GEOLOGICAL and GEOCHEPICAL
REPORT
on the PHIL 20 CLATM

Onineca Mining Division
N.T.S. $93 \mathrm{~N} / 2$

Latitude: $55^{\circ}-09^{\prime} \mathrm{N}$ Longitude: $124^{\circ}-55^{\prime}$ 雨

Owner : BP Minerals Limited
Operator: BP Minerals Limited

R. Pegg, BASc., P. Eng.
S. J. Hoffman, PhD.

For: BP Minerals Limited 700-890 Fest Pender Street Vancouver, B.C.

BFVR 88-2

July. 3988.
GEOLOGICALBRANCH
ASSESSMENTREPODT

The PHIL 20 property, located 90 km north-north-west of Fort St. James, B.C., covers an area of high magnetic relief coinciding with government arsenic-mercury-antimony stream sediment anomalies. The claims is primarily underlain by Takla Group (Upper Triassic) sediments and lesser volcanics. BP Minerals conducted geological and geochemical surveys over part of the property during 1988. A sumary of results from this program are as follows:

- 1988 soil sampling program contained 9 samples with results ranging from over 25 ppb to 825 ppb Au ;
- the soil sampling coverage was insufficient to properly delineate anomalies and thus their associations;
- minor to moderate amounts of disseminated and fracture filling pyrrhotite and pyrite were observed in the volcanics and sediments;
- preliminary rock sampling failed to locate a source(s) for the gold soil anomalies.

Page No.

INTRODUCTION 1

1. Location, Access, Physiography and Climate 1
2. Property Status 1
3. History of Exploration 2
4. 1988 Work Program Summary 2
GEOLOGY 2
5. Regional Geology 2
6. Property Geology 3
7. Mineralization and Alteration 3
GEOCHEMISTRY 4
8. Rock Sampling 4
9. Soil Sampling 4
a. Topography, Landscape, Overburden and Soils 4
b. Soil Sampling Program 5
c. Sample Preparation, Analysis, and Interpretation - Soils 5
10. Discussion of Results - Rocks 6
11. Description of Results - Soils 6
12. Discussion of Results - Soils 11
CONCLUSIONS AND RECOMNENDATIONS 13
BIBLIOGRAPHY 14

LIST OF FIGURES

Following Page No.

FIGURE 1: Regional Geology and Claim Location Map 1
FIGURE 2: Soil Sample Locations 5
FIGURE 3:(A-W) Soil Survey Results 12
LIST OF APPENDICES
Following Page No.
14
APPENDIX I: Field Personnel
14
APPENDIX II: Statement of Qualifications
14
APPENDIX III: Rock Sample Descriptions
14
APPENDIX IV: Rock Sample Results
14
APPENDIX V: Soil Sample Results
14
APPENDIX VI: Geochemical Analytical Procedures
14
APPENDIX VII: Method of Histogram Interpretation 14
APPENDIX VIII: Statement of Expenditures 14
APPENDIX IX: Re-Interpretation of the 1984 Soil Data 14

LIST OF PLANS

In Pocket$1: 10,000$
PLAN 2: Histograms - Soil Survey

INIRODUCTICN

In 1988, BP Minerals Limited conducted geological and geochemical surveys over part of the phil 20 claim.

The exploration target was economic precious metal \pm base metal mineralization.

1. Location, Access, Physiography and Climate

The Phil 20 property is located on the north slope of Mt. Alexander, approximately 90 km north-north-west of Fort St. James.

Access is by helicopter from Fort St. James.

The claim covers a north to north-west facing spur of Mt. Alexander which slopes moderately to steeply towards the confluence of two creeks. The property is covered by a mature forest of spruce, balsam fir, deciduous trees and sections of alders.

The claims receive a moderate amount of precipitation during most of the year.

2. Property Status

The property consists of 1 claim (20 units) whose registered owner
is $B P$ Minerals Limited of Vancouver. The claim's record number is 6488 and it's recorded date is July 20, 1984.

3. Kistory of Exploration

In 1974, Cominco Ltd. built a 32 km cat road from the west end of Chuchi Lake down to the JW property (Cu-Mo). This overgrown cat road crosses that west side of the Phil 20 claim.

In August of 1984, BP conducted preliminary geological mapping, prospecting and soil sampling. The claim was staked following the release of results from a government stream sediment survey and covers an area of high magnetic relief coinciding with arsenic-mercury-antimony anomalies.
4. 1988 Work Program

Re-interpretation of previous soil sample results was conducted during June of 1988. During July, geological mapping and soil/silt sampling surveys were completed.

GPDLOGY

1. Regional Geology

The Phil 20 property is located within the Intermontane Tectonic Belt near the southern edge of the Juro-Cretaceous Hogem Batholith. The batholith is a complex, polyphase pluton of predominantly granodiorite composition that has intruded the Upper Triassic Takla Group. The Takla consists of basic volcanic and sedimentary rocks.

The major strucutre in the regions is the Pinchi Fault which demarks the western boundary of the Quesnel Trough. This fault is located approximately 14 km west of Phil 20.

2. Property Geology

Most of the outcrops are restricted to the upper portions of the Mt. Alexander spur and along the steep creek banks.

The majority of the property appears to be underlain by black to green argillites, cherty argillites and volcanic sandstone and siltstone of the Takla Group. These sediments overlie a sequence of Takla volcanics, found along the west side of the property. The volcanics consist of thickly bedded, green, cherty dacitic tuff, ash tuffs and polylithic lapilli tuff. These overlie medium green augite-porphyry andesite flows and flow breccias.

Medium green augite-pophyry basalt sills/dykes and light grey augite-hornblende-plagiocalse dykes are reported to cut the section.

3. Mineralization and Alteration

Trace amounts of 2% pyrrhotite disseminations and fracture fillings and minor pyrite fracture fillings were observed in the sediments. Minor carbonate and local, very narrow and discontinuous silica fracture fillings are also present.

Up to 1\% pyrite and/or pyrrhotite disseminations/fracture fillings were observed in the volcanics. Ankeritic tuffs occur north of claim along the old road that cuts the west side of the property.

