```
District Geologist, Prince George
Off Confidential: 89.04.22
ASSESSMENT REPORT 17825 MINING DIVISION: Omineca
\begin{tabular}{|c|c|c|c|c|c|}
\hline PROPERTY: & \multicolumn{5}{|l|}{Goats} \\
\hline \multirow[t]{3}{*}{LOCATION:} & LAT & 561130 & LONG & 1250 & 0204 \\
\hline & UTM & 106229060 & 373750 & & \\
\hline & NTS & 094C03E & & & \\
\hline CLAIM (S) : & \multicolumn{5}{|l|}{Goats, Cabin 38} \\
\hline OPERATOR(S) : & \multicolumn{5}{|l|}{Skylark Res.} \\
\hline AUTHOR(S) : & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{McAtee, C.L.; Hopper, D.H}} \\
\hline REPORT YEAR: & & & & & \\
\hline
\end{tabular}
Tenakihi Group quartzites and quartz-mica schists occur as a major anticlinal structure. Silver and gold values occur in brecciated quartz veins related to shears. Veins are 0.91-4.57 metres wide and 30-91 metres long.
```

WORK
DONE: Geochemical
ROCK 19 sample(s) ;ME SILT 7 sample(s) ;ME

Jim May Creek Area
Omineca Mining Division, British Columbla 94C/3E

Latitude 56 12'57", 56 11'13" Longitude $12505^{\prime} 55^{\prime \prime}, 12501^{\prime \prime} 50^{\prime \prime}$

OPERATOR:
Skylark Resources Ltd.
\#902-837 West Hastings Street Vancouver, B.C.

OWNER:
John M. Mirko and Douglas Hopper Vancouver, B.C.
.. BY

Christopher L Mcatee, M.Sc. and
H. Douglas Hopper

TABLE OF CONTENTS

PAGE
Introduction (a) Location, Access, and Physiography 1
(b) Property Claim Status 1
(c) Property History 4
Exploration Procedure 4
(a) Cabin Claim Group 4
(b) Goats Claim Group 7
Regional Geology. 7
Property Geology, Mineralization, and Results
Cabin Claim Group
(a) General 7
(b) Ruby Zone 9
(c) Cabin \#1 Showing 10
(d) Geochemical Soil Survey - CAB Grid. 10
Goats Claim Group 14
Conclusions and Recommendations 16
Qualifications 17
Reference 19
Itemized Cost Statement (a) Cabin Claim Group 20
(b) Goats Claim Group 21

ILLUSTRATIONS

Fiqure

1. Location Map 2
2. Claim Map 3
3a. Cabin Claim Group - CAB Grid 5
3b. Ruby Zone - Sample Location Map 6
3. Goats Claim Group - Geology and Sample Location Map. 8
4. Assay Values - Ruby Vein Zone - Cabin Claim. 11
5. CAB Grid - Anomalous Soil Values - Au, Ag, As 12
6. CAB Grid - Anomalous Soil Values - Pb, Zn 13
7. Assay Values - Goats Claim Group 15

APPENDICES

APPENDIX 1	Assay Results - CAB Grid
APPENDIX 2	Assay Results - Cabin Claim Group
APPENDIX 3	Assay Results - Goats Claim Group

INTRODUCTION

Location, Access, and Physiography

The Cabin and Goats claim groups are located approximately 320 kms . northwest of Prince George, B.C. at 56 12' 57" North latitude, 125 05' 55" West longitude, and 56 11' 13" North latitude, $12501^{\prime \prime} 50^{\prime \prime}$ west longitude, respectively (Figure 1).

Although the Omineca road is only 5 kms . to the southwest, access at present is by helicopter only. On the cabin claims, the cat road that parallels Jim May Creek and ends at the old cabins is not serviceable.

The Cabin group (Cabin, Cabin 1 , and Cabin \#2 claims) is situated on Jim May Creek, a tributary of Tenakihi Creek, which flows into the Osilinka River. The Goats group is located 7 kms to the southeast near the head of Jim May Creek (Figure 2).

The claims lie in the Tenakihi Range of the Central Plateau and Mountain area of the Canadian Cordillera. The area is rugged with elevations from 1260 to 2020 metres a.s.l.

Rock outcrop is good to excellent.

Property Claim Status

The Cabin and Goats claim groups are owned by J. Mirko of 451 Hermosa Ave., North Vancouver, British Columbia, and Douglas Hopper of Vancouver, B.C. With details as follows:

GROUP
CLAIM
UNITS
RECORD NO. RECORD DATE
CABIN

| Cabin | 20 | 8326 | April 23, 1987 |
| :--- | :--- | :--- | :--- | :--- |
| Cabin 1 | 1^{\prime} | 8645 | August 7, 1987 |
| Cabin $\# 2$ | 1 | 8646 | August 7, 1987 |

GROUP	CLAIM	UNITS	RECORD NO.	RECORD DATE
GOATS				
	Goats	16	8325	April 23, 1987
	Cabin 38	16	8647	August 7, 1987
	Cabin \#39	12	8648	August 7, 1987

RROPERTY HISTORY

Prospecting has been active in the area since the turn of the century when placer gold deposits were worked on Jim May Creek and on the Ingenika River. Prospecting and drilling was carried out by Cominco in the 1930's and 1940's; a few other major and junior companies have been active in the area since then. No economic ore bodies have been developed to date.

EXPLORATION PROCEDURE

Field work was carried out by Doug Hopper, prospector, and John Sveen, assistant, Erom July 17 to July 28, 1987, with two property examinations by C. McAtee during the work program. Prospecting, rock chip sampling, mapping of veins and alteration zones, and soil-silt sampling were carried out on the claims.

Cabin Claim Group

On the Cabin claim group, 4100 metres of line was flagged for geochemical soil sampling. The lines as well as the soil sample locations are shown on Figure 3a. Soil samples, and silt samples where applicable, were taken every 50 metres along the lines. The samples, 133 in all, were analyzed using the 30 element ICP package of Acme Analytical Laboratories. (Appendix 1). Gold was determined by standard atomic absorption technique.

Twenty-seven rock chip samples were taken for assay and analyzed using the same methods as for soils. Several of the old showings were prospected and sampled, as were several new ones (Figure 3a and 3b).

Goats Clalm Group

On the Goats claim group, 19 rock chip samples and 7 silt samples were taken on a reconnaissance program (Figure 4). These samples were analyzed as above.

REGIONAL GEOLOGY

The Cabin and Goats claim groups occur within the 1:253,440 scale Aiken Lake map area (Roots, 1954).

Regionally, Tenakihi Group metamorphic rocks, Takla Group sedimentary and volcanic rocks, and unnamed interbedded volcanic and sedimentary rocks are intruded by Omineca intrusives of Mesozolc age. Northeast of Blackpine Lake, Wolverine Complex amphibolites, quartzites, and skarns are present.

Structurally, beds of the Tenakihi group have been deformed into a series of compound folds that have overwhelmed earlier more north-trending folds. Northwesterly faulting plays a major role in localizing mineralization both regionally and locally.

PROPERTY GEOLOGY, MINERALIZATION, AND RESULTS

Cabin Clalm Group

General

The Cabin claim group covers Tenakihi Group rocks near the head of Jim May Creek (Figure 2). On the claim group, Tenakihi rocks consist of highly contorted quartzites and quartz-

mica schists on a major regional anticlinal structure.
The mineral showings occur in a series of siliceous brecciated fault or shear zones, along which there has been repeated movement and deposition of vein quartz and sulphide minerals. At least four periods of mineral deposition are known (Roots, 1954).

Numerous quartz veins from 91 to 457 cms . wide, and from 30 to 91 metres long are exposed. The largest body of vein quartz found in the whole map area is on the claims and covers an area 183 by 55 metres. Most of the latter velns are not mineralized to any extent, although crosscutting veins such as the "Ruby" are.

Ruby Zone
The Ruby zone, which is exposed on Jim May Creek about 6.4 kms. from it's mouth and 550 metres east of the old cabins, was prospected and rock chip sampled (Figure 3a and 3b). The general axis of the Ruby zone strikes N20E over a distance of 150 metres.

The quartz veins, which are brecciated and faulted in argillite host rocks, display a herring-bone type of structure. Vein widths vary from 15 cms . to 8.2 metres and generally carry <1/2\% pyrite and other sulphides, as well as mica and graphite. According to Roots (Roots, 1954), minerals recognizable in hand specimen include pyrite, sphalerite, galena, tetrahedrite, pyrargyrite, arsenopyrite, and minor amounts of molybdenite and chalcopyrite.

