlier work by other companies focussed only on the copper mineralization which, although useful for suggesting future target areas, is untested for gold. The limited geochemical program covered by this report indicates gold potential to the northwest and possibly to the southeast. It also indicates that the earlier drilling in search of copper may have been too far to the northeast although I.P. results may show otherwise.

Conclusions

Although the scope of the soil geochemical survey covered by this report was modest, it was successful in indicating the presence of low-grade gold accompanying the copper mineralization. The survey also suggests that the northwest trending shear structures noted by Preto in his 1974 examination are the locus of the copper-gold mineralization. Further work in the form of VLF-EM, soil sampling and possibly I.P. seems to be warranted.

(. J. TAYLOR,

Senior Project Geologist

Bibliography

1974 Preto, V. A. "G.E., VI" in Geology, Exploration and Mining in B. C., 1974 pp 117-118 and illustration.

1963 McKechnie, N. D. "G.E., Regal (Climax Copper Mines Limited)" in Minister of Mines and Petroleum Resources - Annual Report, 1963 pp 63-65

MMAR's: 1918 pp. 214; 1929 pp. 278; 1965 pp. 161-162;

G.E.M.'s: 1969 pp. 353; 1970 pp. 388; 1971 pp. 275; 1977 pp. E128; 1979 pp. 145; 1980 pp. 195; 1982 pp. 179

Statement of Costs

Personnel:	K. Taylor - Geologist & Supervisor	\$ 175.00 /day
	R. Wood - Sampler	90.00 /day
Dates:	September 24 and 26, 1987 - soil sampling	
Costs:	Sampling - 2 mandays @ \$90/manday	180.00
	- 1 manday @ \$175/manday	175.00
	Accommodation: Meals - 3 mandays @ \$25/manday	75.00
	Motel - 2 days @ \$40.00/day	80.00
	Truck Rental - 2 days @ \$50.00/day incl. fuel	100.00
	Analyses - 150 soils for Cu, Ag, Au @ \$8.50/sample	1275.00
	Supplies - Flagging, thread, bags	50.00
	Report Preparation - 2 days @ \$175.00/day	350.00
	Drafting - 4 hours @ \$15.00/hr.	 60.00
	TOTAL	\$ 2345.00

Statement of Qualification

- I, Kenneth J. Taylor, do hereby certify that:
- 1. I am a geologist with a B.Sc. in Geology from the University of British Columbia in 1973.
- 2. I have practised by profession continuously since 1973 to the present.
- 3. I supervised and co-executed the work carried out on the TNT claims in the summer of 1987.
- 4. I have reviewed all procedures involved with this work and found them to be in accordance with accepted practises.

K. J. Taylor, B.Sc.,

Senior Project Geologist

ACME ANALYTICAL LABORATORIES

DATE RECEIVED: DCT 1 1987

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE 253-315B

DATA LINE 251-1011 DATE REPORT MAILED: DCT 1 1987

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H2D AT 95 DES.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.
THIS LEACH IS PARTIAL FOR MN FE CA P LA CR MS BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM.
- SAMPLE TYPE: SOIL AU* ANALYSIS BY AA FROM 10 GRAM SAMPLE.

ASSAYER: ... DELLE DEAN TOYE, CERTIFIED B.C. ASSAYER

MINGOLD RESOURCES PROJECT-TNT File # 87-4609 Page 1

SAMPLE#	CU PPM	AG PPM	AU* PPB
TNT L44E 53+00N TNT L44E 52+75N TNT L44E 52+50N TNT L44E 52+25N TNT L44E 52+00N	629 364 77 467 488	.3 .2 .2 .3	20 12 1 35 33
TNT L44E 51+75N TNT L44E 51+50N TNT L44E 51+25N TNT L44E 51+00N TNT L44E 50+75N	514 40 47 43 131	.4 .2 .1 .1	54 1 1 1 6
TNT L44E 50+50N TNT L44E 50+25N TNT L44E 50+00N TNT L44E 49+75N TNT L44E 49+50N	348 70 34 29 42	. 1 . 1 . 1 . 1	22 1 1 1 1
TNT L44E 49+25N TNT L44E 49+00N TNT L44E 48+75N TNT L44E 48+50N TNT L44E 48+25N	36 147 157 189 56	.1 .1 .3	1 1 1 1
TNT L44E 48+00N TNT L44E 47+75N TNT L44E 47+50N TNT L44E 47+25N TNT L44E 47+00N	39 169 139 284 152	. 1 . 1 . 1 . 1	2 1 1 1 1
TNT L45E 53+00N TNT L45E 52+75N TNT L45E 52+50N TNT L45E 52+25N TNT L45E 52+00N	350 276 488 1717 244	.1 .1 .2 .8	10 12 11 48 17
TNT L45E 51+75N TNT L45E 51+50N TNT L45E 51+25N TNT L45E 51+00N TNT L45E 50+75N	678 178 103 141 128	2.0 .1 .1 .1	84 3 4 1 9
TNT L45E 50+50N	379 40	- 1 7 · 1	19 40

