1991 1992 Oli3	RD. 3
I Date recei	ved report
but tran itmer	dwint3.

1257 GEOLOGICAL LTD.

DRILLING REPORT ON REVERSE CIRCULATION DRILL HOLES: RS-88-104 AND RS-88-105

MAC CLAIM, FRASERGOLD PROPERTY

MACKAY RIVER AREA, CARIBOO MINING DIVISION, BRITISH COLUMBIA, CANADA

N.T.S.: 93A/7E

LATITUDE: 52°19'N LONGITUDE: 120°37'W

Part 2 of 2 GEOLOGICAL BRANCH ASSESSMENT REPORT

BY: LORNE G. ROWAN

JANUARY 1989

TABLE OF CONTENTS

- - -

ſ

(

- serve a server server and the server of the server is a server because

			PAGE
	1.0	SUMMARY	1
	2.0	INTRODUCTION	2
	3.0	LOCATION AND ACCESS	2
	4.0	PROPERTY	5
	5.0	HISTORY OF EXPLORATION	7
	6.0	REGIONAL GEOLOGY	8
	7.0	PROPERTY GEOLOGY	9
	8.0	REVERSE CIRCULATION DRILLING RESULTS	10
	9.0	COST STATEMENT	13
		REFERENCES	15
		AUTHOR'S STATEMENT OF QUALIFICATIONS	16
	APPEN	DIX I DRILL LOGS OF RS-88-104 AND RS-8	38-105
	APPEN	DIX II ANALYTICAL PROCEDURES AND RESULT	rs
	FIGUE	ES:	
	1.	LOCATION MAP	3
	2.	REGIONAL LOCATION MAP	4
	3.	CLAIM MAP	6
-	-4 :	REGIONAL GEOLOGICAL MAP	(in pocket)
	5.	PLAN MAP OF DRILL HOLE LOCATIONS	(in pocket)
	6.	CROSS SECTION OF RS-88-104	(in pocket)
	7.	CROSS SECTION OF RS-88-105	(in pocket)

1.0 SUMMARY

The Frasergold property has had a long history of exploration; specially since 1980. Prior to the programs of 1987 and 1988, extensive geochemical soil surveys, trenching, 6,540 m of diamond drilling, and 1,910 m of reverse circulation drilling had been completed. This work outlined an area of about 600 m of strike length, where the best results were obtained. The interpretation of these results postulated two possible scenarios in one part of the property to be tested further: a narrow, high-grade zone amenable to underground mining, and a wide, low-grade, large-tonnage zone viable to be exploited by open-pit methods.

As part of a program to develop the Frasergold property, Sirius Resource Corporation commissioned 1257 Geological Ltd. to conduct a reverse circulation drilling program during May and June of 1988. The last two drill holes of this program, RS-88-104, RS-88-105, were located outside of the previous primary area of exploration at a both topographically and stratigraphically lower position.

Reverse circulation drill holes RS-88-104 and RS-88-105 were to test an area of anomalous soil geochemical sample values, and to provide lithological information of the rock units underlying the present area of development. The assay values from these two drill holes were quite low and would seem to indicate that the cause of the anomaly would be downslope dispersion from the overlying units, rather than gold mineralization of the bedrock under the anomaly.

Due to a thick overburden cover, there is a scarcity of outcrop to provide information about these rock units. From the logging of the drill cuttings produced by drill holes RS-88-104 and RS-88-105, we were able to confirm the same stratigraphic succession of phyllites, schists and metasediments as mapped elsewhere on the property.

2.0 INTRODUCTION

In late April 1988, 1257 Geological Ltd. was directed by Sirius Resource Corporation to carry out an exploration program on the Frasergold property. This program consisted of about 2470 m. of reverse circulation drilling in 37 holes. These were arranged in a series of parallel fences of three to five holes each; with the exceptions of RS-88-104 and RS-88-105. This program was based upon recommendations given to 1257 Geological Ltd. by Sirius Resource Corporation.

The project was managed by Russ L. Davis. Juan C. Caelles supervised the commencement of the drilling and chip sampling. Lorne G. Rowan and Mark A. Morrison continued and finished the logging and supervision of the sampling of the drill chips.

Prior to the May-June program, the property had been continuously explored since 1980. Extensive geochemical soil sampling and limited geophysical surveys had been completed, as well as 6,540 m of diamond drilling and 1,910 m of reverse circulation drilling. A gold-bearing zone was delineated by this work, with a strike length of over 10 km and a thickness of up to 30 m. All but two of the 37 drill holes were concentrated of strike length, where a possibility for a along 325 m large-tonnage, low-grade gold deposit amenable to open pit mining was indicated. The last two drill holes tested a soil anomaly both stratigraphically and topographically below the primary area of interest.

The program started on May 16, 1988 and was completed on June 20, 1988, comprising 2470 m of reverse circulation drilling.

3.0 LOCATION AND ACCESS

The Frasergold property is located in the central Cariboo region of British Columbia, Canada. It is situated in the Cariboo Mining Division, in NTS sheet 93A/7E, approximately at a latitude of $52^{\circ}19'N$ and at a longitude of $120^{\circ}37'W$ (Plate 1).

Access to the property is by road via paved Highway 97 from 150 Mile House to Horsefly for 55 km, then northeasterly along an all-weather logging road following the Horsefly River for 55 km, past the Crooked Lake junction at about Post 145. From there along a branch logging road to the southeast, which enters the MacKay River valley. Following the MacKay River road the property and camp are reached after 7 km (Plate 2).

Topography on the property varies from moderately steep to steep, from the northwestern part to the southeastern portion of it, and elevations range from 1280 m at the level of the MacKay River to 2,225 m at high peaks along the southern boundary of the property. The southern slope of the MacKay River Valley, where most exploration work has been done to date, attains elevations between 1,200 and 1,550 m.