Rock chip samples numbered 2105 to 2121 and 2127 were
taken from the Ruby vein zone (Figure 3b). Figure 5 summarizes assay results, widths, and mineralization from the Ruby vein zone.

Gold values of 710 and 390 ppb over 165 and 132 cms., respectively, were obtained for brecciated quartz veins striking 240 (\$2108 and \#2127). Silver values of 44.4, 30.0, 19.0, and 17.9 ppm were obtained from brecciated and non-brecciated quartz vein material. Arsenic values of 2152, 2183, 4259, and 4516 ppm were returned. Mineralization observed in the vein quartz includes $1 / 2$ - 1% pyrite, galena, and up to 40% soft grey (sulphide?) material.

Cabin $\# 1$ Showing
This zone is near a small creek at grid co-ordinates 12+00E, 2+00S, 200 metres north of Jim May Creek (Figure 3a). There are a series of quartz veins trending 140 to 160 with pyrite patches and some grey unidentifiable material. The quartz veins, which cut the bedding and fill fracture gaps, are 6 to 13 mms., and up to 30 cms . wide.

Assay samples numbered 2121 to 2125 were taken from the area (Appendix 2). Rock chip sample 2123, from a 5 to 10 cm wide pyrite stringer, assayed 11 ppb gold, 22.4 ppm silver, and 1335 ppm lead.

Geochemical Soll Survey - CAB Grid
The reconnaissance geochemical soil survey program proved effective. Several low but anomalous values were found for $\mathrm{Pb}, \mathrm{Zn}, \mathrm{As}, \mathrm{Ag}$, and Au (Figures 6 and 7). A spot high value

ASSAY GLLUES - RUBY VBIL ZONB - CABIN CLAIM

Assay	Material	Sample over cos.	Strike	Mineralization	$\begin{gathered} \mathrm{Au} \\ \mathrm{ppb} \end{gathered}$	$\begin{gathered} \mathrm{Ag} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \text { As } \\ \text { ppa } \end{array}$	$\begin{gathered} \mathrm{pb} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \mathrm{zn} \\ \mathrm{ppm} \end{array}$
2105	0∇	272	-	<1/2ı sulphides	29	1.7	92	36	17
2106	0 V	198	-	<1/2\% sulphides	27	0.6	14	18	8
2107	0 V	363	-	<1/2\% sulphides	10	0.6	75	55	53
2108	0 Bx	132	060		710	17.9	4516	136	455
2109	Q V	41	160	1-58 sga	36	0.9	279	131	744
2110	0 V	Grab	-	sgm, if py	43	5.1	741	416	657
2111	0 V	330	048	1/2-17 py	240	19.0	1442	695	211
2112	0 Bx	25	---	py, graphite matrix	127	2.7	1232	105	80
2113	sil. sed.	97	045	PY	25	3.5	540	37	114
2114	0 V	122	---	py, sgm	230	2.6	2152	16	42
2115	0 Bx	231	---	py, 408 sgm	125	1.1	2183	15	11
2116	Q V, pinched	91	162		22	30.0	58	811	44
2117	Q V	198	162	galena, sgs	14	44.4	78	1751	29
2118	Rusty zone	76	030	py	2	0.1	25	13	46
2119	Q V	25	030/V	mass. PY spots	64	3.2	130	41	18
2127	Q Bx	165	060	20-308 sgm, fault zone?	390	1.6	4259	220	784

```
sgm - soft grey material
sgs - soft grey sulphide
Q \(V\) - quartz vein
Q Bx- quartz breccia
```

PIGURB 5

of 185 ppb gold at $4+50$ West on the baseline was returned.
Four anomalous silver values of 0.8 to 1.2 ppm suggest a quartz vein which carries silver trending 051 over 700 metres (Figure 6).

Goats Clalm Group

Rocks on the Goats claim group area similar to those observed on the Cabin group. Schists predominate.

Figure 4 shows the rock chip and silt sample locations. Figure 8 and Appendix 3 list assay results, vein widths, and mineralization.

On southwestern Goats claim, a 12 metre wide quartz breccia zone trends in a northerly direction (\#2141 to (2146). Some cherty fragments were observed on the eastern contact, with pyrite and darker coloured fragments towards the centre of the zone. Assay values range to $245 \mathrm{ppb} A u_{\text {, }} 15.7 \mathrm{ppm} \mathrm{Ag}, 962 \mathrm{ppm} \mathrm{Pb}$, and 1424 ppm As for the zone.

Some 900 metres to the northwest, a quartz breccia zone identical in appearance to the one mentioned above was found. Here, a recemented quartz breccia and shear zone ran 58 ppb Au , $11.6 \mathrm{ppm} \mathrm{Ag}, 1355 \mathrm{ppm} \mathrm{Pb}$, and 156 ppm As over 61 cms . (\#2133).

Silver assay values of 6.7, 8.6, and 4.9 ppm were returned from a quartz vein in a shear (\$2138) and quartz breccia zone (\$2139 and \#2140). Anomalous lead and arsenic values were also found in the quartz breccia zone (Figure 11).
silt samples taken in the Goats camp area returned fair zinc values of 161 to 462 ppm.

ASSYY VALUSS - GOATS CHAIH GROUP

Assay	Material	Sample over Cns.	Strike	Mineralization	$\begin{array}{\|c} \mathrm{Au} \\ \mathrm{ppb} \end{array}$	$\begin{gathered} \mathrm{Ag} \\ \mathrm{ppra} \end{gathered}$	$\begin{array}{r} \mathrm{pb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { As } \\ \text { ppm } \end{array}$
2128	0 V	66	060/V	py	31	26.3	3064	661
2129	0	Grab	180/20 ${ }^{\circ} \mathrm{W}$	DY, g'I	9	0.3	47	46
2130	0 V	137		DY	5	0.7	61	48
2131	0 V	23		green stain	2	0.2	20	10
2132	Gossan	28	$180 / 15^{\circ}$		25	0.8	35	2
2133	0 BX	61	040/V	rusty on fractures	58	11.6	1355	156
2134	Rusty	Grab		shear zone	3	1.0	313	40
2135	07	Grab		black stain	3	3.6	1630	23
2136	0	Grab		black stain	1	1.0	344	23
2137	0	15	050/V	rusty	1	0.6	79	28
2138	0 V	9	060/V	graphite	1	6.7	213	2
$\left.\begin{array}{l} 2139 \\ 2140 \end{array}\right\}$	0 Bx	15 20		angular quartz fragments recemented with ep., chl., hem.	1 2	8.6 4.9	685 4472	135 1541
2141		Grab	12 metre	greyish quartz frags.	165	15.7	857	1424
2142	0 BX	Grab	"uide breccia	east contact	106	8.1	962	556
2143	$0 \mathrm{Bx} \nabla$	18	zone strikes	rusty shear, py, darker coloured frags.	245	6.9	304	1420
2144	0 Bx	Grab	to south	centre of zone in quartzite.	12	3.8	906	88
2145	0	Grab		black stain	11	9.9	399	47
2146	Bx	Grab		rusty	1	0.8	218	17
				-	0 V Bx V G	- quar - vein - brec - vert - grey	z la cal materi	

Pigure 8

CONCLUSIONS AND RECOMMENDATIONS

The 1987 program on the Cabin and Goats claim groups was successful.

Assays show a fair silver and anomalous gold content across relatively large widths. Soll and silt sampling provide a good tool in this terrain.

Recommendations for further work include:

1. Reconnaissance prospecting, rock chip sampling, and silt sampling on the Cabin 11, Cabin $\# 2$, Cabin $\$ 38$, Cabin 39 and southern part of the Cabin claim.
2. Diamond drililing on the Ruby vein zone.

QUALIFICATIONS

I, CHRISTOPHER L. MCATEE, certify that:

1. I am a minerals exploration geologist.
2. I am a graduate of Brock University, st Catharines, Ontario with a degree in geological Sciences (M.Sc., 1977), and a graduate of Wright State University, Dayton, Ohio, with a degree in Geology (B .Sc., 1972).
3. I have spent the past ten years in mineral exploration and development In Canada and the United States.
4. I personally examined the property and directed the geophysical program conducted by skylark Resources Ltd. in 1987.

