GEOCHEMICAL REPORT

STIR, STIRRUP AND SVEN MINERAL CLAIMS "DECK88 GROUP"

92 0 1 CLINTON MINING DIVISION B.C.

51 deg. 06 min. N, 122 deg. 13 min. W

CAZADOR EXPLORATIONS LIMITED

WORK PERFORMED FROM MAY 27th TO JULY 10th, 1988

August 1988

GEOLOGICAL BRANCH ASSESSMENT REPORT

report prepared by: Michael Boyde report supervised and approved by: John Chapman, P.Eng.

Ler	2	1012
130	÷.,	

 $P(f)_i$

M.R. # _____ \$ _____; VANCOUVER, B.C.

TABLE OF CONTENTS

4		
	FILE MO:	SECTION
Summary		1.0
Introduction	• • • • • • • • • • • •	2.0
History	•••••	2.1
Ownership	• • • • • • • • • • • •	2.2
Location		2.3
General Geology and Mineralization		3.0
Geochemistry		4.0
Work Accomplished	•••••	5.0
Conclusions and Recommendations		6.0
Itemized Cost Statement	•••••	7.0
Certificates of Qualification		8.0
References		9.0

LIST OF FIGURES AND TABLES IN TEXT

Figure	1Mineral Claim Title Map
Figure	2Mineral Deposit Camps
Table	1Property Ownership
Table	2Gold-in-Soil Frequency Distribution
Мар	1Location Map

LIST OF APPENDICES AND MAPS AT END OF TEXT

Appendix Appendix Appendix Appendix Map Map	AGeological Description of Rock BAssay Values, June 14, 1988 CAssay Values, July 1, 1988 DAssay Values, July 18, 1988 2Gold and Mercury in Soils 3Antimony, Arsenic in Soils	Sam	ples	
Мар	4Rock Outcrop and Subcrop Sampl	ing	SUB-REC	ORDER VED
			0CT 3	1988

1.0 Summary

This assessment report on the fifty-two unit Deck88 grouping of the Stir (16 units), Stirrup (20 units) and Sven (16 units) mineral record number respectively 2046, 1453, and 2049, of the claims. Clinton Mining Division, is submitted to the British Columbia Energy, Mines and Petroleum Resources in partial Ministry of compliance with the Minerals Act and Regulations, pertaining to application for assessment work credit. The work, consisting of road construction, hand and dozer trenching, soil and rock sampling, geochemical analysis and a minor VLF-EM/Magnetometer surveys, was performed over a 45 day period from the 27th of May to the 10th of July, 1988. The results of the exploration are very promising in that the area appears to hold the potential for an epithermal system that could host a bulk tonnage low grade gold deposit. Also a large zone of highly fractured, pyritic, fine grained rock that carries significant geochemical values in copper and arsenic was uncovered during road construction between Rabbit Creek and Lund Creek - this zone holds promise for its copper (porphyry?) and gold potential.

2.0 Introduction

Messrs. John Chapman, Sven Englund, Bryan Krohn, and Michael Boyde were commissioned from May 27th to July 10th, 1988, by Cazador Explorations Limited, 17710, 104th Avenue, Surrey, British Columbia V3R 1R1 to complete the exploration program on the Deck88 mineral claim group. Work was conducted on the claims on three occasions from May 27th to June 6th, from June 16th to June 22nd, and from July 4th to July 10th, 1988. This report describes the geology of the region, outlines the exploration potential, describes results of the 1988 exploration program and recommendations for further mineral exploration.

2.1 History

Stirrup Creek, once known as the north fork of Watson Bar Creek, is principally known because of historical placer gold production. British Columbia Department of Mines Bulletin No. 28 reports 70,725 grams of production during the period 1916 to 1940, and there is still seasonal placer work being done on the creek.

According to Jenkins (1987) most of the exploration effort focused on the lode gold potential of the area has been directed towards the crown granted mineral claims at the headwaters of Stirrup Creek. H.V. Warren and partners originally staked these claims during 1942. Over a period of years they ground sluiced and trenched to expose bedrock and found many small very narrow veins, some yielding gold assays as high as 1.25 oz/ton (47.5 g/tonne).

Modern exploration work including detailed soil geochemistry and biogeochemistry, trenching and drilling has been done on the Warren et.al. crown grants in past years by Placer Dome, Chevron, and Rio Tinto, and more recently on adjoining claims geological and geochemical reconnaissance work has been done by Brinco and other individual property owners. Additionally, on eight claims (MAD) to the southeast along Watson Bar Creek, much detailed work has been done on similar epithermal gold occurrences in similar host rocks by Utah Mines. In spite of all this work, only small sub-economic amounts of lode gold have been found. The source of the Placer gold in Stirrup Creek has not yet been discovered (Lammle, 1987).

In the summer of 1987, exploration work was performed on the Company's Sven, Stirrup and Stir claims by Mr. Sven Englund and Renegade Mineral Exploration Services Ltd., under the direction of Charles A.R. Lammle P.Eng. The 1987 work program consisted of establishing a grid and collecting more than 600 soil samples for geochemical analysis. The grid consists of flagged line, with minor blazing in the areas of forest cover. A total of 25 kilometers of line was established using compass and belt chain. Also, some time was spent establishing drainage and repairing washouts along the access road.

The pre 1988 work on the Company's Stirrup Creek claims roughly defined a coherent gold-in-soil anomaly trending northeasterly for some 1500 meters (and several smaller anomalies), the direction that might well reflect an underlying fault. Such a fault in this location could host some of the gold mineralization that has contributed to the Stirrup Creek placer gold production, and so the anomaly, although modest in gold concentration (5 ppb to 250 ppb), for the most part is of exploration interest and merits further definition by exploration (Lammle, 1987).

2.2 Ownership

The property consists of 3 claims totalling 52 units (approximately 1,300 hectares) as follows:

CLAIM NAME	NUMBER OF UNITS	RECORD DATE	RECORD NO.	RECORDED OWNER
Stirrup	20	July 14, 1983	1453	Cazador
Stir	16	July 31, 1986	2046	Cazador
Sven	16	Aug. 6, 1986	2049	Cazador

TABLE 1: PROPERTY OWNERSHIP

The Stirrup Claim was optioned from Emmett Horne, the Sven Claim was optioned from John Kruszewski, Brian Krohn, and William Kure and the Stir Claim was optioned from Aurun Mines Ltd.

The Cazador-Horne option agreement, dated August 17, 1987, entitles the Company to acquire all interest in the Stirrup Claim for a \$4,000 cash payment, which has been paid, for a series of 9 annual work expenditure commitments totalling \$69,500 and ending in 1996. Upon completion of the work expenditures and payment of \$75,000 in cash, at any time on or before December 31, 1996, the Company would own

100% interest in the Stirrup Claim subject to a 3% net smelter return royalty payable to Emmett Horne.

The Cazador-Kruszewski/Krohn/Kure option agreement, dated August 17, 1987, entitles the Company to acquire all interest in the Sven Claim for \$1,000 cash payment, which has been paid, for a series of 10 annual work expenditure commitments totalling \$31,600 (\$1,600 completed in 1987) and ending in 1996. Upon completion of the work expenditures and payment of \$50,000 in cash, at any time on or before December 31, 1996, the Company would own 100% interest in the Sven Claim subject to a 2% net smelter return royalty payable to the Vendor Group.

