LOG NO: 0928	RD.
ACTION:	annan an a
EH E MC:	

REPORT ON

FILE AGE

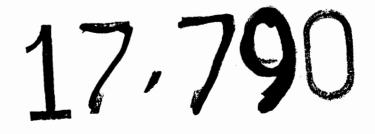
GEOCHEMICAL SOIL SAMPLING, TRENCHING AND DIAMOND DRILLING

MINTO CLAIMS GOLDBRIDGE AREA, LILLOOET MINING DIVISION BRITISH COLUMBIA

Latitude: 50°53'N

Longitude: 122°45'W

N.T.S.: 92-J-15


for

AVINO MINES AND RESOURCES LTD. Suite 100 - 455 Granville Street Vancouver, B.C. V6C 1T1

FILMEO

Vancouver, B.C. 30 August 1988

GEOLO GENGA Bang Ban P.Eng ASSESS Gonaul Ning GRO BOBBLORT

SAMPSON ENGINEERING INC.

2696 West 11th Avenue Vancouver, B.C. V6K 216

TABLE OF CONTENTS

	Page
SUMMARY AND CONCLUSIONS	i
RECOMMENDATIONS AND COST ESTIMATES	ii
INTRODUCTION	1
LOCATION, ACCESS, TOPOGRAPHY	2
CLAIM DETAILS	3
HISTORY OF AREA	3
REGIONAL GEOLOGY	5
PROPERTY GEOLOGY	7
GEOCHEMICAL SOIL SAMPLING RESULTS	8
TRENCHING RESULTS	9
DIAMOND DRILLING RESULTS	10
REFERENCES	11
CERTIFICATES	12
STATEMENT OF EXPENDITURES FOR ASSESSMENT WORK CREDIT	13
FIGURES	Follows Page
1. LOCATION MAP	3
2. CLAIM MAP	3
3. GEOLOGY MAP	In Pocket
4. Au, As GEOCHEMISTRY	In Pocket
5. Ag, Sb GEOCHEMISTRY	In Pocket
6. MINTO NORTH ZONE	In Pocket
7,8. TRENCH PLANS (MINTO NORTH)	In Pocket
9,10,11. TRENCH PLANS (JUMPER ZONE)	In Pocket
12. DRILL HOLE CROSS SECTIONS (MINTO NORTH ZONE)	In Pocket

APPENDICES

APPENDIX A: Geochemical Soil Sample Analyses Jumper Zone - Trenching Geochemical Analyses & Assays APPENDIX B: APPENDIX C: Drilling Results - Logs, Geochemical Analyses & Assays

×.

57

.

2696 West 11th Avenue Vancouver, B.C. V6K 2L6

SUMMARY AND CONCLUSIONS

The geochemical soil sampling and follow-up trenching programme done by Avino Mines and Resources on the Minto property in 1987 located 5 mineralized zones – the Winter, Rainbow, View, Ponderosa and Minto North – two of which, the Winter and Minto North, contain ore grade gold values.

During early 1988, Avino Mines and Resources did further geochemical soil sampling on the western half of the Minto property which located significant antimony and arsenic anomalies with associated gold and silver values (in soils). A follow-up trenching programme in this area (the Jumper) discovered stibnite and arsenopyrite bearing shear zones with gold and silver values, which were exposed by 9 trenches and seven road cuts. A series of 1 m. chip samples taken across the mineralized shears gave assay values as high as 0.349 oz/ton gold.

In late June - early July, Avino drilled 9 NQ diamond holes totalling 800 m. of which holes 88-1 to 88-7 explored the Minto North and 88-8 and 88-9 explored the Winter zones.

Principal gold values intersected by the drill holes on the Minto North zone were as follows:

Hole No.	Depth (metres)	Gold (oz/ton)
88-2 88-4	72.55-70.90 (0.35m) 27.73-27.98 (0.20m) 27.93-28.93 (1.0m) 28.93-29.93 (1.0m) 29.93-30.93 (1.0m) 3.2m (10.5ft)	0.548 1.073 0.338 0.174 0.128 0.266
	36.93-37.93 (1.0m)	0.111
88-5	69.49-70.19 (0.70m)	0.361
88-6	69.7-70.7 (1.0m) 82.90-83.40 (0.50m)	0.100 0.193

Holes 88-8 and 88-9 were drilled to investigate gold values which had been located in trenches TR3 and TR4 on the Winter zone. This is a zone approximately 400 metres east of and sub-parallel with the main Minto ore body. Both holes intersected mineralization, in particular hole 88-8 intersected 35.56-35.91 (0.35m), 0.258 oz/ton Au, 38.1 ppm Ag, 5211 ppm Pb, 13990 ppm Zn. Hole 88-9 also intersected a mineralized zone, but gold values were lower at 0.034 and 0.046 oz/ton.

It seems probable that the Minto North zone represents the northern extension of the original Minto ore body. The Winter zone carries ore grade gold values but has so far shown only narrow widths (generally less than one metre), **B**oth it and the Jumper Zone are targets for exploratory drilling, but neither of these zones has so far shown the widths and grades encountered at the Minto North zone.

RECOMMENDATIONS AND COST ESTIMATES

Further exploration of the Winter and Jumper zones should consist of short exploratory drill holes. Five, 200 ft., holes would indicate widths and continuity of mineralization at Jumper. Holes would need to be longer at Winter zone due to the steep topography - 5, 300 ft., holes. The Minto North shows greater widths and higher grades than the other zones and should therefore be further explored by more extensive trenching, and drilling (both shallow holes along strike and deeper holes searching for downdip extensions of recent intersections).

Cost estimates would be as follows:

1. Trenching

Backhoe Rental: 15 days at \$1,000/day	\$15,000
Analyses: 500 at \$12 each	6,000
Supervision, report preparation, accommodation	9,000

\$30,000

2. Diamond Drilling:

7,500 ft. at \$22/ft. NQ core \$	165,000
Analyses and assays 750 at \$20 ea.	15,000
Supervision, Report Preparation, Accommodation, etc_	40,000

\$220,000

.

TOTAL: <u>\$250,000</u>

SAMPSON ENGINEERING INC.

2696 West 11th Avenue Vancouver, B.C. V6K 2L6

INTRODUCTION

During 1987, Avino Mines and Resources did programmes of geochemical soil sampling, geological mapping and trenching on the Minto property near B.C. (Report by Christoffersen, January 1988). Thus Goldbridge, exploration both extended previously known mineral zones and discovered Designated the Ponderosa, Winter, Rainbow, View and Minto new ones. North zones, they consist of shear zones up to 2-3 m. wide containing massive stibnite, arsenopyrite, galena, sphalerite, quartz veining, chalcopyrite and pyrite. The 1987 trenching programmes showed that all of the zones carry silver values and two of them - Minto North and Winter - contained significant gold values (0.149 oz/ton Au over 4.3 m. in Trench MT10 on Minto North and 0.122 oz/ton Au over 1.5 m. in Trench TR4 and 0.101 oz/ton Au over 1.25 m. in Trench TR3 on the Winter Zone).

The 5 mineral zones are spatially separated and dist inct from the original Minto ore body that was mined from 1934-1937. The Minto North zone shows similar mineralogy to the Minto body, however, and probably represents the north extension of the ore body.

This report details results of further exploration principally trenching and drilling done in 1988 to follow up the encouraging results of 1987.

LOCATION, ACCESS, TOPOGRAPHY

The Minto property is situated in the Bralorne gold camp, about 160 kilometers (100 miles) by air north of Vancouver (Figure 1). The claims are centered on lat. 50°53'N, long. 122°45'W, occupying the lake bed and north flank of Carpenter Lake (Figure 2). The closest town is Gold Bridge, about 10 kilometers west of both claim groups. Access from Gold Bridge to the Minto is made via all-weather gravel road, skirting the north shore of Carpenter Lake. A network of bush-roads gives access to all parts of the property.

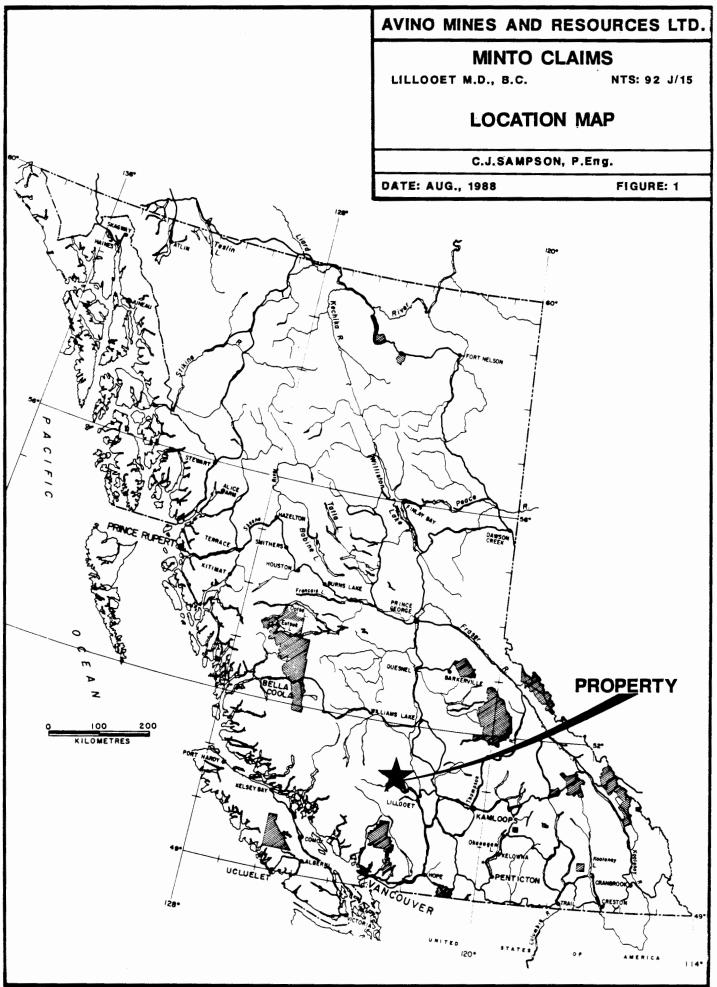
Gold Bridge itself can be reached from Vancouver via Hope and Lillooet, a distance of 445 km, or via Pemberton using the four-wheel-drive Hurley Pass route, a distance of 225 km.

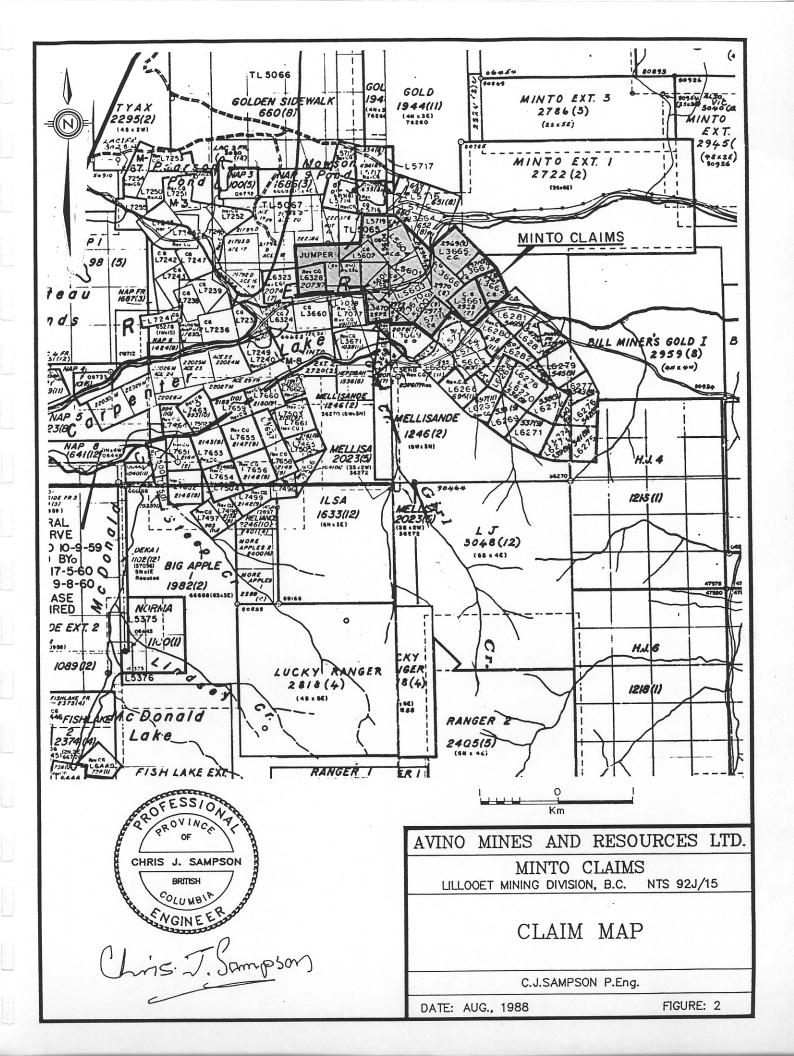
The terrain is rugged, typical of the eastern margin of the Coast Range mountains. The claim group ranges in elevation from 650 meters (2130 ft.) on Carpenter Lake to a maximum of 1020 m. (3350 ft.).

Generally, the property is sparsely forested especially on south facing slopes.

The climate of the Bridge River District is transitional between the humid coastal belt and more arid interior plateau. Hence annual precipitation is modest, a significant proportion of which falls as snow in the winter. Summers tend to be agreeably warm to hot depending on altitude and winter is moderately cold.

CLAIM DETAILS


The property is situated in the Lillooet Mining Division. Claims are shown in Figure 2. The Minto claims comprise 19 units - eight crown grants and ten reverted crown grants and one located mineral claim as listed in Table 1.


Name	Туре	Record	Lot	Expiry Date
Omega	CG		5600	31 Dec. 88
Omega 1	CG		5601	31 Dec. 88
Omega 2	CG		5602	31 Dec. 88
Omega 3	CG		5603	31 Dec. 88
Omega 4	CG		5604	31 Dec. 88
Alpha Fr.	CG		5719	31 Dec. 88
Jack Fr.	CG		7078	31 Dec. 88
Golden Girl	CG		3660	31 Dec. 88
Hillside Ext. 1	RCG	2933	3661	26 Jul. 96
Hillside Ext. 2	RCG	2967	3662	27 Aug. 96
Minto Fr.	RCG	2968	3664	27 Aug. 96
Prince	RCG	2970	3665	27 Aug. 96
Frank Fr.	RCG	2970	3666	27 Aug. 96
Hagmo	RCG	2971	3667	27 Aug. 96
Ex Fr.	RCG	2972	3670	27 Aug. 96
Ome Fr.	RCG	2973	5718	27 Aug. 96
Golden Queen	RCG	3542	6323	15 Jul. 96
Helm Fr.	RCG	3543	6328	15 Jul. 96
Jumper	LMC	3509		29 Jul. 96

CG = Crown Grant RCG = Reverted Crown Grant LMC = Located Mineral Claim

HISTORY OF AREA

The Minto claims are located in the famous Bridge River - Bralorne gold camp (Figure 3). Gold production since the latter part of the 19th century from the district amounts to over four million ounces, largely from the Bralorne - Pioneer mines, but also from the Whynot, Arizona, Wayside, Minto, Congress and numerous placer operations.

Prior to 1930, the Minto claims were held as a prospect for many years. Some surface work was carried out on a weathered shear zone up to eight feet wide exposed largely on the Omega 1 claim on the north shore of Carpenter Lake. Cominco optioned the property in 1930 and drove an adit 350 feet (107 m.) north into the hillside at the River (Lake) level (also referred to as the 400 foot level).

Following the termination of Cominco's option in 1933, Minto Gold Mines Ltd. opened a small mining operation, eventually processing up to 125 tpd from five levels (BCDM-1936). Between 1934 and 1940, when work ceased, 88,900 tons of ore were mined to produce 17,558 ounces Au (0.20 oz/t recovered), 50,584 ounces Ag (0.57 oz/t recovered), 21,327 lbs of copper and 124,421 lbs of lead. The concetnrate was shipped to Tacoma for smelting. The workings extended a maximum of 400 metres north (1300 feet) along the mineralized structure on 200 level, of which about 160 metres (530 feet) constituted ore grade. The workings extended to the 700 level.

Pioneer Gold Mines Ltd. optioned the group briefly in 1941. In 1944 and 1945, the BCDM reported that 14 diamond drill holes (3,954 feet) had been completed on surface and underground searching for strike and dip extensions of the Minto ore body. Results were reported to be not encouraging. Ace Mining Co. Ltd. acquired the ground in 1959 but performed little work. In 1975, Empire Metals Ltd. optioned the claims and are thought to have carried out geochemical and geophysical surveys, although results are not available.

Avino Mines and Resources Ltd., the current owner, purchased a 100% interest in the property early in 1985. During 1985, geological, geochemical, and geophysical (VLF-EM) surveys were conducted and trenches were excavated in anomalous areas. In-fill soil geochemistry and further trenching were undertaken in 1987 (Christoffersen, January 1988).

REGIONAL GEOLOGY

The area was mapped in part by the GSC (Cairnes, 1925, 1937, 1943) and more comprehensively by Roddick and Hutchinson in 1970 (GSC Paper 73-17). Currently, Bridge River district is being mapped on a 1:20,000 scale by N. Church of the BCDM and significant revisions to earlier maps are expected.

GSC - Roddick and Hutchinson

Roddick and Hutchinson indicated that the entire area surrounding the Minto claims is underlain by Middle Triassic and possibly older rocks of the Bridge River group (Unit 1) comprising chert, argillite, phyllite, greenstone and minor limestone. Metamorphic equivalents of these rocks (Unit 1a) form an aureole around the large Bendor granodiorite pluton (Unit P4) of Cretaceous age, some 10 kilometres south of the properties. The assemblage is interpreted as a sequence of oceanic sediments and ocean-floor basaltic lavas, often pillowed. The base of the group is no where present in the map sheet and, hence, its total thickness is not known.

The structure of the district is thought to be a broad anticinorum plunging north along an axis following Marshall Ridge and Tyaughton lake. In detail, however, the structure is very complex due to polyphase deformation within the Bridge River group. Younger strata appear to be less strongly deformed.

In addition to the Bendor intrustions, there are other important plutonic rocks in the area. The Bralorne intrusions (Unit P2a) outcropping between Gold Bridge and Bralorne, form complex bodies of diorite, soda granite and greenstone, within which occur the prolific Bralorne-Pioneer gold mines and several other significant vein deposits. The age of the Bralorne intrusions is under debate but is thought by some workers to be Middle to Upper Triassic, possibly coeval with Mafic volcanic rocks in the Bridge River group.

Swarms of porphyry dikes are common in the district, generally trending northerly to north-westerly. They may be related to Bendor-age plutonism and commonly occupy shear zones that have been subsequently mineralized with gold, as on the Minto property.

BCDM - Church (BCDM Paper 87-1)

Church considered the Bridge River group to be a polyglot unit incorporating formations of distinctly different ages. Hence, he has proposed to re-introduce the Fergusson Group terminology to include only ribbon cherts, which are considered to be pre-Permian in age, probably equivalent to Cache Creek rocks further east. Greenstones within the chert are interpreted on textural evidence to be sills and feeder dykes to overlying Pioneer pillow lavas, the lowest formation of the Middle-Upper Triassic Cadwallader group. Pioneer rocks are overlain by argillaceous strata of the Noel and Hurley Formations. Church also differs from earlier workers in ascribing a Paleozoic age to the Bralorne Intrusions on the basis of Zircon dates.

Fergusson cherts are thought to attain a thickness of at least 1000 metres (3,280 ft). The beds are typically thin ribbons of recrystallized quartz locally intricately folded and veined by quartz. In places, cataclasis has overprinted beds to form intensively milled breccias resembling quartz-pebble conglomerate. One discontinuous marble horizon has been noted on the map sheet.

The Cadwallader Group reaches a thickness of 2300 metres (7,550 ft). The Pioneer formation is at least 300 metres (1000 ft) thick. It comprises massive green and purplish-red amygdaloidal pillow basalts with minor aquagene tuff and limestone horizons. Locally, fine-grained gabbroic phases are evident. The Noel Formation comprises thinly bedded black argillite and siltstone up to 800 metres thick with some bands of dark limestone. The Hurley formation reaches 1200 metres in thickness and consists of variably coloured argillites with some silty and sandy layers and two limestone marker beds.

Structurally, the map sheet is dominated by a set of orthogonal structures. The north-north-east structures are interpreted as tension faults separating horst and graben blocks. The north-west structures are thought to be a principal shear direction in a regional stress regime.

The BCDM geological map sheet just incorporates the Minto property. It is shown to be underlain by both Fergusson and Cadwallader group rocks, whose inter-relationship has not been determined in detail in the vicinity of the claims.

PROPERTY GEOLOGY

The Minto property is underlain largely by cherty sediments of the Fergusson Group (using Church's nomenclature) and basaltic rocks (greenstones) of the Pioneer member of the Cadwallader Group. Basalts dominate the higher terrain in the west and north-west sectors of the property, with cherts mainly in the east and southeast. One large mass of basalt also occupies the north-east corner of the claims. Narrow bands of greenstone in cherts exposed along the Gold Bridge - Lillooet road may represent feeder dikes to the large basalt masses occupying the higher parts of the property. Feldspar porphyry dikes are also evident along the road section and occupy some mineralized shear zones on the road section and occupy some mineralized shear zones on the property (i.e. the main Minto mine in the southern part of the claims). Serpentine has also been reported locally.

Strata strike northerly and, in general, exhibit steep dips although it is known that Fergusson cherts are commonly complexly contorted and, hence, difficult to interpret structurally. Therefore, it is possible that the stratigraphic package as a whole on the property may be mroe gently inclined than field evidence suggests. Ore zones comprise quartz-carbonate veins with mariposite in silicified and carbonatized shear zones carrying disseminations and replacements of pyrite, arsenopyrite, stibnite, chalcopyrite, galena and sphalerite. Rare tetrahedrite, jamesonite, bismuth, and native gold have been reported. At the Minto mine, gold was associated with the above ore minerals in a N-S vein/shear invaded by a feldspar porphyry dike with a chert and serpentinite hanging wall and basalt footwall. Gold assays up to 1.66 oz/t over 152 feet (46.3 m) were reported on the 400-foot level of the mine.

GEOCHEMICAL SOIL SAMPLING RESULTS

During July and August 1987, 249 soil samples were collected on the Minto claims at 25-meter intervals and 100-meter line spacing. The purpose of the survey was to fill in a geochemical grid established in 1985, during which time four new mineral zones, the Winter, Rainbow, Ponderosa and View, had been identified.

The Ponderosa, Winter and Rainbow Zones were exposed by trenching in 1985 but no apparent source of the View Zone was found.

During May 1988 and grid which had been constructed on the property during 1987 was extended to the west to cover the Jumper, Golden Queen and Helm Fraction claims. 272 soil samples were collected along the grid lines at 25 metre spacing. These were analyzed for gold, silver, arsenic, antimony, copper, lead and zinc by Min-En Laboratories in North Vancouver, B.C. Results were combined with those from the 1987 geochemical soil sampling programme, and histograms plotted for each of the elements assuming a log normal distribution, which is the norm for the Bridge River area.

Results of Geochemical Analyses in 1987 and 1988 are shown in Appendix A, together with descriptions of analytical methods used by Min-En Laboratories.

The soil anomalies for gold, silver, arsenic and antimony from these surveys are plotted on Figures 4 and 5 (in pocket).

TRENCHING RESULTS

8.

In October 1987 Avino Mines & Resources used a Caterpillar 225 backhoe to excavate 23 trenches on the Ponderosa, Winter, Rainbow, View and Minto North zones. Analytical and assay results from samples obtained from these trenches were listed in "Report on the Geology and Exploration Potential of the Minto & Olympic Claim Blocks" by J.E. Christoffersen, 15 January 1988.

In early 1988 one further trench (TMT-17) was dug in the Minto North In June 1988 the Caterpillar 225 backhoe operated by Randy area. Polischuk was used to dig a further 9 trenches (designated T1 through T9) on what is referred to as the Jumper zone. This is an area of strong antimony, arsenic, gold and silver geochemical soil values where stibnite in float had been found by prospecting programmes in the past. In addition, a series of shallow pits and trenches probably excavated by blasting occur in this area and also some old adits on massive stibnite veins. Seven road cuts designated RC-1 and RC-7 were also excavated during the course of the programme along the logging roads in this area. Location of the trenches and road cuts is shown on Figure 3 (Geology Map). The geology of the trenches and sample locations are shown on the 3 trench plans (Figures 9-11). The trenching programme successfully discovered a series of stibnite and arsenopyrite bearing shears which carry gold values. Gold assays range as high as 0.349 oz/ton. Some silver is also present. Values for this metal range as high as 28.3 ppm Ag. The results from geochemical analyses and assays are given in Appendix B.

The trenches on the Minto North zone which had mostly been excavated during the 1987 programme were re-mapped in detail in preparation for the diamond drilling programme, which was mostly concentrated on this area. Detailed plans of the geology of these trenches are shown in Figures 7 and

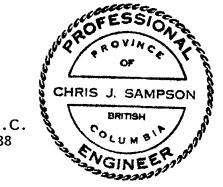
DIAMOND DRILLING RESULTS

During the period 15 June - 08 July 1988, Iron Mountain Drilling under contract to Avino Mines & Resources drilled 9 holes totalling approximately 800 m. (2600 ft). Five of the holes, M88-1 through M88-7, were drilled to explore the Minto North zone. Location of these holes and their relation to the various trenches and outcrops is shown in Figure 6. Holes M88-8 and M88-9 were drilled to explore the Winter zone on which trench TR3 had encountered 0.101 oz/ton Au over 125 cm and 1.72 oz/t Ag over 175 cm, and trench TR-4 had exposed 0.122 oz/t Au over 150 cm and 0.343 oz/t Ag over 160 cm.

The drill core was logged and split at site and is stored in the Avino Mine storage facility at Gold Bridge, B.C. The drill logs are given in Appendix C together with results of rock geochemical analyses and assays.

Principal gold values intersected by the drill holes on the Minto North zone were as follows:

<u>Hole No</u> .	Depth (metres)	<u>Gold (oz/ton)</u>
88-2 88-4	72.55-70.90 (0.35m) 27.73-27.93 (0.20m) 27.93-28.93 (1.0m) 28.93-29.93 (1.0m) 29.93-30.93 (1.0m)	0.548 1.073 0.338 0.174 0.128
	3.2m (10.5ft)	0.266
	36.93-37.93 (1.0m)	0.111
88-5	69.49-70.19 (0.70m)	0.361
88-6	69.7-70.7 (1.0m) 82.90-83.40 (0.50m)	0.100 0.193


Holes 88-8 and 88-9 were drilled to investigate gold values which had been located in trenches TR3 and TR4 on the Winter zone. This is a zone approximately 400 metres east of and sub-parallel with the main Minto ore body. Both holes intersected mineralization, in particular hole 88-8 intersected 35.56-35.91 (0.35m), 0.258 oz/ton Au, 38.1 ppm Ag, 5211 ppm Pb, 13990 ppm Zn. Hole 88-9 also intersected a mineralized zone, but gold values were lower at 0.034 and 0.046 oz/ton.

SAMPSON ENGINEERING INC. 2696 West 11th Avenue Vancouver, B.C. V6K 216

CERTIFICATE

I, Christopher J. Sampson, of 2696 West 11th Avenue, Vancouver, B.C., V6K 2L6, hereby certify that:

- 1. I am a graduate (1966) of the Royal School of Mines, London University, England with a Bachelor of Science degree (Honours) in Economic Geology.
- 2. I have practised my profession of mining exploration for the past 22 years in Canada, Europe, United States and Central America. For the past 12 years I have been based in British Columbia.
- 3. I am a consulting geologist. I am registered member in good standing of the Association of Professional Engineers of British Columbia.
- 4. I have not written any other reports on the Minto claims but have written reports on other properties within 10 kms of those claims.
- 5. The present report is based on knowledge gained from visits to the property, study of published and unpublished reports, and supervision of work programmes.
- 6. I have not received, nor do I expect to receive, any interest, direct or indirect, in the properties and securities of Avino Mines and Resources Ltd. or in those of its associated companies.
- 7. Avino Mines and Resources Ltd. and its affiliates are hereby authorized to use this report in, or in conjunction with, any prospectus or statement of material facts.
- 8. I have no interest in any other property or company holding property within 10 kilometres of the Minto group of claims.

Christopher J. Sampson, P.Eng. Consulting Geologist

Vancouver, B.C. 30 August 1988

SAMPBON ENGINEERING INC. 2696 West 11th Avenue Vancouver, B.C. V6K 2L6

CERTIFICATE

I, Brian D. Game, of #205-1334 West 73rd Avenue, Vancouver, B.C. V6P 3E7, hereby certify that:

- 1. I am a graduate (1985) of the University of British Columbia with a Bachelor of Science degree in Economic Geology.
- 2. I have practised mineral exploration for three years, most of which was based in the province of British Columbia.
- 3. I have written reports in 1985-1987 on work on various properties in the Bridge River area (Patlo, Lick, Norma).
- 4. I was responsible for logging core on the Minto property.
- 5. I have not received, nor do I expect to receive any interest, direct or indirect, in the properties or securities of Avino Mines and Resources or in those of its associated companies.
- 6. I have no interest in any other property or company holding property within ten (10) kilometres of the Congress Extension claims.

Bi- Y-e

Brian D. Game, B.Sc.

STATEMENT OF EXPENDITURES FOR ASSESSMENT WORK CREDIT

.

.

.