Vegetation in the area consists of commercial balsam and spruce, with thick underbrush up to an elevation of 1,600 m; above that elevation the tree cover is sparser and over 1,800 m alpine vegetation predominates. Large areas of the claim group have been logged, hence facilitating access.

4.0 PROPERTY

The Frasergold Property comprises 23 contiguous mineral claims and 4 claim fractions. They are located in NTS sheet 93A/7E in the Cariboo Mining Division of British Columbia, Canada (Plate 2A).

The claims, registered in the name of Eureka Resources, Inc., and the expiry dates are shown in Table 1.

CLAIM	RECORD	NUMBER	RECORDED	EXPIRY
NAME	NUMBER	UNITS	DATE	DATE
MAC	1286	9	79/10/19	93/10/19
MAC 2	2078	20	80/10/22	92/10/22
MAC 7	6249	8	84/07/27	92/07/27
MAC 8	6250	16	84/07/27	92/07/27
MAC 9	6251	20	84/07/27	92/07/27
MAC 9 FR	6204	1	84/07/16	93/07/16
MAC 12 FR	6253	1	84/07/27	92/07/27
KAY 10	1961	6	80/09/25	93/09/25
ALPHA 2	5159	9	83/09/23	93/09/23
KAY 1 to 8	1182-89	8	79/09/04	92/09/04
KAY 9	1810	20	80/08/11	93/08/11
KAY 11	1962	2	80/08/25	96/09/25
KAY 12	4631	20	83/01/26	92/01/26
MAC 3	3074	6	80/12/23	93/12/23
MAC 4	3075	2	80/12/23	93/12/23
MAC 5	6248	4	84/07/27	93/07/27
MAC 6	3077	9	80/12/23	93/12/23
MAC 10 FR	6231	1	84/07/19	93/07/19
MAC 11 FR	6252	1	84/07/2 7	94/07/27
MAC 10	7838	20	86/07/31	90/07/31

List of claims with expiry date and area

,

5.0 HISTORY OF EXPLORATION

The property was first prospected and staked by Clifford E. Gunn in 1979-80, when the original Alpha, Mac, and Kay 1 to 6 claims were registered. Mr. Gunn was directed to the area by references from Ministry of Mines reports dated from the beginning of the century, which mentioned testing of the valley for gold placer potential.

The property was then kept under option by Keron Holdings Ltd. and NCL Resources Ltd. from 1980 to 1982. The operators added the Kay 9 to 12 and Mac 2 to 9 claims. In 1981 Keron Holdings established 132 km of grid lines and took a total of 2,513 soil samples at 50 m intervals; in addition, 141 rock samples were collected (Belik, 1981).

In late 1982 Eureka Resources, Inc. acquired the property and in July 1983 optioned it to Amoco Canada Petroleum Co. Ltd. Under the terms of the option Amoco could have earned a 50% equity interest in the property by expending \$900,000 on exploration and by making payments to Eureka totalling \$260,000, according to a set minimum schedule over the three year period 1983-1985. In 1983 Amoco's personnel completed 7.0 km of drill access roads, 1,170 m of hand trenches, and collected 1,070 rock samples. In addition, a limited electromagnetic and magnetic surveys and a collection of 820 new soil samples were carried out, and 1,644 m of diamond drilling were completed.

In 1984 Amoco proceeded evaluating the property by: establishing a total of 35 km of new grid lines and re-establishing a further 29 km of old grid lines, from where a total of 1,956 new soil samples and 190 rock chip samples were collected; completing 20 km of Radem-electromagnetic and magnetometer surveys; and drilling nine NQ diamond drill holes aggregating 2,875 m (Brown, 1983; 1984).

In 1985 Amoco dropped the option and Eureka Resources, Inc. continued exploration. A total of 1,020 soil samples were collected and an I.P. geophysical survey of six km of lines was completed (Kerr, 1985; Cartwright, 1985). A bulk sample was taken, on which Coastech Research Inc. performed metallurgical tests consisting of milling and cyanidation (Summers and Marchant, 1986).

In 1986 Eureka Resources carried out trenching, bulk sampling, reverse circulation, and diamond drilling. Four reverse circulation holes and eighteen HQ drill holes adding 2,021 m (6,631 ft) were completed (Leishman and Campbell, 1986).

In 1987 Eureka added 2.0 km of new drill-access roads and 660 m of trenching, and levelled drill set-ups. Twenty one reverse circulation holes were completed totalling 1,710 m and the trenches were mapped and sampled (Campbell et al., 1987).

Sirius Resource Corporation entered into an agreement with Southlands Mining Corporation in the second half of 1987 to continue exploration on the property. The first program of field work started on December 12, 1987 and was completed on February 12, 1988. This work essentially followed the program recommended by Leishman and Campbell (1987); it consisted of 1,536 m of HQ diamond drilling and 184 m of adit equivalent. In addition, 16 rounds of mined mineralized material were shipped to metallurgical and mill Vancouver for tests. The reverse circulation drilling project was the second program of field work by 1257 Geological Ltd. for this agreement. It completed a total of 2470 m. of reverse circulation drilling between May 18, 1988 and June 17, 1988.

6.0 REGIONAL GEOLOGY

The geological map of the MacKay River area is shown by figure 4 which was modified from Bloodgood (1987). The Frasergold property straddles the MacKay River valley that constitutes the surface expression of the suture boundary between two major

tectonic belts of the Canadian Cordillera: the Quesnel Trough of the Intermontane Belt on the west and the Omineca Tectonic belt on the east.

There are three tectonostratigraphic sequences in figure 4 which, from older to younger, are:

a) Snowshoe Group of Haydrynian to early Paleozoic age made up of quartz-mica schists and gneisses;

b) Crooked Amphibolite of Pennsylvanian and Permian age constituted by metavolcanic rocks (amphibolite, chlorite schist and chlorite-epidote schist);

c) Quesnel River Group of Middle to Late Triassic age composed of predominantly sedimentary rocks and the Late Triassic to Middle Jurassic volcanic Takla Group.