The Cazador-Aurun option agreement, dated October 16, 1987, entitles the Company to acquire all interest in the Stir Claim under identical terms to those presented in the Cazador-Kruszewski/Krohn/Kure option agreement.

In the three option agreements covering the Stirrup, Stir and Sven claims the vendors have the right to "back-in" for up to a maximum of 1/3 participating interest, up to and including the time of feasibility, by paying to the Company 1.15 times all prior costs of the Company plus interest thereon at prime plus 2 percentage points.

2.3 Location

Stirrup Creek is located at latitude 51d 05m 55s north and longitude 122d 12m 32s west, NTS 92 O/1E, in the Clinton Mining Division of British Columbia, or alternatively 45 air kilometers west of Clinton, or alternatively about 30 kilometers southeast of the new epithermal gold mine at Blackdome mountain. The claims are located approximately midway between the headwaters of Stirrup Creek and Watson Bar Creek, and lay at an elevation of 1370 meters to 1900 above sea level. The property is accessible by vehicle meters (recommend 4x4 in wet weather) from the junction of the Big Bar Lake Provincial Park access road and highway 97 approximately 6 kilometers north of Clinton, B.C. The property is accessible by going west to the Big Bar Ferry, 73 kilometers, across the Fraser River, and then along the Lillooet/Big Bar road 9.8 kilometers to the turnoff to Stirrup Creek (to the right). Then 5.6 kilometers to the junction of the upper and lower Stirrup Creek roads. The lower road descends towards Watson Bar Creek and then turns up Stirrup Creek valley, descending to and following the Creek to its headwaters.

3.0 General Geology and Mineralization

The general area is underlain by the Lower Cretaceous Jackass Mountain Group, a sedimentary assemblage of graywacke, argillite, sandstone, siltstone, and occasional conglomerate beds. The regional structure appears to be a monocline with an ENE strike and shallow dips on the order of 10 to 45 degrees to the northwest. The region under study is near strong splays from the Fraser River Fault System. The general area may possibly be part of a regional area of zoned mineralization extending from Bralorne and Gold Bridge. That is, zoned mineralization characterized by the well known Bralorne gold mineralization which is overlapped to the northeast by a broad area containing antimony mineralization, and both of which are in turn overlapped, again to the northeast by a broad area of weak mercury mineralization.

A prospect on Watson Bar Creek, has a large argillic, and silica alteration aureole associated with small intrusive masses and much fracturing, and hence might likely be the surface expression of an unroofed porphyry occurrence.

The headwaters of the Stirrup Creek are largely underlain by Mid Lower Cretaceous Age sedimentary rocks of the Jackass Mountain Group. These are intruded by numerous dikes and sills believed to be Late Cretaceous or Early Tertiary in age. The conglomerate reported to occur in the vicinity of Stirrup Creek contains rounded to subrounded cobbles and boulders of granodiorite, volcanics, chert and quartz in an arenaceous matrix. The stratigraphic position of the Kowalchuk (1973) believed it to overlie conglomerate is uncertain. the greywackes and he thought that the contact was possibly an unconformity. Plutonic rocks mapped in the vicinity of Stirrup Creek are known largely from the work done on the crown grants at the head There Kowalchuk mapped a quartz-feldspar porphyry of the creek. pluton. He reports this pluton has a variable composition and becomes more dioritic, to the west in his study area. To the east the plutonic rocks are not only more acid but also occur primarily as dikes. Warren and Hajek (1973) report that the plutonic rocks approximate guartz diorite in composition and that the scanty evidence suggests the presence of at least two distinct intrusions. Kowalchuk, reports the intrusive in that area has been very altered by koalinization and carbonatization events. Koalinization extends into the sediments along their contact with the intrusive. The intrusive contains disseminated galena, sphalerite and stibnite. Near the sediment-intrusive contact massive stibnite veins occur. Hajek (1973) Warren and report extensive areas of carbonate alteration in the sediments. They imply a relationship between this style of alteration with superimposed silicification to be a permissive environment for gold mineralization.

For an excellent summary of geology and mineralization of this region and specifically the subject mineral claims area refer to the October 15, 1987 unpublished professional report done by Mr. David M. Jenkins, for Cazador Explorations Limited.

4.0 Geochemistry

In order to provide clarity in presenting results of the 1988 geochemical soil survey the values from 1987 have been included for the study area.

The 799 soil samples collected in the 1987 and 1988 programs were taken from ribboned sites on lines established using compass and hip-

chain. Samples were taken from the soils beneath the poorly developed "A" soil horizon, from depths generally in the order of 0.1 meters to 0.2 meters. In places these soils might be properly called "B" horizon and in other places, they might more accurately be described as mixed "B" and "C" horizon soils. A surface volcanic ash layer approximately 0.1 meters thick blankets the study area. The soil samples were placed in individual sample bags and submitted to Acme Analytical Laboratories for gold, arsenic, antimony and mercury analyses (some of the 1987 samples were submitted to Loring Laboraties Ltd. (Horne 1987)).

Analytical technique involved dissolution of .5 gram portion of the minus 80 mesh fraction of the sample digested in hot aqua regia for one hour and then diluted to 10 ml. with water. Arsenic and antimony are detected by hydride generation of volatile elements and analysis by ICP. Mercury is detected by cold vapour AA. Gold is detected by ICP. Reference bulletin, "Acme Assay and Geochemical Analysiseffective: March 1, 1988" (contact Mr. Clarence Leong, Certified B.C. Assayer, (604) 253-3158).

The total number of soil samples with 5 ppb or greater gold is 133 samples (16.6% of the population of 799), of these 11 samples (1.4%) have greater than 100 ppb gold content.

There is a concentration of gold anomalous soils in the vicinity of the northwest corner of the Stirrup claim. This anomalous area, referred to as the Horne anomaly, is shown on Map 2 and Map 4. The other gold anomalous soils lay in two narrow bands, at the central and northern part of the surveyed area, striking approximately 20 degrees east of north. The strongest gold anomaly occurs in the south central region of the Sven Claim (Krohn anomaly); several soil gold values are over 100 ppb and one value in the center of the anomaly is 620 ppb.

Following is an analysis of gold distribution in the 799 soil samples from the Deck88 Grouping:

NUMBER	OF SA	MPLES	PERCE	NTAGE	
<u>1987</u>	1988	TOTAL	1987	1988	TOTAL
517	149	666	64.7	18.6	83.3
36	27	63	4.5	3.4	7.9
32	18	50	4.0	2.3	6.3
8	1	9	1.0	0.1	1.1
7	4	11	0.9	0.5	1.4
600	199	799	75.1	24.9	100.0
	<u>NUMBER</u> <u>1987</u> 517 36 32 8 7 600	NUMBER OF SAI 1987 1988 517 149 36 27 32 18 8 1 7 4 600 199	NUMBEROFSAMPLES19871988TOTAL5171496663627633218508197411600199799	NUMBEROFSAMPLESPERCEN19871988TOTAL198751714966664.73627634.53218504.08191.074110.960019979975.1	NUMBEROFSAMPLESPERCENTAGE19871988TOTAL1987198851714966664.718.63627634.53.43218504.02.38191.00.174110.90.560019979975.124.9

TABLE 2: GOLD-IN-SOILS FREQUENCY DISTRIBUTION

There is a broad soil anomaly covering, and between, the Krohn anomaly and Horne anomaly that has elevated values of gold, mercury and arsenic (see Map 4 in pocket for locations of anomalies). Also, in the area of the Horne anomaly the rock geochemistry from hand trenches and road cuts indicates anomalous arsenic and copper. Rock samples in this area are "rusty" and fresh specimens indicate abundant very fine grained sulfides. Rock in the area consists mainly of greywacke and quartz diorite (reference Appendix A).

