Off Confidential: 89.06.24 District Geologist, Kamloops ASSESSMENT REPORT 17815 MINING DIVISION: Greenwood **PROPERTY:** Sailor LOCATION: 49 06 36 LAT LONG 119 11 24 UTM 11 5441774 340171 NTS 082E03E CLAIM(S): Minnie Ha-Ha, Sailor, Diamond, Toledo, Snowshoe, Rover Fr., Cariboo Fr. Kamloops OPERATOR(S): Nexus Res. AUTHOR(S): Walker, J.E. REPORT YEAR: 1988, 41 Pages COMMODITIES SEARCHED FOR: Gold, Silver, Copper, Lead, Zinc GEOLOGICAL SUMMARY: Late Permian to Early Triassic Anarchist Group rocks host quartz veins along an east trending fracture set. Mineralization consists of free gold with minor pyrite, sphalerite, galena, and chalcopyrite. Grades of up to 119 grams per tonne gold have been noted. WORK DONE: Physical, Geochemical LINE 13.5 km ROCK 31 sample(s) ;ME Map(s) - 1; Scale(s) - 1:2000 206 sample(s) ;ME SOIL Map(s) - 6; Scale(s) - 1:2000RELATED **REPORTS:** 08153,09840 MINFILE: 082ESW045,082ESW046

N. COM
{

CAMP MCKINNEY PROJECT

ASSESSMENT REPORT ON SOIL GEOCHEMICAL AND ROCK SAMPLE SURVEYS OF SAILOR CLAIM GROUP

GREENWOOD MINING DIVISION, BRITISH COLUMBIA

<u>Claims:</u> Sallor, Minnie-Ha-Ha, Kamloops, Toledo, Diamond Rover Fr., Carlboo Fr., Snow Shoe

<u>Total Claim</u> <u>Units:</u>

Owner And Operator: Nexus Resource Corporation

Location: Greenwood Mining Division NTS: 82E/3E Latitude: 49⁰06' Longitude: 119⁰II' Bridesville Area South-Central British Columbia

SUB-RECORDER RECEIVED SEP 2 0 1988

FILMED

M.R. # ______ \$ _____ VANCOUVER, B.C.

Fleid Work: June 10 - 22, 1988

8

By: James E. Walker

GEOLOGICAL BRANCH ASSESSMENT REPORT

TABLE OF CONTENTS

PAGE

(

SUMMARY				
INTRODUC	TION			
А. В.		2		
	Location, Access, Topography and Vegetation	2		
	Claim Information Exploration History	5		
		5		
GEOLOGY A.	Introduction	6		
в.	Lithology	6 6		
	Structure Mineralization	6 7		
		/		
	LORATION PROGRAM	•		
в.	Rock Sampling Program	8 8		
с.	Soli Geochemistry Survey	9		
D.	Integration With Previous Surveys	10		
RECOMMEN	DATIONS			
CERTIFIC	ATE			
APPENDICES				
1	Statement of Expenditures			
111	Proposed Budget – Stage I and II Programs Rock Sample Descriptions			
IV	Certificates of Analyses			
	Analytical Procedures Statistical Plots			
FIGURES				

1.	General Location Map	3
2.	Location Map	4
З.	Rock Sample Location Map	In Pocket
4.	Soll Geochemistry Cu, Pb, Zn	in Pocket
5.	Soll Geochemistry Au, As	In Pocket
6.	Soll Geochemistry Cu+Pb+Zn	In Pocket
7.	Contoured Soll Geochemistry Cu, Pb, Zn	In Pocket

SUMMARY

in 1988, Nexus Resource Corporation conducted a two week exploration program on its Camp McKinney Property. The program was designed to assess the property's current state of development and to determine the feasibility of using soli geochemistry as an exploration tool in this area.

The property consists of 8 reverted crown grants. It has easy access by good gravel road. The area containing the claim block is of low relief. Vegetation is largely immature pine and spruce.

The area has a long mining history, dating back to the The Carlboo-Amelia mine was the main producer 1860's. ١n this camp with total production of 83,320 oz of gold and 21,860 oz of silver from 136,793 tons of ore mined between 1894 and 1963. The gold and silver occurs in a vein striking east-west and dipping vertically. The Nexus property is located some 300 metres south of the mine.

The geology present on the property is dominately Anarchist Group, a mainly meta-sedimentary sequence of Upper Permian or Trlassic age. Gold mineralization occurs in east-west striking quartz vein systems which contain pyrite, galena, sphalerite, chalcopyrite and free gold. These veins vary in thickness from 30 cm to 120 cm in surface exposure.

Work conducted by Nexus in 1988 involved establishing 13.46 km of grid, and collecting 206 soil samples and 31 rock samples.

The soil survey delineated several anomalies which could indiate the strike projections of the velo between the Sailor and Minnle-Ha-Ha occurrences. Rock sampling of the dumps produced grab samples from the Sailor dump grading up to 073 oz/t Au and from the Minnle-Ha-Ha grading up to 3.47 oz/t Au.

A further work program is recommended for this property. It is estimated to cost \$41,000. and take 7 weeks to complete.

INTRODUCTION

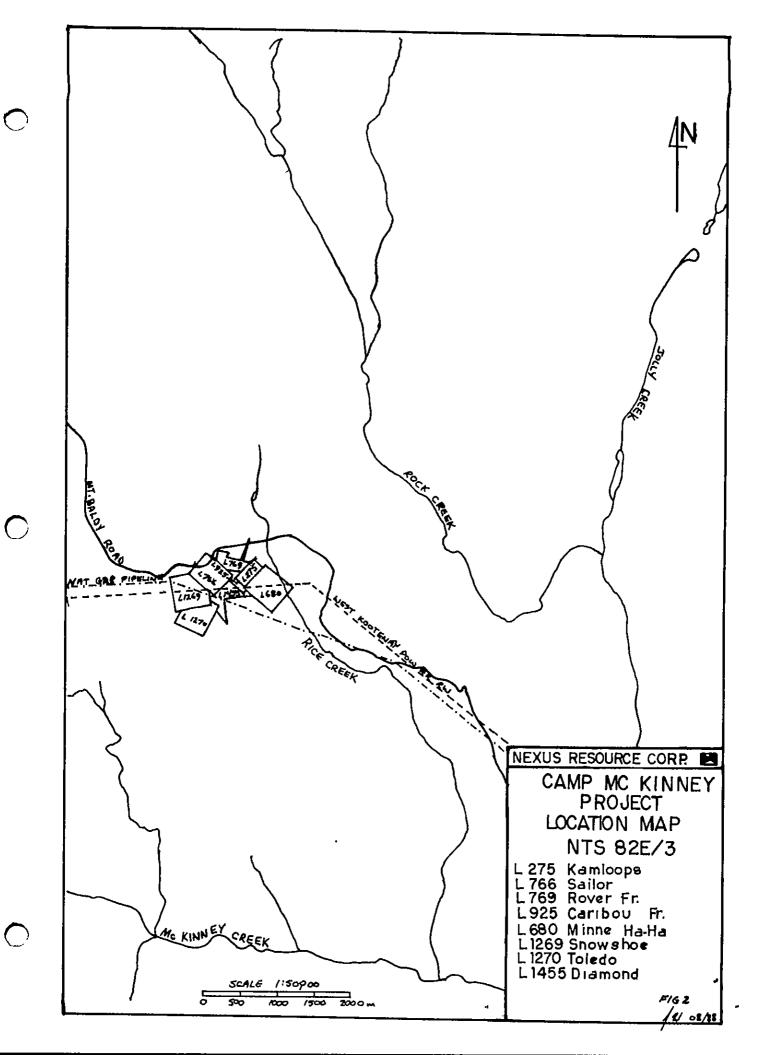
A. <u>PURPOSE</u>:

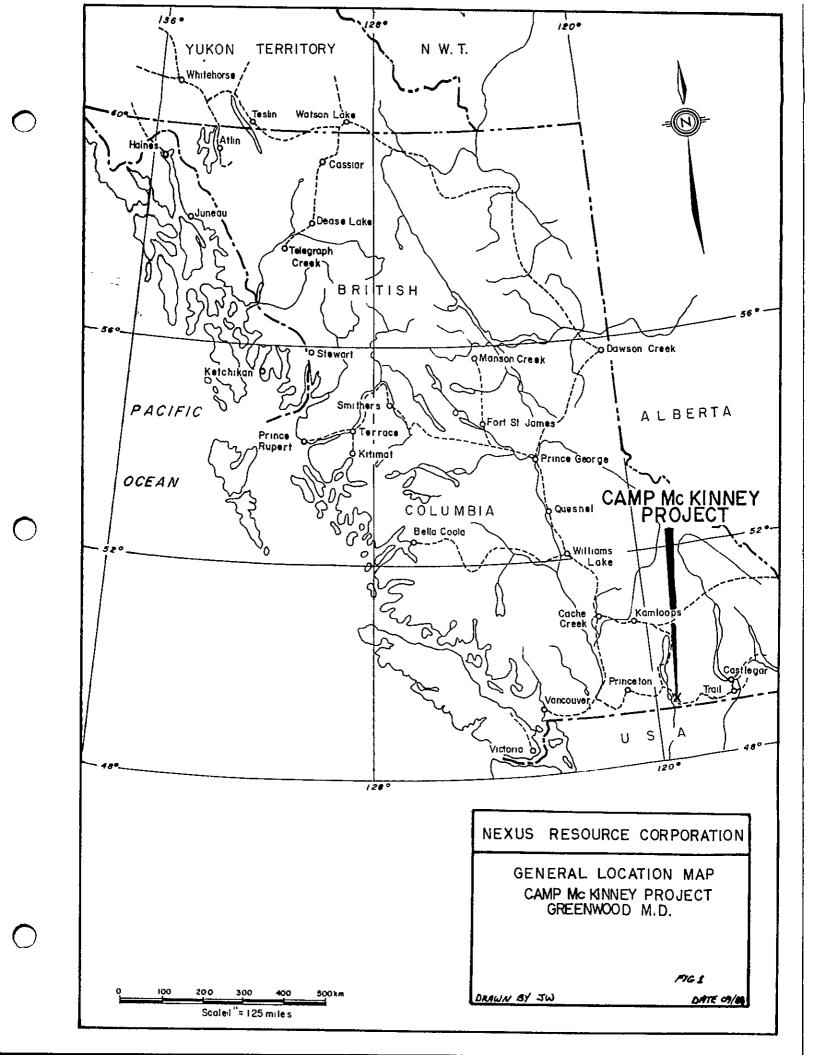
The purpose of this report is to relate the results of a two week program in June, 1988 designed as an initial evaluation of the Camp McKinney claims (Sailor Claim Group) 100% owned by Nexus Resource Corporation. The program was designed to examine the old workings on the property and provide a reference grid through which surveys done eight years previous could be related to any new work done. As well, soll samples were taken over the strike projections of the main quartz vein to determine its position.

B. LOCATION, ACCESS, TOPOGRAPHY AND VEGETATION:

The Camp McKinney property is located 21.5 km ENE of Osoyoos, British Columbia and is within the Greenwood Mining Division (N.T.S. 82E/3E).

The property is accessed by a good gravel road maintained for year-round use. The turnoff for this road is 3.0 km east of Bridesville. It follows the McKinney and Rice Creek watersheds to the ski resort on Baidy Mountain. The McKinney property is located about 7 km southeast of the resort. Portions of the claim block straddle this road.


Within the claim block there are several access roads. Several access the Hydro lines or gas pipeline which cross the claims. These are maintained in a driveable condition for two or four wheel drive trucks.


Lodging is available in the town of Osoyoos or Rock Creek. Approximately 35 minutes is required for access from Osoyoos. Rock Creek is somewhat closer, but service facilities there are limited.

Camp McKinney is located in a area of relatively flat terrain in the Okanagan Highland, a plateau region with an average elevation of 1,300m. The claims are located between 1,280m and 1,340m elevation.

The area of the claim block is primarily second growth pine and spruce. A fire in 1932 burned most of the mature timber stands in the area. Consequently, certain portions of the claim block are covered by closely spaced trees under 10 cm in diametre.

Climate varies widely in the region around the claims. Over the interval of 20 km from Osoyoos to the claim blocks, annual rainfall varies from less than 20 cm to approximately 50 cm. Accumulations of snow can be expected in the area from November to early April.

C. <u>CLAIM INFORMATION</u>:

The Sallor Group of claims is 100% owned by Nexus Resource Corporation. The Minnie-Ha-Ha claim is subject to a 10% net profit interest payable to Lode Resource Corporation, the former owner of the claim.

<u>Claim</u>	Record <u>Number</u>	Units	Date <u>Recorded</u>	Explry Date*
Minnie-Ha-Ha Sailor Dlamond Toledo Snowshoe Rover Fr. Carlboo Fr.	1620 1621 1622 1623 1624 1662 1663	1 1 1 1 1	June 27/79 June 27/79 June 27/79 June 27/79 June 27/79 July 3/79 July 3/79	06/95 06/94 06/93 06/93 06/93 07/94
Kamloops	1664	1	July 3/79	07/94

Includes assessment work flied with this report.

D. EXPLORATION HISTORY:

Placer gold was mined from the Camp McKinney area from the early 1860's onward. Lode gold was first discovered in 1884 and the Cariboo-Amelia mine commenced operations in 1894. The Cariboo-Amelia mine operated until 1903 producing 123,457 tons at average grade of 0.563 oz/ton gold and 0.052 oz/ton sllver. an Total profits in these years was \$565,588. in 1940, the Carlboo-Amella mine was reactivated and 2,044 tons of ore were mined until its closure in 1946. Average grade over this period was 0.850 oz/ton gold. The final production of the Carlboo-Amelia mine to date was in the years 1960-1962. Production totalled 11,292 tons grading 1.06 oz/ton gold and 1.26 oz/ton sliver. Total production from 1894 to 1963 was 136,793 tons with an average grade of 0.61 oz/ton gold and 0.16 oz/ton silver. In total ounces, gold production was 83,320 oz. and sliver production was 21,886 oz.

The Carlboo-Amella mine produced all of its ore from a single veln, the Carlboo veln. This veln strikes roughly east-west and dips steeply south. The vein is highly transected by faults and shears. It generally varies between 0.9m and 2.4m, but thicknesses to 4.6m have been recorded.

Nexus Resource Corporation first acquired the Sailor Group in 1980. During that year, a VLF-EM and a magnetometer survey were conducted over the property. The survey was not particularly effective due to interference from the powerline and gas pipeline.

in 1981, Sawyer Consultants conducted a soil geochemistry and mapping project over the claims. Over 1,000 samples were collected, but they were only analyzed for lead and zinc. Only small spotty anomalies were located, possibly due to cultural contaminents.

GEOLOGY

A. INTRODUCTION:

The Camp McKinney area has been the subject of government surveys by W. E. Cockfield in 1935 and M. S. Hedley in 1940. A summary of the geology of the Camp McKinney area extracted from these two reports is presented below.

B. LITHOLOGY:

The Camp McKinney area is predominately underiain by rocks of the Anarchist Series, a package of greenstones, quartzites, amphibolites and limestones. In general, these rock types are complexly interbedded making stratigraphic correlations relatively ifficult over even short distances.

The greenstones are andesitic in composition. Most appear to be sedimentary in origin. They are often interlaminated with original carbonate layers. In some areas, the greenstone is massive and appears to be of igneous origin. The exact nature of their origin is not certain.

