District Geologist, Prince George
ASSESSMENT REPORT 17743 MINING DIVISION: Omineca

WORK
DONE: Prospecting
MINFILE: 094C 016

GEOLOGICAL REPORT

ON THE

Aiken Lake Area
Omineca Mining Division, British Columbia 94C/4E

Latitude $56^{\circ} 12^{\prime} 15^{\prime \prime}$ to $56^{\circ} 21^{\prime \prime} 3^{\prime \prime}$ Longitude $125^{\circ} 19^{\prime} 30^{\prime \prime}$ to $125^{\circ} 42^{\prime \prime} 31^{\prime \prime}$

For

Christopher L. McAtee, B.Sc., M. Sc.

TABLE OF CONTENTS

PAGE

Introduction (a) Location, Access, and Physiography 1
(b) Property Claim Status 7
(c) Property History 7
Exploration Procedure 12
Regional Geology 12
Property Geology, Mineralization, 'and Results
(a) Dolly 1 and 2 Claims 13
(b) Matel Claim 14
(c) Ice Claim 16
(d) Black Gold Claim 17
Conclusions and Recommendations 18
Qualifications 19
Reference 20
Itemized Cost Statement (a) Matel Claim. 21
(b) Ice Claim. 22
(c) Black Gold Claim. 23
(d) Dolly 1 and 2 Claims 24

ILLUSTRATIONS

FIGURE

PAGE

1. Location Map.. 2
2. Sample Locations - DOLLY 1 and 2 Claims.............. 3
3. Geological and Sample Location Map - ICE Claim 4
4. Geological and Sample Locations - MATEL Claim 5
5. Geology and Sample Locations - BLACK GOLD Claim 6
6. Claim Map - DOLLY 1 and 2 Claims 8
7. Claim Map - ICE Claim 9
8. Claim Map - MATEL Claim 10
9. Claim Map - BLACK GOLD Claim 11
10. Geological and Soil Geochemical Map
DOLLy 1 and 2 Claims 15

APRENDICES

APPENDIX 1	Assay Results - Matel Claim
APPENDIX 2	Assay Results - Ice Claim
APPENDIX 3	Assay Results - Black Gold Claim
APPENDIX 4	Assay Results - Dolly 1 and 2 Claims

The Ice, Matel, Black Gold, and Dolly 1 and 2 claims are located 315 to 345 kms . northwest of Prince George, B.C. from $56^{\circ} 12^{\prime} 15^{\prime \prime}$ to $56^{\circ} 21^{\prime} 34^{\prime \prime}$ North latitude, and from $125^{\circ} 19^{\prime \prime} 30^{\prime \prime}$ to $125^{\circ} 42$ '31" West longitude (Figure 1).

Although the Black Gold, Matel, Dolly 1 and 2, and Ice claims are located $2.5,22,5$, and 16 kms . from the Omineca road respectively, access was by helicopter from the Moose Valley airstrip, 65 kms . northwest of Aiken Lake.

The Ice, Matel, Black Gold, and Dolly 1 and 2 claims lie within the Omineca Mountains of the Central plateau and Mountain area of the Canadian Cordillera. The area is rugged with relief of 600 to 1040 metres and elevations from 940 to 2341 metres above sea level.

The Dolly 1 and 2 claims lie in the gentle valley of the Tutizika River, which cuts a 20 metre deep canyon through the bedrock (Figure 2).

The Ice claim, which lies near the headwaters of Dortatelle Creek in the Sustut-Skeena River system, is in extremely rugged terrain of 1600 to 2341 metres above sea level (Figure 3).

The Matel claim lies at the headwaters of Etschitka and Matetlo Creeks which are tributaries of the Tutizika River. Part of a $1 / 2 \mathrm{~km}$ square glacier lies in the northwest corner of the claim (Figure 4).

The Black Gold claim is also in rugged terrain at an elevation of 1140 to 2180 metres above sea level. The centre of the claim is located 4 kms . northeast of Blackpine Lake near the

こHONG

confluence of the Tutizika and Mesilinka Rivers (Figure 5).
Bedrock exposure on the claims is excellent above treeline. Glacio-fluvial deposits cover the Dolly 1 and 2 claims, with bedrock exposed in the Tutizika River canyon and its' tributaries.

Property claim status

The Ice, Mate, Dolly 1, Dolly 2, and Black Gold claims are owned by John M. Mirk, of 451 Hermosa Ave., North Vancouver, B.C. The claim details are as follows:

Claim maps for the above claims are shown as Figures 6, 7, 8, and 9 .

