ACTIUN. Date received report

 back from amendments.
FILE NO:

AC Hin.

THE CUSP PROPERTY

Slocan Mining Division

 82K-4EKusp 1, Nat 1-8, Naku 1 Claims
I GEOLOGICAL BRANCH ASSESSMENTREPORT

界

for
ADASTRAL RESOURCES LTD. \square

SUB-RECORDER RECEIVED

AUG 261988
MR. \# \qquad \$
by
J. R. Woodcock VANCOUVER, BC. August 19, 1988

TABLE OF CONTENTS

Page No.
SUMMARY 1
INTRODUCTION 2
LOCATION AND ACCESS 2
CLAIMS AND OWNERSHTP 3
GENERAL GEOLOGY 4
GEOPHYSICAL WORK 5
GEOCHEMISTRY 6
Generai 6
Lead in Soil 6
Silver in Soil 6
Zinc in Soil 6
Manganese in Soil 7
Copper in Soil 7
Arsenic in Soil 7
CONCLUSIONS AND RECOMMENDATIONS 7
TABLES
TABLE I CLAIM DATA 3

FIGURES

Figure 1	Location Map	2a
Figure 2	Claim Map	2b
Figure 3	Sample Location Map	In Pocket
Figure 4	Soil Geochemistry Pb, Zn	In Pocket
Figure 5	Soil Geochemstry Ag, As	In Pocket
Figure 6	Soil Geochemistry Cu, Mn	In Pocket
Figure 7	VLF-EM Survey	In Pocket

APPENDICES

Appendix I Field Data for VLF-EM Survey Appendix II Analytical Certificates

THE KUSP PROPERTY

SUMMARY

The Kusp property lies in the Slocan Mining Division about 17 kilometers southeast of Nakusp. Although the claim block extends from the highway on the north to logging roads on the south (at the top of the ridge), access to the Discovery area at present is by helicopter.

In 1977 J. R. Woodcock discovered the Kusp mineralized zone and in 1978 he mapped the zone, did geophysical and geochemical work, and a limited amount of drilling (308 meters). In 1987 Adastral Resources acquired the property and extended the geochemical and VLF-EM survey.

The mountain block which hosts the mineralized zone is composed largely of pyroclastic rocks, mainly tuffs, which have in the past been assigned to the Slocan Group with age Jurassic to Triassic. The overall structure is an overturned anticline with both limbs dipping to the southwest. Along the northeast limb is a horizon of white weathering volcanic tuffs which is highly pyritic in places. Stratigraphically underlying, but structurally overiying this white pyrite tuff is a bed at least 30 meters thick which containa disseminated sulphides and small bands of massive sulphides including pyrite, galena, and sphalerite. This complete zone of over 30 meters is highly anomalous in $\mathrm{Cu}, \mathrm{Pb}, \mathrm{Zn}$, and Ag .

The 1978 work showed highly anomalous geochemical values, both in the soil and especially in the silts in the Discovery area. Such values have been enhanced by the disseminated nature of the mineralization and by the subsequent rock siide which has permitted weathering agents to accelerate the release of the metals.

The VLF-EM work of 1988 shows an anomaly that extends for more than 1200 meters and includes the rock alide and minerailzed zone studied in 1978. Lying along this VLF-EM anomaly are some zones of white bleached rock ("kill zones") and also intermittent anomalous values in $\mathrm{Cu}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Ag}$, and Mn .

The writer has recommended aome field investigation of these anomalies before planning further exploration work.

INTRODUCTION

In the summer of 1977, J. R. Woodcock observed a large gossan zone and associated bleached areas during an aerial reconnaissance. Silt samples taken along the foot of the step mountain slope from the creeks draining this gossan area yielded some highly anomalous values in copper, lead, and zinc. The Kusp claims were staked to cover the anomalous drainages and their source area.

In 1978, Dome Exploration (Canada) Ltd. and Ranworth Explorations Ltd. optioned the property. The 1978 work inciuded a detailed examination of the main zone of interest including geological, geophysical, and geochemical work. This was followed by a limited drill program in which the main anomalous target was tested with 1012 feet (308 meters) of diamond drilling.

In 1979 work consisted primarily of geological mapping along and adjacent to the Kusp claim block. The geological mapping permitted a classification of rock types and units and the mapping of the main geological atructures.

In 1987 the property was sold to Adastral Resources Ltd. and in July of 1988 a two-man crew completed a more extensive program of soil geochemistry and VLF-EM work. This nev grid covered and extended beyond the amall original grid of 1978 . This present report discusses the results of the latest geochemical-geophysical surveys.

LOCATION AND ACCESS

The Kusp property is at latitude $50^{\circ} 08.5^{\circ} \mathrm{N}$, longitude 117° 36.5' W, on Map Sheet 82K-4E. Summit Lake, which lies along the valley of Bonanza Creek, is just north of the property. Nakusp is 17 kilometers northwest of Summit Lake and a helicopter is based at Nakusp.

The claims extend from the bottom of the valley of Bonanza Creek southmard up the steep slopes to the top of some very rugged mountains (Rugged Peak, Big Sister Mountain). Over a horizontal distance of 2.8 kilometers, elevations rise from 830 meters at Bonanza Creek to 2670 meters at the highest peaks. Slopes on the south side of the rugged mountains are less steep and are drained by McDonald Creek.