Vancouver, B.C. April, 1988

Christopher L. MAte Geologist

QUALIFICATIONS

I, H. DOUGLAS HOPPRR of 828 West Hastings Street, Vancouver, B.C., did attend the Provincial Institute of Mining, Haileybury, Ontario in the years 1962-1964, 1965 and 1966, for which I am a Mining Ehngineering Technologist.

Since 1966, I have worked with various mining companies as Field Geologist, Junior Engineer, looking after diamond drilling projets, underground mining exploration and surface wxploration.

DATED at Vancouver, British Columbia, this 23rd day of March, 1988.

REFERENCE

Roots, E.F. (1954) Geology and Mineral Deposits of Aiken Lake Map - Area, British Columbia. Geological Survey of Canada Memoir 274, 246 pp.

ITEMIZED COST STATEMENT

CABIN CLAIM GROUP

Helicopter - 3.0 hours e $\$ 595 /$ hour
Fleld Wages - 1 prospector 7 days $8 \$ 130 /$ day 910.00

1 assistant 3 days 130/day 105.00
1 assistant 7 days 910.00
1 assistant 2 days 190.00

Report/Drafting/Wordprocessing $\quad 735.00$

Mob/Demob - Vehicle - Fuel - Equipment 235.00

Camp 14 man days \& $\$ 35 /$ day 490.00

Assays - 100 @ $\$ 13.25 /$ each
$2,120.00$

TOTAL $\$ 7,780.00$

ITEMI ZED COST STATEAENT

GOATS CLALM GROUP

Helicopter - 2.8 hours @ $\$ 595 /$ hour $\$ 1,666.00$

Field Wages - 1 prospector 6 days 780.00 1 assistant 6 days $\quad 780.00$

1 assistant 1 day \& \$95/day 95.00

Report/Drafting/Wordprocessing 435.00

Mob/Demob - Vehicle - Fuel - Equipment 433.00

Assays 9 man days $\$ 335 /$ day 315.00

Assays - 27 \& \$13.25/each
357.75

TOTAL \$ 4,761.75

日S2 E．HASTINGS GT．VANCDUVER B．C．VGA 1 RG

GEDCHEMICAL TCP ANALYBIB

 SKYLAKK RESOURCES FFOJECT－FI FESTEEL／GFUESTAKE File \＃日7－3214 Fage 1

5AKPLEI	$\begin{gathered} \text { RO } \\ \text { PFM } \end{gathered}$	$\begin{gathered} \text { Cu } \\ \text { PPM } \end{gathered}$	$\begin{gathered} \text { PI } \\ \text { PPM } \end{gathered}$	$\begin{gathered} \text { 1K } \\ \text { PPM } \end{gathered}$	$\underset{\text { BFX }}{\text { A5 }}$	$\begin{gathered} \text { MI } \\ \text { PPM } \end{gathered}$	$\begin{aligned} & \mathrm{CO} \\ & \mathrm{PR} \end{aligned}$			$\begin{array}{ll} E & \text { A5 } \\ 2 & \text { PPM } \end{array}$	$\underset{\text { PPK }}{ }$	$\begin{aligned} & \text { AU } \\ & \text { PPK } \end{aligned}$	$\begin{gathered} \text { IH } \\ \text { PPY } \end{gathered}$	$\begin{gathered} 5 R \\ P P M \end{gathered}$	$\begin{gathered} \text { CD } \\ \text { PPM } \end{gathered}$	$\begin{gathered} \text { SQ } \\ P P M \end{gathered}$	$\underset{\text { PPM }}{\\|!}$	$\begin{gathered} Y \\ P P K \end{gathered}$	CA	P	$\begin{gathered} \text { LA } \\ \text { PPK } \end{gathered}$	$\begin{gathered} \text { CR } \\ \text { PPK } \end{gathered}$	Kis	$\begin{gathered} \text { IA } \\ \text { PPI } \end{gathered}$	$\begin{gathered} \text { II } \\ 2 \end{gathered}$	PFM	$\underset{Z}{A L}$	WA		$\begin{gathered} N \\ P P M \end{gathered}$	$\begin{aligned} & \text { AUI } \\ & \text { HH } \end{aligned}$
CA3 L6＋00E 1＋005A	1	24	21	102	． 4	10	10	135	2.10	1	5	NO	10	14	1	2	2	18													
CA8 L6400E 1－505	1	18	11	71	． 1	21	\dagger	214	2.72	13	5	ND	14	7	1	2	2	17	． 28	． 071	39	24	． 71	51	． 11	1	1.43	． 01	． 10	I	1
CAl L600E 20005	1	11	21	75	． 2	20	12	313	3.30	10	5	N0	14	7	1	2	2	23	． 06	． .024	14	25	． 69	51	． 07	2	1.23	． 01	． 21	1	1
CAI L12400E 0．50M	1	12	7	46	． 1	16	5	${ }^{4} 1$	2.41	5	5	H0	6	5	1	2	2	22	． 06	． 024	11 21	25	． 69	58 25	． 07	2	1.58 .78	． 01	． 21	1	1
CA）12200E 0．00	1	10	12	63	． 2	16	7	119	2.44	7	3	ND	1	13	1	2	2	19	． 16	． 015	21	21	． 60	49	． 07	2	． 1.21	． 01	． 19	1	1
CAR 112，00E 04505	\ddagger	1	10	41	． 1	16	1	172	2.61	6	5	KD	6	1	1	2	3	19	． 08	． 075	23										
CAD LI2．00E 1＋00S	1	1	9	41	． 1	12	1	123	1.07	3	5	MD	1	4	1	2	3	14	． 04	．075	25	70 16	． 51	49	． 07	3	1.14 1.02	． 01	.17	1	2
CAB 112400E l－505	1	\dagger	15	11	． 3	12	1	155	1.90	5	5	N0	0	1	1	2	2	11	． 10	． 022	22	17	． 58	55	． 08	7	1.02	． 01	． 16	2	1
CAl 112，00E 2000S	1	7	16	58	． 2	13	6	132	2.9	1	5	ND	7	5	1	2	2	22	． 04	． 022	20	20	． 49	20	． 10	2	1.06 1.04	． 01	.15	1	1
CAD L12400E 2415S SILI	1	20	1	13	． 1	38	10	285	2.93	1	5	KD	11	6	1	2	2	12	． 09	． 032	23	21	． 67	21	． 04	2	． 18	． 01	． 12	1	1
CAF（12－00E 24505	1	25	15	10	． 1	31	14	565	3.61	5	5	K0	15	14	1	2	2	11	．t3	．039	47	23	． 74	34	． 04	2	1.39	． 01	． 10		
CAF LI2－00E 3－005	1	13	12	56	．1	17	4	127	2.92	1	5	HD	6	1	1	2	2	17	． 09	．031	25	19	． 60	34	． 08	2	1.07	． 01	． 21	1	1
Cat 3	1	17	11	65	． 1	19	7	120	2.19	9	5	H0	1	5	1	2	3	15	． 01	．031	21	11	． 52	3	． 06	2	1.07	． 01	． 21	1	1
Cas 1	1	15	11	45	． 1	20	1	228	2.93	1	5	ND	8	10	1	$2{ }^{\text {² }}$	1	17	． 13	． 042	33	20	． 62	42	． 07	2	1.24	． 01	． 22	1	1
CAI 6	1	15	15	45	． 1	15	5	101	2.14	1	5	MD	7	1	1	2	2	11	． 08	． 034	21	11	． 32	23	．OS	2	． 75	． 01	． 14	I	2
Cas 1	1	30	19	102	． 1	79	11	457	5.19	27	5	KD	17	9	I	2	2	21	． 22	． 013	41	23	． 73	47	It	2					
CAI 8	1	15	14	71	． 1	24	10	320	2.15	0	5	HD	7	17	1	2	2	17	． 25	． 059	33	20	． 41	51	． 01	2	1．21	． 01	． 24		1
Cal 9	I	18	13	70	． 1	21	1	273	2.46	1	5	HD	11	7	，	2	2	14	． 19	． 060	34	19	． 45	46	． 01	2	1.21	． 01	． 24	1	1
Cal 10	1	14	14	43	． 1	13	6	118	2.56	8	5	KD	6	3	I	2	2	14	． 05	． 037	20	12	． 32	15	． 05	3	1.11	． 01		1	1
CAS 11	1	15	11	50	． 1	17	7	279	2.41	7	5	H0	7	I	1	2	2	14	． 13	． 047	33	16	． 51	38	． 06	2	． 13	． 01	．11	1	1
cab siailok 1	1	18	16	57	． 1	19	7	134	3.02	7	5	ND	0	J	1	2	4	17	． 04	． 040	21										
Cal siallok 2	1	15	17	52	． 1	11	7	117	3.62	12	5	H0	7	3	1	2	2	21	． 02	． 100	20	13			． 08	2	1.09	． 01	． 15	1	1
Cal 04000150 N	1	13	14	51	． 3	17	5	102	2.13	17	5	no	7	15	，	2		20	． 14	． 010	27	18	． 41	17	． 08	2	． 61	． 01	． 11	1	1
［A］ItSt50E lecon	1	22	16	203	． 1	41	40	\＄524	20.51	1104	5	K0	10	59	，	2	2	10	34				－	205	． 01	3	． 94	． 01	． 18	，	1
CAE IL5＋50E 0450S SILI P	1	42	2	185	． 1	34	24	119		2133	5	no	1	\＄12	3	50	2	1	． 33	． 017	29	1	.13	203	． 01	2	． 61	． 01	． 21	2	1