Moderately strong hornfelsing of both the sediments and the volcanics has been reported north of the claim.

GEOCHEMLSTRY

1. Rock Sampling

During the course of geological mapping, five grab samples were collected for geochemical analysis. This was completed to test for significant gold concentrations and/or possible indicator elements.

2. Soil Sampling

a. Topography, Landscape, Overturden and Soils

Maximum relief within the grid area is about 300 m , the landscape sloping northward from the summit of Mount Alexander. Slopes flatten appreciatively beside Alex Creek which flows to the west. Overburden along Alex Creek comprises alluvium within the flood plain and glacial till and colluvium along seepage zones (bogs) in base of slope regions. At higher elevations, overburden consists of residual or talus materials, and is locally derived from outcrops which are poorly to intermittantly exposed.

Soils are generally well drained, and soil formation has proceeded to the stage of podzols over most of the landscape. A podzolic profile on the property is characterized by:

1. A thin LH-horizon $0-5 \mathrm{~cm}$ thick comprising partly decomposed leaves and humus;
2. A poorly developed, light to medium brown AE horizon $0-20 \mathrm{~cm}$ thick representing a zone of leaching;
3. A medium red-brown zone of accumulation of Fe oxides, at depths of 20 to 30 cm , representing the horizon of choice (BF) on the claim group. (The BF horizon is found at only a 5 to 15 cm depth in the southwest portion of the property where outcrop is abundant); and,
4. A medium olive brown $B M$ horizon typically underlying the $B F$, but also present independant of the BF in more poorly drained portions of the property. The BM horizon was sampled if the BF zone was too thin or absent.

Organic accumulation in bogs are prominent along Alex Creek, These were penetrated when encountered at sample sites. If they could not be penetrated, the sample site was shifted and noted where appropriate.

b. Soil Sampling Program

To follownp Cu, As and Au anomalies along the south bank of Alex Creek, an 800 m baseline was established from a recognizable bend along Alex Creek to run due south. Crosslines were established at 200 m intervals, and samples were taken at 50 m spacings. Station locations along the baseline and along crosslines were marked on an aluminum tag and affixed at each station. Sample numbers were also written onto the aluminum tags. Eighty soil samples were collected (Fig. 2).
c. Sample Preparation, Analysis, and Interpretation - Soils

Samples were placed in wet strength Kraft paper envelopes onto which was written the sample and an archive number, on site. Samples were air-freighted to Vancouver and submitted to Acme Analytical for ICP and Au geochemical analysis on splits of the minus 80 -mesh fraction. Analytical procedures are found in Appendix VI and a list of geochemical data are included in Appendix V. The significance of the geochemical numbers returned from the laboratory was established with reference to procedures of Appendix VII applied to histograms of Plan 2.

3. Discussion of Results - Rocks

Sample results from the five collected grab samples revealed only a few slightly elevated values in copper and zinc. Gold and silver results are all at background levels.
4. Description of Results - Soils

1. Au (Fig. 3A)

An Au anomaly threshold was established at 18 ppb . Two multisample anomalies are defined along the western (No. 1) and eastern (No. 2) margins of the survey. Samples within anomalous zones appear related by topographic control. Anomaly 2 represents confirmation of the zone defined by Humphreys (1984). An isolated value of 825 ppb Au lies along the southernmost line, within 100 m of Au zone 1 .

2. Ag (Fig. 3 B)

Three Ag anomalies are defined to exceed a 0.7 ppm threshold, reaching a maximum of 1.9 ppm . All lie within 200 m west of the zone 2. Both Au anomalies are associated with only background Ag values.

3. As (Fig. 3C)

The historical As anomalies of Humphreys (1984) have been repeated by the present study, All lie in the east and are periferal to Au zone 2. Anomaly threshold is 150 ppm and maximum values are about 500 pm . Most of the high values are found along the northernmost line in an area of extensive seepage and bog, developed on top of river alluvium or colluvium derived from upslope. As backgrounds
are lower in the west. Noting this background change enables recognition of a weak As association with the highest Au value of the survey.
4. $\underline{\text { Sb (Fig. 3D) }}$

All Sb values are at background or twice background levels. All twice background levels lie in the east.
5. Mo (Fig. 3E)

All Mo values are at or close to background, except for a 13 ppm value in the north.
6. Cu (Fig. 3F)

Cu threshold is 105 ppm. Four multisample anomalies are defined, all lying to the east of the grid. Cu anomaly 3 corresponds with Au zone 2, whereas Ag enhancement and As accumulation in the north characterize Cu zone 2. Cu anomalies 1 and 4 are accompanied by elevated As values. Cu backgrounds on average are higher in the west, but all anomalies lie in the east, indicating that they are high contrast features.
7. Pb (Fig. 3G)

Pb levels are not believed to be anomalous. A zone of Pb enriched soils following the regional geologic grain falls about 100 to 200 m east of the porphyry basalt sill (unit 2 a).
8. Zn (Fig. 3H)

Zn contents also are not anomalous. Zn follows Pb in zone 1 east of the sill. In backgrounds are also higher in the southeast and the northwest.
9. Fe (3I)

The Fe distribution essentially divides the property in two with higher backgrounds in the west. Samples containing the highest Fe contents in the west have not affected distributions of other elements. In the east, an 11.5% isolated value has apparently accumulated As, but this fact does not change the As distribution significantly.
10. Mn (Fig. 3J)

Almost all the high Mn values are found in the northeast, predominently in areas of groundwater seepage associated with overburden materials comprising till, alluvium, and colluvium. Au zone 2 is partially within a Mn-rich zone.
11. Co (Fig. 3 W)

Five $C O$ anomalies defined by this survey appear indepenant of the Mn distribution, with the exception of two samples which have been discounted and indicated as such on Fig. 3W. Co backgrounds are highest along the northernmost three lines. Anomalies tend to be 2 or 3 point features and exhibit a 2 X background contrast.
12. Ni (Fig. 3K)