5.0 Work Accomplished

Work done on the properties can be classified into three different field exploration programs from May 27th to June 6th, from June 16th to June 22nd, and from July 4th to July 10th, 1988. A brief tabulation of the work accomplished is as follows:

- (A) from May 27th to June 6th

 -hand trenching (16 rock samples)
 -soil sampling (31 soil samples)
 -reconnaissance Mag. survey down main Stirrup Ck. road
 -single line VLF-EM/Mag. survey, Horne geochem. anomaly
 -reconnaissance geology
 -assay results in appendix B
- (B) from June 16th to June 22nd -hand trenching (16 rock samples) -soil sampling (168 soil samples) -est. 7 km of ribboned grid lines (fill-in 1987 grid) -reconnaissance geology -assay results in appendix C
- (C) from July 4th to July 10th -dozer trenching -road construction -timber slashing -cont. chip samples in trenches/road (41 rock samples) -assay results in appendix D

A reconnaissance magnetometer survey was done on June 3rd (between 6:30 pm and 7:30 pm) along the main Stirrup Creek road at 50 meter intervals from Station 56+00NW/56+00NE down-road to the north boundary of the Stirrup Claim line (850 meters, 19 readings). There were no extremely high or extremely low readings as the instrument yielded relative readings between 55020 gammas and 55498 gammas.

On June 5th a straight line with 5 meter ribboned stations was established over hand trenches with mineralized rock on the Horne Anomaly. The line lies immediately below and parallel (330 Deg. Az.) to the road cut rock sample line marked as "1" on Map 4 in the pocket. Magnetometer and VLF-EM readings were taken on this line between 3:35 pm and 3:50 pm. There were no "cross-overs" indicated by the VLF-EM, however the magnetometer did yield some variation. Starting at a point 30 meters southeast of the road's lower switchback (Station 45n) the magnetometer readings (gammas) every five meters (traversing to SE) were: 54526, 54296, 53904, 54582, 54414, 54114, 54882, 53905, 55026, 54367 (Station 00), 54591, 53927, 54051, 53598, 53474, 53983, 53546, 54897, 54522 (Station 45s).

6.0 Conclusions and Recommendations

The trenches at the Krohn anomaly should be resampled taking care not to lose fines. Also these trenches and the surrounding outcrops should be prospected and geologically mapped in detail to try and explain the source of the very high gold-in-soil anomaly.

The hand trenches, outcrops and road cuts in the area of the Horne anomaly suggest proximity to an intrusive, and intrusive contact, that may be mineralized with copper and/or gold. This area warrants detailed prospecting, geological mapping and investigation with Induced Polarization.

7.0 Itemized Cost Statement

	Professional (\$)	Physical
<u> May 27 - June 7, 1988:</u>		
4X4 vehicle	700	
Manpower	2,000	
Geosamples	650	
Material & supplies	300	
Accommodation	60	
Geophysical equip. VLF-EM/MAG.	250	
<u>June 16 - 22nd 1988:</u>		
4X4 vehicle	700	
Manpower	1,590	
Accommodation	30	
Material & supplies	300	
Geosamples	2,300	
<u>July 4 - 10th 1988:</u>		
TD7E dozer		2,700
Manpower	1,875	1,200
Accommodation	30	
Geosamples	750	
Material & supplies	250	250
4X4 vehicle	350	350
Small vehicle	200	
Maps & reports	3,000	
Total 1988 project costs	\$15,335	\$4,500
	=====	=====

8.0 Certificates of Qualification

On the following pages are the Certificates of Qualification for Michael W. Boyde and John A. Chapman, the authors of this report.

Michael W. Boyde

.

- I am a graduate from Western Kings District High School of Nova Scotia, 1986, where I obtained a Diploma.
- I have completed one year of technical school at Sir Sandford Fleming College of Ontario.
- I have worked in the field of Geology for one year in British Columbia.
- I have no interest in the property owned by Cazador Explorations Limited or the company itself.

signature: Michael Boyole

date: dagest 3/

John A. Chapman

- I am a Professional Engineer (Mining) registered in the Province of British Columbia.
- I am a graduate of the Colorado School of Mines (1971) where I obtained a degree of Bachelor of Science (Honors) in Mining Engineering.
- Since graduation I have Worked as an engineer, supervisor, manager and executive within the mineral industry in Western Canada and the Philippines.
- I am the owner of shares of Cazador Explorations Limited and expect to benefit from any activities relating to the company.

signatur

9.0 References

Anon., 1979, Regional Geochemical Survey - 1979, RGS-3, (920) Ministry of Energy Mines & Petroleum Resources, B.C

B.C. Department of Mines Bulletin #28.

B.C. Minister of Mines Annual Report: 1886 p209; 1918 p242; 1919 p176, p178, p188; 1920 p176, p174; 1921 p195; 1923 p168; 1924 p144; 1925 p179; 1926 p190; 1927 p207; 1930 p198, p200; 1932 p155; 1933 p186, p191; 1940 p60, p96; 1938 f70; 1950 p32, p33.

Girling, C.A., Peterson, P.J, and Warren, H.V., 1979, Plants as Indicators of Gold Mineralization at Watson Bar, British Columbia, Canada, Economic Geology, vol. 74, pp 902-907.

Horne, E., 1987, Cazador Explorations Limited Assessment Report.

Jeletsky, J.A. 1976, GSC Paper 67-54, p218.

Jenkins, David, 1987, Unpublished Professional Report.

Knight, J., and McTaggart, K.C., 1986, The Composition of Placer Lode gold from the Fraser River Drainage Area, Southwestern British Columbia, C.I.M.M., vol. 1, no. no.1, pp 21-30.

Kowalchuk, J., 1973, B.C. Dept Mines Assessment Report 4743.

Lammle, Charles, A.R, 1986, Unpublished Geological Report.

Lammle, Charles, A.R, 1987, Cazador Explorations Limited, Assessment Report.

Pollock, T., 1983, B.C Dept Mines Assessment Report 11585.

Pollock, T., 1984, B.C Dept Mines Assessment Report 13019.

Tipper, H.W., 1971, Glacial Geomorphology and Pleistocene History of Central British Columbia, G.S.C. Bull 196, pp 1-89.

Trettin, H.P., 1961, B.C. Dept Mines Bulletin 44, p105.