The very steep north-facing slopes have been subjected to a severe forest fire and almost complete burn. Subsequently a dense growth of brush and young evergreen trees has returned. making access up the steep slopes very difficult. The tops of the peaks, however, are above timber inne.

Outcrops are abundant at the tops of the rugged peaks and in the heads of all of the cirquea which drain northward through various small streams into Bonanza Creek. On the forest covered slopes, however, outcrops are mainly restricted to the creek beds and also in places on the steep interfluvial areas.

Logging roads have been placed in the area west of the Kusp claim group and these, along with fire access roads, extend to the ridge top which lies just south of the property. Although these logging roads are accessible with a twowheeled vehicle throughout the summer months, the intervening area between the logging roads and the old drill sites and showings is quite steep and would entail some work for a road connection. In addition to the logging access roads, major highways and a railway lie along Bonanza Creek just north of the property.

CLAIMS AND OWNERSHIP

The Kusp property includes two 20 -unit grid claims and eight 2-post claims. These claims, belonging to Adastral Resources Ltd., are held in the name of John R. Woodcock. The claim data is presented in Table I.

TABLE I

CLAIM DATA

Name		Tag No.	Record No.	No. of Units	Record Date	
Kusp	1	12052	450	20	August	9, 1977
Nak	1	499023M	5418	1	July	31. 1987
	2	499024M	5419	1	July	31, 1987
	3	499025M	5420	1	July	31. 1987
	4	499026M	5421	1	July	31, 1987
	5	499027M	5422	1	July	31, 1987
	6	499028M	5423	1	July	31, 1987
	7	499029M	5424	1	July	31. 1987
	8	499030M	5425	1	July	31, 1987
Naku	1	64989	5786	20	July	29, 1988

GENERAL GEOLOGY

The mountains south of Summit Lake owe their high and rugged topography to the resiatant volcanic rocks which underile this part of the Lardeau Map Sheet. Geological Survey maps (Hyndman, 1968 and Rexd, 1976) show an area eight miles (13 km) long and up to two miles (3.2 km) wide underlain by the volcanic rocks that form the backbone of these rugged mountains. These geologists have assigned the volcanic rocks to the Slocan Group (Triassic to Lower Jurasaic), which generally includes augite metabasalt and andesite flows and tuffs. Surrounding this volcanic group are some sedimentary rocke also included in the Slocan Group and presumably underlying the volcanic rocks. These include the grey to black phyllite, argiliite, quartzite and minor tuffaceous sediments near the top. In order to get an elliptical outilne to the volcanic area (terminating at both ends) the geologiste have suggested a possible synclinal structure.

Woodcock, as a result of his mapping, has suggested that this is a basin of volcanic deposition and this volcanic pile has subsequently been thrust into a southerly dipping overturned anticine. Attitudes in the mapped area show a strike averaging about 100° azimuth and moderate to steep dips southwest.

Drastic lateral facies changes occur in the coarse clastic and the pyroclastic units of this belt and some of the coarse clastic units disappear to the west where finer-grained equivalent units are exposed. The distribution of the rock units of the central belt including their interfingering and their drastic lateral facies changes suggest that these volcanic and sedimentary rocks were deposited in a basin or along the edge of a basin and that the basin extends westerly from the source area.

With his mapping, Woodcock has divided the sequence into seven units, moat of which are a variety of pyroclastics but also include some coarse clastic sediments such as grits, greywacke and conglomerates. Most of the boulders and cobbles within the conglomerate are angular to sub angular.

One of the units within this group is a bleached white tuff which occurs adjacent to the mineralized tuffs along the main geochemical-geophysical anomaly. In the main part of the anomaly where the original drililing has been done this white tuff has abundant disseminated pyrite. It meathers to a white sticky clay in which most of the limonite has bean leached out, leaving in places some yellow jarosite. This tuff stratigraphically overlies the carbonate-rich grey clastic which contains pyrite and traces of base metals and silver. Because it is on the overturned limb of the anticline the white tuff structurally underlies the carbonaterich pyritic tuff.

Interpretation of graded bedding and of cross bedding found in various places shows that the structure is anticlinal and overturned and that the exposures of white tuff along the geophysical anomalies are actually on the overturned limb of the anticline.

Rock slides occur in a number of places. At the Discovery a hummocky topography, including a little closed basin has resulted from a rock slide. Similar features also occur along the white tuff horizon in several other places.

GEOPHYSICAL WORK

The VLF-EM results for the 1988 work have been adjusted with a Fraser-filter technique and the contoured results are plotted on Figure 7. The field data is given in Appendix I. These show an anomaly that extends across the map area for about 1200 meters, is open at both ends, with increasing strength to the west. The four short cross lines of VLF-EM work done in 1987 would be between $2+00 \mathrm{E}$ and $0+60 \mathrm{~W}$ on the present grid, in an area of somewhat reduced response.