Ni backgrounds relate similarly to Co. Anomalies, however, are restricted to the northeast where zones 1 and 2 are along the northernmost two lines. The Ni distribution is homogeneous.
13. Cr (Fig. 3L)

Cr follows Ni, but the distribution pattern suggests anomalous conditions extend further upslope to the south. Patterns are homogeneous.
14. V (Fig. 3M)

V follows Fe .
15. 브 (Fig. 3N)

Ba concentrations are lowest at the highest elevations on the property. Two large Ba anomalies lie in the east, crossing the entire grid along a north-south trend. Maximum values are in the 125 to 250 ppm range.
16. SI (Fig. \varnothing)

Backgrounds of Sr are enhanced in the northeast, particularly within 50 m in elevation from the creek. Two Sr anomalies are located in the southwest, along the southernmost line where values exceed 50 ppm to 180 ppm . Most Sr values are less than 25 ppm .
17. Ca (Fig. 3P)

The northern line and eastern margin of the survey are Ca-rich as two large anomalies are defined where values range from 0.55% to
just over 1\%. These numbers are unusually high, but their homogeneous character suggests underlying overburden controls. Sr anomaly 2 is complimented by Ca (No. 1).
18. Mg (Fig. 3Q)

The Mg pattern resembles that of $C a$ in the north and east. The eastern margin of the grid is also Mg enriched. The Mg distribution is homogeneous.
19. Al (Fig. 3R)

Distribution of Al appears geologically controlled. Maximum values of 4 to 5.5% trend northward, approximately parallel to the basalt sill for the full extent of the grid, over a lateral distance of 300 m . Values in the east and northeast are typically less than 2.5%.
20. K (Fig. 3S)

The K distribution resembles Mn . Highest values in three zones lie in the northeast.
21. Ti (Fig. 3T)

All the highest Ti values lie along the southernmost line.
22. P (Fig. 3U)

The P distribution is homogeneous and the element appears to be mapping geology trending parallel to the basalt sill. By contrast, the eastern side of the grid is P -poor. Superimposed on
this latter area is P anomaly 4. The P distribution is homogeneous.

23. La (Fig. 3V)

Homogeneously enhanced values are noted in the northeast, parallelling patterns seen for Mn and k , amongst other elements.
5. Discussion of Results - Soils

The preliminary nature of the soil survey (i.e., 2 complete lines, 2 half lines) precludes the possibility of this report being definitive for the claim group. What the study has done, however, is define a reproducible Au anomaly in the east accompanied by Cu and periferally zoned by As. Ag anomalies lie to one side but it is uncertain whether or not they are related or are independant features.

A second Au anomaly, with the highest value of the survey of almost 1 gm nearby, lies in the west. Only weakly enhanced As values appear related to the $A u$. The western Au zone lies in a geologic and/or surficial deposit environment which contrasts markedly with the eastern Au anomaly in being associated with enhanced $\mathrm{Cu}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Fe}, \mathrm{V}, \mathrm{Al}$, and P and depleted $\mathrm{As}, \mathrm{Sb}, \mathrm{Bi}, \mathrm{Mn}$, Ni, Cr, Ba, Mg, K and La values. Ca and Sr are anomalously enriched in both zones.

The western anomaly lies within a residual soil environment, and followup comprising physical work and rock chip sampling would
likely define a bedrock source(s) for the Au. However, before this is accomplished, more complete soil sampling coverage, (i.e., intermediate lines, extension of the grid to the south) and perhaps detailed sampling (25 m interval) is needed to fully outline anomalous zones.

The eastern anomaly also requires a more complete survey coverage, and extension of the grid to the east. Interpretation should consider the possibility that glacial dispersion along the valley of the Alex Creek is affecting geochemical dispersion, and air photographs should be inspected for evidence of the type and extent of glacial overburden.

CONCLUSICNS AND RECOMMENDATIONS

Although sulphide-bearing volcanics and sediments are present within the claim, no economic mineralization has been found to date.

Preliminary soil sampling has indicated that a potential source(s) for the geochemically anomalous gold values may be present within the claim boundary.
'Fill-in grid' soil sampling along a line spacing of 100 metres is required to properly delineate the anomalies. Samples would be collected at 50 metre intervals along the lines. This grid should extend out to the claim's eastern boundary. The unsampled portion of lines from this year should be completed. The grid coverage in the \#1 gold anomaly area should be reduced to $25 \times 50 \mathrm{~m}$.

The soil grid and the acquisition of recent airphotography will help with control for the necessary, additional geological mapping and rock sampling.

Respectfully submitted

BIBLIOGRAPHY

Humphreys, N., 1984 : Sumary Report on the 1984 Geological and Geochemical Exploration Activities - Phil 20 Claim.

APPENDIX I: Field Personnel

R. Pegg - Project Geologist - July 6,9,11.S. Hoffman - Senior Geochemist - July 6,9,11.V. Malo - Geological Assistant - July 6,9,11.

APPENDIX II: Statement of Qualifications

I, Rex Peg of $700-890$ West Fender Street, in the City of Vancouver,
in the Province of British Columiba, DO HEREBY CERTIFY:

1. That I am an exploration geologist employed by BP Minerals Limited, which has its office located at $700-890$ West Fender Street, Vancouver, B.C. V6C 1K5.
2. That I am a graduate of the University of Toronto, located in Toronto, Ontario, where I obtained a Bachelor of Applied Science degree in Geological Engineering (Exploration Option) in 1976.
3. That I am a Register Member, in good standing, of the Association of Professional Engineers of British Columbia.
4. That I have practised my profession as a geologist for the past twelve years.
5. That I have supervised the geological and geochemical field work.

Dated this 18th day of July, 1988.

Statement of Qualifications - S. J. Hoffman

```
BSc 1969 - McGill University (Hons., Geology and Chemistry)
MSc 1972 - The University of British Columbia (Geochemistry)
PhD 1976 - The University of British Columbia (Geochemistry)
```

1. He has worked continuously for BP Minerals Limited since 1976, as an exploration geochemist.
2. He collected and/or supervised the collection of the soil samples.
3. He has interpreted the soil sample results.