SAMFLE#	CU PPM	AG PPM	AU* PPB
TNT L45E 50+25N TNT L45E 50+00N TNT L45E 49+75N TNT L45E 49+50N TNT L45E 49+25N	53 38 49 45 87	.2 .1 .2 .2	1 1 1 1
TNT L45E 49+00N TNT L45E 48+75N TNT L45E 48+50N TNT L45E 48+25N TNT L45E 48+00N	43 62 36 39 75	.1 .3 .1 .2	1 2 1 1 1
TNT L45E 47+75N TNT L45E 47+50N TNT L45E 47+25N TNT L45E 47+00N TNT L46E 53+00N	168 49 50 50 144	.1 .1 .1 .2	1 2 1 1 1
TNT L46E 52+75N TNT L46E 52+50N TNT L46E 52+25N TNT L46E 52+00N TNT L46E 51+75N	279 1095 520 911 789	.1 .2 .6 .5	1 33 15 54 57
TNT L46E 51+50N TNT L46E 51+25N TNT L46E 51+00N TNT L46E 50+75N TNT L46E 50+50N	387 55 47 82 1027	.2 .1 .1 .1	17 1 1 1 75
TNT L46E 50+25N TNT L46E 50+00N TNT L46E 49+75N TNT L46E 49+50N TNT L46E 49+25N	1469 2213 143 27 57	.4 .4 .1 .1	144 290 1 1
TNT L46E 49+00N TNT L46E 48+75N TNT L46E 48+50N TNT L46E 48+25N TNT L46E 48+00N	76 87 · 68 68 45	.1 .2 .2 .1	1 1 1 1
TNT L46E 47+75N STD C/AU-S	78 6 0	.1 7.0	1 [′] 52

SAM	PLE#		UD Maa	AG PPM	AU* PPB
TNT TNT TNT TNT TNT	L46E 4 L46E 4 L47E 5	7+50N 7+25N 7+00N 3+00N 2+75N	80 65 52 139 145	. 1 . 1 . 1 . 1	1 1 2 1
TNT TNT TNT TNT TNT	L47E 5 L47E 5 L47E 5	2+50N 2+25N 2+00N 1+75N 1+50N	264 176 213 108 75	.2 .3 .2 .1	5 7 4 1
TNT TNT TNT TNT TNT	L47E 5 L47E 5 L47E 5	1+25N 1+00N 0+75N 0+50N 0+25N	52 54 67 50 60	. 1 . 1 . 1 . 1	1 2 1 1 1
TNT TNT TNT TNT TNT	L47E 4 L47E 4 L47E 4	0+00N 9+75N 9+50N 9+25N 9+00N	74 73 97 70 73	.1 .3 .1	1 1 8 1 4
TNT TNT TNT TNT TNT	L47E 44 L47E 44	8+75N 8+50N 8+25N 8+00N 7+75N	76 88 70 55 51	. 1 . 1 . 1	1 1 1 1
TNT TNT TNT TNT TNT	L47E 4	7+50N 7+25N 7+00N 3+00N 2+75N	104 118 68 292 398	. 1 . 1 . 3 . 4 . 4	7 5 1 12 230
TNT TNT	L48E 5:	2+25N 2+00N	112 154 250 66 61	.1 .2 .2	6 5 14 9 4
TNT DTS	L48E 5: C/AU-S	l+25N	54 60	.1 7.2	1 51

SAMPĹE#	CU PPM	AG PPM	AU* PPB
TNT L48E 51+00N TNT L48E 50+75N TNT L48E 50+50N TNT L48E 50+25N TNT L48E 50+00N	54 70 45 75 82	. 1 . 1 . 1 . 1	1 2 1 1 3
TNT L48E 49+75N TNT L48E 49+50N TNT L48E 49+25N TNT L48E 49+00N TNT L48E 48+75N	92 265 161 85 71	.1 .1 .2 .2	1 9 1 2 1
TNT L48E 48+50N TNT L48E 48+25N TNT L48E 48+00N TNT L48E 47+75N TNT L48E 47+50N	78 75 104 59 90	.1 .2 .1. .1	1 1. 1 1
TNT L48E 47+25N TNT L48E 47+00N TNT L49E 53+00N TNT L49E 52+75N TNT L49E 52+50N	208 70 223 142 131	.1 .2 .1 .2	2 1 3 1 1
TNT L49E 52+25N TNT L49E 52+00N TNT L49E 51+75N TNT L49E 51+50N TNT L49E 51+25N	92 64 57 102 68	.2 .2 .1 .3	1 1 2 2 1
TNT L49E 51+00N TNT L49E 50+75N TNT L49E 50+50N TNT L49E 50+25N TNT L49E 50+00N	51 87 97 76 346	.1 .2 .2 .1	1 1 1 1 24
TNT L49E 49+75N TNT L49E 49+50N TNT L49E 49+25N TNT L49E 49+00N TNT L49E 48+75N	137 116 95 65 89	.2 .3 .2 .1	2 1 1 1 1
TNT L49E 48+50N STD C/AU-S	160 59	.2 7.2	2 47

MINGOLD RESOURCES PRO	JECT-TNT	FILE	# 87-4609	Page 5
SAMFLE#	CU PPM	AG PPM	AU* PPB	
TNT L49E 48+25N TNT L49E 48+00N TNT L49E 47+75N	90 279 261	.1 .3 .1	3 27 8	
TNT L49E 47+50N	396	.2	11	

81

60

. 1

6.9

47

TNT L49E 47+00N

STD C/AU-S