ACME ANALYTICAL LABORATORIES－ 852 East Hastings Street，Vancouver，B．C．V6A IR6
APPENDIX 1 －Assay Results－CAB grid

GKYLARK REBOURCES PROJECT-FIFESTEEL/GFUESTAKE FILE E7-3214

Sarplet										AS		av		5R	60	41	II	v	ch		LA	Cn	H		11	3	AL	MA	\%		aut
	PPM	PFM	PR'	PRM	PPM	PP\%	PPM	PPM	1	PPK	PPK	PPM	PPM	PPM	PPM	PPM	PPK	PPH	2	1	PPM	PPn	1	PPM	1	PPM	1	I	1	mH	Pri
CAI L1400N 0.00	1	21	39	100	. 4	24	13	290	3.65	32	5	ko	1	15	1	2	3	25	. 11	.033	25	22	. 35	57	. 02	1	1.24	. 01	. 11	1	1
CAS LIt00M 0,50E	1	17	12	4	. 2	17	5	151	2.22	23	5	K0	1	7	1	J	2	31	. 06	. 023	31	12	. 13	40	. 03	2	. 71	. 01	. 01	1	1
CAE LIPOOM I+00E	1	22	11	83	4	11	7	158	4.32	21	5	N0	11	12	1	2	2	35	. 08	. 041	J	16	. 24	J1	. 01	2	. 72	. 01	. 15	,	1
CAE Lftoon 1450E	1	30	11	41	. 3	26	10	253	5.23	24	5	KD	15	1	,	2	2	26	. 05	. 035	37	21	. 56	37	. 05	15	1.35	. 01	. 24	1	2
CAI LIt00N 2400E	1	12	12	39	. 3	12	5	147	2.37	9	5	HD	J	9	1	2	2	30	. 07	. 023	21	12	. 41	56	. 06	2	.11	. 01	. 27	I	1
CAI (1+00\% 2,50E	1	11	11	91	. 2	19	7	185	3.91	21	5	N0	9	6	1	3	2	33	. 06	. 049	23	23	. 49	31	. 06	2	1.17	. 01	.21	1	11
CAIL LIPOOH J 000 E	1	34	20	97	.1	32	16	551	4.67	14	5	N0	17	14	1	2	2	23	. 20	.041	31	29	. 95	50	. 06	3	1,69	. 01	. 35	1	1
CAL (1.00N 3+50E	1	22	14	67	.1	22	0	158	3.42	12	5	ND	11	4	1	2		21	. 03	. 017	37	14	. 21	20	. 02	1	. 14	. 01	. 09	1	,
CaE 11400H \$100E	1	21	13	67	.1	24	0	155	3.56	13	5	10	14	5	1	2	2	25	. 02	. 046	36	14	. 20	20	. 02	2	. 10	. 01	. 07	1	2
CAI L1400M 4,50E	1	20	15	d)	.1	21	7	145	3.21	12	5	ND	13	5	I	2	2	24	. 03	. 041	35	13	. 25	20	. 02	2	. 16	. 01	. 01	1	5
-																															
Cal LITOOK 5100E	1	10	10	43	. 1	11	1	72	1.17	1	5	MD	10	4	,	2	2	24	. 01	. 014	33	9	. 12	19	. 02	2	. 14	. 01	. 05	1	7
Cas Lleoek 5hloe siti	1	31	14	92	. 1	42	14	210	4.19	7	5	ND	19	10	J	2	2	14	. 10	. 037	41	19	. 66	22	. 02	2	1.01	. 01	. 12	1	5
Cat Lioson 5450E	1	29	16	12	.1	21	10	190	4.16	1	5	0	14	5	1	2	2	21	. 02	. 052	32	20	. 10	25	. 02	2	1.27	. 01	. 13	1	3
CAE 11400\% H000	1	10	5	51	. 1	11	4	86	1.44	1	5	H0	1	1	1	2	2	23	. 05	. 018	32	7	. 01	40	. 01	3	. 50	. 01	. 03	1	3
LAE L1+00N 6+50E	1	10	12	45	. 2	15	1	135	2.31	-	5	ND	8	10	,	2	2	20	. 12	. 012	25	17	. 60	25	. 06	2	1.05	. 01	. 21	1	2
CAE L1+00k 7400E	1	21	16	11	. 1	28	10	301	3.71	39	5	HD	15	13	1	2	2	17	. 13	. 022	47	21	. 57	36	. 03	3	1.35	. 01	. 21	1	1
Cat LIP00K 7450E	I	29	13	73	. 1	27	11	314	3.32	12	5	KO	15	1	1	2		17	. 04	. 025	37	24	. 19	36	. 05	2	1.30	. 01	. 21	1	2
CAI LI+00K 1100E	,	49	30	151	. 1	52	46	1061	5.22	10	6	nd	10	29	1	2	2	35	. 33	. 042	5	35	. 75	92	. 01	2	2.51	. 01	. 24	1	1
CAI LI+OOK A+SOE	1	12	18	71	. 2	12	7	163	2.08	6	5	kD	5	18	,	2	2	22	. 19	. 030	26	14	. 27	52	. 03	2	. 11	. 01	. 14	1	1
CAI LITOON 9100E	1	6	7	51	. 1	6	3	97	1.31	2	5	WD	4	13	1	2	2	19	. 15	. 012	30	11	.32	36	. 04	2	. 70	. 01	. 15	1	1
Chat (1)00N 9+505	1	1	1	35	. 2	8	3	52	1.18	5	5	KO	4	9	1	2	2	12	. 07	. 014	33	4	. 17	29	. 01	2	. 51	. 01	. 07	2	2
Cas 11400 K 10400E	1	17	11	70	. 1	19	7	126	3.12	7	5	HD	12	1	1	2	2	20	. 05	. 030	32	17	. 31	46	. 03	2	. 51	. 01	. 12	1	31
CAD LIP00n LOC50E SILI	1	19	10	16	. 1	34	12	278	3.40	1	5	no	12	10	1	2	2	13	. 14	. 035	28	17	. 62	23	. 02	2	t. 04	. 01	. 12	1	$\$$
	1	30	22	100	. 1	22	10	172	6.11	11	5	ND	14	13	,	2	2	33	. 10	. 042	27	25	. 52	73	. 06	4	1.71	. 01	. 20	1	1
CAE LI+00H L1+50E	t	7	$\cdot 12$	44	. 1	¢	1	124	1.70	2	5	KD	3	11	1	2	J	23	. 08	. 019	24	12	. 30	34	. 03	3	. 75	. 01	. 10	1	1
CAB (1+00N 12+00\%	,	25	13	11	. 1	25	10	222	3.76	11	5	ND	14	5	1	2	2	21	. 03	. 011	28	21	. 70	42	. 05	2	8.85	. 01	. 21	I	4
Cal IL 10+80M	1	24	0	78	.1	37	16	279	4.04	10	5	N0	14	22	1	2	2	26	. 22	. 027	38	27	. 71	31	. 04	2	1.51	. 01	. 21	1	5
Cas IL 9450M	1	31	12	73	. 1	30	10	169	4.13	30	5	N0	18	7		2	2	16	. 03	.024	39	18	. 42	21	. 01	2	1.13	. 01	. 14		2
Cat IL 94004	1	11	15	58	. 1	23	1	155	3.12	11	5	HD	1	12	,	2	2	19	. 11	. 012	27	14	. 25	19	. 02	2	. 65	. 01	. 15	1	5
CAI IL Cet50	1	18	1	74	.1	26	9	172	4.12	12	5	NO	11	10	1	2	2	31	. 06	. 026	27	2	. 39	29	. 05	2	1.01	. 01	. 15	1	1
Cal il frooy	1	16	13	65	. 1	22	-	129	3.12	13	5	ND	12	1	1	2	2	24	. 07	. 016	33	20	. 46	24	. 06	7	1.03	. 01	. 31	1	2
Cat IL 7,50K	1	29	22	93	. 1	21	11	217	4.23	97	5	\% 0	17	10	1	4	2	19	. 05	. 031	48	14	. 25	29	. 03	24	. 41	. 01	. 30	1	1
Cat IL 7 7 +00 ${ }^{\text {a }}$	1	32	15	91	. 1	35	13	288	3.42	21	5	M ${ }^{\text {d }}$	16	28	,	2	2	15	. 10	. 016	34	19	. 61	32	. 02	2	1.12	. 01	. 23	1	3
CAS IL 6+501	1	2 O	12	71	.1	32	13	303	3.23	18	5	HD	11	11	1	2	4	15	. 07	.038	33	17	. 19	30	. 02	2	. 91	. 01	. 21	1	1
CAI KL 6+004	1	24	12	69	. 4	29	10	221	2.13	16	5	K0	\dagger	14	,	2	2	13	. 11	. 029	34	13	. 39	40	. 02	3	. 71	. 01	. 16	1	1
CAI IL 5,504	1	32	21	84	. 9	31	If	197	4.50	22	5	$N \mathrm{~N}$	15	10	1	2	2	21	. 05	. 032	47	21	. 39	35	. 03	4	1.34	. 01	. 22	1	1