• •

	\$
Diamond Drilling: (2600 ft. at \$27.39/ft.)	71.235.93
Trenching: (124 hours at \$90/hr.)	<u>11,134.72</u>
	82,370.65

APPENDIX A

Geochemical Soil Sampling

ANALYSES

SAMPSON ENGINEERING INC. 2696 West 11th Avenue Vancouver, B.C. V6K 2L6

PROL	PANY: AVIND MINU JECT NO: MINTO M ENTION:			705 ""	ST 15TH	ST., NO	.ABS ICP R IRTH VA nco I DR (604)	UVER, B.(C. V7H :	172	ł	FII	E NO:	PAGE 1 OF 1 7-903S/P1+2 ST 5, 1987
	ALUES IN PPN)	AG	AS	BA	C0	CU	NN	100-4J24 HD	NI	PB		<u>* da</u> 7n		AU-PPB
	250N 25W	.8	29	190	15	<u>61</u>	890	2	105	19	5	297		50
19H2	250N 50W	1.0	94	113	15	9 0	471	1	106	13	4	106	1	60
HH2	250N 100W	1.2	94	150	24	100	854	3	149	53	7	298	5	160
	250N 250W	1.0	22	115	19	70	1144	1	76	23	2	145	2	5
	250N 275W	1.9	19	134	21	69	760	1	36	9	1	176	5	10
	250N 350W	1.6	9	126	27	112	10-01	3	60	16	1	192	4	5
	250N 25E	,8	55	118	12	47	390	1	89	14	14	118	1	150
	250N 50E 250N 75E	.7 1.1	20	125 143	9 12	42	530 555	1	64	3	8	169	1	70
	250N 100E	.9	11 25	143	12	41 46	555 520	1	93 110	11 15	11 ç	211 145	1	120 110
	250N 125E	1.3	<u>23</u> 19	254	12	<u>-</u>	733	<u>1</u>	102	4		270	<u>1</u> 	70
	250N 150E	.8	6	154	14	41	714	1	96	4	10	179	5	60
	250N 175E	.8	19	193	10	42	481	2	90	2	4	274	5	55
	250N 200E	1.2	21	142	11	38	511	1	84	7	10	207	3	220
HH2	250N 225E	1.1	26	150	10	41	411	2	87	6	8	174	1	5
	250N 250E	1.2	31	142	11	47	436	1	108	10	11	198	3	30
	250N 275E	1.8	160	340	28	167	1194	2	254	4	13	896	12	50
	250N 300E	.8	239	129	12	79	395	2	278	25	10	333	1	50
	250N 325E	1.0	339	198	31	165	979	2	236	102	24	623	8	40
	250N 350E	1.6	1024	324	12	152	712	1	89	280	93	731	5	280
	300N 250N 300N 275N	.8	16	149	14	45	800	1	66	6	3	140	5	30
	300N 300N	.8 .9	25 9	140 220	16 20	53 76	772 770	1	75 91	16	3	130	1	10
	500N 325W	.8	18	113	14	7a 66	475	1 3	82	17 4	3 2	172 137	5	5 5
	300N 350W	.9	13	154	14	65 65	475	1	102	4	6	157	1	5
	50N 25W	.8		132	13	38	485	2	95	14		213		30
HH3	50N 75W	.8	19	180	14	73	854	3	102	16	1	253	6	10
	350N 100W	.9	42	163	17	115	1583	4	57	4	8	192	1	5
	50N 225W	.6	2	147	8	25	750	i	28	8	i	134	2	40
~~~	50N 250H		10	183	14	46	541	<u>i</u>	61	Ģ	1	149	5	50
	350N 275W 350N 300W	.4 .5	28 9	133 167	11	46	436	1	75	9	14	136	1	5
	SON 325W	.5	24	144	12 13	43 54	608 507	1	96 101	7 15	5	214	1	5
	50N 350W	.5	16	140	12	62	464	2	93	15	5 8	165 135	6 2	、5 40
	50N 25E	.9	15	147	12	45	455	. 1	108	10	3	106	1	5
	SON SOE	.7	17	114	15	51	398	2	146	14		114	<u>i</u>	140
MM3	50N 75E	.8	27	174	16	40	331	1	61	6	6	469	2	80
	50N 100E	1.0	28	190	13	49	569	3	89	13	6	103	4	70
	50N 125E	.7	12	121	14	41	586	1	92	10	6	142	1	10
	50N 150E		5	152	12	47	464	1	86	11	5	172	2	20
	50N 175E	.8	1 24	143 155	14	47	572	1	103	7	5	128	1	5
	50N 200E	.6 .8	19	135	11 10	40 32	438 461	3 2	106 79	11 5	1	205	5 3	10
	50N 250E	.8	9	135	10	28	401 366	1	78	ວ 4	1	148 110	ు 1	10 5
	50N 275E	1.2	103	138	13	58	604	1	135	14	10	120	5	5
HM3	50N 300E	.9	34	131	14	65	475	2	142	15		309	2	5
NN3	50N 325E	. 6	124	229	10	69	914	1	61	1B	4	499	1	150
	50N 350E	.8	134	224	19	75	596	2	201	11	3	1366	2	10
	50N 25W	.7	61	150	15	65	605	1	217	20	12	197	1	20
	50N 50W		94	123	16	69	536	2	158		11	257	2	10
	50N 75W	.8	17	123	13	61	508 505	2	172	6	7	191	1	5
	50N 100W 50N 125W	.8 .6	16 13	104 115	15 14	50 78	505 944	3	207	5	5	129	1	5
	50N 150W	.0	11	95	14	78 60	946 573	2	99 79	15 5	6 4	210 111	1 3	5
	50N 175W	.9	3	109	15	60 60	584	2 3	92	J h	* 3	145	ა 1	5 5
	50N 225W	1.0	5	118	24	97	911	<u>i</u>	97	15	<u>š</u>	150		5
	50N 250W	. 8	11	135	17	143	1313	1	53	15	5	148	3	5
	50N 275W	1.0	5	101	23	98	1060	4	64	14	7	141	6	5
	50N 300W	.8	9	128	20	74	1024	2	82	12	1	139	3	5
- 1184 4	50N 325W		5	112	21	73	852	1	145	20		150	4	5

PROJECT ATTENTIO (VALUES MN450N	DN:				705 "	•	•	RTH VANCOU OR (604)9	•	C. V7N 1	T2	ŧ			-9035/P3+4
IVALUES MN450N						(604)9	80-5814	98 (604)9	22-1521			I.			
MN450N	S IN PP	M I.							**						T 5, 1987
		<u>n /</u>	AG	AS	BA	CO	CU	MN	MO	NI	PB	SB	ZN	<u> </u>	U-PPB
			.8	5	201	17	52	998	2	102	18	5	179	1	5
NH450N	375¥ ·		.6	8	237	12	59	892	1	112	9	. 5	244	1	10
NM450N	4001		.7	4	129	12	60	459	2	94	11	7	139	1	5
MN450N			.5	22	101	11	49	370	2	104	5	5	124	2	10
HH450N			.4	24	205	13	57	692	i	132	8	5	134	4	5
NH450N		***	.4	29	155	13	45	665	2	107	9	6	145	4	30
MH450N			1.0	10	275	, 19	81	906	3	165	17	2	243	1	20
						12			1	118	12	5	168	1	550
NH450N			.6	24	121		40	461	•			3		•	
NH450N			1.0	11	108	13	38	464	2	97	13	-	108	4	20
NH450N			.8	4	119	12	26	550	1	80	14		165	<u> </u>	
nn450n		•	.8	3	171	12	40	816	1	97	12	4	182	1	10
MH450N	150E		.6	5	131	14	36	602	2	127	22	9	214	2	5
NH450N	175E		.7	8	130	11	47	510	1	128	12	5	328	1	5
MN450N	225E		.6	1	115	9	19	462	2	63	9	1	133	1 -	20
NN450N	250E		.6	10	90	10	25	371	1	82	11	2	131	3	10
NH450N			.6	23	123	11	47	451	2	97	9	4	573	1	5
MH450N			.8	15	194	17	64	713	2	171	8	6	687	1	20
MN450N			.8	25	126	13	50	418	1	117	9	3	264	2	10
MN450N			.8	101	223	12	59	1037	1	100	, 6	3	770	5	40
MN450N				794	192	12	189	479	1	117	9	3 9	752	1	60
		** ** ** * *													
HN450N			.5	497	447	17	141	1520	1	65	26	8	426	1	100
MH450N			.2	563	212	5	80	296	1	36	19	8	216	1	520
nn450n			.4	372	251	12	115	610	1	78	13	5	271	1	40
NK500N	25¥		1.0	52	- 174 -	14	77	884	1	121	13	9	304	1	10
NH500N	50W		. 9	100	170	15	72	663	2	112	15	9	170	2	10
MH500N	75W	*******	1.0	1	143	12	58	490	3	96	16	3	102	i	5
MN500N			1.0	17	124	11	51	506	2	113	10	6	130	1	5
MM500N			.9	- 21	97	12	46	634	1	54	10	4	113	1	5
MM500N			1.5	25	102	16	123	1824	3	32	7	1	262	i	5
MM500N			1.7	39	93	30	106	1824	4	13	5	7	274	7	10
*			<u>1./</u> 2.1		110	29	113	1979	<u>1</u> 5	51	21	<u>(</u>	259		5
MM500N				-					-						
MM550N			1.0	198	145	16	71	798	1	156	10	13	190	2	30
HH550N			.8	105	178	14	46	708	3	142	6	4	227	1	5
HH550N			.8	32	169	13	58	635	3	154	4	1	173	1	10
MISSON			.9	<u>4</u>	226	15	51	981	3	175	16	3	237	1	50
MK550N	1258	•	1.1	22	168	15	106	1682	2	68	20	1	704	2	10
MM550N	175N		1.4	31	83	25	86	1849	1	17	4	7	263	1	5
HH550N	200₩		1.0	19	143	16	64	995	3	66	18	2	193	1	5
MM550N			1.1	20	111	20	96	1608	2	64	13	7	314	1	5
HH550N			1.0	13	128	14	83	1245	1	40	6	6	129	2	15
MM550N			1.0	19	119	19	65	642	1	111	9	· <u>3</u>	121		5
KH550N			.9	28	183	17	48	810	3	116	12	6	203	1	20
NK550N			.8	20	86	12	82	377	2	61	8	2	122	۰ 1	5
. NHSSON			.8	20	128		56					3		4	5
						16		504	3	98	15		115	1	
NH550N			.9	4	169	16	60	483	2	103	18	4	147	<u>4</u>	5
MMS50N			.7	5	196	11	39	634	1	83	10	4	135	3	5
NH550N		• . 14	.7	22	150	10	47	444	2	80	11	2	108	1	5
NH550N	450¥		1.1	19	147	19	86	1197	4	64	21	7	189	1	10
NH550N	25E		.6	13	213	6	40	879	1	29	7	3	316	2	10
MN550N		N/S													
MN550N		N/S													
KHSSON		N/S													
MH550N			.9	28	496	17	119	1570	2	137	12	2	488	3	40
MMS50N			.5	J0 5	133	3	117	305		137	12	1		ۍ د	70 5
									1				199	1	
HH550N				75	115	12	65	429		101		<u>b</u>	351		360
MN550N			.8	26	164	12	55	579	2	104	11	8	618	1	. 70
MARK THE TAX	250E		.7	46	184	12	60	647	2	126	7	11	480	4	140
NK550N			-			40	50	684	2	94	\$	3	490	1	230
NN550N			.7	23	155	15 .	59	007	2		т			*	
			.) .8	23 10	155 189	15	54	826	1	92	11	3	473	2	130

COMPANY: AVINO MINE						ABS ICP R						1631) PAGE 1 OF 1
PROJECT NO: MINTO H	IINE		70′		•	RTH VANCO	•	C. V7H	112			ILE NO: 7-9035/P5+6
ATTENTION:						OR (604)				+ <u>+</u>		TE:AUGUST 5, 1987
(VALUES IN PPM )	AG	AS	BA	CD	CU	HN	HO.	NI	PB	<u>SB</u>	ZN	W AU-PPB
NNSSON 350E	1.0	107	142	25	111	817	4	111	16	5	319	2 510 1 350
NH550N 375E	1.0 1.2	23 296	176 84	18 14	94 189	888 1044	- 1 - 3	146 71	5 5	) 2 7 20	260 105	1 350 2 50
HN550N 400E NH550N 425E	1.2	136	111	23	110	632	4	125	10	₹ 20 8	161	6 130
NN550N 450E	2.3	1272	209	14	155	1695	2	125	202	70	232	3 560
MM600N 25E	1.4	53	225	15	91	768		174			1372	1 900
NH600N 50E	.8	109	941	21	197	1619	1	93	10	4	372	1 600
MH600N 75E	1.0	120	321	27	181	1379	3	245	9	8	528	1 820
NH600N 100E	.7	106	273	27	104	1666	i	211	12	4	616	1 420
MH600N 125E	1.4	272	349	50	270	2363	1	345	16	14	1247	1 130
KN600N 150E	1.2	176	297	46	272	1922	2	81	11		683	2 620
MN600N 175E	.7	58	160	12	76	523	3	111	5	4	509	1 130
MN600N 200E	.8	81	117	10	87	454	1	119	8	5	408	1 110
MM600N 225E	1.1	149	148	14	127	573	1	148	14	17	336	3 140
NH600N 250E 40H	1.B	46B	120	73	206	2042	1	137	24	11	154	6 145
NH600N 275E	1.0	46	119	32	109	780	2	79	15	5	141	1 40
HH600N . 300E	.7	83	136	13	69	553	1	79	6	5	206	1 60
NH600N 325E	1.0	101	102	14	79	497	1	97	7	11	128	1 50
NH600N 350E	.6	112	90	17	72	499	1	83	13	5	196	1 140
NH600N 375E	.8	67	131	30	89	1128	1	71	3	4	165	1 140
NH600N 400E	.9	134	93	27	107	662	2	97	18	4	151	3 60
HN600N 425E	.8	44	136	22	90	588	2	106	4	3	175	5 60
HH650N 25H	.8	2	133	9	30	260	1	71	10	2	145	1 5
MN650N 50W	1.3	16	235	11	85	790	1	89	5	6	605	5 10
NH650N 75W	1.1	4	161	15	71	661	1	93	8	4	139	1 5
NH650N 100W	1.1	i	194	11	48	467	2	113	10	2	132	4 20
NH650N 125N	1.4	14	205	12	54	1308	1	126	12	10	316	1 10
NH650N 150W	.7	243	99	8	38	319	2	99	9	12	153	1 5
HN650N 175W	1.1	3	174	16	67	611	2	125	11	61	146	1 5
NH650N 200W 40M	2.3	2	98	34	77	1635	1	14	5	8	315	1 10
NH650N 275N	.8	20	98	19	62	774	1	45	12	20	137	2 5
HH620N 300H	.7	136	90	13	32	810	1	33	9	61	94	4 5
NN650N 325W	.8	53	105	15 .	46	857	1	47	16	23	98	4 35
MN650N 350W	.5	12	126	6	20	430	1	9	11	2	103	55
MH650N 25E	1.4	212	204	51	141	2128	3	342	24	8	827	<u>B 110</u>
HH650N 50E	.9	24	121	13	66	561	3	102	5	4	402	2 680
NH650N 75E	.9	14	190	13	64	631	3	124	12	5	426	3 25
NN650N 100E	.9	10	170	16	59	843	4	196	13	3	281	4 175
NH650N 125E	.8	46	248	20	70	1261	2	220	15	. 2	527	4 70
NN650N 150E 20H		7	259	7	60	689	1	29	8	1	208	2 5
NN650N 175E	.4	15	153	13	44	745	2	137	14	2	394	1 65
HN650N 200E	.8	165	219	16	78	767	2	141	24	10	330	3 80
NH650N 225E	.6	238	160	13	60	511	2	95	14	5	225	2 175
MH650N 250E	.7	300	213	15	77	743	2	106	14	3	310	1 250
NH650N 275E	.9	196	162	15	83	653	2	97	21	<u> </u>	284	2 90
NH650N 300E	1.3	346	162	30	124	1145	1	99 100	12	5	253	5 85
MN650N 325E	`• <b>•</b> 9	348 157	112	24	121	556	2	108	16	5	164	5 60
NH650N 350E	1.1	153	123	34	119	1087	3	76	7	4	194	1 30
NH650N 375E	.7	222 178	92 97	15	71 71	616	2 1	31 39	18	2 2	119	2 45 1 15
MH650N 400E MH650N 425E		178	97 144	19	155	1142		<u> </u>	10		<u>186</u> 346	1 30
	.7			40	155	849 420	1 2		14	4	546 195	
MN700N 25E MM700N 50E	.4	30 13	122 128	10 12	54 51	420 532	2 1	119 102	11 12	5 2	203	1 5 1 5
NH700N 75E	1.0	21	128	12	49	532 690	2	102	12	4	203 317	1 35
HH700N 100E	1.3	1	172	25	79	1017	2	279	20	- 3	551	2 5
MN700N 125E		51	348	20	139	969	3	139	16	<u>3</u>	537	5 150
NH700N 150E	.9	28	574	14	123	1617	2	118		3	577	5 160
MM700N 175E	.8	9	212	14	55	858	2	124	15	2	373	1 155
MH700N 200E	.8	182	191	16	72	740	2	166	14	6	392	1 40
MN700N 225E	.5	32	182	9	59	707	2	80	3	3	290	3 20

DMPANY: AVINO MINE Roject no: Minto I Ttentidn:	HINE		705	T 15TH (604)9	ST., NO 80-5814	DR (604)	UVER, 988-45			<b>+</b>	FIL + DAT	631) PAGE 1 OF 1 E NO: 7-903S/P7+8 E:AUGUST 5, 1987
(VALUES IN PPN )	AG	AS	BA	<u> </u>	03	MN	<u> </u>	NI	PB	<u>SB</u>	<u> </u>	W AU-PPB
MM700N 250E	.5	91	168	12	71	727	3	95	8	2	394 307	575 560
MH700N 275E	.4	115	148	14	76	513 680	3 1	104 90	13 547	1 3	403	7 300
NN700N 300E	1.9	1189	120 94	28 21	137 63	990	2	70 57	37	3	204	4 15
HH700N 325E	.7	168	42		a. 30	255	1	18	28	2	94	2 5
NH700N 350E	<u></u>	<u>119</u> 54	72	9			<u>i</u>	18	12	2	105	1 5
MN700N 375E MN700N 400E 20N	.4	117	49	7	18	263	1	11	11	1	57	1 5
NH750N 25E	.8	47	125	16	61	692	1	156	16	3	322	1 5
MN750N 50E	1.1	19	185	14	51	1376	•	117	5	1	767	8 5
NH750N 75E	.6	29	202	14	62	1097	1	221	12	1	1604	1 25
NH750N 100E		4	43	3	13	140	1	14	12	1	103	2 5
HH750N 125E	.5	16	193	12	39	778	1	163	11	1	706	4 30
NH750N 150E	.4	11	107	11	46	394	2	138	11	3	383	35
NH750N 175E	.2	21	137	7	47	397	1	60	8	. 1	304	4 60
NN750N 200E	.6	13	122	10	43	415	2	93	10	4	230	6 65
MM750N 225E		36	200	13	71	643	2		10	5	158	7 15
MN750N 250E	.3	55	122	14	54	375	1		7	4	126	5 5
NN750N 275E	1.0	180	137	18	76	570	2		11	1	163	i 25
NH750N 300E	.9	191	104	48	167	1029	1	117	17	4	179	1 80
MM750N 325E	1.2	140	100	30	86	1408	2	61	61	4	223	6 150
NH750N 350E	1.0	85	107	33	105	1461	2		26	1	172	8 5
MM850N 25W	.5	. 6	151	12	42	898	2		12	4	1208	8 25
MM850N 50W	.3	3	111	11	35	381	1	105	14	4	205	4 5
MM850N 75W	.6	13	132	10	42	407	1	108	9	4	120	2 5
NN850N 100W	.8	15	160	10	47	679	1	100		<u> </u>	261	1 5
MM850N 125W	.5	17	123	10	51	526	2		10	2	332	1 5
NN850N 150W	.4	3	127	11	42	579	1		11	2	224	25
NH850N 175W	.9	17	102	10	34	369	1		5	1	90	1 15
MN850N 200W	.3	172	108	. 9	36	282	1		10	2	86	3 100
NNB50N 225W	.,5	463	248	21	89	629	2		14	5	194	<u>1 BO</u>
NH850N 250W	.4	57	109	11	33	437	2		13	81	151	2 5
NN850N 25E	.2	26	143	13	60	431	1		11	ŧ,	127	4 50
MHBSON SOE	1.1	87	287	25	139	2254	6		10	6	500	1 20
MM850N 75E	.9	7	340	22	112	1423	2		7	1	550	2 45
MMB50N 100E		15	146		68	560			14	<u> </u>	218	<u>1 40</u> 1 5
MN850N 125E	.5	5	211	7	22	713	2		15	2	357 599	1 5 1 30
HNBSON 150E	.8	20	312	15	45	1257	2		5	1 5	388	5 5
NN850N 175E	.8	24	238	12	63	756	1	75	6 7	5 3	280	4 50
NH850N 200E	.4	91 10	193	10	38 34	561 400	2		12	3 4	134	2 5
MMB50N 225E MMB50N 250E	.8	<u> </u>	<u>133</u> 185	<u>11</u> 	<u>34</u> 90	1361	<u>1</u> 1		6	<del>1</del>	239	1 20
NN850N 275E	1.1 1.3	365 122	185	28 31	116	1381 910	1		° 17	5	150	4 130
NN850N 300E	.6	122	22	11	41	361	1	115	4	2	82	1 5
MN900N 25E	1.0	12	192	15	69	1157	1	123	9	1	234	5 5
MM900N 50E	.6	222	117	21	90	616	2		10	3	173	1 115
MN900N 75E	.8	20	168	<u>21</u> 11	45	387		~~~~~~	7	3	131	1 120
	· · · · · · · · · · · · · · · · · · ·	4	153	12	57	294	1	120	11	2	95	4 10
NN900N 125E	.8	16	302	10	36	1066	1	41	14	1	215	1 870
MN900N 150E	.4	17	152		30	311	1	83	4	1	160	1 5
MN950N 25W	.9	20	133	13	62	506	3		12	5	169	1 5
MM950N 50W	.9		168	13	52	960	j		10	5	219	2 10
MN950N 75W	.8	10	154	14	59	999	2		9	3	305	1 5
MM950N 100W	.6	2	153	12	50	450	1		10	4	115	1 15
MN950N 125W	.7	2	133	10	41	510	1		12	1	92	1 5
MN950N 150W	.5	9	198	10	56	612	2		5	1	116	1 5
HH950N 175W	.9	3	244	12	79	1239	2		14	4	145	1 10
MN950N 200W	.9	2	132	10	34	338	1	92	6	1	95	25
HN950N 225W	.8	2	171	11	45	590	2	116	10	i	112	35
MN950N 250W	6.3	87	26	4	2	68	é	5 21	32	18	17	6 10
MN950N 275W	.8	24	128	11	36	602	1	90	15	34	193	i 15

ROJECT NO: MINTO N' TTENTION:			705		-	RTH VANCO DR (604)				ŧ	, <b>`</b> ¥	DATE: AUGUS	T 5, 1987
(VALUES IN PPH )	A6	AS	BA	CO	CU	HN	MO	NI	PB	SÐ	ZN	¥ A	U-PPB
MM950N 300W	.4	3	124	11	74	466	2	134	6	3	100	2	5
NH950N 325W	.3	2	121	12	64	1309	2	48	12	2	125	1	5
NH950N 25E	.2	23	105	12	48	393	3	137	10	4	95	1	10
NH950N 50E	.1	14	244	13	59	855	1	146	6	1	231	4	5
NH950N 75E	.4	22	260	7	36	263	2	65	21	12	150	2	50
NN950N 100E	.6	6	228	31	97	800	3	168	13	6	196	1	65
MM950N 125E	.6	15	260	14	83	693	2	111	8	1	120	1	5
MN950N 150E	.7	15	274	13	59	635	2	118	9	4	273	1	5
NN950N 175E	.6	6	304	10	38	763	1	80	11	3	283	3	20
MN950N 200E	.4	7	177	10	38	322	1	126	11	1	171	1	5
MH950N 225E	.3	1	108	4	8	197	1	5	5	1	84	1	10
NM950N 250E	.4 .	18	112	8	28	416	1	44	6	2	210	2	5

• • •

1 1

	COMPANY: AVINO M	IINES			MIN-EN	LABS ICP	REPORT		(ACT:F31) PAGE 1 OF 1
	PROJECT NO: MINT			705 WEST	15TH ST., 1	VORTH VAN	COUVER, B		1T2 FILE NO: 8-4775/P1+2
	ATTENTION: BRIAN	GAME			(604)980-58	314 OR (6			<pre>* TYPE SOIL GEOCHEM * DATE: NAY 9, 1988</pre>
	(VALUES IN PPM	) <u>A6</u>	AS	<u> </u>	PB	SB	ZN A		
	50N 875W	.6	82	141	60	2	195	10	
	50N 900W	.8	41	138	38	3	153	5	
,	SON 900WDUP 40M		84	128	51	3	185	5	
	50N 975W	.8	24	115	48	1	204	5	· .
	50N 975WDUP	2.9	45	65	40	2	159	5	
	50N 1000W	.1	13	156	63	1	195	5 5	
	50N 1025W	2.0	30	95	40	1	153	J	
	50N 1050W N/	1.2	21	17	29	1	81	10	
	50N 1075W 50N 1100W	1.1	30	- 64	34	1	150	5	
	50N 1125W	2.1	31	81	31	<u>-</u>	154	10	
	50N 1150W	1.6	45	52	29	1	95	5	
	50N 1175W N.			92	•••	•		-	
	50N 1200W	1.5	26	30	27	1	97	5	
	100N 1075W	1.3	33	37	35	1	138	10	
	100N 1100W	1.0	28	39	33	1	124	5	
	100N 1125W	1.4	33	41	20	1	127	5	
	100N 1150W	.9	24	34	37	1	123	5	
	100N 1175W	.9	26	29	34	1	108	10	
	150N 1000W	2.6	33	63	28	1	123	55	
	150N 1025W	6.8	51 [.]	67	28	1	152	5	
		N/S							
		N/S						-	
	150N 1100W	1.4	37	122	46	1	197	5	
	150N 1125W	1.0	30	81		1	140	5	
	150N 1175W	.6	42	57	37	3	167	5	
14.	50N 1200W	1.1	38	57	29 31	2	142 171	10 5	
	150N 1225W 150N 1275W	3.B [.]	22 32	24 32	26	1 1	149	5	
$\sim$	150N 1300W	1.3	38 38	15	37	1	124	10	
	200N 950W	.2		165	63	<u>-</u>	199	20	/
	200N 975W	.8	25	87	40	1	146	5	
	200N 1000W	1.0	37	100	43	3	178	5	×.
	200N 1025W	2.4	42	100	45	2	159	10	Υ.
	200N 1050W	2.4	22	98	38	1	214	5	
	200N 1075W	1.0	32	58	37	1	167	5	······
	200N 1100W	1.3	45	80	33	1	146	. 5	
	200N 1125W	1.8	32	50	27	1	105	10	
	200N 1150W	1.3	34	46	32	1	104	5	
	200N 1175W	1.2	20	14	32	<u>1</u>	90	5	
	200N 1200W	.8	39	80	25	3	140	5	
	200N 1225W	.7	34	52	41	1	199	5	
	200N 1250W	1.3 1.1	39 34	· 28 34	35 36	2	106 168	5 5	
-	200N 1275W 200N 1300W	1.1	34 34	24	38 32	1 1	126	5	
	200N 1325W	1.3	<u>34</u>	22	32	· <u>1</u>	113	10	
	200N 1350W	• -	33	22	34	1	78	5	
	200N 1375W	1.3	38	33	31	1	113	5	
× ×.	200N 1400W	1.0	27	20	30	1	87	5	
	200N 1425W	1.0	26	46	41	1	168	5	
	200N 1450W	.9	. 33	70	39	1	147	10	
	200N 1475W	.9	31	51	31	1	110	5	
	200N 1500W	1.2	33	45	39	2	76	5	
	200N 1525W	1.1	41	68	35	1	100	5	and the second
$\sim$		/S							
	250N 750W	.8	82	25	37	11	97	20	
	250N 775W	.8	169	63	29	11	83	50	
	250N 800W	.7	133	52	42	25	149	5	
	250N 825W	.8	56	87	40	6	141	5	
	250N 850W	1.4	26	33	27	22	59	5	

. . . . . . . .

	Y: AVIND MINES			-			ICP REPORT	ערון ה ח	(10	PAGE 1 OF 1
	CT NO: MINTO FION: BRIAN GAME			705 WEST	15TH ST., (604)980-5				TYPE SOIL GEOC	: 8-4775/P3+4 E:MAY_9, 1988
	JES IN PPH )	A6	AS	CU	PB	SB	ZN	AU-PPB		
250N		.7	28	73	32	1	104	5		 
250N	1000₩	.6	28	101	40	1	177	5		
1	1025W	.7	49	114	32	2	193	5		
	1050W	1.6	39	82	31	1	115	10 5		
	1075W 1100W	$\frac{3.6}{1.5}$	49 34	<u> </u>	<u>30</u>	1	<u>84</u> 99	<u>-</u> 5		 
	1125W	1.0	30	20	23	1	67	10		
	1150₩	1.1	26	20	26	1	77	10		
	1175₩	1.1	32	22	31	1	119	5		
*****	1200W	1.0	40	26	28	1	109	10		 
	1225W	1.1	40	29	30	1	128	5		
	1250W 1275W	1.0	33 44	30 31	29 29	1	111 116	5		
	1300₩	1.2 1.3	44	31	27	1	143	5		
	1325W	1.0	36	18	23	1	101	10		
	1350W	1.0	42	32	27	1	125	10		 
	1375W	1.1	32	31	31	1	127	5		•
	1400W	1.0	40	34	28	1	117	5		
	1425W	1.0	39	38	29	1	120	10		
	1450W 1475W	$\frac{1.0}{2.3}$	<u> </u>	<u>34</u> 	<u>29</u> . 21	12	<u>108</u> 10	<u>5</u> 5		 
	1500W	1.0	32	31	27	1	105	10		
	1525W	1.0	47	27	32	1	89	10		
	1550W	1.0	41	24	25	1	89	5		
	1575W	1.2	46	21	21	1	86	10		 
	575W	1.0	509	38	52	33	156	270		•
	600W	.8 1.2	549 989	- 60 - 33	46 64	38 64	176 171	330 825		
	625W 650W N/S	1.2	- 101	· ov	FO	04	171	023		
	675W	.8	157	43	48	4	171	85		
	700₩	.8	85	28	45	3	119	30		 
	725W	1.1	141	21	66	8	150	50		
	750W	1.5	95	31	95	6	177	810		3
	775W 40M	1.3	102	14	51 47	1	105	20		
	800W 40M 825W 20M	1.0	<u>84</u> 171	<u>113</u> 50		18 15	258 66	40 140		 
	850W	1.0	116	55	23 .	1	126	5		
	875W	1.0	44	55	33	2	167	10		
	900W	.9	44	43	29	1	128	5		
	925W	1.0	33	55	32	<u>!</u>	119	5		 
	950W	1.3	46	51	37	2	121	5		
	975W 1000W	.6 .5	48 33	75 104	42 39	3 3	122 171	10 10		6
	1025W	1.0	38	37	29	5 1	101	5		<b>4</b> -4
	1050W	1.4	32	21	35	1	107	5		
	1075W	1.3	33	22	27	1	66	5		 
300N	1100₩	1.0	20	28	27	1	109	5		
	1125W	1.3	31	30	31	1	115	5		
	1150W	1.3	25	17	26	1	111	5		
	1175W 1200W	1.2	<u>28</u> 31	<u>22</u> 19	<u>31</u> 29	1	<u>152</u> 134	5		 
	500W	.9	80	26	45	1 5	186	10		
	525W ROCK	.4	20	32	24	1	128	5		
	550N	1.0	229	30	51	8	300	100		
350N	575W	1.1	218	27	59	16	331	150		 
	600W	1.0	370	26	60	21	152	70		
	625W 40M	1.0	610	31	78	35	201	600		
	650W 20M 675W 40M	1.5 1.0	296 87	. 87 24	135 44	35 6	208 102	120 30		
	700W	.9	134	14	54	o 5	102	80		
					·	·				 

	PROJECT	NO:				705 WEST	15TH ST.,	NORTH V		B.C. V7M	(ACT:F31) PAGE 1 OF 1 1T2 FILE NO: 8-4775/P5+6
			BRIAN GAM	A6	AS	CU	(604)980-5 PB	<u>814 UR</u> SB		AU-PPB	I TYPE SOIL GEOCHEM I DATE: MAY 9, 1988
	350N 7		N/S								
	350N 7			1.0	84 -	12	50	3	114	120	
	350N 7			5.8	77	23	171	8	246	2700	· · · · · · · · · · · · · · · · · · ·
$\overline{}$	350N 8	NOON	2011	1.0	115	24	85	35	191	50	
	350N 8			1.3	103	31	31	5	95	20	
	350N 8			.6	- 68	69	33	4	176	5	
	350N 8			.8	66	51	20	2	139	15	·
	350N 9			.8	68	38	27	2	112 95	10 5	
	350N 9 350N 9		KULK	.1 .6	46 76	241 48	38 30	1	183	J 5	
	350N 9			.8	42	52	33	8	165	5 5	
	350N		4 40H	.6	47	65	39	1	194	5	
	350N 1			.1	53	96	53	4	158	10	
	350N			.1	50	104	45	2	176	5	
	350N	075	<u>(</u>	1.2	37	36	28	1	224	5	
	350N			1.2	31	32	29	1	124	20	
	350N 3			1.2	31	42	29	1	127	25	
	350N			1.1	33	38	29	1	183	10	
	350N			1.2 1.3	44 42	28 27	28 31	1	161 131	5 10	
	350N 400N			1.4	42	27 22	<u>31</u> 	5	232	5	
	400N		7.AU	1.3	67	13	38	1	288	5	
	400N		40M	1.3	78	39	43	5	327	45	
	400N			1.3	108	38	32	3	181	65	
	400N		40M	1.3	156	33	161	4	901	45	
	400N			1.5	91	37	30	6	273	5	
,	400N									_	
	ACON	175W		1.3	. 69	41	34	3	133	5	
Ų	HOON			.9	60 E 4	29	34	3	120	5	
	400N 400N			1.4	<u>54</u> 14	<u>24</u>	<u> </u>	<u>2</u>	<u>146</u> 67	<u>5</u>	
	400N			2.7	14	5 1	30 31	1	74	5	
	400N			1.5	47	46	31	3	231	5	
	400N			1.5	76	27	46	5	152	30	.•
	400N			1.4	45	30	35	2	177	10	
	400N	375W	40M	1.1	61	39	- 37	3	161	5	
•	400N			1.2	72	39	43.	3	185	10	
	400N			1.5	80	34	35	4	172	5	
	400N			1.1	72	28	38	3	154	10	
	400N 400N			1.4	68	25 59	39	3	130	5	
	400N 400N			1.1 1.5	78 126	59 48	40 38	5 9	268 196	10 10	
	400N			1.3	126	33	45	8	228	5	•
	400N			1.5	113	35	87	7	466	120	
			ROCK	1.9	45	6	41	1	415	10	
	400N			1.3	159	55	59	8	218	115	
	400N			1.3	202	41	45	6	154	15	
	400N		20M	1.5	77	22	30	3	193	5	
	400N			1.3	429	37	203	4	379	50	
	400N			<u> </u>	66	39	39	2	129	40	
	400N			.9	84	1	53	4	207	60	
	400N 400N			.5 1.2	83	1 20	59 67	2 2	108 188	10 45	
	400N			.8	60 139	20 38	67 54	۲ ۲	188	45 95	
·	400N			1.0	37	38 31	37	1	172	10	
	400N				46	27		<u>i</u>	124	<u>i</u> 5	
	400N			1.1	30	28	28	1	132	5	
	400N	925W		.9	40	28	28	1	136	5	
	400N			1.1	38	18	27	1	141	5	
	400N	975W	40M	.3	30	41	27	1	92	5	

	Y: AVIND MINES			705 -		ICP REPORT	6 ° U72 I	(ACT:F31) PAGE 1 OF T2 FILE NO: 8-4775/P2	
	CT NO: MINTO FION: BRIAN GAME	-		7V3 WE51	15TH ST., NORTH (604)980-5814 (			TYPE SOIL GEOCHEM T DATE: MAY 9, 19	
	IES IN PPM )	A6	AS	CU	PB SI		AU-PPB		140
	1000W		29.	75		257	40		
	1025W 40M	.7	39	68		2 139	5		
	1050W 20M	.3	32	107		168	5		
1	1075₩	1.3	38	30		114	10		
	1100W	1.5	28	18		117	5		
	1125₩	1.4	23	21		102	5		
	1150W 40M	1.7	35	11		1 60	5		
	1175W	1.5	27	9		1 79	20		
	1200W 20M	1.5	38	29		1 117	5		
	1225W	1.3	31	15	31	106	5		
	1250W	1.5	34	16		1 94	25		
	450¥	1.2	86	34	37	4 172	5		
	475W	1.3	85	33	34	5 <b>199</b>	20		
450N	500W	1.3	112	27	35	5 <b>157</b>	5		
450N	525W	1.2	104	58	38	5 163	30		
	550W	1.3	99	37	41	3 166	5	· · · · · · · · · · · · · · · · · · ·	
	575W 40M	1.3	113	31		5 133	10		
	600W	.8	84	39		3 510	5		
	625W	1.1	108	57		5 217	15		
	650W 20M	1.2	158	23		8 202	220		
450N	675₩	1.1	94	35		2 175	5		
	700W 40M	1.0	69	27		5 138	5		
450N	725W 40M	1.1	35	18	• •	1 121	10		
450N	750W 40M	1.2	209	14		3 164	75		
_450N	775₩	1.1	61	32	51	2 193	10		
	BOOW 40M	.7	57	23		3 224	20		
	825W ROCK	.2	23	2		1 102	5		
	850W 40M	1.2	- 50	21		1 134	5		
1	875W 40M	1.0	111	46		3 94	5	. · · ·	
	900₩		37	44		4 165	5		
	925W 40M	.6	49	23		1 132	5		
	9501	1.2	48	15	28	1 66	10		
	975W N/S				· 00	. 75	-	5	
	1000W 40M	1.5	41	11	28	i 75	5		
	1025W N/S		 E^						
	1050	1.5	50 To	16 43		1 79 1 125	5		
	1075W 1100W	1.5	38 41	25	35	1 125 1 78	10 5	· · · · · · · · · · · · · · · · · · ·	
	1125₩	1.2	23	2J 5	23	1 70	5 5	· · · ·	
	1125W	1.5	39	21	30	1 107	5		
	11751	1.5	37	20		1 132	5	, 	
	117JW	1.5	49	20	31	1 102	J 5	· · · · ·	
	1225	1.3	42	23	31	1 96	10		
	1223	1.5	42 41	· 21 34	28	1 121	10		
	300W	1.3	29	34 7	20	i izi i 45	J 5		
	325W	1.1		48		2 89	<u>J</u> 5		
	350W 20H	2.8	45	17		2 138	20		
	375W	1.5	43	33		1 76	10		
	400W 40M	1.3	70	33		3 122	10		
	425W 40H	1.3	76	43		3 203	5		
	450W	1.3	54	23		1 122	5		
	475₩ 40M	1.5	108	29		3 152	5		
	500W 40M	.9	71	35		2 13Z	5		
	525W 40M	1.1	68	38		2 212	10		
	550W RDCK	2.5	33	36		1 103	5		
	575W 40M	1.1	58	23		3 121	5		
	1 600W	.8	73	24		2 148	5		
~~~		1.2	81	18		6 110	5		
500N					••		-		
500N 500N	1 650W 20M	.8	391	55	100	5 176	400		