Warren, H.V., and Hajek, J.H., 1973, An Attempt to Discover a "Carlin-Cortez" Type of Gold Deposit in British Columbia, Western Miner, October 1973, pp 124-134.

Warren, H.V., 1979, Supergene Gold Crystals at Stirrup Creek, B.C., Western Miner, pp 9-14. Warren, H.V., 1982, The Significance of a Discovery of Gold Crystals in Overburden, The Association of Exploration Geochemists, Precious Metals in the Northern Cordillera Volume, pp 45-51.

Warren, H.V., personal files, and personal communication.

Woodsworth, G.J., Pearson, D.E., and Sinclair, A.J., 1977, Metal Distribution Patterns Across the Eastern Flank of the Coast Plutonic Complex, South-Central British Columbia, Econ. Geol. vol. 72, pp 170-183.

APPENDIX A

•

.

.

.

CAZADOR EXPLORATIONS LIMITED STIRRUP CREEK PROJECT, 1988 OUTCROP AND SUBCROP (TRENCHES) SAMPLES

SAMPLE NUMBER REMARKS

- K1-5 Siltstone, tan coloured, oxidized; heavy brown limonite coating, manganese dendrites. Appears to have been deeply weathered, as if unaffected by glacial scouring.
- K3-6 Mudstone, dark gray oxidized, heavy limonite coating non magnetic, could tend to be a graywacke with increased grain size.
- T2-9 Siltstone, tan coloured, oxidized, heavy limonite and some manganese coating.
- JAC S88-13 Graywacke, med gray, limonite coating oxidized, other bags show sulphidized dioritic looking rock which may be graywacke or diorite abundant fine grained sulfides.
- JAC S88-7 Graywacke, gray, limonitic rock is soft and decomposed to rocky soil all pieces are fine. Deeply weathered.
- JAC S88-4 Siltstone, tan coloured, limonite coating, silicified.
- JAC S88-2 Sedimentary rock, oxidized near surface exposure, heavily limonite coated. Appears to be a very fine grained light gray sandstone, or silty sandstone, some pieces appear to have been affected by hydrothermal processes - carbonate - ankeritic.
- JAC S88-1M See JAC S88-1
- T2-5 Mudstone, oxidized and limonitic.
- K1-2 Siltstone, gray oxidized.

- K1-7 Siltstone, gray oxidized.
- JAC S88-9 Siltstone, tan, near surface oxidation features.
- T2-2 Siltstone, gray, near surface oxidation features.
- K3-1 Silty sandstone, gray, near surface oxidation features.
- T2-8 Sandstone fine grained near surface oxidation features.
- JAC S88-11 Oxidized sedimentary rock, decomposing, probably a siltstone or silty sandstone.
- K1-11 Siltstone somewhat harder than usual, gray in colour, possibly weakly silicified.
- K3-4 Siltstone, gray, fresher with limonite. Rock, however, breaks to reveal unweathered faces.
- K3-3 Siltstone, gray, limonitic; some pieces appear to be dolomitic or ankeritic.
- JAC S88-8 Siltstone, gray finely broken near surface oxidation features.
- K3-5 Mudstone, fractures reveal fresh rock surfaces, limonitic.
- JAC S88-10 Siltstone, surface weathering.
- K1-8 Siltstone, gray, some pieces are black, oxidized.
- JAC S88-13 Siltstone, some graywacke, some pieces have the problematical graywacke diorite fabric.
- T2-1 Siltstone, near surface weathering features.

- K1-9 Siltstone, near surface weathering features.
- K1-4 Siltstone, grading to mudstone.
- JAC S88-12 Decomposing sedimentary rock.
- JAC S88-7 Decomposing sedimentary rock.
- JAC 588-6 Siltstone, near surface weathering features.
- T2-9 Siltstone, near surface weathering features.
- T2-3 Siltstone, grading to mudstone.
- K1-6 Sandstone, gray, limonitic, fractured, very fine grained.
- JAC S88-14 Decomposing sedimentary rock, probably a siltstone or very fine grained sandstone.
- T2-6 Siltstone, dark gray, fresh and relatively unweathered.
- K3-6 Siltstone, dark gray, limonitic, fresh surfaces indicate relatively weak oxidation.
- K3-2 Siltstone, near surface weathering features.
- K1-1 Siltstone, dark gray, weathered.
- K1-10 Siltstone, gray near surface weathering features.
- JAC S88-1 Quartz diorite, fresh with abundant pyrite, minor chalcopyrite.

CAZADOR EXPLORATIONS LIMITED STIRRUP CREEK PROJECT SAMPLING PROGRAM, June 2nd to June 6th OUTCROP AND SUBCROP (TRENCHES) SAMPLES

.

.

SAMPLE	LOCATION	SAMPLE TYPE	REMARKS
46+10NW	53+10NE	ROCK	old pit 50m NV of confluence of small stream from west with Stirrup Ck., fault S74/D80s, hornblende quartz diorite, fine grained, moderately magnetic as tested with a pencil magnet, in contact with what appears to be a fault - hybrid hydrothermal calcareous
47+50NW	50+75NE	R\A	Filing, fizzes mildly. hand trench 1* meter did not reach bedrock.
48+00NW	50+75NE	ROCK	hand trench near geoches Au high, very rusty considerable pyrite, 1 meter to bedrock, graywacke, fine grained, lithic-crystal graywacke (xtals are quartz & feldspar), line in a state of the state of t
50+25M	49+50NE	ROCK	hand trench near geochem Au high, may not be bedrock, trench 1 meter deep,
50+50NW	51+00NE	ROCK	rock cutcrop on steep hillside, rusty buff colored, no S/D possible, old workings to
51+50N¥	\$2+25RE	ROCK	hand trench near geochem Au high, rusty rock with pyrite, 0.9 meters to bedrock, gravmacka fing grained radiath brong some lier
53+0088	54+7585	PACY	sad tranch incess 1 estates blocks the set
53+00NW	55+00NE	ROCK	hand trench near geochem Au high, 1.5 meters to bedrock, hybrid rock, possibly faulted zone with quartz feldspar carbonate infilling by
55+90 N W	55+50 TE	ROCK	outcrop in Stirrup Ck west bank, very rusty. fault zone?, guartz carbonate rock probably created by deposition from hydrothermal
56+05N¥	55+55NE	ROCK	fluids migrating along a porous zone in faulted focks. outcrop in Stirrup Ck. west bank (cut by placer winers), some pyrite,
56+75NW	52+50NE	ROCK	hand trench near geochem Au high, 0.8 meters to bedrock, medium to course grained horneblende biotite guartz monzonite, fractures & crystal faces rusty in contact with
57+00W	52+50NE	ROCK	graywacke - snale, the grained dark gray. hand trench mear geochem Au high, 1 meter to bedrock, grawwacke fing grained dark orac
57+0089	\$3+00%E	9007	graywarks, Line grained, dark gray. band tranch, N Sa to badrock, fine grained graywarks, dark gray, pon-lizy.
57+00N¥	54+00NE	ROCK	outcrop? graywacke? medium grained lithic fragments as well as equigranular quarts and feldsbar, looks similar to dirty quarts diorite.
57+35M	52+50RE	ROCK	outcrop? graywacke, dark gray.
59+00NW	52+25#E	ROCK	outcrop just below road, quartz carbonate rock, probably product of hydrothermal fluid deposition (a vein?), brecciated and coated with limonite.
59+00N¥	53+00NE	ROCK	roadcut outcrop, graywacke - detrital rock and stal fragments in a fine grained sediment
59+00NW	54+00NE	ROCK	old adit and shaft at and above road, buff colored rock with pyrite, breccia of silicified limonite coated rock - possibly silicified fault breccia or broken zone near fault.