The strata in the area strike parallel to the base line and dip 60° to 80° southerly. In 1978 the geophysical anomaly was interpreted to reflect the highly pyritiferous white tuff or the contact thereof. Superimposed on and covering this contact is a gravity slide which has moved the white tuff to its present exposed position (the so-called "kill zone") and also the stratified tuffs lying in a continuous outcrop immediately south of this "kill zone". The full extent of this gravity slide was not recognized early in the 1978 drill program and so the No. 1 drill hole passed through strata lying structurally below the mineralized strata. The No. 3 and No. 4 holes, however, passed through about 100 feet of the rock debris before intersecting about 100 feet of highly anomalous mineralized carbonate-rich tuff which is structurally underlain by the pyritic white tuff.

The locations of these drill holes are shown on the sample location map (Figure 3). A comparison of the location of these drill holes with the new VLF-EM survey indicates that the zone investigated in 1978 lies adjacent to a subdued portion of the VLF-EM anomaly. Two peaks occur along this anomaly, one on $L 3+00 \mathrm{~W}$ and one on $\mathrm{L} 7+00 \mathrm{~W}$.

Additional smaller VLF-EM anomalies occur in the southeast part of the grid. The reason for these is not clear; however some of it may be related to the black slaty rocks that occur in this part of the property.

GEOCHEMISTRY

General

A base line 120 meters long with 7200 meters of cross lines at 100 -meter intervals has been flagged on the property. The base line is cleared and picketed; however the cross lines have only been flagged. 340 soil samples were taken from the B-horizon at 15 cm along the cross lines at 20 -meter intervals. These samples were submitted to Min-En Laboratories Ltd. for analyses of $C u, M n, A g, A s, ~ P b, ~ Z n$ and the results are plotted on Figures 4,5 , and 6 with two metals per map.

The magnitude of geochemical results may not necessarily be directly proportional to the grade of any mineralization. The rock slide at the Discovery area has exposed the widespread disseminated mineralization to the weathering elements and has thus enhanced the geochemical responses in the soils and especially in the silts draining the rock slide. Another factor which must be considered is the greater response from disseminated and mineralized pyritic zones than generally found from massive sulphide zones.

Lead in Soil

The highest lead responses are found along lines $1+00 E$ to $3+00 E$ adjacent to the base line. This is in the area of the rock slide and in the target drilled in 1978. Other high values are found on $L 2+00 \mathrm{~W}$ and this correlates with a stronger $E M$ anomaly in this area. Other high values are scattered along the extent of the main EM anomaly.

Silver in Soil.
Silver values shown on Figure 5 indicate a very high background in the pyroclastic sequence. Values over 3 ppm appear to be significant and these are scattered along the EM anomaly with values as high as 24.4 ppm in the rock slide area of the Discovery target.

Zinc in Soil

Zinc geochemistry also follows the lead geochemistry in parts of the property, especially in the slide area of the Discovery. High values are also found in places along the remainder of the main EM anomaly although they do not form a continuous pattern. Another zone of somewhat high zinc values (>200 ppm) occurs in the southeast part of the grid and corresponds to some extent with one of the EM anomalies in this part of the grid. It could be due to the black slaty rocks.

Manganese in Soil

Manganese is plotted along with copper on Figure 6. There are two anomalous zones on the manganese map. The northern zone with the highest values corresponds to the lead anomalies of the slide area but extends further westward to include some very high EM response along $L 00$ at the base line. Other scattered highs occur further west along the EM anomaly.

Another zone of high manganese values occurs in the southeast part of the grid area. It corresponds to, but is larger than, the zinc anomaly. The two southern EM anomalies on Innes 400 E and 500 E correlate with the northern and southern boundaries of the manganese anomaly. Thus the high manganese values, the high zinc values and the EM reaponse in this area may be due to some graphitic material in the black slates.

Copper in Soil

The highest copper values correspond to the Discovery area, especially in the slide but also extend somewhat south of the slide area and the mineralized zone. Other scattered highs do occur along the northern geophysical anomaly.

Scattered somewhat high values (s 100 ppm) are scattered through the grid. These also indicate an unusually high background for this pyroclastic pile.

Argenic in Soil

A number of somewhat high arsenic values (25 to 50 ppm) are scattered throughout the grid area and probably do not indicate too much of significance except that the pyroclastic pile has somewhat high background in arsenic. However, concentrations of these higher values do occur along and adjacent to the northern EM anomaly.

CONCLUSIONS AND RECOMMENDATIONS

1. The geophysical work has been very successful in tracing a mineral potential horizon along the whole of the grid area and indicates that it continues westward. In a few places along this zone, the response is much stronger than that obtained over the the Discovery area.
2. Scattered along the EM anomaly are discontinuous but anomalous geochemical values which may show up on one or more adjacent lines. All of the metals tested are higher or anomalous along this zone; however the highest values do correspond to the slide debris in the Discovery area.
3. Some field investigation is now needed to determine the cause of the EM anomaly west from the Discovery area, especially in those places where anomalous geochemical valuea correlate.