			INO MINES						ICP REPORT		(ACT:F31) PAGE 1 OF 1
			: MINTO			705 ¥EST			VANCOUVER,		
-			BRIAN GAME						(604) 988-		<pre>t TYPE SOIL GEOCHEM t DATE: MAY 9, 1988</pre>
			(PPH)	AG	AS	CU	PB	SB	ZN	AU-PPB	
	500N		20M	.8	196.	108	171	17	239	190	
	500N		40H	.8	335	25	44	7	158	55	
	500N			1.2	89	22	38	3	138	30	
	500N		. 40H	1.1	75	25	43	3	166	5	
-	500N			1.5	214	40	93		190	115	
	500N	825₩		1.0	-102	22	38	7		25	
	500N	850₩	•	.8	81	20	29	5	107	5	
	500N	875₩	40M	.5	38	20	29	2		10	· .
	500N	900W	40M	.6	74	43	18	1	75	5	
	500N	925W		1.0	77	31	29	3	138	5	· · · · · · · · · · · · · · · · · · ·
-	500N	950W	N/S								
	500N	975W		1.3	34	18	29	1	113	5	
	500N	1000	W	1.3	37	22	30	1	157	5	
	500N	1025	W	1.3	40	13	29	1	57	10	
	500N			1.3	33	26	29	1	67	5	
-	500N			1.4	32	20	28	1	94	5	
	500N			1.3	35	29	28	1	145	5	
	500N			1.3	32	21	27	1	128	10	
	500N										
	500N			1.4	32	26	33	1	201	5	
-	500N			1.5	36	26	30	1		5	
	500N			1.4	30	21	32	. 1	155	5	
	500N			1.4	33	18	31	. 1		10	
	700N			1.6	156	47	30	2		75	
	700N			1.1	197	34	46	8		500	
	700N			1.4	<u>177</u> 91	21	33	1		5	
	700N			1.3	49	29	33	3		5	
	700N			1.3	. 55	32	34	.2		5	
					113	37	34	3		5	· ·
	700N			1.2	45	28	36 29	5 1			
-	700N			1.3						10	
	700N			1.3	65	. 39	31	2	104	5	
	700N				55	05	n /	10		15	
	700N			1.1	95	25	26	19		15	
	700N			1.4	54	29	30	2		10	
	700N			1.0	58		37	244	356	10	
	700N										
	700N							•			
		350				54		-			
		000		1.8	- 179	50	29	5		90	
	750N			1.3	62	24	35	2		940	
	750N			1.3	74	39	25	1		25	
		075k		1.3	55	21	26	1	698	40	
. :	750N			1.3	48	22	28	1		10	
•	750N			1.1	49	53	49	1		10	
		150		1.3	46	35	26	1		15	
	750N			1.3	37	26	29	1		10	
		200	· • •	1.4	34	28	31	1		5	
	750N	225	1	1.5	48	27	28	1	129	10	
		250									
	750N	275k	N/S								
	750N	300	I N/S				•				
	750N	325	N/S								
	800N	000	1	1.5	85	46	35	1	262	40	
	800N	025	i .	1.4	42	17	32	1	1436	50	
	800N	050	l '	1.3	21	14	35	1	2387	10	
•	800N	075		1.4	43	34	32	2	768	5	
	800N	100	1	1.2	36	28	31	1	348	15	
		125		1.2	34	16	28	1	109	10	
		150									
		175									
											

COMPANY: AVINO MINES			MIN-I	EN LABS I	ICP REPORT			(ACT	(F31) PAGE 1 UF 1
PROJECT NO: MINTO		705 WEST	15TH ST.	, NORTH V	ANCOUVER, B	.C. V7M 1T2		F	ILE NO: 8-4775/P11
ATTENTION: BRIAN GAME			(604) 980	-5814 OR	(604)988-45	24 1	TYPE SOIL	GEOCHEN \$	DATE: MAY 9, 1988
(VALUES IN PPM)	AG AS	CU	PB	SB	ZN				
800N 200W,	1.3 37.	29	27	1	134				
800N 225W	i.5 52	27	26	1	183				
⊨ 800N 250W N/S									
800N 275W N/S									
800N 300W N/S									
800N 325W N/S	•								•

: .

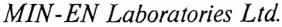
* .¥

.

MIN-EN Laboratories Ltd. Specialists in Mineral Environments

Corner 15th Street and Bewicke 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2

ANALYTICAL PROCEDURE REPORT FOR ASSESSMENT WORK - 26 ELEMENT ICP


Ag,Al,As,B,Bi,Ca,Cd,Co,Cu,Fe,K,Mg,Mn,Mo, Na,Ni,P,Pb,Sb,Sr,Th,U,V,Zn

Samples are processed by Min-En Laboratories Ltd., at 705 W. 15th St., North Vancouver Laboratory employing the following procedures.

After drying the samples at 95°C soil and stream sedimint samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed by jaw crusher and pulverized by ceramic plated pulverizer.

1.0 gram of the samples are digested for 6 hours with $\rm HNO_3$ and $\rm HClO_4$ mixture.

After cooling samples are diluted to standard volume. The solutions are analysed by Computer operated Jarrell Ash 9000ICP. Inductively coupled Plasma Analyser. Reports are formated by routing computer dotline print out.

Specialists in Mineral Environments

Corner 15th Street and Bewicke 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2

GOLD GEOCHEMICAL ANALYSIS BY MIN-EN LABORATORIES LTD.

Geochemical samples for Gold processed by Min-En Laboratories Ltd., at 705 W. 15th St., North Vancouver Laboratory employing the following procedures.

After drying the samples at 95°C soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed and pulverized by ceramic plated pulverizer.

A suitable sample weight 5.0 or 10.0 grams are pretreated with HNO_3 and $HClO_4$ mixture.

After pretreatments the samples are digested with <u>Aqua Regia</u> solution, and after digestion the samples are taken up with 25% HCl to suitable volume.

Further oxidation and treatment of at least 75% of the original sample solutions are made suitable for extraction of gold with Methyl Iso-Butyl Ketone.

With a set of suitable standard solution gold is analysed by Atomic Absorption instruments. The obtained detection limit is 0.005 ppm (5ppb).

MII	N-EN	LAB	ORAT	ORIES	<u> </u>	LTD.
	SPECIALIS	STS IN	MINERAL	ENVIRONME	ENTS	
	775 WEST 15T	H STREET NO	IRTH VANCOUVER,	B.C. CANADA V7	M 1T2	

TELEX: USA 760167 PHONE: (604) 980-5814 DR (604) 988-4524

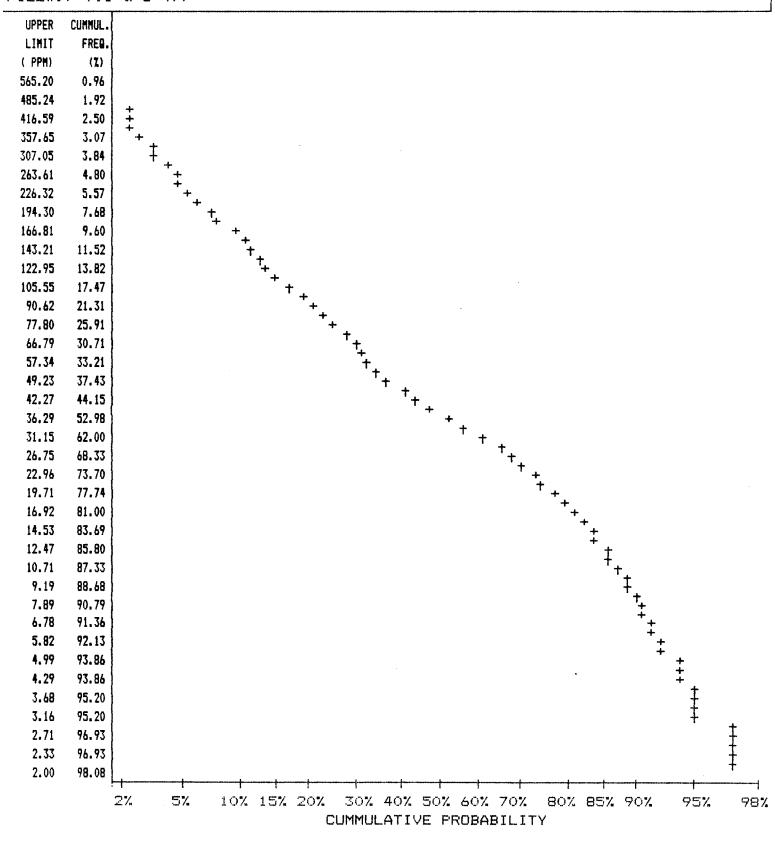
		TICAL	SUMMARY ON	
	VINO MINES			E:AUGUST 23,1988
TTN:BRIAN				PLE TYPE:SOIL
ROJECT:MI			ANA	LYSIS TYPE:GEOCHEM
1LE#:/-90	03 & 8-477			
NIMBER	OF SAMPLES:	521	5 HIGHEST	AG VALUES:
	1 VALUE:	6.8 PPM	150N 1025	
	1 VALUE:		MM950N 25	
MEAN:		1.0 PPM	350N 775W	
	VIATION:		150N 1225	
	OF VARIATION:		250N 1075	
HISTOGRAM	1 FOR AG	CLASS	$\frac{1}{1}$	
MID CLAS	· · · · · · · · · · · · · · · · · · ·			
	<u>M %</u>			
< 0.5	50 6.14			
0.5	56 11.13			
0.8	6.14			
0.8	30 15.16		e e production e construction de la	
0.9	7.87			
1.0	11.52			
1.:	6 14.97			
1.2	11.52		a pyrat ar inn 's gar hir ddian.	
1.4	4.41			
1.5				
1.6				
1.7		COSINCE ·		
	$\alpha \qquad \alpha = 70$			
1.8		1		
2.0	0.19	1		
2.0 2.1	00 0.19 12 0.38			
2.0 2.1 2.2	00 0.19 12 0.38 24 0.00		• • •	
2.0 2.1 2.1 2.5	00 0.19 12 0.38 24 0.00 36 0.96			
2.0 2.3 2.3 2.4	00 0.19 12 0.38 24 0.00 36 0.96 48 0.00			
2.0 2.1 2.2 2.5 2.4 2.6	00 0.19 12 0.38 24 0.00 36 0.96 48 0.00 50 0.19			
2.0 2.1 2.2 2.5 2.4 2.6 2.5	00 0.19 12 0.38 24 0.00 56 0.96 48 0.00 50 0.19 72 0.00	1 1 1 1		
2.0 2.2 2.2 2.2 2.4 2.6 2.7 2.8	00 0.19 12 0.38 24 0.00 56 0.96 48 0.00 50 0.19 72 0.00 34 0.19			
2.0 2.1 2.2 2.5 2.4 2.6 2.5	00 0.19 12 0.38 24 0.00 56 0.96 48 0.00 50 0.19 72 0.00 34 0.19			

SPECIALISTS IN MINERAL ENVIRONMENTS 775 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEX: USA 760167 PHONE: (604)980-5814 OR (604)988-4524

ATTN:B PROJEC	Y:AVI RIAN T:MIN	то		<u>'E.</u>		<u>3AE</u>	<u>, I (</u>	<u> </u>	DAT SAM	TE:AU 1PLE	IGUST TYPE	23, :SOI	1988	<u>AG</u>
·····		& 8-477			 			<u></u>						
UPPER LIMIT	CUMMUL. FREQ.													
(PPM)	(X)													
2.81	0.96													
2.65	1.15													
2.49	1.34													
2.35	1.73													
2.21	2.30	+												
2.08	2.69	+ +												
1.96	2.88	+ +												
1.84	3.26	+ + + + + + +												
1.73	4.03	· + +												
1.63	4.61	‡												
1.54	5.37	‡ ‡												
1.45	11.13		+ + +											
1.36	15.55		+	+ +										
1.28	27.06			+	+									
1.21	27.06				+ + +									
1.14	33.78				7 T T T	-								
1.07	42.03				٦									
1.01	42.03					‡	-4-							
0.95	53.55						+ + +							
0.89	61.42						т	t						
0.84	61.42							Ŧ						
0.79	76.58							1		Ŧ				
0.74	76.58									‡				
0.70	82.73									•	++			
0.65	82.73										+ + + +			
0.62	82.73										+++++++++++++++++++++++++++++++++++++++			
0.58	89.25											‡		
0.55	89.25											‡		
0.52	89.25	}										‡		
0.49	93.86				•							ž	+	
0.46	93.86												+ + + + + + +	
0.43	93.86	1											++	
0.41	93.86												+	+
0.38	96.74	1												+
0.36	96.74]												+
0.34	96.74	}												+++++++++++++++++++++++++++++++++++++++
0.32	96.74													+
0.30	98.08	L.			 							<u> </u>		+

CUMMULATIVE PROBABILITY

SPECIALISTS IN MINERAL ENVIRONMENTS 775 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEX: USA 760167 PHONE: (604)980-5814 OR (604)988-4524


S	TATIST	TCAL S	UMMARY ON	AS
COMPANY:AVINO				AUGUST 23,1988
ATTN: BRIAN GAN				TYPE:SOIL
PROJECT: MINTO	1 6			SIS TYPE:GEOCHEM
FILE#:7-903 &	8-477		t dt Tt Thurs I Ye	
NUMBER OF 9	SAMPLES:	521	5 HIGHEST AS	S VALUES:
	UE: 127		MM550N 450E	
MINIMUM VAL		1.0 PPM	MM700N 300E	
MEAN:		6.9 PFM	MM250N 350E	
	FION: 13		300N 625W	989.0 PPM
	ARIATION:		MM450N 375E	
HISTOGRAM FOR	R AS	CLASS INTE	RVAL = 14.95	
MID CLASS	CLASS		a southan a sunnaise. Stilling a start of starter to see a second starter of the starter of the starter of the	
PPM	7.			
< 1.00	0.19	1		
8.47	17.47			
23.42	18.62			
38.37	22.26	er die en die		
53.32	9.21			
68.27	4.99			
83.22	5.95			
98.17	3.84			
113.12	3.45			
128.07	1.54			
143.02	1.34		-8	
157.97	1.54			
172.92	1.54			
187.87	0.38	1		
202.82	1.15			•
217.77	0.96			
232.72	0.58			ι.
247.67	0.19	1		
262.62	0.00			
277.57	0.38			
292.52	0.38			
> 300.00	4.03			
		0.00%	++ 11.13%	22.26%
		0.00%	FREQUENCY (%)	
L				

SPECIALISTS IN MINERAL ENVIRONMENTS

775 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEX: USA 760167 PHONE: (604)980-5814 OR (604)988-4524

<u>CUMMULATIVE PROBABILITY PLOT ON AS</u>

COMPANY:AVINO MINES ATTN:BRIAN GAME PROJECT:MINTO FILE#:7-903 & 8-477 DATE: AUGUST 23,1988 SAMPLE TYPE: SOIL ANALYSIS TYPE: GEOCHEM

MIN-EN LABORATORIES L	

SPECIALISTS IN MINERAL ENVIRONMENTS 775 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7H 1T2

TELEX: USA 760167 PHONE: (604)980-5814 OR (604)988-4524

OMPANY:AVINO		FICAL S	BUMMARY		<u>\$</u> 6T 23,1988
TTN:BRIAN GAM				SAMPLE TY	•
ROJECT:MINTO	- F				TYPE: GEOCHEM
ILE#:7-903 &	8-477			I II II I ILLA I bar di tar	i i i inizia il fazi line la fazi i i i i i i i i i i i i i i i i i i
NUMBER OF S	AMPLES:	521	5 HI	GHEST SB VAI	LUES:
MAXIMUM VAL	.UE: 24	4.0 PPM	700N	275W	244.0 PPM
MINIMUM VAL	.UE:	1.0 PPM	MM250	ON 350E	93.0 PPM
MEAN:		5.4 PPM	MM850	ON 250W	81.0 PPM
STD. DEVIAT	ION: 1	3.7 PPM	MM55	ON 450E	70.0 PPM
COEFF. OF V	ARIATION:	2.5	300N	625W	64.0 PPM
HISTOGRAM FOR	; CD		ERVAL = 0.8	05	
		ULH33 INI			******
MID CLASS PPM	CLASS %				
		1	,		
	0.19	 			
1.42 2.27	34.55 11.13			e destruit et en des fraham	
2.2/ 3.12	11.13				
3.12 3.97	8.83	and the second			
4.82	8.83 9.21				
	4.99				
6.52	0.00				
7.37	2.11				
8.22	3.84				
9.07	1.15				
9.92	1.34				
10.77	1.92				
	0.58				•
11.62		1			
11.62 12.47	0.00				
		1			
12.47	0.00	6 12			
12.47 13.32	0.00 0.38	1 22 3			
12.47 13.32 14.17	0.00 0.38 0.77	5 12 13 13 14			
12.47 13.32 14.17 15.02	0.00 0.38 0.77 0.19	5 22 2 2 3			
12.47 13.32 14.17 15.02 15.87	0.00 0.38 0.77 0.19 0.19	6 192 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14			
12.47 13.32 14.17 15.02 15.87 16.72	0.00 0.38 0.77 0.19 0.19 0.38			· · ·	

SPECIALISTS IN MINERAL ENVIRONMENTS 775 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEX: USA 760167 PHONE: (604)980-5814 OR (604)988-4524

		MMUL		TI	/E	PF	<u>ROE</u>	BAB	ILI				<u>)N S</u>	B
		NO MINES	3									ST 23,		
ATTN: B												PE:SOI		
PROJEC										ANAL	YS15	IYPE:G	EOCHEM	
FILE#:	7-903	& 8-477	7	<u></u>										
UPPER	CUMMUL.													
LIMIT	FREQ.													
(PPH)	(1)													
57.75	1.15													
51.75	1.15													
46.38	1.15													
41.56	1.15													
37.25	1.34													
33.38	2.11	+												
29.91	2.30	+												
26.81	2.30	+												
24.02	2.50	+												
21.53	2.88	+ + + + + + + + + + + + + + + + + + +												
19.29	3.45	+												
17.29	4.03	+												
15.50	4.61	+												
13.89	5.57	+	+											
12.45			+ +									•	•	
11.15	6.53	'+ + + + + +	+++++++++++++++++++++++++++++++++++++++											
10.00	9.79			++										
8.96	10.94			+ + + + +										
8.03	10.94			++										
7.19	14.78				‡ .									
6.45	16.89				·+ + +									
5.78	21.88				+	+								
5.18	21.88					+ + +								
4.64	31.09						‡							
4.16	31.09						Ŧ							
3.73	39.92						•	‡						
3.34	39.92							‡						
2.99	54.13							+	÷					
2.68	54.13								‡					
2.40	54.13								‡					
2.40	54.13								‡					
1.93	65.26	(+	÷				,
1.73	65.26	ļ								++				
1.75	65.26	(+ +				
1.33	65.26									+ +				
1.37	65.26									+ +				
		(+ -				
1.12	65.26	l								÷				
1.00	98.08	ŀ	t							++-				1

775 WEST 15TH	TS IN MINE STREET NORTH VAN	ATORIE: CRAL ENVIRONME COUVER, B.C. CANADA V7 4)980-5814 OR (604)988	ENTS W 1T2	<u>.</u>
STATISTIC	<u>AL SU</u>			
COMPANY:AVINO MINES			DATE: AUGUS	
ATTN:BRIAN GAME			SAMPLE TYP	YPE:GEOCHEM
PROJECT:MINTO FILE#:7-903 & 8-477		P		
NUMBER OF SAMPLES: 521		5 HIGH	EST AU VAL	UES:
MAXIMUM VALUE: 2700.0 F	PB	350N 71	75W 40M	2700.0 PPB
MINIMUM VALUE: 5.0 F	'P'B	750N 02		940.0 PPB
MEAN: 56.8 F		MM600N		900.0 PPB
STD. DEVIATION: 172.2 F	PB	MM900N		870.0 PPB
COEFF. OF VARIATION: 3.0		300N 63	25W	825.0 PPB
HISTOGRAM FOR AU CL	ASS INTERV	/AL = 16.25		
MID CLASS CLASS				
<u>PPB %</u>				<u> </u>
< 5.00 0.19				
13.13 69.10		and an advantage of sector of		
29.38 4.61				
94.37 1.15	l			
110.62 1.15	1			
159.38 0.58				
175.62 0.38				
191.87 0.19				
208.12 0.00				
224.37 0.58 1				
240.63 0.00				
256.87 0.19				

34.55% FREQUENCY (%) 69.10%

273.12

289.37 305.62

321.88

330.00

>

0.38

0.00

0.19

0.00

4.03

Ĩ

!+

0.00%

SPECIALISTS IN MINERAL ENVIRONMENTS

775 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7H 1T2 TELEX: USA 760167 PHONE: (604)980-5814 OR (604)988-4524

CUMMULATIVE PROBABILITY PLOT ON AU COMPANY: AVINO MINES DATE: AUGUST 23, 1988 SAMPLE TYPE:SOIL ATTN: BRIAN GAME PROJECT: MINTO ANALYSIS TYPE: GEOCHEM FILE#:7-903 & 8-477 UPPER CUMMUL. LIMIT FREQ. (PPB) (%) 766.09 1.15 668.68 1.34 583.66 1.92 509.44 2.69 3.07 444.66 3.45 388.12 338.77 3.84 295.70 4.22 258.10 4.61 225.28 4.99 196.63 5.37 5.95 171.63 7.49 149.81 130.76 8.83 114.13 11.32 99.62 12.48 86.95 13.05 75.90 14.40 66.25 16.12 57.82 19.00 50.47 19.39 44.05 23.42 38.45 26.10 33.56 26.49 29.17 29.29 25.57 29.17 22.32 30.71 19.48 34.93 34.93 17.00 14.84 37.43 12.95 37.43 11.31 37.43 9.87 54.13 8.61 54.13 7.52 54.13 54.13 6.56 54.13 5.73 5.00 98.08 30% 40% 50% 60% 70% 80% 85% 90% 95% 98% 2% 5% 10% 15% 20% CUMMULATIVE PROBABILITY

SPECIALISTS IN MINERAL ENVIRONMENTS 775 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEX: USA 760167 PHONE: (604) 980-5814 OR (604) 988-4524

CORRELATION COEFFICIENTS

COMPANY:AVIND MINES ATTN:BRIAN GAME PROJECT:MINTO FILE#:7-903 & 8-477 DATE:AUGUST 23,1988 SAMPLE TYPE:SOIL ANALYSIS TYPE:GEOCHEM

THE TABLE BELOW REPRESENTS THE PEARSON CORRELATION MATRIX SHOWING THE INTER-ELEMENT CORRELATION COEFFICIENTS. THOSE VALUES THAT EXCEED THEIR CRITICAL VALUE FOR .01 LEVEL OF SIGNIFICANCE ARE SHOWN IN DARKER PRINT AND UNDERLINED.

1	AG	AS	SB	AU
46	1.00	0.08	0.01	0.24
45		1.00	0.35	0.30
SB			1.00	<u>0.13</u>
'AU				1.00

APPENDIX B

Jumper Zone Trenching

Geochemical Analyses and Assays

SAMPSON ENGINEERING INC.

ł.

.

.

2696 West 11th Avenue Vancouver, B.C. V6K 216

COMPANY: AVINO MINES Project no: Minto		≁ 705 WEST	MIN-E 15TH ST.,	N LABS IC		B.C. V7H	i 1T2		(ACT:F31) PAGE 1 OF 1 FILE NO: 8-1091R/P1+2	
ATTENTION: E.VON ROSEN/(C.SAMPSON				604)988-4			GEOCHEM	<pre>x DATE:AUGUST 5, 1988</pre>	
(VALUES IN PPM)	Å6	AS	CU	PB	SB	ZN	AU-PPB			
137301	.4	64	15	35	15	124	25 J			
137302	.2	628	16	39	5	124	290	· T1.		
137303	.4	408	40	103	2	116	346			
137304	.4	2	17	17	1	64	ړ 2			-
137306	.3	44	26	21	10	<u> 122 </u>	100]		MINTO TRENCHE	=2
137307	2.5	1484	81	90	42	265	320			
137308	2.6	2067	69	39	92	181	166			
137309	1.6	1333	71	78	37	684	180			
137310	.3	209	31 77	44	70 43	183 87	210 60			
137311	3.2	311	<i>11</i> 	<u>26</u> 28	<u>43</u> 19	87				
137312	3.0	111 160	83 118	20 25	17	106	75 (УT2,	,	
137313	2.6 2.9	103	71	23 15	10	45	12			
137314 137315	2.6	103	45	15 39	9	56	36			
137316	2.8	131 96	66	21	9	43	40 J			
137317	8.9	7139	107	236	36519	98	4100 7			
137318	3.1	40463	4	20	1130	38	10000	7 T 3 .		
137319	1.2	3425	49	11	355	78	1280	- 74		
137320	1,8	1834	52	355	29	216	1000			
137321	.4	647	87	41	13	283	386			
137322	.2	287	30	44	30	104	260			
137323	.3	10	128	56	69	231	55			
137324	.8	98	83	30	15	58	72	775		
137325	.7	732	38	60	23	140	158			
137326	.3	2218	115	32	18	248	300			
137327	.7	1009	28	17	10	48	142			
137328	.2	829	26	47	13	82	ل_ 240			
137329	.4	926	38	120	27	134	221			
137330	1.2	24	18	23	5	73	5			
137331	1.1	37	25	35	11	85	2			
137332	2.1	33	11	24	8	53	2			
137333	1.9	52	25	100	17	170	42	> T6.	•	
137334	1.7	17	19	41	14	102	20			
137335	1.8	4	18	84 60	10 12	142 171	15 10 _			
137336	1.9	<u>_26</u> 18	<u>18</u> 14	44	10	243	<u>10</u> -	, T		
137337 137338	.8	18	40 ·	5	10	39	12			
137339	.0	10	4	9	1	19	4			
137340	1.7	21	14	11	1	7	2	ļ		
137341	1.3	205	18	11	3	71	70			
137342	2.5	73	18	26	11	49	21	t		
137343	1.3	13	8	11	1	17	14	> 77		
137344	1.6	5	13	5	6	43	10	$\left(\begin{array}{c} 1 \\ 1 \end{array} \right)$		
137345	1.9	178	19	8	2	26	22			
137346	1.9	1	5	5	1	77		l		
137347	1.9	1	3	11	1	5	10			
137348	1.6	13	5	9	1	11	4			
137349	2.0	5	6	5	1	7	2			
137350	2.1	2	22	9	1	7	3 +	Į		
137351	.4	200	71	43	12	162	123	 		
137352	1.3	883	24	44	26	96	260	78		
137353	.2	173	66 70	24	10	76	140	1		
137354	.4	108	72	17	11	72	125	ς		
137355	1.9	407	59	64 47	8 4	98 75	680 710			
137356		<u> </u>	<u>8</u> 79	<u>47</u> 80	<u>4</u>	<u>75</u> - 144		<u> </u>		
137357	.4	990 721	79 15	80 63	22	144	1020	1		
137358 137359	28.3	1542	375	8818	38	1798		- RCI		
137360	<u></u>	975	22	<u> </u>	33	318		- RC2	Σ	
137361	.4	46	22	91	<u> </u>	86		- RC		
141041									×	

COMPANY: AVINO MINES PROJECT NO: MINTO ATTENTION: E.VON ROSEN/C. <u>SAM</u>	· PSON	, 705 WEST	15TH ST.	, NORTH	ICP REPORT VANCOUVER, (604)988-	B.C. V7M		ROCK	6EOCHEM	FIL	1) PAGE 1 0 E NO: 8-790R :AUGUST 5, 1	R/P3
(VALUES IN PPM)	A5	AS	CU	P8	SB	ZN	AU-PPB					
137362	13.6	10492	265	2812	373	1595	4200	7				
137363	.9	388	19	77	49	427	124	<u>ک</u>	RC 3			
137364	2.3	441	21	225	31	555	345	J				
137365	.8	13	Ą	4	1	48	17	7				
137366	1.6	31	44	17	4	60	2	_				
137367	2.0	47	47	21	8	69	8					
137368	1.0	17	53	14	1	53	4					
137369	1.1	22	56	14	6	52	7	L	RC4			
137370	1.3	18	20	14	12	70	22	1				
137371	.8	1	19	14	1	83	17					
137372	.6	21	32	12	4	99	8	T				
137373	1.3	2	23	13	8	114	10	J				

.