DATE: July 9, 198:8

DATE : Iwhy 11,1988

Phil 17 PROJECT - SURFACE \square

APPENDIX IV: Rock Sample Results

 BP RESOURCES PROJECT- 10200 T11e 08 -2629

818PL	Re	(1)	tb	If	$1)$	1	0	M	ft	H	*	,	\%	f	(d)	b	1	F	(1)	1	t	tr	m	31	11		11	ts		1	18\%
	IIM	P11	17	if	1P\%	17\%	1\%1	IIM	i	P\%	PK	Hin	7	ma	P17	Pli	17%	IPh	1	1	8\%	11	1	Hf	1	111	1	1	1	2 H	Ht
105118	1	III	1	t	. 1	16	$1 t$	141	2.17	1	5	\$	I	n	1	t	1	${ }^{31}$	1.11	.17	1	Is	. 15	1	. 11	14	1.11	. 18	. 11	1	1
14SH3	\|	13	1	3	. 3	19	12	151	3.76	1	4	10	1	3	1	1	1	11	. 15	. H S	1	13	3,14	50	. 17	1	1.61	. 11	.1]	1	
103)	1	1	,	H	. 2	ts	13	\$n	1.11	1	5	8	1	1	1	1)	(1)	1.51	.11)	1	J	1.6)	11	.13	1	2.11	, 1	. 16	1	
143015	1	\#	1%	III	1	']	11	18!	3.17	1	5	10	t	$9!$	1	1	1	111	1.75	, 14)	11	1.91	118	. 21	13	2.13	, ${ }^{\text {d }}$. 11	1	
135015	1	11	,	13	. 1	1	15	(1)	1.11	1	1	W	1	31	I	2	1	If	2.15	.14?	t	11	1.13	111	. 11	$1]$	1.11	. 4	. 11	1	
110 t/Mu-l	11	8	11	131	. 3	4	18	1631	f.14	11	11	1	3	14	11	16	H	\$	11	. 113	19	15	.1	II)	. 18	11	1.4	,	. 1	12	

APPENDIX V: Soil Sample Results

：inection ：！

Smple typeis	ALL											
terrack type：	ALL											
SOHL H0RITOH（S）	ALL											
SAMSLE TEXTUREIS	ALL											
THERBURDES MR16is（s）	H6L											
Laboghtory－stie fraction－Eltractiduls	QLL											
pais stajus	ALL											
TEC：5＊PL					H0	Cld	PE	It	kl	v	换	FE AG
	98402 371L 98	510 258fP	HAB	95A	20412	108	15	122	22	5	594	9.1
	93H02 47 HL 98	55 259FP	MBR	9¢月	20，${ }^{\text {a }}$	43	14	85	25	3	386	5.94 ．？
	95402 ЈIL 98	510 40EM8	ABR	60\％	50142	16	24	189	22	5	700	6.22 .5
988 5488904 $996119 \mathrm{AgA3902S46113108}$	93102 372L 8 P	310 t89Fp	108	95A	\＄5wn2	105	20	89	14	5	575	10．98．5
9675088904 L 9951204843303354113109	93402 3Till gp	55 508FP	MRBDRE	99\％	40， 2	108	15	145	30	5	1280	7.1 ． 6
988 5088904C 996121a8A3803546113107	9zwa2 3ill 8 P	310 b08Fp	MREORE	989	40N 2	198	21	174	3 a	5	2312	7.06 .3
989 S08890tL 995122A9A3802946113109	930102 371L＊	510 358FP	Mradrb	79\％	3015	71	14	Sb	22	5	301	6.91 .4
	97402 J7t g	510 309FP	HC8	90A	2 OH 2	114	18	151	19	5	296	7．7
7915088904 L 995124 ARAJBO 4856113106	97402 372L 9p	510 30EFP	HREDEB	70A	2an：	68	け	89	25	5	266	7.12 .5
992 5089904L 99612548A3805566113106	93102 27248	410 308FP	Msemra	99 ¢	15 N t	110	16	89	14	5	404	8.69 .6
993 5098904L 996t2aftajbosesslizlos	93и02 372L 5	510 30BFP	3188	50A	20N：	69	10	97	35	5	242	4．15
	$93 \mathrm{MO2} 372 \mathrm{~L}$ d	510 Jibfp	MRE	20A	20N？	90	14	8	19	5	293	5.5 ． 3
9955008904 4 9961289895806846113105	$93+102$ \＄72L 6	516 38bFP	488	309	25N 2	80	18	91	25	S	555	9.31 .2
	93102 37218	55 409FP	hrgamb	989	3ON：	46	13	86	19	5	512	4．51．4
997 5098904L 996！ 708683807875115101	93102 171 1	510 30EFP	ARB	503	2 H	78	14	146	30	5	285	5.96 .6
998 E888904L 99613JACRESO日S46115099	95102 47266	510 S6日FP	MR8	680	1＊N 2	261	20	130	29	5	1015	8.43 .8
	93402 3724 －	510 S0lep	4R8	55月	20N 1	J9	9	107	19	5	329	5.51 .5
1000 s088904L 9961こうash3509366113098	93 HCL 372t．	510 J08FP	H08	255	20N：	50	1	74	26	5	359	6.52
1001 5098904L 995154984350966611309s	93 NOL บ72 1	510 309FP	108	255	20\％ 1	46	12	87	19	5	270	8.28 .1
1002 \＄088904L 9961354893810346！13099	93H02 172L：	3103085	1508	205	15N 2	54	15	127	18	5	244	5.25 .4
1003 5088904L 996t－SA8A58108B6113044	93MC2 IJTL 1	51040979	1408	255	20N 1	56	13	74	29	5	300	1．91．2
$100450889044.9961374603811366!13096$	4J402 47211	510 3088p	SOB	105	20x ？	18	11	76	28	5	277	5．99． 1
	98以枟 1721	5103085	108	155	5 N	113	15	163	19	5	45	5.63 .7
	93＊02 973 LL ：	510 45B48	HOLHBR	105	2月1	257	13	2 ts	75	5	779	4． J^{7}. ？
	$93 \mathrm{KO2} 472 \mathrm{~L}$	51075366	LCLIRB	305	\％！	115	12	69	54	5	680	3．98．5
1008 5089904 996141a89z8i2e26112294	93L02 472LSt	510 30818	D6R	505	明 ：	141	12	97	36	5	986	3.51 .1
1009 5088904L 99614248A391232b113294	93L02 27ill	510 208Fp	nos	305	$19 \mathrm{~N}!$	$5!$	13	131	33	5	310	5.2 .3
1010 5088901L 996143 H8A3811816115292	93L02 4716 ！	510 SJBFP	HOB	JUS	1051	59	12	150	27		343	4.54 .2
	95L02 472 1	5：0 508FP	HRB	¢0S	15N I	117	17	15	49	5	42 t	
1012 5089904L 996145ASA3S109151132\％7	93L02 272L	510 5085F	808	255	15S 1	50	15	150	31	5	395	4.28
1015 5098904C 996146aghselo325113298	$97 \mathrm{HO2}$ 172L	510 30app	M080L	20S	SS：	69	13	134	49	5	354	4．05．3
1014 50B6904L 9961674863809806153298	93NE2 472L：	510 306F9	HOB	55	1051	51	9	103	36	5		3.96 .3
1015 5088904L 996148R2A3809\％Vbilizict	93Hal 772 L ！	410 308FP	H08	40K	ION：	67	14	161	41	5	3E6	5．9． 1.1
1016 5088P041 9961498803908946113301	93N02 472L	510 408188	M0L	105	15K 1	129	14	92	71	5	53	4．17．3
	93M62 4A2L：	510 SSAFP	HOE	505	154 ：		15	168	69	5	416	5．86．5
1059 5088904L 976151A8AJ80834alizu05	93H02 4A2L ：	510 J08FP	H08	505	ISN 1	92	17	113	45	5	415	5.13 .8
	93402 272 8	51039159	相B	30A	doal	48	12	159	38	5	602	5.84 .5
1021 5088904L 99617Sn8Aこ801346113515	4TML2 27\％L 9B	510 2587？	H08YE	46a	10N 1	77	15	153	59	5	493	1．14．6
102\％5088704L 996177A8A380t956113514	93142 272 L 98	\＄10 3 58FP	H0日	509	8 N 1	83	15	131	45	5	868	5．66．5