JRY:me

KUSP PROPERTY COSTS

Fees

J. R. Woodcock:

June 4 - July 7
Compile data, organize crew - $1 / 4$ days
June 29
Visit property 1 day
Aug. 7, 16, 17, 18
Work on report
1.1/2 days
$33 / 4$ days $\$ 400 \$ 1,500.00$
Mark Kiiby:
July 4-25 21 days : 130
R. Hamilton:

July 4-25
$201 / 2$ days @ $\$ 120$
5.190 .00

Fringe benefits \& overhead (kilby \& Hamilton) 1.297.50
M. Earnshaw (typing and report) $23 / 4$ hrs. © $\$ 18$
49.50 Sub Total Fees
$\approx 8.037 .09$

Miscellaneous
Equipment rentals - (EM, camp equip.)
Travel. Transportation
Supplies, Food, Accommodation
1.136 .00
1.068 .85
1.251.42
493.88
690.00
2.052 .00
$\$ 14.729 .15$
$\approx \because \approx=ะ= \pm===$

APPENDIX I

FIELD DATA FOR VLF-EM SURVEY

Field Data for VLF-EM Survey

The VLF-EM survey was done with a Phoenix VLF-2 instrument, using the transmitter at Culter, Maine with readings taken at 20-meter intervals and operator facing west.
Fraser-filter readings are obtained for sites between
stations by:
(a) add values on both adjacent stations to get
intermediate values
(b) subtract intermediate value to south from intermediate value to north.
Station

Topo
Slope

Field
Strength
Horiz.
Dip
Fraser Filter

LINE 5H

100 N	-19	.20
80 N	-15	.20
60 N	-14	.35
40 N	+4	.30
20 N	+14	.32
0	+10	.34
20 S	+25	.30
40 S	+15	.30
$60 S$	+29	.31
$80 S$	+15	.3
100 S	+2	.48
120 S	+5	.42
$140 S$	-25	.43
$160 S$	-23	.43
$180 S$	-18	.3
$200 S$	-19	.35
$220 S$	-18	.3
$240 S$	-25	.35
$260 S$	-30	.4
$280 S$	-21	.3
$300 S$	-12	.3
$320 S$	-8	.25
$340 S$	-10	.3
$360 S$	-14	.5
$380 S$	-21	.32
$400 S$	-8	.3
$420 S$	-3	.20
$440 S$	0	.35
$460 S$	0	.35
$480 S$	0	.4

1.7
1.6
1.43
2.05
2.1
2.2
2.2
2.5
3.4
4.1
3.6
3.2
3.8
4.3
4.1
3.6
3.6
3.5
3.6
3.5
3.8
3.4
3.8
3.8
3.7
3.9
3.8
3.8
3.8
2.9
22
31
16
31
26
17
28
25
15
7
8
15
17
8
5
10
8
11
16
17
15
11
8
13
12
13

53
$47 \quad 6$
47-10
574
$43 \quad 12$
$45-10$
535
$40 \quad 31$
$22 \quad 25$
15-1
$\begin{array}{ll}23 & -17\end{array}$
32-2
$\begin{array}{ll}25 & +19\end{array}$
$13 \quad 10$
$15-5$
$18-4$
19-9
27
6
130
$17-13$
26
8
$19 \quad 5$
$21-6$
$25-4$
25-1
$\begin{array}{ll}26 & 1 \\ 24 & 7\end{array}$
$19 \quad 9$
15
lake at 485
LINE 4W

100 N	cliff at 78 N		
80 N	-19	.13	
60 N	-23	.2	1.5
40 N	-22	.30	1.7
20 N	-30	.6	1.9
0	-33	.15	4.8
$20 S$	-26	.08	4.3
40 S	-34	.2	4.9
60 S	0	.3	2.5
$80 S$	0	.25	3.1
$100 S$	0	.05	2.9
$120 S$	+3	.36	1.3
$140 S$	-10	.33	2.5
$160 S$	+2	.31	3.2

65	
62	-6
71	1
61	30
41	25
36	15
26	21
15	12
14	1
14	-1
15	-3
17	-3
18	0

LINE 3W

100 N	cliff					
80 N	49	. 08	. 9	40		
60N	51	. 08	. 7	55	95	
40N	37	. 2	. 9	52	107	5
20N	33	. 11	1.2	38	90	53
BL OOS	33	. 17	1.5	16	54	69
205	48	. 2	1.4	5	21	43
405	41	. 21	1.4	6	11	9
605	50	. 2	1.3	6	12	- 1
805	45	. 18	1.3	6	12	2
1005	28	.11	1. 2	4	10	- 6
1205	32	.1	1.1	14	18	-13
1405	25	. 07	1.1	9	23	1
160 S	17	. 05	1.2	8	17	- 9
1805	10	. 1	1.2	6	14	7
200S	- 5	. 1	1.1	4	10	7
2205	4	. 1	1.1	3	7	- 1
2405	0	. 1	1.1	8	11	- 6
2605	10	. 1	1.1	5	13	0
2805	7	. 1	1.0	6	11	1
300S	10	. 12	1.05	6	12	- 2
3205	8	. 12	1.3	7	13	1
3405	17	. 15	1.0	6	13	-8
3605	+6	. 41	4.2	15	21	-13
3805	27	. 42	4.1	11	26	- 4
4005	4	. 4	3.8	14	25	- 1
4205	13	. 5	5.9	13	27	- 1
4405	-14	. 6	6.0	13	26	5
4605	- 9	. 65	6.1	9	22	9
4805	- 9	. 08	1.05	8	17	2
5005		. 1	1.0	12	20	