· · · · ·

.

!

PROJECT	ÄVINO MINE NO: MINTO N: C.SAMPSO		7		TH ST., NORT	S ICP REPORT H VANCOUVER, B.(DR (604)988-452		ROCK	GEOCHEM	ACT:F31) PA5E 1 OF 1 FILE NO: 8-1101/P1 DATE:AUGUST 5, 1988
PPM)	137374	137375	137376	137378	137379		 			
нб	1.6	1.2	.1	1.5	.9					
AS	2	283	28	4	7					
U	17	48	30	127	20					
В	9	9	8	6	10					
SB 	3	5	1	2	1		 			
_N	18	58	68	17	23					
AU-PPB	4	104	2	6	21					
		·		V	j		 			
	GRAB RC5		R	C7						

.

•

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C.: CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

Certificate of ASSAY

C mpany:AVINO MINES P oject:MINTO Attention:E.VON ROSEN/C.SAMPSON File:8-1091/P1 Date:AUG 4/88 Type:ROCK GEOCHEM

W hereby certify the following results for samples submitted.

S mple N mber	ALI G/TONNE	AU OZ/TON
್ರಾಂಗ್ ಕ್ರೀಟ್ ಕ್ರೀಟ್ ಕ್ರಾಂಗ್ ಕ್ರೀಟ್ ಕ್ರಾಂಗ್ ಕ್ರೀಟ್ ಕ್ರಾಂಗ್ ಕ್ರೀಟ್ ಕ್ರೀಟ್ ಕ್ರಾಂಗ್ ಕ್ರೀಟ್ ಕ್ರಾಂಗ್ ಕ್ರೀಟ್ ಕ್ರಾಂಗ್ ಕ್ರಾರ್		
17 317	4.29	0.125
1 7 318	11.95	0.349
137 319	1.61	0.047
137 320	1.03	0.030
1 7 358	1.12	0.033
137 359	4,98	0.145
1 7 360	1.27	0.037
1 7 362	4.58	0.134

~

Certified by

MIN-EN LABORATORIES LTD.

APPENDIX C

Drilling Results

Logs, Geochemical Analyses and Assays

i

PROPERTY Minto

HOLE	Na	88-	ı
TOLL	140.		

	DIP TEST	
	An	gle
Footage	Reading	Corrected
	-50°	

	<u>_1Sheet No01</u>	Lat	Total Depth 80:46 (264) Logged By B. Game
		Bearing 240°	Claim Minto
Date Finished_	June 19 188	Elev. Collar 2709 1 .Ft	Core SizeN_Q
Date Logged	June 19/88		

DE	РТН ТО	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE		
0	6.09		Casing and broken ruck						
	20)								
6.09	58.67				1				
,	192.5)		Fragmental Cherty Argillite						
			- black argillite matrix with O.I.cm to 5 cm					 	
			angular clasts of grey chert.					 	
			- to 15.24m (50') very rusty and broken-up						
			recourt, ~ 80%		L			 	
			- considerable fine-grained pyrite predominantly						
			as disseminations occassionally as Fracture-						
			fillings.						
			- Stringers and Swirling' quarty, and calcite					 	
			generally cross-cutting fragmental host.					 	
			- at 22.25m (73') accassional fragments of Feldspathized					 	
			101 K. appen. A+ 25,14m(82.5') 23.5 cm - wide		ļ	·····		 	ļ
			section of feldspathized material at 245°					 	
			to core axis		ļ	ļ		 ļ	
			- at 28.65m (94.0), 60 cm - wide zone of	1801	28.65	29.25	0.60m	 	
			ets flooding ; blebs of quarty and pieces of		· .			 	
			ground quartz					 	

PROPERTY ______ Minto

н	01	F	No.	88-1
•••		-		

-

	DIP TEST	
	An	gle
Footage	Reading	Corrected
	- 50°	

• A

Hole No. <u>88-1</u> Sheet No. <u>02</u> Section		Total Depth Logged By
Date Begun	1	Claim
Date Finished	Elev. Collar	Core Size
Date Logged		

DEPTH FROM TO	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Au. oz/r	As prm	Sb ppm	
		- From 29.87m+0 30.17m (98 - 99'), 30 cm - wide zone	1802	29.87	30,17	0.30m				
		of graphitic matrial and quartz fragments (probable fault)								
		- at 30.48m (100') cherty argillite becomes								
		- From 37.18 to 37.33m (122-122.5') 15 cm- wide dyne	1803	37.18	37.33	0.15m				<u></u>
		of graywacke? Contacts at 45° to core axis. Disseninated pyrite (3-5%)								
	-	- at 39.33m (125.75') 5cm - wide white quarty								
,		vein at 30° to core axis. - at 44.19m (145'), 1.25m-wide zone of	1804	44.19	45,44	1.25m	0.030	1773	1875	
		graphitic chesty argillite, very pyritic with								
		stringers of quart, at all orgies to core axis. 3cm-wide seam of stibuit at								
		44.49m (146') within very graphitic material, minor								
		- Unit is becoming progressively more graphitic								
		and sheared.								<u></u>
		- at 51.43m (168.75') 20 cm. Wide graphitic zone					<u></u>			

.'

		PR	OPER	TY	into				HOLE No	88-	1		
F		C	IP TEST	Angle									
ļ	Foo	tage	Readin	g Corrected	Hole No. <u>88-1</u> Sheet No. <u>03</u>					Total Depth			
Ŀ					Section					Logged By.			
⊦		<u> </u>	-50°		Date Begun					Claim			
E					Date Finished Date Logged	Elev. Colle	or	. <u></u>		Core Size_			
DE Rom	PTH TO	RECOVE	RY		DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	02/E. An	Ag PPM.	Pb ppm,	Zn ppm.
				- / (bbles. Locally massive fire - grained	1805	51.43	51.63	0.20m				
				rite.						· · · · · · · · · · · · · · · · · · ·			
	<u>.</u>				1') swirling areas of white etz	1501							
				,	considerable disseminated pyrite.	1806		56.17			·		
			<u>v</u>	esy minor	disseminated galena? At 188.5' (57.45 of massive galena.	in) 1807	56.17	57.17	1.0m				
						1808	57.17	58.67	1.50m		10.6	2144	3976
8.67	67.20	95-100	10 Fe	Idspan Porphy	ry Pyke			ļ					
	220.5			ontact at	58.67m (192,5') is at 260°	1809	58.67	59.67	1.00				
				with hanging	-wall cherty argillite	1810	59.67	60.17	liom				
					nenocrysts of white feldspen.	1 811	60.17	61.17	1.0m				
				very puritic.	Disseniated fine to med-grained	1812	61.17	67,17	1.0m				
				, . .	inated throughout. As well,	1813	62.17	63.17	1.0m				
					d'on sheared surfaces.	1814	63.17	64.17	1.0m				
			`	talcy' : alo	ng sheard surfaces	1815	64.17	65,53	1.36m				
					crysts occassionally chloritic 202' (61.57m) to 207.5 disseminated fig. d pyrite and	1814	65.53	66.13	0.60m	0.0rg	A.1	719	1086
				ery siliceous at some slicker	202 (61.5tm) to 207.5 Jusseminated t.g. d pyrite and widding on broken surFaces. grey surphish	1817	66.13	67.20	1.07m				
					:) Minto Shear Zone.	1818	67.20	69.20	lion				
			1		zone of intensely siliceous,		ļ						
					At 65.53m (215') 7cm- wide		Sw23						
				2 ²¹ (827									

 \sim

		PRO	PERTY	r	into				HOLE No	88	-1	<u> </u>	
F	<u> </u>	DIF	TEST	ngle									
ł	Foo	otage		Corrected	Hole No Sheet No Section						th		
			~ 50°		Date Begun	-	1						
Ē					Date Finished Date Logged	Elev. Collo	ar			Core Size			<u></u>
DE FROM	РТН ТО	RECOVERY	·		DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE				
<u> </u>													
·	ļ		whit	ie quartz	vein at 2 20° to core axis								
			-Num	erous quart	is stringers throughout zone	· · · · · · · · · · · · · · · · · · ·							
<u> </u>			gene	rally 15-2	_5°						ļ		
			- Diss	eninated py	rite throughout zone. Dissemination	<u>ns</u>							
			1		F grey assenopyrite through								
					30re. At 66,14m (217') 0.3 cm-								
					sphalerite and galera at 220°		 						
				core axis									
					nd broken footwall contact at		ŀ						
			67.1	20 (220.5')									
67.20	80.46	95%	Gree	enstone / Ba	salt								
, 170.5	264)		- dar	k green vo	leanie rock								
				•	tz-calcite stringers at all			,					
			ang	les to ca	ste axis.								
			- at	72.54m (2	38') volcanic becomes purple								
			- still	1 numerous	quartz and predominantly acalcite	·····							
			strin	gas.			ļ				<u> </u>		
					ng ; minor hematite					··· , ·		_	

. ·

DIAMONU DRILL RECOKU

	3	PR	PERTI	rn	Λιντο				HOLE No.	88-2		
·		0	P TEST	ngle							93.01	
Ē	Foo	tage	Reading		Hole No. <u>88-2</u> Sheet No. <u>01</u> Section				<u></u>	Total Depth_ Logged By_	13.26m. B. Game	2
Ę			- 50°		Date Begun June 19 188	Bearing	290	0	<u>`</u>	Claiml	Minto	
Ē					Date Finished June Date Logged. June 20,	_ Elev. Colld -	r <u>27</u>	58·5 F	<u>.</u>	Core Size	NQ	
DE FROM	PTH TO	RECOVER	Y		DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Ξ		
0	9.14		Casir	ig and b	roken rock							
(o	30)			2								
9.14	23,32	90-95%	Fragm	iental Che	rty Argillite							
	76.5)		-		matrix with 0.1-5.0 cm clasts							
				, e	grey chert.							
				-	it 1-2% occurs as fine-grained							
			1 1 2		and less commonly as fine-grains							
				ture filling	,							
			1	-	1 rusty to 21,33m (70'). Recovery							
				•	section is ~ 80%							
				•	swirling areas of white calcite							
					Predominantly calcite							
				- que s is i								
23.32	24.12	95-100°	10 Felsi	c Dyke								
	79.1)			-	crows rock	1819	23.32	24,12	D. 80M			
					and Footwall contacts approx 45°							
			•		'Bkbs' and fracture fillings of							
					Pyrite (7-10%)			<u></u>				
					wingers of calcite at all angles							
			10	con ari	8.	<u> </u>			L	1		

	;	P	ROF	PERTY	·	JTO				HOLE No	88.	-2	 e.
	Foo	tage	R	TEST An eading 50°	gle Corrected	Hole No. <u>88-2</u> Sheet No. <u>02</u> Section Date Begun Date Finished Date Logged	Dep Bearing				Logged By Claim	y	
DE FROM	РТН ТО	RECOV	ERY			DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE			
	61.37		5%	- blac of - pyr - grai - corr graf - che	ik cherty angualan ite content ined diss e is fro phitic aff nty frogram utz and	ty Argillite argillite with 0.1-5.0cm clasts grey chest. (1-20%) occurs as fine to med- eminations and fracture-Fillings ctured and streared, becomes quite ter 30m. Series of small Faults. into occassionally feldspathized? salcite stringers at all angles ggy nature of core due to							
				- 29.4	Ilm: 70cm core with	calcite. - wide zone of fractured, 'ground' quartz fragments and disseminated	1820	29,41	30.1)	0.70m			
						1- wide zone of 'quartz- Flooding' ely siliceous chenty-argillite.	1821	41.70					
					Swithin Pyrite as Fin	(2-3-10) (locally more concentrated) (2-3-10) (locally more concentrated) re-grained disseminations and racture - fillings.	\\$23	43,70		0.80m			

PROPERTY_____MINTO

HOLE No. 88-2

١.

	DIP TEST	
		gle
Footage	Reading	Corrected
· · · · · · · · · · · · · · · · · · ·		
	-50°	

DEPT	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE				Ţ
	 	- very graphitic on fracture - planes								
		- remains very fragmental and quite siliceous			<u> </u>		·			1
		to 48.61 m.								
	 	- 50.04m : 1.10m - wide section of gouged, graphitic								
	 	chenty orgillite. Probable fault.		 					+	+
	 · · · · · · · · · · · · · · · · · · ·	- 52.18m: 2.99m - wide section of siliceous cherty	1824	52,18	53.18	1.0m	·····		ļ	
	 	argillite. Light greg-green in colour with			54.18					
	 	numerous stringers and 'blebs' of quarty.	1926	54.18	55.17	0.99m	<u> </u>			+
	 	Disseminated and Fracture- Filled pyrite		·			······································			+
		(3-5%), bocally massive, 'smeared' pyrite on Sheared surfaces.								<u>+</u>
	 	- 58.82m: 1.8m- wide zone of very graphitic								
	 	Somewhat Fractured chanty angillite.							 	
	 	Probable fault.								<u>}</u>
-+-	 	- 60.62m: 0.75m - wide zone of very siliceous	1827	60.37	61.37					<u> </u>
	 	cherty argillite. Quarty Flooding; dissenirated								┼──
	 	of preceding fault material is very	· · · · · · · · · · · · · · · · · · ·							
		(yritic	<u> </u>							1
							<u></u>			

.

.

	3	PF	ROPER	ry	NTO				HOLE No	88	5-2		
Γ	=		DIP TEST	· · · · · · · · · · · · · · · · · · ·									
	Foo	tage	Readin		Hole No. <u>88-2</u> Sheet No. <u>04</u>					•	۰		
L			-50°		Section Date Begun	-							
F					Date Finished								
L					Date Logged	-							
DEF ROM		RECOVE	RY		DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	An. 02/1	Aq ppm	As PPM	Pb ppm
51,37	79.85	95%	Q,	iarty - Carb	anate Altered Rock								
201.35			0	rey-green_	rock with areas of swirling	1828	61.37	62.37	1.0m				
				white que	itz and carbonate.	1829	62.37	63.37	1.0m		ļ		
				iwirling ma	trix somewhat chloritic and	1830	63.37	64.37	1.0m				
		<u>.</u>	ł	alcy as		1831	64.37	65.37	1.0m			ļ	
			<u> </u>	original ro	ck, chesty-argillite? or	1832	65.37	66.37	1.0~				
				•	Idspar porphyry dyke?	1837	66.37	67.37	1.0m				
				,	fine to med-grained pyrite	1834	67.37	68.37	1.0m				
			۲	hroughout.	Fractured - Filled fire - grained pyrite	1835	68.37	69.37	1.0m				
				nd occassi	onal coarse-grained 'blebs' as	1836	69.37	69.80	0.43m				
					l content ~ 3-5%.								
			- 6	9.80 m : 0,3	tom-wide zone of quarty flooding.	1837	69.80	70.55	0.75m				
					Den - wide stringers of quarty at								
					gles to core axis. Final 0.20m								
					s section is a breactia zone with								
					quarty enclosing 0.5- 1.0 cm - wide								
					clasts of cherty - ergillite? Dissen.								
					acture- filled pyrite throughout 3-5%								
			- 70		Em-wide section containing a	1838	70.55	70.90	0.35m	0.548	44.6	2231	12178
					-wide vein of massive sulphide								
				,	nantly pyrite, sphalerite with minor								

DIAMONU DRILL KEUORU

				IN TO				HOLE No				
		DIP	TEST Angle									
	Foote	age l	Reading Corrected	Hole No Sheet No						ነ		
			-50°	Section Date Begun	-					<u></u>		
<u> </u>				Date Finished	-							
				Date Logged								
DEPTH FROM T	H TO	RECOVERY		DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Aq ppm.	As' ppm.	Flo ppm,	
			arsenoprite?)	Hanging wall contact of vein ~					·			
			· ·	axis. Footwall contact at								
			~ 55° to C	A								
			- 0.85m imme	diately following mineralized vein	1839	70.90	71,75	0,85m				
				y ungy with most of the	1840	71.75	72.75	1.0m				
				a sulprides? leached out. Rock	1841	72.75	73,75	1.0m				
			is dark gre	, in this section.	1842	73,75	74.82	1.05				
				iely quarty - carbonate altered rock								· · · · · · · · · · · · · · · · · · ·
				ninor maniposite and 3-5% pyrite								
				245.5'). At this point becomes	1843	74,82	75.77	0.95m			L	
				siliceous and pyritic with	1844	75,77	76.12	0.35m				
				sulphide (sph. gn?).	1845	76.12	76.37	0.25m	4.4	1871	1115	
				to 76,12m, slightly serpentinized,	1846	76,37	77.37	1.0m				
				fractured material (fault?)	1847	77.37	78.37	1.0mg				
				to 76.37m: very silicious section	1848	78.37	79.85	1.48m				
		<u></u>	with pyrit	1								
				sely altered rock to 79.85m								
				•								
79.85 93.7	26	95-100%	Serpentinized	Rock	1849	79.85	80.85	1.0m				
262 306			- dark green									e e

NEVILLE CROSBY INC.

TELEPHONE USE-4343

,

	, -	PR	OPEF	RTY	NTO				HOLE No	88-	2		
	DIP TEST Angle Footage Reading Corrected - 50°		Angie ing Corrected	Hole No. <u>88-2</u> Sheet No. <u>06</u> Section Date Begun Date Finished Date Logged	_ Dep _ Bearing	1		I	Total Depth Logged By Claim Core Size				
DE FROM	РТН ТО	RECOVER	27		DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE				
				numerous strin to core ax disseminated	gers of quarty at all angles is. fine-grained pyrite <1%								
				·····									
					· · · · · · · · · · · · · · · · · · ·								
	93-26			ENT) OF HOLE								
					······	·							

DIAMONU DRILL KECORU

	-	PRO	PERTYMINTO		HOLE No									
	DIP TEST Angle Hole No. 88-3 Sheet No. Footage Reading Corrected Hole No. 88-3 Sheet No. Footage Reading Corrected Hole No. 88-3 Sheet No. Gate Begun June 21 188 Date Finished June Date Date Logged June 26,				ep learing	060)	L	Total Depth Logged By <u>B. Game</u> Claim <u>Minto</u> Core SizeNQ					
DE FROM	РТ <u>Н</u> ТО	RECOVERY			APLE No. F	FROM	то	WIDTH OF SAMPLE	An. ozlt	Agi ppm	Pb Ppm	Zn. Ppm,		
0	6.40 21)		Casing and broken rock											
6.40 (21	12.49 41)	90 - 95 %	Very Altered and Sheared Greenstone? - are, green rock with swirling who	1	50 (7,40	1.0m		· · · · · · · · · · · · · · · · · · ·				
			and calcite	a shoared 18:	1	7.40 5.40		1.0m						
			- numerous 30 - 50cm - wide gauged an Sections			1.40		1.00						
			- Disseminated and Fracture-filled Fine t			0.40	11.40	1.0m						
			grained pyrite (1-20%)		855 11	<u>4.Uo</u>	12,49	1.09~						
	42)	90°/0	Fault	/8/	1566	12.49	12,79	0.30M						
<u>41</u>	42)		- slightly graphitic gouge material - contains pebbles of argillaceous ma	krial										
2,79	16.76	95°/0	Feldspathized Greenstone											
42	55)		- light greis-green roch with numerou	s stringers 18	157 1	2.79	14.02	1.23m		·····		· · · · · · · · · · · · · · · · · · ·		
			of quartz - calcite at all argues		858 1	4.02	14.92	0.90m	0.033	50	1826	951		
			- Dissen! noted and fracture - filled time -	growined 1	1859 11	492	15.92	1,0~						
			pyrite (2%)		1860 19	5.92	16.92	1.0m	0.037	14.4	4015	2785		
			- 14.02m: 90cm- wide 200 with 3-4	0/0										

NEVILLE CROSBY INC. TELEPHONE USE-4343

..

DIAMONU DRILL KECORU

		PR	OPERTY	·mio	to	HOLE No								
	DIP TEST Angle Footage Reading Corrected		Angle 1e Reading Corrected Hole No. 3%-3 Sheet No. Section Date Begun Date Finished		Dep Bearing	j			Total Depth Logged By Claim Core Size					
	РТН			L	Date Logged		1		WIDTH	[Ţ	· · · · · ·	
ROM		RECOVE		<u> </u>	DESCRIPTION	SAMPLE No.	FROM	то	OF SAMPLE			-		
		······································		nionted fine	- grained pyrite, and minor						+	-		
					n. sin cm wide Juggy Fractures									
			Sone	dissen. gn b spl	-?. at 16.30m	-								
6.76		95%	Green	store										
55			- ligi	nt green, Fi	re-grained volcanic		ļ		·					
					2,1-0,3 cm - wide stringers of							ļ		
			وريع	str, at a	Il angles to C.A.									
			- Dis	sseminated f	ine-grained pyrite (1º/0)									
			- 000	assional fel	dspathized sections to 24m		<u> .</u>							
			- 24.3	38m: 1.20m	- wide section of greenstone wit	1961	24.38	25.58	1.20m					
) <u></u>	<u>c</u>	onsidenable	plates' pyrite on fractured		-							
				urfaces										
			- 27.	43m : 0,75m	- wide rection of Silliceous graton	e. 1862	27.43	28.18	0.75m					
					- 2.0cm gtz weining at 10-20-									
				to C.A. D	isseminated med -grained pyrite (3-4 somewhat	<u>!°/。)</u>								
				<u>m 28.5m g</u>	rstore becomes a ultrabasic in		<u> </u>							
				•	(dark green and Slightly serper	<u>+~</u>	+							
		<u> </u>	1		ssionally graphitic an factured									
				bultacos,			+				_	+		
											1			

NEVILLE CROSBY INC. TELEPHONE USE-4343

. :

F	PROPERTY	W	OTO	
	DIP TEST			
	An	gle		
Footage	Reading	Corrected	Hole No Sheet No	Lat
			Section	Dep
	-600			Bearing
			Date Begun	Bearing
			Date Finished	Elev. Collar

Total Depth	
Logged By	
Claim	
Core Size	

1

HOLE No. - 88-3

	PTH TO	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE		
			39.32 m: 0.75 m - wide section of somewhat	1863	39.32	40.07	0.75m	 	
			Siliceous and precised graphstone with					 	
			pyrite (3-5%) on Fractured Surfaces.					 	
			43.58m : 0.20m- wide zone of porphyrigtic Aldspathized					 	
			greenstone. Rounded phenocrysts of calcite.	·				 	
			45.00: 4.22m- wide zone of very siliceous gratore.	1964				 	
	 		light grey-green, very 'sealed' rock with	1865	1	í i		 	
			considerable fracture-filled and disseminated		47.0			 	
			med-grained pyrite (3-5°10), minor disseringte	1867	48.0	49.22	1.22m	 	
			orig sulphide (gn? sph?) < 10/0	<u></u>	ļ			 	
			- from 50m; or cassional discrete sections of					 	
			Eldspathized grstone.					 	
			- 57.30m; Im- vide section quite siliceous					 	
			with 1-3cm angular clasts of reddish					 	
			chent in siliceous grstone.					 	
870	(02.4B		Chesty Argillite	· · · · · · ·				 	
	205)		- black argillite matrix with 1-5cm angular					 	
			Fragments of light grey chent.					 	
			- stringens of quarty and calcite at all						

NEVILLE CROSBY INC. TELEPHONE USE-4343

.

		PR		MINTO	HOLE No								
	DIP TEST Angle Footage Reading Corrected			Hole No. <u>88-3</u> Sheet No. <u>04</u> Section Date Begun Date Finished Date Logged	_ Dep _ Bearing	1			Total Depth Logged By Claim Core Size				
DE FROM	PTH	RECOVER	Y	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE					
			pyrite (1-	d and Fractured - filled fine-grained									
	66.44	95%	- LAPRE - PARTA	instone with argillaceous sections ic. (5-7%). Pyrite as fracture -	1868	63.48		1.0m					
			fillings and - minor pp	massive on fractured surfaces.	1870	64.48 65.48	65.49	1.0m					
	76.65	95%	- occassional gestine et . Occassional to C.A.	Chenty Argillite Sections and clasts of feldspathiged top of unit. Stringers of quantz at all angles Ssam Figid pyrite									
	90.77 265)		Fine-grained - matrix is R	Hornblunde Porphyry Dyke, Isic (light gra, -green)									
				stringers of quanty and colcite			•						

NEVILLE CROSBY INC.

TELEPHONE USE-4343

PROPERTY MINTO

٦

HOLE No. 88-3

	DIP TEST					
	Angle					
Footage	Reading	Corrected				
	-600					

. . . .

Hole No. <u>88-3</u> Sheet No. <u>05</u> Section Date Begun Date Finished	Dep Bearing	Total Depth Logged By Claim Core Size
Date Logged		

DE FROM	РТН ТО	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Au ozlt.	Aq PPM.	As PPM.	
			- Disseminated and fracture-filled pyrite (1-2%)								
		€ . '	- top 2.5m of unit mixed with some argillerous								
			material								
			- 77.42m: 5cm - wide white quarty vein 600 to	1872	77.42	78.12	0.70m	0.036	0.5	2534	
			C.A. Disseminated and Fracture-Filled pyrite								
			and grey subplicte (gn?) or (asp?)								
									[
30.77	131.36		Fragmental Chertz Argillite.								
(265	431)		- alternating sections of very cleanty and very		<u>.</u>						<u> </u>
			fragmental rock.								
			- Occassional claste of feldspathized rock					s			
			- numerous quarty and calcite veinlets at					·			
			allangles to core axis.								
			- Blebs' and bracture - Fillings of fire to med-							·	
			grained pyrite (1-2%)								
			- graphitic on fractured surfaces.								
			- from 115.52 to 119.17m; Fragmental chent is buff-		<u> </u>			,			
			coloured to orange-brown								
			- 123.13: 30cm wide section, minor quanty wearing,	1873	193.13	123.43	0,30m		 		
			disseminated pyrite, gn?								

NEVILLE CROSBY INC. - remains very tragmental to End of Hole TELEPHONE USE-4343

F. In at Ha. F

HOLE No. 88-4

Total Depth_

Logged By___

Claim Minto

Core Size NQ

88.69m

B. Game

DIP TEST
Angle
Footage Reading Corrected
--45°

				-				 		
DE FROM	ртн то	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE			
	6.40		Casing and broken rock							
(o										
<u></u>	<u> </u>									
6.40	42.36	90.95%	Chesty Argillite (Fragmental)							
(21			- black argillite with angular clasts of 1-1000							
			grey chest.							
			- fractured and oxidized to 13m. lluggy where							
·····			calcite has leached out of veinlets							
			- pyrite as fine-grained disseminations and							
			Fracture - Fillings (1-2%); occassional platey							
			smears on fractured surfaces							
			- recovery ~ 80% thru first 13m.		1					
			- from 19-22, sm; very fractured, gouged and		 					
			graphitic zone (Faullting)							
			- 23.73m: 0.79m - wide zone of gouged, graphitic	1874	23.73	24.51	0.78m			
• •			rock. Quarty fragments, considerable dissem.							
			f.g. 'd pyrike (3-5%)	<u></u>						
			j							
·			- chenty argillite is very intersely fragmental from 25m general increase in disseminated							
			V	<u></u>	1					
			pyrite, lecomes more siliceous.		<u> </u>					
					1	I		1	1 1	

PROPERTY______MINTO

HOLE No. 88-4

Total Depth_____ Logged By_____ Claim_____ Core Size_____

	DIP TEST							
	Angle							
Footage	Reading	Corrected						
	-450	· · · · · · · · · · · · · · · · · · ·						

Hole No Sheet No2	
Section	Dep
Date Begun	Bearing
Date Finished	Elev. Collor
Date Logged	

DEP ROM	<u>т н</u> то	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	An	7		
				1875	26.73	27.73	1.0m				
			27.73m; 20cm - wide section of massive stibuite	1876	27.73	27.93	0.20m	1.073			
			and pyrite in chesty argillite (30-40%)	1877	27.93	28.93	1.0m	0.338	0.266	3.2	m.
	_		- considerable disseminated and fracture - filled fire to	1878	28.93	29.93	1.0m	0.174	Í	10.5	FE
			med-grained porite and stibnite (5-8%) thru	1879	29.93	30.93	1.0m	0'128			
			next 6m past massive section.	1880	30.93	31.93	1.0m	0.058			
			- occassional Small 'blebs' of mariposite.	1881	31.93	32.93	1.0m				
			- 31,54m: 0.25m - will zone of fault going.	1982	32.93	33.93	1.0m				<u> </u>
			- 33.37m; scm-wide quanty vein at 60° to	1883	33.93	34.93	liom				
			С.А.	1884	34.93	35.9 B	1.0m	0.035			
			- at 34m; still very fractured, graphitic cherty	1825	35.93	36.93	1.00				
			argillite with considerable disseminated and	1886	36.93	37.93	lion	0.11			
			fracture - Filled, Fine - grained pyrite (5-7%)	1887	37.97	38.93	1.00				
			- numerous 10 - Socm - wide Foult gouge jones	1888	38.93	39.93	1.0M				
			to 39m. Very Siliceous.	1889	39.93	40.93	1.0m				
			- 39.62m; Red and 'buff'-coloured fragments	1890	40.93	42.36	1.43m				
			of chest					·			
			- remains intesty siliceous chenty argillite to								
			40.35m								
			- 40.38m; HScm- wide Fault gouge.								
T											

DIAMONU DRILL KECORU

PROPERTY _________

HOLE No. 88-4

	Angle						
Footage	Reading	Corrected					
	-450						
	1						

.

