	1025	and and a stand of the provided of the second	
		·· -	1
at .		· · ·	ĺ
		No. and the second second	

GEOLOGICAL and GEOCHEMICAL

REPORT

on the RAIN PROPERTY

(PHIL 17, RAIN 1 and RAIN 2 Claims)

Omineca Mining Divison N.T.S. 93N/1E

Latitude: 55°-02'N Longitude: 124°-03'W

FILMED

Located approximately 60 km north northeast of Fort St. James, British Columbia

> Owner : BP Minerals Limited Operator: BP Minerals Limited

SUB-R	CORDER CEIVED
TCO	6 1988
M.R. # VANCO	\$

R. Pegg, BASc., P. Eng. S. Hoffman, PhD.

For: BP Minerals Limited 700 - 890 West Pender Street Vancouver, B.C. V6C 1K5

GEOLOGICADLy, B9R®ANCH ASSESSMENT REPORT

| /,

BFVR 88-3

RESUME

The RAIN property, located 66 km north of Fort St. James, B.C. covers an area of high magnetic relief with coincidental government arsenic-antimony stream sediment anomalies. The claims are primarily underlain by Takla Group (Upper Triassic) volcanics and sediments. BP Minerals conducted geological and geochemical surveys over part of the property during 1988. A summary of results from this program are as follows:

- additional ground was staked to the west and north as a result of re-interpretaion of previous geochemical data;
- 1988 soil sampling program contained 10 samples with results ranging from 50 to 1010 ppb Au;
- Au soil anomalies appear to be peripherally associated with elevated As, Sb and Cu values;
- Moss mat sampling results indicate that some of the Au is introduced along the western portion of the tributary creek that cuts the PHIL 17 claim;
- the preliminary soil sampling indicates that the anomalous gold values may correspond to the contact of Takla Group volcanic flows and fragmentals;
- minor to moderate amounts of disseminated and fracture filling pyrite and pyrrhotite and traces of chalcopyrite were observed in the volcanics
- preliminary rock sampling of the few observed exposures failed to locate a source(s) for the gold soil anomalies.

i

TABLE OF CONTENTS

	Page No.
INTRODUCTION	1
 Location, Access, Physiography and Climate Property Status History of Exploration 1988 Work Program Summary 	1 1 2 2
GEOLOGY	2
 Regional Geology Property Geology Mineralization and Alteration 	2 3 4
GEOCHEMICAL SURVEY	4
 Rock Sampling Topography, Landscape and Overburden and Soils Sampling Program Sample Preparation, Analysis, and Interpretation Description of Results - Soils Description of Results - Moss Mats Discussion of Results - Soils and Moss Mats Discussion of Results - Rocks 	4 5 6 7 12 14 15
CONCLUSIONS AND RECOMMENDATIONS	17
BIBLIOGRAPHY	18

LIST OF FIGURES

Following Page No.

FIGURE	1	:	Property Location Map and Regional Geology	1
FIGURE	2A	:	Soil Sample Locations	6
FIGURE	2в	:	Moss Mat Sample Locations	6
FIGURE	3(A-W)	:	Soil Geochemical Survey Results	11
FIGURE	4(A-W)	:	Moss Mat Drainage Geochemical Survey Results	13

LIST OF APPENDICES

APPENDIX	I:	Geochemical Analytical Procedures	18
APPENDIX	II:	List of Geochemical Data - Soils and Moss Mats	18
APPENDIX	III:	Method of Histogram Interpretation	18
APPENDIX	IV:	Field Personnel	18
APPENDIX	V:	Statement of Qualifications	18
APPENDIX	VI:	Rock Sample Descriptions	18
APPENDIX	VII:	Rock Sample Results	18
APPENDIX	VIII:	Statement of Expenditures	18
APPENDIX	IX:	Re-Interpretation of the 1984 Geochemical Data	18

LIST OF PLANS

In Pocket

- PLAN 1: Property Geology and Rock Sample Locations. 1:10,000
- PLAN 2: Histograms Soil Survey

INTRODUCTION

In 1988, BP Minerals Limited conducted geological and geohemical surveys over part of the PHIL 17 claim.