100 N	51	.1	.5
80 N	50	.05	.7
60 N	41	.07	.8
40 N	42	.45	2.5
20 N	35	.45	4.8
0	36	.21	1.7
$20 S$	35	.5	9.0
$40 S$	42	.4	1.5
60 S	43	.1	1.4
$80 S$	46	.1	1.4
$100 S$	46	.7	8.1
$120 S$	48	.8	7.1
$140 S$	45	.52	7.1
$160 S$	36	.32	7.0
$180 S$	35	.20	7.2
$200 S$	15	.20	7.1
$220 S$	12	.20	6.4
240 S	19	.25	6.5
$260 S$	5	.1	6.6
$280 S$	2	.1	7.1
$300 S$	1	.1	6.8
$320 S$	13	.2	6.4
$340 S$	-5	.15	6.6
$360 S$	20	.13	6.4
$380 S$	20	.2	6.6
$400 S$	6	.2	6.5
$420 S$	3	.25	6.4
$440 S$	6	.20	6.3
$460 S$	26	.32	5.8
$480 S$	40	.15	5.6
$500 S$.1	5.5

LINE 1H

100N	40	. 1	. 7	51		
80 N	36	. 3	1.0	38	89	
60N	31	. 4	7.2	38	76	+32
40N	39	. 4	9.4	19	57	39
20N	46	. 3	9.8	18	37	21
BL 00	32	. 1	1.4	18	36	11
205	36	. 1	1.4	12	26	16
405	30	. 02	1.3	8	20	8
605	18	. 03	1.2	10	18	1
805	18	. 03	1.2	9	19	4
1005	21	. 05	1.2	5	14	6
1205	25	. 04	1.2	8	13	- 6
1405	48	. 02	1.1	12	20	-13
1605	13	. 03	1.1	14	26	- 4
1805	- 2	. 02	. 1	10	24	6
2005	8	. 1	6.8	10	20	8
2205	9	. 03	1.0	6	16	0
2405	10	. 03	1.0	14	20	- 8

$260 S$	21	.02				
$280 S$	-5	.04	.9	10	20	3
$300 S$	-3	.04	1.1	10	21	-5
$320 S$	7	.05	.9	14	25	-7
$340 S$	24	.03	.9	14	28	2
$360 S$	26	.04	.9	9	23	0
$380 S$	34	.03	.9	19	28	-12
$400 S$	28	.02	.9	16	35	-4
$420 S$	26	.03	.9	16	32	5
$440 S$	34	.02	.9	14	30	0
$460 S$	27	.05	1.0	18	32	-10
$480 S$	41	.05	1.0	22	40	-9
SOOS		.05	.8	19	41	

LINE OW

BL 00	-11	. 15	1.5	11	21	
205	5	. 15	1.4	2	13	14
40 S	17	. 10	1.2	5	7	10
605	0	. 03	1.1	- 2	3	8
805	24	. 01	1.1	1		0
1005	8	. 05	1.0	2	3	- 7
1205	41	. 02	1.0	4	6	-10
1405	18	. 08	1.0	9	13	-15
160 S	24	. 1	1.0	12	21	-13
1805	23	. 01	1.0	14	26	- 8
2005	-10	. 05	. 9	15	29	-10
2205	5	. 08	1.0	21	36	-10
240S	15	. 05	1.0	18	39	9
2605	18	. 03	1.0	9	27	22
2805	14	. 02	1.0	8	17	9
3005	20	. 03	1.0	10	18	- 7
3205	47	. 08	1.0	14	24	-19
3405	31	. 1	1.0	23	37	-13
3605	31	. 08	1.0	14	37	6
3805	40	. 1	1.0	17	31	4
4005	41	. 05	1.0	16	33	
4205	43	. 08	1.0	16	32	4
4405	40	. 1	1.0	13	29	7
4605	41	. 1	1.1	12	25	
4805	29	. 1	1.0	18	30	
5005	39	. 05	. 9	15	33	
5205	37	. 05	1.2	22	37	- 6
5405	27	. 01	1.0	17	39	-4
5605	-8	. 1	1.0	24	41	
5805	- 4	. 1	1.1	22	46	1
6005		. 1	. 9	18	40	
120N	33	. 08	1.3	24		
100N	30	. 06	1.3	25	49	
80N	0	. 08	1.2	22	47	5
60N	0	. 15	1.3	22	44	8
40N	- 5	. 2	1.6	17	39	19
20N	- 8	. 25	1.8	8	25	21
00	-11	. 3	2.1	10	18	12

LINE IE

BL 00	8	. 2	1.1	19		
205	-15	. 2	1.3	9	28	
405	-13	. 2	1.0	8	17	20
605	8	. 15	1.0	0	8	11
805	16	. 05	. 8	6	6	- 3
1005	43	. 05	. 9	5	11	-6
1205	42	. 05	1.0	7	12	- 8
1405	25	. 08	. 9	12	19	-12
1605	4	. 08	. 7	12	24	-10
1805	14	. 2	1.0	17	29	-11
2005	32	. 18	. 45	18	35	-14
2205	30	. 15	. 45	25	43	-10
2405	43	. 1	1.0	20	45	8
2605	39	. 25	1.1	15	35	8
2805	42	. 05	1.4	22	37	
3005	38	. 1	1.0	20	42	
3205	40	. 1	1.0	24	44	
3405	37	. 1	1.1	20	44	0
3605	41	. 5	1.5	24	44	
3805	35	. 08	1.7	26	50	
4005	38	. 3	1.4	23	49	7
420 S	31	. 08	1.4	20	43	1
4405	35	. 2	1.4	28	48	1
4605	28	. 03	1.3	14	42	17
480.5	10	. 1	1.2	17	31	11
5005	5	. 1	1.2	11	28	0
5205	- 8	. 12	1.1	20	31	
5405	-22	. 17	6.4	14	34	
560 S	-29	1.3	5.6	22	36	2
5805	- 5	1.2	6.3	20	32	
6005		1.0	5.6	18	38	