EKYLARK REGOURCES FROJECT-FIFESTEEL/GRUBSTAIKE FILE H E7-3214

SARPLE

Cat il 5100\%	1	20	17	44	. 1	22	1	122	2.73	10	3	ND	9	1	1	2	2	12	. 03	. 037	20	11	. 24	16	. 03	3	. 62	. 01	. 09	I	7
CAE JL 4775M SILJ	1	31	23	124	. 2	50	15	401	J. 91	15	5	no	14	24	1	2	2	13	. 32	. 034	J1.	23	. 53	50	.03	3	1.08	. 01	. 19	1	4
Cal IL 9450H	1	20	14	80	. 2	22	\dagger	215	3.10	17	5	no	1	15	1	2	2	19	. 16	. 021	26	18	. 47	39	. 06	2	. 91	. 01	. 25	1	185
CAR BL \$100\%	1	13	II	42	. 6	12	5	15	2.07	5	5	HO	1	15	1	2	2	22	. 15	. 016	21	10	. 21	32	. 05	2	. 55	. 01	. 15	1	1
Cat IL 3450\%	1	17	11	73	. 2	19	8	158	3.71	9	5	KD	1	10	1	2	2	32	. 01	. 032	21	21	. 10	34	. 01	6	1.05	. 01	. 17	1	1
Cal ill 3 300 y	1	11	15	16	. 1	22	10	180	3.94	11	5	N0	9	15	I	2	2	32	. 14	. 022	23	24	. 50	34	. 01	2	1.14	. 01	. 13	1	2
Cas DL 2470K	1	22	13	87	. 3	23	1	138	4.10	1	5	HD	1	-	1	2	2	34	. 04	. 029	29	21	. 34	24	. 08	2	1.04	. 01	. 13	1	5
CAI IL 2 250M	1	31	21	113	. 1	40	14	24*	3.06	17	5	N0	18	1	1	2	2	19	. 05	. 046	13	20	. 51	31	. 02	7	1.17	. 01	. 13	1	1
Ca3 IL 2400\%	1	31	29	120	. 2	42	14	554	4.94	14	5	ND	10	11	1	2	2	18	. 13	. 050	40	22	. 62	4	. 03	5	1.20	. 01	. 15	1	1
Cal IL 1+50\%	1	39	34	110	. 1	13	14	210	5.14	17	5	H0	17	1	1	2	5	17	. 07	. 050	31	21	. 59	21	. 02	6	1.11	. 01	. 14	1	2
Cal IL $1+50 \mathrm{M}$ SLL	1	42	26	117	. 2	52	17	354	4.48	20	5	KD	19	13	1	2	2	13	. 11	. 053	45	18	. 54	28	. 02	5	. 12	. 01	.14	1	2
CAE IL PMOM	1	21	24	85	. 1	29	10	226	4.27	18	5	N0	12	1	1	2	2	22	. 03	. 071	35	14	. 30	21	. 02	2	. 92	. 01	. 09	1	1
Cal IL OH50M	1	33	3I	18	. 2	34	12	179	1.02	11	5	kD	17	1	1	2	3	21	. 01	.093	39	22	. 42	17	. 03	2	1.04	. 01	. 09	1	5
CAB EL 0400	1	22	26	90	. 1	25	9	173	3.26	21	5	HD	11	1	1	2	2	20	. 12	. 027	29	23	. 6	36	. 07	2	1.31	. 01	. 22	1	1
CaE IL OH50E	1	20	30	6	.2	21	9	191	2.94	15	5	KD	1	1	1	2	2	19	. 08	. 019	36	22	. 63	24	. 07	2	1.19	. 01	. 22	1	5
Cas RL l 1000	1	22	19	81	. 1	25	1	170	3.12	12	5	no	10	7	I	2	2	19	. 01	. 015	31	22	. 45	21	. 01	7	1.26	. 01	. 19	1	2
Cal IL 1+50E	1	17	26	4	.1	18	6	J1]	3.22	14	5	HD	10	6	1	2	2	23	. 05	. 013	33	21	.53	21	. 06	J0	1.24	. 01	. 15	1	3
CAI R $2+00 \mathrm{E}$	1	20	22	11	. 1	24	-	143	3.13	16	5	ND	9	9	1	2	2	20	. 09	. 020	33	21	. 44	34	. 06	3	1.71	. 01	. 19	1	1
Cat IL 2 450E	1	24	24	15	. 2	24	11	274	3.52	11	5	NO	9	19	1	2	2	21	. 27	. 030	31	25	. 74	54	. 06	2	1.51	. 01	.23	1	I
CAI BL 24SOE SILI	1	11	14	4	. 1	16	4	170	2.04	3	5	no	10	10	1	2	2	11	. 18	. 035	29	14	. 44	25	. 04	2	. 79	. 01	.13	1	2
CAE BL 3400E	1	16	14	57	. 1	19	7	145	2.15	1	5	KO	10	10	1	2	2	17	. 15	. 025	29	22	. 71	34	. 06	2	1.21	. 01	. 23	1	1
CAI IL 3*SOE	1	35	23	33	. 3	31	9	132	3.25	2	5	HD	11	11	1	2	2	18	. 18	. 080	40	21	. 62	32	. 03	2	1.34	. 01	. 15	1	2
CaI $313+60 E$	1	35	16	61	.1	42	14	252	4.01	4	5	kD	20	11	1	2	2	14	.13	. 039	18	10	. 60	24	. 02	2	1.01	. 01	. 12	1	1
Cas EL 1400E	1	32	23	80	. 1	29	10	129	4.42	6	5	ND	15	11	1	2	2	19	. 12	. 025	4	21	. 70	31	. 02	13	1.53	. 01	. 12	】	2
CAE IL 4450E	1	31	17.	17	. 1	32	11	169	3.95	2	5	no	11	10	I	2	2	11	. 19	. 054	41	24	.11	25	. 04	12	1.33	. 01	. 19	1	2
CAD PL 4450E SILT	I	41	46	22	. 1	45	28	2317	52.52	161	5	ND	11	58	1	1	2	1	. 11	. 034	30	5	. 13	170	. 01	2	. 69	. 01	. 08	1	3
CAI IL 5400E	1	13	58	122	1.2	11	9	291	3.80	187	5	HD	16	1	1	5	2	10	. 14	.043	34	12	. 41	23	. 04	2	. 65	. 01	. 22	1	11
CAI IL 6100 E	1	14	15	55	. 5	16	6	9	2.44	8	5	kD	8	4	1	2	2	15	. 03	. 015	24	19	. 51	23	. 05	2	1.05	. 01	. 15	1	6
CAL IL $6+50 \mathrm{E}$	1	22	30	94	. 5	26	13	324	3.58	11	5	KD	10	12	1	2	2	23	. 20	. 049	32	25	. 61	65	. 06	2	1.58	. 01	. 25	1	1
CAE IL $7+00 E$	1	21	21	11	. 1	23	10	357	2.74	6	5	KD	1	10	1	2	2	18	. 16	.034	33	22	. 12	41	. 05	7	1.33	. 01	. 21	1	1
CAI DL 7450E	1	20	18	6	. 1	24	1	248	3.28	4	5	ND	9	16	1	2	2	17	. 24	. 052	35	23	. 71	16	. 05	15	1.34	. 01	. 19	2	3
CAS IL. 7150E SILI	1	11	19	43	. 1	30	11	457	2.74	6	5	\% ${ }^{\text {d }}$	7	14	1	2	2	12	. 25	. 052	27	14	. 41	33	. 03	1	. 11	. 01	.11	1	1
CA) LL (toog	1	30	22	${ }^{13}$. 1	18	8	150	2.47	14	5	ND	14	1	1	2	2	12	. 07	. 040	30	15	. 13	27	. 04	15	. 16	. 01	. 18	1	1
CAB IL ITSOE	1	6	19	21	. 1	4	2	50	1.63	2	5	HD	B	6	1	2	2	16	. 03	.013	28	10	. 22	23	. 03	3	. 78	. 01	. 05	1	1
CAD BL 9+00E	1	20	14	49	. 1	12	5	111	2.42	-	5	ND	\dagger	3	1	2	2	13	. 06	. 013	22	15	. 42	20	. 05	2	. 16	. 01	. 11	2	1
CAI Dit 9 50E	1	12	23	70		11	1		2.82	9	5	ND	11	10	I	2	2	17	18	036	30	19	. 62	50	. 06	2	1.19	. 01	. 23	2	