Hole NoS&-YSheet No Section Date Begun	Dep Bearing	Total Depth Logged By Claim
Date Finished	Elev. Collar	Core Size
Date Logged		

DEF FROM	РТН ТО	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE		, ,		
42.36	43.74		Siliceous Greenstone	1891	42,36	43,74	1.38m				
(139	143.5		-pale green, very siliceous rock						ļ	ļ	
			- fine - grained disseminated and fracture - filled						ļ		
			pyrite and pyrchotite								
43.74	50,80		Cherty Argillite								
(143.5			-grey black chesty argillite.						<u> </u>		
			- some sections mostly chert.								1
			- 0,1-3.0 cm - wide stringers of quarty and							ļ	
			calcite at all angles to core axis.			ļ			ļ		
			- 43.74m: 1.02m - wide zone of extremely siliceous	1892	43,74	44.76					
			chesty argillite (swirling areas of white	1893	44.76						
			quarty) with 7-10% fire-grained pyrit						ļ		
			- chesty consillite becomes slightly fragmental in							ļ	<u> </u>
			texture to so. 80m					· <u> </u>	<u></u>		
								<u></u>	ļ		
50.80	57.91		Siliceous Breenstone.						<u> </u>		<u> </u>
			- pale gran siliceous rock								<u> </u>
			- Disseminated and fracture- filled fire-grained							 	
			lyrite and pp								

		PROPERTYMINTO			·				HOLE No	88-	4	
ļ		0	DIP TEST									
	Foo	itage	Angle Reading Corr -45°	Section Date Beg Date Fin	88-4 Sheet NoO4 jun ished iged	Dep Bearing	1			Total Depti Logged By Claim Core Size		
	PTH TO	RECOVE	RY	DESCRIPT	ION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE		1	
······			C.A. 0	and chloritic on	prenowysts of opaque							
57.91 190	62.05	95%	- Nactured		······································	· · · · · · · · · · · · · · · · · · ·						
			green duissenin	greenstone, within ated pyrite (1%)								
		914			~ 20° with grstone.							
<u> </u>	67,70	95%	- light gr - dissemin	ated and fractured	Fire-grained greton Filled F.g'd pyrit							
		· · · · · · · · · · · · · · · · · · ·	· slightly	chloritic and '	tally on Fractured							
										A ₁ 21 - 221 - 2		

, :

.

		PR	OPERTI	MIN	to				HOLE No	88-	. 4		
	DIP TEST Angle Footage Reading Corrected - 45°				Hole No. <u>88-4</u> Sheet No. <u>05</u> Section Date Begun	Dep	Dep				Logged By		
					Date Finished Date Logged								
	EPTH RECOVERY		· · · · · · · · · · · · · · · · · · ·	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE					
67.70	76.50	95-100	% Shea	ved Ultram	<u>жБ'і</u>								
	<u>251)</u>		4	-	n rock with swirling stringers . und ralcite.								
			- 14	ny taley	and chloritic and fracture - filled fine - grained								
			<u>₽</u> r	ite and	Po (190)	· · · · · · · · · · · · · · · · · · ·							
				tured and	gouged at top of unit								
16,50	88.69	95-100°/	6 5il	iceous G	neonstore.		·						
251	291)		- <u>Aur</u>	0	Fire-grained volcanic. Igens of quanty at all angles								
				Sam argul	lan clasts of opaque to grey								
			- 1-	Scm angu	las clasts of gray porphyrytic								
					blende porphyry?) pyrite and pø (1 %)								
				<u> </u>	ID OF HOLE								

NEVILLE CROSBY INC. TELEPHONE USE-4343

. · ·

DIAMONU DKILL KECORU

PROPERTY_______

	DIP TEST	
	An	gle
Footage	Reading	Corrected
	- 50°	

Hole No	БТТ	Shee	t No. 01	Lat
Section			· · · · · · · · · · · · · · · · · · ·	Dep
Date Begun	JULY	Ч.,	1986	Bearing_
Date Finished_				Elev. Colla
Date Logged	~ ~		·	

Lat	 Total Depth.
Dep	 Logged By_
Bearing	Claim

2822.79

HOLE No. ---

Logged By <u>B. Game</u> Claim <u>Minto</u> Core Size <u>NQ</u>

80.46 m.

88-7

DE I FROM	РТН ТО	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE			1	T
0	6,40		Casing and broken rock								
(o	21)					<u> </u>					
								<u></u>			
		90%	Cherty Argillite		<u> </u>			<u></u>		-	+
(21	180		- black arguillite with 1- scon argulan Fragments			<u> </u>					
			and swirling areas of gray cheat.		<u> </u>					-	
			- numerous stringer of white quantz at all		ļ						
			angles to core axis		_	_					
			- numerous 10-30 cm - wide zones of graphitic		ļ	<u> </u>					
			fault gouge to 22m.								
			- Disseminated and fracture - filled Fine - grained			L					
			pyrite (1-2%)								
			at 22m; In long section of very								
			Siliceous chert								
			- wigging stringers where calcite has 'leached'								
			out.					<u></u>			
			- 31.09m: 4.9m - wide zone of siliceous cherty	2101	31.09	32.09	1.0m				
			orgillite. Stringens of white quanty at all	2102	32.09	33.09	1.0m				
			angles to core axis, Disseminated and	2103	33.09	34.09	1.00		ļ		
			Fracture- Filled pyrite (2-3%)	2104	34.09	35.09	1.0M				<u> </u>
			chant is 'buff' coloured	2105	35.09	36.0	0.91m				

DIAMONU DRILL KECORU

		PR	OPERTI	PERTYMINTO					HOLE No	88	-7		
				ngle	Hole No. $\frac{68-7}{2}$ Sheet No. $\frac{02}{2}$	l at			-	Fotal Denti	h		
ŀ	Footage Reading Corrected		Corrected	Section	Dep	<u> </u>		Logged By					
					Date Begun Date Finished Date Logged	-	Claim Core Size						
DE	PTH TO	RECOVE	RY		DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	An . oz/t	As ppm	Sb ppm,	
			- ch	ents argill	lite becomes much more fragment	R							
				39m.	atz- calcite stringers at ell	2106	51.03	52.03	liom				
					<u>c</u> .A.	2107		53.03	1.00				
				•	om - wide section of gets veining	2108	53,07	53.63	0.60m	0.066	4451	558	
				and bri	ecciation. Disseminated and fracture -	2109	53.63	54.53	0.90m	-			
				Filled	porite (3-5%)							L	
				Immedia	tely followed by 0.90m of						ļ		
				Slighth	gouged (Faulted) material with	<u></u>							
· · · · · ·				<u>qtz s</u>	tringers and fragments. Disseminated	.							
				fine -	grained pyrite (3-50%)								
4.810	69.65		Gree	enstone D.	yke,								
	199)				contact @ 40° to C.A.								
				- ,	stringers of quarty and colorik.								
					fin - grained pyrite (10%)								
					J (•								
0.65	61.25		Fou	lt Gous	L								
99					e naturial.		· · · ·						

NEVILLE CROSBY INC. TELEPHONE USE-4343

•

...

DIAMONU DRILL KECORU

		PRC	PERTY	NTO				HOLE No.	88	-7			
			P TEST Angie										
	Fo	etage	Reading Corrected	Hole No Sheet No Section	Dep	1			Total Depth Logged By Claim Core Size				
ļ				Date Begun Date Finished Date Logged									
	PTH TO	RECOVER	r	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE					
61.25	67.66		Sheared Sligh	stly Serpentinized Greenstone.									
(201	222	}	- dark green	rock with swirling verinlets calcite at all angles to C.A.									
) on sheared surfaces.									
			- Disseminate gyrite.	d and tracture- filled fine-grained									
			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·									
67.66 (222	72.84 239			tone and Chentz Angillite rock with fragments of									
			cheaty argil	lite (angulan Brags)									
			- 67.76 m; s	reveral 1 cm chloritized calcite						· · · ·			
72.84	80,46		Greenstrue							-			
	264)			volcanic rock.									
			- at 76.8 m	; becomes purple volcanic.									
											<u></u>		
			END	OF MOLE									

~

77

	PROPERTY			ERTY	0	(INTO				HOLE No.	88.	-5		
F			DIP	EST An	ale									
F	Footage Reading Corrected			Hole No. $\frac{88-5}{5}$ Sheet No. 2	/ Lat				Total Depth <u>100.27</u> Logged By <u>B. Game</u>					
F	Section Section Date Begun						Dep Becrine	250	,		Logged By	<u>p</u> . (Minto	Dame	
F				<u> </u>		Date Finished	Bearing		2930	,4.	Core Size.	Na		
Ľ						Date Logged June 30,								
DEI	тн то	RECOVE	ERY			DESCRIPTION	SAMPLE N	la. FROM	то	WIDTH OF SAMPLE	Ξ	, , , , , , , , , , , , , , , , , , ,		
0	3.05			Casi	ng and	broken rock								
0	10)				~									
5.05		90-95	%	Very	Fragmen	tal Chert and Argillite								
10				-		ulan clasts of light grey								ļ
				chent						ļ				
				- Som	e section	s mostly chent.								ļ
						they chest to 24m							1	
						ed and rusty to 20m			ļ					
					/	ggy cowities where calcite he								
					ched' o.									
						Fire grained pyrit (1-2010)								
						dramatic increase in argillite								
						newbart fractured and shea	ied,							
						itic and slightly talcy on			ļ				<u> </u>	
					15	· · · · · · · · · · · · · · · · · · ·								
					•	n-wide Fault gauge.								
						-Sm - with Fault gouge, Fault	- 189%	35.77	36.52	0.75m				
						Stwo chest argillite and								
						porphys dyke.								L
								1						1

.

PROPERTY______MINTO

DIP TEST
Angle
Footage Reading Corrected
--50°

.*

Hole No	Lat
Section	Dep
Date Begun	Bearing
Date Finished	Elev. Collar
Date Logged	

HOLE No. 88-5

Total Depth_____

Logged By_____

Claim_____

Core Size_____

DEP	тн	RECOVERY	DESCRIPTION				WIDTH			 1
ROM	то	RECOVERI	DESCRIPTION	SAMPLE No.	FROM	то	OF SAMPLE	<u></u>	_	
36.52			Feldson Porphyry Dyke.	1895	36.52	37-52	1.0m			
			- light grey- green (dioritic?) rock with	1896	37.52	38.52	1.0m			
			0.5 to 2 cm argular and concentric perocrysts	1817	38.52	39.52	1.0m			
			of feldspan		39.52	40.52	1.00			
			- performants appear slightly chloritized in	1999	40.52	41.52	1.0~			
			places,	1900	41.52	42.36	1.0M			
			- Disseminated and Fracture - filled fine - grained	1901	42.36	43.11	0.75			
			to med-grained pyrite throughout (3-4%);	1902	43.11	44.1	1.0m			
			some sections with more massive michaliz-	1907	44,11	45.11	1.0m			
			ation.		45.11	46.11	liom			
			- dyke is very fractured and sheared with	1905	46.11	47.11	1.0m			
			occassional stringens and veinlets of quantz		47.11		1.0m			
			and calcite		48.4		liom			
			- very 'talcy'		49.11		lion			
			- 42.36m; very soft and friable section for	1909	50.11	51.11	1.0 m			
			0.75m. Disseminated fine-grained pyrite and		1		0.85m			
			minor disseminated fire-grained arsenopyrite							
			and sphalenite?							
			- 43.84m: 20 cm - wide zone of gouged material							
			(probable fault)							

PROPERTY ______MINTO

	DIP TEST						
	Angle						
Footage	Reading	Corrected					
	-50°						

Hole No. 88-5 Sheet No. 03		Total Depth Logged By
Date Begun	Bearing	Claim
Date Finished	Elev. Collar	Core Size
Date Logged		

HOLE No. _________

DEPTH FROM TO		RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	An Oelt.	Ag ppm.	As pm	Zn, Ppm
			51.96m: 0,56m-wide zone with stringers of	1911	51.96	52.52	0.56m	r. 			
			fine-grained pyrite and minor fracture -		1		1.27m				
			filled sphalenik?	1913	53.79	55.02	1.23m				
			- From 53,79m to 60.65, numerous stringers	1914	55.02	55.57	0.55m				
			and Fracture - Fillings of parite and sphalaite	1915	55.57	56.57	1.0m				
			This section Slightly more Siliceous.	1916	56.57	57.57	1.0m				
			- 55.02m: 0.55m - wide zone of barded white	1917	57.57	58.57	1.0m				
			questy in feldspan porch dyke. Bards of	1918	58.57	59.57	1.0m				
			pyrite and sph.	1919	5.9.57	60.65	1.08m				
			- 63.80m: 0.55m- wide yore with stringers of	1920	60.65	61.65	1.0m				
			pyrite and sphalenite	1921	61.65	62.65	lion				
			- 64.58m: 0.70m - wide your with stringers OF	1922	62.65	63.80	1,15m				
			pyrite and gehalenite (?) with and Fine-gravind	1923	63.80	64.58	0.78m	0.071			
		·	disseminated assenopyrite, Very Siliceous section.		64.58	65.28	0.70m				
			- 69.49m; 0.70m-wide zone of massive and		65.28	66.28	1.0m				
			dissiminated pyrite sphallonite and arcenopyrite.	1926	61.28	67.28	1.an				·
			minor quests which a	1927	67.28	68.25	1.an				<u> </u>
			- From 66m on, dyke becomes much more	1928	68.28	69.49	۰.۰۳		ļ		
			silicears, competent unit : less shearing.	1929	69.49	70.19	0.70m	0.361	6.8	28,002	10,73
	1										

PROPERTY	MINTO
----------	-------

	DIP TEST An	gle
Footage	Reading	Corrected
	- 50 ⁰	

Hole No	Lot	Total Depth
Section	Dep	Logged By
Date Begun	Bearing	Claim
Date Finished	Elev. Collar	Core Size
Date Logged		

HOLE No. 88-5

DE P FROM		RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE			
	<u>.</u>			1930	70.19	71.12	1.0m	 		
			- As dyre becomes more siliceous and competent,	1931	71.19	72.19	lom	 		
			sulphide content drops off (1-2010)	1932	72.19	73.19	1.0m			
 			- Doly sections of increased sulphide or	1933	75.58	76.48	0.90m	 		,
			exhibiting shearing are sampled from this	1934	76.92	78.02	1.100	 		
ļļ			point.	1935	80.37	81.47	Lilon	 		
			- 75.58m: 0.90m - wide section with "smeared pyrite	1936	83.21	84.41	1.20m	 		_
			on fracture places	1937	84.41	85.64	1.23m	 		-
			- 76,92m: 1.10m- wide section with 'smeared' pyrite			ļ		 		
			and asp? on Fracture planer. Silliceous.							
			- 80,37m; lilon - wide section. Minor etz veining							
			Disseminated fine to med-grained pyrite					 	ļ	
			(3-4%)					 		
ļ			- 83.21: 2.43 m - wide section with disseminated					 		
			and plates parite on fractured surfaces.		ļ			 		
			From \$3.21 to 84,73m; minor gray supplied					 		
			(sph?) on fractured surfaces.					 		
-			- q1.43m: 1.8m - wide sections, very siliceous and	1938	91.43	92.43	1.0m	 		
			sheard. Taky on sheared surfaces Feldspa	1939	92.43	93.23	0.80m	 		
			phenocycles are pink. Footwall contact a					 		
			10° to C.A.							

Ρ	R	0	P	Ē	R	Т	Y	MINTO
•	•••	-	•	-	•••	•	•	

-. . . *-*

HOLE No. _________

E			P TEST An	gle			, ,						
	Foo	otage	Reading - So*	Corrected	Hole No. <u>78-5</u> Sheet No. <u>05</u> Section Date Begun Date Finished Date Logged	Dep Bearing	···· · · · ·			Total Depth Logged By Claim Core Size			
DE FROM	РТН ТО	RECOVER	۲Y		DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE				
93.23	100.27		Cher	the Argillit	د								
(306	329)			•	rs rock with 1-Scm argulan Fage	1940	93.72	94.72	1.0m		 		
				gouged (to (t)	and graphitic to 96.5m (fault	-							
				,	ine-grained pyrite (1-2%)								
				section o	wide, very siliceous, porphyrytic F dyke? Disseminated and fractive-	1941	96.61	97.01	0.40~				
					- wide section, with minor at 3	1942	77.01	77.76	0.75m				
					nd mariposite on a graphitic 'slip'								
		,	_						·····				
					······								
													· · · · · · · · · · · · · · · · · · ·
					END OF HOLE								
	gan.				· · · · · · · · · · · · · · · · · · ·								

PROPERTY_____MINTO

	DIP TEST						
	Angle						
Footage	Reading	Corrected					
	- 50°						

* - ^{\$\frac{1}{2}\$}

Hole No89	8-6	Sheet	No01	_
Section				
Date Begun	July 1	19	88	
- Date Finished.				
Date Logged	-			

Lat. Dep. Bearing <u>22.5°</u> Elev. Collar <u>2930.7</u> Total Depth 104.24 (342') Logged By to Game Claim Minto Core Size NQ

88-6

HOLE No. ____

DE FROM	РТН ТО	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE				
0	3.05		Casing and broken rock								
10	(0)										
1.	39.93	90-95%	Fragmental Cherty Argillite								
(10	131)		- black argillite with 1-5cm angular fragments								
			of light grey shert.								
	i) 	- Fractured and rusty on broken surfaces to						_		
			20m:								
			- recovery ~ 80°10 to 20m								
			- Disseminated and fracture - filled fine-grained pyrite	······································	ļ						
			(1-2°b)								
			- Some & ctions mostly chant		 			<u></u>			
			- 29.98m; 0.60m - wide section of very chent, arguillite	1943	29.98	30.58	0.60m				
			with disseminated and smeared purite and								
			minor disseminated sphalenite							4	
			- 32.21 m: 0.80 m-wide siliceous, slightly feldspathized	<u>\944</u>	32.21	33.01	0.800				
			greenstone dyke. Disconinated and Fracture - filled								
			pyrite (2-30/0)						-		
			- cheaty argillite is very broken - up and gouged								
			thru bottom Sm. Fault contact with						· · · · · · ·		
			feldspar porphyry dyke.								

LIAMONU DRILL RECONU

PROPERTY MINTO

·_·

-,

HOLE No. ___________

[DIP TEST Angle Footage Reading C												
ŀ	Foo	tage		ngle Corrected	Hole No	Lat				Total Depti	1		
F					Section					•			.
ļ			- 50°		Date Begun					Claim			
F					Date Finished	_ Elev. Colla	ır			Core Size_		·	
L.					Date Logged	-							
DE FROM	РТН ТО	RECOVER	24		DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Au orit	AS PPM	Zn ppm	
						1945	38.93	39.93	1.0m				
39.93	94.79	511) - grenz-yreen wide angular feldspan		Span Porphy	n Dyke.	1946	39.93	40.93	1.0m				
6131	311)				(dioritic?) rock with 0.5-2.0cm	1947	40.93	41.93	1.0m	0.035	7959	2011	
				- 0	and concentric phenoexists of	1948	41.93	42.93	1.on				
					•	<u> </u>	42,93	43.93	1.0m				
				in gouged	and sheared thru; top 15m	1950	43.93	44.93	1.0m				
. <u></u>				/ • •		1951	44.93	45.93	1.00	0.036	11,362	2107	
			- frag	ments of	harging - wall chesty angillite within	1952	45.93	46.94	lioim				
					First 4m.	1953	46.94	48.14	1.20m	0 035	13,098	10,879	
					n sheared surfaces.	1954	48,14	49.14	1.0m				
					lisseminated and fracture-filled pyrite	1955	49.14	50.14	1.0m				
				oughout		1956	50.14	50.90	0.76m				
			1	,	posite and sphallenite (minor asp	1957	50.90	52.11	1.2100	0.075	20,430	2930	
					g quanty and polaite tracture	1958	52.11	53.11	1.0m				
			to	5	5 ()								
			- 46,9	4m: 1.200	-wide section of quanty reining								
					Fracture-filled schallenite, prite								
					asp								
					-will gtz vein at 60° to C.A.								
					live porite, schaler ite and asp.								
			I- 51.4	11m: 0.70	m- wide section with numerous at-								

	DIP TEST Angle			PERTY	·r	<u>MINTO</u>				HOLE No	88-	.6		
F			DIP											
	Foo	itage		Air eading So [®]	Corrected	Hole NoSheet No Section Date Begun Date Finished	Dep Bearing	1			Total Depti Logged By Claim Core Size.	·		
L.					۱	Date Logged							•	
DEI FROM				DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Au					
			{	Sulphic	de leyra	sp, sph) filled fractures all at So-7	2 1959	53.11	54.11	1.0m		<u> </u>	_	
		· · · · · · · · · · · · · · · · · · ·		to c	. <i>A</i> .		1960	54.11	55.11	1.0m		L		
						comes much more competent,	1961	55.11	56.11	liom	ļ	ļ		
				Kes	steaned	whit. Still very pyribic, minor	1962	56.11	57.11	Lion		ļ		
				<u>- Sbr</u>	donite, a	sp. Feldspan plenourysts are slightly	1963	57-11	59.11	1.0m		 	<u> </u>	
					oritized.		1964	58.11	59.11	1.0m		ļ	<u> </u>	
		· · · · · · · · · · · · · · · · · · ·		- talc	y' and s	energhat chloritized on 'slip'	1965	59.11	60.11	1.00		<u> </u>		
				Surf	aces.		1966	60.11	61.11	1.0m	~			
				- 63.0	09m: 1.0m	-wide very silicears some with	1967	61.11	62.11	1.0m		ļ		
					banded no	d fracture - Filled pyrite (5-7°10)	1968	62.11	63.09	0.98m				
				- 69.7	6m: 2.15m	- wide zone with 2-10cm - wide	1969	63,09	64.09	1.an				
				· · · · · · · · · · · · · · · · · · ·	white at	veins at 50-70° to core axis	1970	64.09	65.09	<u></u>			-	
					Diseminate	d and fracture - Filled pyrite, minor	1971	65.09	66.07	. l.om			<u> </u>	
					sph, asp	(5-8°%)	1972	66.09	67.09	liom				
				64,46	<u>m: 15cm.</u>	wide section of go-ged rock.	1973	67.09	68.09	1.0m	-	ļ		
					Probable	fault	1974	68,09	69.09	1.0m	-			· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·		- fron	m 76.35m	to 90.52m; increase in sulphide	1975	69.09	69.70	0.61m				
				Conte	ent along	, atz-coloite bractures and	1976	69.70	70,70	1.0m	0.100			
	-+			Sme	ared' on	fractured surfaces. Py, sph, asp	1977	70.70	71.85	1,150			<u> </u>	
				~ 4	-6º10,									

NEVILLE CROSBY INC. TELEPHONE USE-4343

•. • •

P	ROF	PERT	·	MINTO	•

	DIP TEST						
	Angle						
Footage	Reading	Corrected					
	-500						
······································							

Hole No. <u>88-6</u> Sheet No. <u>04</u>	
Date Begun	•
Date Finished	Elev. Collar.
Date Logged	

Lat	Total Depth
Dep	Logged By
Bearing	Claim
Elev. Collar	Core Size

HOLE No. - 98-6

.

DE I FROM	РТН ТО	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	An		
			¢.	1978	71.85	72.85	1.0m			
			- 79.70m: lem-wide white at usin at 75° to	1979	72.95	77.85	lion.	0.071		
ļ			C.A. Dissen, py asp, sph along margins.	1980	73.85	74.85	1.0m		 	
L			- 80.46: 1cm - wide white gty vin at 40°	1981	74.95	75.85	1.0m			
			to C.A. Dissen. py. ap, go alog magins.	<u>\982</u>	75,85	76.85	1.0m		 	
			- 82.90m; Scm-wide vein of massive py, sph,	1983	76.85	77.95	1.0m			
			minor asp. at 70° to C.A. Ucin is	1984	77.85	78.85	1.00		 	
			within a social wide section of Diliceous	1985	78,95	79.85	1.00		 	
			porphyre dyke with considerable disser.	1986	79.85	80.85	1.0m		_	
			fy. sph, ap.	1987	90.95	81.85	1.0m		 	
			- 84.88m : Icm - wide white etz vein at 75°	1988	81.85	82.90			 	
			to core axis. Dissen py, asp, sph (5-7%)	1989	82.90	83,40	0,50m	0.193	 	
			- 86.25m: 25cm long ~ 1cm - wide qty - Filled		83,40	84.40	1.0m			
ļ			tracture ~ panallel to C.A. Dissem py,	1991	84.40	85.40	1.0m		 	
			sph, asp. (3-5°/0)	1992	85.40	86.50	1.10m		 _	_
			- at 90.52m; porphyry dyke is very siliceous	1993	7%.50	87.50	1.0m		 	
			and 'sealed' (2-3°10 py, pp)	1994	87.50	81.50	1.0M		 	
			- footwall contact with charty argillite ~ 45°	1.995	88.SO	89.50	lion		 	
			with ~ 20cm-wide chilled margin.	1996	89.50	90.50	1.00		 _	
				1997	7D.50	91.50	liOm		 	
				1998	91.50	92.50	1.00			

.

.

NEVILLE CROSBY INC. TELEPHONE USE-4343

ł.

DIMINOIND DRILL RESORD

PROPERTY MINTO

· · · · · ·

HOLE No. ________

Ľ	DIP TEST Angle												
	Foo	tage	An Reading	gle Corrected	Hole No. <u>88-6</u> Sheet No. <u>05</u> Section					Total Depti Logged By			
Ŀ			- 50°		Date Begun					Claim			_
Ŀ	-)	·			Date Finished	Elev. Colle	or			Core Size_			
Ľ					Date Logged								
DE FROM	РТН ТО	TH RECOVERY			DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	.E			
											ļ		
94,79	104.24	95%	Fragm	ortal the	nty Argillite	1999	92.50	93.50	1.0m		ļ		
(311	342		- fra	ctured and	gouged for first sm of uni	+ 2000	93.50	94.50	1.0m				
			150	ult contas	2+)								
			- 5	- chente	From 99.5m to end of hole.								
			– م	isseminated	and fracture-filed fine-grains	9							
				it									
			1 ()										
				· · · · · · · · · · · · · · · · · · ·									
				· · · · · · · · · · · · · · · · · · ·									
											∱	· · · · · · · · · · · · · · · · · · ·	
			-										
										· · · · · · · · · · · · · · · · · · ·			
			+								<u> </u>		
							1				<u> </u>		
· · · ·					<u></u>								
		<u> </u>					1						
		<u></u>								+	<u> </u>		
					·					+	<u> </u>		
										<u> </u>			

DIAMONU DHILL KEJORU

		PRC	PERT	Y(LINTO	<u>ð</u>				HOLE No.	- 88-	8		
	Foo	otage	P TEST A Reading - 30°	ngle Corrected	Hole No. <u>\$8-8</u> Sheet I Section <u>July 5</u> , Date Begun <u>July 5</u> , Date Finished <u>July 7</u> , 10 Date Logged <u>July 7, 10</u>	1 952 \988	Dep Bearing	7	D °		Total Depth Logged By_ Claim Core Size_	Ninto	me	
DE FRON	<u>РТН</u> ТО	RECOVER	r		DESCRIPTION	r	SAMPLE No.	FROM	то	WIDTH OF SAMPLE				-
0 (0	3.05 10)		Ca	sing and	broken rock,									
3.05 (10	36,57		- 51	ack argilli	mental Chenty Argillite te matrix with numerous		· · · · · · · · · · · · · · · · · · ·							
			<u>9</u> re	y chart										
-			- 7,	oim to =	s of white gtz (chert? 7.91m; very silicous zone		2110	10.52	1. 50	1.00	-			
			- 10	52: 6.09m	-wide zone of full a	ROUS	2110	11.52	12,52	1.00				_
				fracture -	sillife with disseminated Filled med-grained parite os' of reddish-brown here	3-4%)	2112	13.52	14.52	1.0m 1.0m				_
·· ·· ·· ·				ecty anyilli	te remains very siliceous		2115	15.52						
			- gro	uphitic on	ster this zone. Fracture planes		····							
			bre	sken sulfo	in rusty (oxidized pyrite) ces to 22.25m									
<u></u>			- 21	.33m: 90cm	- will zone of fine-graine	a ,	2116	21,33	22.23	0.90m				-

PROPERTY	MINTO
----------	-------

	DIP TEST							
	Angle							
Footage	Reading	Corrected						
	- 50°							

, ,

Hole No Sheet No Section	
Date Begun	Bearing
Date Finished	Elev. Collar
Date Logged	

Total Depth	
Logged By	
Claim	
Core Size	

HOLE No. 88-8

DEP	тн то	RECOVERY	COVERY DESCRIPTION		FROM	то	WIDTH OF SAMPLE	Au orlt.	Aq ppm.	Po ppm	Zn
			Siliceons, cheaty argillite. Very pyritic. Disseminated								
			med-grained pyrite (5-7%)								
			- 31.39m: 30cm - wide rave (no core)	2117	34.56	35.56	1.0m				
			- 35.66m: 6 cm - wide vein of massive ps, 5pm,	2118	35.56	35.91	0,35m	0.258	38.1	5211	13,990
			asp?. at 35° to C.A. A zone locan before	2119	35.91	36.42					
			vin and 15cm after wein is very well	2120	36.42	37.42	/.Om				
			minualized with 7-10% pyrite along	2121	37.42	38.42	liom				
			Fractures. Minor 'blebs' of light green	2122	38.42	39.42	l.om				
			marlposite thru this zone.	2123	39.42	40.34	0,92m				
			- 36.42 m: 15 cm - wide gouged talcy rock								
			with 5-7% disseminated fine-grained								
			pyrite.								
36.57 4	45.7Z		Slightly Qty- Carbonate Altered Greenstone.								
			- pale green- grey rock with areas of								
			swirling white qty and calcite.								
			- disseminated and fracture - filled fine growined								
			pyrite (1-2%)								
	•		- some 'buff' coloured fragments of harging-								

NEVILLE CROSBY INC. TELEPHONE USE-4343

and an end of the

DIAMONU DRILL KECORU

	01	<u>P TEST</u> An	ale										
Footage Reading Corrected				Hole No. <u>88 - 8</u> Sheet No. <u>03</u> Section									
- 50°				Date Begun Date Finished Date Logged	Bearing_	BearingClaim							
PTH TO	RECOVER	Y		DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Au 02/5,	As ppm			
		wa/1	sedimentan	, rock in grstore to 40.54m.	2124	40.34	40.84	0,50m					
		- 40.9	84m : 1.5m	- wide zone LUSINTER ZONE)	2125	40.84	I	1.50m	0.057	5463			
				ining and banding, disseminated	2126	42,34		1.0m					
	<u>.</u>			d grained pyrith and ago? (7-10		43.34	1	liom	<u>-</u>				
			ains area	blebs' of mariposite. guents sittereous and carbonate altered	2128	44.34	45.72	1.38m					
		1		disseminated pyrite and occossio			49.24	1.0m					
			iposite to		2131	48,24	49.24	1.0m					
	<u></u>				2132	49.24	50.24	1.00					
58.21				ry Dyke	2133	50.24		1.0m					
191		Ŭ Ŭ		een rock with 0.1 - 1.0 cm	2134		52.24						
				concertric phenocrysts of white	2135		53.24 54.24						
			•	fine to med - grained by and pp		54.24							
			ughant (1.	0 1- 1	2138	55.24	\$6.24	1.0~	·····				
		- 47.2	<u>4m: 1m - wi</u>	de section with stringers of pyr									
	<u></u>			angues to core axis. Minor asp	2140	57.24	58.24	lion					
				$t a t \sim 30^{\circ} t c.A.$		<u> </u>							

NEVILLE CROSBY INC.