The exploration target was economic precious metal <u>+</u> base metal mineralization.

1. Location, Access, Physiography and Climate

The RAIN property is located south of Rainbow creek, approximately 66 km north of Fort St. James and 11 km east of the Fort St. James - Manson Creek road.

Access is by helicopter from Fort St. James.

The PHIL 17 claim covers an area of moderate relief with elevations ranging from 1150 to 1450 metres. With the exception of swampy valleys near the centre and along the west side of the claim, the slopes are covered by a thick growth of balsam, fir and spruce trees.

The property receives a moderate amount of precipitation during most of the year.

2. Property Status

The property consists of 3 claims (39 units) whose registered owner is BP Minerals Limited of Vancouver. These claims have been placed into a single claim group, as follows:

RAIN Group (39 units)

Name	Record No.	(Tag No.)	No. of Units	Date Recorded
PHIL 17	6486		20	July 20, 1984
RAIN 1		(108075)	15	July 15, 1988
RAIN 2		(108074)	4	July 15, 1988

3. History of Exploration

In August of 1984, BP conducted preliminary geological mapping and geochemical sampling. The PHIL 17 claim was staked following the release of results from a government stream sediment survey and covers an area of high magnetic relief with coincident arsenicantimony anomalies.

4. 1988 Work Program

Re-interpretation of previous soil sample results was completed during June of 1988. Geological mapping and soil/moss mat/rock sampling surveys were conducted in July.

GEOLOGY

1. Regional Geology

The RAIN property is located within the Intermontane Tectonic Belt in an area underlain by the Upper Triassic Takla Group. This group is comprised of mainly basic volcanics and sediments that formed within the Quesnel Trough, a north-west trending graben lying between highly deformed Proterozoic and Palaeozoic strata to the east and deformed Palaeozoic strata to the west. The major structure in the area is the Pinchi Fault which lies 67 km west of the property and demarks the western boundary of the Quesnel Trough.

2. Property Geology

The property is underlain by north-west trending and moderately dipping andesitic flows, tuffs and breccias. The fragmentals contain lesser amounts of interbedded flows. The fragmental rocks are green to black in colour, polylithic and contain abundant augite hornblende and plagioclase phenocrysts. The flows are green augite (\pm plagioclase \pm hornblende) porphyries which locally display flow brecciation.

A sedimentary unit consisting of black argillite, greenish tuffaceous sandstone and siltstone has been reported to the north-west of the PHIL 17 claim.

Light to medium grey-green, fine-grained feldspar porphyry and darker grey, medium-grained hornblende (<u>+augite</u>) diorite dykes/sills cut the section.

Humphreys postulated a north-east trending fault separating the sediments from the volcanics. There is a possibility of folding in the eastern part of the property where the volcanics are more strongly foliated. He also reported weakly developed graded bedding in the tuffs which suggested younging to the north-east.

3. Mineralization and Alteration

A 15 metre wide carbonate altered feldspar porphyry dyke was observed just north of the creek cutting the centre of the claim. This zone contains numerous discontinuous, milky white quartz veinlets up to 7 mm wide. Pyrite cubes and blebs, up to 5%, were observed.

Approximately 650 metres to the west, a very fine-grained, medium to light grey, siliceous and pyritic tuff was observed. This appears to be a shear-related zone with 1 to 5% pyrite fracture fillings and lesser disseminations, moderate amounts of carbonate fracture filling and minor jarosite staining.

Weakly magnetic, fine-grained, disseminated pyrrhotite was observed in most of the volcanics in amounts of up to 5%. Minor disseminated pyrite was also noted. Trace amounts of chalcopyrite was observed locally in the flows and flow breccias.

GEOCHEMICAL SURVEY

1. Rock Sampling

During the course of geological mapping, seven grab samples were collected for geochemical analysis. This was done to test for significant gold conentrations and/or possible indicator elements. Samples were shipped to Acme Analytical in Vancouver for analysis of 30 elements, following an aqua regia digestion, by ICP methods and for Au (aqua regia). Analytical methods are reported in Appendix I and a listing of data are found in Apendix II.