Bloodgood (1987) has subdivided the Quesnel River Group of the Eureka Peak area into seven units; the black phyllites predominate. The black phyllites underlie, and are in fault contact with, the Takla Group basic volcanic rocks, which occupy the core of the Eureka Peak syncline.

Jurassic to Early Cretaceous regional dynamothermal metamorphism affected all pre-Tertiary rocks in the area, which show at least two periods of deformation (Bloodgood, 1987; Read, 1983).

The rocks of the area have been subjected to regional metamorphism reaching the lower greenschist facies. The metamorphic grade of all units in the Eureka Syncline increases towards the Perseus Anticline. Regionally, large areas reached amphibolite facies with some rocks in the core of the anticlines reaching kyanite-staurolite-fibrolite facies.

7.0 PROPERTY GEOLOGY

The Frasergold property is underlain by the Quesnel River Group, which here consists of seven units (Bloodgood, 1987). The gold mineralization in the property is hosted by porphyroblastic phyllite, equivalent to Bloodgood's unit 4. That unit is part of a thick sequence of dark grey to black, lustrous phyllites intercalated with limestone, calcareous siltite, light-grey non-calcareous siltite, and a greenish-grey carbonate-quartzsericite schist (Campbell et al., 1987). The porphyroblastic phyllite occupies a 200 to 300 m-wide zone in the phyllite sequence and is locally known as the "knotted" phyllite. The porphyroblasts ("knots") are made up of iron-rich carbonate (probably chiastolite); their formation predates at least one period of deformation because they have been rotated and elongated by cleavage. and commonly have developed pressure shadows composed of a mosaic of fine-grained crystals of quartz and carbonate. A brief description of the lithologies found on the property is given by Campbell et al. (1987).

According to those authors, the "knotted: phyllites occur on the northeastern limb of the northwest-trending Eureka Syncline. They identified four macroscopic structural features:

- So bedding: strikes 133° and dips 30° to 45° to the southwest;
- S1 penetrative, axial plane cleavage: strikes 130° and dips 35° to 85° to the southwest;
- S2 crenulation cleavage: much less developed and "dips 68° to 85° southwest:,
- S3 crenulation cleavage: observed in few places striking 165° to 170° and dipping 60° to 70° to the southwest.

Quartz veining is very common in the phyllites exposed by the Structurally, the veins are bedding-parallel, trenching. cleavage-parallel, crosscutting, and folded. The observed veins in the underground workings are for the most part short and they pinch out along their longest dimensions in short distances. Abundant quartz veins forming disharmonic (subsidiary) folds in the adit, with wavelengths from a few centimetres to 2 m. The vein material appears to have been locally derived from surrounding rocks, and emplaced by dynometamorphic processes.

The sedimentary rocks have been metamorphosed to the lower green schist facies, the typical metamorphic minerals being chlorite, and minor epidote.

8.0 REVERSE CIRCULATION DRILLING PURPOSE AND RESULTS Reverse circulation drill holes RS-88-104 and RS-88-105 were located on L46 + 00 SE at 1+50 NE and L47+00 SE at 1+70 NE. Their location was chosen in order to test a geochemical soil anomaly and to provide information about the lithologies that underlie the main area of interest.

The soil anomaly is approximately 300 m. wide and contains values as high as 560 ppb and 1320 ppb. This anomaly is offset to the main Frasergold anomaly by about 100 m. to the northeast, but has an identical strike. A reconnaissance traverse of the area did not find any outcrop, however thick overburden with good soil development covers this area.

From the logging of the drill cuttings it was found that the soil anomaly was not underlain by fault offset lateral equivalents of the main zone phyllite lithologies. Instead a succession of the phyllites, schists and metasediment units, mapped by Campbell, et al., and confirmed by Read, as stratigraphically lower, were intersected. Therefore there is not thought to be any offsetting due to faulting. Unfortunately no notable amounts of gold mineralization were present in the assays of samples from these The low assays would indicate that the cause of of the units. anomaly is downslope dispersion rather than the presence of gold mineralization in the underlying bedrock. Both drill holes intersected the light green coloured schist unit near their top. This occurs as lenses (Campbell, 1987; Read 1988) in a grey phyllite. Thin section work determined a large amount of quartz, some micas such as sericite and muscovite, and a minor amount of chlorite (Read, 1983). There were two types of similar appearing fine grained metasediments that were intersected. They are a calcareous silstone and a non-calcareous siltite. They have been described from thin section work as having a major amount of quartz and minor amounts of muscovite and allite (Campbell, 1987). A black phyllite unit composed the majority of the drilled sections. It was non-calcareous with an abundance of fine mica on the partings surfaces of the chips.

Sulphides occurred as fine disseminations in the phyllites and as small anhedral blebs and veinlets in the quartz, they consisted of pyrite with some very minor pyrrhotite. The content of quartz in the drill cuttings did not exceed 10% of the total volume of cuttings in any of the 1.5 metre drill run intervals.