•

•

APPENDIX B

.

×.

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: JUN 07 1988 852 B. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED:

- 17

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR NG BA TI B W AND LIMITED FOR WA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPN. - SAMPLE TTPE: P1 SOIL P2 ROCK _____AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. HG AWALYSIS BY FLAMLESS AA.

ASSAYER: (..., ASSAYERS CAZADOR EXPLORATION PROJECT-STIR 88 File # 88-1816 Page 1

SAMPLE#		Ag	As	Sb	Au*	Hg
		PPM	PPM	PPM	PPB	PPB
57+50NW	52+50NE	.3	85	5	45	20
57+25NW	52+50NE	.1	53	4	31	10
57+00NW	52+50NE	.1	35	2	25	10
57+00NW	52+25NE	.2	81	2	20	20
56+75NW	52+50NE	.1	32	2	13	20
	5 0 · 5 0 ·			•		10
56+50NW	52+50NE	.1	17	2	9	10
56+25NW	55+25NE	.1	27	3	2	20
56+00NW	55+25NE	.1	59	2	8	30
56+00NW	55+00NE	.1	19	2	102	20
55+75NW	55+25NE	.1	35	2	12	10
53+25NW	55+00NE	.1	72	3	62	30
53+25NW	54+50NE	.1	47	2	6	20
53+00NW	55+00NE	. 1	20	2	3	
53+00NW	54+25NE	.2	57	2	8	30
52+75NW	55+00NE	.1	19	2	2	10
		• -		-		
52+75NW	54+50NE	.1	16	4	1	20
52+25NW	52+75NE	.1	17	2	1	5
52+00NW	52+75NE	.1	13	3	5	5
52+00NW	52+25NE	.1	11	3	360	5
51+75NW	52+75NE	.1	12	3	2	10
.		_		-		
51+50NW	52+25NE	.1	83	2	620	20
51+25NW	51+75NE	.1	7	2	6	5
51+00NW	52+25NE	.1	10	2	7	5
51+00NW	51+75NE	.1	36	4	8	5
50+75NW	51+75NE	.1	24	2	6	10
50+50NW	51+00NE	. 1	92	2	6	60
50+50NW	49+00NE	.1	35	3	4	40
50+25NW	49+50NE	.1	88	6	22	20
48+00NW	50+75NE	.1	122	4	1	10
47+75NW	50+75NE	.1	269	6	1	5
				-	-	_
47+50NW	50+75NE	. 2	11	2	1	10
STD C/AU	J-S	6.9	43	16	52	1300

CAZADOR EXPLORATION PROJECT-STIR 88 FILE # 88-1816

•

.

,

SAMPLES	110 P?#	C1. 798	7b PPN	to PPK	Ag PPK	Wi PPK	Co PPN	X n PPH	- 1e - 1	ks P?H	U Pri	Au PPN	41 299	St ?PM	Cđ PPH	SD P pn	B1 PPH	¥ PPN	Ca A	1	15K Fa	Cr 99%	Kg 1	Ba Ppm	ti 1	8 ??#	31 1	n i	X 1	S Ppn	Au [‡] PP8	HÇ PPR
																							-		-		·	·	·	•••		
59+00#¥ 54+00#E	2	39	2	42	.1	35	16	423	4.03	55	5	WD.	1	22	ì	2	2	62	. (8	. 053	9	29	. 05	61	.01	3	. 65	. 01	.04	1	1	110
59+00NW 53+00NE	1	203	2	42	.1	78	23	437	3.98	17	5	ND	1	71	1	2	2	- 66	1.31	. 880	8	92	1.60	186	.14	5	2.11	.11	.38	1	1	10
59+00MR 52+25 08	1	25	2	10	.1	12	2	445	7.39	20	5	XD	1	196	١	:	:	27	6.70	.009	2	15	2.76	10	.01	12	. 22	. 01	.01	1	1	45
57+00XW 52+50XK	I	128	2	39	.1	78	16	351	5.11	9	5	NÐ	I	159	1	2	2	87	1.98	.076	5	114	1.50	171	.17	1	4.96	.39	.16	i	8	ŝ
56+75W# 52+56##	١	56	5	49	.1	54	13	403	4.12	7	5	ND	2	146	1	2	2	115	1.15	. 068	7	70	2.02	281	.24	4	4.13	.11	1.41	2	19	5
56+05#0 55+55#E	1	4 1	2	45	.1	83	15	349	3.63	2	5	KD	1	ŝ [1	2	- 4	92	. 84	. 062	7	98	2.17	306	.23	5	2.63	. 17	. 88	1	I	20
56+00MW 55+40MX	1	22	2	19	.1	27	3	1075	3.50	43	5	KD	:	864	1	2	2	20	17.32	.004	7	13	7.50	15	.01	2	. 19	.01	. 02	1	1	30
55+90#W 55+50#E	23	388	2	39	.1	- 41	1	244	3.19	3	S	ND	1	?8	1	2	- 4	68	. 80	.071	2	51	1.49	280	. 23	3	Z.09	.15	. 65	I	1	10
53+00WW 55+00ME	1	40	2	24	- i	7	- 4	326	2.25	2	5	WĈ	- 1	29	1	2	3	- 44	.44	.048	10	- 4	. 62	62	. 99	11	. 81	.05	.11	1	1	5
53+00MN 54+25MB	1	49	2	30	.1	5	6	417	2.58	2	5	ND.	2	57	1	2	Z	44	.51	.050	9	6	. 79	65	. 08	9	1.42	. 08	.16	2	1	5
51+50MW 52+2588	1	66	7	54	.1	59	17	508	4.05	4	5	NĐ	1	162	1	,	٩	146	1.39	893	ę	88	1 68	480	16	7	1 88	18	1 46	ì	1	5
58+75EN 49+50EE	i	78	i	39	.1	11	7	418	7.88	79	ŝ	10	;	19	i	;	;	17	.79	067		10	25	77	02	ì	19	64	t A	;	i	370
48+0010 50+75EE	i	78	;	76	1	17	15	377	1.45	19	ŝ	ND.	ī	129	i	ź	;	97	25	644		78	1 30	63	20	ì	7 75		20	1	1	36
11475EN 50475EE	1	778	;	78	;	i	ĩ	114	2 21	55	5	ND.	1	62	i	;	;	17	17	044	10	ç	£1	76	63	1	1 18		. 17	i	1	30
4641000 5341000	ŝ	149	,	38	1	36	13	91#	3.06	22	ŝ	NO	ī	173	i	2	,	56	11.80	635		21	1 07	15	61	;	78	- 01	63	t	1	130
10.1000 JU.1000	•		•	~~	••	50				**			•		•	•	-				•	**	1.45	14		•		. 41	. 4.2		Ľ	100
STD C/AD-E	18	60	37	129	6.8	72	31	1070	4.11	42	14	8	38	49	18	16	24	59.	.47	. 889	41	59	.97	177	.07	32	1.96	. 88	.14	12	470	510

Page :

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

. .

