greenlake resources 1988 DRILL PROGRAM

ON THE
goLDEN PLUG MINERAL CLAIM
OSOYOOS MINING DIVISION
B.C.

FILNED

8 Y
M.J. VANOE GUCHTE, 8.SC.

VANCOUVER, B.C.
JANUARY 30,1988

GEOLOGICALRRANCH ASSESSMENTREPORT 17,843

TABLE OF CONTENTS

INTRODUGTION PAGE 1
LOCATION AND ACCESS PAGE 1
PROPERTY PAGE 1
HISTORY ANO PREVIOUS WORK PAGE 1
REG!ONAL GEOLOGY PAGE 2
PROPERTY GEOLOGY PAGE $2 \& 3$
SUMMARY PAGE 4
RECOMMENDATIONS PAGE 5
REFERENCES PAGE 6
STATEMENT OF COSTS PAGE 7
STATEMENT OF QUALIFICATIONS PAGE 8
FIGURE LOCATION MAP
APPENDIX
GEOCHEMICAL ANALYTICAL RESULTS
APPENDIX 11
DOH 88-2 DRILL LOG ANO SECTION

INTRODUCTION

DURING JANUARY, 1988 , A DAMOND DRILL PROGRAM WAS CARRIED OUT ON THE GOLDEN PLUG MINERAL CLAIM. THE PRIMARY OBJECTIVE OF THE PROGRAM WAS TO TEST THE SPRINGBROOK FORMATION FOR EPITHERMAL PRECIOUS AND BASE METAL MINERALIZATION.

LOCATION AND ACCESS

THE PROPERTY IS LOCATED ABOUT 16 KM TO THE NORTHMEST OF KEREMEOS, B.C. IN THE IHTERIOR PLATEAU OF SOUTH CENTRAL BRITISH COLUMBIA. THE SMALL SETTLEMENT OF OLALLA LIES ABOUT 7 KM TO THE SOUTHWEST. SPECIFIC COORDINATES WOULD BE 49 OEGREES I8. NORTH LATITUDE; 119 DEGREES 46' UEST LONGITUDE.

ACCESS TO THE PROPERTY IS BY GOOD GRAVEL ROAD WHICH BRANCHES TO THE SOUTH FROM PROVINCIAL HIGHMAY 3 A ABOUT 5 KM NORTH OF OLALLA, B. C. AT A POINT OPPOSITE THE ACCESS ROAD TO THE APEX MOUNTAIN SKI RESORT. THIS GRAVEL ROAD (THE OLD GREEN WOUNTAIN ROAD) CROSSES THE CLAIM ABOUT 3 KM FROM THE HIGHWAY.

PROPERTY

THE PROPERTY COHSISTS OF ONE TWENTY UNIT M.G.S. CLAIM RECORDED IN THE NAME OF G.H. RAYMER AND ASSOCIATES LTD.

HISTORY ANO PREVIOUS WORK
THE WRITER KNOWS OF NO RECORDEO EXPLORATION WORX IN THE AREA PRIOR TO 1977, ALTHOUGH REPORTED EVIDENCE IN POST 1977 REPORTS indicate interest in the area many years ago.

DURING 1977-78, UNION OIL COMPANY OF CANADA LTD., CARRIED OUT INDUGED POLARIZATION SURVEYS, SCINTILLOMETER SURVEYS AND LIMITED GEOLOGICAL WORK. THE AREA WAS THEN KNOWN AS THE TWIN CLAIMS WHICH OVERLAY THE PRESENT GOLDEN PLUG CLAIM AT LEAST IN PART.

LATER, IN JANUARY OF 1985, A SOIL GEOCHEMISTRY SURVEY *AS CARRIED OUT BY G.H. RAYNER OVER A LIMITED PORTION OF THE PROPERTY NOW KNOWN AS THE GOLDEN PLUG. THE RESULTS INDICATED GOOD POSITIVE RESPONSE FOR ZINC, THALLIUM AND IN PART FOR ARSENIC AND MERCURY.

DURING, JANUARY IG8 OUT ON THE GOLOEN PLUG. THE OBJECTIVE WAS TO BETTER DEFINE THE CAUSE OF THE 1.P. ANOWALY AS REPORTED EARLIER IN 1977-78.

NO FURTHER WORK HAS BEEN CARRIED OUT UNTIL THE CURRENT PROGRAM.