BKYLARK REGOURCES FROJECT-FIRESTEEL/GKUHSTAKE FILE H7-3214

sartict

Cal il 10000	I	11	14	53	. 1	12	6	119	2.21	9	5	MD	5	11	1	2	5	14	. 18	.023	22	15	. 41	33	. 06	2	. 15	. 01	. 13	1
CAE JL IOH00E SILT	1	22	11	17	. 1	23	10	316	2.93	1	5	HD	7	16	1	2	2	16	. 29	. 050	35	17	. 62	42	. 06	2	1.18	. 01	. 17	1
Cal ML 10,50E SLLJ	1	14	12	45	. 1	13	7	18S	1.03	5	5	ND	8	7	,	2	4	11	. 13	. 029	22	10	. 31	19	. 04	t	. 63	. 01	. 09	1
cas it 1100E	2	22	17	71	. 1	26	13	455	3.46	5	5	NO	12	9	1	2	3	17	. 12	.033	23	24	. 76	34	. 03	1	1.18	. 01	.1)	1
CAI 81 11+50E	1	22	20	12	. 1	21	12	311	3.43	10	5	KD	9	10	1	2	2	16	. 17	. 065	29	15	. 5%	32	. 06	2	1.01	. 01	. 11	1
Cal al 12+00E	1	21	17	81	. 1	29	14	261	3.14	- 6	5	ND	16	6	1	3	2	18	. 06	. 039	33	23	. 76	25	. 04	2	1.21	. 01	. 13	1
CAI il 12t35E SlL	1	23	11	75	. 1	31	10	252	2.99	1	5	HD	12	7	1	2	2	12	. 13	.031	24	17	. 43	20	. 03	1	. 19	. 01	. 12	1
Cal IL 12,50E	1	20	15	71	. 1	25	1	221	2.05	2	5	HD	7	21	I	2	2	16	. 21	. 044	41	22	. 12	43	. 03	2	1.32	. 01	. 09	1
CAB IL. 13400E	1	14	24	81	. 3	21	10	171	3.01	1	5	HD	7	22	,	2	2	25	. 14	.026	28	22	. 64	12	. 07	3	1.11	. 01	. 20	1
CAB 3L 13,50E -	1	14	11	50	. 1	17	12	430	2.90	1	5	ND	1	,	1	2	2	21	. 12	. 026	31	11	. 58	55	. 05	2	1.46	. 01	.13	1
CAS IL 14,00E	1	15	20	74	. 2	23	7	166	2.43	5	5	ND		19	1	2	3	20	. 23	. 024	36	19	. 54	107	. 04	2	1.41	. 01	. 13	1
CAB L1400S 1450E	I	19	21	11	. 2	14	6	147	3.77	11	5	HO	1	3	1	3	2	23	. 08	. 046	23	24	. 62	45	. 09	2	1.65	. 01	. 31	1
CAI 11400S 2400E	1	20	19	60	. 4	17	4	124	2.56	11	5	ND	1	8	1	2	2	25	. 04	. 043	29	21	. 53	57	. 07	2	3.31	. 01	. 25	1
CAB Lls005 2450E	2	16	9	5%	. 2	16	1	171	2.18	6	5	NO	1	47	1	2	2	21	. 47	. 050	30	20	. 51	62	. 07	3	1.15	. 01	. 24	1
CAL LItoos 3400E	2	19	18	49	. 1	24	13	319	3.43	1	5	ND	10	20	1	2	2	30	. 20	. 019	33	30	. 81	4	. 15	3	1.00	. 01	. 36	1
CAI Lf4005 J+35E SILT	1	10	17	137	. 3	45	13	323	3.16	12	5	ND	10	47	1	2	2	20	. 62	.073	73	24	. 73	89	. 10	2	1.42	. 01	. 46	1
CAB Li+00S 3+60E SILT	4	51	19	140	. 9	31	13	072	3.10	12	5	ND	1	43	,	2	2	18	. 13	. 072	78	21	. 58	72	. 05	2	1.52	. 01	. 28	1
CAL $21+005$ 4+00E	2	21	11	130	. 6	35	12	SBI	4.60	15	5	KD	7	59	1	2	2	25	. 11	. 0650	62	25	. 71	105	. 10	3	1.11	. 01	. 36	,
CAI L14005 4450E	1	25	14	103	. 2	24	1	237	J.01	9	5	HD	7	33	1	2	2	20	. 51	. 080	40	20	. 70	11	. 10	2	1.35	. 01	. 35	1
CAI L1,005 S100E	1	-	11	47	. 1	10	4	17	2.04	1	5	K0	1	1	1	2	2	25	. 05	. 023	23	12	. 21	31	. 06	5	. 10	. 01	. 12	1
Cat L1+005 5450E	1	22	17	139	. 7	46	10	315	2.69	1	5	MD	2	42	1	2	2	18	. 53	. 061	31	20	. 60	79	. 06	2	1.41	. 01	. 25	,
[A] $2+2+00514000$	J	20	15	72	. 1	21	1	145	4.25	10	5	HD	11	4	1	2	2	24	. 01	. 023	24	24	. 61	42	. 10	2	1.48	. 01	. 30	1
CAI L2-00S 1+50E	1	7	15	45	. 3	9	5	82	3.00	6	5	No	7	1	1	2	2	32	. 02	. 031	27	18	. 34	26	. 15	2	1.13	. 01	. 17	1
[A] $12+0052400 E$	J	4	1	30	. 1	6	2	10	.13	3	5	ND	1	6	1	2	2	14	. 04	. 014	28	9	. 21	39	. 05	3	. 69	. 01	. 11	1
CAE L2,00S 3-00E	2	14	15	48	. 2	17	1	128	2.51	1	5	ND	7	16	1	2	2	21	. 18	. 010	26	25	. 71	56	. 13	2	1.57	. 01	. 31	1
CAI L2400S 3+50E SILI	2	30	22	108	. 3	21	11	462	3.25	12	5	HD	9	26	1	2	2	20	. 44	. 040	51	21	. 70	41	. 08	,	1.49	. 01	. 36	I
Cal 12 2005 4100E SILT	2	17 .	13	93	. 2	31	13	1341	3.07	20	5	ND	5	45	I	2	2	17	. 70	. 068	47	17	. 55	10	. 07	1	1.19	. 01	. 25	1
[al $12+005$ 4*50E	1	25	13	79	. 1	23	12	313	3.25	10	5	ND	12	10	1	2	2	21	. 18	.053	32	20	. 70	42	. 10	3	1.30	. 01	. 36	
Cal 121005 5+50E	2	6	1	32	. 2	7	3	67	1.36	7	5	HO	1	5	1	2	2	19	. 03	. 024	22	10	. 11	32	. 03	2	. 67	. 01	. 11	1
CAI L2+00S 6+00E	1	6	10	21	. 2	7	3	57	1.21	5	5	NO	4	6	1	2	2	30	. 02	. 017	31	t	. 11	21	. 06	J	. 62	. 01	. 07	1
Cat 11+00E 1+505	I	16	12	55	. 1	15	6	102	3.83	8	5	HD	10	3	1	2	2	27	. 01	.028	27	17	. 37	31	. 10	2	1.03	. 01	. 18	1
CAB L6400E O+50M	1	11	16	63	. 1	17	6	116	2.74	13	5	no	1	1	1	2	2	22	. 04	. 017	32	15	. 46	21	. 05	5	. 11	. 01	. 13	1
CAB L6+00E 0+00	1	28	29	101	. 3	21	22	415	3.47	13	5	MD	15	14	,	2	2	21	. 15	. 019	32	2J	. 11	50	. 04	3	1.67	. 01	. 18	1
CAD L6+00E 06505	1	16	19	44	. 1	19	12	254	3.00	16	5	HO	7	13	1	2	2	23	. 16	. 030	36	19	. 65	51	. 07	2	1.41	. 01	. 22	1
CA] L6400E O+505A ${ }^{-}$	1	43	27	140	. 3	54	14	353	4.01	12	5	No	15	30	1	2	2	26	. 42	. 044	108	29	1.00	91	.14	2	1.94	. 01	. 58	1
CAI L6400E 14005	!	2	15	25	. 4	J	2	41	1.01	4	5	ND	2	7	1	2	2	20	. 04	. 012	26	6	. 13	37	. 03	2	. 67	. 01	. 05	I