Quartzites are fine-grained, light grey rocks. They are finely laminated with dark laminae composed largely of blotite representing original bedding planes. These quartzites contain varying quantities of argillaceous material. Some contain over 50% argillaceous material; and others have only thin partings of blotite as meta-argillites.

Southeast of the property occurs a large intrusion composed of granodiorite which has a width of over 3 km and a northwesterly-trend.

C. <u>STRUCTURE:</u>

in general, most meta-sediments on the property have a southeasterly strike and a northeasterly dip. Some evidence of tight folding was encountered on the property as well.

Cross faulting of the veln appears to be important l n the the Carlboo-Amella mine, many of the агеа. ln problems encountered during mining involved fault offsets of the guartz vein. Apparent northerly offsets in the main vein from east to west may be a result of cross faulting. Faults are difficult to observe directly on surface but geochemical patterns may help to identify these offsets.

D. MINERALIZATION:

On the Sallor group, gold mineralization has been identified in one main quartz vein. The vein occurs along an old fault or joint set, and has a general strike and dip of about $115^0/80^0$ NE. Widths of the quartz vein are inferred from float and observed in place to vary from less than 30 cm to about 120 cm.

Most quartz vein specimens with high grade have from 1-2% galena and sphalerite. Pyrite is also present in quantities between 2% and 5%. Free gold occurs locally as very fine specks in quartz. It may also occur in a pyrite matrix.

In the Sailor dump there are considerable quantities of a carbonate altered rock bearing some mariposite and possibly some anabergite. This rock contains anomalous quantities of nickel and chromlum which may yield a distinct geochemical signature, producing high nickel, chromium and arsenic values in soil samples.

1988 EXPLORATION PROGRAM

A. INTRODUCTION:

Twenty-nine man days were spent on the Sailor property from June 9 - 22, 1988. During this period, both a rock chip sample program and a soil sample program were conducted.

To provide control points for subsequent surveys, 13.46 km of flagged grid was established using hip chain and compass. The grid was established with a baseline 1,500 metres long having crossilnes at 50 metre intervals. Stations were established at 15 metre intervals on the crossilnes. The base map was produced from old survey notes and location of cultural features during gridding.

Rock chip samples were taken of mineralized quartz vein material in from any workings found, and their dumps. These samples were analyzed using ICP techniques for 30 elements with a further analyses for gold performed using a fire assay with an AA "finish". A total of 31 samples were taken.

A total of 206 soil samples were taken from areas within the grid along strike projections from the Minnie-Ha-Ha and Sailor workings. Samples were taken all of good B horizon material. The soil samples were analyzed using ICP techniques for 30 elements. Gold analyses were accomplished by an acid digestion with an AA "finish".

B. ROCK SAMPLING SURVEY:

The program of rock sampling and prospecting was undertaken with the purpose of determining nature and quantity of mineralization associated with old workings for which only limited information is available.

A total of 31 rock samples were taken and analyzed. Listed below are the most significant results:

SAMPLE	ANALYSES

LOCATION

8801	3635 ppb Au; 148 ppm Cu, 121 ppm Zn and 106 ppm NI	Minnle-Ha-Ha, Maln Dump
8803	119,060 ppb Au, 459 ppm Cu, 6,377 ppm Pb, 1,697 ppm Zn and 30.0 ppm Ag	Minnie-Ha-Ha, Main Dump
8804	6,526 ppb Au, 193 ppm Zn	Minnie-Ha-Ha, Main Dump
8806	4,684 ppb Au, 147 ppm Cu, 308 ppm Pb, 671 ppm Zn and 3.3 ppm Ag	Veln at Minnie-Ha-Ha Main Shaft
8807	24,930 ppb Au, 9,533 ppm Pb, 1,569 ppm Zn and 19.7 ppm Ag	Sallor, Main Dump
8820	1,256 ppb Au and 1,035 ppm Pb	Sallor, Main Dump

The main mode of significant gold mineralization is a quartz vein up to 1m wide with accessory calcite in veinlets and chloritic partings. In close association with this vein are zones of mariposite-sericite-quartz-carbonate alteration.

The quartz veins may contain galena, chalcopyrite, sphalerite and native gold. These minerals are typically present in quantitles of less than 1%, as fine widely disseminated grains. The sphalerite is very fine grained and honey colored. Pyrite is also present, often in quantitles of up to 5%.

In carbonate alteration surrounding the vein, traces of arsenopyrite may be present.

Seven workings located had only low background concentrations of gold. Commonly these workings were not located on quartz veins at all, but on quartz "sweats" or on silicified limestones. Examples of this kind of working are found at 200W 215N, 200W 270N, 650W 360S and 130W BLO. Other similar workings probably exist.

Of the most economic potentia! are the Sallor and Minnle-Ha-Ha shafts. Development work exceeded 100m of drifts on three levels from a shaft extending 53m deep on the Salior shaft over 180m of drifts on three levels extending to a depth and of on the Minnie-Ha-Ha shaft. 61m The dumps surrounding these workings are of considerable size. Samples taken from these dumps produced analyses as high as 3.47 oz/ton calculated from data from the MInnie-Ha-Ha dump and 0.73 oz/ton geochemicai from the Sallor dump. The workings are inaccessible in both cases due to caving of the tops of the shafts. At the Minnle-Ha-Ha shaft, quartz vein is exposed at the collar. the The width of the exposure is 30 cm and a channel sample taken across this width returned a value of 0.137 oz/ton gold (calculated from geochemical Free gold was identified in one sample taken at data). the Minnie-Ha-Ha dump. (Sample CM8803 with 3.47 oz/ton Au).

C. SOIL GEOCHEMISTRY SURVEY:

The purpose of the soll geochemistry survey was to cover the area between known workings in order to determine the extent of the mineralized quartz vein as well as its characteristic geochemical signature for use as a prospecting tool elsewhere.

A total of 206 samples were collected at 15m x 50m Intervals and analyzed for 30 elements by ICP and for gold by acid digestion with an AA "finish". Probability plots were prepared for copper, lead, zinc, arsenic and gold. The following analytical values were determined as anomalous for the following elements:

Element	Average Value (ppm)	Standard Devlation (ppm)	Possibly Anomalous (ppm)	Anomalous (ppm)
Cu	24.5	32.75	44.0	90.0
Pb	14.75	9.63	26.5	34.0
Zn	80	88.0	135	256
As	7	21.5	215	500
Au	3 ррb	51.5 ppb	14 ppb	106 ppb

Three significant anomalous zones were defined by the survey. Zone A is a one line anomaly located between L450W 105N and L450W 150N which is associated with the Sallor shaft. The highest values in soli for gold, copper, lead, zinc, arsenic and chromium are found here. There is a possibility that high values in this area are actually caused by contamination from waste rock at the shaft.

Zone B is located between 350W 150N and 250W 120N. Anomalous levels of copper, lead and zinc are found in this zone. Possibly anomalous values for gold are also present in this area.

Zone C, the third geochemically anomalous area, occurs in the area of the Minnle-Ha-Ha shaft. The area directly over the shaft does not show any anomalous values. This is likely due to the layer of barren waste material from the shaft. thick Samples from 0+15N to 0+45S on line 0+00W were taken off taken of this It is reasonable to assume that any surface anomaly dump. and would be masked by the waste pile.

D. INTEGRATION WITH PREVIOUS SURVEYS:

In May and June of 1980, Glen E. White Geophysical Consulting and Services conducted a magnetometer and VLF-EM survey on the Sailor Group.

The VLF-EM survey conducted at that time produced a weak VLF anomaly which ran from the western edge of the Sallor claim to the western edge of the Kamloops claim along a strike of 97 The base map produced for this survey did not show shaft locations. however, plotting the shaft location on the Sallor claim relative to the claim boundaries shows a coincidence between the anomaly and the shaft. Unfortunately, there are errors in the 1980 base map, mainly in the claim boundaries. The claim outlines which are the most distorted on the 1980 map are the Rover Fr., the Cariboo Fr., the Diamond, and the Toledo. These errors cause difficulties in further integrating the old data.

Similar problems crop up in trying to integrate 1981 soll sample grid with the 1988 work as the grid and base map used in 1980 and 1981 use the same base map. Also, the soll sampling performed in 1981 does not have anomaly patterns which closely resemble those delineated in 1988.

RECOMMENDATIONS

Results of the 1988 work program on the Camp McKinney Project were, in general, encouraging. Samples of quartz vein material recovered from the dumps at the Sallor and Minnie-Ha-Ha shaft produced grades of gold in excess of 0.5 oz/ton. Soll sampling identified three small anomalous features which could serve as targets for an immediate trenching program.

Recommended for the Camp McKinney Project is a program designed to operate in several stages with a modest first stage, leading to greater expenditures contingent upon results.

Stage I should involve the completion of the grid over the remainder of the property. Soll samples should be taken at 15m x 50m Intervals. The property should be mapped in detail, with particular attention paid to structural offsets In the stratigraphy in the Minnie-Ha-Ha and Salior areas. VLF-EM and magnetometer surveys should be done at a 15m spacing. Stage | should require about 3 weeks to complete for a two man crew and cost about \$25,000.

Stage 11 of the program should begin with about 250m of trenching around the Minnie-Ha-Ha and Sailor shafts and in the area of soil anomaly "B". Contingent on results, this program can be expanded to provide the necessary surface definition to define a series of diamond drilling targets. Stage 11 would require about 4 weeks and cost \$16,000.

Stage III would involve diamond drilling of selected targets developed during Stages I and II. No more than 1,000m of drilling should be contemplated for the first round of drilling.

It should be stressed that later stages contemplated for this property should be made contingent on results from prior programs. The Camp McKinney area is structurally very complex and the key to any successful program of mineral exploration in this area will be the understanding of this puzzle.

ø

Respectfully Submitted James E. Walker

CERTIFICATE

I, James Walker, of Vancouver, British Columbia, hereby declare that:

- 1. | am currently in the employ of Nexus Resource Corporation.
- 2. I hold a Bachelor of Science degree majoring in geology from the University of British Columbia.
- 3. I have practiced in the field of mineral exploration both prior and post gaduation since 1984.

Jámes E. Walker, B.Sc.

์ 88 Date

STATEMENT OF EXPENDITURES

Personnel

ſ

G. Benvenuto, Exploration Manager	
2 Days 🖶 \$250./day	\$ 500.00
J. Walker, Geologist	• ••••••
14 Days 🛛 \$115./day	\$1,610.00
T. Balnes, Assistant	<i></i>
13 Days 🖷 \$115./day	\$1,495.00
	\$3,605.00

Accommodation

Room - 25 Man Days e \$18.58/Man Day	-	464.50
Board — 26 Man Days 🖲 \$23.46/Man Day	- \$	609.96
	\$1	,074.46

Transportation

4WD Truck - 14 Days @ \$30.75/Day	\$ 430.50
Fuel And Oll	\$ 241.29
	671.79

Supplies

Analyses

31 Rock Sample		\$ 472.75
206 Soll Sampl	es e \$11.60	<u>\$2,389.60</u>
		\$2,862.35

Report

Geologist – 5 Days	\$	115.00
Draftsman — 4 Days	\$	115.00
Reproduction	\$	250.00
Typing	<u>\$</u>	100.00
	\$	580.00

TOTAL:

\$8,932.10

\$ 138.50

PROPOSED BUDGET

<u>Objective:</u> Complete soll sampling grid over property, conduct VLF-EM and magnetometer survey over grid and geologically map property at 1:1000 scale.

.

Personnel:	
Geologist 20 man days @ \$120/day	\$ 2,400.00
Soll Samplers 30 man days @ \$90/day	\$ 2,700.00
Geophysical Technicians	- -
10 man days @ \$ 90/day	\$ 900.00
	\$ 6,000.00
<u>Accommodation:</u>	
Room 60 man days @ \$25/day	\$ 1,500.00
Board 60 man days @ \$25/day	\$ 1,500.00
	\$ 3,000.00
Transportation:	
4WD Truck 20 days @ \$ 30.75/day	\$ 615.00
Fuel and OII	<u>\$ 345.00</u> \$ 960.00
	\$ 960.00
Supplies:	\$ 200.00
Analyses:	
100 Rock Samples @ \$15.25	\$ 1,525.00
550 Soll Samples @ \$11.60	\$ 6,380.00
	\$ 7,905.00
	· · · · · ·
<u>Instrument Rental:</u>	
VLF and Magnetometer	\$ 400.00
<u>Report:</u>	
Geologist 15 days @ \$120/day	\$ 1,800.00
Draftsman 10 days @ \$120/day	\$ 1,200.00
Reproduction	\$ 300.00
Typing	\$ 100.00
	\$ 3,400.00
<u>Contingency:</u> 15% of Field Costs	\$ 2,935.00
TOTAL COST:	\$24,800.00

PROPOSED BUDGET STAGE II

.

Objective: Locate and trench suitable zones near old workings and soll/geophysical anomalies.

<u>Personnel:</u> Geologist	30 man days @ \$ 120/day	\$ 3,600.00
Accommodations: Room Board	30 man days @ \$25/day 30 man days @ \$25/day	\$ 750.00 \$ 750.00 \$ 1,500.00
<u>Transportation:</u> 4 x 4 Truck Fuel and Oil	30 days @ \$30.75/day	\$ 922.00 \$ 518.00 \$ 1,440.00
<u>Analyses:</u> 200 Samples @ 3	\$15.25	\$ 3,050.00
<u>Excavation:</u> 375 metres @ \$8	6/metre	\$ 2,250.00
Contingencies: At 1	5% of Field Costs	\$ 1,776.00
Report: Geologist Drafting Reproduction Typing TOTAL COST:	15 man days @ \$ 120/day 10 days @ \$ 120/day	\$ 1,800.00 \$ 1,200.00 \$ 400.00 <u>\$ 100.00</u> \$ 3,500.00 \$15,340.00
		4 10,340.00
τοται	L COST FOR PHASE I AND 13 APPROXIMATELY:	\$40,200.00

APPENDIX 111

ROCK SAMPLE DESCRIPTIONS

 \bigcirc

C

(

SAMPLE NO.	DESCRIPTION	SELECTED Au(ppb)	ANALYSES Other(ppm)
CM8801	Quartz, vein float on Minnie- Ha-Ha shaft dump. Inferred width of 15 cm. Weak, chioritic partings. Traces of sphalerite present in quartz. Pyrite occurs as selvages. Host rock is massive greenstone.	3635	148 Cu 121 Zn 106 NI
CM8802	Chlorite sericite schist with thin laminations to 0.5 cm. Alternate lamina are composed of semi massive pyrite with interstitial chlorite. Pyrite comprises 15% of total rock volume. Traces of chalcopyrite present. Calcite occurs in fracture filling. Rock weathers to dark orange- brown color. Sample taken from dump at Minnie-Ha-Ha shaf	 	502 Cu 111 Zn 1.0 Ag 106 NI
CM8803	Greenstone with quartz carbonate veining. Abundant disseminated galena with traces of chalcopyrite and sphalerite. <u>Two specks of</u> <u>free gold visible</u> . Float from Minnie-Ha-Ha dump.	119,060	459 Cu 6377 Pb 1697 Zn 30.0 Ag
CM8804	Quartz vein containing 5% blebs of coarse grained pyrite up to 1 cm in size. Also containing up to 10% chiorite as "clasts" up to 2 cm in size. Traces of sphalerite are present from Minnle-Ha-Ha dump.	6526	193 Zn
CM8805	Greenstone with quartz carbonate veining. Traces of pyrite and galena. From Minnie– Ha–Ha dump.	235	

SAMPLE NO.	DESCRIPTION		ANALYSES Other(ppm)
CM8806	Quartz vein from Minnie- Ha-Ha shaft. Vein has width of 30 cm and attitude 116 ⁰ /81 ⁰ N. Footwall portion of vein is primarily white bull quartz with no visible sulphide mineralization present. Hangwall has chioritic partings and disseminated pyrite (5%), sphalerite (.5%), galena (trace) and chalcopyrite (trace). Chip sample across 30cm.	4684	147 Cu 308 Pb 671 Zn 3.3 Ag
CM8807	Representative chip sample from quartz dump at shaft on Sallor claim. Quartz material contains abundant pyrite with minor associated sphalerite and galena. Mineralization primarily confined to selvages. Sample weathers crimson red.	24,930	9533 Pb 1569 Zn 19.7 Ag
CM8808R	Epidote, sericite, quartz alteration in greenstone at Kamioops main shaft. Contains approximately 2% pyrite and traces of galena.	98	
CM8809	Fine to medium grained green intrusive rock with color index indicating andesitic composition. Pervasive disseminated fine grained pyrite.	42	
CM881OR	Quartz veln, in piace, on secondary shaft at Kamloops claim. Contains substantiai (15%) boxwork voids. Weathers rusty orange. Veln approximately 20 cm thick.	88	
CM8811R	Fine grained, med. gray, highly sillclous tuff with approximately 5% pyrite. Has strike of 22 ⁰ .	7	211 Cu
CM8812R	Bull quartz from dump at shailow shaft on Minnie–Ha–Ha claim. Sample has no visible sulphide minerals.		