The assay results from drill holes RS-88-104 and RS-88-105 did not contain a large number of anomalous values. The highest assay value was 0.046 oz/tn from drill hole RS-88-104. Unfortunately, the vast majority of assays did not even contain detection level amounts of gold. 9.0 STATEMENT OF COSTS

MAC 10 PROGRAM JUNE 1 TO JUNE 15, 1988	
<u>Project Management</u>	
Russell R. Davis, P.Eng.	
3.5 at \$400.00/day	\$1,440.00
Lorne G. Rowan, B.Sc.	
3.4 days at \$320.00/day	1,120.00
Mark A. Morrison, B.Sc.	
3.5 days at \$240.00/day	840.00
	\$ 3,400.00
Labour	
Arthur A. von Kursell, Sampler	
2 days at \$80.00/day	\$ 160.00
Trevor S. Williams, Sampler	
2 days at \$80.00/day	160.00
John H. Steiger, Sampler	
2 days at \$80.00/day	160.00
	\$ 480.00
Drilling Costs	
RS-88-104	
278 ft. at \$13.43/ft	\$ 3,733.54

RS-88-105	
273 ft. at \$13.43/ft	3,666.39
Nodwell tracked vehicle	
2 days at \$250.00/day	500.00
	\$ 7,900.00
Bulldozing Services	
Gruhs Bulldozing Ltd.	
Rental and fuel for roadbuilding	
and drill pad building	
7.33 hours at \$105.00/hr.	\$ 770.00
Camp Costs	
(24 man trailer complex)	
Food costs	
3.8 days at \$515.00/day	\$ 1,957.00
Fuel Costs	
20 gal/day at \$3.00/gal for 3.8 days	228.00
Trailer Rental	
3.8 days at \$345.00/day	1,311.00
Miscellaneous supplies	44.00
	\$ 3,540.00

.

14

.

REFERENCES

Bloodgood, M.A., (1987):

Geology of the Triassic black phyllite in the Eureka Peak area, Central British Columbia; British Columbia Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork 1986, Paper 1987-1, pp 135-142

Caelles, J.C. and Rowan, L.G.,(1988): Geological Report on the 1987/88 Exploration Work Frasergold Property MacKay River area, Cariboo Mining Division, B.C. Canada; unpubl. report for Sirius Resource Corporation, 1257 Geological Ltd., V.1 and 2.

Campbell, K.V., MacKean, B.E., and Leishman, D.A. (1987): Report on the geology and results of the 1987 exploration on the Frasergold property; unpubl. report for Southlands Mining Corporation, Campbell and Associates, V.1,2, and 3.

```
Read, P.B. (1983):
Petrography of drill core samples; Geotex Consultants
Limited, unpublished report for Amoco Canada Petroleum
Company Ltd., 10p.
```

Read, P.B. (1988):

Aspects of Structure and Stratigraphy Relevant to Gold Mineralization, Frasergold property; Geotex Consultants Limited, unpubl. report for 1257 Geological Ltd., v.1 and 2.

Author's Statement of Qualifications

- I, Lorne G. Rowan, do hereby certify:
- That I am a self-employed geologist with an office at 32595 Dalhstrom Avenue, Abbotsford, B.C.
- That I graduated from the University of British Columbia in 1985 with a degree of Bachelor of Science in Geology.
- That I have practiced my profession since graduation in British Columbia and the Yukon Territory.
- That I am a member in good standing of the Geological Association of Canada.
- That I personally conducted or supervised the geological work program described in this report dated January , 1989.

Dated at Vancouver, British Columbia this day of January, 1989.

Lorne G. Rowan, B.Sc. Geologist APPENDIX I

DRILL LOGS OF RS-88-104 AND RS-88-105

.

	<u>Nor</u>	hing Easting 49549.5	6664	: 142	2 m b 8	RG : - 55	5° T•	TAL L6		18' ST	4TED *	v: June	16	(++ALC	reb in	: June 16		
		LIT Ho LO 68	3	suc PHI	Pel		644	∡ v€			F	125 A	55 4 YS		SYAN L SATIN	w 616003		
ком ~)	 (⊷)	Rock TYPE	Pyrite	Potro		T+ T46 SUC /HIDE	972	fe - carb	SAMPLE	TNTER	ASSAY	43547	A5547	AVC.		406. 68436	OSSEA	lu <i>47142</i> 5
			н А	H A	H A	H A	u A	H A		(m)	1	٤	3	68+20		(relts, 4)		
<u> </u>	4.0	Overburden				[Dry o	<u>trilling</u>
.0	5.5	Phyllite (mod oxidin)	M	m			,21	m	53560		L.001							
. 5	7.0	N 11	т	m			3,21	m	561		L.001							
,0	8.5	N	m	m			m	-	562		L.001						n Alf	₩.
.5	10.1	Light green quarter foricite-chlorite schist 47m, black phytlite	t	+			2,3		563		L.001						Blowbrek weter an brutefarr	Used a second ica termantela attendat tas
).	11-6	as above but by aut phyllite	t	+			7.10	m	564		L.001							
.6	13.1	N H	. +	t			3,5	m	565		1.001					·		
3.1	14.6		+	4			5,5	m	566		L.001							
4.6	16.2	×	+	: + :-			7 10	m	: 567		L.001							V ·
6.2	17.7		4	t .			7:10	m	568		L.õoi				İ		lubricon down rods	t paired
1.7	19.2	N. Junty Sine Jissen Pyra	1	7 -			m		569	-	L.∞I		-					
1.2	20.7		Ŧ-	F			5;10		53570		[.∞1		-1					.
<u>0.7</u>	22.3		ŧ.	4			5,5	-	571		L.001						ĺ	
2.3	23.8		st.	Ŧ.			6.5		572		L,001							5
3.8	25.3	N The second second	m	m			m		573		L.∞1							
5.3	26.8	×					3-		. 5 74		1.001						1	J