	リール	FP	HRE	Jun	81	72	15	157	40	5	415	\％
1024 5188904L 996179A8AJ3029661：3512	93H02 2721	$510308 F P$	109	20S	164 ：	87	15	85	38	5	192	4.15
	984023714	5id Stibep	80 P	5 Ja	156	40	15	155	28	5	354	6．ve
	93102871 L 9 C	510 308FP	0 NO	50A	15it 2	72	15	153	13	5	291	7.2 .8
102\％5088984L Fob182ash 3803876113511	93HC2 T2L 1	510 こ09fp	KRB	$6{ }^{6}$	10\％ 1	66	15	125	35	5	480	6.1
	95	519 3¢RFP	Ho	305	15：！	64	22	159	42	5	535	4.10 .7
	930122	510 JOEFP	HOB	2 OH	S\＃1	124	23	287	15	5	495	8.2 ． 4
TV s	$93+12271198$	510308 FP	mas	402	5	70	16	11	27	5	460	6.27 .5
	$97 \mathrm{HO2}$ 271L 98	510 30Bf？	K08	40，	7H2	65	15	104	35	5	344	8.64 .6
5088P04L 99818746AJ30532611350B	9z402 27A 98	510 308FP	nop	304	10％ 2	52	16	156	37	5	380	7．25．9
F688904L 996188A8A3806846117506	¢7402 772L 9	510 SUBFP	\＃CB	20 A	：2M	124	I．	134	39	5	273	4.91
1074 5086964L 99618946AJBETY 65113507	93102 2721 ：	51030359	HODOL	50¢	10N：	31	8	100	24	5	23%	3.83 .7
508s904L 99619006A 90707856113565	93H02 772 LC	515 30BFP	\％08	50 A	8 K 2	38	14	140	36	5	292	5.35
5026909L 99619143AJPORZ16153504	93 HCL 272 L 1	510 3098P	HOL	105	15\％ 1	64	14	102	39	5	306	3.83
	93H02 2721	510358 FP	nobol	109	［（1）	54	12	93	79	5	359	4.51
1073 5888904L 998193A845509526113501	93H02 4JJLS	41070818	mol	205	IDN 1	120	11	77	39	5	854	3.49
S688904L 4961940EAS50979S11－502	95 NOL 272 L 1	510 308fp	\％ HBR	205	108 2	52	13	110	50	5	285	4.221 .3
5088901L 996195A84J310558113500	98023 9724	\＄10 Jebep	H日月	109	15： 1	48	15	100	28	5	378	5.15 .7
$10415088904 \mathrm{~L} 99619648 \mathrm{AT} 31080511 \pm 498$	93H02 2T3LS	51070 ma	KEL	155	154 1	155	13	75	58	5	648	3.78
5088904L 996197AEAEBL1296113498	93Nat2 2ija	310 409月4	MOL	15S	151	P！	15	102	38	5	105	2.34
	93002 472LS	410 70858	LOLAR	255	2 OH ：	186	12	59	58	5	749	4.31 .5
	9 THOL 47MS！	4101008 18	LOL． $\mathrm{PR}^{\text {d }}$	255	153 ：	114	15	77	55	5	804	3.74
S088904L 996200ASA3812796113495	93102 473151	51070856	YGYHOL	255	！0，	98	16	102	57	5	435	4.27
	97402 5\％	510 フ08kя	HOL	255	If：	85	12	145	4	5	1156	5． 26
5689504L 996202A3A3812546113696	9：H22 5\％es 4	410808 Cl	KOL	255	in：	75	1	103	18	5	986	4.08
	9 9 H02 572E	210 6094e	HOL	705	INW：	75	13	105	52	5	1502	4．83． 2
1049 50as904L 996204REA381130511329\％	9EN02 27IE 4	310708 HE	nol	205	1uxs	75	12	91	54	5	942	4.31 .5
S088904L 996205i4ajzicajelizs99	$9 \mathrm{TH02} 53051$	310 308FP	428	605	$1 \mathrm{NH2}$	63	13	102	42	5	465	4．39．1
：051 5083904L 996\％0688A3910526115701	931022463151	510 708ES	ROLDOB	25 A	2H13	40	，	90	27	5	819	11．55．2
1052 S088904L 996207henjB09848115702	$9 \mathrm{FH02}$ 57cesd	410808 Hz	HOL	70S	$2 \mathrm{TH2}$	56	13	92	42	5	157	4．33． 5
	9zi02 47204	51080 ers	HOL	505	5 K 1	280	24	130	56	5	1309	4.911 .3
9\％L209abajb088is 115702	94002 4720		HRE	30S	54 2	56	19	139	5	5	376	5.34
1055 5088904L 996210a＠a3a08375113696	93102 47201	510 35859	HR ${ }_{\text {R }}$	405	5 SH 3	95	13	$8!$	70	5	2724	2． 5.5
	$93 \mathrm{HO2}$（6Jus	410 9086t	haymie	505	$5{ }^{\text {H }} 4$	93	13	95	75	5	7303	5.67 .5
1057 5089904L 996212A日A3807876115705	9JRE？173USt	51080865	HETMRE	105	7\％	55	19	80	70	5	741	\＄．51．4
1053 \＄088904L 9962158043807295：1708	$93 \mathrm{H02}$ trevs	510 70956	Maym	505	$7 \mathrm{H}_{2}$	T3	15	134	89	5	954	4.32 .5
1059 5088904L 995214ASAFS80684611：3707	97102 4720S1	＋10 50866	MGYMRE	S0S	3 SH 1	163	II	85	65	5	811	3．74．4
	$9 \mathrm{Ft02} 162151$	510 758ME	HOL	255	SM1	33	15	84	72	5	800	3．95．t
	97402 331L 2B	510 30EFP	H00	904	2012	158	19	157	14	5	130	8.17 .2
1096＇s086904L 995：10	93H02 86JUS：	410 80egs	M6YHRE	505	5\％							