 \bigcirc

 \bigcirc

 \bigcirc

SAMPLE NO.	DESCRIPTION		ANALYSES <u>Other(ppm)</u>
CM8813R	Banded quartzite from shaft at 200W,60N on Kamloops claim. Bands alternate between light and dark. Minor carbonate alteration.	1	
CM8814R	Milky quartz from Sailor dump. Veln material has chloritic partings. Has 5% sulphides, total volume. Principle sulphide minerals are pyrite (3%), galena (1.5%) and sphalerite (0.5%).	179	298 Pb 133 Zn 1.7 Ag
CM8815	Dark gray to white banded recrystallized limestone. Contains about 0.5% pyrite. Located on dump at small shaft on line 200W,195N.	7	
CM8816	Milky to vitreous quartz with traces of galena (<0.5%). Occurs in shear zone with attitude of OOG ⁹ / 74 ⁰ W located near BLO, 3+75E. Trench is 5m long 1.5m wide. Vein has width of 20 cm.	6	
CM8817	Fine grained, medium green basalt!c? tuff. Contains about 2–5% pyrite. Located in bed of Rice Creek at 3+50E, 0+40S.	3	
CM8818	Chlp sample across quartz fioat at secondary shaft, Kamloops claim (100W, 045N). Quartz is locally vuggy (boxwork). No remaining unweathered sulphides are present.	205	
CM8819	Quartz float at (1+35N, 2+50W). No visible suiphide mineralization.	1	
CM8820	Composite sample of quartz dump at Sallor shaft. Dump contains both high sulphide and low sulphide quartz. Vein width appears to vary between 50 cm and 1m.	1256	1035 Pb

 \bigcirc

 \bigcirc

 \bigcirc

SAMPLE NO.	DESCRIPTION		ANALYSES Other(ppm)
CM8822	Fuchsite-sericite- quartz-carbonate alteration in dump at Sallor shaft. Rock is highly altered, original rock type not discernable.	4	571 NI 143 Cr 467 As
CM8828	Quartz vein in massive green meta-sandstone at 4+75E, 0+30N. Vein is 20 cm thick.	10	
CM8830	Representative random sample of quartz material from dump at Minnle-Ha-Ha shaft.	2273	
CM8832	Silicified wall rock from 1+95W, O+40N. Sample is originally inferred to be quartzite. Contains trace amounts of pyrite and sphalerite. Rock has very thin chioritic partings.	104	
CM8834	Quartz-carbonate altered boulder. No remnant textures. Minimum dimension 26 cm.	13	
CM8836	iron stained quartz veinlet 4 cm thick in float near shaft at (2+08W, 0+53N). Silicified quartzite is host rock.	2	
CM8838	Altered limestone with alternating light and dark layers from trench at 2+60W, 0+90N.	1	
CM8840	Chip sample across quartz float 23 cm in width at 2+40W 1+40N. Quartz appears barren	•	
CM8842	Arglllaceous quartzite from dump the shaft at 250W, 230N.	1	

 \bigcirc

 \bigcirc

 \bigcirc

SAMPLE

۰.

NO. DESCRIPTION

SELECTED ANALYSES Au(ppb) Other(ppm)

1

4

- CM8844R Quartz vein 15 cm thick In shear on south side of small creek at (200E, 1+55S).
- CM8846 Andradite garnet-mica 1 schist from small glory hole on line 650W, 355S.

AC ANALYTICAL LABORATORIES LTD.

•

.

)

)

)

)

)

)

)

)

)

2

)

)

)

)

 \sim

20

٠.

٠.

- ----

PHONE (604) 253-3158 FAX (60 53-1716 852 E. HASTINGS ST. NCOUVER B.C. V6A 1R6

. .

ζ

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH BAL 3-1-2 HCL-HHO3-H20 AT 95 DEG. C FOR OWE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR ME FE CA P LA CE NG DA TE B W AND LIVITED FOR MA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TIPE: PI-PE SOIL PT ROCK AU* AMALISIS BY ACID LEACH/AA FROM 10 GM SIMPLE

				THI		I IS 13	RTIAL	701 ID	I II CI	1 2 14	CR KG	IX TI	BYN	D LINI		1 XX I	YID Y	L. XI		IS DILO CTION L					- 0	گر	μ	, - -		-		
DATE RECEIV	ED:	JUE 2	3 1988	גם	ATE	REPO	RT	MAII	ED:	Ju	ne z	30/8	8	AS	SAYI	ER	Ç.,	fin	~ <u>1</u> .	D.TC	ye (OR C	LEC	DNG,			FIED	в.с	. х	SSAY	ERS	
						NE	xus	RES	OURC	CES (CORP	. P	ROJE	CT-0	CM88	. 1	File	: # :	88-3	2186	.1	Pag	e 1								,	
SAM?L I ≹	He PPH	-	۲ مع مع	Zn PPK	Ag PPN	¥1 PPK	Co H99	Hn PPK	Je 3	۸s ۲۹۹	U PP k	λu ₽₽₩	Tà PPK	ST PPN	Cd PPK	Sb PPK	B1 PPN	~-¥ }?¤	. Ca ł		La PPK			Ba PPN	ti 1	B P?K		Vi ł	K ł	¥ PPX	λu* FPB	
CHEBLSSOW 210M	1	16	18	51	.1	38	10	467	2.31	4	5	ND	4	22	1	2	2	40		.146	11	52	.44	145	.10		2.13	.02	.09	1	6	
CX881550W 195W	1	9	12	76	.1	34	1		2,11	4	5	jD	4	23	1	2	2	35		. 10 1	9	46	.40	200	. 03		1.49	.02	.11	1	5	
CHARLSSON IRON	1	•	10	49	.3	37	3		1.92	9	5	ND.	3	29	1	4	2	33	.35		10		35	111			1.91	.02	.13	1	1	
CH881550W 165W	1	30	14	63	.2	65	14		2.00	10	7) D	6	35	1	2	3	- 45		.017	23		.61	165	.14		2.32	. OZ	.11	1	4	
CK881550¥ 150¥	1	20	13	5\$.1	46	11	231	2.45	f	5	1D	3	21	1	2	-2	łò	.zį		12	50	.51	131	.11	2	2.20	.02	.03	1	2	
CK88L550W 135H	1	15	10	47	.1	31	1		2.20	9	5	KD	5	18	1	2	-	· 41	.19			24	.37		.11		1.61	.02	.07	1	1	
CKEEL550W 120W	1	30	11	28	-1	31	6		1.66	6	5	ND.	1	45	1	2	2	27 -		.022	13	1	.29	156	.08	_	1.81	.03	.07	1	2	
CHEELSSON 105M	1	24	5	13	.1	12	1	- 49	.61	2	5	ND	1	31	1	-	2	14		.016	,	8	.10	73	.04	-	· .5	.04	.05 .06	1	1 2 -	-
-CH8815507 45X	1	16	10	\$3	.1	67	11		2.71	?	5 5)KD JKD	1	12 16	1	4	2	63 36		.014	4	38	1.21	76 150	.12 .10		1.67	.D2 .D2	.03	1	1	
CHERTRON INC	1	14	20	103	.1	31	10	4/4	2.08	4	3	MD.	3	10	1	2	1	30	.10	.130	-	38	,	130	.10	1	1.00	. 02	.05	1	•	
CHEELSOON ISON	1	17	10	59	.1	40	10	277	2.34	5	5	1D	1	22	1	2	2 -	- 39	.27	<. 0ŠU	13	45	.46	116	.10	7	2.05	.02	.11		1	
CHEELSOON 165N	1	16	11	35	.2	40	7	270	1.68	6	7	ND	3	39	1	2	2	30	.60	.0ZŐ	5	28	.37	102	.01	4	1.46	.02	.07	f	1	
CHEBLSDOW 150M	1	36	10	35	.I	42		181	1.85	9	5	ND	3	38	1	2	2	31	.43		- 16	23	.35	177	.03		1.58	.03	.10	ľ	1	
CKEELSCON 105N	1	37	11	47	.1	31	8		1.71	2	5	m	1	- 46	1	2	2		4.11			ç. 24		14	.08	-	1.7	.03	.10	Z	1	
CHEELSOON 75N	1	18	16	50	.1	31	11	215	2.35	4	5	ND.	3	21	1	2	2	43	.25	.073	10	34	.54	107	.11	8	1.77	.02	.13	1	1	
CHERLEGOW GON	1	9	10	39	. 2	14	6	170	1.66	5	5	ND	3	14	1	2	2	25.	.19	.087	٦,	-17,	.23	103	.05	,	1.70	.02	.07	1	1	
CHSBL500W 45W	1	13	11	39	.1	27	7	174	2.13	5	5	Ð	10	17	1	2	2	35	.20	.109	1	35	.35	103	.10	5	1.88	.02	.08	1	1	
CHERLASON 1958	I	25	21	63	.2	- 48	10	361	2.50	6	5	ND	5	28	1	2	2	46	.33	.053	F	í J	.61	133	.10		1.68	.02	-12	<u>,</u> 1	1-	
CHEBLASOW 180M	1	16	6	14	.1	1	3	11	.91	2	5	D	1	70	1	4	4		1.45	.016	<u>،</u>	10	.11	114	.05	1		.02	.06	1	2	
CK881450W 165W	1	19	22	្មុក	.1	23	5	319	1.19	6	5	ND	1	101	1	3	2	21	1.99	2056	12	15 · ,		129	.05	13	1.13	.02	.07	1_{t}	Е	
CHEBLISON 1501	3	123	764	713	3.0	337	43	1016	7.06	221	7	D	3	132	12	2	2	140	2.35	011	,		4.04	49	.02	1	3.25	.01	.09	1_	1050	
CHEEL450W 135W	33	211	21	216	.9	190	45	1365	6.51	76	5	ND.	5	164	1	2	2	108	4.56	.140		133			02		1.90	.01	.08	1		
CH381450W 120W	9	88	23 4	432	1,1	307	41	713		216	5	1D	1	144	5	2	2		1.68	.057	-		2.39	31	.01		1.23	.01	.06	1	310	
CHASLASON 105H	1	19	63	194	4	25	1	674		15	5	XD.	3	11	1	6	2	34		.061		40	.31	103		-	.93	.02	.05		131	
CN881450W 0+90W	1	15	20	55	.1	45	13	191	2.72	7	5	19	5	22	1	2	2	51	.29	.024	14	63	.63	180	.14	1	2.19	.02	.01	1	6	
CN881450W 0+75W	1	16	13	52	.1	56	16	230	2.97	10	5	D	ſ	26	1	2	3	54	.40	.023	16	71	.72	131	.15	2	2.55	.02	.12	1	4	
CHBBL45ON D+60M	1		12	48	.1	37	1	340	2.35	6	5	١D	3	16	1	2	4	39	.23	.11	3	50	.46	139	.10	7	1.96	.02	.15	1	7	
CKRBLASON C+45K-	1	13	9	55	.1	37	9	2≨0	2.40	6	5	ND	Z	15	1	2	4	40	.22	.102	9	51	.11	141	.11	2	2.06	.02	.01	1	12	
CHEEL4DOW 0+1950	1	47	13	57	.2	71	17	444	3.42	6	5	ND	6	29	1	2	2	63		.152	21	15	.96	203	.15		2.36	.02	.25	1	7	
CH881400W 0+180M	1	42	23	67	.4	80	15	495	2.57	31	5	KD	3	41	1	5	2	(3	.53	.085	22	67	.62	158	.09	2	1.92	.02	.11	1	27	
CHEBL400W 0+165N	1	18	7	23	.2	23	7	Z03	1.41	з	5	סא	1	43	1	3	2	24	.54	.026	11	15	.22	103	.07	2	1.43	.02	.07	1	3	
CN881400H 0-150H	i		12	56	.1	13	6	105		ž	5	ND	3	15	ī	Ĩ.	ĩ	28		.122	5	18	.20	71	.05	_	1.47	.02	.04	1	2	
CHEBLAGON 0+135M	1	19	11	43	.5	33	ġ	245		2	5	ND.	4	74	1	3	2		1.19	.024	16	36	.42	140	.09	1	2.04	.03	.10	1	1	
CH881400W 0+120M	1	20	13	137	.2	61	16	243		9	5	STD .	11	21	I	3	2	55	.25	.073	14	79	.71	124	.14	н	2.72	.02	.05	1	<u>310</u>	
CHBEL4DOW 0+105H	1	14	17	126	.1	43	12	645	2.67	5	5	ND	6	19	1	3	2	45	.23	.162	12	63	.60	143	.11	2	2.15	.02	.08	1	5	
CKEELADOR 0+50H	1	12	3	54	.2	41		185		Z	5	RD	6	16	1	3	ł	44		.100	10	56	.50	36	.12		2.45	.02	.10	1	1 50	
STD C/AD-S	11	57	38	132	6.7	70	50	1091	4.05	41	14	1	37	48	18	17	19	59	.46	.052	41	59	.34	160	.07	22	1.95	.07	.14	13	20	

NEXUS RESOURCES CORP. PROJECT-CM88 FILE # 88-2186

, ₋

3

)

)

2

)

)

)

)

)

)

)

)

)

)

)

)

J

)