		LITHOLOGY	s		9 e 2	- :	644	4 ∪€			F	IRE 4"	55 4 75		514" L 34710J (12/534)	WEIGHOS	
F20M (m)	+° (~)	ROCK TYPE	Py	P 6).	7+745 545, Fai 141	472 4 4	Fe- carb	SAMPLE 4	титек_ VAL (m)	4 55 A Y 1	4552Y Z	A 55 47 3	A V C . 48+20		400. 61436 (12/5, 4-)	035 EAVA TIAN)
26,8	28.3	gtz-chlor-ser-schirt	. t-	<u>t.</u>	<u>, , , , , , , , , , , , , , , , , , , </u>		7,10	-	53575		L.001			· · · · · · ·			
28.3	29.9	K 11	t	+			3.5	-	576		L.001			_			
29.9	31.4	w U	+	f		ļ	2.5	-	577		L.001						Hitsome water a end of run.
31.4	32.9	×	m	m			3 5		578		.004		,				Dryish
32.9	34.4	∞ , ω , μ , μ	m	m			m		5 79		800.						very viscous
34.4	36.Q	No.	+	đ	1		m		53580		1.001			-			Dry
36.0	37,5		+	t			m		581		.002						Some moistere in e return, then dry.
37.5	39.0		7	<u>,</u> †		-	m		582		L.001						Dryish
39.0	40.5		<u>f</u>	<u>f</u> *			m	-	5 83		L.001						wet tdey
40.5	42.1	more echist	+	, †			m		584		1.001					-	wet (dry
42.1	43.6	black phyllite is	+	Ŧ			M		585		1.001						wet
43.6	45 1	Missing sample						27 .	586		1.001						
45 1	46.6	Phy/1+e 1/ 1/2	m	m			4 5	m	2 587		.001						
46.6	48.2	Phyllite	m	M			м	+m	588		1.001						
48.2	49.7	Phy/lite	m	m	in the second se		m	4	589		1.001						
49.7	- 5 †. -2	-Phyllite	-m·	m			2; 26	≞t.	53590		L.001						

-

		LITHOLO 44		SVC PHI	<u>م هر د</u>	RG: 0	45°	auE .	84	7 m	F	186 4	55 4 Y 5		STAT L	wei6403	
Feom (~)	 (~_)	Rock TYLE	Py	Po		T+ T+L S+LP4(36)	972	Fe - carb	SAMPLE .	THTER	ASSAY	45547	astay	A + C .		406. 68436	0356444 714-5
			<u>4 A</u>	<u>u A</u>	H A	H A	4 4	<u>H 4</u>	ļ. <u> </u>	(~~)	1	2	3		ļ	(ralt, 4)	
51.2	52.7	Phyllite	<u>t</u>	t	·	<u> </u>			53591	 	.∞1			[<u> </u>		
<u>52.7</u>	54.3	Phyllite 1 100	m	m	ĺ		<u>t</u>	-	592		.046				[
54.3	55. 8	Phyllite	m	m			t.	-	593		.∞ı						
55.8	57.3	Phylite	+	+			t	-	594		1.001						some dry recovery
5 7,3	58.8	Phyllite	+	~ .			l. +	-	595		L.001						\$
50. 8	60.4	Phyllite .	m.	m			.t	+	596		1.001						- -
60,4	61.9	Phyllite	m	m	1 - 1 - 1 1 - 1 - 1 1 - 1 1 - 1 1 - 1				597		1.001						
61.9	63.4	Phyllite	<u>t</u>	t			m	h	598		L.001		_				some dry recovery
63.4	64.9	Payllite	ŧ.	+					599		.002						- A
64,9	66.4	Phyllite	t.	ť		. S			53600		.003			·			some dry recovery
66.4	68.0	Phyllite	+	t	-		_		601		L.001					-	
68.0	69.5	Phyllite	+	4			- +-		602	-	L.001						-
69.5	71.0	Phyllite	+	t.			m		603		L.001						some dry receiving
71.0	72.5	Phyllite.	m	m			+	-	604		L.001		······				
72.5	74.1	Phyllite	+	+		[-4	605		L.001		·				
74.1	75 1	Phy llite	+	······································			.†		606	·	LODI				-		

.

•

	L 41	T: (aN & :	62693	-	8	RG: 04	3 T +1	42 6	~< ** : 27 84	.7 m	итед « 	v: JuA	2 16	(****C C	1.1.1.1		·•
		LITHOLO 4Y	5	NC PH	7 E L		60.00	5 vE		-	F	185 4: (+3/+-	55 475 443		347 (12/5 Ay	WE16403	
(~)	τ° (⊷)	RICK TYPE	Py.	Pa.		T+ T+L SUL Fur DEI	472	Fe - corb	SAMPLE #	INTER_ VAL	4 551 Y	45547 Z	4554Y 7	A VE . GR400		6 RA 3 6	03584+# 71++
		······································	H A	H A	+ 4	H A	4 4	H 4		(%)	•						
75.6	77,1	Phyllite	<u>+</u> .	+		 	<u>t</u>	-	53607		1.001						
77.1	78.6	Phyllite	+	+			~		608		L.001					[]	
18.6	80.2	phyllife	. +·.	ł		ļ		-	609		L.001						
30.2	81.7	Phyllite	1.1	+					53610		L.001						
31.7	83.2	Phyllite	t	t		· · -·	<u>`</u>		611		L.001						
33.2	84.7	Phyllife	m	m	1		•+		612		L.001						
		E. o H.														Ì	
· · · ·										-							
															q .		
															ł		-
							15.00			·				Ĺ,			
											+						
1 × 1.									· · · · · · · · · · · · · · · · · · ·		 			<u> </u>			

-

		LITHOLOGY	5	44 EHI	ber .		600	a u E	1	'	ŧ	146 4 1 (55 4 YS 4 4 2		54710d 14710d	weisua)	
40M ~)	то (~)	ROCK TYPE	Pyrite Pyr	Pyr Kotite		7+ 74L SULPHIBED	472	Fe- carh	SAMPLE +	титек_ ++ ((т)	a'ssay 1	45547 Z	ASSAY 3	4 v C . 44450		406. 68436 (52/15, 4-)	03584+471++5
0	4.6	Over burden		<u>ч *</u>	+ 1	# 7	· · ·										······
4.6	6.1	No semple for logging	·						53613		L.001						
6.1	7.6	Phyllite + 2+2 (maloxith	26	m			19,20	2%	614		L.œı						· · · ·
7.6	9.(Phyll. + Etz (mod oxidin)	m	t			7, 5	m	615		L.001						
9.1	10.7	Block phyll. + etz-set- chlor-	+	1	· · ·		3, 5	m	- 616		L.001						í.
5.7	12.2	schist	+	- †			z 5	- Mile	- 617		L. 001						- -
2.2	13.7	Schist as above 4 minor dk schift	+	: † .			1	-	618		100.1						• •
3.7	15.2	dk gry f.g. Sit stone	+	Ŧ			9 10		619		L.001						
5.2	16.8	dk gry slt 4 m. gri schis	T	÷t			t	<u> </u>	53620	:	1.001			:			
6.8	18.3	mister bl. phyll.	†				m		621		1.001						•
8.3	.19.8	H phylle	4				÷+		622		L.001			-			· .
9.8	21.3		÷	Ť			5,5		623		L∞1			•			•
1.3	229	N. T.	1	4					624		L.001						
2.9	24.4	N	t.	+.	4. 1.1.2.				625		L.œI		;				
4.4	25.9	N II	+	- †			-	-L	626		L.201						-1
5.9	274	11	+						-627		E-001						