Property History

Prospecting has been active in the area since the turn of the century when placer gold deposits were worked on Jim May Creek and on the Ingenika River. Much prospecting and development work was carried out by Cominco in the 1930's and 1940's. A few major and junior mining companies explored for porphyry coppermolybdenum and Mississippi valley lead-zinc type deposits in the 1960's and 1970's. Some exploration for precious metals was done in the late 1970's and 80's by various companies but was soon eclipsed by new gold discoveries in the Toodoggone area. No

economic ore bodies have been developed in the Aiken Lake area to date.

Exploration Procedure

Field work was carried out by Chris McAtee, geologist, Doug Hopper and John Sveen, prospectors, as well as Tom Smith, assistant, from July 12 to August 3, 1987. A camp was established near Aiken Lake.

Work was of a reconnaissance nature. Prospecting, rock chip sampling, and mapping of veins and alteration zones were conducted on the Ice, Matel, and Black Gold claims. On the Dolly 1 and 2 claims, geological mapping, prospecting, silt, soil, and rock chip sampling were carried out. The table below summarizes the work program.

Reqional Geology

The Ice, Matel, Dolly 1 and 2 , and Black Gold claims occur within the $1: 253,440$ scale Aiken Lake map area (Roots, 1954).

Regionally, Tenakihi group metamorphic rocks, Takla group sedimentary and volcanic rocks, and unnamed interbedded
volcanic and sedimentary rocks are intruded by Omineca intrusives of Mesozoic age. Northeast of Blackpine Lake, Wolverine Complex amphibolites, quartzites, and skarns are present.

Structurally, beds of the Tenakihi group have been deformed into a series of compound folds that have overwhelmed earlier more north-trending folds. Northwesterly faulting plays a major role in localizing mineralization both regionally and locally.

Property Geology, Mineralization, and Results

Dolly 1 and 2 Claims

The Stranger group, which was staked in 1929, was staked on a narrow network of quartz and quartz-calcite veins, sparsely mineralized with pyrite and chalcopyrite in a slaty black sheared argillite. Some of the veins are massive, barren of sulphides, and up to 38 cm wide, but more commonly consist of discontinuous 6 to 26 mm wide veinlets and stringers. The veinlets and stringers are commonly associated with weak to strong shear zones, as are quartz-calcite breccias often containing pyrite and chalcopyrite.

Bedrock in the area investigated in 1987 consists of greenstone, dark green tuffs, argillite, phyllite, and graphitic schist. The greenstone is often hematite stained and altered. These rocks most likely correspond with the unnamed interbedded volcanic and sedimentary upper Paleozoic rocks described by Roots (Roots, 1954). Several mercury showings are shown on Roots' geology map of the property area.

Strong northwest-southeast trending shear zones, which
probably control mineralization, were mapped on the property in the Tutizika River canyon and tributaries (Figure 10).

Sample locations and assay results from the rock chip and soil-silt traverses are shown on Figures 2 and 10 and on Appendix 4.

Rock chip samples of quartz-carbonate veins, veinlets, stringers, and associated shear gouge from the Tutizika canyon and main southeast flowing tributary returned low assay values. Gold and silver values were background. Copper highs were 101 to 144 ppm, with several barely anomalous zinc, arsenic, and barite values.

The soil-silt program results were encouraging with a spot soil value of 3250 ppb gold on a bluff overlooking the Tutizika canyon (DOL $1+50 \mathrm{~W}$). Five other anomalous soils ran 560 , 320, 175, 175, and 157 ppb gold. Values of 0.9 and 1.2 ppm silver were returned. Copper values of 137 to 763 ppm were obtained in the northwest and southern parts of the Dolly 1 claim, with spot high zinc values of 191 to 333 ppm . "B"horizon coil samples were obtained From $15-30 \mathrm{~cm}$ depths.

Matel Clalm

The Matel claim was staked on the basis of attractive geology on the Chief Thomas showing and the Elizabeth group staked in 1946. Both occur near the northern margin of the Hogem batholith.

The Elizabeth showing area covers a shear zone in granodiorite and quartz diorite, with numerous quartz and quartzcarbonate veins, reportedly carrying low but consistant gold and silver values.

The Chief Thomas showing consists of a single quartz vein in quartz diorite, reportedly 183 to 305 cms . wide and 107 metres long. According to Roots (1954), about 60 cms . of the west side of the vein is heavily impregnated with malachite, and contains many blebs and patchs of bornite, chalcopyrite, and pyrite. Part of the quartz is badly fractured and vuggy containing much dark red to specular hematite.

The Chief Thomas vein, which trends 144 and strikes 130/44 NE, was prospected and rock chip sampled (Figure 4). Seventy-six centimetres of the west side of the quartz vein is exposed; no sign of the reported mineralization was apparent. Assay results were low, with 21 ppb Au and 0.1 ppm Ag obtained (Appendix 1).

Ice Clalm

The Ice claim covers volcanic flows, breccias, and tuffs, limestone, Alaskan type ultramafics, and the edge of a diorite pluton. The target is a copper-gold porphyry.