Fig. 2

REGIONAL GEOLOGY
ihe golden plug lies within the western margin of the white LAKE BASIN VOLCANIC-SEOIMENTARY COMPLEX. THE REGION IS PRIMARILY HADE UP OF A SERIES OF TERTIARY EXTRUSIVE ROCKS KNOWN AS THE MARRON FORMATION. THESE ROCKS ARE COMPOSED OF VARIOUS INTERMEDIATE ANO BASALTIG FLOWS, ANO PYROCLASTICS.

THE SPRINGBROOK FORMATION, THE MAIN TARGET OF THE PRESENT WORK, FORMS A BASAL CONGLOMERATE DIRECTLY BELOM THE MARRON FM.

THE YOUNGEST MAJOR EXTRUSIVE UNIT IN THE AREA IS THE OLALLA RHYOLITE, COMPOSED MOSTLY OF RHYOLITE BRECCIA (EHURCH, 1979). THE RYHOLITE FOUND ON THE GOLDEN PLUG CLAIM IS BELIEVED TO be THE NECK OR FEEDER ZONE FOR THE OLALLA RYHOLITE.

THE WITE LAKE COMPLEX IS DEVELOPEO ON A VARIETY OF PRETERTIARY ROCKS KNOWN AS THE SHOEMAKER AND OLD TOM FORMATION. BOTH ARE THOUGHT TO UNGERLIE THE GOLDEN PLUG AT LEAST IN PART AND TO BE TRIASSIC OR OLDER IN AGE. THE SHOEMAKER IS COMPOSED MAINLY OF THIN BEDOED CRERT WITH WINBR CLASTICS. THE OLD TOM IS LARGELY GREENSTONES, AND APPEARS TO HAVE BEEN THE MAJOR CONTRIBUTOR TO THE SPRINGBROOK FORMATION.

PROPERTY GEOLOGY

SPRINGBROOK FM.

THE SPRINGBROBK FN. IS THE OLDEST EXPOSED UNIT ON THE GOLDEN PLUG MINERAL CLAIM. IT IS PRESUMED BY CHURCH (1979) TO BE MIODLE EOCENE IN AGE. REGIONALLY IT VARIES IN THICKNESS AND LITHOLOGY AND IS CONPOSED WAINLY OF A CONGLOMERATE WITH IESSER SHALE, SANDSTONE, TUFF AND SOME TALUS DEPOSITS. THERE TENOS TO be AN INCREASE IN SORTING ANO DECREASE IN FRAGMENT SIZE FORN THE BOTTOM TO THE TOP OF THE SECTION (RAYNER, 1978).

EXPOSURE ON THE PROPERTY IS LIMITED AND TOTAL THICXNESS IS UNXNOWN AS THE BASE IS NEVER SEEN. THE EXPOSURES ARE A MASSIVE, UNSORTED CONGLOMERATE UITH A 買ELL INOURATED, SILTY MATRIX OF PALE GREEN COLORATION. THE CLASTIC MATERIAL FORMING THE CONGLOMERATE ARE DOMINATELY VOLCANICS AND CHERT (45\% AND 35\%, RESPECTIVELY) WITH METAMORPHICS (IOZ), SEOIMENTS (5\%) AND INTRUSIVES (S\%) MAKING UP THE REMAINDER, (RAYNER, 1978). THESE PERCENTAGES REFER TO THE VOLUME OF MATERIALS PRESENT BUT NOT TO THE NUMBER OF CLASTS.

MARRON FM.

IHE MARRON FORMATION FORMS THE BULK OF THE WHITE LAKE COMPLEX OVERLYING THE SPRINGBROOK FORMATION. CHURCH (1979) HAS SUBDIVIOED THE FORMATION INTO 6 MEMBERS OF WHICH 3 ARE PRESENT ON THE GOLDEN PLUG.

```
    YELLOW LAKE MEMBER
    THE YELLOW LAKE MEMBER IS THE OLOEST MEMBER OF THE MARRON
VOLCANICS. TYPICALLY IT IS COMPOSED OF AN ANORTHOCLASE - AUGITE
PORPHYRY. THE BASE OF THE MEMBER IS COMPOSEO OF A VOLCANIC
BRECCIA/LAHAR UNIT WITH INTERBEDDED SEDIMENTS AND TUFES.
KITLEY LAKE MEMBER
THE KJtLEy LAKE mEMBER IS COMPOSED DOMINATELY BF TRACHYTE FLOWS. THESE ARE MASSIVE RESISTANT ROCKS OFTEN FORMING BLUFFS ANO CLIFFS (RAYNER 1978). THE LOWER PART OF THIS UNIT IS A DISTINCTIVE B!OTITE-FELDSPAR PORPHYRY.
KEARNS CREEK MEMBER
COMPOSED DOMINATELY OF BASALTIC ANDESITE, THE KEARNS CREEK MEMBER QVERLIES THE KITLEY LAKE MEMBER. THIS MEMBER FORMS A OISTINCTIVE REOBISH-BROWN REGOLITH WITH MANY FINE BASALTIC FRAGMENTS. THIS UNIT TENDS TO BE STRONGLY VESICULAR TO SCORIACEOUS. THE VESICLES ARE USUALLY FILLED WITH VARIOUS SECONDARY Hinerals.
OLALLA RYHOLITE
THE OLALLA RHYOLITE IS COMPOSED OF RHYOLITE AND RHYODACITE FLOMS AND PYROCLASTIC MATERIALS. WHAT IS BELIEVED TO REPRESENT THE NECK OR FEEDER ZONE FOR THESE VOLCANICS ARE A PALE BUFF TO WHITE RHYOLITE WHICH IS OFTEN OUITE XENOLITHIC. FLOU BANDING IS EVIDENT AT VARIABLE, USUALLY STEEP ATTITUDES. SMALI, VUGGY SILICEOUS AREAS HAVE BEEN NOTED AND ARE OFTEN ASSOCIATED WITH FINE RUSTY VOIDS.
```