					RE	VERSE	CILC	4 C 471	وم عدار	LE Ve	. e : <u>R</u> s	<u>-88-1</u> 0	05		Pa ex	214	4		
	L.4	F: Land 1	ELEY.		– b R	10:-5 0(- 04	5* T*1	TAC C6		៹ <u>ី</u> រ÷		w: Jun	e 17	د	reb an	ji _ : June 17	· · · · · · · · · · · · · · · · · · · 		
		LITHOLOGY	5	VL (#1	9 EL -	KG: OT	6.7.4	4 =E			F	146 A	55 4 YS		547102 547102	werenas			
ғком (~)	то (~)	RUCK TYPE	Py	P.	<u> </u>	7+ 744 SULFHIDES	٩٣٤	-	SAMPLE	THTER TAL	4 55 A Y	45547	A 55 AY	A		445. 68436	095E4v4 7141	~5	
			H A	4 A	H A	H A	4 A	4 4		(~)	1	2	3	64.80	_	(re/t, 4-)			
27.4	29.0	phyll/sillstone	<u>+</u> .	#-			<u>_</u> †		53628		L.001								
<u>29.0</u>	30.5	$\mathbf{w}_{i} = \mathbf{u}_{i} + \mathbf{u}_{i}$	ť	-			8,10	-	629		L.001								
30.6	32.0	W at the second	+				'n		53630		.003								
32.0	33.5	$\mathbf{k} = \mathcal{H}_{\mathrm{subs}}$	+					-	631		1.001								
33,5	35,0	More phyllitic K	m		the second		i †	· 	6 32		.001					×			-
35.0	36.6	black Phyllite	m		la de la		t	-	633		.003								
36.6	38.1		m.	_	-		-	-	634		.001			, .					P4.
38.1	39.6		m				4		635	_	.001								
39.6	41.1	hl phyll y m, gen schist	÷.†	4			÷.		- 636		L.001								
41.1	42.7	bl. Phyllo	÷t				+		. 637		L.001								
42.7	44.2		+				+	lg amt at Ca- carb	638	- e - ¹	L.œI	* .							
44.2	45.7	N. A.	÷				+	W_N	- 639		100, J		Ŕ				97.		
45.7	41,2	X A A	4					-	53640		L.001								
47.7	48,8	No. and the second s	m	-			2	-	641	e ,	L.001						· · · · · · · · · · · · · · · · · · ·	-	•
48.8	50.3	1	τ					- -	642	•	L.001						<u> </u>		
50.3	51.8	N	+	J.	-			M. Ca-Carl	643		L.001								

		LITHOLO GY		INC CHI	\$€l	-	620	4 0E		-	Ŧ	IRE 4:	55 4YS • 44>		1 4 4 1 1 4 4 1 1 4 4 1 1 1 4 1 1 1 4 1 1 4 1 1 1 1	WEIGNOJ	
юм 5)	т° (⊷)	ROCK TYPE	Py	Po		70 745 SHLPHIBEI	٩٣٤		SAMYLE #	THTER VAL	455AY	45547 Z	A 55 47	4 V 6 . 68+20		448. 68856 (/b= 0_)	035E4v471++5
-1 0	<u> </u>	· · · · · · · · · · · · · · · · · · ·	<u> </u>	<u>H A</u>	₩ *	<u> </u>	4 4	<u>+</u> 4	F2 1-111							(*****	
1.0	<u>53.5</u> ສາເປັ	bl. phyll.	<u>t</u>			<u> </u>		╁	53044						· .	·	
э. э Ца	54.1		+-		<u> </u>	ļ	-	-	645		1 001						
т. и	57.9								646				, ,				
7,9	59.4	K 11				1 1 1 1			641		1.002						
<u>а и</u>	61.0								040 [7/_/10		1.001		.	<u></u>			
1.0	62.5	htet Ca-carb	+					ce corb	650		.007				I		· · · ·
7.5	64.0						7 10	corb Ca-	65		LOOI						
1.0	65.5	N. A.	4				-) - 	C010	652		L.001						
- 5	67.1	N	+				20	-	- 653	····-	1.001	7.7					
7.1	68.6		} −						* 654		Lool						u Trija
5.6	70.1	No. 152412 77 1/4 2					Ť		655	·	Looi						• ·
5.1	71.6	N. LAND		1		- 17 ²² - 1.4	÷+:		656	• .	1.001		-				
.6	73.2	No starte and the start	+				t		657		L.001						
3,2	74.7	× //					_	· +	658		L.001						·····
1.7	76:2		· +- ·						659		L.001				·····		· · · ·

~

.