Sample locations and assay results from a traverse in the southeast corner of the claimare shown on Figure 3 and Appendix 2.

Several 20 to 28 cm wide quartz veins which gave low assay numbers (\#2087, \#2088) were found.

Also present is a 20 metre wide yellow-rusty zone which parallels foliation at 198 and carries several percent pyrite. Rock chip samples of the rusty rock material and several 13 cm and 25 cm barren quartz veins (2089 , 2090, 2091) returned background values.

A 33 cm wide quartz vein in a prominent shear associated with 76 cms. of vein quartz and amphibolite, and a 9 metre wide rusty zone, gave 154 ppm tungsten (\#2092 across 119 cms.).

Black Gold

The Black Gold claim was staked on the old Hope group, which was prospected in the mid 1940's by o. Schmidt and in 1975 by Union Carbide Canada Ltd. The claims are underlain by rocks of the Wolverine Complex, which are the altered and granitized equivalents of the regionally metamorphosed Tenahiki and Ingenika Group rocks (Roots, 1954).

Assay results and sample locations for the rock chip traverse are shown on Appendix 3 and Figure 5.

A fracture zone 3.5 to 7.5 metres wide and 50 metres long is found in amphibolite-tremolite skarn. The zone consists of large blocks, up to 66 X 99 X 165 cms., of bluish-grey quartzite almost completely replaced by massive pyrrhotite with minor pyrite and chalcopyrite. Several 41 and 76 cm wide barren quartz veins were also observed.

Several of these replacement bodies were grab sampled for lithogeochemical analysis. Values of 1703 and 2553 ppm Cu , 1.3 and $3.9 \mathrm{ppm} \mathrm{Ag}, 1282$ and 2279 ppm W , and 3 and 75 ppb Au were returned for rock chip samples \#2069 and \#2071, respectively (Figure 5, Appendix 3).

A 3.5 km traverse run across the property turned up no other rocks or structures of economic interest.

Conclusions and Recommendations

The 1987 program on the Mate, Ice, Black Gold, and Dolly 1 and 2 claims was successful.

Assay returns for rock chip samples on the Black Gold claim show anomalous copper, silver, and tungsten values.

On the Ice and Mated claims, low precious metal values were found in rock chip samples.

On the Dolly 1 and 2 claims, anomalous gold, silver, copper, and zinc values were found on the reconnaissance soil survey traverses.

Recommendations for further work include:

1. Additional geology and rock chip sampling traverses on the Mated, Black Gold, and Ice claims.
2. Prospecting, rock chip sampling, and several soil traverses on westernmost Dolly 1 claim.
3. Gridding and detailed soil sampling of anomalous areas on the remainder of the Dolly 1 claim.
4. Rock chip sampling and prospecting in areas not traversed in 1987 on the Dolly 1 and 2 claims.
5. Reconnaissance soil sample traverses on the Dolly 2 claim.

QUALIFICATIONS

```
I, CHRISTOPHER L. MCATEE, certify that:
```

1. I am a minerals exploration geologist.
2. I am a graduate of Brock University, St. Catharines, Ontario with a degree in Geological Sciences (M.Sc., 1977), and a graduate of Wright State University, Dayton, Ohio, with a degree in Geology (B.Sc., 1972).
3. I have spent the past ten years in mineral exploration and development in Canada and the United states.
4. I personally examined the property and directed the exploration program conducted by skylark Resources Ltd. in 1987.

Chisitygh Imyster
Christopher L. McAtee Geologist

REEERENCE

Roots, E.F. (1954) Geology and Mineral Deposits of Aiken Lake Map - Area, British Columbia. Geological Survey of Canada Memoir 274, 246 pp .

ITEMIZED COST STATEMENT

MATEL CLAIM
Helicopter - 2.8 hours @ $\$ 595 /$ hour \$ 1,666.00
Field Wages - 1 assistant 2 days @ $\$ 130 /$ day 260.00
1 geologist 3 days @ 135/day 405.00
1 assistant 2 days @ $\$ 95 /$ day 190.00
Report/Drafting/Wordprocessing 335.00
Mob/Demob - Vehicle - Fuel - Equipment 235.00
Camp 6 man days @ $\$ 35 /$ day 210.00
Assays - 2 @ $\$ 13.25 /$ each26.50

ITEMIZED COST STATEMENT

ICE CLAIM

Helicopter - 2.8 hours \& $\$ 595 /$ hour $\$ 1,666.00$

Field Wages	1 geologist 2 days @ $\$ 135 /$ day	270.00
	1 prospector 1 day $@ 130 /$ day	130.00
	1 assistant 1 day @ $\$ 130 /$ day	130.00
	1 assistant 1 day @ $\$ 95 /$ day	95.00