2. Topography, Landscape, Overburden and Soils

Although maximum relief within the grid area is only about 100 m (300 feet), the landscape is dominated by several major valleys the most prominent of which is a "V" shaped tributary of Rainbow Creek which flows to the west. Overburden along the east-west trending valley comprises residual or talus materials, and is locally derived from outcrops which are poorly to intermittantly exposed.

Away from the valleys, the landscape is relatively flat along grid lines. Overburden comprises sandy till and/or outwash, and at many sites it may be relatively thick, perhaps too thick and too exotic in origin to enable anomalous signals from underlying bedrock, if present, to be dispersed to surface soils. Outwash (alluvial) deposits are common along Rainbow Creek, but these may be thin as outcrop is intermittantly exposed. Elevation thus cannot act as a guide to where unfavourable outwash deposits might be found on the property.

Soils are generally well drained, and soil formation has proceeded to the stage of podzols over most of the landscape. A podzolic profile on the property is characterized by:

- A thin LH horizon 0-5 cm thick comprising partly decomposed leaves and humus;
- A poorly developed, light to medium brown AE horizon 0-20 cm thick representing a zone of leaching;
- 3. A medium red-brown zone of accumulation of Fe oxides, at depths of 20 to 30 cm, representing the horizon of choice on the claim group; and,

4. A medium olive brown BM horizon typically underlying the BF, but also present independant of the BF in more poorly drained portions of the property. The BM horizon was sampled if the BF zone was too thin or absent.

Organic accumulation in bogs were penetrated when encountered at sample sites, although it is likely that this would not be possible without an auger if more detailed sampling is conducted near the central portion of the baseline. Soil profiles in many areas contain abundant stones, making sampling rates slow and could frustrate beneath-bog sampling.

3. Sampling Program

To followup Cu, As and Sb anomalies along the east-west tributary of Rainbow Creek, a 1.0 km baseline was established from a survey marker along Rainbow Creek to the east. Crosslines were established at 200 m intervals, and samples were taken at 50 m spacings. Station locations along the baseline and along crosslines were marked on an aluminum tag and affixed at each station. Sample numbers were also written onto the aluminum tags. One hundred and eight soil samples were collected (Fig. 2A). In addition, 6 moss mat samples were taken along the east-west tributary creeks (Fig. 2B).

4. Sample Preparation, Analysis, and Interpretation

Samples were placed in wet strength Kraft paper envelopes onto which was written the sample and an archive number, on site. Samples were air-freighted to Vancouver and submitted to Acme Analytical for ICP and Au geochemical analysis on splits of the minus 80-mesh fraction. Analytical procedures are found in Appendix 1 and a list of geochemical data included in Appendix 2.

The significance of the geochemical numbers returned from the laboratory was established with reference to procedures of Appendix 3 applied to histograms of Plan 2.

5. Description of Results - Soils

1. Gold (Fig. 3A)

Most Au values are less than 4 ppb. An anomaly threshold of 12 ppb defines 3 multisample anomalies. Ten samples report values of 50 ppb, and two samples contain about 1000 ppb Au. Anomaly 2 in the southwest is the largest and highest contrast feature. Gold anomalies are not characteristic of the tributary valley.

Ag (Fig. 3W)
 All samples report values at detection limits.

3. As (Fig. 3B)

As enhancement is prominent along the east-west tributary. Two As anomalies are defined, south of Au zone 2 (As anomaly 3) and north of Au zone 1 (As anomaly 1). The southwestern As anomaly is a high contrast feature against a background of less than 4 ppm.

4. <u>Sb</u> (Fig. 3C)
One sample contains detectable Sb levels of 16 ppm. That sample is also very As-rich.

<u>Bi</u> (Fig. 3D)
 All Bi levels are at detection limits.

6. Mo (Fig. 3E)

With one 13 ppm exception, all Mo values are at detection limits.