-			1.0	1		11.1.T	1 A S	· · · ·	•
									 •
		•	-			- /			-

REVERSE CIRCULATION DRILL NOLE: RS-88-105 PASE 4 14 DIP: 355 TOTAL LEVERA: 2.75' STIRTED ON: JUNE 17 CONRECTED ON: JUNE 17 BRC-045' 83.8' LAT: LONG

		LITHOL			SVC PHI	961 -		642	6 u E			F	186 A (+3/+=	55 4 YS 7 4 4 J		CTA+ L SATION (R/5)	WEIGUAD		
F40M (~)	τo (~)	and the		۴y	Pol		TO TAL SULPHIBES	972		SAMPLE	TNTER VAL	A SSAY	45547	ASS49	AVE.		GRADE	OBSEAUR 71	
				H_A	H A	H A	H A	H A	4 4		(~)	1	2	3	44+30		(a. 15, 4m)		
76.2	77.7	bl. phyll	;+e	ť	<u> </u>			_		53660		L∞I							
، 77،7	79.2	ж		et.	-			-	-	661		L.001				 			
79.2	80.7	*	11	+	-			-	-	662		L.001							
80.7	82.3	N .	11	- 1	-			-	_	663		L.001							
82.3	83.8	N.	II de conserve	+		. T		-		53664		L,001						·-	17
		E.S	Д					en la Norde al											1
	· .																	·:	17
•	,																		
AQ.									7-584 N										-
				N 20 ANT AN Ann an Anna Anna Anna Anna Anna Anna An															
							1 - 7	A.							:				
																		14 1. 40	
							11.2.5 1- 2.54											· · ·	
		an Shi = Carra a Talar ta satuta																· · · · · · · · · · · · · · · · · · ·	
						·			1										
	·	ರ್ಷ-೧೯೭೯		· · · · · · ·			-	- <u></u>											

• 2<u>1</u> - 2 . .

APPENDIX II

.

ANALYTICAL PROCEDURES AND RESULTS

.

B.C. CERTIFIED ABBAYERS

2

912 - 1 LAVAL CRESCENT — KAMLOOPS, B.C. V2C 8P5 PHONE: (604) 372-2784 — FAX 372-1112

September 7, 1988

1257 Geological Ltd. 1251 - 409 Granville St. Vencouver, B.C. V6C 1T2

Attention: Lorne Rewan

Dear Lorne;

Following is the flowsheet requested by Gery Hawthorns of Westcoast Minerals. The only changes from this procedure were that we split two samples from the reject, so that one could be used for the subsequent cyanidation assay, and we were requested by Brian Richards to use 1 assay ton rather than one half as recommended by Gery Hawthorns. Other than these changes, we followed the instructions to the letter.

Yours Sincerely.

1

1

ŀ

et.

Derek A. Blundell President

6046850147 ; # 3 9- 7-88; 2:16 PM; 1 604 3721112 XEROX TELECOPIER 295 ; SEP 07 '88 14:13 KRAL 1 604 3721112 P.3

FRASERGOLD - PROPOSED INITIAL Somple Puer Assauch PROCEDURE. DRILL SITE ~ 40 Kg 30 Kg RIFFLE SPLIT TO ASSAY 10 Kg RETAIN DRY JAN CRUSH (TM JAN CRUSHER) 1 C 2

HAWTHER 12/38

912 - 1 LAVAL CRESCENT — KAMLOOPS, B.C. V2C 5P5 PHONE: (604) 372-2784 — TELEX: 048-8320 CERTIFICATE OF ASSAY

B.C. LICENSCO ASSAYERS GEOCHEMICAL ANALYSTS METALLURGISTS

TO _____1257 Geological Ltd.

Certificate No. <u>K 8946</u>

Date _____

Stal No	Marked	Au	 					
		ozs/ton	 					
201.	53558	L.001						
202.	53559	.005					Í –	
203.	53560 RS-104	L.001						
204.	53561	L.001			ļ			
205.	53562	L.001						
206.	53563	L.001	1					1
207.	53564	L.001						ł
208.	53565	L.001						[
209.	53566	L.001				ĺ		1
210.	53567	L.001						
211.	53568	L.001	i					
212.	53569	L.001		1				
213.	53570	L.001		1				
214.	53571	L.001				Ì		
215.	53572	L.001					1	
216.	53573	L.001						
217.	53574	L.001						ļ
218.	53575	L.001						
219.	53576	L.001						
220.	53577 🖞	L.001						

NOTE: Bejects retained three weeks Pulps retained three months unless otherwise arranged

912 - 1 LAVAL CRESCENT -- KAMLOOPS, B.C. V2C 5P5 PHONE: (604) 372-2784 -- TELEX: 048-8320 CERTIFICATE OF ASSAY

B.C. LICENS_J ASSAYERS GEOCHEMICAL ANALYSTS METALLURGISTS

TO _____1257 Geological Ltd.

Certificate No. ___K_8946

Date _____

· · · · · ·

Kral No	Marked	Au	 	 		
		ozs/ton				
	RS - 104					
221.	53578	.004	1			
222.	53579	.008				
223.	53580	L.001				
224.	53581	.002				
225.	53582	L.001				
226.	53583	L.001				
227.	53584	L.001				
228.	53585	L.001				
229.	53586	L.001				
230.	53587	.001				
231.	53588	L.001		1		
232.	53589	L.001				
233.	53590	L.001	i i			
234.	53591	.001				
235.	53592	.046				
236.	53593	.001		1		
237.	53594 (L.001				
238.	53595	L.001				
239.	53596	L.001		ļ		
240.	53597 ¥	L.001	•	1		
				ļ		

NOTE: Rejects retained three weeks. Pulps retained three months unloss otherwise arranged

912 - 1 LAVAL CRESCENT --- KAMLOOPS, B.C. V2C 5P5 PHONE: (604) 372-2784 -- TELEX: 048-8320 CERTIFICATE OF ASSAY B.C. LICENSLD ASSAYERS GEOCHEMICAL ANALYSTS METALLURGISTS