SUMMARY

THE PRIMARY OBJECTIVE OF THE JANUARY, 1988 DIAMOND DRILL PROGRAM WAS TO TEST THE SPRINGBROOK FORMATION FOR EPITHERMAL PRECIOUS AND BASE METAL MINERALIZATION. FORMATION THICKNESS (PROBABLY NOT TRUE THICXNESS) ANO THE EXTREME OOWNFAULTED NATURE IN THE AREA OF INTEREST PREVENTED THE SPRINGBROBK FM. FROM BEING REACHED. THE INITIAL, VERTICAL ORILL HOLE DDH 88-1, WAS ABANDONED AT 293' DUE TO TECHNICAL DIFFICULTIES. THE SECOND DRILL HOLE, DOH 88-2, \quad US COLLARED ON THE SAME SITE WITH AN INCLINATION OF -80 DEGREES AND AZIMUTH OF 345 OEGREES. DRILLING DN ODH 88-2 MAS DISCONTINUED AT 1203' DUE TO THE OEPTH CAPABILITY OF THE BRILL RIG (1200°). ALTERNATIVES (ORILL PIPE REDUCTION) WERE DEEMED UNVIABLE UTH THE PAESENT EQUIPMENT. SURFACE CASIAG WAS LEFT IN PLACE TO ALLOU FOR FURTHER ORILLING.

AT 366.7 (1203') IN ODH 88-2, THE ORILL CORE INDICATED THAT DRILLING WAS WELL INTO THE BASAL UNIT OF THE YELLOH LAKE MEMBER. THE LOWER 87 W. (287.4-366.7M) IS COMPOSED OF VOLCANIC BRECCIA/LAHAR UNITS ITH INTERBEDOED SEDIMENTS AND TUFFS. THIS BASAL UNIT OF THE YELLOW LAKE MEMBER IS CITED ON SURFACE TO BE ABOUT 100 W THICK (RAYNER, 1978), THEREBY INOICATING THE POSSIBLE PROXIMITY OF THE SPRINGBROOK FM. HAG DRILLING CONTINUED.

PRIOR TO THIS BASAL UNIT IS A DISTINCTIVE FELDSPAR-CRYSTAL TUFF WHICH IS BELIEVED TO REPRESENT THE UPPER PORTION OF THE YELLOU LAKE MEMBER. MINOR ANOUNTS OF FRACTURE CONTROLLEO BASE WETAL MINERALIZATION (CHALCOPYRITE, GALENA, AND SPHALERITE) IS INTERSECTED IN THIS UNIT BETHEEN THE DEPTHS OF 185% - 204 M ANO 217 M-222 W. THE ENTIRE SECTIONS UERE SAMPLED AT 1.O M IMTERVALS ANO GEOCHEMICAL RESULTS INDICATE ANOMALOUS VALUES FOR CU, PB, AND Z N.

THE KITLEY LAKE MEMBER, A BIOTITE - fELDSPAR TRACHYTE PORPHYRY, WAS EMCOUNTERED AT A DEPTH OF 93.1 W AND THE OVERLYING KEARNS CREEK MEMBER, A VESICULAR ANDESITE, MAS PENETRATED AT A QEPTH OF 77.7 M .

OLALLA RHYOLITE, PRESUMEO TO BE FROM THE NECK OR fEEDER ZONE, BEGIN FROM THE TOP OF THE HOLE (21.3 M) TO A OEPTH OF 75.8 M. THIS UNIT KAS SAMPLED EVERY 6.D M FOR A 1.0 M SAMPIE.