7. Cu (Fig. 3F)

Four Cu anomalies are defined. The largest zone, No. 2, follows the tributary creek and becomes a larger feature along the westernmost line. In fact, the westernmost line is associated with a majority of above threshold (>55 ppm) values, to a maximum of 100 to 200 ppm. Cu anomaly 1 is the weakest feature, but it correlates with As anomaly 1.

<u>Pb</u> (Fig. 3G)
 Pb levels are not exceptional. Highest values follow the creek valley and lie along the westernmost line.

<u>Zn</u> (Fig. 3H)
 Zn contents also are not exceptionally high. The Zn pattern follows that of Pb.

10. Fe (Fig. 3I)

The Fe distribution resembles that of Cu, Pb and Zn. Enhanced levels follow the east-west valley and are found in the southwest. Maximum values are 8 to 11%, and the highest value is in the same sample that contains the most As and Sb.

11. Mn (Fig. 3J)

Mn has accumulated to its greatest levels of 550 to 4000 ppm along

the tributary valley. Weakly anomalous conditions only are found on the plateau region (400 to 1000 ppm).

12. Co (Fig. 3K)
Co-rich soils follow the valley base of slope zone. High Co
values are also found in the northwest and southwest.

13. <u>Ni</u> (Fig. 3L)
Ni backgrounds are highest in the west, but characteristic
patterns are not evident.

14. <u>Cr</u> (Fig. 3M)

Cr contents do not vary greatly over the grid area. Highest values characterize the westernmost line and lie north of the east-west valley.

15. <u>V</u> (Fig. 3N) V follows Fe.

16. Ba (Fig. 3Ø)

The Ba distribution is somewhat noisy, although large Ba-rich zones are defined along the east-west tributary creek (No. 1 and 4) and in the southwest (No. 3).

17. <u>Sr</u> (Fig. 3P)

Sr has accumulated along the westernmost portion of the tributary creek to levels in the 50 to 350 ppm range. Weaker Sr

accumulation is seen in zones 1 and 2 in the north, and anomaly 4 in the south.

18. Ca (Fig. 3Q)

The Ca distribution correlates strongly with that of Sr, except that areas of enhanced values are more striking. Unit 16 may be a Ca-rich unit south of the east-west creek. Large portions of regions underlain by unit 1a are Ca-rich north of the creek. The Ca distribution is homogeneous and maximum values are in the 0.7 to 0.8% range.

19. Mg (Fig. 3R)

Mg enhancement follows the tributary creek, becoming stronger in character westward. Background Mg contents are high in the north.

20. Al (Fig. 3S)

Most enhanced Al values lie along the westernmost line, suggesting the possibility of analytical error. Values are also enriched along the tributary valley.

1

21. K (Fig. 3T)

One K anomaly is defined along the westernmost portions of the tributary creek.

22. Ti (Fig. 3U)

Ti enhancement characterizes the westernmost line, with 200 m of enhanced values centering on the east-west creek. Lowest Ti values follow the same creek in the east. 23. P (Fig. 3V)

Above background and anomalous P contents lie along the westernmost line, the east-west trending valley, and in the southwest portion of the grid.

2

6. Description of Results - Moss Mats

Moss grows on the north facing slopes of boulders in some creeks draining the PHIL 17 claim. Mats of this material promote accumulation of fines travelling in suspension. Sample collection was typically about 5-10 cm above normal channel discharge, reflecting fine accumulation during flood periods.

Moss mat data are too few in number, at 6 samples, to merit construction of histograms. Thus, concentration scales for the size coded dots presented on Fig. 4 were made the same as for the stream sediment survey conducted in 1984 (Humphreys, 1984). Data is thus described relative to that work.

The data suggest Au contents in both media are comparable, with an anomaly noted in the lower reaches of the tributary stream. The high Au values are not accompanied by elevated Ag, As, Sb, Bi Mo, Cu, Pb or Zn contents; in fact concentrations of these elements are lower than in complimentary sediment work (Humphreys, 1984). Fe data are also uniformly low, but Mn contents overlying unit 1a are exceedingly enriched, confirming drainage data. The Mn distribution also shows good downstream decay characteristics, as does Co. Ni, Cr, V, Ba, Sr, Mg, Al, Ti, and P also report values which are uniform but at much lower levels than adjacent stream sediment. By contrast, Ca and K are significantly enriched.