LINE_2E

BL 00
$20 S$
$40 S$
$60 S$
$80 S$
$100 S$
1205
$140 S$
$160 S$
$180 S$
$200 S$
$220 S$
$240 S$
$260 S$
2805
$300 S$
$320 S$
$340 S$
$360 S$

-10	.2
28	.12
19	.1
0	.2
0	.1
15	.08
22	.2
30	.05
41	.1
41	.05
39	.08
38	.08
38	.1
39	.2
45	.1
35	.1
33	.12
25	.1
24	.1

.9	10
.9	22
.9	20
1.0	12
0.9	12
.9	18
.9	10
.9	16
.8	10
.9	16
.9	16
.9	9
1.5	22
1.4	23
1.6	28
1.6	18
1.6	21
1.7	16
1.8	16

22	-12
32	-10
42	0
32	18
24	2
30	-4
28	4
26	2
26	0
26	-6
32	1
25	1
31	-20
45	-30
51	-1
46	12
39	9
37	7
32	8
29	7

3805	30	. 1	1.9	13		
4005	38	. 12	1.8	12	25	11
4205	19	. 1	1.7	6	18	14
4405	- 5	. 15	1.8	5	11	1
4605	+ 8	. 3	1.7	12	17	- 7
4805	- 9	. 2	1.6	6	18	4
5005	- 6	. 2	1.6	7	13	2
520 S	- 9	. 2	1.5	9	16	4
5405	0	. 2	1.4	5	14	2
5605	5	. 2	1.5	8	13	-11
5805	5	. 2	1.5	16	24	5
6005		. 3	1.4	13	29	
100N						
80 N						
60N						
40 N	-18	. 2	1.3	10		
20N	- 7	. 2	1.3	12		

LINE 6W
200N
180N
160 N
140 N
120 N
100 N
80N
60N
40 N
20N
OON
205
405
605
805
100S
1205
140 S
160 S
180 S
200S
220 S
$240 S$
260 S
2805
3005

-38	.1
-16	.12
-11	1.0
-8	1.0
-11	.8
0	.9
-11	.2
27	.2
35	.18
39	.1
33	.1
43	.05
48	. .2
37	.1
28	.1
28	.1
17	.08
15	.08
0	.03
11	.03
	.1

1.0
1.4
7.4
6.5
6.4
6.2
1.0
1.1
1.0
1.2
2.1
1.9
1.6
1.6
1.6
1.6
1.6
1.7
1.6
1.6
1.4

23
15
18
25
26
24
24
25
38
50
24
9
16
16
14
14
16
17
19
21
38
33-5
$43-18$
51-7
50
$48 \quad 1$
$49-15$
63-39
$88-11$
7450
3349
$\begin{array}{rr}25 & 4 \\ 29 & -4\end{array}$
$29-4$
$29-1$
$30 \quad 1$
$28 \quad 0$
30-5
$33-6$
$36-7$
36

LINE 4E
BL 00
20
40
60
80
100

32	.06
20	.15
25	.45
25	.15
25	.1
20	.1

1.6	20
5.0	21
1.6	25
1.4	18
1.3	26
1.5	26

41
46
43

- 2

44
-11
52
16

100N
60N

20N						
00	35	. 1	1.2	5		
205	20	. 1	1.1	10	15	
40 S	18	. 15	1.1	18	28	-37
605	30	. 1	. 9	34	52	-37
805	38	. 1	1.1	31	65	- 2
1005	22	. 1	1.4	23	5	23
1205	25	. 05	1.2	19	42	15
1405	30	. 08	1.3	20	39	4
1605	42	. 05	1.1	18	38	5
1805	35	. 05	1.3	16	34	9
2005	13	. 05	1.3	13	29	5
2205	8	. 08	1.2	16	29	-10
2405	9	. 05	1.1	23	39	-19
2605	16	. 08	1.1	25	48	-11
2805	24	. 08	1.0	25	50	- 5
3005	43	. 08	1.1	28	5	- 6
3205	42	. 2	8.1	28	56	6
3405	25	. 06	1.5	19	47	19
3605	33	. 03	1.5	18	37	13
3805	11	. 08	1.5	16	34	6
4005	0	. 08	1.5	15	31	4
4205	5	. 08	1.5	15	30	11
4405	7	. 08	1.5	4	19	21
4605	- 6	. 04	1.5	5		7
4805	26	. 03	1.4	7	12	-7
5005	6	. 05	1.3	9	16	- 5
5205	12	. 04	. 9	8	17	
5405	25	. 05	1.0	9	17	- 5
5605	20	. 05	1.1	13	2	-12
5805	-10	. 08	1.0	16	29	-8