BKYLARK REBOLRCEG FRUJECT-FIREGTEEL/GKLBSTAKE FILE * 87-3214
sanple

R-2101	1	3	31	1	. 4	2	1	51	. 34	2	5	kD	1	3	1	2	5	1	. 16	. 001	2	2	. 01	3	. 01	2	. 01	. 01	. 02	1	3
8-2102	1	1	16	1	. 5	1	1	71	. 11	4	5	NO	1	6	1	2	1	1	. 09	. 002	2	3	. 04	11	. 01	20	. 15	. 02	. 05	1	1
R-2103	3	7	22	1	. 3	4	1	147	. 54	2	5	HD	1	2	1	2	6	1	. 02	. 001	2	3	. 01	7	. 01	1	. 07	. 01	. 06	,	,
-2104	1	35	40	27	. 1	31	10	270	1.95	3	5	10	1	11	1	2	!	6	. 19	. 008	17	10	. 39	15	. 02	1	. 53	. 02	. 15	1	${ }^{3}$
R-2105	18	16	36	17	1.7	11	1	6	1.57	12	5	ND	4	1	1	3	3	1	. 01	. 004	10	1	. 01	1	. 01	4	. 15	. 01	.13	1	2
R-2106	31	13	11	1	. 6	14	5	67	1.55	14	5	KD	3	1	I	3	1	2	. 01	. 005	1	1	. 02	10	. 01	2	. 15	. 01	. 12	1	11
R-2107	7	7	55	53	. 1	5	1	111	1.01	75	5	kD	1	4	1	2	1	1	. 01	. 001	2	5	. 02	3	. 01	2	. 05	. 01	. 04	1	10
R-2101	2	20	131	455	17.9	17	1	311	2.26	4516	5	NO	5	41	3	57	2.	2	. 50	. 001	12	3	. 25	1	. 01	2	. 16	. 01	. 14	1	110
R-2109	2	20	131	744	. 9	14	11	71	1.65	219	5	ND	1	1	4	5	$3{ }^{\circ}$	1	. 01	. 001	2	3	. 01	1	. 01	2	. 01	. 01	. 02	1	13
R-2110	2	11	416	457	5.1	4	2	79	. 17	711	5	no	1	1	4	10	6	1	. 01	. 001	2	3	. 01	1	. 01	2	. 02	. 01	. 02	1	13
R-2111	10	21	435	211	19.0	10	5	73	2.02	1412	5	KD	1	2	1	16	37	1	. 01	. 001	3	4	. 01	11	. 01	2	. 01	. 01	. 08	1	210
R-2112	1	10	105	B0	2.7	!	5	50	3.46	1232	5	Mo	3	5	1	27	1	1	. 02	. 003	1	2	. 02	$!$. 01	2	. 11	. 01	. 04	1	127
R-2113	1	31	37	114	3.5	22)	1	756	2.12	510	5	NO	6	3	1	10	2	3	. 01	. 011	12	1	. 21	13	. 01	3	. 21	. 01	. 11	1	25
R-2114	1	11	16	42	2.1	1	J	190	1.51	2152	5	H0	1	3	1	20	2	2	. 01	. 001	15	3	. 03	24	. 01	2	. 16	. 03	. 13	1	230
R-2115	1	7	15	11	1.1	6	3	103	2.30	2103	5	N0	4	2	1	11	2	2	. 01	. 003	9	4	. 02	24	. 01	1	. 11	. 01	. 14	I	125
8-2116	41	26	111	44	30.0	4	3	157	1.17	51	5	ND	3	-	1	2	44	1	. 11	. 021	10	2	. 05	10	. 01	2	. 15	. 01	. 13	1	22
R-2117	2	10	1751	21	44.4	4	1	94	. 41	78	5	KD	1	1	1	10	153	1	. 01	. 001	2	3	. 01	6	. 01	2	. 01	. 01	. 01	1	11
k-2111	2	12	13	46	. 1	27	10	281	2.32	25	5	N0	14	15	1	2	3	12	. 19	. 027	26	19	. 54	41	. 05	26	.11	. 02	. 65	1	
1-2117	1	12	41	41	3.2	11	5	217	5.11	450	5	HO	1	12	1	23	2	,	. 11	. 005	11	4	. 04	13	. 01	2	. 16	. 01	. 13	1	4
R-2120	1	46	71	29	3.1	11	7	170	2.02	1	5	ND	4	5	1	2	13	3	. 01	. 010	10	5	. 20	13	. 01	3	. 21	. 01	. 18	1	3
k-2121	1	1	47	40	1.4	17	12	11	2.41	20	5	kD	3	2	1	2	10	1	. 01	. 006	7	5	. 05	1	. 01	2	.13	. 02	. 07	1	2
R-2122	1	10	106	54	1.7	19	10	103	3.01	15	5	ND	1	17	1	2	7	1	. 24	. 015	\%	4	. 20	1	. 01	7	. 29	. 03	. 06	1	1
R-2123	1	31	1335	51	22.4	46	46	211	19.58	75	5	N0	7	6	1	2	34	5	. 01	. 010	7	7	. 11	15	. 01	2	. 21	. 02	. 11	2	11
f-2124	1	14	78	11	1.0	27	42		16.40	90	5	N0	,	7	1	2	2	3	. 01	. 006	5	5	. 05	9	. 01	2	. 02	. 06	. 07	1	2
R-2125	1	26	3 J	25	. 3	21	10	514	3.25	10	5	ND	5	20	1	2	2	3	. 21	. 019	1	b	. 36	23	. 01	2	. 11	. 03	. 17	1	I
R-2124	2	51	10	1	. 2	14	1	105	2.04	5	5	10	3	I	1	3	2	1	. 01	. 004	3	2	. 01	2	. 01	13	. 01	. 01	. 03	1	2
R-212]	2	7	220	714	1.6	11	1	510	2.17	4259	5	HD	5	$5 \underline{5}$	4	41	3	2	. 75	. 001	10	4	: 21	29	. 01	2	. 17	. 01	. 12	1	390

ACME ANALYTICAL LABORATORIES - 852 East Hastings Street, Vancouver, B.C. V6A 1R6
Appendix 2 - Assay Results CABIN claim group