$\begin{array}{ll}\text { Report/Drafting/Wordprocessing } & 335.00\end{array}$

Mob/Demob - Vehicle - Fuel -Equipment $\quad 400.00$

Camp 4 man days e $\$ 35 /$ day
140.00

ITEMIZED COST STATEMENT

BLACK GOLD CLAIM

Helicopter - 2.8 hours @ $\$ 595 /$ hour $\$ 1,666.00$

Field Wages - 1 geologist 3 days @ $\$ 135 /$ day 405.00
1 assistant 2 days @ $\$ 95 /$ day 190.00

Report/Drafting/Wordprocessing
335.00

Mob/Demob - Vehicle - Fuel - Equipment 238.00

Camp 6 man days @ $33 /$ day
210.00

TOTAL \$ 3,044.00

ITEMIZED COST STATEMENT

DOLLY CLAIM GROUP

Helicopter - 2.8 hours @ $\$ 595 /$ hour \$ 1,666.00
Field Wages - 1 prospector 3 days $\$ 130 /$ day 390.00
1 geologist 2 days @ $\$ 135 /$ day 270.00
1 assistant 2 days $@ \$ 130 /$ day 260.00
1 assistant 3 days @ $\$ 95 /$ day 285.00
Report/Drafting/Wordprocessing $1,270.00$
Mob/Demob - Vehicle - Fuel - Equipment 768.00
Camp 16 man days @ $\$ 35 /$ day 560.00
Assays - 148 @ $\$ 13.25 /$ each $1,961.00$

EEQCHEMICAL ICF ANALYBIB

date received: jor 30 imi date fefort maileds aug $10 / 87$ assayer.. A.gey. . dean toye, certified b.c. assayer SKYLARK RESOURCEB FFOJECT-FIFESTEEL GFUESTAKE File \# 87-2BEs Fage 1

Appendix 1 - Assay Results MATEL claim

日 52 E．HAGTINGS ST．VANCOUVER B．C．VGA IRG
DATA LINE 251－1011

GEDCHEMICAL ICF ANALYEIB

 －dahple itpei pi－soll p2－rock aut aknlyili iy an from 10 gran lanple．
date receivedi du 30 ivit date mefort mailedi alg $10 / 87$ absayer．．A．quyfy．dean toye，certified b．c．absayer SKYLARK RESOURCEG FFOJECT－FIFESTEEL GRUBSTAKE File＊日7－2日EB Fage 1

SAKPLET ${ }^{-}$	$\begin{gathered} \text { no } \\ \text { PPK } \end{gathered}$	$\begin{gathered} \text { tu } \\ \text { PPM } \end{gathered}$	$\begin{gathered} \text { PI } \\ \text { PP俗 } \end{gathered}$	$\begin{gathered} 1 K \\ P P R \end{gathered}$	$\begin{gathered} \text { A5 } \\ \text { PPM } \end{gathered}$	$\begin{gathered} n! \\ P \times n \end{gathered}$	$\begin{gathered} \text { Co } \\ \text { PPM } \end{gathered}$	$\begin{gathered} \text { RHK } \\ \text { RPK } \end{gathered}$	$\begin{gathered} \text { FE } \\ \mathbf{Z} \end{gathered}$	$\begin{gathered} \text { AS } \\ \text { PPM } \end{gathered}$	$\underset{p h}{U}$	$\begin{gathered} \mathrm{AU} \\ \mathrm{PFM} \end{gathered}$	$\begin{gathered} \text { IH } \\ \text { PPM } \end{gathered}$	$\begin{gathered} \text { SR } \\ \text { PPR } \end{gathered}$	$\begin{gathered} \text { CD } \\ \text { PPM } \end{gathered}$	$\begin{gathered} 58 \\ \text { PpK } \end{gathered}$	$\begin{array}{r} 01 \\ \text { PPM } \end{array}$	$\begin{gathered} Y \\ \text { PPK } \end{gathered}$	$\underset{I}{C n}$	2		$\underset{P R}{C R}$	$\begin{gathered} \text { R6 } \\ \text { 2 } \end{gathered}$		I!	$\begin{gathered} 1 \\ \text { BPM } \end{gathered}$	$\begin{gathered} \text { AL } \\ Z \end{gathered}$	$\underset{i}{\mathrm{Mn}}$	$\begin{aligned} & k \\ & \mathbf{z} \end{aligned}$	$\begin{array}{r} \mathbf{v} \\ \text { pen } \end{array}$	$\begin{aligned} & \text { RUI } \\ & \text { PHB } \end{aligned}$
8－2087	1	13	6	21	． 1	5	θ	291	1.25	1	5	N0	1	81	1	2	2	21	4.64	． 027	2	＇	． 51	99	． 14	2	3.50	． 06	． 0	1	1
R－2088	1	152	12	21	． 3	1	，	174	2.06	5	5	HD	1	41	1	2	25	36	4.76	． 016	2	d	． 7	25	． 07	2	． 90	． 02	． 11	1	1
R－2089	1	23	1	37	． 1	16	15	80	． 43	6	5	HD	1	82	1	2	2	35	． 09	． 016	2	22	1.55	27	．08	3	2.49	． 30	． 11	1	1
K－2090	3	115	9	30	． 5	10	10	351	2.10	5	5	KD	1	1	1	2	6	31	． 55	． 021	2	1	． 85	11	． 01	2	． 96	． 02	． 04	1	1
R －2041	6	12	－	26	.1	6	3	344	2.11	5	5	no	1	23	1	2	6	26	． 11	． 020	2	12	． 92	1	． 06	2	1.00	． 01	． 06	1	2
R－2092	2	44	5	103	． 1	10	－	735	2.89	5	5	\％	1	1	1	2	7	35	． 40	． 027	2	12	． 92	34	． 04	4	1.10	． 01	． 13	154	1