J

...́.O

_																				-												-
SANP	12;	Ko PPK	Cu PPK	Fb PPK	Zn PFX	Ag Pek	F1 77K	CO PPK	Ha PPN	Fe \$	λs PPE	U PPK	Au PPE	Tb PPX	ST PPK	Cd 79X	Sb PPK	B1 PPM	V PPH	Ca 3	ן ז	La PPX	CT PPX	Kg Ł	Ba PPK	71 1	6 PPN	λ] ₹	Na S	E ł	W PPH	Au* PPB
CH88 CH88 CH88	14004 75x 14004 60x 14004 434 14004 30x 14004 30x 13504 180x	1 1 1 1	21 19 30 26 21	13 12 21 14 18	57 55 80 91 73	.1 .1 .1 .1	44 36 62 59 38	11 10 16 17 9	233 422 623	2.77 2.47 3.21 3.03 2.19	8 5 7 6	5 9 5 5 5	ND ND ND ND ND	3 5 6 1 13	16 15 10 14 39	1 1 1 1	2 2 2 2 2 2	3 2 2 4 2	46 45 57 51 35	.21 .22 .28 .24 .56	.091 .083 .092 .147 .024	11 10 11 9 8	57 55 16 77 28	.53 .55 .91 .80 .41	107 99 136 134 142	.13 .11 .14 .12 .12	13 14 10	2.72 1.95 2.96 2.56 2.24	.02 .02 .02 .02 .02 .02	.10 .10 .14 .13 .11	1 1 1 1	1 5 6
CH88 CH88 CH88	L350¥ 165N L350¥ 150¥ L350¥ 135¥ L350¥ 120¥ L350¥ 105¥	1 1 1 1	46 63 32 32 18	13 27 10 16 11	58 128 126 119 76	.1 .3 .1 .3 .2	85 224 90 55 44	13 43 21 15 10	1853 239 436	2.40 5.10 3.20 2.94 2.43	7 53 8 8 5	5 5 5 5 5	ND ND ND ND ND	2 2 4 5	50 51 22 20 19	1 1 1 1	2 2 2 2 2	2 4 2 4 2	35 125 72 52 42	.72 1.25 .34 .27 .22	.028 .162 .018 .132 .132	15 10 14 9	44 393 150 73 54	.57 3.09 1.38 .77 .53	181 263 125 176 129	.11 .15 .19 .12 .11	13 3 5	2.13 3.22 2.22 2.60 2.06	.03 .01 .02 .02 .02	.16 .84 .13 .14 .12	1 1 2 1 1	9 6 88 12 3
CK881 CK881 CK881	L350V 95V L350V 001 L350V 601 L350V 601 L350V 45N L350V 300	1 1 1 1	20 21 29 21 57	14 12 11 10 10	66 80 70 61 29	.4 .1 .1 .1 .2	47 48 57 44 125	11 12 16 12 10	467 305 261	2.66 2.64 3.01 2.55 1.94	4 6 9 8	5 5 5 5 5 5	ולם מת מת עלו 2	5 3 4 1 1	17 15 19 16 36	1 1 1 1 1	2 2 2 2 2 2	3 2 2 4 3	45 44 50 40 34	.26 .20 .28 .29 .59	.128 .135 .129 .219 .026	9 9 10 7 15	60 61 71 59 73	.57 .58 .68 .55 .53	138 105 153 124 217	.11 .11 .12 .11 .09	12 10	2.20 2.43 2.83 2.50 1.91	.02 .02 .03 .03 .03	.12 .11 .13 .11 .10	1 1 1 1	4 3 1 1 2
CH881 CH881 CH881	350V 30NA 350V 15N 350V 00N - 300V 180V 300V 165N	1 1 1 1 1	31 21 23 54 28	10 11 10 27 11	54 43 31 255 200	.1 .1 .1 .6	57 39 75 215 75	13 8 30 20	214 311 517	2.64 2.13 1.95 5.90 2.65	3 3 7 15 12	5 5 5 5	RD ND DD DD DD	1 3 1 2 3	25 27 29 57 35	1 1 1 1 1	2 2 2 2 2 2	2 4 2 3	52 37 32 120 38	.53 .49 .41 1.24 .36	.045 .057 .129 .051 .283	12 12 10 10 7	79 51 55 351 64	.84 .50 .44 3.25 .50	143 120 178 283 306	.13 .10 .08 .24 .10	10 11 6	1.83 1.84 1.79 4.44 2.29	.03 .03 .02 .02 .02	.17 .12 .10 .41 .12	1 1 1 1	17 4 2 1 2
CHUU Chuu Chuu	300¥ 150¥ 300¥ 135¥ 300¥ 120¥ 300¥ 105¥ 300¥ 90¥	1 1 1 1	54 55 36 30 25	17 19 14 17 9	257 204 114 134 106	.3 .1 .2 .3 .1	81 46 75 69 36	28 22 19 16 15	462 683	3.85 4.00 3.47 2.93 2.88	6 3 7 10 7	5 5 5 5 5	CDI CDI CDI CDI CDI	2 1 5 4	37 31 33 21 21	1 1 1 1	2 2 2 2 2 2	5 2 2 5 6	60 79 63 50 49	.63 .48 .51 .29 .29	.179 .124 .032 .120 .163	5 5 15 11 9		.95 1.17 1.00 .01 .74	260 215 214 157 183	.11 .14 .14 .11 .12	2 5 12	2.47 2.84 2.17 2.25 2.20	.02 .02 .02 .03 .03	.28 .35 .16 .13 .11	1 1 1 1 1	I 69 3 2 1
CHSSI CHSSI CHSSI	300¥ 75N 300¥ 60N 300¥ 45¥ 300¥ 45¥ 300¥ 00¥/	1 1 1 1	28 25 26 90 28	16 13 13 11 9	60 58 29 45 59	.1 .4 .5 .1	57 60 69 201 121	14 10 9 14 17	389 408 330	2.91 2.26 2.05 2.41 2.58	8 6 4 18 16	5 8 5 10 5	לת סת סת סת סת	3 4 2 7 2	18 14 29 42 17	1 1 1 1	2 2 2 3 2	2 2 4 2 3	50 37 34 40 46	.29 .22 .58 .65 .20	.099 .127 .025 .023 .209	8 13 23 9	81 55 71 107 153	.73 .54 .55 .74 .99	132 145 149 195 146	.13 .10 .10 .11 .11	3 5 10	2.76 2.02 1.91 2.27 2.75	.03 .03 .03 .03 .03	.09 .09 .10 .10 .09	1 1 1 1 1	2 2 3 1
CHSBL CHSBL CHBBL	250¥ 165¥ 250¥ 150¥ 250¥ 133¥ 250¥ 120¥ 250¥ 103¥	1 1 1 1	32 25 62 36 47	9 10 15 17 17	21 92 83 148 265	.1 .3 .2 .3 .5	24 95 107 228 152	5 21 20 38 32	270		2 5 9 2 8	5 5 5 5 5	UD ND ND ND ND	1 1 3 3	37 21 24 23 26	1 1 1 1 1	2 2 2 2 2	2 2 2 2 2	27 62 92 101 111	.39	.016 .075 .058 .151 .242	11 5 10 9 13	161 437	.23 1.64 1.68 3.68 2.58	134 164 277 395 295	.07 .16 .20 .23 .15	6 7	.98 2.45 2.87 4.58 3.93	.03 .02 .02 .02 .02 .02	.11 .26 .33 .43 .17	1 1 1 1	1 1 2 2
CHSSL STD C	250W 90W /AU-S	1 18	34 63	11 42	120 132	.1 6.8	78 72	18 29	464 1038	3.06 4.04	6 42	5 16	ND B	2 38	27 48	1 18	2 16	2 24	53 59		.090 .086	13 41	109 59	.93 .95	173 181	.12 .07		2.16 1.94	.03 .07	.14 .14	1 12	12 52

)

)

J

)

J

·) .	O	NEXUS RESOURCES CORP. PROJECT-CM88 FILE # 88-2186 HO CU PD IN AG NI CO NO FE AS O AU TH ST CE SD B1 V CA P La CT Mg B3 T1 B PPN PPH PPH PPH PPH PPH PPH PPH PPH PPH																	0)	Page											
) •	SANPJE			-		-					-	-							¥ PPK									۸1 ۲	Na 1	ĩ	и 1911	da' PfB
)	CHE\$1250¥ 75¥ CK881250¥ 607 CK\$61250¥ 45¥ CK\$81250¥ 307 CK881250¥ 15¥	1 1 1 1 1	26 33 25 21 25	15 15 12 15 14	104 101 77 52 70	.3 .1 .4 .1 .1	66 122 142 89 111	16 22 15 11 17		3,60	5 10 13 8 11	5 5 5 5 5 5	ND ND ND ND ND	5 5 6 4 5	22 25 33 20 17	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	45 58 44 36 43	.31 .42 .51 .34 .29	.170 .037 .051	11 9 12 7 10	92 160 117 106 137	.80 1.41 .91 .66 .93	144 266 156 127 155	.10 .13 .12 .10 .11	f 3 2	2.18 2.85 2.41 1.93 2.55	.02 .92 .02 .02 .02	.11 .25 .17 .01	1 1 1 1	1 3 1 5 5
)	CH88L250W 00K CH86L250W 155 CM88L200W 1+50W CM88L200W 1+35W CM88L200W 1+20K	1 1 1 1	22 28 19 15 17	19 15 17 15 20	82 75 114 124 157	.2 .1 .3 .2 .1	89 88 49 48 38	17 19 12 11 12	190		9 5 9 7	5 5 6 5 5	ND ND ND ND ND	3 4 12 3 4	17 17 17 16 17	1 1 1 1	2 2 5 2	4 2 3 2	49 55 38 41 41	.27 .33 .20 .15 .19	.115	10 13 \$ 5 6	112 154 45 49 47	.85 1.38 .48 .49 .45	141 175 141 129 113	.12 .15 .11 .12 .12	2 6 1	2.60 2.01 3.11 2.82 2.63	.02 .01 .02 .02 .02	.12 .15 .11 .13 .00	1 1 1 1	1 52 2 1 2
`))	CH881200¥ 1+05¥ CH881200¥ 0+90N CH881200¥ 0+75¥ CH881200¥ 0+60N CH881200¥ 0+45¥	1 1 1 1 1	37 37 35 42 37	13 14 17 15 22	75 127 116 122 237	.2 .2 .3 .1	62 96 105 99 95	11 20 18 20 20	435 366	3.07	5 9 26 20 22	3 5 5 5 5	לע סע סע סע סע	6 4 5 4	31 16 22 22 20	1 1 1 1	2 2 2 2 2 2	6 2 2 2 2	35 57 53 52 64	.41 .23 .26 .29 .22	.110 .129 .084	22 9 10 22 10	120	.53 1.03 1.05 .89 .57	159 163 189 200 267	.13 .14 .13 .13 .12	4 3 5	2.78 3.41 2.90 2.88 3.05	.02 .02 .02 .02 .02	.10 .14 .14 .13 .07	1 1 2 1 3	2 10 24 1 2
))	CM881200W 0+30W CM881200W 0+15W CM881200W 0+00W CM881200W 0+155 CM881200W 0+30S	1 1 1 1	29 28 31 20 25	15 14 15 15 13	197 82 75 93 115	.1 .1 .1 .1 .2	44 57 120 62 54	11 13 18 10 9	440	2.20 2.70 3.11 2.38 2.48	12 7 12 10 11	5 5 5 5 5	ND ND ND ND ND	2 4 3 3 5	28 32 23 20 22	1 1 1 1 1	2 2 2 3	3 2 2 2 2 2	36 46 52 39 40	.32 .36 .32 .20 .20	.158 .109	8 18 9 10 11	45 103 118 71 63	.42 .82 .91 .54 .55	265 182 210 181 224	.08 .10 .13 .10 .10	9 10 3	1.90 2.05 3.06 2.48 2.51	.02 .02 .02 .02 .01	.05 .12 .13 .09 .12	1 1 1 1	\$ 1 1 2 1
)	CM88L1+50W 1+05W CM88L1+50W 0+90W CM88L1+50W 0+75W CM88L1+56W 0+60W CM88L1+50W 0+45W	1 1 1 1 1	27 26 26 31 28	19 5 5 16 10	94 99 74 94 96	.1 .1 .4 .2 .3	70 70 70 116 85	20 16 12 20 16	288 484 313	3.20 2.93 2.55 3.24 3.00	7 9 6 12 5	5 5 5 5 5	סונ כת סג סג סג	8 5 5 12 5	32 17 16 19 23	1 1 1 1	2 2 2 2 2 2	2 2 2 2 4	54 48 43 57 52	.42 .21 .22 .26 .32	.158 .099 .129	13 10 8 11 9	-	.80 .83 .81 1.29 1.10	170 125 173 181 237	.16 .12 .11 .13 .12	\$ 5 15	3.15 2.38 2.20 2.58 2.22	.02 .02 .02 .02 .02	.08 .11 .09 .14 .20	1 1 1 1	1 2 25 55 1
)	CK88L1+50W 0+30W CM88L1+50W 0+15W CK88L1+50W 0+00W~ CM88L1+50W 0+15S CM88L1+50W 0+30S	1 1 1 1 1	28 28 22 32 21	15 15 12 10 12	132 140 97 86 80	.1 .5 .4 .4 .3	65 83 69 70 57	14 19 12 10 9	477 465 345	2.62 2.94 2.34 2.55 2.40	3 10 3 6	5 5 5 5 5	UD CK QK QK DK QK	2 5 5 3 4	30 24 21 23 24	1 1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	43 50 38 43 37	.36 .35 .23 .22 .23	.115	10 13 9 14	81 149 108 87 64	.77 1.08 .75 .74 .57	205 202 209 195 240	.10 .12 .09 .10 .05	13 7 2	2.26 2.31 1.93 2.25 2.13	.02 .02 .01 .01 .01	.14 .11 .13 .18 .13	1 1 1 1	1 1- 2 2
)	CM3BL1+50¥ 0+45S CM8BL1+50¥ 0+60S CM8BL1+00¥ 1+20M CM8BL1+00¥ 1+05M CM8BL1+00¥ 0+90¥	1 1 1 1	26 26 23 21 28	13 17 14 16 23	90 88 68 76 118	.1 .2 .4 .2 .4	57 58 53 58 87	10 9 18 15 19	477 147	2.57 2.44 3.00 2.71 3.19	8 10 8 37	5 5 5 5 5	ND ND ND ND ND	5 9 6 9	22 29 20 34 26	1 1 1 1	2 4 5 4 2	2 2 2 2 2 2	40 35 50 42 55	.25 .32 .25 .44 .34	.095 .179 .038 .016 .023	13 10 7 15 11	61 56 52 55 30	.57 .49 .59 .60 .87	206 337 106 159 157	.11 .05 .14 .13 .12	5 9 5	2.58 2.25 3.07 2.87 2.73	.02 .02 .02 .02 .02	.14 .13 .10 .10	1 1 1 2 1	2 13 2 1 18
)	CN\$811+00W 0+75W STD C/AU-S	1 18	64 53	22 39	124 130	.1 5.8	15 # 73	25 30	450 1029		24 40	5 19	ND 7	1 37	34 47	1 18	2 15	2 18	84 58	.59 .46	.030 .080	13 40	183 58	1.70 .93	217 178	.16 .07		2.88 1.95	.02 .05	.55 .14	1 12	14 50

Page 3

ζ

NEXUS RESOURCES	CORP. PROJECT-CM88	FILE ∓ 88-2186
-----------------	--------------------	----------------

 \cap

)

)

)

)

7

)

)

)

)

)

)

)

)

Y

)

)

)

)

)

្វ

.