GKYLAFK REEOURCEG FFOJECT-FIREBTEEL/GRUBSTAKE FILE \# E7-3214

SAMRLE	$\begin{gathered} \mathrm{MO} \\ \mathrm{PPM} \end{gathered}$	$\begin{array}{r} \text { CU } \\ \text { PPM } \end{array}$	$\begin{gathered} \text { PI } \\ \text { PPR } \end{gathered}$	$\begin{gathered} \text { IN } \\ \mathbf{P P K} \end{gathered}$	$\begin{gathered} 46 \\ \text { PPM } \end{gathered}$	$\begin{gathered} \text { M! } \\ \text { PPK } \end{gathered}$	$\begin{gathered} \text { CO } \\ \text { PRK } \end{gathered}$	$\begin{gathered} \text { NK } \\ P \cdot K \end{gathered}$	$\begin{gathered} \mathbf{F E} \\ \mathbf{Z} \end{gathered}$	$\begin{gathered} \text { AS } \\ \text { PRH } \end{gathered}$	$\underset{\text { U }}{\substack{\text { U }}}$	$\begin{gathered} \text { AU } \\ \text { PPK } \end{gathered}$	$\begin{array}{r} \text { IH } \\ \text { PP } \end{array}$	$\begin{gathered} \text { SR } \\ \text { PPK } \end{gathered}$	$\begin{gathered} \text { CD } \\ \text { PRA } \end{gathered}$	$\begin{array}{c\|} \text { S! } \\ \hline \end{array}$	$\begin{gathered} 11 \\ \text { PRK } \end{gathered}$	$\begin{array}{r} Y \\ P P M \end{array}$	$\begin{gathered} \text { CA } \\ \mathbf{I} \end{gathered}$	$\begin{aligned} & p \\ & I \end{aligned}$	$\begin{aligned} & \text { La } \\ & \text { MPH } \end{aligned}$	$\begin{gathered} C R \\ P P M \end{gathered}$	$\begin{gathered} \text { HIS } \\ Z \end{gathered}$	$\operatorname{lin}_{\text {PR }}$	$\begin{array}{r} 11 \\ 2 \end{array}$	PR	$\begin{gathered} A t \\ 2 \end{gathered}$	$\begin{gathered} \text { MA } \\ 2 \end{gathered}$	$\begin{aligned} & k \\ & \mathbf{I} \end{aligned}$	$\underset{f}{X}$	$\begin{aligned} & \text { AUt } \\ & \text { PH! } \end{aligned}$
R-2128	2	19	3044	149	24.3	1	1	90	1.26	611	5	H0	1	J	6	41	45	1	. 01	. 001	2	3	. 01	2	. 01	9	. 02	. 01	. 01	1	31
R-2129	1	120	41	43	. 3	10	1	611	13.64	16	5	HD	1	3	1	9	2	2	. 01	. 017	7	3	. 04	17	. 01	22	. 04	. 01	. 01	2	1
R-2130	1	30	4	72	. 7	9	5	248	1.64	48	5	ND	5	34	1	2	2	2	. 53	. 016	14	J	. 11	26	. 01	2	. 11	. 01	. 16	1	5
n-213!	4	15	20	8	. 2	4	2	14	2.48	10	5	10	4	1	1	2	2	5	. 01	. 017	5	7	. 07	11	. 02	2	. 24	. 01	. 19	1	2
R-2132	20	103	35	15	. 1	1	6		13.14	2	5	N0	1	3	1	2	2	13	. 01	. 018	7	6	. 04	97	. 12	2	. 31	. 02	. 31	2	25
$\mathrm{R}-2133$	1	50	1355	43	11.6	3	2	171	2.6	151	5	NO	3	1	1	25	2	I	. 01	. 013	1	3	. 01	11	. 01	1	. 10	. 01	. 06	1	51
$\mathrm{n}-2$ [34	2	10	313	367	1.0	5	1	1453	J.04	40	5	ND	3	1	2	10	2	1	. 02	. 007	10	1	. 01	23	. 01	5	. 13	. 01	. 01	1	3
R-2135	2	30	1630	134	3.6	7	6	1371	2.35	23.	5	HD	2	1	1	1	2	1	. 03	. 010	10	3	. 02	21	. 01	17	. 12	. 01	. 01		3
l-213	1	5	$3 H$	97	1.0	3	1	449	1.07	23°	5	N0	1	1	1	2	2	1	. 01	. 007	1	3	. 01	14	. 01	4	. 08	. 01	. 01	1	1
R-213]	I	4	17	59	. 1	3	1	114	1.10	28	5	HD		1	1	1	2	1	. 01	. 003	2	,	. 01	1	. 01	11	. 04	. 01	. 03	1	1
R-215	J	-	213	22	6.7	3	1	${ }^{4}$	1.29	2	5	ND	,	,	,	1	36	1	. 01	. 008	6	3	. 01	14	. 01	5	. 12	. 01	. 05	1	1
(1-2139 -	1	19	615	141	1.4	3	2	511	1.19	139	5	ND	2	1	1	1	2	2	. 01	. 010	12	5	. 01	23	. 01	6	. 16	. 01	. 11	1	1
l-2140	1	11	4472	118	4.9	1	1	113	1.03	1511	5	ND	1	,	,	53	5	1	. 01	. 007	3	2	. 01	4	. 01	4	. 04	. 01	. 01	1	12
R-2141	1	44	057	flis	15.1	4	0	128	19.05	1424	5	kD	1	7	6	II6	5	3	. 01	. 018	2	9	. 01	41	. 01	1	. 01	. 01	. 03	5	165
R-2142	2	29	462	791	1.1	5	2	217	4.24	556	5	ND	1	1	1	127	2	1	. 01	. 020	4	3	. 01	1	. 01	2	. 06	. 01	. 04	2	106
R-2143	,	17	304	105	6.1	4	2	93	2.67	1420	5	no	1	3	9	40	2	1	. 01	. 002	2	1	. 01	20	. 01	2	. 02	. 01	. 03	1	215
n-2144	1	11	906	113	3.1	3	2	190	. 72	19	5	NO	5	2	1	129	2	2	. 01	. 015	29	1	. 01	30	. 01	5	. 11	. 02	. 13	1	12
n-2145	1	13	399	114	9.9	7	3	739	. 72	41	5	H0	1	1	2	197	2	I	. 01	. 004	2	4	. 01	7	. 01	2	. 02	. 01	. 02	1	11
R-214	3	3	210	176	. 1	1	1	2191	4.58	17	7	Mo	3	5	3	1	2	1	. 01	. 014	12	3	. 01	45	. 01	6	. 10	. 01	. 01	1	1
-							-																								
goar 2129	2	107	102	211	. 2	43	22	740	7.36	21	5	ND	15	19	1	1	2	31	. 16	. 131	52	29	. 11	11	. 14	2	1.33	. 01	. 21	1	1
GOAI SILI 11	1	5	20	47	. 1	1	4	119	1.31	5	5	N0	2	9	1	2	2	11	. 15	.033	14	1	. 20	33	. 02	2	. 50	. 01	. 03	1	1
COAI SILI 12	1	13	50	462	1.1	15	6	275	1.61	\leqslant	5	ND	2	15	2	2	2	12	. 30	.063	45	13	. 35	65	. 04	2	1.09	. 01	. 12	1	2
60AI SILI IS	2	11	41	369	. 6	21	41	4481	2.98	11	5	HD	1	20	10	2	2	14	. 37	. 089	32	11	. 29	120	. 02	1	1.01	. 01	. 11	1	1
GOAT SILI 44	1	12	34	225	. 8	12	5	$1{ }^{\text {d }}$	1.53	2	5	kD	1	17	2	2	2	12	. 36	. 076	31	11	. 33	4	. 03	2	. 90	. 01	. 10	1	,
60AI SILI 15	1	11	46	250	. 7	13	0	770	1.70	7	5	HD	1	17	1	2	2	13	. 30	. 071	33	13	. 34	13	. 03	2	1.00	. 01	. 12	1	1
60al sill ib	1	1	35	161	. 5	12	5	453	1.44	5	5	ND	1	13	2	2	2	11	. 24	. 053	24	11	. 29	70	. 03	1	. 17	. 01	. 09	1	1
60hI SILI 17	1	5	35	147	. 1	9	4	201	1.21	3	5	HD	1	13	1	2	2	12	. 22	. 041	23	11	. 29	74	. 03	2	. 79	. 01	. 10	1	2

Acme Analytical Laboratories - 852 East Hastings Street, Vancouver, B.C. V6A IR6
Appendix 3 Assay Results - GOATS claim group