Appendix 2 －Assay Results ICE claim

ES2 E. HASTINGS ST. VANCOUVER B.C. VGA IRG
PHONE 253-315B DATA LINE 251-1011
GEDCHEMILAL IDP ANALYEIE

Appendix 3 - Assay Results BLACK GOLD claim

ACME ANALYTICAL LABORATORIES - 852 East Hastings Street, Vancouver, B.C. V6A IR6
Appendix 4 - Assay Results DOLLY claims

GKyLARK RESOURCEE FRDJECT-FIRESTEEL/GRUESTAKE FILE \# 87-3214
5AMPLE

\section*{
 .011

 .001

.002
.004
.005

.006
.007
.008
.009
.010

.011}

 .001
.002
.004
.005

.006
.007
.008
.009
.010

.011}

GKYLARK RE日UURCES FROJECT-FIFESTEEL/GRUESTAKE FILE * B7- $\mathbf{3 2 1 4}$
SARPLEI

0.037	1	68	2	103	. 2	13	13	645	3.41	t	5	MD	3	36	1	2	5	78	. 39	.119	5	23	1.02	87	. 17	2	2.19	. 02	. 09	1	9
0.038	1	16	6	49	$\cdot 1$	8	6	217	2.15	2	5	ND	3	25	1	2	4	48	. 24	. 038	6	23	. 1.02	56	. 11	4	2.19 .99	. 02	. 04	2	20
0.039	1	232	10	92	. 2	38	22	2121	6.18	15	5	ND	3	69	1	2	2	160	1.14	. 094	15	85	1.36	252	. 13	9	3.16	. 02	. 05	1	10 1
D. 040	1	164	16	113	. 1	45	24	1825	7.17	5	5	KD	4	57	1	2	2	146	. 90	. 031	12	96	1.56	226	. 17	9	4.00	. 02	. 05	1	11
D. 041	1	116	11	69	. 1	34	22	1790	. 6.11	$\cdot 10$	5	N0	3	51	1	2	4	154	. 84	. 060	12	80	1.46	111	. 17	9	3.00	. 02	. 06	1	3
D. 042	1	77	10	91	. 2	29	20	1560	5.57	7	5	RD	3	62	1	2	2	129	1.16	. 048	10	18	1.27	225	. 15	10	2.51	. 02	. 04	3	I
0.043	1	148	13	93	. 1	36	19	1097	6.18	7	5	HD	4	54	1	2	5	150	1.00	. 038	13	85	1.48	211	. 11	10	3.34	. 02	. 06	1	1
D. 044	1	162	16	84	. 1	21	15	661	5.50	2	5	ND	5	59	1	2	2	$14!$	1.22	. 017	11	69	1.30	215	. 20	4	3.42	. 02	. 05	1	1
0.045	1	30	9	97	. 1	12	11	717	3.06	6	5	MD	2	35	1	2	2	69	. 42	. 019	6	27	1.36 .76	119	. 20	4	3.42 1.45	. 01	. 09	1	1
D .046	1	15	4	69	. 1	0	7	720	2.11	2	5	ND	2	29	1	2	2	50	. 27	.03i	5	20	. 45	7	. 11	4	1.13	. 01	. 05	2	2
0.047	1	25	10	109	. 1	12	10	44!	3.03	9	5	KD	5	26	1	2	2	59	. 26	. 128	9	24	. 61	70	. 14	2	2.06	. 01	. 05	I	1
0.048	I	12	12	81	. 1	10	7	367	2.81	0	5	K0	3	29	1	2	2	${ }^{6}$. 29	. 076	6	23	. 52	40	. 16	4	1.48	. 02	. 05	I	3
0.049	1	22	22	120	. 1	7	9	459	3.09	6	7	ND	5	25	1	2	2	45	. 26	. 104	9	20	. 57	60	. 16	6	1.98	. 02	. 07	1	1
D. 050	1	155	9	77	. 1	10	12	1214	3.04	7	1	MD	4	4	1	2	2	13	. 48	. 013	32	21	. 77	127	. 21	2	1.98	. 02	. 06	1	560
D. 051	1	18	13	91	. 1	10	8	711	2.04	6	5	N0	6	25	1	2	2	59	. 28	. 185	12	16	. 47	59	. 12	2	1.89	. 01	. 06	1	