....C

-	•							-		~	0001							••														
	SAMPLE=	Ho PPN	Cu PPK	Pb PPX	Zo PPH	λg ?PM	B1 PPH	Co PPK	Ma PPK	Fe 1	AS PPE	C PPK	LU PPK	tb X99	ST PPM	63 775	SD PPN	B1 PPK	V PPK	Ca ?	Р २	La PPK	CT PPK	Kg	Ба PPM	ז ז ז	E P?M	Al १	Na ł	ī ł	W 1990	762 798
	CH38L1+DOU 0+60N CH38L1+DCK 0+45K CH88L1+DOW 0+3DK CH88L1+DOW 0+15R CH88L1+DOW 0+00N	1 1 1 1 1	38 29 32 31 42	13 16 40 12 13	85 129 227 134 133	.2 .2 .1 .1	120 33 58 85 124	18 20 17 15 22	325 796	2.86 3.08 3.74 2.63 2.84	17 12 9 5 2	5 5 5 5 5	ND ND ND ND	2 2 1 3 1	42 30 27 27 48	1 1 1 1	2 2 2 2 2 2	2 2 7 4	43 58 52 45 51	.71 .42 .27 .39 .97	.016 .030 .264 .084 .039	11 10 12 12 12	70 91 57 71 114	.76 1.00 .62 .77 1.10	154 161 250 146 193	.11 .12 .09 .12 .13	9	2.30 2.59 2.44 2.80 2.08	.02 .01 .03 .03	.05 .07 .08 .05 .17	1 1 1 1	10 34 <u>152</u> 1 4
	CHSEL1+DOW 0+155 CHSEL1+DDW 0+305 CHEEL1+DDW 0+455 CHEEL1+DOW 0+605 CHEEL0+50W 1+05N	1 1 1 1 1	28 15 16 18 27	17 10 10 13 14	120 103 92 52 51	.3 .3 .2 .1 .1	53 53 49 55 45	11 10 9 11	507 520 242	2.61 2.43 2.27 2.34 2.43	5 2 3 7 16	5 5 5 5 5	ND ND ND ND ND	5 7 5 4 1	31 23 25 23 20	1 1 1 1	2 2 2 2 2 2	2 4 2 2 2	45 38 36 36 38	.42 .24 .22 .27 .30	.084 .183 .251 .D61 .018	20 15 12 12 7	73 83 66 62 39	.64 .59 .51 .47 .44	153 222 243 205 82	.11 .09 .08 .10 .10	7 4 2	2.17 2.01 2.04 2.42 2.03	.02 .02 .02 .02 .02	.10 .08 .09 .08 .08	1 1 1 1 1	1 59 1 <u>1</u> 5
	CM8810+50V 0+90N CM8810+50V 0+75N CM8810+50V 0+60B CM8810+50V 0+45N CM8810+50V 0+43N	1 1 1 1	32 28 31 23 12	51 23 20 13 10	274 163 103 53 67	.1 .1 .1 .1	89 74 71 57 45	18 20 16 10 11	526 475 349	4.44 3.48 3.00 2.80 2.51	265 98 17 9 2	5 5 5 5 5	ND XD XD XD XD	3 5 8 3 2	24 19 24 21 18	1 1 1 1 1	3 2 2 2 2 2	2 2 3 3	44 57 53 49 49	.24 .19 .29 .23 .26	.112 .220 .158 .118 .020	8 10 14 14 8	52 54 82 65 71	.67 1.00 .84 .66 .74	153 176 147 229 84	.10 .12 .11 .12 .14	9 11 11	2.00 2.85 2.44 2.53 1.93	.02 .02 .02 .02 .02	.08 .10 .12 .10 .03	2 1 1 1	<u>101</u> 17 1 14
	CHOBLO+SON O+ISH CHBBLO+SON O+IOH CHBBLO+SON O+ISS CHBBLO+SON O+ISS CHBBLO+SON O+60S	1 1 1 1	35 96 191 34 28	14 20 16 72 11	61 92 71 138 67	.6 .1 .6 .4	68 194 200 67 51	10 19 17 16 12	610 727 370	2.38 3.25 2.84 3.11 2.60	5 10 15 14 4	9 5 5 5 5	ND ND ND ND ND ND	4 8 5 7 4	30 43 43 30 31	1 1 1 1	2 2 4 2	2 2 4 2 2	36 46 43 56 46	.41 .57 .66 .33 .41	.012 .013 .013 .065 .040	15 20 37 23 18	53 82 75 93 78	.51 .78 .70 .93 .76	115 272 215 157 162	.11 .15 .13 .12 .12	3 10 5	1.93 3.46 2.84 1.95 2.04	.03 .03 .03 .02 .02	.08 .19 .15 .27 .08	2 1 1 1 1	4 3 <u>16</u> 3 1
	CHBBLO+50W 0+755 CHBBLO+00R 0+758 CHBBLO+00Z 0+600 CHBBLO+00Z 0+600 CHBBLO+00E 0+458 CHBBLO+00E 0+308	1 1 1 1 1	32 26 17 22 21	16 12 13 12 6	100 74 73 81 66	.1 .1 .1 .4 .1	61 60 39 67 48	15 15 5 13	314 305 353	2.78 2.79 2.57 2.71 2.40	6 33 14 8 4	5 5 8 3	סו סו מו סו סו	4 7 6 7 8	20 22 18 20 21	1 1 1 1	2 2 2 2 3	2 2 2 2 2 2	45 49 43 48 42	.28 .22 .18 .22 .22	.098 .124 .130 .107 .123	14 12 12 14 15	82 59 48 78 65	.82 .62 .46 .72 .59	166 166 121 162 149	.12 .11 .11 .12 .10	1 6 4	2.54 2.31 2.15 2.48 1.95	.02 .02 .02 .02 .02	.09 .10 .08 .10 .11	1 1 1 1	3 3 1 1 2
	CN88L0+008 0+15N CN88L0+008 0+00N CN88L0+008 0+15S CN88L0+008 0+30S CH88L0+008 0+45S	1 1 1 1 1	16 43 7 10 24	11 18 6 10 10	62 78 75 67 97	.1 .1 .3 .1	33 90 34 42 ##	\$ 18 7 8	557 632 335	2.23 3.75 1.77 2.16 3.25	6 5 2 2 2	5 5 5 8 5	RD Gl RD RD RD RD	8 2 3 5	21 58 25 17 28	1 1 1 1 1	6 2 3 4 2	4 5 3 4 3	39 72 32 38 55	.20 .60 .25 .21 .29	.120 .115 .093 .080 .079	13 39 9 10 13	47 70	.42 1.60 .45 .62 1.09	120 198 136 93 215	.10 .14 .09 .10 .14	6 12 3	1.84 2.01 1.28 1.29 2.69	.02 .02 .02 .02 .02	.07 .41 .08 .10 .19	1 1 1 2 1	1 4 1 3 1
	CNEBLO+DDE 0+605 CNBBLO-DOE 0+755 CNBBLO-5DE 0+755 CNBBLO+5DE 0+60H CHBBLO+5CE 0+455	1 1 1 1	37 19 26 21 17	15 11 13 12 12	113 54 52 87 66	.1 .2 .1 .3 .2	91 50 62 55 79	19 14 10 11 13	260 547 358	3.11 2.39 2.43 2.51 2.82	9 3 11 11 10	5 7 7 5	סע עם חוו סע סע	4 3 8 8 5	24 30 25 19 20	1 1 1 1 1	2 2 2 6 2	2 3 2 3 3	52 42 42 44 50	.28 .44 .27 .18 .22	.073 .014 .172 .208 .143	12 8 15 12 13	109 76 55 62 85	.96 .71 .53 .57 .76	274 163 137 211 149	.13 .11 .11 .10 .11	2 3 9	2.44 1.95 2.45 2.15 2.25	.02 .02 .02 .02 .02 .02	.20 .11 .12 .11 .10	2 1 1 2 1	1 12 9 4 1
	CH88L0+50E 0+30N STD C/AU-S	1 18	3 59	7 38	28 132	.2 6.6	24 71	5 30	440 1044	1.13 4.04	4 12	5 17	HD A	4 40	10 48	1 1 1	6 15	6 21	22 60	.11 .47	.067 .090	4 41	30 60	.24 .94	84 182	.06 .07	1 35	.76 1.98	.02 .07	.06 .13	1 13	1 53

NEXUS RESOURCES CORP. PROJECT-CM88 FILE # 88-2186

1.

1

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

٢

)

)

...C

							r	GAU	5 KL	13003		0.0	ΛΓ .	FROG		-CH	50	г т п	- π	00 /	2100										
SANPLE:	NO PPK	Cu PPN	PD PPK	In PPK	λg PPK	Rİ PPK	Co PPK	Na PPK	7e 1	λs PPK	U PPM	Au PPN	Th PPK	ST PPK	Cđ PPX	SE PPX	B1 PPK	V PPM	Ca ł	7 1	La PPX	Cr 99X	Ng X	Ba PPK	71 3	B PPK	۸۱ ۲	Ha t	I ł	и НН	212" 228
CM68L0+50E 0+15B CM88L0+50E 0+00H CH88L0+50E 0+15S CM88L0+50E 0+15S CM88L0+50E 0+45S	1 1 1 1 1	24 22 23 29 30	9 11 15 15 13	54 74 80 94 79	.1 .1 .1 .2 .2	95 59 68 73 67	15 9 10 14 15	273 500 331 458 474	2.61 2.53 2.66 2.85 2.88	13 3 6 3 2	5 5 5 5 5	HD D D KD KD	4 6 4 5	21 17 18 20 19	1 1 1 1	3 4 2 2 4	4 2 2 2 2	44 42 46 49 48	.3D .21 .20 .21 .25	.042 .112 .101 .128 .128	10 12 12 11 12	97 64 74 85 78	.84 .61 .70 .88 .85	117 141 141 184 209	.11 .11 .11 .11 .12	11 7 2	2.24 2.38 2.49 2.46 2.62	.02 .02 .01 .01 .01	.12 .11 .11 .11 .11	1 1 1 1	4 1 7 5
CK88L0+50X 0+60S CM88L0+50X 0+75S CM88L1+002 0+75R CM88L1+002 0+60N CM88L1+00E 0+45X	1 1 1 1 1	25 32 31 20 29	21 14 15 14 18	90 91 77 169 104	.2 .1 .1 .2 .1	59 82 85 165 139	12 16 15 27 19	772 341 236 691 423	2.53 3.00 2.80 3.29 3.00	2 2 7 8 10	5 5 5 5 5	KD KD ND ND	3 9 10 5 5	19 17 20 24 22	1 1 1 1 1	3 2 3 2 3	2 2 2 2 2	40 52 50 64 57	.24 .23 .24 .31 .28	.106 .069 .105 .098 .130	10 11 15 9 12	61 98 118 247 142	.70 1.04 1.01 2.07 1.31	165 143 116 220 198	.10 .12 .11 .14 .13	2 8 6	2.17 2.74 2.55 2.65 3.09	.01 .01 .01 .01 .01	.12 .12 .11 .13 .13	1 1 1 1	2 17 5 2 9
CM88L1+00X 0+30E CM88L1+00X 0+15X CM88L1+00X 0+15X CM88L1+00E 0+15S CM88L1+00E 0+30S	1 1 1 1 1	28 31 22 33 21	16 8 9 13 18	84 66 70 83 55	.1 .1 .1 .1	49 130 49 59 103	8 18 9 11 11	289- 457 891 326 189	2.84 2.21 2.57	5 7 9 8 - 15	5 5 5 5 5 5	ND ND ND ND ND	3 2 3 7 4	21 17 15 21 18	1 1 1 1	2 2 2 2 4	4 2 3 4 2	68 52 35 51 40	.20 .22 .16 .21 .22	.063 .080 .146 .166 .071	5 6 13 8	64 128 56 68 53	.85 1.23 .57 .78 .54	150 138 178 124 109	.11 .13 .11 .12 .11	5 5 2	1.80 2.58 2.62 2.52 2.58	.02 .02 .02 .01 .02	.12 .14 .05 .12 .09	1 1 1 1	1 2 1 3 2
CHABL1+00E 0+45S CHABL1+00E 0+60S CHABL1+00E 0+60S CHABL1+00E 0+75S CHABL1+50E 0+73H CHABL1+50E 0+60H	1 1 1 1 1	19 18 15 23 12	9 12 12 10 7	63 72 69 96 101	.4 .2 .2 .3 .3	71 33 34 60 50	5 8 7 11 5	531	2.13 2.12 2.15 2.44 2.22	30 7 3 2	5 5 5 5 5	לת סע סע סע סע	10 4 5 7 7 7	24 19 18 19 21	1 1 1 1	2 2 2 2 5	4 2 2 6 5	35 33 36 41 35	.30 .19 .17 .20 .20	.025 .151 .166 .164 .180	13 13 12 12 11	50 40 42 60 52	.53 .38 .38 .55 .48	101 140 148 181 244	.11 .09 .09 .10 .09	12 15 2	2.20 2.27 2.09 2.14 1.85	.02 .02 .02 .01 .01	.10 .03 .07 .11 .12	1 1 1 1 1	1 1 1 1
CM88L1+50X 0+85H CM88L1+50K 0+30N CM88L1+50K 0+15H CM88L1+50K 0+00N CM88L1+50E 0+155	1 1 1 1	19 17 31 13 14	10 \$ 17 11 12	78 81 129 57 39	.1 .3 .2 .1 .1	39 34 68 33 39	5 8 17 8 7	439 471	2.35 2.08 3.09 2.13 2.14	4 2 4 2 5	5 5 5 5 5	סע כת סע סע נת	6 5 5 4 5	20 21 26 17 19	1 1 1 1	2 2 5 4 2	2 2 5 2 6	39 33 57 36 37	.19 .16 .25 .17 .19	.175 .139 .089 .109 .048	11 9 12 9 10	48 42 75 41 44	.43 .36 .87 .39 .43	153 204 147 142 102	.10 .09 .14 .09 .09	4 4 2	2.16 1.53 2.25 1.59 1.58	.02 .01 .02 .01 .01	.09 .07 .15 .07 .98	1 1 1 1	1 1 1 5
CK88L1+50E 0+30S CH88L1+50E 0+45S CK88L1+50E 0+60S CH88L1+50E 0+75S CK88L1+50E 0+30S	1 1 1 1	18 25 17 21 19	9 14 15 9 12	51 82 65 54 58	.1 .3 .1 .1	49 47 32 30 30	8 9 7 7	586 438 249	2.31 2.49 1.95 1.92 2.11	5 3 6 7	5 5 5 5 5	ND VD KD ND KD	9 13 5 6 7	19 24 30 22 19	1 1 1 1	2 2 2 3 2	2 5 2 2 2	39 44 35 34 35	.20 .25 .28 .22 .19	.082 .129 .114 .121 .131	12 17 12 15 13	48 47 37 35 31	.47 .56 .40 .36 .33	95 182 118 97 93	.09 .11 .08 .08	6 4 2	1.75 1.98 1.39 1.38 2.02	.01 .01 .01 .01 .01	.05 .13 .07 .06	1 1 1 2	1 2 1 4 1
CM88L1+50E 1+05S CM88L1+50E 1+20S CM88L1+50E 1+35S CM88L1+50E 1+50S CM88L1+50E 1+50S CM88L1+50E 1+55S	1 1 1 1	21 33 33 42 35	8 11 10 17 3	75 71 105 112 141	.4 .3 .1 .3 .1	19 46 44 71 68	6 10 3 15 13	355 673 540	1.40 2.61 2.50 3.29 2.94	1 5	5 5 5 5 5 5	סו סון סון סון	1 \$ { 10 3	21 24 19 28 38	1 1 1 1	2 2 2 2 2 2	2 7 5 2 2	26 45 41 57 52	.22 .21 .19 .27 .41	.139 .100 .076 .160 .188	5 16 10 18 15	20 53 46 76 69	.24 .57. .51 .81 .72	234 177 179 249 264	.06 .11 .08 .11 .10	2 3 3	1.10 2.45 1.54 2.54 2.09	.02 .02 .01 .01 .01	.07 .10 .10 .19 .15	1 1 3 5 1	1 2 11 5
CHEEL1+50E 1+80S STD C/AU-S	1 18	20 58	10 41	118 132	.2 6.5	39 68	10 30	523 1036	2.49 4.00	6 41	5 15	10 1	4 37	32 48	1 1 \$	2 15	2 21	42 59	.28 .46	.192 .081	15 40	54 57	.50 .94	195 182	.08 .07	-	1.57 1.96	.01 .07	.09 .14	1 11	2 51

NEXUS RESOURCES CORP. PROJECT-CM88 FILE # 88-2186

'n

)

)

)

3

1

)

)

)

)

)

)

>

1

)

)

)

)

)

1

 \cdot

r.