6005

LINE 5E

BL 00

205
405
605
805
1005
120 S
1405
$160 S$
180 S
2005
2205
2405
2605
2805
300 S
320 S
340S
360 S
3805
400 S
420 S
4405
4605
4805
500 S
520 S
$540 S$
560 S
580 S
6005

APPENDIX II

ANALYTICAL CERTIFICATES

Arraxンtx<ax Peport

Attention: J. R. WOODEECK
Fileme-10 0
Dates AUGUST 4/83
Type: SOIL GEOCHEM

Femartk

COMPARY: J. R. WOADCACK CONSGLTANTS
PROJECT NO:
ATYENTON: J.R. 1000 COCK

Walles TMm	A6	AS	Cis	M	P8	IN
K67096	. 9	30	68	794	48	304
887095	.1	5	40	1987	33	248
K87092	. 9	34	198	589	44	683
887091	2.6	14	129	253	24	264
<87090	2.7	36	27	153	20	106
K87689	2.0	7	91	278	24	266
K87088	2.1	12	16	130	22	100
K87087	2.6	35	37	177	17	68
K87086	1.8	27	110	408	30	282

187085 N/S

$K 87083$	3.7	55	27	112	19	40
$\mathbf{K 8 7 0 8 2}$	2.3	18	24	240	21	140

$k 87081$	1.9	1	26	52	24	213
$k 67080$	1.8	2	60	470	19	182

-187079	1.4	17	42	655	24	211	
k.87078	1.2	24	43	1061	26	214	
k87077	2.2	13	32	378	25	158	
K 87076	2.0	11	25	312	17	124	
187075	1.7	12	54	386	22	139	
187074	1.9	13	24	230	13	107	
K67073	1.6	26	19	341	9	154	
887072	3.0	38	19	128	16	65	
K97071	1.6	9	25	616	19	150	
< 87070	2.5	24	26	179	16	117	,
k67069	. 5	24	647	3711	28	332	

K 87068	2.2	20	32	618	17	126
k67067	2.5	25	20	187	18	118
K07066	2.0	12	49	649	19	159
K6706	. 9	34	92	1086	36	309
K6706i	2.2	24	44	346	25	246
187060	3.3	36	40	223	27	126

$\mathrm{k} 87059 \mathrm{~N} /$

$k 87055$	2.2	28	59	190	20	18
$k 87054$	3.1	66	31	77	15	62

1887053	1.9	12	61	571	23	170
187052	2.1	27	27	207	22	112

${ }^{6} 670{ }^{\text {a }}$	2.4	35	26	237	21	103
K87050	2.0	23	20	949	26	99
187049	2.0	13	10	677	22	134
K.87049	2.2	22	25	367	24	135
K87047	1.4	35	48	724	16	223
1887046	1.0	20	42	663	12	223
187045	1.2	1	55	1338	45	226
887044	. 7	8	34	1242	19	241
K87043	1.9	19	47	652	27	201
-87042	1.8	4	22	868	30	215
687041	2.4	30	2	197	15	151
k97040	2.0	15	15	314	15	135
887039	1.2	1	31	814	16	191
287038	3.5	17	157	738	65	372
K87037	1.5	14	20	108	25	239
18870.6	1.0	21	69	1491	25	392
k87035	4.9	22	28	786	24	192
167634	1.6	2	22	776	$2 t$	304
187033	1.8	32	4	36.	29	194
887004	2.9	42	16	56	19	41

COMPANY: J.R.WCDOCOCK CONSLLTANTS PROJECT ND: ATTENTION: J.R.WOODCOCK

ATTENTION: J. R, WOODCOCK				(604)980-5614 OR (6) 44) 988 -4524			
(VALUES	IN PAM AB	AS	Cij	MN	PB	2N	
k67002	1.6	B	26	276	20	104	
K97003	3.1	41	16	50	20	48	
< 87904	2.9	38	24	72	16	152	
k87005	2.4	20	51	277	17	178	
887006	1.9	18	24	857	21	124	
k87007	2.1	13	95	565	26	381	
K87008	1.5	1	72	1502	16	287	
K87009	. 2	1	145	5696	27	927	
K87010	. 1	5	6.3	2597	21	262	
K87011	. 4	33	83	3068	27	293	
K87012	. 9	17	143	1532	16	376	
K87013	2.2	23	83	856	18	215	
K.87014	2.1	28	38	590	14	132	
$k 87015$	2.1	34	42	367	17	133	
K87016	2.0	27	25	892	15	93	
K87017	2.6	40	35	342	14	106	
K87018	2.6	40	25	436	18	74	
K87019	2.6	38	29	721	21	91	
k87020	3.0	40	25	215	16	67	
K87021	3.1	49	20	146	15	30	
K87022	2.1	27	28	598	20	95	
K87023	2.0	28	25	384	17	90	
K.87024	2.8	42	27	248	19	80	
K87025	1.5	11	28	1801	24	149	
K87026	2.4	34	29	644	12	86	
<87027	2.2	26	36	281	12	128	
K97028	2.6	42	29	742	31	82	
K87029	N/S						
K97030	1.7	16	41	257	13	127	
k87282	3.0	18	77	372	34	177	
K67283	2.4	1	40	752	23	305	
KB7284	2.3	$!$	62	1184	$3{ }^{\text {3 }}$	200	
K87285	. 8	22	75	1852	26	394	
K97286	. 8	24	68	1599	28	242	
K87287	2.6	12	55	671	55	156	
K87286	1,9	7	226	812	25	168	
K87289	2.5	12	55	801	29	125	
K87290	2.5	25	96	490	13	62	
K87291	2.3	9	110	512	18	73	
K87292	2.1	29	94	1166	21	69	
K67293	. 7	12	124	1866	20	109	
K.87294	. 8	18	126	1207	14	76	
K87295	. 1	36	86	21480	69	338	
K87296	1.5	26	94	979	23	70	
K67297	2.3	7	84	802	31	52	
k87298	1.5	6	153	1257	$4!$	93	
K87299	. 8	31	156	1748	31	102	
K87304	N/S						
k87301	1.9	20	93	618	22	66	
K87302	-4	32	58	2681	21	85	
K87303	. 4	15	108	5727	41	305	
K87304	4.0	77	22	52	7	8	
K37220	3.1	16	94	470	126	189	
1887221	1.8	39	795	4021	444	504	
k87222	3.3	41	423	5286	238	229	
k87223	24.4	30	282	4071	1976	454	
K.87224	1.7	10	103	865	39	172	
1.87225	1.5	42	$25:$	2158	75	240	
K87226	2.4	3	42	299	36	55	
K87227	2.15	$\dot{6}$	60	586	20	59	