	v	日	3n	51	AL CA	CA	新	期	k	CE？2R？	II
2	$18:$	90	23		3.6	． 39	1.06	．v1	．07		． 15
4	$1{ }^{15}$	98	35		3	－	1.1	． 5	． 08		． 18
2	14	EV	9		4.85	．${ }^{2}$	． 92	． 21	． 26		．11
	225	50	34		3.9	． 27	． 78	． 01	． 06		． 16
2	155	103	191		\＄． 36	． $6 t$	． 3	． 01	． 08		． 1
2	142	99	\＄1		4.44	． 55	． 78	． 01	． 05		． 1
2	167	162	154		4.95	1.08	． 75	． 01	． 07		． 12
	98\％	5	49		3.19	1．08	． 75	． 02	． 03		． 15
2	159	T 5	36		5.45	． 3	．79	． 01	． 01		． 17
$?$	122．	74	35		5．E	．	． 5	． 01	． 03		． 89
2	89	${ }^{1} 1$	35		2.94	． 5	． 77	． 02	． 05		． 09
\％	157	85	40		3.25	． 52	． 7	． 01	．05		． 04
2	21.	99	31		5.47	． 3	． 92	． 02	． 05		． 21
3	102	T5	25		$2 . *$	． 37	．	． 02	． 06		． 1
2	112	95	20		4.56	．${ }^{5}$	． 82	． 01	． 05		． 08
2	116	140	33		3.2	．${ }^{\text {？}}$	． 67	． $0: 1$	． 06		． 07
2	$12!$	70	15		2.54	． 27	． 67	． 01	． 05		． 14
2	165	100	20		2.64	． 37	． 87	． 01	． 05		． 15
2	155	76	21		3.67	． 33	． 68	． 01	． 03		． 13
2	125	107	18		2.67	． 5	． 51	． 01	． 04		． 16
2	104	109	22		2.22	． 28	． 69	． 03	． 05		． 12
2	179	112	70		2.08	． 5	． 72	． 01	． 03		． 17
2	78	159	22		3.41	． 34	1.04	． D ！	． 04		． 1
2	73	111	35		2.12	． 67	1.06	．${ }^{2}$	． 08		． 09
2	75	148	31		2.24	． 84	1.05	． 03	． 05		． 1
2	65	124	49		2.1	1．39	． 71	． 01	． 05		． 04
2	89	106	17		3.04	．29	． 75	． 01	． 04		．08
2	100	89	23		2.47	． 47	． 63	． 01	． 03		． 11
2	112	135	22		4.06	． 4	1	． 04	． 05		． 09
2	83	94	16		2.59	． 26	． 53	． 02	． 04		． 11
2	79	106	18		2.57	． 5	． 38	． 05	． 04		． 09
2	82	99	18		2.4	． 32	． 7	． 01	． 05		． 1
2	119	144	25		$4.7{ }^{\text {\％}}$	． 48	1.18	9．01	． 06		．t
2	so	151	36		2.71	． 69	1.18	． 03	． 06		． 09
2	107	163	\pm		3.57	． 63	1.18	8.01	． 06		． 1
2	49	122	28		3.07	． 51	1.18	． 01	． 06		． 1
2	134	171	14		3.45	． 19	1.39	9.01	． 08		． 11
2	126	152	24		4.95	． 29	1.65	． 01	． 06		． 08
2	\％	150	24		4.04	． 25	． 93	． 01	． 58		． 06
2	156	140	21		3.85	． 29	1	． 01	． 06		． 09
2	I1	\＄04	21		3.55	．${ }^{3}$	． 81	． 01	． 04		． 07
2	119	128	17		3.54	． 19	． 74	． 01	． 06		． 09
2	157	197	21		4.24	． 26	1.09	9．01	． 05		．08
2	103	97	18		5.55	． 22	．${ }^{1}$	． 01	． 04		． 06
2	107	121	21		4.44	． 24	． 88	． 01	． 05		．06
2	151	148	20		5.31	． 18	1.37	7.01	． 05		． 03
2	119	If	18		5.31	． 21	． 71	． 01	． 05		． 08
2	117	105	15		3.51	． 19	． 72	， 01	． 05		． 09
4	136	124	15		4.5	． 24	． 89	． 01	．06		． 08
2	82	109	16		3.06	．19	．71	． 08	． 04		． 06
2	12	101	14		2.54	． 17	． 54	． 01	． 04		．06
2	92	125	14		3.56	． 15	． 74	． 01	． 04		． 06
2	72	128	15		2.19	． 15	． 69	． 01	． 05		． 07
2	86	105	14		3.59	． 24	．${ }^{2}$	． 01	． 04		． 09
，	\％	83	32		1.4	．T	． 87	． 02	． 06		．08
	97	105	34		2.11	．11	． 52	． 02	． 05		． 06
2	109	110	15		2.51	． 19	． 6	． 02	．04		． 06
2	69	149	29		2.03	． 5	1.15	S． 01	． 09		． 1
3	86	201	29		2.98	． 17	． 96	． 08	． 09		． 04
3	7	141	32		2.15		1．06	6.01	． 1		． 08
	－	－	－		＇，－		3	－－	－ 0		． 4