															٢																
sampli t	NC PPK	Cu PPN	Pb PPK	Zo PPK	λg PPK	N1 PPK	CO PPN	Nn PPK	Ie 3	λs PPM	U PPK	λu PPX	Th PPX	ST PFK	Cắ PPK	Sb PPH	B1 PPN	Å Å Å	Ca ł	ያ የ	La PPK	CT PPH	Xg R	Ba PPN	71 \$	B 7PN	71 1	Na ł	K Z	V PPK	λυ* PP3
CH88L1+50E 1+95S	1	15	12	58	.1	39	L	267	2.23	2	5	ND	6	31	1	3	4	39	.27	.104	13	49	.41	117	.09		1.85	.02	.09	2	1
CH18L1+50E 2+105	1	19	13	66	.1	52	7	325	2.43	11	7	XD	- 4	21	1	3	2	42	.18	.002	12	- 45	46	120	.12		2.77	.62	.09	1	1
CHIBLI+5DE 2+10SA	1	24	11	75	.1	63	11	411	2.62	7	5	ND	5	25	1	2	6	47	.24	.085	17	76	.73	150	.11		2,31	.02	.13	1	1
CK60L1+50% 2+255	1	17	13	73	.1	67	1	500	2.43	3	5	D	5	29	1	2	2	- 45	.21	.071	15	61	.65	142	.11		2.0	.02	.13	1	1
CHOBL1+508 2+555	1	24	35	114	1.\$	73	10	(16	2.58	6	5	3	5	24	1	2	2	47	.25	.072	17	13	.82	180	.11	10	2.24	.02	.15	1	1
CK88L1+50E 2+705	1	17	1	B	.1	45	1	674	2.07	3	5	ND	2	22	1	2	ſ	36	.20	.112	11	46	.41	160	.08		1.80	.02	.03	2	1
CHEEL2+DOX 0+75W	1	- 11	12	47	.1	59	10	174	2.80	3	5	ND.	9	37	1	4	5	- 44	. 10	.012	19	6	,56	140	.12		2.03	.02	.10	1	1
CH8812+808 0+608	1	33	5	41	.3	100	1	352	2.3	17	5	ND.	6	37	1	2	- 4	31	.36	.020	22	52	.50	101	.11		2.24	.03	.11	I	1
CX18L2+D08 0+45M	1	21	12	105	.1	22	7	326	2.28	3	5	JD.	3	22	1	2	2	36	.18	.178	9	33	.35	189	.09	-	1.5	.02	.11	1	10
CHOOL2+00E 0+30X	1	10	13	114	.1	30	1	744	2.21	4	5	D	5	23	1	2	2	35	.19	.212	11	47	.31	176	.09	1	1.64	.02	.09	1	1
CHBBL2+DDZ 0+15W	1	19	12	70	.1	0	9	395	2.25	3	5	D	7	21	1	2	2	40	.19	.113	13	55 -	.48	139	.10		1.85	.02	.08	1	1
CHESL2+00K 0+00K	1	24	14	50	.1	62	11	521	2.55	2	5	Ð	1	25	1	2	2	45	.23	.161	14	63	.59	160	.10		2.11	.02	.12	1	1-
CH8812+008 0+155	1	15	11	6	.1	54	9	308	2.03	2	5	D	- 4	20	1	- 1	2	37	.19	.107	11	71	.51	103	.09		1.40	.02	.01	1	1
CH88L2+00K 0+30S	Í	25	5	1Z	.2	36	13	375	2.73	4	5	JD.	- 4	24	1	2	2	- 49	.22	.101	14	124	.\$1	1#1	.11		2.16	.02	.12	1	2
CHEELZ+DDE 0+455	1	30	11	80	.1	3 3	12	398	2.74	5	5	Ð	9	20	1	2	2	41	.20	.050	14	136	.17	166	.12	14	2.68	.02	.10	I	I
CH88L2+00E 0+45SA	1	32	15	33	.2	11	14	305	2.71	5	5	Ð	5	30	1	2	2	41	.26	.072	17	91	.13	171	.12	÷ ·	2.21	.02	.16	1	1
CHEBLZ+DOL 0+SOS	1	52	11	125	.2	260	28	603	3.20	21	5	ND.	3	25	1	2	2	56	.28	.052	9	525	2.69	204	.14	-	2.14	.01	.16	1	1
CH88L2+00E 0+75S	1	42	9	57	.3	121	16	503	2.85	12	5	1D	7	21	1	2	2	52	.21	.106	14	112	.55	210	.14		3,00	.02	.17	1	3
CH8812+501 0+758	1	25	14	\$7	.1	52	10	258	2,60	4	5	1D	5	25	1	- 4	2	- 45	.25	.010	12	55	.51	117	.12		2.20	.02	.11	1	1
CK\$\$12+50E 0+60M	1	13	11	73	.2	52	10	207	2.33	4	5	MD	8	21	1	2	2	35	.21	.060	14	63	.40	17	.08	15	1.44	.02	.01	1	1
CH8812+508 0+458	1	23	12	ម	.1	53	3	294	2.54	2	5	ND	12	24	1	2	2	44	.23	.143	19	56	.4	127	.10		2.07	.02	.09	1	ş
CHEEL2+50E 0+30M	1	15	11	73	.3	55	9		2.25	4	1	ND.	1	18	1	2	2	38	.17	.121	12	53	.45	135	.10	_	2.17	.02	.10	1	2
CHEELZ+SON 0+15M	1	20	10	15	.5	69	11	350	2.65	3	5	IID	6	20	1	2	2	45	.20	.105	13	76	.63	92	.11		2.05	.01	.11	1	1
CH88L2+50E 0+00E	1	35	13	- 81	.1	54	13	422	2.69	2	5	D	- 4	22	1	2	2	47	.21	.129	14	112	.13	164	.11		2.23	.02	.12	2	1
CM8812+508 0+155	1	15	12	70	.3	83	9	423	2.09	5	5	ND	4	18	1	2	2	36	.16	.072	10	101	.63	128	.10	3	1.68	.02	.08	1	1
CHUBL2+501 0+305	1	25	1	"	.1	11	10	209	2.45	4	5	1D	4	23	1	2	2	42	.22	.094	14	85	.65	143	.11		2.24	.02	.09	1	1
CHEBL2+50E D+6DS	1	20	12	91	.5	- 85	11	180	2.42	3	7	D	3	20	1	2	2	43	.20	.060	11	93	.73	132	.11	-	1.17	.02	.13	1	3
CHEAL2+50E 0+755	1	23	12	76	.3	107	12		2.60	4	5	jiii)	3	24	1	2	2	46	.21	.059	14	105	.10	183	.12		2.19	.02	.11	1	1
STD C/AU-S	19	62	41	132	6.7	68	30	1039	4.03	41	20	1	37	- 44	1\$	16	22	59	.46	.013	40	59	.93	181	.07	32	1.98	.07	.15	12	47

÷ 0								1	NE X U:	S RE	SOU	CES	CO	RE	RO	JECT	-CH	Be	FIL	E #	88-2	2186	5							\bigcirc	FA /A	r Page	7
SAMPLE	No PPN	Cu PPH	?b PPH	Zn PPK	λg PPM	T1 PPK	Co PPN	Ha PPK	Ie 3	λs PPH	U F?K	Au PPK	Th 77K	ST PPK	Cd PPX	SD PPM	Bi PPK	Y PPK	Ca ł	7 1	La PPK	CT PPN	Kg Ł	Bi PPH	T1 \$	F PPK	<u>л</u>] ł	Na ł	X L	F PPK	λu=+ ??5	Cu Z	
CH88-1 CH88-2 CH98-3 CH98-4 CH88-5	1 7 1 1 1	148 502 459 61 86	15 30 \$377 54 43	121 111 1697 193 15	.3 1.0 30.0 .2 .1	106 106 18 19 22	22 35 8 5 12	457 363 136	3.28 8.90 2.80 .96 1.14	2 7 2 2 2	5 5 5 5 5 5	2 ND 103 ND ND	1 1 1 1 1	93 29 54 35 75	1 16 2 1	2 2 2 2 2 2	2 4 10 3 3	74 7	1.63	.230 .041 .003	2 6 3 2 2	109 86 13 8 16	1.22 1.17 .68 .12 .12	160 54 23 1 8	.17 .13 .00 .01 .04	18 10 16 17 3	1.1B 1.17 .61 .11 .20	.02 .02 .03 .01 .02	.23 .10 .09 .02 .04		3635 112 119060 6526 235	-	
CH88-6 CH88-7 CH88-3R CH88-3 CH88-3 CH88-10R	1 1 1 2	147 83 86 82 32	308 9533 13 60 14	671 1569 74 54 29	3.3 19.7 .1 .5 .1	13 58 39 2 12	9 9 22 4 2	245 1088 416		2 22 5 2 6	5 5 5 5 5	6 15 ND ND ND	1 1 1 1 1	197 60 213 22 11	20 59 1 1	2 2 2 2 2 2	2 2 5 4	2	4.31 .44 7.86 .27 .19	.035 .002 .068 .065 .062	2 2 6 3 11		.76 .48 2.50 1.05 .50	31 5 17 180 115	.01 .01 .13 .01	2 15 5 13 2	.67 .04 .62 1.25 .76	.02 .01 .02 .04 .01	.09 .03 .13 .26	1 7 1 2 2	4684 24930 98 42 68		
CH88-11 CH88-12R CH88-13 CH88-14R CH88-15	1 1 1 1	211 10 11 23 26	14 4 10 298 17	34 3 40 133 77	.1 .1 .2 1.7 .3	7 3 50 50 35	18 1 12 5 4	35 842 238	3.54- .34- 2.02 1.31 1.80	2 2 6 27 5	5 5 5 5 5	לת מו מו מו	1 1 1 1 1	43 I 683 184 201	1 1 1 2 1	2 2 2 2 2 2	4 2 4 2 2	10	.63 .01 19.78 1.70 5.66	.043 .001 .040 .012 .036	2 2 3 8		.98 .02 1.12 1.12 .63	126 4 235 15 70	.08 .01 .08 .01 .03	2 15 19 19	1.04 .01 .98 .29 .62	.04 .01 .01 .01 .01	.17 .02 .22 .04 .09	1 1 1 1 2	7 1 1 175 7		
CH28-16 CH28-17 CH28-18 CH28-19 CH28-20	4 1 1 1 1	77 71 13 25 12	9 5 12 2 1035	78 83 15 28 31	.1 .1 .1 .1 2.2	31 31 7 14 16	3 7 1 4 2	134 305 50 262 152	3.31 .17	7 2 2 3 11	5 5 5 5 5	10 10 10 10 10	1 1 1 2 1	4 7 5 4 35	1 1 1 1	2 2 3 2 2	2 4 2 2 2	10 129 5 15 3	.07 .22 .04 .05 .30	.028 .056 .020 .018 .005	5 5 3 8 2	8 65 4 19 5	.22 1.21 .11 .43 .26	61 140 24 69 10	.01 .14 .01 .03 .01	20 2 2 14 15	.45 1.32 .16 .77 .06	.01 .03 .01 .01 .01	.05 .05 .24 .02	1 1 1 1	6 3 205 1 1256	-	
CM88-22 CM88-28 CM88-30 CM88-32 CM88-34	1 1 1 2 1	13 16 44 49 30	13 11 13 13 4	95 15 44 75 75	.3 .1 .4 .1	571 15 44 30 6	34 2 6 6	1045 75 483 375 556	.90 1.30 1.97	467 10 3 2 2	5 5 5 5 5	ID ID ID ID ID ID	1 1 1 2 2	518 16 168 23 13	1 1 1 1	4 2 2 2 2	2 2 2 2 2 2	13 3 22 34 36		.026 .008 .032 .071 .069	2 2 11 13	143 8 37 17 3	8.54 .23 .38 .76 .83	28 33 26 106 106	.01 .01 .05 .01 .01	22 2 4 2 5	.31 .13 .34 .77 1.31	.01 .01 .01 .01 .02	.12 .07 .05 .12 .24	1 1 2 1 1	4 10- 2273 104 13	- - - -	
CH88-36 CH88-38 CH88-40 CH88-42 CH88-42 CH88-44R	1 5 1 1 1	9 42 4 30 25	44 9 4 13 7	19 45 22 77 19	.1 .1 .1 .1	9 94 18 37 19	2 20 3 4 3	238	.65 2.51 1.24 1.58 .90	2 32 2 2 4	5 5 5 5 5	JTD ND HD JTD JTD	1 1 1 1 2	6 802 5 47 4	1 1 1 1	2 2 2 3	2 2 2 2 2	33	22.64 .17 1.50	.007 .084 .042 .086 .025	2 11 6 13	25	.12 1.07 .45 1.03 .31	19 359 26 73 96	.01 .02 .01 .01 .01	4 2 16 2 5	.12 1.14 .45 .92 .40	.01 .01 .02 .01 .01	.03 .34 .01 .11 .12	1 1 1 1	2 1 1 1 1		
CH88-45 DK1 DX2 STD C/AU-R		48 29592- 399999- 63	255	37 35 282 132	.1 11.6 5.4 6.8	17 128 265 73	6 42 124 30		16.44 28.24	2 67 1107 f0	5 5 12 17	YD ND ND 1	3 1 1 38	5 5 1 48	1 1 1	2 62 1637 17	2 1 2 23	39 1 5 60	.58 .10	.021 .001 .065 .081	11 2 2 41	30 1 1 50	1.15 .36 .07 .93	89 2 5 178	.02 .01 .01 .07	10 9 4 33	1.12 .02 .04 1.96	.02 .01 .01 .07	.16 .03 .02 .14	1 1 1 11	1 4 3 1 27 520	.16 .55	

ŧ

)

)

)

2

)

)

)

)

)

)

)

)

)

)

)

)