compant: J.r.hococock consultants PROUECT NO: AITENTDA: J. HOODCOC

			Min-En Labs icf report				(ACTEPS) PAGE : OF 1
Praject wo							FILE W0: $8-1054 / \mathrm{PG}+10$
ATESILIM J.E.wodocek				(604) 9eg-5814 0f $6049888-4524 \ldots$			
	96	AS	d	MN	P6	2 N	
-67168	T	\%	56	625	18	152	
K87169	1.8	34	26	438	17	105	
887170	2.1	42	35	300	19	104	
$\leqslant 87171$	2.1	38	31	399	22	112	
1897172	2.4	38	29	186	18	81	
-87173	3.0	67	17	171	13	32	
K87174	2.0	20	68	944	20	79	
K67175	3.1	72	23	101	13	29	
K87176	1.3	日	33	945	25	122	
K87177	2.2	30	17	414	16	55	
k67179	2.0	44	23	494	20	90	
K87179	1.9	29	24	392	24	145	
k67180	1.6	19	14	807	22	77	
K87181	2.0	35	22	405	18	78	
k67182	2.0	30	27	201	18	108	
-68783	1.6	16	15	621	26	131	
K87194	1.9	30	27	415	27	138	
k87185	2.0	35	17	455	22	88	
K87186	1.7	40	48	341	23	193	
167187	. 5	1	65	1614	28	214	
K67188	-1.1	1	41	1118	21	193	
k.87126	2.0	27	27	263	25	188	
187127	1.9	22	33	604	28	277	
K87128	1.5	20	41	631	24	166	
K 87129	2.5	31	32	317	48	79	
$\times 87130$	1.9	8	171	722	41	140	
k87131	2.6	43	26	323	45	94	
K67132	1.8	35	23	219	21	175	
K87135	1.8	28	23	294	23	138	
k97134	1.8	7	27	362	14	172	
667135	1.8	17	27	266	19	158	
8.87136	2.0	27	45	289	20	141	
k67137	1.6	B	30	697	25	136	
1867158	1.6	10	19	906	17	93	
K87139	1.5	1	27	371	19	188	
- k 7140	1.6	2	3	396	22	156	
K.8714i	1.5	13	36	597	21	161	
187142	1.7	6	15	556	23	152	
$\times 87143$	1.0	22	$2 b$	967	25	225	
K87144	1.7	6	1	216	19	163	
-67145	. 1.7	17	17	258	19	159	
887146	1.8	16	21	294	22	176	
k67147	¢. 7	10	20	439	21	164	
K87148	1.8	2	17	520	24	139	
161149	1.7	11.	22	383	25	156	
k97150	2.7	50	19	151	12	41	
k67151	2.0	24	12	412	19	98	
887152	1.5	5	20	612	18	108	
K67153	1.5	5	21	737	20	94	
187154	1.3	25	35	855	15	112	
88715	1.8	21	21	530	23	111	
K67156	2.2	9	24	458	24	100	
\%87251	.	1	322	5484	227	709	
K87252	3,5	44	110	396	57	93	
197253	. 3	26	186	12139	55	686	
-66754	3.1	44	113	228	65	79	
18725	2.4	24	32	330	21	84	
ke7256	1.8	$1!$	5_{5}^{5}	77	3	177	
687257	2.2	18	$2 ?$	178	26	45	
16125	1.9	$\underline{1}$	54	385	32	66	

company: j. R. hooncock consultants PROJECT NO: ATESTION: JR WMDDCOCK

MiNEEN LABS ICP REPDRT
(ACT:F31) PAGE 1 OF 1 FILE NO: B-:056/Fil+12 705 WEST ISTH ST, , NORTH YANCOUVER, B.C. UTM IT2 (6041980-5814 OR 16041988-4524