ICP - .500 GRAM SAMPLE IS DIGESTED WITH BAL 3-1-2 ECL-HR03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACE IS PARTIAL FOR MM FE CA P LA CA MG BA TI B W AND LIMITED FOR MA I AND AL. AU DETECTION LIMIT BT ICP IS 3 PPN. - SAMPLE TYPE: HOCK AU* AMALYSIS BT ACID LEACH/AA FROM 10 GH SAMPLE.

R 50+50MW 51+00MB 1 24 2 17 .1 10 3 432 2.12 25 5 MD 1 272 1 2 2 20 5.10 .008 2 10 1.75 20 .01 4 .15 .01 .02 1 11

APPENDIX C

•*

.

JUN 23 1988 DATE RECEIVED: ACME ANALYTICAL LABORATORIES LTD. ACME ANALYTICAL LABORATORIES LTD. DA 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED:

.

GEOCHEMICAL ANALYSIS CERTIFICATE

88

ICP - .500 GRAN SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HE03-H20 AT 95 DEG. C FOR ONE BOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN PE CA P LA CR NG BA TI B W AND LINITED FOR NA K AND AL. AU DETECTION LINIT BY ICP IS 3 PPM. - SAMPLE TYPE: P1-P5 SOIL P6 ROCK _ AU* AMALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. HG AMALYSIS BY FLAMLESS AA.

ASSAYER: CAZADOR EXPLORATIONS PROJECT-STIR 88 File # 88-2203 Page 1

SAMPI	LE #	Ag PPM	AS PPM	Sb PPM	Au*	Hg PPB
		114	110			
56NW	49+50NE	.1	6	2	1	20
56NW	49+00NE	.3	7	2	1	30
56NW	48+50NE	.1	8	Z	1	30
56NW	48+00NE	. 1	14	2	1	20
DONW	4/+50NE	. 2	14	2	Ŧ	40
56NW	47+00NE	.1	7	2	1	20
56NW	46+50NE	.1	2	2	10	20
56NW	46+00NE	. 1	5	4	1	10
56NW	45+50NE	.1	2	3	1	20
56NW	45+00NE	.1	6	2	1	20
56NW	44+50NE	.1	6	2	1	20
56NW	44+00NE	. 1	10	2	1	10
56NW	43+50NE	.1	6	2	2	30
56NW	43+00NE	.3	8	3	1	20
56NW	42+50NE	. 2	5	2	2	20
56NW	42+00NE	.1	4	2	1	20
56NW	41+50NE	.1	8	2	43	20
56NW	41+00NE	.1	2	2	1	140
55NW	49+50NE	.1	6	2	2	30
55NW	49+00NE	.1	6	2	26	30
55NW	48+50NE	.1	3	3	1	50
55NW	48+00NE	. 1	5	2	1	10
55NW	47+50NE	.1	4	2	2	20
55NW	47+00NE	.1	7	3	2	10
55NW	46+50NE	.2	5	2	2	20
55NW	46+00NE	.1	2	2	2	40
55NW	45+50NE	. 1	5	2	1	20
55NW	45+00NE	.1	2	2	110	10
55NW	44+50NE	.1	2	2	1	10
55NW	44+00NE	. 1	4	2	1	20
55NW	43+50NE	.1	5	2	1	20
55NW	43+00NE	. 2	11	2	2	30
55NW	42+50NE	. 1	5	2	1	30
55NW	42+00NE	.1	7	3	1	40
55NW	41+50NE	. 2	5	2	2	50
55NW	41+00NE	. 4	7	3	1	70
STD C	:/AU-S	7.1	41	16	48	1400

CAZADOR EXPLORATIONS PROJECT-STIR 88 FILE # 88-2203 Page 2

SAMPLE#	Ag	As	Sb	Au*	Hg
	PPM	PPM	PPM	PPB	PPB
54NW 49+50NE	.4	3	2	12	30
54NW 49+00NE	.4	5	3	4	20
54NW 48+50NE	.3	4	2	3	20
54NW 48+00NE	.4	6	2	49	20
54NW 47+50NE	.1	10	2	4	10
54NW 47+00NE 54NW 46+50NE 54NW 46+00NE 54NW 45+50NE 54NW 45+00NE	.2 .3 .4 .1 .1	23 12 6 8 7	2 2 3 2	4 6 2 1 3	50 10 100 30 40
54NW 44+50NE 54NW 44+00NE 54NW 43+50NE 54NW 43+00NE 54NW 42+50NE	.1 .1 .2 .3 .2	4 9 7 8	4 2 2 2 2	1 2 1 3 1	30 30 60 50 40
54NW 42+00NE	.3	4	2	1	30
54NW 41+50NE	.1	6	2	2	50
54NW 41+00NE	.4	10	2	2	40
53NW 49+50NE	.1	6	2	1	20
53NW 49+00NE	.1	6	2	1	30
53NW 48+50NE 53NW 48+00NE 53NW 47+50NE 52NW 49+50NE 52NW 49+00NE	.1 .1 .4 .1	28 16 7 48 31	2 2 2 2 2	1 2 1 4 2	110 20 20 50 30
52NW 48+50NE	.2	71	2	11	40
46NW 49+40NE	.1	6	2	1	20
46NW 49+00NE	.1	4	2	11	10
46NW 48+50NE	.1	7	2	1	35
46NW 48+00NE	.1	8	2	1	20
46NW 47+50NE 46NW 47+00NE 46NW 46+50NE 46NW 46+00NE 45NW 49+50NE	.1 .1 .1 .1	5 8 5 6 15	2 2 2 2 2	1 1 2 1 8	20 20 30 20 30
45NW 49+00NE	.4	9	3	1	20
STD C/AU-S	7.1	42	15	51	1300

•'