BVERALL, ARGILLIC ALTERATION IS UEAK TO MOOERATE THROUGHOUT, BECOMING LOCALLY STRONG UITHIN THE OLALLA RHYOLITE. CHLORITIC ALTERATION IS WAK ANO RESTRICTED TO THE MARRON VOLCANICS. FRACTURE CONTROLLED CARBONATE IS PRESENT IN WEAK TO WOOERATE AMOUNTS BELOW THE OLALLA RHYOLITE.

RECOMMENDATIONS

HITH ONE DIAMOND DRILL HOLE ON THE GOLOEN PLUG PROPERTY, COMPLETE PROPERTY EVALUATION IS DIFFICULT. THE PRESENCE OF ECONOMIC MINERALS AND EXTENSIVE ALTERATION IS ENCOURAGING. FURTHER WORX IN THE FORM OF GEOLOGICAL MAPPING IS RECOMMENDED AND WOULD PROVIDE A BETTER UNDERSTANDING FOR FUTURE DEVELOPMENT OF THIS PROPERTY.

AS CASING HAS BEEN LEFT IN PLACE ON DOH 88-2, FURTHER DRILLING WOULD ALLOW THE POSSIBILITY OF TESTING THE SPRINGBROOK FM., HOMEVER, UNFORESEEN COSTS MAY BE HIGH AND LITTLE INFORMATION MAY BE RETRIEVED.

G. A. CLOUTHIER BSc. F.G.A.C. FOR m.J. VANDE GUCHTE, B.SC.

REFERENCES

RAYNER, G.H.; 1985, A GEOCHEMICAL REPORT ON THE GOLDEN PLUG MINERAL CLAIM, OSOYOOS WINING DIVISION, B.C..

CHURCH, B. N.; 1979, GEOLOGY OF THE PENTICTON TERTIARY DUTLIER, B.C. DEPT. OF MINES AND PET. RES. REVISEO PRELIM. WAP 35.

RAYNER, G.H.; 1978, A GEOLOGICAL, GEOPHYSICAL ANO GEOCHEMICAL REPORT ON THE THIN $3,5,8,7$, AND 8 MINERAL CLAIMS, OSOYOOS M.D. ASSESSMENT REPORT *6945.

PERSONNEL:

M. VANE GUCHTE

B. DAY
G. RAYNER

COMPANY, GREEN LAKE POECT NO: 128 Emion:	RESOURCES		WES	MIN-EM LARS ICP REPORT TH ST, . MORTH VANCOWVER, B.C. V7M $1 T 2$ 4) 980-5814 OR (604) 988-4524					aCK	(ACT:F31) PAEE 1 OF FILE NO: \&-9		
(VACUES IH PPM)	AG	AL	6S	8	BA	BE	B1	CA	CD	C0	CU	FE
7951	2.0	14120	5	30	193	1.2	1	25586	4.5	7	125	28840
7952	1.4	16470	6	26	220	1.3	1	17780	7.0	9	263	31460
7953	1.1	17180	7	26	232	1.2	1	20060	. 5	7	22	30170
7954	1.3	17080	3	25	236	1.3	1	22750	2.4	7	59	31550
7955	2.9	15240	11.	21	203	1.3	1	21140	3.0	6	50	29110
7956	1.2	15160	9	20	198	1.2	1	21070	1.5	6	64	29380
7957	1.3	13300	12	19	188	1.3	1	24540	5.7	5	111	28630
7958	1.3	14370	8	21	159	1.1	1	22460	2.4	6	57	28350
7959	2.3	15690	8	24	182	1.4	1	24900	9.1	8	113	34280
7960	1.7	15640	5	21	184	1.2	1	21980	2.4	6	51	30720
7961	2.0	14700	10	21	176	1.2	1	26160	1.9	6	71	28440
7962	1.8	13710	5	20	166	1.2	1	28430	3.1	6	66	28910
7963	2.4	14750	7	21	207	1.2	1	20940	4.2	6	90	30010
7964	2.1	14920	9	26	186	1.3	1	23890	14.7	6	86	30080
7965	. 9	14270	8	25	237	1.2	1	21090	. 6	6	60	29560
7966	1.0	11800	12	24	222	1.1	1	24820	1.2	6	56	28060
7967	1.0	13310	6	21	238	1.1	1	17820	1.4	6	44	27740
7968	1.8	13670	4	21	258	1.2	3	23580	1.4	6	51	28650
7969	1.1	15350	10	24	258	1.2	4	21120	. 3	6	55	28420
7970	1.3	13920	8	21	203	1.2	5	32370	5.1	6	59	26200
7971	1.4	13540	6	19	141	1.1	5	37440	5.5	5	60	26980
7972	1.2	13550	12	19	204	1.1	6	26000	. 7	7	49	26480
7973	1.2	12580	5	18	183	1.0	4	28960	1.6	6	46	25050
7974	1.4	13170	11	18	215	1.2	6	17590	5.5	6	62	29390
7975	1.6	6270	6	10	919	. 6	6	134430	. 3	4	14	13540