TO <u>1257 Geological Ltd.</u>

Certificate No. ____K_8946_____

Date _____

il No	Marked	Au							
		ozs/ton					1	-	
1	53598 RS-104	1 001					1		
2	53599	002							
3.	53600	.002		-					
4.	53601	1.001		1	i	i			}
5.	53602	1.001		1					
6.	53603	L.001						1	
7.	53604	L.001							
8.	53605	L.001					ļ		
9.	53606	L.001		1			1	1	
0.	53607	L.001							
1.	53608	L.001							
2.	53609	L.001							
3.	53610	L.001			i		1		
¥.	53611	L.001							
5.	53612V	L.001	-						
ŝ.	53613 RS-105	L.001	-						
7.	53614 J	L.001							
3.	53615	L.001							
).	53616	L.001				:			
D.	53617 ¥	L.001					1		

NOTE

Bojects relained three weeks. Pulps relained three months

unless otherwise arranged

912 - 1 LAVAL CRESCENT --- KAMLOOPS, B.C. V2C 5P5 PHONE: (604) 372-2784 --- TELEX: 048-8320 CERTIFICATE OF ASSAY

B.C. LICENS_D ASSAYERS GEOCHEMICAL ANALYSTS METALLURGISTS

TO _______ 1257 Geological Ltd.

Certificate No. <u>K 8946</u>

Date _____

iaithe -	Marked	Au				<u> </u>			
		ozs/ton							Į
	RS-105							· · · ·	1
261.	53618	L.001						ľ	
262.	53619	L.001							
263.	53620	L.001							
264.	53621	L.001				1			
265.	53622	L.001				1		į	
266.	53623 (L.001						Ì	
267.	53624	L.001							
268.	53625	L.001							
269	53626	1.001	ľ		i				
270	53627	1 001							}
	55627								
271	53628	1 001						1	
272	53620	1 001							
72.	52620	L.001			ļ		ł	1	
73.	63631	1 003							
1/4+	53031							-	
2/3.	53032	.001				i			
2/0.	53533	.003						1	
(//.	53534	.001							
.78.	53635	.001				İ		}	
279.	53636	L.001		i			1]
280.	53637 👈	L.001		•		1			

NO1E Rejects retained three weeks Pulps retained three months unless otherwise arranged

.

V	
Member	
Canadian Testing	
Association	

912 - 1 LAVAL CRESCENT --- KAMLOOPS, B.C. V2C 5P5 PHONE: (604) 372-2784 --- TELEX: 048-8320 CERTIFICATE OF ASSAY

B.C. LICENS... J ASSAYERS GEOCHEMICAL ANALYSTS METALLURGISTS

TO _____ 1257 Geological Ltd.

Certificate No. <u>K 8946</u>

Date ______

Jurrun certify that the following are the results of assays made by us upon the herein described _________ samples Kral No Marked Au ozs/ton RS .105 281. 53638 L.001 282. 53639 L.001 283. 53640 L.001 284. L.001 53641 285. 53642 L.001 286. 53643 L.001 287. 53644 L.001 288. 53645 L.001 289. 53646 £.001 290. 53647 .002 291. 53648 L.001 292. 53649 L.001 293. 53650 .002 294. L.001 53651 295. 53652 L.001 296. 53653 L.001 297. L.001 53654 298. L.001 53655 299. 53656 L.001 300. 53657 ¥ L.001

NOTE

Rejects retained three weeks Pulps retained three months

unless otherwise arranged.

912 - 1 LAVAL CRESCENT — KAMLOOPS, B.C. V2C 5P5 PHONE: (604) 372-2784 — TELEX: 048-8320 CERTIFICATE OF ASSAY

B.C. LICEN LJ ASSAYERS GEOCHEMICAL ANALYSTS METALLURGISTS

TO ______1257 Geological Ltd.

Certificate No. K 8946

Date _____

Kral No	Marked	Au	 			
301. 302. 303. 304. 305. 306. 307. 308.	Marked R S - 105 53658 53659 53660 53661 53662 53663 53664 Tag 53511C Bag 53571 L means "less than'	Au ozs/ton L.001 L.001 L.001 L.001 L.001 L.001 L.001 .011				

			· · · · · · · · · · · · · · · · · · ·
SW			
1450 m			
1425 m	0 00		
		00 00 000	
		PHYLLITE 00 00	
		LIGHT GREEN SCHIST	0 00 00
		<i>H</i>	
1400 m			
		H	N 0.004
			0.008
			BLACK PHYLLITE
	¥		0.001
			₩
			0.001
1375 m	. <u> </u>		
		,	X
1350 m		······ · ·	

1

:

.

0.002 0.003 \mathcal{N} - **RS88-104** 84.7 m

.

ł

7

0

.

•

.

•

.

NE

.

.

LEGE

_____ BP LG P CGS

QCSS

R87-34

RS88-93

7

•

GEO ASSI 10

S LOGGED DRAWN CHECKE

.

ł

.

	(450 m
	1425 m
EGEND.	
P - BLACK PHYLLITE GP - LIGHT GREY PHYLLITE	
GS - CALCAREOUS GREY SILTS1 CSS - QUARTZ -CARBONATE - SEF	TONE RICITIC SCHIST.
'-34 – EUREKA REVERSE CIRCUL BY YEAR AND №	ATION DRILL HOLE ,
- 93 – SIRIUS REVERSE CIRCUL BY YEAR AND №.	ATION DRILL HOLE
$\frac{0.072}{2.5} = \frac{\text{oz / ton GOL}}{\text{CORE I ENCL}}$	D
-PERCENT Otz (2 mm	= 10 %)
<u>H</u>	1400 m
·	
	1375 m
Bet 2 f	2
EOLOGICAL BRA	NСH
	ORT
	1350 m
5 0	10 20 m
1257 GEOLOG	CORPORATION
	PROJECT
DRILL HO	LE SECTION
ogged by L.ROWAN, M.M. S RAWN BY E.B.CATAPIA D	ATE AUGUST 1988
HECKED BY	PLATE Nº.

,

•

1

.

•