CAZADOR EXPLORATIONS PROJECT-STIR 88 FILE # 88-2203 Page 3

SAMPLE#	Ag PPM	As PPM	Sb PPM	Au ★ PPB	Hg PPB
45NW 48+50NE	. 1	9	3	2	20
45NW 48+00NE	. 1	à	2	1	20
45NW 47+50NF	3	5	2	3	10
45N9 47+00NE	.0	2	2	1	10
AENW ACLEONE		~ ~	<u>~</u>	1	20
45MW 4075UNE	• 3	**	2	r	20
45NW 46+00NE	.1	5	5	10	10
45NW 45+50NE	.1	7	2	1	30
43NW 48+50NE	.1	4	2	2	20
0 5FN 42	2	26	4	1	40
0.5EN 42		20	т о	1	C - C
0.5EN 43	•2	21	2	1	80
0.5EN 44	.4	178	9	1	70
0.5EN 45	.1	92	3	3	40
0.5EN 46	.1	119	4	1	30
1.5EN 55	.3	18	7	1	40
1.5EN 54	.1	-0	3	1	30
	• •	-		*	00
1.5EN 56	.1	43	2	1	30
1.5EN 57	.3	12	2	4	20
1.5EN 72	.4	29	3	1	20
1.5EN 73	. 1	31	2	1	30
1 SEN 74	1	30	4	2	30
LIJEN /4	• -	30	Ŧ	6.	00
1.5EN 75	.5	32	4	4	20
1.5EN 76	.1	30	5	11	30
2.5EN 74	.1	8	2	1	60
2.5EN 75	.1	9	2	9	10
2.5EN 76	.1	39	3	2	30
	•-		-	-	
2.5EN 84	.2	6	2	1	10
2.5EN 85	.1	8	2	1	20
2.5EN 86	.3	8	2	2	10
2.5EN 87	.3	15	2	2	10
2.5EN 88	.1	17	2	1	10
2 SEN 102	2	11	2	2	4 ∩
3.5EN 102	.5	12	2	<u>د</u>	30
3.3EN 120	4 - L	10	ა ი	3	10
3.3EN 130	• •	10	~	1	20
3.5EN 131	•2	63	2	8	30
3.5EN 132	.1	20	2	6	20
3.5EN 113	.1	17	2	6	10
3.5EN 114	.2	7	2	5	130
STD C/AU-S	7.2	43	16	47	1400

-*

.

S	AMPLE#	Ag PPM	As PPM	SD PPM	Au* PPB	Hg PPB
3 3 3 3	.5EN 115 .5EN 116 .5EN 117 .5EN 118	.1 .1 .2	5 10 22 21	2 3 7 5	1 1 24 1	30 20 140 50
4	.5EN 129	.1	90	5	1	20
4 4 4 1	.5EN 130 .5EN 131 .5EN 132 .5EN 133 .5ES 66	.1 .1 .2 .1 .2	57 94 19 47 7	7 8 4 6 3	13 25 7 1 1	100 50 40 90 30
1 1 1 2 2	.5ES 67 .5ES 68 .5ES 69 .5ES 66 .5ES 67	.2 .1 .1 .1 .1	5 7 15 6 5	2 3 2 4 2	1 1 1 1	60 20 40 20 10
2 0 0 0 0	.5ES 68 .5SE 10 .5SE 11 .5SE 12 .5SE 13	.1 .2 .1 .3 .1	20 4 7 4 5	2 2 5 5 2	1 1 2 1 1	70 10 20 10 10
0 1 1 1 1	.5SE 14 .5SE 30 .5SE 31 .5SE 32 .5SE 33	.3 .3 .1 .1	6 7 3 3 7	2 2 2 4	1 1 2 1 1	20 20 5 10 5
2 2 2 2 2 2	.5SE 50 .5SE 51 .5SE 52 .5SE 53 .5SE 54	.2 .2 .3 .3 .3	94 60 26 38 44	9 4 2 3	1 1 7 1 1	40 30 20 30 110
0 0 0 0	.5WN 11 .5WN 12 .5WN 13 .5WN 14 .5WN 15	.1 .1 .3 .2 .1	22 13 14 19 23	2 2 2 2 2	1 1 7 1	40 20 20 10 50
0 0 5'	.5WN 21 .5WN 22 FD C/AU-S	.1 .7 6.6	9 11 40	2 2 16	1 1 51	10 20 1300

..

CAZADOR EXPLORATIONS PROJECT-STIR 88 FILE # 88-2203 Page 5

.-

SAMPLE#	Ag PPM	As PPM	Sb PPM	Au* PPB	Hg PPB
0.5WN 23	.1	9	2	1	20
0.5WN 24	.1	12	2	1	30
0.5WN 25	.1	12	2	1	20
73NE	.1	13	2	5	30
2.5NE 72	.1	11	2	1	20
2.5NE 73	.1	2	2	9	20
1.5NE 53	. 1	19	2	1	20
1.5NE 1	.1	3	2	1	30
1.5NE 2	.1	4	2	1	30
1.5NE 3	.1	6	3	1	20
1.5NE 4	. 1	2	2	1	30
1.5NE 5	.1	6	2	1	20
1.5NE 6	.1	6	2	1	30
1.5NE 7	. 1	9	2	2	30
1.5NE 8	.1	11	3	1	20
1.5NE 9	.3	35	2	7	30
1.5NE 10	.1	14	2	2	40
1.5NE 11	. 4	18	2	2	50
1.5NE 12	.1	22	2	1	50
1.5NE 13	. 2	74	2	2	210
1.5NE 14	.1	153	10	2	80
1.5NE 15	. 2	39	2	26	30
STD C/AU-S	7.2	39	17	50	1400

CAZADOR EXPLORATIONS PROJECT-STIR 88 FILE # 88-2203

SAP13) ·	16 111	01 195	73 220	14 1911	15 278	81 175	60 2115	يند 1995	Te A	35 191	8 2711	26 295 295	tt 171	22 171	ci ME	42 1711	81 ??W	7 ??E	Ca t	2 1	54 Pek	CT FPN	345 1	34 776	Ti t	1 !?#	1 1	iie L	z ł	# ??#))) }	8g ??8
BLE 13	1	58	11	43	.1	58	17	627	4.53	18	5	静	2	18	1	2	2	103	.39	. 059	18	78	1.58	42	.01	4	2.32	.03	. 08	1	1	38
ALE 23	Ì	32	. 9	- 73	.2	- 55	15	774	3.56	32	5	8	1	20	1	2	1	72	.57	.064	1	- 64	1.35	25	.85	1	2.08	. 62	. 86	1	2	130
818 24	1	38	12	71	.1	38	12	622	4.97	2	5	10	1	- 11	1	2	2	75	1.12	. 455		- 46	2.84	49	.21	5	2.89	.#	.16	1	1	28
als 16	ī	- 51	. II	\$7	.2	- 66	15	458	1.45	2	5		1	6	t	2	2	- 56	1.44	.074	1	- 11	2.14	27	.18	10	3.20	. #2	.6	1	2	30
1.2588 54+258	ì	19	7	31	.1	61	14	441	4.23	2	5	D	1	93	1	2	2	m	.11	. 059	5	72	2.2\$	274	.22	3	3.28	-14	1.60	1	ī	10
1.2588 55+258	1	56	18	42	.1	0	13	545	3.63	5	5		1	a	1	2	2	86	.92	. 055	\$	57	1.69	114	.18	\$	2.73	.10	.24	1	1	20
1.2588 56+258	1	51	S	39	.2	- 54	15	- 447	4.57	21	5	10	1	288	1	2	2	137	.85	.036	5	- 12	2.28	491	.25	2	3.49	.15	1.12	1	1	20
8.5EX 46+25	1	Ĥ	5	56	1.	37	17	-546	2.65	63	5	2	1	145	1	2	2	53	4.14	.061	14	- 16	.16	30	.01	- 1	.37	. #1	.64	1	1	1408
288 27.78	i	234	4	- 11	.1	25	1	1097	3.71	1	5	B	1	225	ĩ	2	2	23	16.03	.013	5	1	1.11	11	.n	5	.15	.11	. #2	2	1	720
369 192	i	116	1	26	.1	18	Í	217	2.53	2	5		\$	65	t	2	2	62	.n	.043	1	28	.67	11	.11	L	1.07	.01	.09	i	1	10
288 55	1	12	11	53	.2	22	11	573	3.04	,	5	B	3	14	1	3	2	55	.19	.048	18	15	.05	21	.01	5	.49	.81	.02	1	1	248
OUT CHOP 1	1	13	- 15	76	.1	329	24	715	4.16	33	5		1	- 12	1	3	2	- 61	3.12	. 052	10	227	1.21	34	.63	- 4	1.45	.11	. 15	1	1	168
GUT CROP CE 5300 46+0408	Ī	1		38	.1	17	÷	391	2.85	5	5	B	1	35	1	2	2	36	1.59	.045	14	15	.66	19	. 81	6	1.04	.83	.11	1	1	50
62PT 48+\$8TE	1	33	5	42	.1	24	1	455	2.85	7	5		1	24	t	2	2	58	.52	.453	14	11	1.15	63	. 85	5	1.50	.4	.11	1	39	28
621W 47+59KE	1	30	1	66	.1	82	13	684	3.99	12	\$		1	39	1	2	4	\$1	. 82	.074	ŧ	58	2.11	183	.13	ŧ	2.53	.К	.29	1	2	10
AGINE 48+SOLES	1	27	13	74	.4	75	14	591	3.71	5	5		1	12	1	2	2	73	.51	.058	7	18	2.12	41	.19	,	2.48	.03	.87	1	t	10
STD C/38-2	17	- SF	39	131	6.6	61	27	1069	3.96	- 10	21	- F	37	- 17	17	17	11	- 56	.45	. 8\$6	39	- 55		174	.06	- 34	1.47	.16	.13	11	135	1360