TELEPHONE USE-4343

الفار الجار جامع الحجاد ال

•

P	R	0	P	E	R	T	Y	m	١	NTC	>

HOLE No. 88-8

 $\hat{\nabla}$

	An	gle
Footage	Reading	Corrected
	- 500	

Hole No	Lat	Total Depth
Section	Dep	Logged By
Date Begun		Claim
Date Finished	Elev. Collar	Core Size
Date Logged		

DE F FROM	тн то	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	As ppm	
58.21	60.96		Silicous Greenstone with Fragments of chert						
	200)		and angillite?						
			- slightly screentinized and 'talcy' on Fractured						
			surfaces,						
			- Disseminated fine-grained pyrite and por (1-2%)		ļ	ļ			
			- 60.04m: 25cm - wide zone with 3-4cm - wide	2141	60.04	60.29	0.25	19,139	
			vein or massive by pr, sph? Disseminated						
			py, pd, through rest of yone - 7-10%						
			•		ļ				
					L				
									 ·
			END OF HOLE						
					i				

DIAMONU DHILL RECORD

Ľ			Ar	ngle						Total Depth 70.41m					
F	Foo	tage i	Reading	Corrected	Hole No. <u>88-9</u> Sheet No. <u>01</u>	Lat									
Ŀ			Section - 50° Date Begun 7, 1988 Date Finished 8, 1988					5		Logged By	, <u> </u>	Jame			
-		_	<u>- 50°</u>		Date Begun7, 1988	_ Bearing_	<u> </u>			Claim	MINTO	·			
F					Date Finished July 8, 1988	_ Elev. Colla	r2	5146. (1-1-	Core Size	~~~				
L					Date Logged. July 8, 1988	-									
DE	РТН ТО	RECOVERY	·		DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE						
o	3.20		Cas	sing and	broken rock.					ļ					
6	10.5)			J											
										ļ		ļ			
<u>.20</u>	15.21		Fragm	ental Che	ety Argillite										
10,5			- bla	ick argi'llit	e with 0.5-5.0cm angular		 					ļ			
			cla	sts of	white-grey chent.										
					d slightly graphitic to 12m						+				
			- ge	nerally ve	y siliceous, with stringers and										
					while quastz throughout.							!			
			- Fra	cture - G	led and disseminated fire to						<u> </u>				
			me	ed- gravited	pyrite (1-2%)			<u></u>							
					n- wide section of very silicrows	2142	13.71	15,21	1.50m						
. <u></u>				cherty ar	gillite. Quanty Flooding three this		ļ								
				section	with Fracture - Alled Fre-grained										
			 	pycite (2	- 3%)							+			
												<u> </u>			
<u>.2</u>	20.27	<u> </u>	Silici	Fied Greys	worke?										
			- grit	tty' - liq	ht brown sillicified rock with										
					quartz and occassional stringers							<u> </u>			
			and	dissenin	actions of parrhotite. (1-2%)						<u> </u>	<u></u>			
					·							1	1		

NEVILLE CROSBY INC. TELEPHONE USE-4343

12

DIAMOND DKILL KECORU

HOLE No. 88-9

	Angle			
Footage	Reading	Corrected		
	- 50"			

÷

Hole No Sheet NoO2 Section Date Begun	Dep Bearing	Total Depth Logged By Claim
Date Finished	Elev. Collar	Core Size
Date Logged		

.

DEI FROM	PTH TO	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE			
									<u></u>	
			- hanging-wall contact ~ 30°; Footwall contact							
			15-20° to C.A							
20.27	22.55		Fragmental Chenty Argillite							
			- very silicears				·····			
			- graphitic on fracture places							
			- footwall contact with greywock @ 10.							
			to C.A.					·····		
			- Disseminated and Fracture - Filled fire-grained							
			Pyrite (1-2°10)			· · · · · · · · ·				
22.55	25.75		Silicified Greywocke?							
			- occassional stringers and bands of white							
			- auanty-							
			- Stringers and disseminations of pyrite and							
			pyrrhotik (1-20/0)	······						
			- Footwall contact ~ 15° to C.A.							

DIAMONU DHILL KECORU

PROPERTY______MINTO

HOLE No. 88-9

	An	gle
Footage	Reading	Corrected
	-50°	

	Lat Dep
Date Begun	 Bearing
Date Finished	 Elev. Collar
Date Logged	

Total Depth	
Logged By	
Claim	
Core Size	

DE FROM	РТН ТО	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE			
25.75	36.70		Ukry Siliceous Cherty Argillite	2143	25.75	26,75	1.0m			
			- "quarty - Flooded" with stringers and 'blebs'	2144	26.75	27.75	1.0m			 _
			of fine to med-grained pyrit (3-5%) and	2145	27.75	28.75	1.0m			
			minor asp.	2146	28.75	29.75	liom		ļ	
			- very competent, 'scaled' unit with fracture-	2147	29.75	30.75	1.0m			
			filled mineralization along minute fractures	2148	30,75	31.75	lion	<u> </u>		
			and in small callities	2149	31.75	32.25	1.0m			
			- from 31.2m to 36.2m, increase in sulphide	2150	32.75	33.75	liom			
			content with pyrit, pp, and minor asp	2151	33.75	34.75	lion			
			(7-10%)	2152	34.75	35,36	0.61m	·		
			- 33.83m; 20cm - wide zone with (12-15%) py,	2153	35.36	35.91	0.55			
			på, miror asp.		35.91		0.79m			
			- 35.36: 0.55m - wide zone with (12-15%) py,							
			asp, minor px, along fractures and as							
			blebs							
			- Footwall contact ~ 1 to C.A.							
36,70	37.48		Silicified Greywacke?	2155	36,70	37.48	0.78m			
			- numerous stringers and fracture - filled py apx							
			(3-4%)							

	PROPERTYMINTO				Го				HOLE N.	88.	-9		
	DIP TEST Angle Footage Reading Corrected		Angle ling Corrected	Section Date Begun	Hole No Sheet NoO4 Lat Section Dep Date Begun Bearing Date Finished Elev. Collar Date Logged					Logged By Claim			
	РТН ТО	RECOVER	22		DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLI	:			
37.48	<u>38.</u> H		1 .	ery Siliceons C guarty - Flooded	huntz Argillite	2156	37.48	38.71	1.23m				
				fy, f\$, mi	nor asp (5-7010) act @ 25-30° to C.A.								
<u>38 i71</u>	र्क हे			Silicified Grey	wacke?		38.H						
· · · · · · · · · · · · · · · · · · · ·		•			stringers of quanty and calcite to C.A.		39.71 40.71						
					and fracture - filled fine to med- re (3-5%) minor por (<1%)		41.71 42.71		1.0m				
				Occassional planes.	'smeaned' pyrite on fracture	2162	<u>43.71</u> <u>44.71</u>						
				-	light green, Diliceous rock	2164	45.71 46.71		1.0m 1.29m				
				45.41 m: 0.25m. Stringers 0	· wide zone with 0.1-0.5 cm - wide F calcite at all angles to C.A.								
					pers and 'blebs' of py, por								

NEVILLE CROSBY INC. TELEPHONE USE-4343

.

DIAMOND DHILL HESORD

_				Y					HOLE No.				
	DIP TEST Angle Footage Reading Corrected					1			Total Depth Logged By Claim Core Size				
DE F ROM	РТН ТО	RECOVER	RY	· · · · · · · · · · · · · · · · · · ·	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE				
			47.50		wide zone with disseminated and filled pyrite and 'blebs' of pernatike.						_		
18.00	48.76		1		Argillite fire-grained pyrite (1%)								
18.76	52.49		- 0 - 0	enty - Carbon riginal rock	- grywacke? feldspan porph dyke?	2167		49.76 50.75					
			d	<u>lisceminate</u>	ments of white - grey clent.	2168	50.75 51.05						
				<u>qtz Fragu</u>	m-wide zone of gouge with nerts; disseminated pyrite, blonging-								
			5	.05m: 1.44	fourt. <u>n-wide zone of qtz veining</u> ,	,							
					ated and barded fire-grained pyrith ariposite, rock slightly gauged. Zané	7							
		,		Gradatio. dyke.	al contact with Feldspar porphyry								

NEVILLE CROSBY INC. TELEPHONE USE-4343

2

DIAMONU DHILL HECORU

PROPERTY	MINTO
ravrenti	

,

HOLE No. 88-9

	An	gle
Footage	Reading	Corrected
	-50"	

,*

Hole No. <u>88-9</u> Sheet No. <u>06</u> Section		Total Depth Logged By
Date Begun		Claim
Date Finished	Elev. Collar	Core Size
Date Logged		

TH TO	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE				
70.41		Feldspan Porphyr, Dyke,	2170	52.49	53.49	1.0m				
231		- gross-grey rock (disritic?) with 0.1-1.0cm	2171	53.49	54.49	1.0m				
		angular and concentric phynomysts of white	2172	54.49	55.49	1.0m				
		feldspar.	2173	55.49	56.49	1.00				
		- some evidence of fracturing and shearing to								
		- Disseminated and fracture - filled fine-grained								
	2 1 99	pyrik land pyrchotik (1-2%)								
		- taking and slightly chloritized on fractured								
		surfaces.								
	$d\theta = 0$	- remains a wear waiter wait to the								
		ed of hole.								
		and the second sec								
		and the second								
	70.41	END OF HOLE								
		4								
		•								
		70.41 231	70.41 Feldspan Porphys Dyke. 231 - groon-grey rock (dioritic?) with 0.1-1.0cm anayulan and concentric prenormets of white feldspan - some evidence of fracturing and ghearing to 56m. - Disseminated and Practure-filled fine-grained pyrike land pyrchatik (1-2%) - talky and slightly chloritized on fractured surfaces. - remains a very uniform unit to the end of hole.	70.41 Feldspan Porphys, Dyke. 2170 231 - grown grey rock (dioritic?) with 0.1-1.0cm 2171 angular and concentric pronorrysts of white 2172 feldspan 2173 - some evidence of fracturing and Shearing to 56m. - Disseminated and Practure - filled fine-granded pyrike land pyribotik (1-2%) - talky and slightly chloritized on fractured surfaces. - remains a very uniform unit to the end of hole.	70.41 Feldspan Porphyr, Dyke. 2170 52.49 231 - grown-grey rock (dioritic?) with 0.1-1.0cm 2171 53.49 angular and concentric prenormysts of white 2172 54.49 Reldspan 2173 55.49 - some evidence of fractiving and Shearing to 56m. - Dissonimated and Practure- filled fine-grained pyrik land pyrihotik (1-2%) - takey and slightly chloritized on fractured - remains a very uniform unit to the end of hole.	70.41 Feldspan Porphys, Dyke. 2170 52.49 53.49 231 - gran-grey rock (dioritic?) with 0.1-1.0cm 2174 53.49 54.49 angular and concentric prenormets of white 2172 54.49 55.49 feldspan 2173 55.49 56.49 - some evidence of fractiving and Decening to - Some evidence of fractiving and Decening to - Disseminated and Practure- filled fine-grained - Disseminated and Practure- filled fine-grained - disseminated and slightly chloritized on fractured - takey and slightly chloritized on fractured - remains a very uniform unit to the end of Hole.	PO.41 Feldspan Porphys, Dyke. 2170 52.44 53.49 1.0m 231 - grophing grey rock (divitic?) with 0.1-1.0cm 2171 53.49 54.49 1.0m 231 - grophing grey rock (divitic?) with 0.1-1.0cm 2174 53.49 54.49 1.0m 231 - grophing grey rock (divitic?) with 0.1-1.0cm 2174 53.49 54.49 1.0m 231 - grophing and concentric prenormysts of white 2172 54.49 1.0m 6 concentric prenormysts of white 2173 55.49 1.0m - some evidence of fractiving and Shearing to - - - - Disseminated and fractures filled fine-granted - - - Disseminated and fractures filled fine-granted - - - Lating and slightly chloritiged on fractured - - - taking and slightly chloritiged on fractured - - - taking a very uniferent unit to the - -	2041 Feldspan Porphys. Dyke. 2170 52.49 53.49 1.0m 231 - gran.gray rock (dioritic?) with 0.1-1.0cm 21H 53.49 54.49 1.0m angular and concentric prenormysts of white 2172 54.49 55.49 1.0m Peldspan. 2173 55.49 1.0m - some evidence of fracturing and Shearing to - Some evidence of fracturing and Shearing to - Dissoninated and Practure-filled fine-granted - Dissoninated and Practure-filled fine-granted - disg and slightly chloritized on fractured - remains a very uniform vnit to the - remains a very uniform vnit to the - and of hole.	2041 Feldspan Porphys, Dyke. 2170 52.49 53.49 1.0m 231 -groon-grey rock (disritic?) with 0.1-1.0m 2171 53.49 54.49 1.0m 231 -groon-grey rock (disritic?) with 0.1-1.0m 2171 53.49 54.49 1.0m 231 -groon-grey rock (disritic?) with 0.1-1.0m 2172 54.49 1.0m 232 -groon-grey rock (disritic?) write prenorization of white 2172 54.49 1.0m 233 -groon-grey rock 2173 55.49 1.0m 234 -groon-grey rock 2173 55.49 1.0m 235 -groon-grey rock -groon-grey rock -groon-grey rock - Some ewidence of fracturing and obearing to -groon-grey -groon-grey - Disseminated and fractures filled fire-groon-dd -groon-grey -groon-grey - talking and slightly chloritiged on fractured -groon-grey -groon-grey - talking and slightly chloritiged on fractured -groon-grey -groon-grey - remains a ivery writein writ to the -groon-grey -groon-grey - remains a ivery writein writ to the -groon-grey -groon-grey	70.41 Feldspan Porphy, Dyke. 2170 52.49 53.49 1.0m 231 - groon-grey rock (dioritic?) with 0.1-1.0cm 2171 53.49 54.49 1.0m 231 - groon-grey rock (dioritic?) with 0.1-1.0cm 2171 53.49 54.49 1.0m 231 - groon-grey rock (dioritic?) with 0.1-1.0cm 2171 53.49 54.49 1.0m 231 - groon-grey rock (dioritic?) with 0.1-1.0cm 2172 54.49 1.0m 233 - groon-grey rock (dioritic?) with 0.1-1.0cm 2172 54.49 1.0m 233 - groon-grey rock (dioritic?) with 0.1-1.0cm 2173 55.49 1.0m 233 - some exidence of fracturing and Obearing to - - - - Some exidence of fracture filled fine-grooned - - - - Disseminated and fracture filled fine-grooned - - - - talky and pyribotik (1-270) - - - - - talky and slightly chloritized on fractured - - - - talky and slightly chloritized on fractured - - - - talky and of talk - - - -

NEVILLE CROSBY INC.

TELEPHONE USE-4343

14.1

OMPANY: AVINO MINES	•					CP REPORT		(ACT:F31) PAGE 1 OF 1
ROJECT NOÌ, MINTO			705 WEST	15TH ST.,				
TTENTION: B.GAME						(604) 988-		I TYPE ROCK GEOCHEM I . DATE: JUNE 30, 1988
(VALUES IN PPM)	A5	AS		PB	<u>SB</u>		AU-PPB	
1801	.4	154	38	62	1	110	10	
1802	1.3	357	212	87	4	188	40	
1803	.6	60	85	8	2	174	20	
1804	1.5	1773	51	24	1875	80	1000	
1805	.3	16	44	18	14		5	
1806	.3	492	37	35	6	82	20	
1807	.6	286	28	24	2	85	40	
1809	10.6		220	2144	4	3976	160	
1809	.5	23	6	40	1	105	10	> 88-1
1810	.4	42		57		139	20	
1811	.3	28	6	35	3	118	40	
1812	2.7	50	12	439	7	457	120	
1813	1.2	651	13	76	12	226	140	
1814	.6	7	6	51	3	114	50	
1815	2	15	55	28		104	40	
1816	4.1	6143	7	719	22	1089	1350	
1817	.5	591	14	11	10	15	70	
1818	5.3	64	24	8	4	70	70	ل ا
1819	.5	49	69	24	5	55	80	<u>ן</u>
1820		27	27	16	2		40	
1821	1.6	69	47	48	3	82	20	
1822	1.3	23	78	20	2	78	10	
1823	1.8	40	61	14	2	52	30	
1824	.3	1	38	28	1	131	40	
1825	.5	3	28	36	1	233	40	
1826	.6	36	36	20	i	94	10	
1827	.3	312	9	26	17	91	5	
1828	1.1	231	20	11	1	17	20	
1829	1.6	434	12	137	10	112	100	
1830	1.2	300	24	10	2	9	5	
1831	1.4	382	13	13	2		40	
1832	1.6	286	12	15	1	5	50	
1833	1.5	517	18	11	1	18	10	
1834	1.5	199	10	11	1	12	30	
1835	1.5	363	7	13	1	68	10	288-2.
1836	1.0	747	15	. 9	<u>-</u> 1	25	60	
1837	.6	1037	25	94	8	131	160	
1838	44.6	2231	6	12178	350	17499	15400	
1839	.4	11	15	60	1	130	40	-
1840	.2	205	5	72	3	123	80	
1841		475	27		<u>-</u> 1	89	50	
1842	1.0	294	14	10	1	11	20	
1843	1.5	659	53	100	- 1	135	50	
1844	.3	663	24	55	2	145	150	
1845	4.4	1871	16	1115	28	308	740	
1846	1.9	305	8	4	20	7	60	
1847	1.4	38	6	. 4	1	7	<u>30</u>	
1848	1.6	30 32	5	т. Д	2	, 7	10	
1849	1.6	32 26	5	17	z 3	r k	5	
107/	1.0	20	Q	1/	ن	0	ل	1

n N

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

Certificate of ASSAY

Company:AVINO MINES F oject:MINTO Attention:B.GAME File:8-771/P1 Date:JUNE 25/88 Type:ROCK ASSAY

hereby certify the following results for samples submitted.

5 mple 1 mber	AU G/TONNE	AU OZ/TON	
1904	1.02	0.030	
316	1.64	0.048	
1338	18.80	0.548	

.

Certified by Our Man

MIN-EN WABORATORIES LTD.

VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 ••FAX (604) 980-9621 TIMMINS OFFICE:

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

MIN • EN LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

Analytical Report

Company:AVINO MINES F oject:MINTO A.tention:B.GAME/C.SAMPSON File:8-771 Date:JUNE 25/88 Type:ROCK GEOCHEM

	JUNE 22/88 B.GAME		
1	49 ROCKS ASSAY CUT	Seochem	Samples
		Assay	Samples
	NES, VANCOUVER, B.C. Mpgon, Vancouver, B.C.		
Samples: Sieved to mesh	Ground to mesh1	150	
<pre>! repared samples stored:. rejects stored:.</pre>	X discarded:XX		
lethods of analysis:			

6 ELEMENT TRACE ICP. AU - WET.A.A. AU - FIRE ASSAY.

Remarks

<pre>COMPANY: AVING MINE PROJECT NO: MINTO-D</pre>		5	705 WSet			ICP REPORT		172	(ACT:F31) PAGE 1 OF 1
ATTENTION: C.SAMPSO			/Va hea:			(604)988-			FILE NO: 8-891R/P1+2 DATE: JULY 13, 1988
(VALUES IN PPM)	AG	AS		PB	SB	ZN	AU-PPE		• DHILIDOLI 10, 1700
1850	1.5	182	8	6	2	16	19	7	
1851	1.1	239	9	6	4	7	26		
1852 1853	1.4 f A	564	35 5	372	5	411	158		
1854	1.0 3	45 47	a 4	5	3 7	14 31	19 19		
1855	;3	268			4		<u>-</u> 14		
1856	.4	778	28	8	5	13	320		
1857	.3	16	3	11	3	71	6		
1858	5.0	969	26	1826	5	951	1000		
<u>1859</u> 1860	.5	40 50	<u>17</u> 108	73 4015		92	7	> 88-3	
1861	.4	38	29	<u>4013</u> 51	<u>1</u>	<u>2785</u> 73	<u>1100</u> 4		
1862	1.6	44	5	26	1	56	23		
1863	.4	13	26	24	7	107	2		
1864	1.5	16	28	21	7	150	312		
1865 1866	1.4	3	26	19	7	240	120		
1867	.8 2.0	27 14	20 31	19 18	6 7	112 65	154 11		
1868	1.9	22	36	20	7 9	50 105	43 63		
1869	1.3	18	26	25	6	70	115		
1870	.7	60	29	23	70	93	69		
1871	1.8	20	21	19	12	112	35		
1872	.5	2534	51	16	31	79	1050		
1873 1874	.4 1.4	34 136	21 48	24 670	22 2	138	237	4	
1875		234		21					
1876	4.8	23430	37	119	29589	353	30000		
1877	1.7	12280	26	34	1802	261	9000		
1878	3.3	8282	57	75	3532	194	5300		
<u>1879</u> 1880	4.8	5924	58	54	4752	282	4000		
1881	<u>1.4</u> 2.2	7 <u>388</u> 232	<u> </u>	<u>26</u> 32	<u>178</u> 55	75 91	<u>1880</u> 126		
1882	1.8	567	29	45	56	71	126 540		
1883	3.8	598	70	48	97	114	812		
1884	3.4	1427	42	31	79	34	1100	5 88-4	
1885	1.3	5077	37	19	129	148	502	(
1886 1887	<u>2.5</u> .6	<u>9169</u> 2121	<u> </u>	<u>13</u> 10	175	56	3000		
1888	.4	3514	27 66	10 15	59 71	76 46	500 279		
1989	.3	2256	4	11	29	71	210		
1890	1.7	209	17	16	16	64	46		
1891	1.8	41	21	15	9	49	120		
1892 1893	1.2 1.7	2712	24	15	64	91	26		
1873	.5	89 99	25 27	12 21	12 1	86 446	20 82	4	
1895	.2		42	8			100		
1896	.6	20	43	53	2	435	76		
1897	.6	8	38	15	1	349	45		
1898	.2	25	23	15	25	539	22		
1899	<u></u> .7	29	32	23		541	40		
1900	.4	12 1903	37 31	17 244	44 31	1098 1832	62 302		
1902	.5	34	19	18	31 12	1006	302 37	88-5	
1903	.2	19	18	17	1	984	122		
_1904	.4	35	11	16	3	740	47		
1905	.5	21	12	8	3	437	25		
1906 1907	.4 .6	169 3	18	12	4	1025	42		
1908	.5	5 6	17 11	15 18	6 4	342 388	20 18		
1909	.5	7	10	10	4 4	000 258	18 21		
					÷	200		ر	

· COMPANY: AVINO MINES						CP REPORT		(ACT:F31) PAGE 1 OF 1
PROJECT NO: MINTO-DRI	LL CORE		705 WEST	1578 ST.,	NORTH V	ANCOUVER,	5.C. V7M	172 FILE NO: 8-891/P5
ATTENTION: C.SAMPSON	B.GAME			(604)980-	-5814 DR	(604)988-	4524	<pre>* TYPE ROCK GEOCHEM * DATE: JULY 13, 1988</pre>
(VALUES IN PPM)	AG	AS	00	P3	53		AU-PPB	<u>a</u>
1970	.5	18		23	4	866	43	
1971	.5	16	35	25	<u>.</u>	1334	164	
1972	.5	22	20	17	6	1155	38	
1973	.6	18	20	13	2	857	21	
1974	.4	17	27	14		1346		
1975	.5	733	27	104	27	1283	273	
1976	.5	4003	20	659	203	1407	3000	
1977	.8	1493	43	178	55	1406	685	
1978	.6	18	29	25	18	1173	59	
1979	2.3	2155	39	531	15	1759	2200	
1980	.6	7	20	24	3	708	204	
1981	.6	20	34	24	5	2755	217	> 88-6
1982	.5	28	24	27	6	1402	71	/ 00-6
1983	.2	20	35	18	7	1168	98	
1984	.3	1	37	15	4	1750		
1985	.6	33	183	50	1	2618	280	
1986	. 4	8	36	509	<u>ē</u>	2016	72	
1987	.5	233	40	94	ų	765	106	
1988	.5	38	<u>r</u> <u>1</u>	20	1	1381	255	
1989	3.3	11749	108	39	7	21692	6400	
1990	.6	25	55	51	4	1890	775	
1991	.2	10	45	22	6	3914	136	
1992	.6	12	49	19	é	4555	447	
1993	.3	<u>5</u>	<u> </u>	24	2	2534	62	
1994	.4		<u>44</u>		3	2452	70	
1995	.5	523	42	96	1	3113	196	
1996	.3	5	68	106	3	2826	37	

.

	ITHE WINES				MIN-EN LA	BS ICP R	EPORT				CT:F31) PAGE 1 OF 1
COMPANY: A	/INU MINES : MINTO-DRILL CC	IRE	705	WEST 15	STH ST., NOR	RTH VANCO	UVER, B.	C. V7M 1T2			FILE NO: 8-891/93+4
ATTENTION:	C.SAMPSON B.GAM			(6	604)980-5814	4 UK (604	1488-407	f	TYPE	ROCK BEUCHEN I	DATE: JULY 13, 1988
(VALUES I			AS	CU				-PPB 32 7			
1910	.5		10	12	15 19		340 \$750	14			
1911	.7		28 33	27 22	17	-	1219	54			
1912	.4 1.0	2	015	47	34	-	1115	646			
1913 1914	.6		223	 36	16	5	984	73			
1915	.4		28	29	16	-	1605	28			
1916	. 7		1	29	17	-	1467	49 57			
1917	.6		74	32	25 15	-	1792 1698	52			
1918	.5		7 33	30 32	10 19	-	416	58			
4919	.5				<u>+</u> í 12	<u>-</u>	155	14			
1920 1921	ن. 5.		1	11	14	5	168	2			
1922	.6		19	13	13	2	567	23	l		
1923			11	34	18	5	210	<u>2250</u> 173			
1924			278	25	128				+		
1925	 ./		29 no	12 10	17 12	e 6	680	38	l	88-5	
1926			28 3	10	13	4	195	12	>	88-3	
1927 ₋ 1928 -			31	12	15	2	237	9			
1720	6.1		8002	67	310	9	10735	8500	∔		
1930			191	16	18	6	442	24			
1931			23	6	18	3 4	381 133	2 3			
1932	•		19	4 2	11	3	121	÷ 1			
1933		5 3	14 	2 3	14	3	86	4			
_ <u>1934</u>		2 4		18	10	3	75	2	T		
1735		7	5	13	17	4	148	18			
1937		6	37	17	12	3	383	9			
1938		5	21	Ą	15	4 3	115 214	3 42			
1939		6			<u>14</u> 	5	129	8	+		
1940		.6 .0	274 10	30 30	15	8	107	17			
1941		.v .1	24	29	19	11	77	22	7		
1942 1943		.3	18	60	129	8	217	9	٦		
1944		.2	51	58	21	2	69	2	-+-		
1945		.6	183	78	.16	4	2102 587	48 113			
1946		.3	42	53 68	14 17	7 4	2011	1020			
1947		.7 .7	7959 1088	40	- 192	17	815	365			
1948 1949		.7	342	30	29	15	764	48			
1747	1	.1	3262	30	450	41	2794	690			
1951			11362	28	584	35	2107	<u>1050</u> 342			
1952		.6	2066	24	38	11 23	1440 10879	1150			
1953	: : 	i.3	<u>13098</u> 442	<u>34</u> 29	<u>1421</u> 99	<u>20</u> 25	1569	54			
1954		.6	40		24	10	960	38	-		
1955 1956		.4	75	27	36	5	1329	96	>	88-6	
1957		1.4	20430	6	627	25	2930	2300			
1958		.6	324	27	56	10	1037	39			
1959			46	28	21	<u>19</u> 7	<u>938</u> 426	<u>4</u> 12	+		
1960		.3	21 23	11 47	10 35	/ 8	1336	50			
1961		.4 .5	23 27	47	15	5	1475	27			
1962 1963		 .6	26	19	16	2	790	9			
1963 1964		.4	19	15	17	3	473				
1965		.7	23	25	20	1	1524	34 31			
1966		.2	15	13	11	4 4	400 2096	60			
1967		.5	31 70	23 30	21 17	1 2	2076 2185	47			
. 1968		.5 .6	30 8	30 35		- - 1	1898	24	ل		
4040		.0	U	-						-	

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS - ASSAYERS - ANALYSTS - GEOCHEMISTS VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-58 14 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

<u>Certificate of GEOCHEM</u>

ompany:AVINO MINES + RESOURCES
roject:MINTO-DRILL CORE
Attention:C.SAMPSON/B.GAME/L.WOLFIN

File:8-891/P1 Date:JULY 13/88 Type:ROCK ASSAY

e hereby certify the following results for samples submitted.

ample umber	AU-FIRE AU-FIRE G/TONNE OZ/TON
858 860 1872 1876 877	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1878 879 880 1884 *886	5.98 0.174 4.38 0.128 1.98 0.058 1.20 0.035 3.81 0.111
1923 1929 947 -951 1953	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
957 1976 1979 989	2.57 0.075 88-6 3.42 0.100 2.43 0.071 6.62 0.193

Certified by

MIN-EN LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS - ASSAVERS - ANALYSTS - GEOCHEMISTS
 VANCOUVER OFFICE:

 705 WEST 15TH STREET

 NORTH VANCOUVER, B.C. CANADA

 V7M 1T2

 TELEPHONE (604) 980-5814 OR (604) 988-4524

 TELEX: VIA U.S.A. 7601067 ◆ FAX (604) 980-9621

 TIMMINS OFFICE:

 33 EAST IROQUOIS ROAD

 P.O. BOX 867

 TIMMINS, ONTARIO CANADA

 P4N 7G7

TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

Report Analytical File:8-891 C mpany: AVINO MINES Date: JULY 13/88 F oject:MINTO-DRILL CORE Type:ROCK GEOCHEM Attention: C. SAMPSON B. GAME L. WOLFIN I te Samples Received : JULY 8/88 S_mples Submitted by :C.SAMPSON F port on Samples Assay Cupies sent to: 1. AVIND MINES, VANCOUVER, B.C. 2. CHRIS SAMPSON, VANCOUVER, B.C. З. Sieved to mesh Ground to mesh-100..... S'mples: Frepared samples stored:....X..... discarded:..... Lothods of analysis: AU-FIRE GEOCHEM 6 ELEMENT TRACE ICP AU-FIRE ASSAY Remarks

REJECT NO: MINTO	ES		70F 9767			ICP REPORT VANCOUVER.	B.C. V7M	(ACT:F31) PAGE 1 1 172 File NO: 8-915/1
ARTENTION: C.SAMPS	38 5 IA¥5		7VL RIG.			: (604) 9 88-		* TYPE ROCK GEOCHEM * DATE:JULY 15,
(VALUES IN PPN)	94 <u>8,9836</u> AS	AS	0.00	.1993/35V. 25	<u>9917 08</u> 53	ZX	AU-PPB	
1997	<u>.</u> 9	<u>7</u> 24	25	25		1287	41	
1998	17 15	17 17 1	22	23	2	1485	23	
1999	1.0	50	44 29	28	2	1427	39	> 88-6
	.5	30 9	47 28	17	2	1364	76	
2000					4	106	62	,
2101	<u>.</u>	27	<u>2</u> .	17		<u>1vo</u> 66	<u>94</u> 79	
2102	.3	20	28	16	1		/7 81	
2103	.5	20	42	16	8	57		
2104	. 3	8	53	16	2	63	11	007
2105	. ć	20	85	26	8	75	24	> 88-7
2106		3	50		46			
2107	1.6	173	39	19	116	66	58	
2108		4451	<u>14</u>	14	558	24	1960	
2109	.5	1935	22	20	131	74	337	Ĭ
2110	. 4	191	17	16	14	124	58	
2:11	.5	310	14	23		164	63	
2112	.4	95	64	20	7	1103	69	
2113	1.5	261	153	19	24	164	64	
2114	۰.	41	15	74	21	2012	249	
2115	1.7	47	98	273	118	11065	228	
2:16	.6	16	122	19	8	224	25	
2117		532	5	7	3	273	79	
2118	38.1	6945	154	5211	2103	13990	7240	
2119		1791	Ę	234	72	1778	429	
2120	-	1619	Ē4	21	53	164	198	
2121	.4	726	48	Ģ	2	169	77	
2122		58		2	<u>-</u> 12	178	41	
2123		783	5	11	10	445	42	
2124	.4	1062	5	6	12	158	117	
2125	•7 .9	1V62 5463	56	230	113	239	1360	> 88-8
2125	.7	1214	43	<u>400</u> 9	7	25	141	
2127	:/	792				<u>-</u> 79	155	
2128	•/ .4	1322	57 45	4 8		70	159	
				e 10	_	285	394	
2129	.9	468 Te/	61 31	10 20	3	285 86	13	
2130	1.2	384			0 4	86 90		
2131		31		<u>17</u>			2	
2132	• -	16	11	16	6	102	1	
2133	.7	22	11	12	6	66 E/	2	
2134	1.1	23	10	15	7	56		
2135	1.4	18	10	14	7	60 55	3	
2136	.8.		8	14	6	55		
2137	.3	24	9	17	· 5		4	
2138	. <u>ř</u>	25	13	15	6	71	6	
2139	• 5	17	14	17	4	161	15	
2140	.5	11	20	18	5		81	
2141	<u>i.0</u>	42	1058	6	10		12	لر
2142	2.3	44	87	17	6		60	7
2143	2.5	190	76	15	30		84	
2144	2.4	829	100	19	40		5	
2145	2.4	410	91	20	44		123	
2146	3.9	432	49	21	32		9	
2147	2.4	132	68	14	24		78	
2148	1.9	. 601	120	15	12		- 34	
2149	1.9	5593	91	25	26		328	
- + + + -	1.6	954	94	17	18		104	> 88-9.
2150	1.5	3930	147	34	12		1020	
2150 2151				16	12		53	
2151		171	12					
2151 2152	2.4	131 1182	72 774					
2151 2152 2153	2.4	1182	336	39	16	44	1500	
<u>2151</u> 2152	2.4					44 51		

COMPANY: AVIND MINE	5				EN LABS I			(ACT:F31) PAGE 1 0 172 FILE NO: 8-915
PROJECT NO: MINTO			/90 mið:		, NURIE VI -5814 OR		, B.C. V7M Lason	TYPE ROCK GEOCHEM & DATE: JULY 15, 1
ATTENTION: C.SAMPSO	AS	 AS		- (604/780 FB	-JC14 UN 88	<u>2004/700</u> ZN	AU-PPB	
(VALUES IN PPM)						109	43	······································
2157	.5	55	73	8				
2158	.7	36	26	10	10	90	4	
2159	.7	53	37	10	1	97	192	
2160	, <u>4</u>	57	52	11	11	95	36	
2161	.6	43	36	12	9	87	13	
2162	.8	43	54	15	1	142	79	
2163	.3	204	47	12	1	109	198	
2164	1.4	34	14	8	3	297	76	> 88-9
2165	.6	110	42	7	3	3141	157	
2166	.2	29	47	10	8	198_	32	
2167	.3	36	32	3	9	155	308	
2168	.6	390	14	9	53	335	495	
2169	9.0	1778	55	396	211	1115	725	
2170	.7	140	16	23	17	458	93	
2171	1.1	35	12	24	11	286	14	
2172	.7	8	7	15	7	236	5	
2173	.8	30	10	14	7	229	8	٦

.