1045 9\%6200 21	11	0	7	2	1	1	1	2	78	135	31	2.19		1.14		. 18	. 07
104699520120	三	0	199	2	1	1	1	2	101	$14 *$	45	3.19	1.05	1.87	. 01	. 28	. 14
104799620215	1	0	158	2	;	1	1	2	75	130	36	2.15		1.1	. 22	. 1	. 89
104897620318	I	0	92	2	1	1	1	3	90	165	39	2.35	. di $^{\text {a }}$	1.29	. 03	. 15	.1
104999220415	9	0	507	2	,	j	1	2	79	148	35	2.25	. 35	1.04	. 31	. 11	. 07
1050	I	0	56	2	1	1	1	2	89	185	25	2.39	. 52	1.05	. ${ }^{3}$. 05	. 09
1051 99620515	1	0	644	2	$!$	$!$	1	2	9\%	199	35	2.5	. 72	1.25	. 01	. 08	.11
105799620711	8	0	219	2	1	$!$	i	2	85	161	41	2.41	. 9	1.	. 13	. 15	. 09
105599620893	22	0	485	3	1	!	1	2	96	118	39	2.3	1.21	1.14	. 01	. 09	. 6
105499620911	1	0	173	3	1	1	1	7	122	114	31	2.15	. 26	. 98	. 02	. 06	. 11
1055 396210 J 1	12	0	101	2	1	!	1	2	7	267	78	1.95	. ${ }^{\text {cos }}$	1.35	. 01	.08	.08
1055 996211 31	6	0	179	2	1	1	1	3	11	590	39	1.78	. 5	. 9	. 01	. 08	. 07
105799621213	2	0	95	2	1	1	1	\$	59	196	36	1.53	. 39	. 4	. 02	. 03	. 05
105879621382	1	0	209	3	1	1	1	2	79	199	77	2.1	. ${ }^{\text {c }}$	1.24	. 01	. 1	. 08
1059 995214 13	4	0	525	1	1	1	1	2	68	120	31	1.93	. 55	. 97	. 01	. 88	. 07
106099621518	9	0	425	3	1	1	1	2	62	111	$3{ }^{3}$	1.78	. 64	1.35	. 01	. 08	. 07
106189621633	3	0	80	3	1	1	1	2	106	159	77	5.34	. 37	1.31		. 07	. 05

AEC SHPL? 1.	PH B	CR	AES AES	GhIDE FRIDH
983 396: 6 . 5 ?	2	41		100506 9200
P64 3961:7 . 205	11	57		10100E 7200
795 396119.075 -	7	28		T0150e 9ato
998595119.123 \%	b	22		10200e 3290
787 996120.117 \%	9	34		102E0E 9200
989795171.1455	\bigcirc	5		1025ce 7230 H
989996122.084	12	30		10800E 920011
970 998120.07\%	b	33		10350e 9200n
791.396154 .0495	9	44		10600E 9200
992 906tas .705 ?	7	28		10950E 9200\%
995995126.0528	7	51		105[aE 9700k
994 996527.037 7	6	34		10550e 9200\%
995795128.094 6	6	49		10600E 7200 H
996 495129.247 7	10	38		1065059210 H
$99 \% 996130.1075$	14	50		10760e 9200n
998996151.12910	14	44		107EDE 3200M
999 386132.158	9	13		10800E 9200
1000 995153 . 2525	12	53		10850 9200 H
1001395134.134 d	8	44		10900E 9200k
:002 996135 .06 6	10	46		10950e 9200k
COES 995iz3 .056 6	11	50		110008 72008
304 998157.03 6	16	50		flosae 9t00
.005 9951 ± 8.052 ?	14	56		11100e 92003
005 945159.04 12	18	61		11150 g 9 daH
007986140.02511	7	54		11200E 9200N
008996141.08910	8	\$0		11200E 9600\%
009996142.075 b	9	51		ISISDE S400N
010996143.0345	8	47		11100E 9400,
011998544 ,085 6	11	60		Sl050e 7400 K
012906145.0589	12	54		11000e 94003
Q1* 995145 .079 7	11	59		109505 9400w
014996147.0535	7	52		10900E 94001

APPENDIX VI: Geochemical Analytical Procedures

The geochemical samples were shipped to Acme Analytical Laboratories Ltd. of Vancouver for analysis.

All the rock, soil and silt samples were analyzed for the thirty element I.C.P. package (Mo, $\mathrm{Cu}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Ag}, \mathrm{Ni}, \mathrm{Co}, \mathrm{Mn}, \mathrm{Fe}, \mathrm{As}, \mathrm{U}, \mathrm{Au}, \mathrm{Th}, \mathrm{Sr}$, $\mathrm{Cd}, \mathrm{Sb}, \mathrm{Bi}, \mathrm{V}, \mathrm{Ca}, \mathrm{P}, \mathrm{La}, \mathrm{Cr}, \mathrm{Mg}, \mathrm{Ba}, \mathrm{Ti}, \mathrm{B}, \mathrm{Al}, \mathrm{Na}, \mathrm{K}, \mathrm{W})$ and gold.