Page 6

¢.

€. ••.

C

¢

(

-....

x

١.

¢

£

(

(

(

ł,

¢

t

APPENDIX D

.

٠.

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: JULY 12 1988 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED:

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAN SAMPLE IS DIGESTED WITH 3NL 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 NL WITH WATER. THIS LEACH IS PARTIAL FOR NN FE SR CA P LA CR NG BA TI B W AND LINITED FOR NA K AND AL. AU DETECTION LINIT BY ICP IS 3 PPH. - SAMPLE TYPE: ROCK AU* ANALYSIS BY ACID LEACH/RA FROM 10 GN SAMPLE. HG ANALYSIS BY FLAMLESS AA.

CAZADOR EXPLORATION PROJECT-STIR 88 File # 88-2619 Page 1

÷.

۰,

SAMPLE#	Ag	As	Sb	Au*	Hg
	PPM	PPM	PPM	PPB	PPB
JAC 588-1	.2	4	3	2	10
JAC \$88-1M	.3	6	2	3	30
TAC \$99-2		37	Ā	1	260
TAC 500-2	. 2	27	2	1	200
JAC 500-5	• 4	210	2	1	720
JAC 388-4	• 6	210	2	1	120
JAC 588-5	.3	29	2	2	1050
JAC 588-6	.1	19	2	2	280
JAC 588-7	. 2	216	7	1	50
JAC 588-8	.1	54	2	1	20
JAC 588-9	.1	124	7	1	20
JAC \$88-10	.3	80	4	2	60
JAC 588-11	.2	23	2	1	20
JAC S88-12	.1	18	2	2	30
JAC 588-13	. 3	167	6	1	20
JAC \$88-14	.1	229	8	2	60
¥1-1	1	28	2	1	50
x1=2	.1	15	2	1	10
x1_2	1	12	5	2	30
K1-5 V1-4	• •	44	2	1	50
N1-9 V1-6	• 4	172	5	1	200
KI-5	• 1	172		1	200
K1-6	.1	89	2	2	90
K1-7	.1	16	2	1	30
K1-8	. 2	16	2	1	10
K1-9	. 3	29	2	3	50
K1-10	. 3	68	2	2	20
			_		
K1-11	.1	22	2	1	5
K3-1	.1	63	3	2	100
K3-2	.1	78	2	1	90
K3-3	.2	23	2	5	40
КЗ-4	.1	23	2	2	30
3-5	.1	31	2	1	5
K3-6	. 2	74	2	4	70
T2-1	. 1	32	2	2	30
40-j	1	21	2	3	5
14 ⁻ 2 m ⁻ 27		1	-	ົ້	s.
1 - - 3	• 4	<i>د</i> خ	-	-	~
22-4	.1	24	3	1_	10
CTE I, ATHR	7.1	12		315	1000

÷.

,

٠,

SAMPLE [#]	Ag PPM	As PPM	Sb PPM	Au* PPB	Hg PPB
T2-5	. 2	10	2	14	10
T2-6	.1	21	2	3	20
T2-7	.1	5	2	1	10
T2-8	. 1	38	2	1	10
T2-9	.1	53	2	4	90
STD C/AU-R	6.9	40	17	510	1400

.

٠.

ACME -----LYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANGUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-...16

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED SITH 3HL 3-1-7 HCL-HHO3-H20 AT 95 DIG. C FOR OME HOUR AND IS DILOTED TO 18 HL WITH MATER. THIS LEACH IS PARTIAL FOR ME PE SE CA P LA CE MG HA TI B W AND LIMITED FOR MA E AND AL. AD DEVECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: Puls

C

£

(

.

i

JAC 585-18	6	320	6	23	.3	11	15	243	3.22	6	5	SD.	1	₽	1	2	2	89	.85	.065	7	50	.82	55	.13	12	1.30	.08	.01	1
JAC 588-1	33	162	- 4	39	.1	16	3	920	3.37	37	5	36	1	111	1	4	2	5é	9,25	.024	6	28	.÷ā	- 44	.01	8	. 29	.01	.03	1
JAC 525-4	2	63	9	92	.2	127	17	1822	4.09	218	5	I C	2	249	1	2	4	72	4.52	. 063	8	97	1.87	39	.01	5	. 62	.91	.03	1
JAC 583-7	1	343	8	4 0	.2	27	- 14	402	1.17	215	5	10	2	122	1	7	6	107	. 53	.045	1	33	1.45	77	.13	13	2.61	.07	.25	1
JAC 588-12	- {	584	1	26	. 3	21	18	312	4,95	167	5	UC .	1	11:	1	6	н	198	.41	.050	ļ	45	1.30	65	.14	14	2.26	.07	.07	2
R-5	1	52	3	59	.1	58	13	552	4.23	172	5	ED.	2	36	1	5	2	83	.e	.077	10	57	.7:	179	.05	4	1.72	.06	.42	1
£3-£	1	43	£	56	.2	142	15	661	4.21	74	5		3	106	ī	2	2	96	.82	.070	10	145	1.54	380	.09	5	2.73	.15	.41	1
72-9	1	39	7	55	.1	125	14	462	4.00	53	5	5Đ	1	111	ī	2	z	91	1.50	.077	8	135	1.75	105	.10	6	2.87	.17	. 18	1
570 C	17	\$7	36	132	7.1	67	28	1148	4.08	42	16	5	36	17	17	17	22	56	.16	.080	33	57	.91	174	.06	34	1.93	. 06	.13	11

-

Contractor activity of the second

•