-

VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHER//STS

<u>Certificate of ASSAY</u>

"ompany:AVINO MINES
"roject:MINTO
Attention:C.SAMPSON/B.GAME

,

File:8-915/P1 Date:JULY 15/88 Type:ROCK ASSAY

t

<u>e hereby certify</u> the following results for samples submitted.

ample Imber	AU G/TONNE	AU OZ/TON	
en en en el seguer de la companya en el seguer de la companya en el seguer de la companya en el seguer de la co	$\label{eq:constraint} \left($		
^ 108	2.27	0.066	1 88-7
118	8.85	0.258	L 88 -8
2125	1.94	0.057	I
2151	1.18	0.034 0.046	00-9
153	1.59	0.046	- 88-9 .

Certified by

MIN-EN LABORATORIES LTD.

VANCUUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

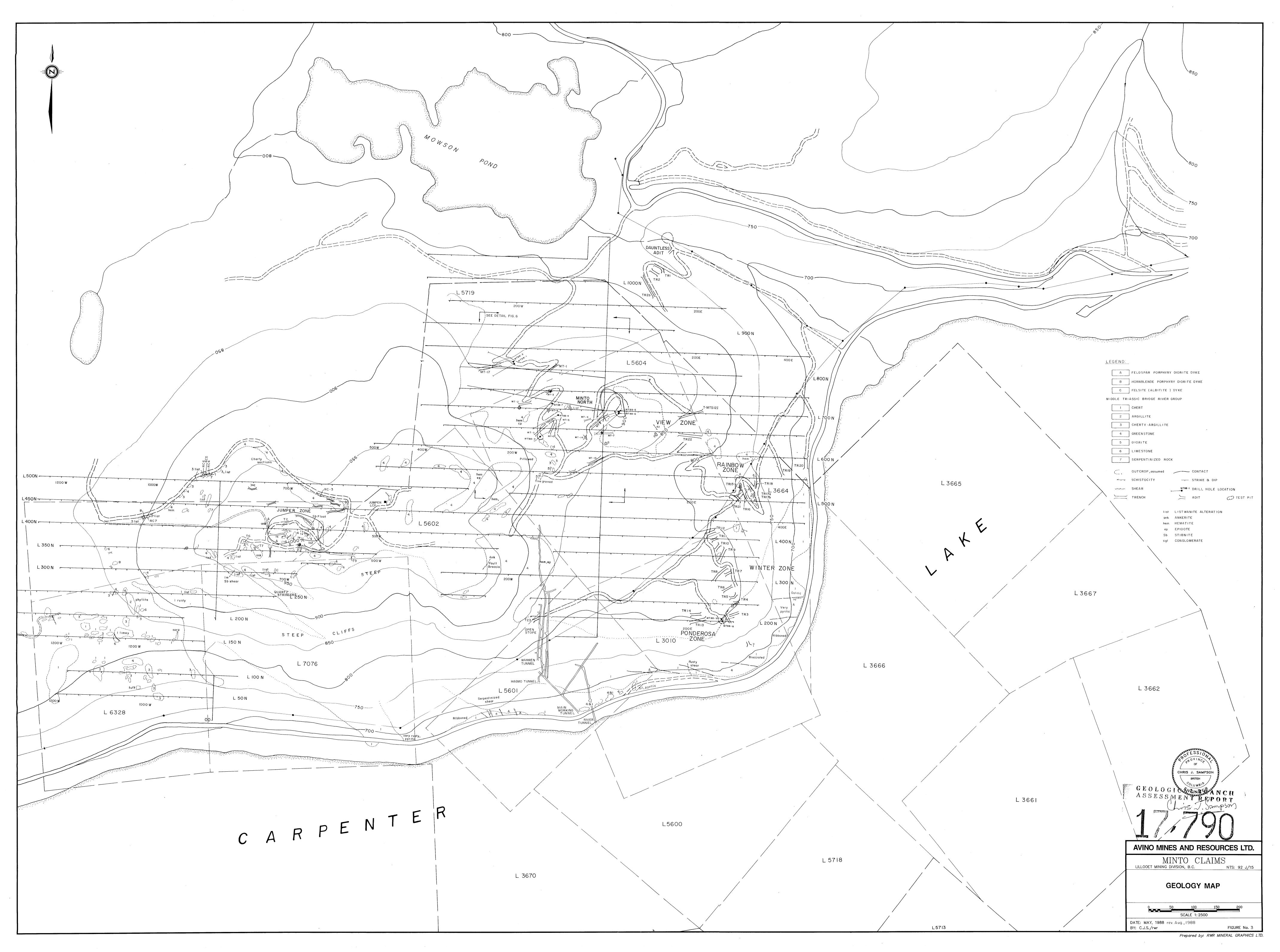
TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

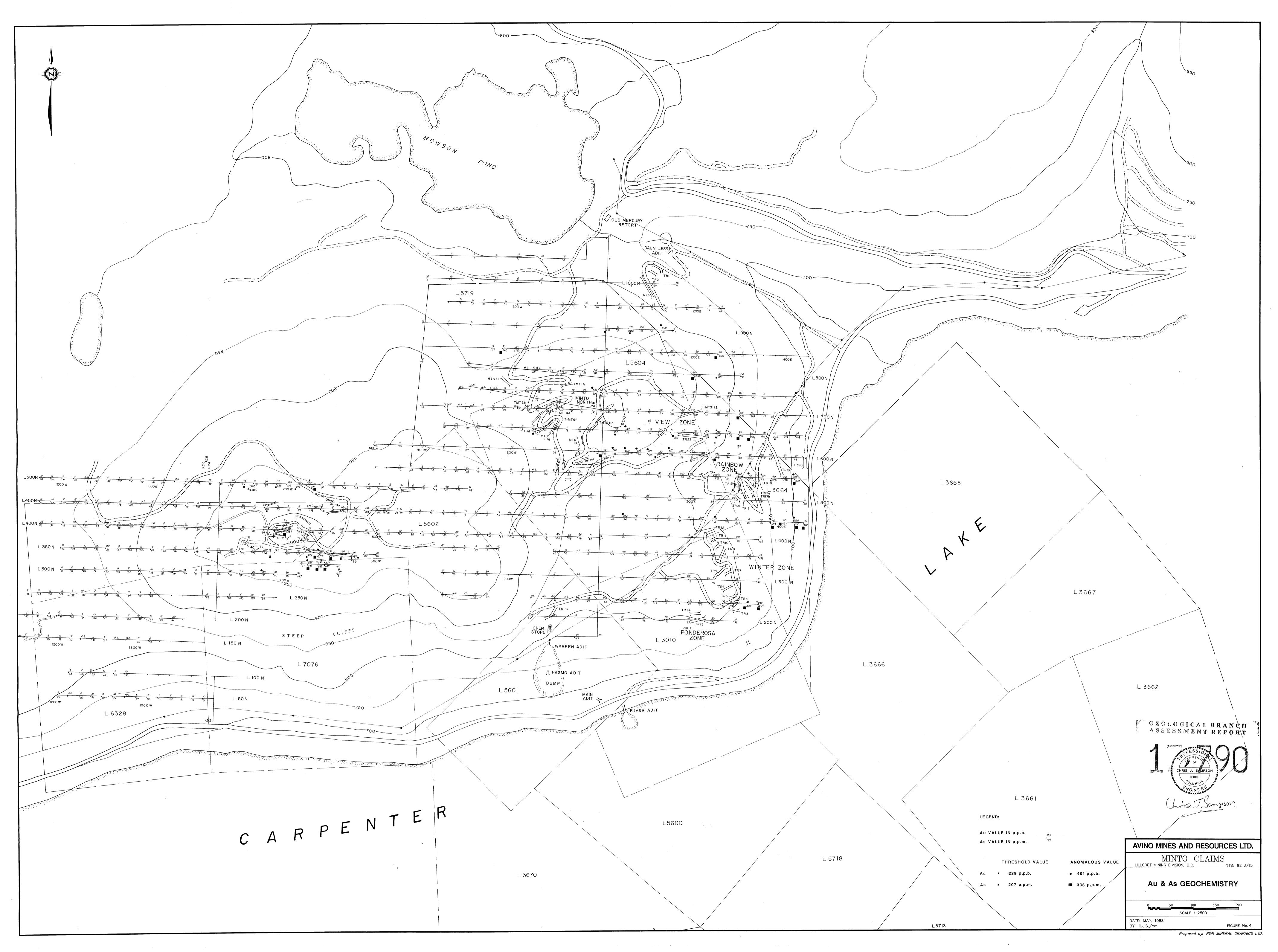
EN LABORATORIES LTD.

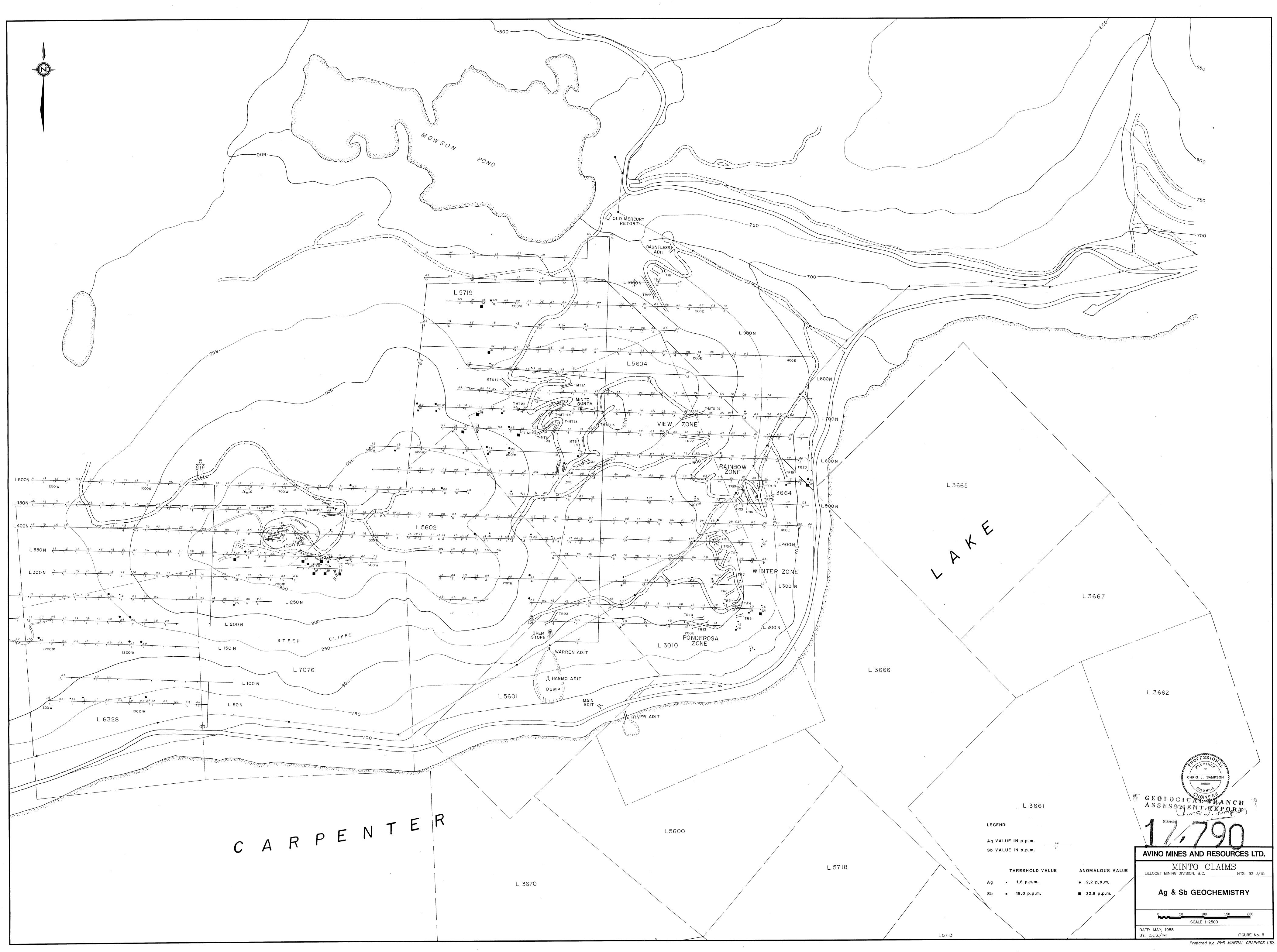
SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

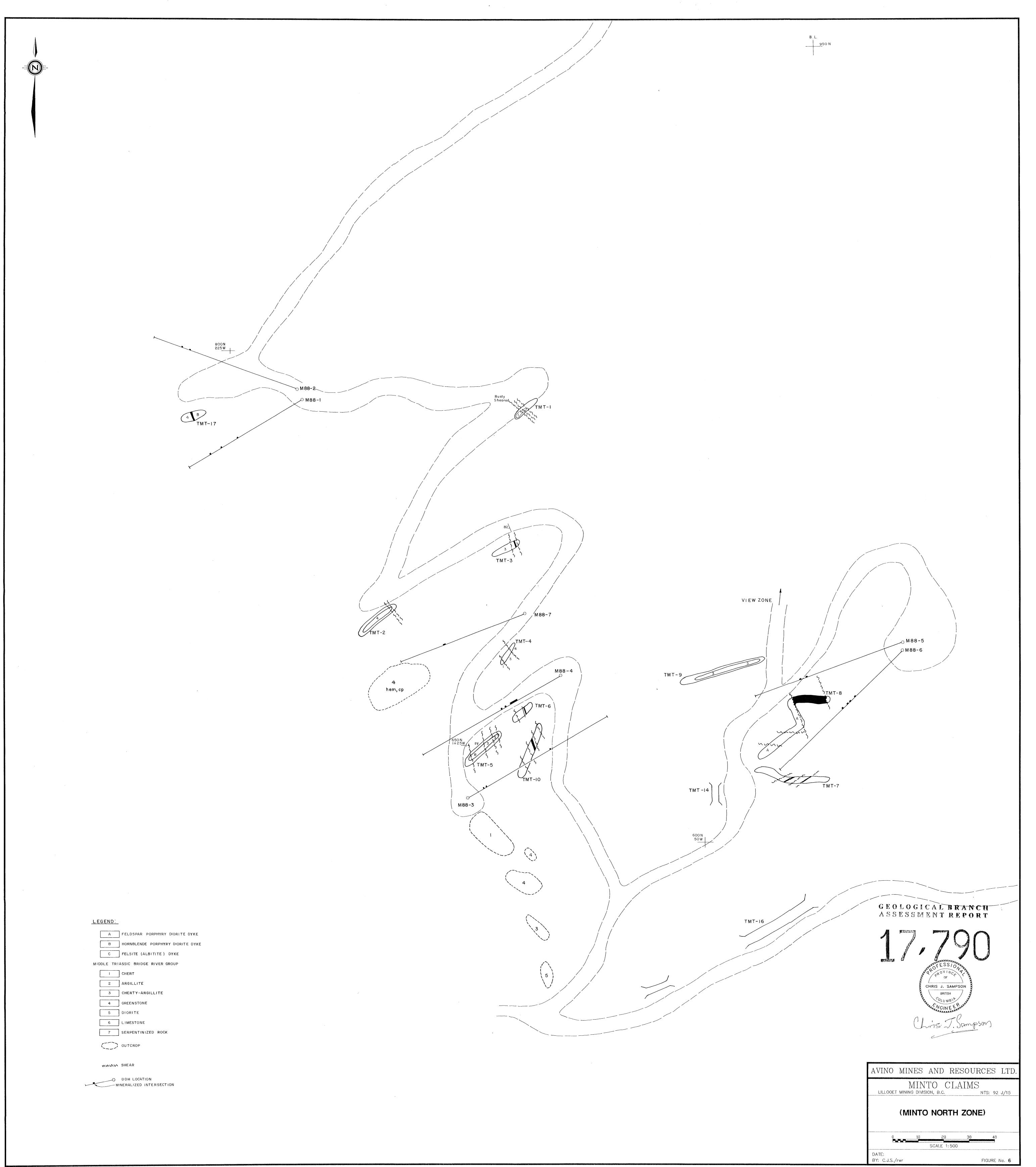
<u>Analytical Report</u>

Company:AVINO MINES
coject:MINTO
Attention:C.SAMPSON/B.GAME

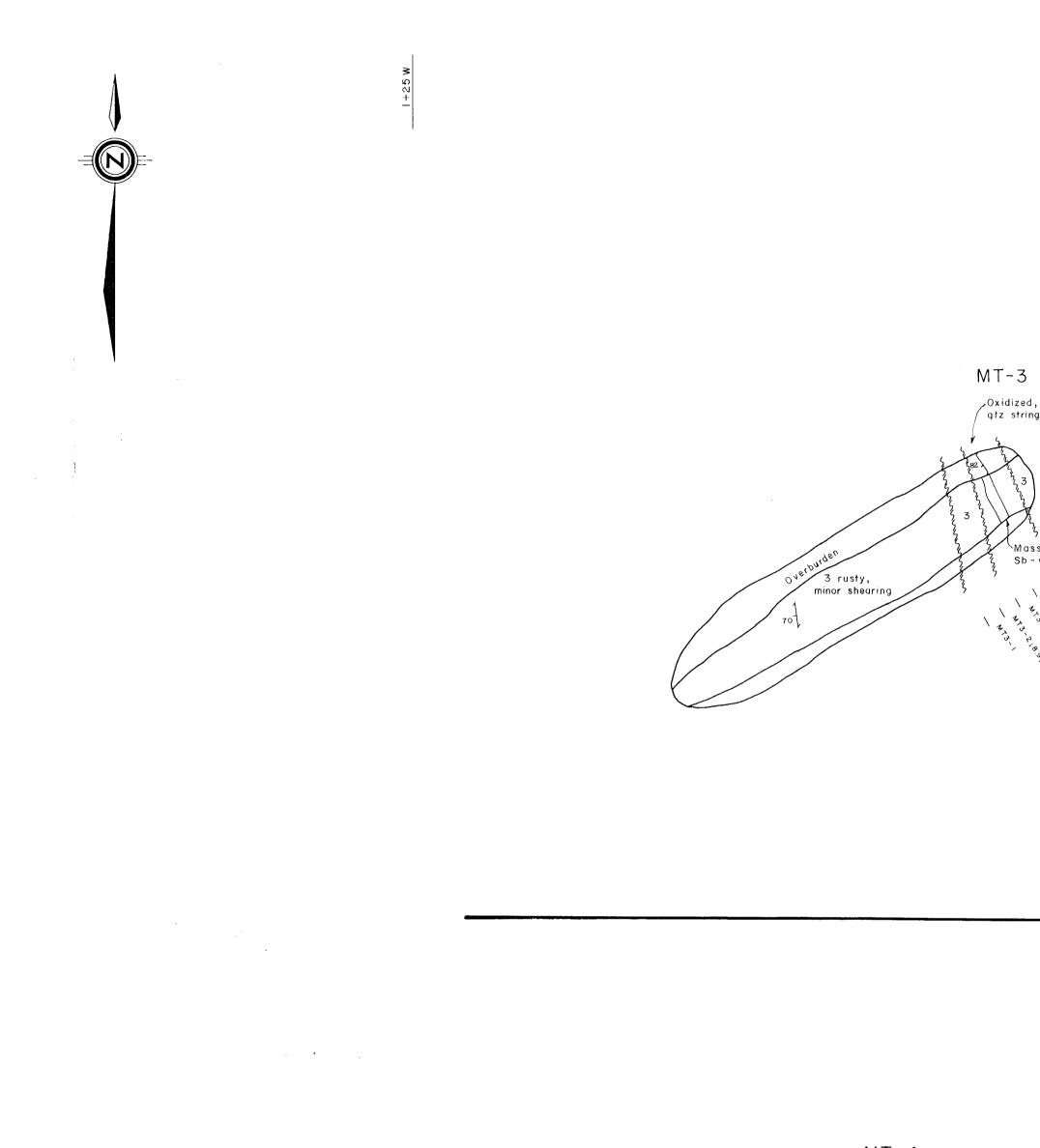

MIN

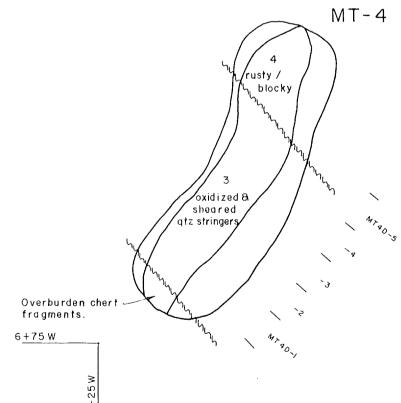

File:8-915 Date:JULY 15/88 Type:ROCK GEOCHEM


ate Samples Received amples Submitted by	BRIAN COAME			
na an an trans an transmista transmista transmista. Transmista		en en gelaaren ja en de terren afgele er statue en 🖗 en gelaken en andere en de seelen en de s		
report on			Geochem	Samples
			Assay	Samples
	INES, VANCOUVER, B. ENGINEERING, VANCO			
Samples: Sieved to mes	h e	round to mesh	-100M	
repared samples stored rejects stored		arded:		
ethods of analysis:				


6 ELEMENT ICP AU FIRE GEOCHEM AU FIRE ASSAY

Remarks

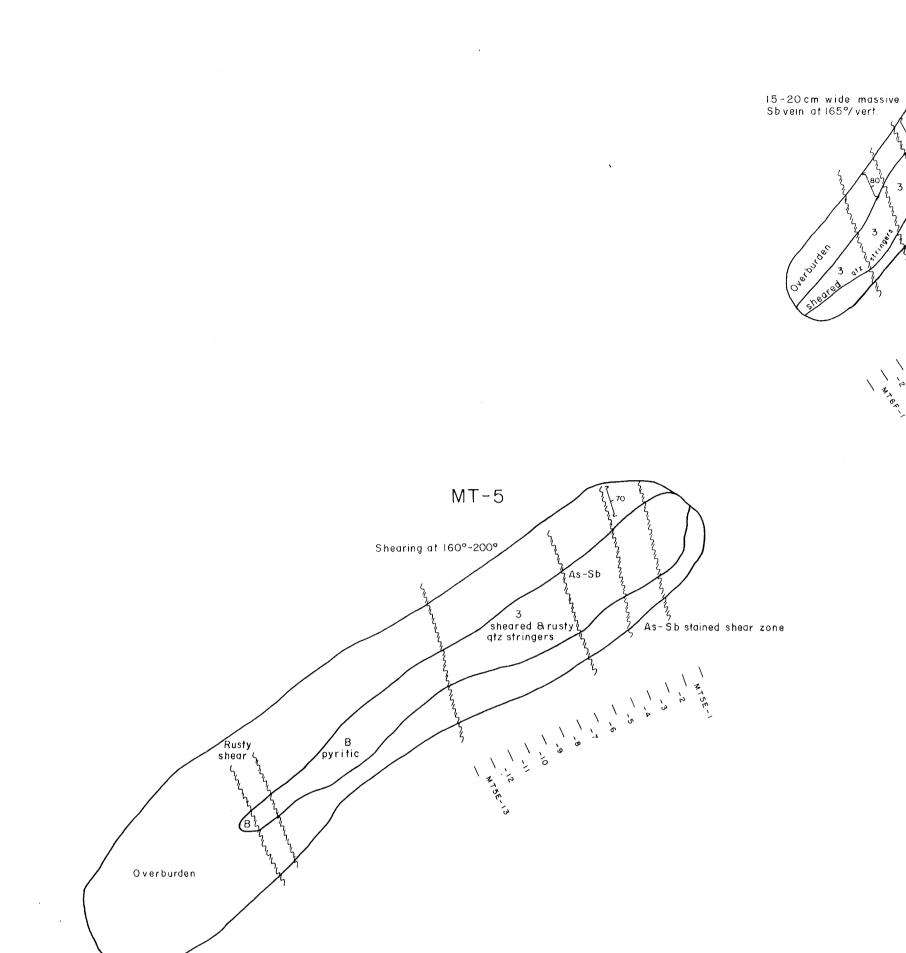


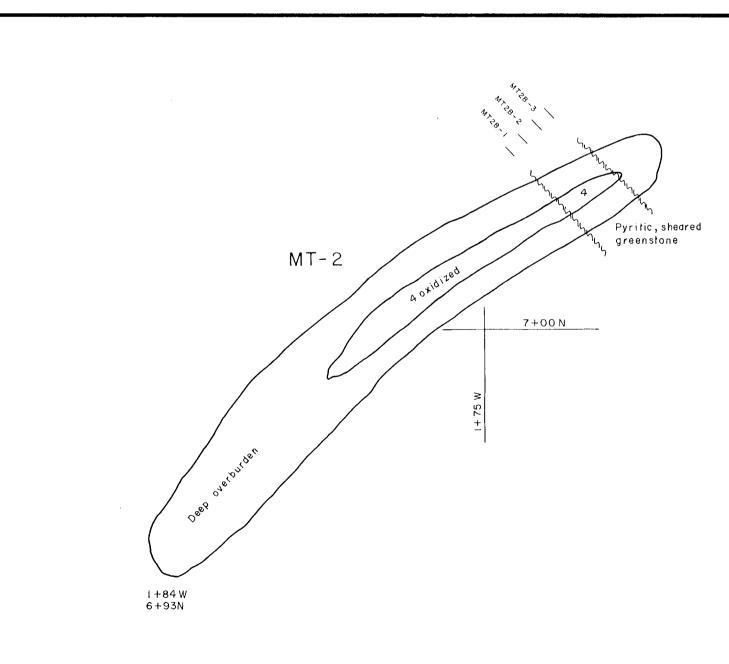


Prepared by: RWR MINERAL GRAPHICS LTD.