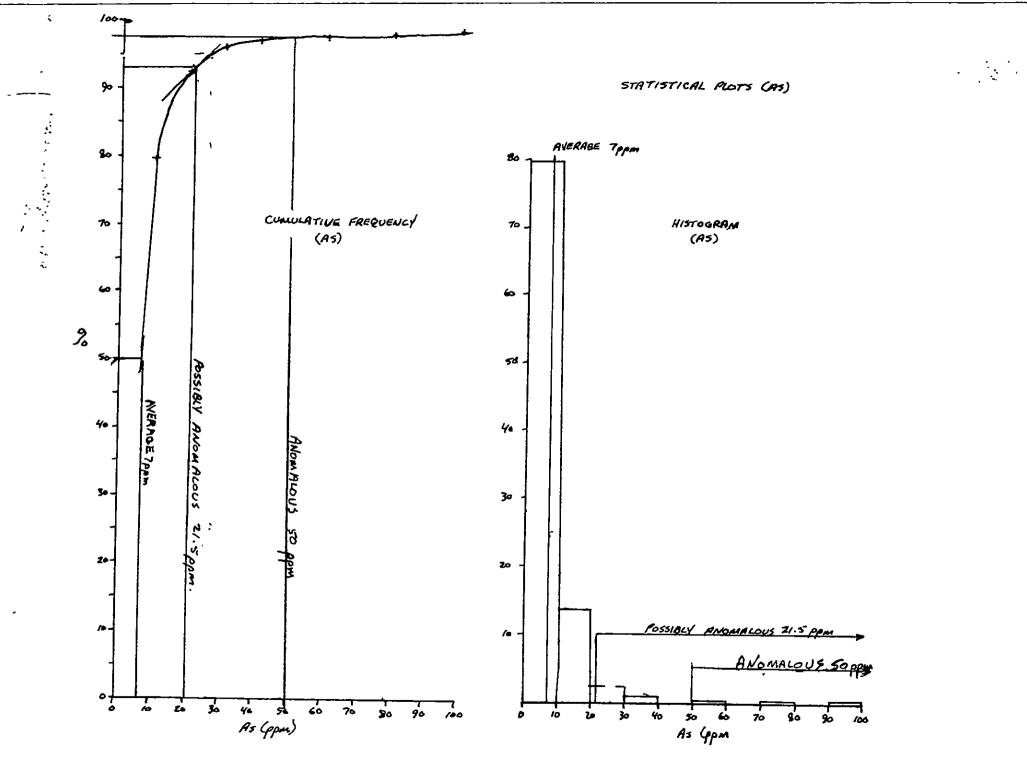
5

)

)

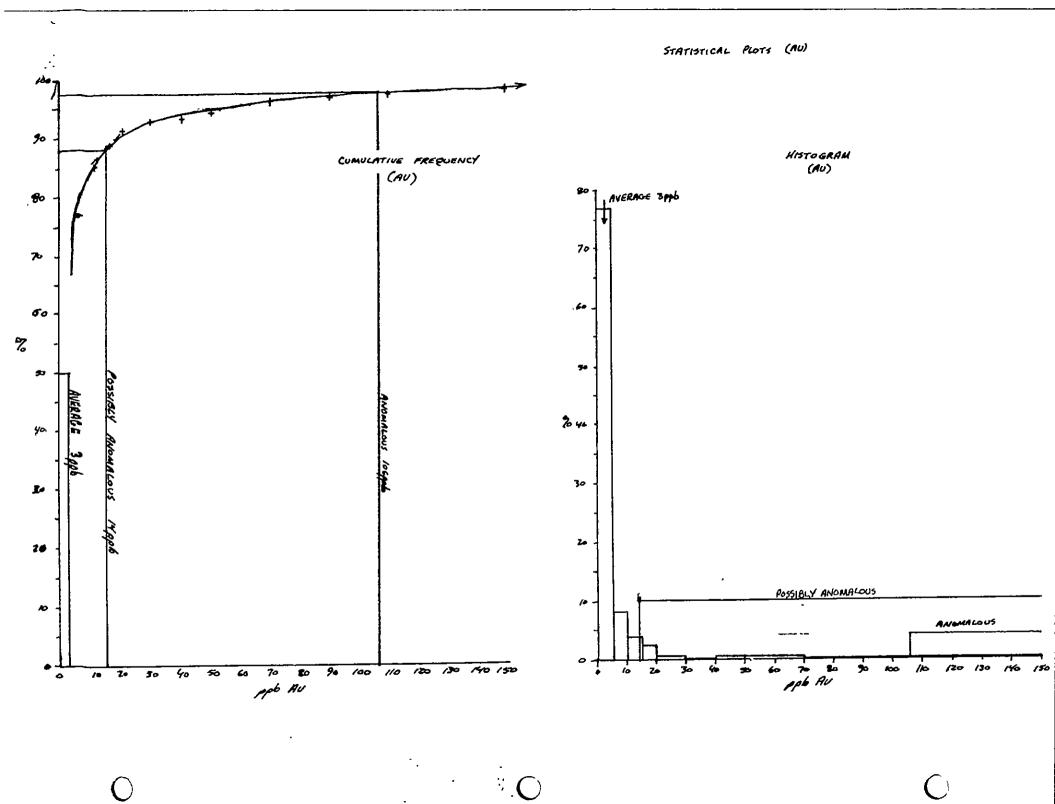
•

-ASSAY REQUIRED FOR CORRECT RESULT -

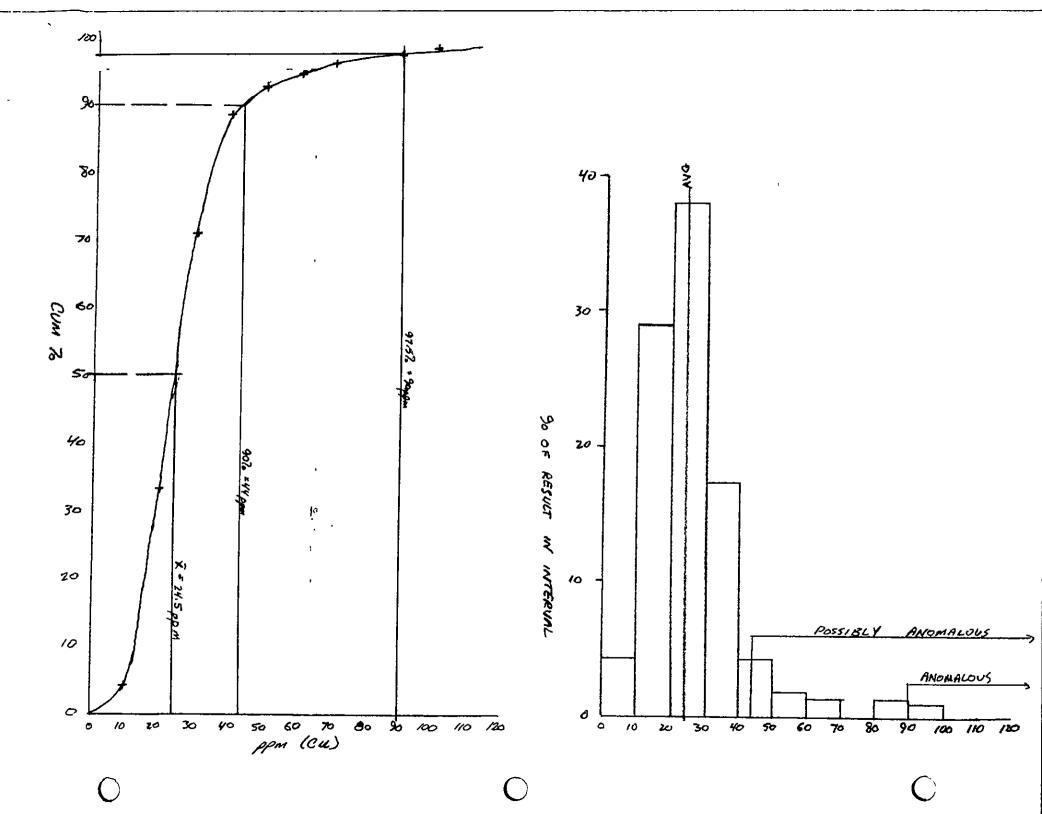

ANALYTICAL TECHNIQUES

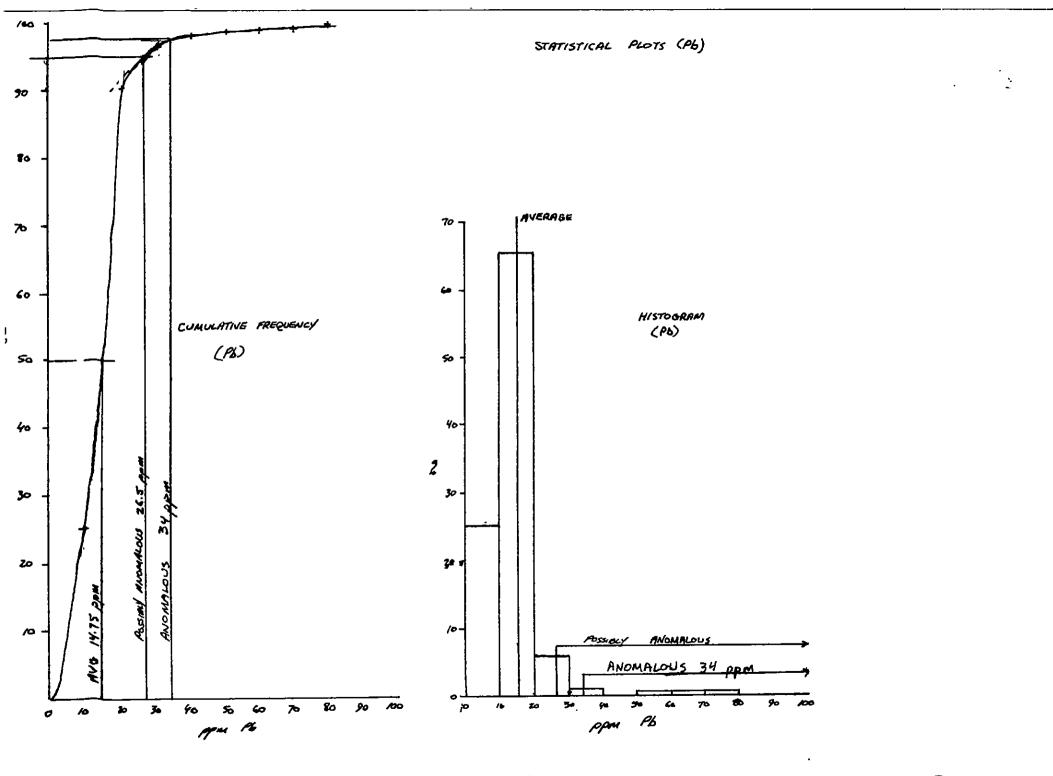
A. <u>Sample Preparation</u>:

- Soll/Silt Geochemistry: Samples are dried out and sifted to minus 80 mesh, through stainless steel or nyion screens.
- Rock Geochemistry: Samples are dried, crushed to minus 1/4 inch, split and pulverized to minus 100 mesh.
- 3. Rock Assay: Samples are dried, crushed to minus 1/8 inch, split and pulverized to minus 150 mesh.

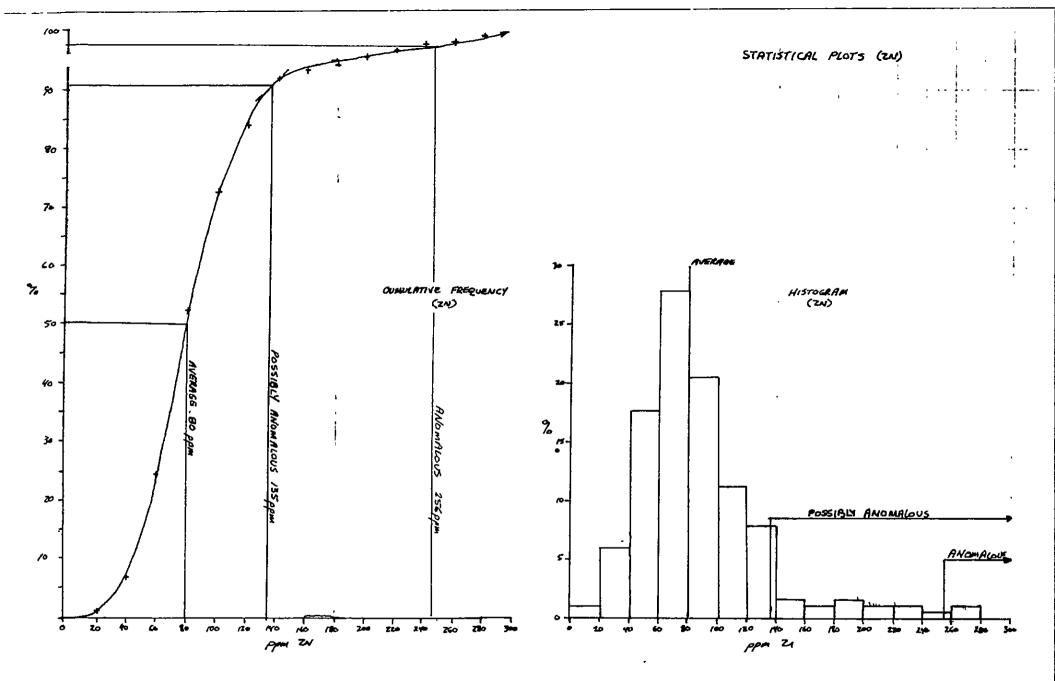

B. <u>Methods of Analysis:</u>

- 1. Geochemical Gold: A 10 gram sample is roasted at 550C and digested with aqua regia. The dissolved gold is then extracted with methyl isobutyl ketone, and the resulting solution analyzed using atomic absorption spectroscopy.
- 2. Fire Assay Gold: A 15 or 30 gram sample is fused using standard fire assay fluxes, the resulting gold/silver/lead button is cupelled, and the gold/silver bead analyzed using atomic absorption or a gravimetric finish.
- 3. Multi-Element ICP: A 0.5 gram sample is digested with a 3-1-2 dilute aqua regia mixture and analyzed using inductively coupled plasma spectroscoy.