COMPAIV: GREEN LAKE RESOURCES PQJECT NO: $\$ 28$ जENTIOM:

Diamond Drill Log
Name of Client ..GREENIAKE RESOURCES LTD.
lame of Contractor . ROGERS DRIITING

rrom	10	Length	Geological Deseription	Somple No.	From	To	Length			
71.0 m	75.8 m		RHYOLITE - leucocratic (white-1t:grey), moderately							
			xenolithic (andesitic, rhyolite \& sed/tuff fragments),							
			minor quartz - feldspar phenocrysts. Weak argillic							
			alteration, strongly siliceous at $71.8 \mathrm{~m}-72.07 \mathrm{~m}$, flow							,
			banding evident. Buff-orange discoloration (Fe-stain)							
			at $73.25 \mathrm{~m}-73.45 \mathrm{~m}$ with minor amount of grey-black							
			(weathered pyrite) mineral showing dendritic habit. (No							
			definitive mineralization observed).							
		*	Fault gouge at $73.8-73.9 \mathrm{~m} \& 75.3-75.35 \mathrm{~m}$							
									-	
75.8 m	77.7 m		INTERMIXED VESICULAR ADNESITE/RHYOLITE							
	-		Andesite - brown - red; vesicular (tale (soft, green)	-						
			infilling material) weakly xemolithic, weak chloritic							
			alteration, prominent chiorite/tale at $76.5-76.65 \mathrm{~m} \&$							
			76.8-76.95 m.							
			Rhyolite - white - It.grey, weak argillic alteration							
			(moderate-strongly siliceous), moderately xenolithic							
			(sed/tuff, rhyolitic \& Porphyritio							
			\| Mud seam from 78.65-78.8 m							
77.7 m	85.1 m		ANDESITE WITH INTERLAYED VOLCANIC BRECCIA'S							
			- meso-melanocratic (reddish brown-black) strongly							
			vesicular (infilled with tale \& quartz) weak fracture							
			controlled qtz, overall					.		
										!

rom i	10	Lencrn	I Geological Deseription	Sample No.	from	To	Lencth				
			Imajor zone noted was 185-204 m (dominately low in	7962 A	196	197	1.0	1.8	66	204	3
			feldspar Xstals) Weakly brecciated zones throughout	7963 A	197	198	1.0	2.4	90	546	10
			section. Becones weak-moderatley magnetic below 222.3 m ,	7964 A	198	199	1.0	2.1	86	2637	14
			Iminor amounts of magnetite observed as well as a darker	7965 A	199	200	1.0	. 9	60	178	E
			colouration, magnetic property dissappears at 278.6 m .	7966 A	200	201	1.0	1.0	56	185	4
			Volcanic breccia contacts indicate steep - dip (high	7967 A	201	202	1.0	1.0	44	253	$\overrightarrow{3}$
.			angles in core). Minor shear zones noted at 218.8 m and	7968 A	202	203	1.0	1.8	51	229	14
			210.8 m	7969 A	203	204	1.0	1.1	55	255	2
				7970 A	217	218	1.0	1.3	59	797	9
				7971 A	21.8	219	1.0	1.4	60.	810	4
				7972 A	219	220	1.0	1.2	49	88	7
				7973 A	220	221	1.0	1.2	46	68	8
				7974 A	221	222	1.0	1.4	62	908	3
279.4 m	281.0 m		INIERBEDDED SEDIMENTS AND TUEFS								
			Sediment units composed of dk.grey - blk. (carbonaceous)								
			clay mudstone with interbedded /interlaminated lt. -med.								
			grey tuff. Minor evidence of soft sediment deformation,								
			weak argillic alteration (strong in minor localities),								
			weakly calcareous, sharp contacts at base and top.								
			Fracture controlled calcite (minor) in moderately								
			fractured rock								1
281.0 m	283.5 m		IAHAR								1
			-med.grey green, weakly prephyritic (pyroxene \& amphibol nhenocrests								!