LEGEND:

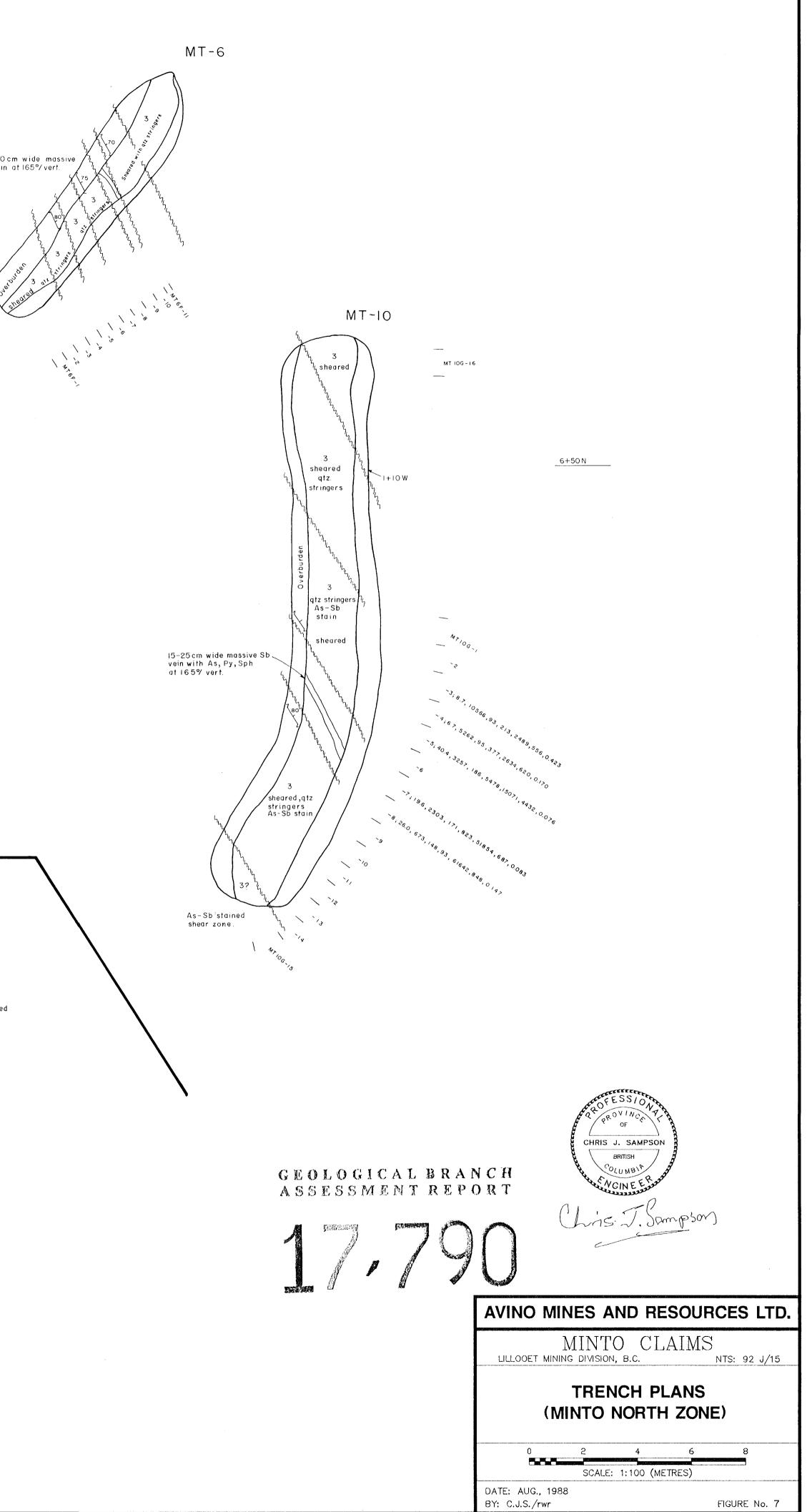
A FELDSPAR PORPHYRY DIORITE DYK B HORNBLENDE PORPHYRY DIORITE D C FELSITE (ALBITITE) DYKE MIDDLE TRIASSIC BRIDGE RIVER GROUP		
2 ARGILLITE		
3 CHERTY ARGILLITE		
4 GREENSTONE		
5 DIORITE		
6 LIMESTONE		
7 SERPENTINIZED ROCK		
SHEAR	list	LISTWANITE 'ALTERATION
~ ORIENTATION OF SHEAR	ank	ANKERITE
STRIKE, DIP	hem	HEMATITE
	ер	EPIDOTE
, CONTACT, ASSUMED	Sb	STIBNITE
SCHISTOSITY	cgl	CONGLOMERATE
SAMPLE # - Ag, As, Cu, Pb, Sb, Zn (p.p.m.); Au (oz./T)		

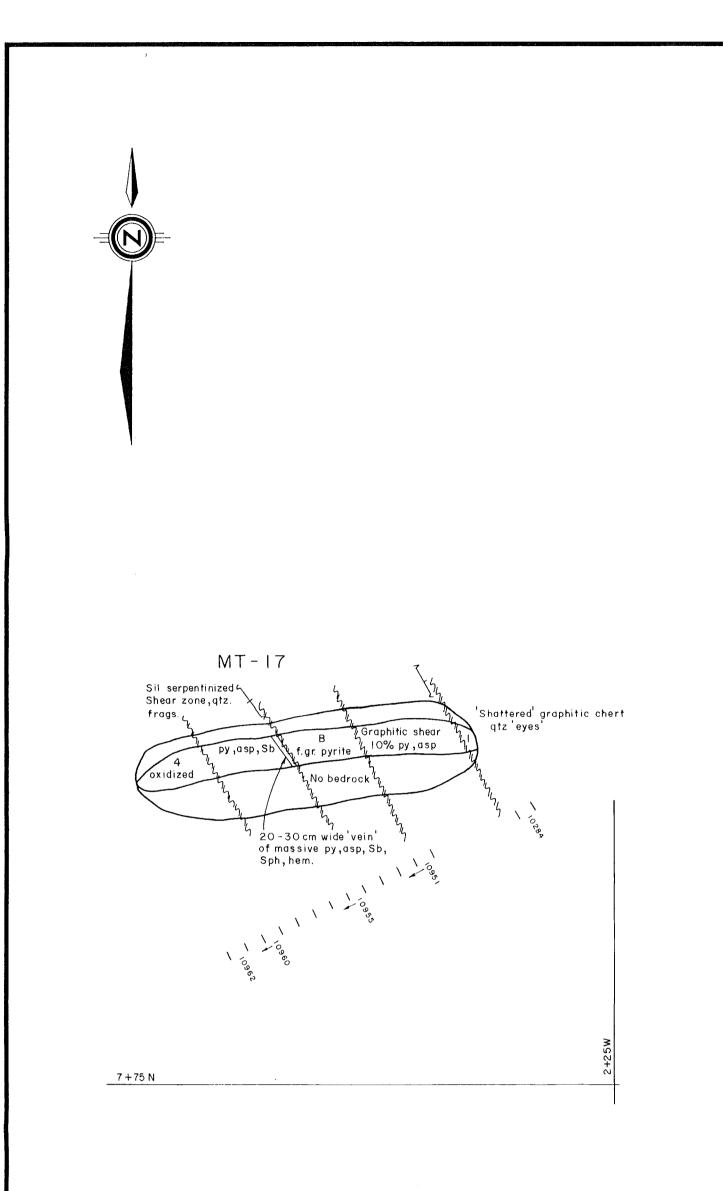

7+50 N


•

Oxidized, sheared chert/argillite qtz stringers, py,asp, sph

Massive 20-30 cm wide


Sb - vein



.

`

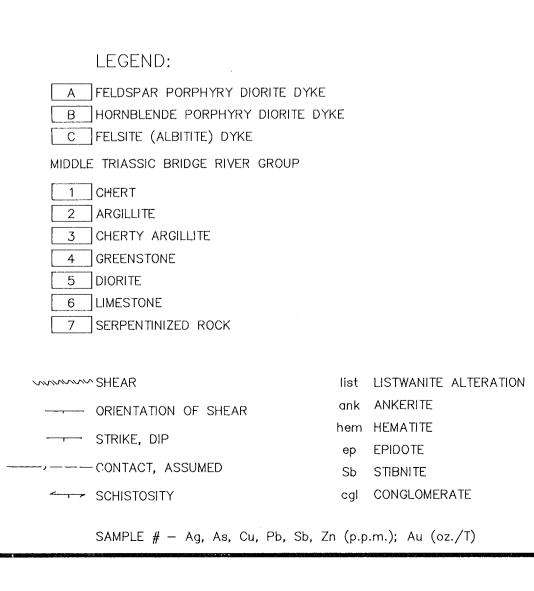
Prepared by: RWR MINERAL GRAPHICS LTD.

6+50 N

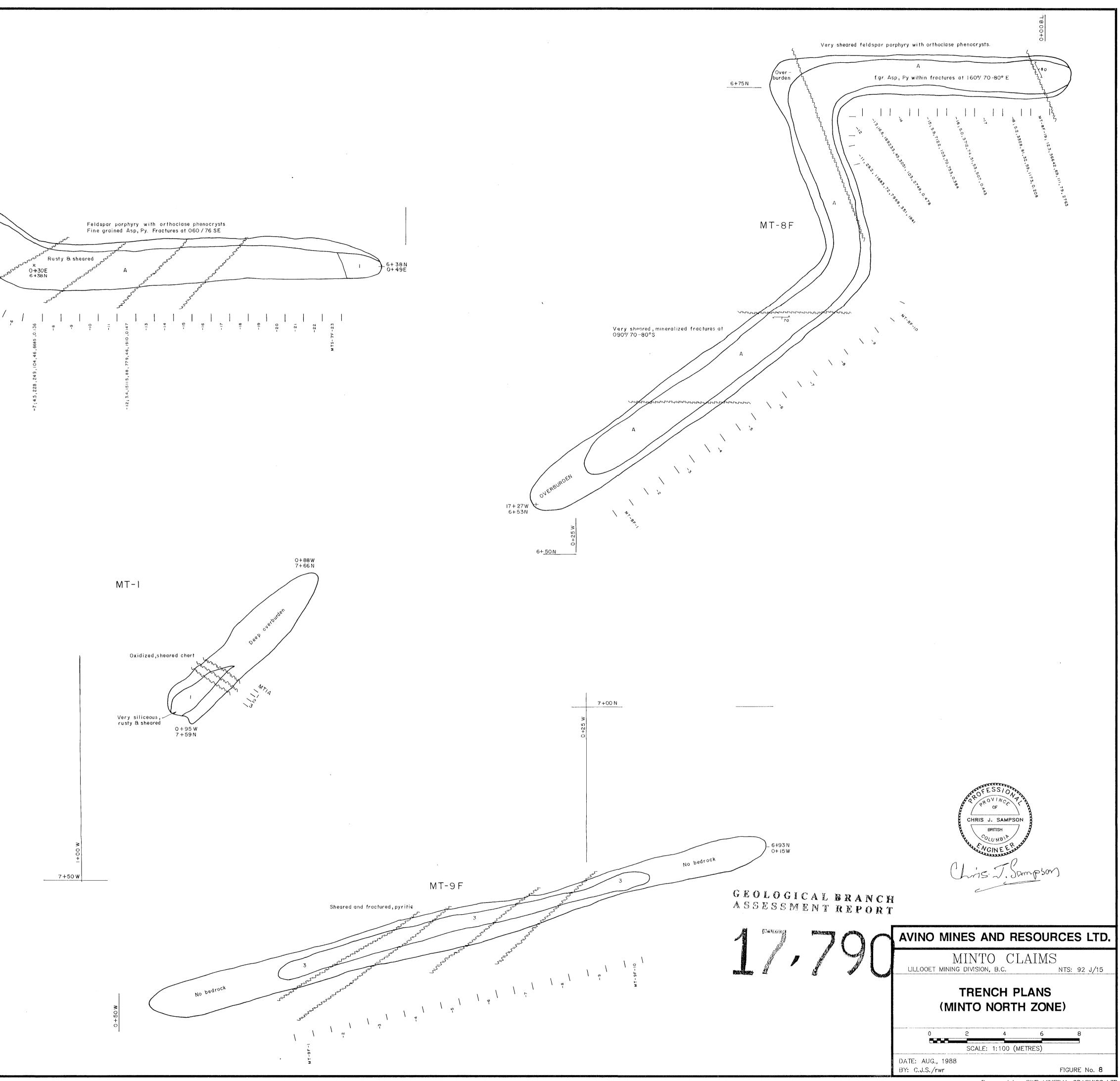
MTS-7F

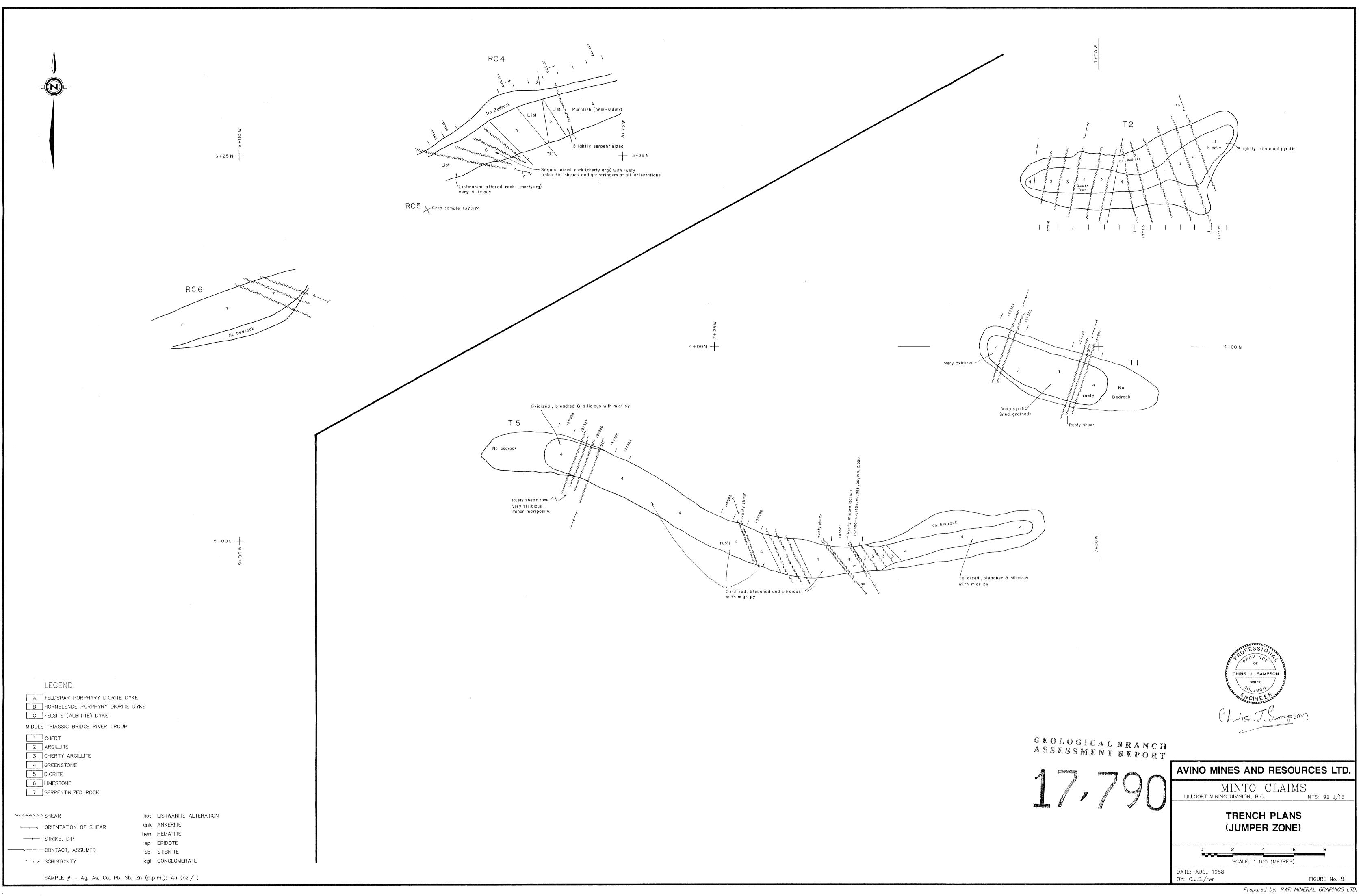
Overburden

14


· · /

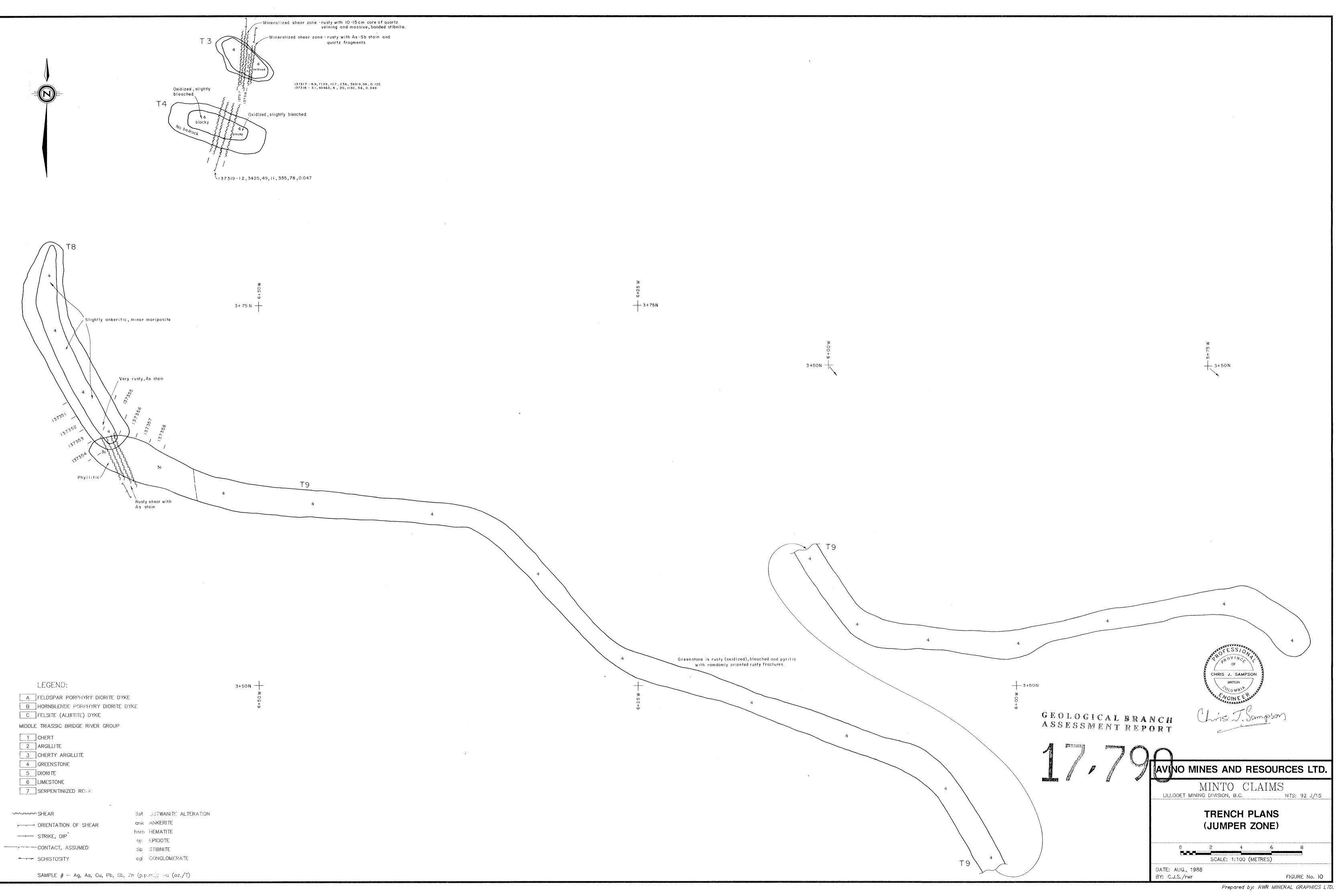
m /


~ /

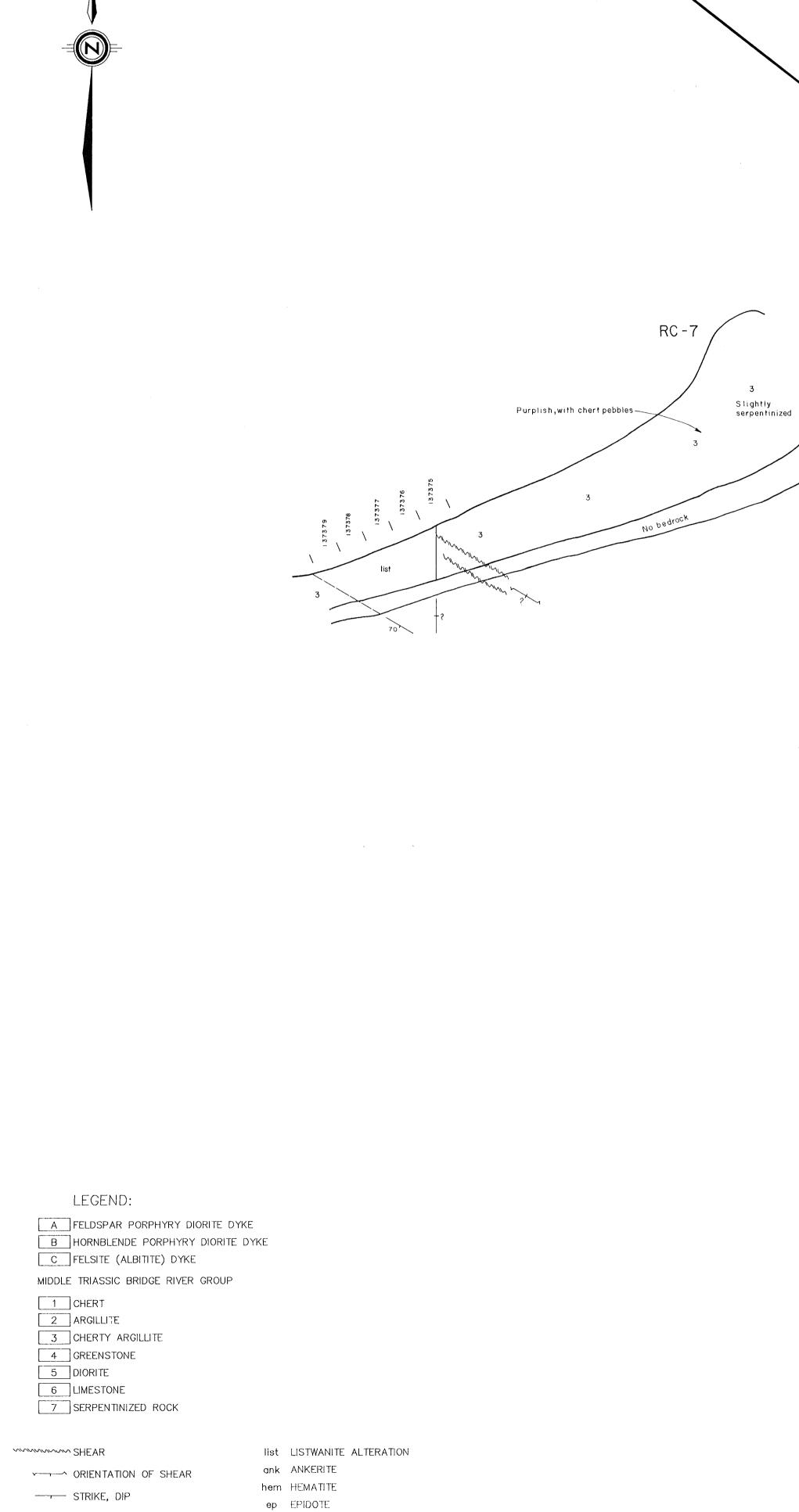

5 /

•

ĸ



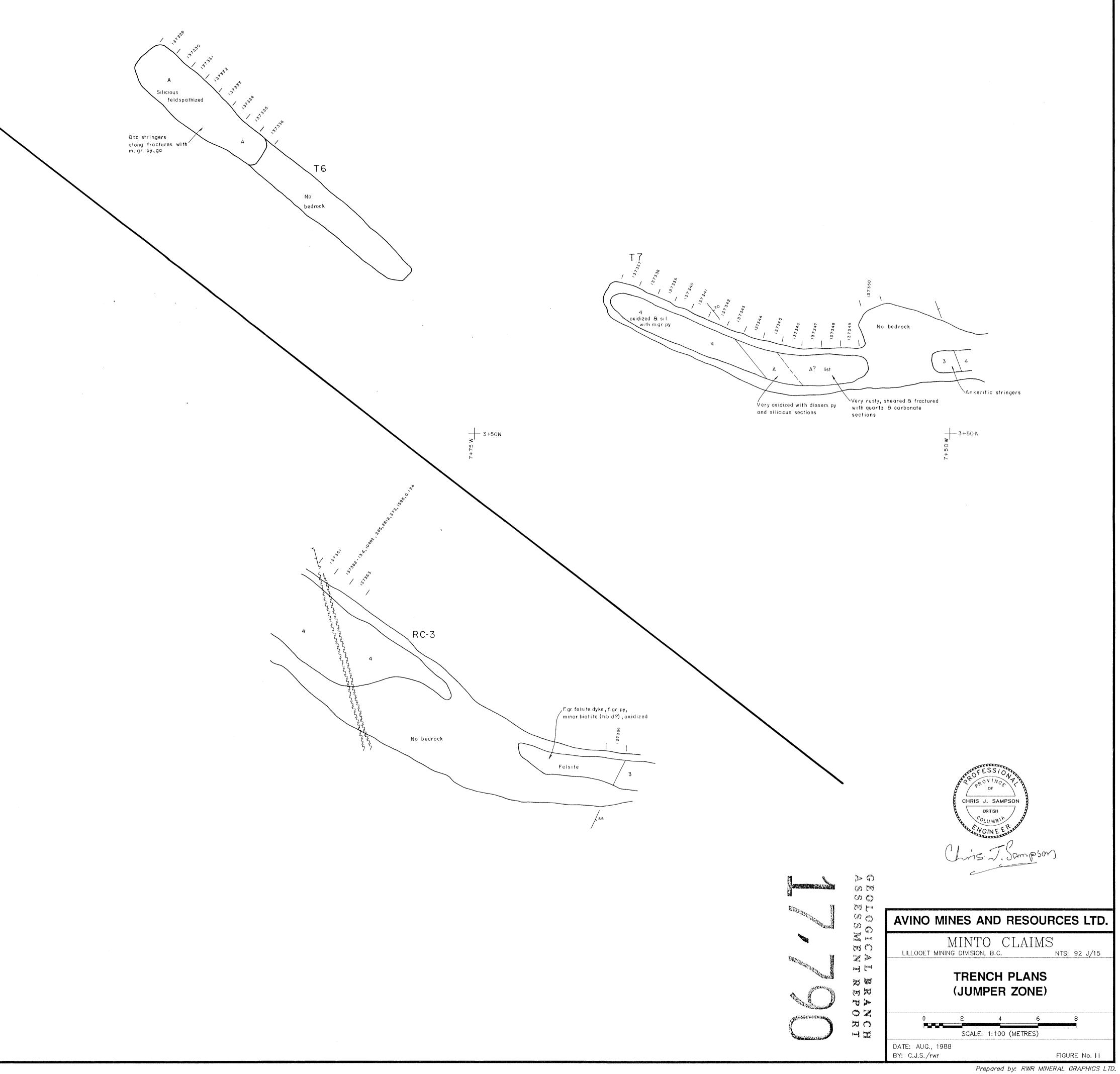
,

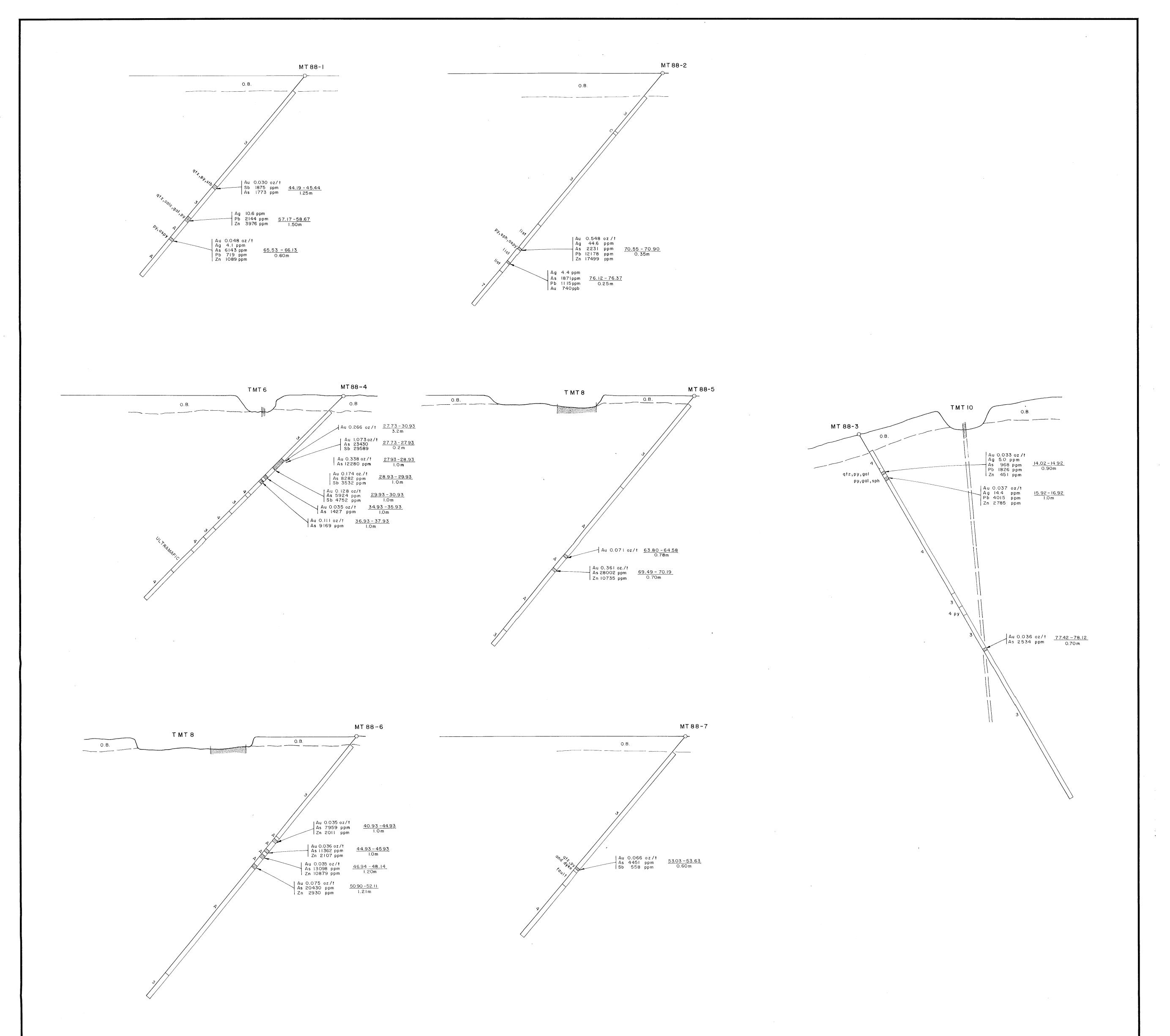

.

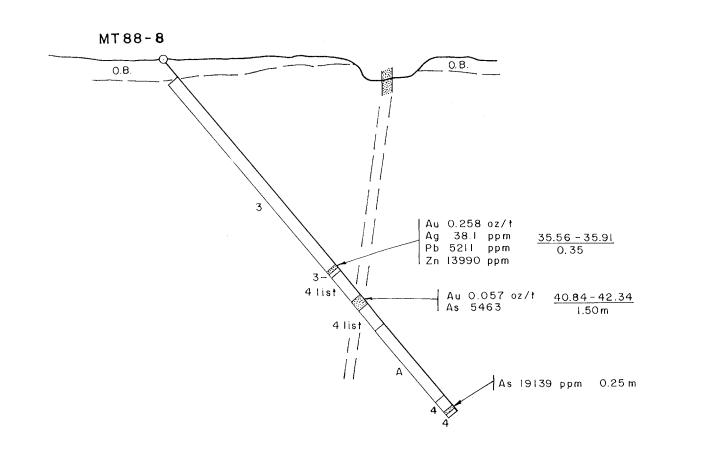
1

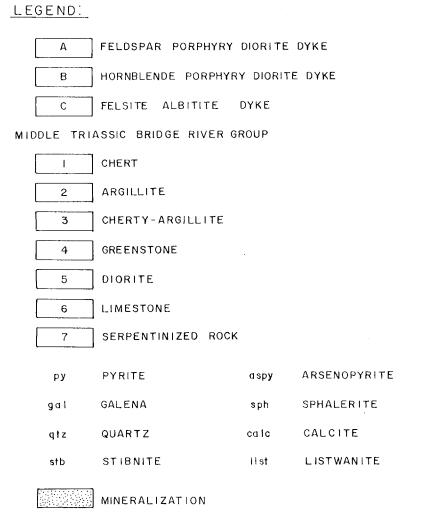
)

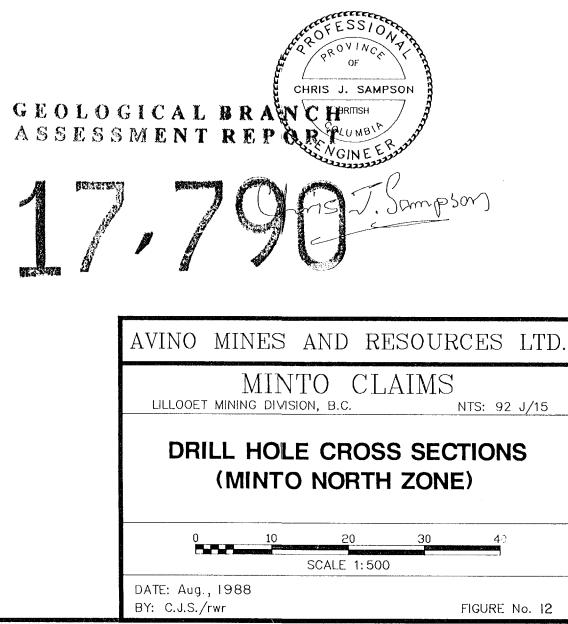
.


------,-----CONTACT, ASSUMED


SCHISTOSITY


SAMPLE # - Ag, As, Cu, Pb, Sb, Zn (p.p.m.); Au (oz./T)


SP STIBNITE


ogi CONGLOMERATE

Prepared by: RWR MINERAL GRAPHICS LTD.