The Acme methods are as follows:
a) I.C.P. Package: a 0.500 gram sample is digested with 3 ml . 3-1-2 ($\mathrm{HCL}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{O}$) at 95° for one hour and is diluted to $10 \mathrm{ml}^{3}$. with water. This leach is partial for $\mathrm{Mn}, \mathrm{Fe}, \mathrm{Ca}, \mathrm{P}, \mathrm{Cr}, \mathrm{Mg}, \mathrm{Ba}, \mathrm{Ti}, \mathrm{B}, \mathrm{Al}$,
Na, K and W . The Au detection limit is 3 ppm .
b) Geochemical Au: 10.0 gram sample ignited, hot aqua regia leached, MIBK extraction and analyzed by Atomic Absorption.

RULES FOR CHOICE OF SIZE CODING OR CONICURING INIERVALS

(1) Examine both arithmetic and logarithmic histograms for each geochemical survey. Choose the histogram which most closely approximates a normal (or lognormal) distribution. If several populations are present on the histogram, subjectively divide the data into a series of (overlapping ?) normal or lognormal distributions. Always avoid interpreting histograms which are strongly skewed. Portions of arithmetic or logarithmic histograms may be chosen over specific metal concentration intervals, if this allows for the best portrayal of the data in graphitical form.
(2) Choose, as two of the coding intervals, points which represent between 90% and 95%, and 95% and 97.5% of the data; two different numbers. These choices highlight from 1 in 10 to 1 in 20 samples which are considered slightly anomalous and definately anomalous, respectively. These limits are optimistic in that the two categories are defined to be anomalous regardless of the distribution of values on the remainder of the histogram. A rigorous statistical approach would suggest that only values above the 97.5 percentile should be considered anomalous. Choice of any of the above percentiles is entirely subjective and meant to highlight the highest values of the survey.
(3) Divide the remaining portion of the histogram into recognizable populations. The dividing point of each of these populations is chosen as a coding interval. Artifacts intzoduced as a consequence of detection limit considerations are ignored. These artificial breaks in the histogram can be recognized by referring to the laboratory reports and scanning data results.
(4) For each population, choose one or two numbers which correspond to the 90% and 95% cumulative frequencies for that population (1 in 10 and 1 in 20 samples for that population). These will also be used to represent anomalous conditions for each population. Coding intervals can be no closer than 2 x the detection limit for each element being considered.
(5) A maximum of six numbers can be chosen to plot symbol maps. This number is dictated by the ability to present data in graphical form with sufficiently different symbol sizes for them to be easily distinguishable, particularly if maps are to be reduced. The seven defined concentration classes are normally sufficient to represent geochemical data on a map. More intervals can be chosen if data are to be contoured. Avoid choosing arithmetic intervals without considering rules (1) and (4).
(6) Maps plotted using the preceeding instructions might result in two areas being distinguished from each other by a relatively uniform density of symbol sizes, yet only poor contrast anomalies are indicated. Difference between the two areas, A and B, might be due to underlying geology, overburden character, soils etc. Whatever the cause, the data are not well displayed. If the underlying control distinguishing A and B can be recognized, the data can be divided and re-interpreted following steps (1) to (5). Two sets of maps can be drawn, or both sets of interpreted data can be plotted on a single map. For such superimposed geochemical maps, symbol sizes lose their absolute meaning but assume a more important stance, that of reflecting anomalous conditions regardless of the underlying control. To illustrate, consider the case where A and B are areas underlain by very different geology. Anomalous conditions for low background rock types might be concentrations which are much lower than average values for the high background rock types. Nevertheless, anomalies defined in each area are considered significant. Reliance on absolute concentrations can be misleading in such cases.

1. Geochemical Analysis:
i) 5 rock samples (sample prep., I.C.P. and Au analysis ($\$ 14.17 /$ sample)

$$
=\$ 70.85
$$

ii) 80 soil samples (sample prep., I.C.P. and Au analysis e $\$ 10.85 /$ sample)
$=\$ 868.00$
Total Geochemical Analysis Costs: $=\$ 938.85$
2. Helicopter
(Bell 206) $5.8 \mathrm{hrs}$. a $\$ 564 / \mathrm{hr} . \quad=\$ 3,271.20$
3. Airfares:
(Vancouver to Prince George, return) $=\$ 393.20$
4. Taxi:
(Vancouver to airport) $\quad=\$ 12.00$
5. 4×4 Vehicle:
(includes fuel) 3 days @ $\$ 99 /$ day $=\$ 297.00$
6. Computer Processing of Soil/Silt Data:
(80 samples @ $\$ 2 /$ sample) $\quad=\$ 160.00$
7. Wages:
i) R. Pegg (project geologist)

5 days e $\$ 240 /$ day
(July 6,9,11,13,14) $=\$ 1,200.00$
ii) S. Hoffman (senior geochemist)

6 days \& $\$ 300 /$ day
(June 20, July 6,9,11,13,14) $=\$ 1,800.00$
iii) V. Malo (geological assistant)

3 days @ $\$ 61.60 /$ day
(July 6,9,11) $=\$ 184.80$
8. Room and Board:

9 man-days a $\$ 55 /$ man-day $\quad=\$ 495.00$
9. Report (drafting, typing, copying, etc.) $=\$ 500.00$

APPENDIX IX: Re-Interpretation of the 1984 Soil Data

The soil data identified an area of anomalous Au and As , surrounded by weakly anomalous (150 to 200 ppm) Cu values. A significant Sb anomaly was not outlined, although a 1 point value ($4-6 \mathrm{ppm}$) is located near a 1 cm wide galena vein which carries $16.1 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ and $265 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$. Several Pb soil anomalies lie within 1 km of this occurrence, see attached sketches.