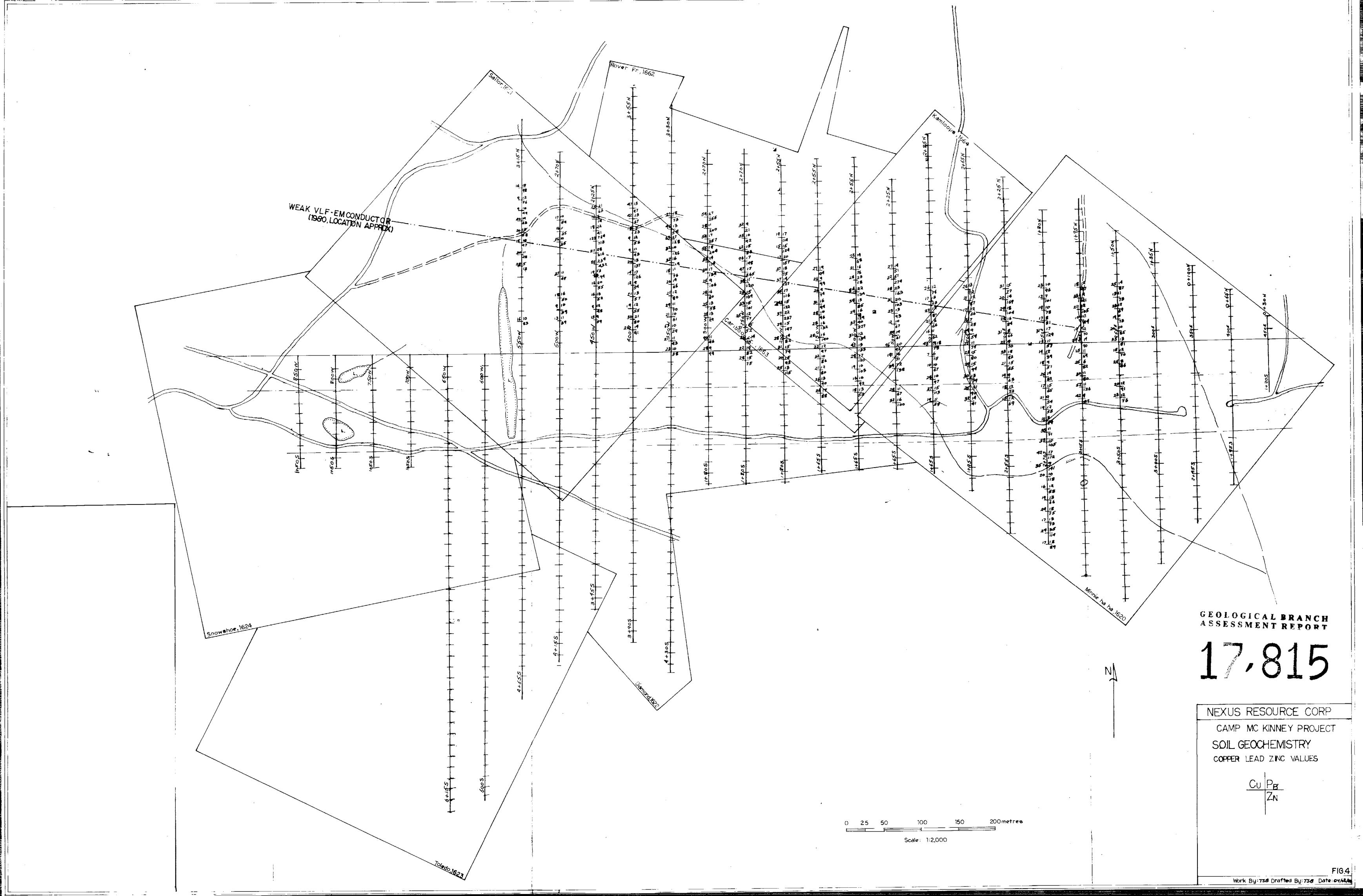

 \mathbf{O}

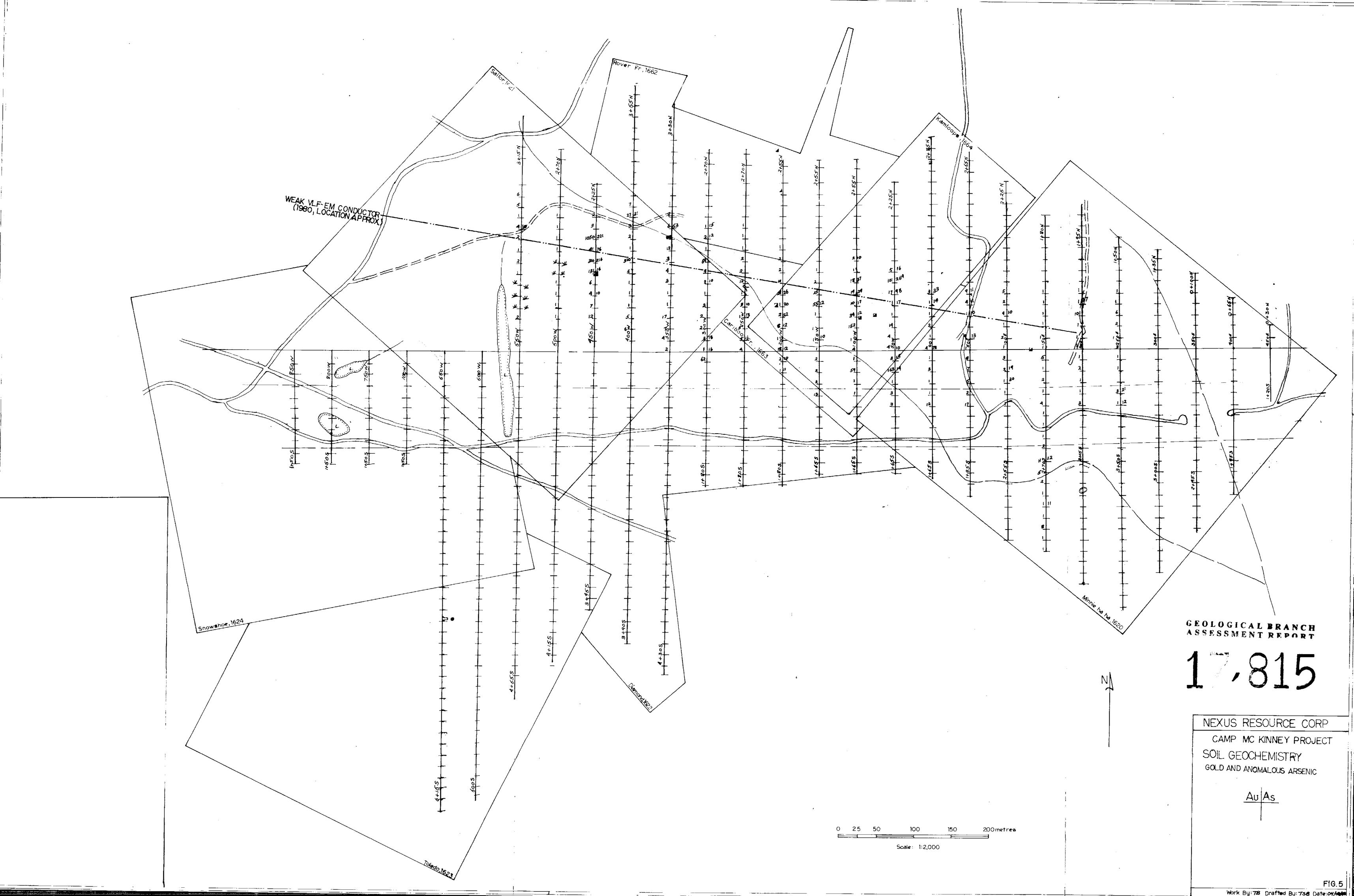
 \mathbf{C}

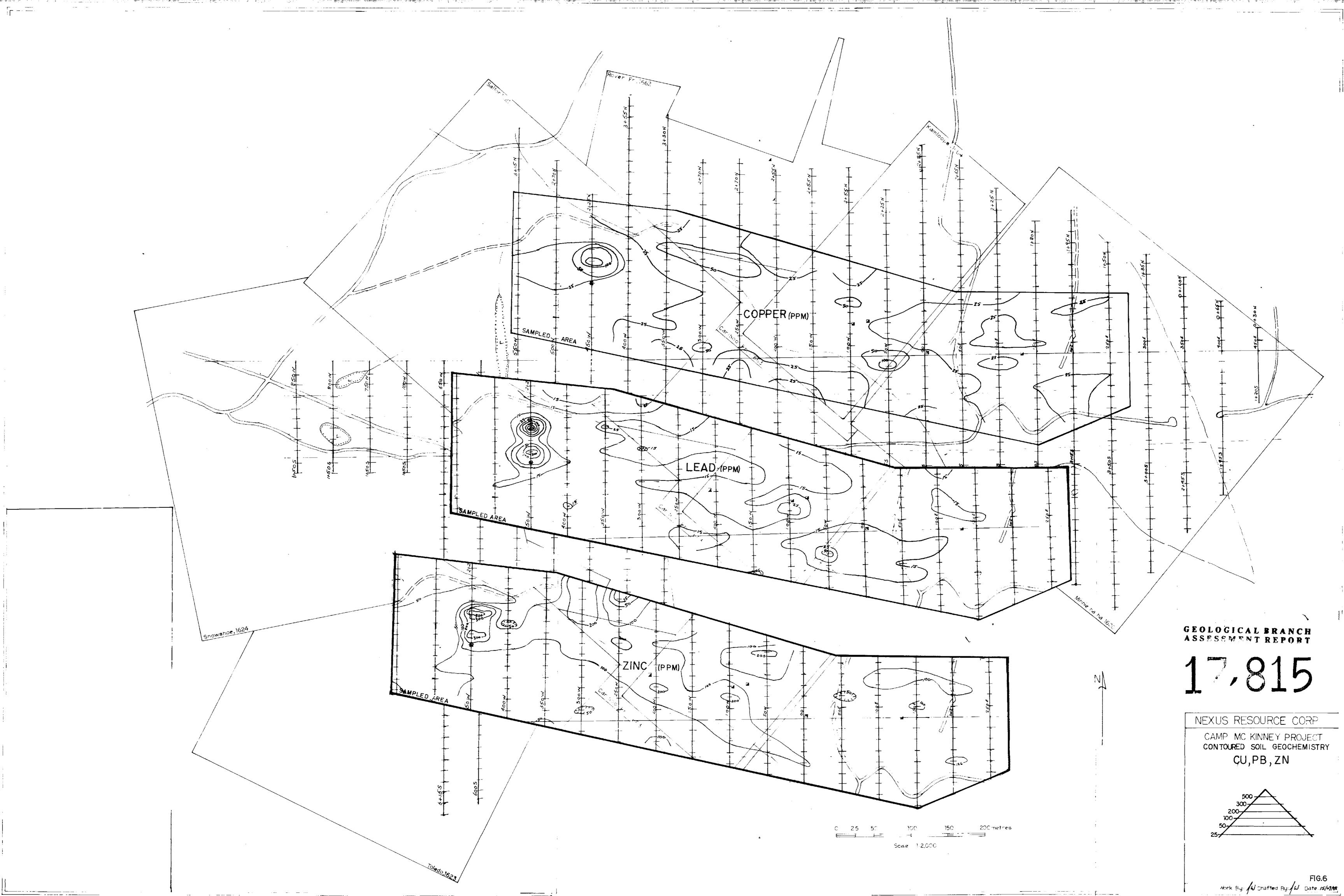

()

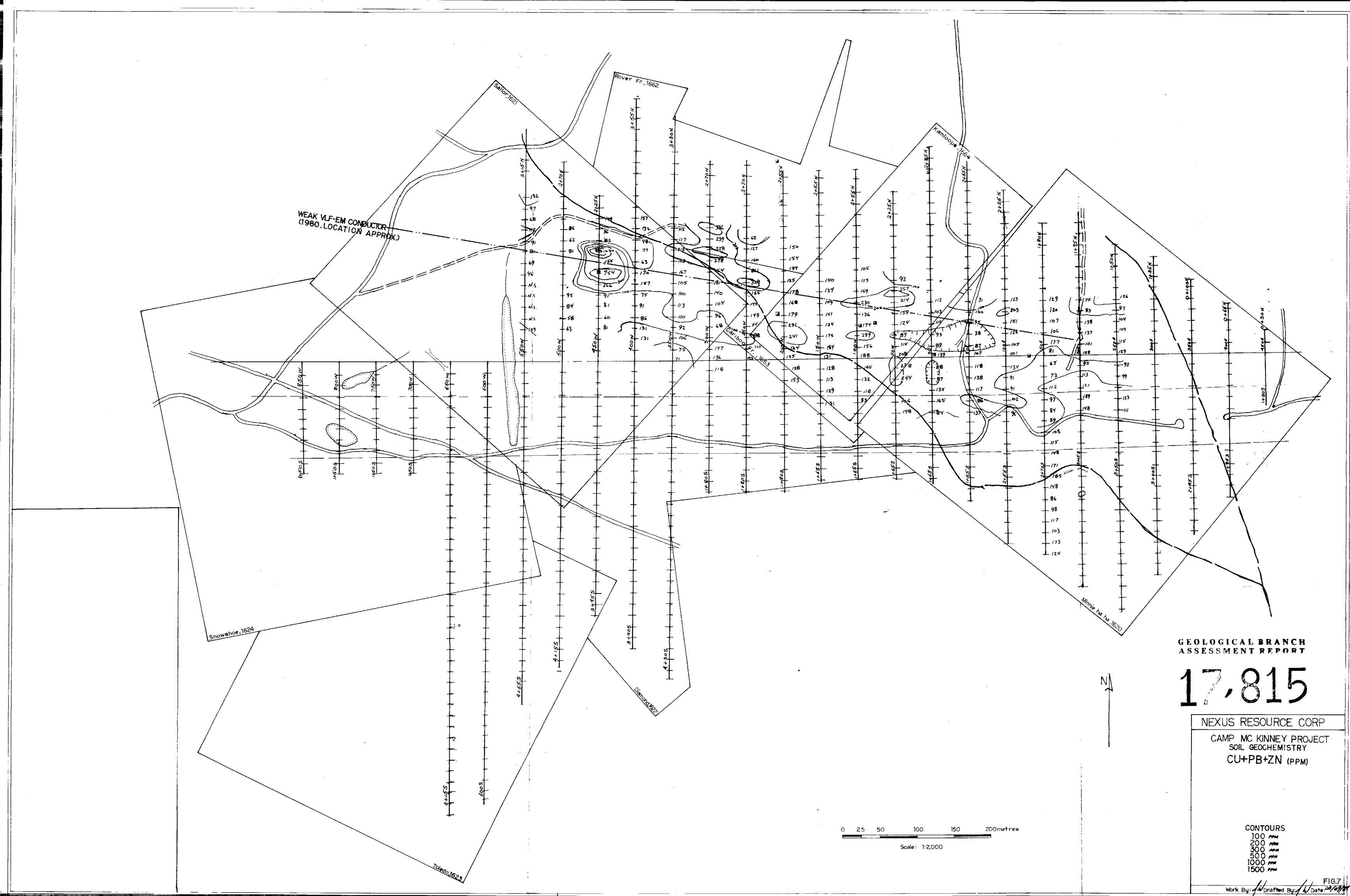
 \mathbf{C}

C




C


()


1	
:	
i	
	WEAKING
	WEAK VLF-EM CONDUCTOR 1980 LOCATION APPROX
· · · · · · · · · · · · · · · · · · ·	
t.	
	Social Second
ROCK SAMPLE ASSAYS	
SAMPLE # AU(PPB) CU PE ZA AS	
CN88-1 3635 148 15 121 2 CN88-2 112 502 30 111 7	
CM28 - 3 119060 459 6377 1697 2 CM22 - 4 6526 61 54 193 2 CM28 - 5 235 86 43 15 2	
CM88-6 4684 147 308 671 2 CM88-7 24930 83 9533 1569 22 CM88-8R 98 96 13 74 5	
CM88-9 42 82 60 54 2 CM88-10 R 68 32 14 29 6	
CM82-11 7 211 14 34 2 CM88-12 R 1 10 4 3 2 CM88-13 1 10 4 3 2	Snowshoe. 1624
CM88-14R 179 23 298 123 27 CM88-15 7 26 17 77 5	I Snow
CM88-14 6 77 9 78 7 CM88-17 3 71 5 83 2	
CH 88-18 205 13 12 15 2 CM 88-19 1 26 2 28 3	$\frac{1}{1}$
CM88-20 1256 12 1035 31 11 CM88-22 4 13 13 95 467	
CM88-28 10 16 11 15 10 CM88-30 2273 44 13 44 3	
CM88-32 104 49 13 75 2 \$M28-34 13 30 4 75 2 CM88-36 2 8 44 10	
CM88 - 38 1 42 9 45 32	
CH88-42 1 30 13 77 2	
CN88-44R 1 25 7 14 4 CM88-46 1 48 10 37 2	Sol

	Tolon
	Toledo 1623