SKYLARK RESQURCEG FFOJECT-FIFESTEEL GRUHSTAKE File \# 日7-2958 Frage 1

5AMPLE	$\begin{gathered} \text { MO } \\ \text { PPM } \end{gathered}$	$\begin{gathered} \text { CU } \\ \text { PPK } \end{gathered}$	$\underset{\text { PI }}{\text { PP }}$	$\begin{array}{r} 1 K \\ P P M \end{array}$	$\begin{gathered} \text { Ag } \\ \text { PYH } \end{gathered}$	$\begin{array}{r} \mathrm{HI} \\ \text { PPM } \end{array}$	$\begin{gathered} \text { CO } \\ \text { PPM } \end{gathered}$	$\begin{array}{r} \text { MN } \\ \text { PPK } \end{array}$	$\begin{array}{r} F E \\ 2 \end{array}$	AS PPM	$\begin{array}{r} \text { U } \\ \text { PPK } \end{array}$	$\begin{gathered} \text { AU } \\ \text { PFK } \end{gathered}$	$\begin{gathered} \text { IH } \\ \text { PPK } \end{gathered}$	$\begin{gathered} 5 R \\ \text { PPM } \end{gathered}$	$\begin{gathered} \text { CD } \\ \text { PPR } \end{gathered}$	$\begin{array}{r} 51 \\ \text { PPM } \end{array}$	$\begin{gathered} \text { 1! } \\ \text { PPK } \end{gathered}$	$\begin{array}{r} V \\ \mathrm{FFM} \end{array}$	$\begin{gathered} C A \\ I \end{gathered}$	$\begin{array}{ll} 1 & P \\ 1 & i \end{array}$	$\begin{gathered} \text { LA } \\ \text { PPK } \end{gathered}$	$\begin{gathered} \text { CR } \\ \text { PPM } \end{gathered}$	$\begin{gathered} \mathrm{K6} \\ 2 \end{gathered}$	$\begin{gathered} \text { In } \\ \text { PPK } \end{gathered}$	$\begin{gathered} \text { II } \\ \text { I } \end{gathered}$	$\begin{array}{r} \text { PR } \end{array}$	$\begin{gathered} \text { AL } \\ I \end{gathered}$	$\begin{gathered} M A \\ 2 \end{gathered}$	K	$\begin{array}{r} \\| \\ P H^{\prime} \end{array}$	$\begin{aligned} & \text { Alt } \\ & \text { P1I } \end{aligned}$
DOL $11+001$	J	69	12	64	. 1	14	14	46	4.17	4	5	no	1	145	1	2	2	18	6.91	. 047	4	29	1.49	112	. 38	4	2.51	. 08	. 05	1	1
DOL 5-004	1	10	10	66	. 1	11	13	125	4.43	5	5	KD	1	34	I	2	2	45	1.91	. 057	4	35	1.46	26	.36	4	2.67	. 04	. 04	1	2
DOL 6110 X	1	137	18	14	. 1	16	22	1045	5.59	2	6	WD	1	213	1	2	6	140	1.75	. 012	5	22	2.15	36	. 65	-	3.04	. 04	. 04	I	1
DOL 11+5014 SILI	1	102	10	13	. 1	23	16	853	4.36	6	5	ND	2	72	1	2	2	121	2.66	. 084	θ	36	1.81	209	. 31	16	2.55	. 04	. 13	1	2
DOL 104501	1	26	16	\$12	. 1	15	11	503	3.01	1	5	N0	6	33	1	2	2	75	. 43	. 198	13	43	. 69	133	. 16	2	1.70	. 02	. 10	1	1
DEL 10400K	$!$	21	16	[17	. 1	13	14	693	3.03	4	5	ND	3	40	1	2	2	72	. 56	. 045	8	28	. 73	119	. 20	1	1.71	. 02	. 12	1	320
DOL 9+60k 5ILI	2	743.	5	51	. 3	11	1	343	. 15	3	5	HD	1	105	1	3	2	31	4.09	. 074	90	2 t	. 42	121	. 04	17	. 65	. 02	. 07	1	1
D0, 9,50M	1	29	17	113	. 1	12	12	413	3.00	$1!$	5	H0	4	31	1	5	2	74	. 38	. 044	9	21	. 64	127	. 22	2	1.58	. 01	. 08	I	I
DOL 9,00\% SILI	1	71	6	39	. 1	9	5	268	1.34	3	5	ND	2	31	1	2	2	36	.77	. 037	13	17	. 53	51	. 09	3	. 10	. 03	. 06	1	2
ODL $8+50 \mathrm{~W}$,	113	15	85	. 1	16	12	317	2.75	6	5	ND]	45	1	2	2	71	. 70	. 101	11	25	1.21	17	. 22	2	2.15	. 03	. 05	1	1
D0. $7+50 \mathrm{M}$	1	47	0	333	. 4	21	17	042	3.58	7	5	No	2	36	1	2	2	92	. 45	. 021	8	34	. 76	197	. 14	2	2.26	. 01	. 07	1	1
DOL 7400Y	1	43	13	130	. 1	23	16	514	4.95	14	5	ND	3	39	1	2	2	111	. 61	.031	9	34	1.10	141	. 12	5	2.13	. 01	. 06	1	1
DOL 6+501	1	75	6	71	. 1	31	11	510	4.61	10	5	H0	4	13	1	2	2	133	. 73	. 040	9	60	1.13	102	. 20	2	2.50	. 02	. 11	1	1
DOL $6+0 \mathrm{MH}$	1	46	16	97	. 1	29	15	413	4.22	14	5	KD	3	51	1	2	2	128	. 18	. 027	5	53	1.04	12	. 22	2	2.15	. 03	. 05	1	10
OOL 54501	1	72	15	139	. 1	32	11	591	5.22	15	5	H0	4	58	1	2	2	141	1.00	. 010	1	70	1.19	47	. 19	9	1.12	. 04	. 01	I	2
OOL 5400H	1	36	15	103	. 1	22	11	553	4.33	11	5	ND	3	49	1	2	2	133	. 59	. 054	4	50	. 83	164	. 21	2	1.88	. 02	. 05	1	1
DOL 4450N	1	16	13	76	. 1	9	5	276	2.09	4	5	MD	2	34	1	2	2	4	. 40	. 010	5	23	. 41	81	. 20	7	1.09	. 02	. 01	1	1
OOL $9+00 \mathrm{~N}$	1	203	11	116	. 1	35	19	563	4.33	11	5	MD	1	45		2	2	109	. 71	. 053	8	41	1.41	127	. 23	14	2.78	. 03	. 16	1	1
DOL 34501	1	10	9	60	. 1	10	7	219	2.85	3	5	KD	3	27	1	2	2	13	. 31	. 020	7	34	. 17	53	. 20	2	1.12	. 02	. 07	,	5
OOL 34004	1	17	11	145	. 1	15	11	330	3.54	1	5	No	4	28	I	2	2	77	. 35	. 084	1	32	. 57	90	. 18	2	1.75	. 01	. 08	1	1
DOL. $2+50 \mathrm{M}$	1	19	10	210	. 1	17	13	193	3.78	2	5	N0	4	27	1	2	2	76	. 34	.141	10	35	. 11	77	. 13	2	2.45	. 01	. 06	1	2
DOL 24003	1	19	15	143	. 1	10	11	762	3.13	4	5	HD	2	29	1	2	2	14	. 33	. 097	8	J2	. 53	6	. 15	3	1.56	. 02	. 06	1	6
DOL $1+50 \mathrm{H}$	1	29	9	90	. 1	11	\square	250	3.33	1	5	ND	J	32	1	2	2	85	. 37	. 077	0	32	. 56	50	. 17	2	1.59	. 01	. 10	1	3250
DOL 1+003	1	23	7	92	. 5	11	1	300	2.73	6	5	ND	3	32	1	2	2	70	. 37	. 034	7	29	. 40	58	. 15	6	1.29	. 02	. 08	1	3
DOL 045014	1	29	9	92	. 1	13	10	487	2.60	5	5	ND	4	35	1	2	2	47	. 49	. 079	11	31	. 71	110	. 16	3	1.54	. 01	. 08	1	1
DOL 0535 N	1	34	!	82	. 1	14	10	697	2.45	5	5	no	J	32	1	2	2	43	. 39	. 060	11	30	. 46	102	. 15	2	1.39	. 02	. 10	1	1
DOL $0+00$	1	10	11	57	. 1	7	5	338	1.80	4	5	ND	3	31	1	2	2	55	. 32	. 030	8	21	. 35	120	. 14	7	. 98	. 01	. 06	1	2

SKYLARK RESOUKCES FFKJJECT-FIFESTEEL/GKUESTAKE FILE \# 87-ミ214

Sahflei	$\begin{gathered} \text { no } \\ \text { PPM } \end{gathered}$	$\underset{\text { pph }}{\text { cu }}$	$\begin{gathered} \mathrm{PB} \\ \mathrm{PFn} \end{gathered}$	$\begin{gathered} \text { IN } \\ \text { PPK } \end{gathered}$	$\begin{gathered} A_{5} \\ P P M \end{gathered}$	$\underset{\text { RIM }}{\mathrm{KI}}$	$\begin{gathered} \text { CD } \\ \text { PPM } \end{gathered}$	$\underset{\text { FPR }}{\text { H/ }}$	$\underset{i}{\mathrm{FE}}$	$\begin{gathered} \text { AS } \\ \text { FFn } \end{gathered}$	$\begin{array}{r} \text { PI } \end{array}$	$\begin{gathered} \mathrm{Al} \\ \mathrm{PPH} \end{gathered}$	$\begin{gathered} \text { in } \\ \text { PPM } \end{gathered}$	$\begin{gathered} 5 R \\ \text { PFM } \end{gathered}$	$\begin{gathered} C D \\ \text { PPn } \end{gathered}$		$\begin{gathered} 11 \\ \text { PPM } \end{gathered}$	PPM	CA	?	$\underset{\text { PPM }}{2 A}$	CPR	${ }_{\mathbf{I}}^{\mathbf{I}}$	${ }_{\text {PRM }}^{8}$	11	PPM	4	MA	$\underline{1}$	PFK	$\begin{aligned} & \text { Put } \\ & \text { PPI } \end{aligned}$
Swa 3 400 N	1	17	10	97	. 2	15	8	273	3.07	14	5	ND	1	32	1	2	2	咟	44	. 084	9	45									
SkA $2+50 \mathrm{M}$	1	18	15	113	. 2	13	11	375	3.39	5	5	H0	4	37	1	2	2	4	. 12	. 089	\%	4	. 92	144	. 18	8	${ }^{1.56}$. 01	. 11	1	10
SHA $2+604$	1	60	6	18	. 2	27	,	352	3. 30	10	5	но	6	34	1	2	2	97	. 40	. 046	11	6	. 92	144	. 31	${ }_{12}$	2.03 2.07	. 01	. 11	1	3
Sxa 14501m	1	50	9	296	. 2	27	13	${ }_{68}$	4.63	5	5	ND	3	51	1	2	2	123	1.01	. 020	,	18	. 93	116	. 33	12	2.67	. 02	. 04	1	3
SWA 1+50M SILI	1	56	12	102	.1	18	9	1995	3.77	10	5	ND	2	91	1	2	2	71	2.38	. 076	10	37	. 75	191	. 17	,	1.45	. 03	. 04	1	2
SUM 16+001	1	115	7	94	. 1	31	20	900	4.61	12	5	${ }^{1}$	2	52	1	2	2	115	1.19	. 083	10	${ }_{6} 1$	1.32	76	. 16	10	2.02	. 03	. 07	1	5
SKA 15450\%	$!$	117	10	${ }^{4}$	\because	36	20	999	5.33	10	s	Mg	2	$6!$	1	2	2	132	1.12	. 017	11	73									
SKA 15900M	1	41	10	113	.1	32	16	532	5.61		s	NO_{0}	2	33	1	2	2	145	. 52	. 095	11	77	1.15	${ }^{110}$. 21	5	2.11 2.78	. 03	. 07	1	3
Sun 14,50\%	1	60	10	104	. 3	30	15	H5	4.70	13	5	HD	3	31	1	2	2	16	. 38	. 121	5	53	. 75	148	. 10	9	2.73	. 02	. 06	1	1
SWA 14400\%	1	49	10	90	. 1	30	14	478	4.96	3	5	H0	J	34	1	2	2	132	. 11	. 031	5	57	1.06	98	. 18	5	2.80	. 02	. .05	1	1
SUA 13+504	1	17	7	89	. 1	19	10	215	5.11	6	5	k_{0}	2	30	1	2	2	149	. 42	. 013	-	62	. 67	75	. 20	2	2.13	. 01	. 04	1	1
SMA 13+00140506	1	18	4	132	. 2	16	10	416	4.33	7	5	${ }^{\text {K0 }}$	2	24	1	2	2	103	. 33	. 127	6	51	. 38	73	. 16	2	\$.90	. 01	. 06	1	3
5MA 13+00\%	1	53	16	36	.1	22	10	1030	2.67	10	5	N0	1	251	1	2	4			. 036											
5VA 9+504	1	30	1	54	. 1	5	15	12	4.27	2	5	ko	1	64	1	2	2	154	2.14	. 010	10	5	1.29	75	. 42	1	$\begin{aligned} & 2.14 \\ & 2.49 \end{aligned}$. 02	. 01	1	2
Stu 90004	2	71	14	49	. 1	12	15	776	4.84	2	5	k0	3	30	1	2	3	137	3.75	. 060	6	32	1.47	9	. 50	16	4.78	. 09	. 04	2	3