Moss mat sampling represents an experimental procedure. Consequently the significance of these data are uncertain. The

distributions appear homogeneous, which is a good finding, and many of the difference may reflect analytical parameters. The Ca and K relationship might be due to organic contaminants (i.e., the moss). Lack of Al enrichment is puzzling as moss mats should contain more fines (i.e., clays), but perhaps this reflects a preponderance of silt sized material in the mats (rather than clays).

7. Discussion of Results - Soils and Moss Mats

The PHIL-17-RAIN property soil program in 1988 was conducted to fulfill assessment requirements and test a 2X background Sb anomaly along the eastern half of the tributary valley. Cu and As anomalies were also documented along the western portion of the creek. Au anomalies had not been defined in this area of claims prior to this study but, in view of the potential role of these elements as pathfinders for Au, this followup program was undertaken. An orientation moss mat survey was also undertaken.

The soil grid is reconnaissance at a 50 m X 200 m density, and therefore it is difficult to be definitive concerning trends running from one line to the next. With this in mind, several samples containing outstanding Au values lie along the westernmost line, including 2 values close to 1 gm Au. The Au anomalies appear periferally associated with high As and Sb as well as Cu concentrations. Other elements exhibiting a positive correlation with the largest and highest contrast Au zones, in the southwest, include Pb, Zn, Fe, Ni, Cr, V, Ba, Al and P, either in a direct or periferal relationship. The moss mat survey indicates Au as being introduced along the western portion of the tributary creek.

The east-west trending tributary of Rainbow Creek is reflected by accumulation of many elements, including As, Cu, Pb, Zn, Fe, Mn, Co, Ba, Mg, Al, K and P. Ti levels are generally depleted in this zone. These distributions probably reflect a residual soil or talus soil environment developed on local bedrock which has a

higher background metal content than the glacial deposits on plateau regions away from the creek. Except for their prominence on maps not exhibiting topography, the east-west "anomalies" are not considered worthy of followup. Moss mat results appear lower than corresponding stream sediment data from 1984 (Humphreys, 1984), but they are homogeneous. Too few samples of moss mat were collected to carry the interpretation further.

In the landscape-topography section, it was noted that portions of the overburden, at any elevation, could comprise outwash as well as till. It is possible that negative results over eastern sampling may be due to adverse overburden conditions for soil sampling rather than being due to a lack of mineral potential of underlying bedrock. The problem is also likely to be encountered along Rainbow Creek in the west where continued sampling is warranted.

The preliminary evaluation has confirmed the reconnaissance anomalies which stimulated the work and give creedance to the BCDM RGS anomalies which were initially responsible for ground acquisition. Continued followup is recommended.

Discussion of Results - Rocks

Sample results from the seven collected grab samples revealed only elevated values in a few elements.

Sample 705005 contained 24 ppm Mo, 13 ppm As and 7 ppb Au. This

is a sample of a pyrrhotite-bearing augite flow breccia (unit 1a), very near the assumed contact with andesitic fragmental rocks (unit 1b).

Sample 705011 is a sample of pyritic fracture zone within a very fine-grained siliceous tuff (unit 1b). This sample contained only an elevated Mo content (13 ppm).

CONCLUSIONS AND RECOMMENDATIONS

Although sulphide-bearing volcanics are present within the claim group, no economic mineralization has been found to-date.

Preliminary sampling has indicated that a potential source for the geochemically anomalous gold values may be present within the claim group. The gold appears to be associated with peripheral, elevated As, Sb and Cu values.

The most prominent gold soil anomaly corresponds to a pyrrhotitebearing augite flow breccia which contains elevated Au and As values. This also corresponds to an assumed contact between andesitic flow and fragmental rocks which should be investigated further.

The lack of outcrops on the property indicates the need for additional soil sampling in order to investigate mineral potential throughout the claim group. This program would involve a line spacing of 100 metres, west of L106E to the Rain 1 claim west boundary, and extension of lines to the north and south boundaries of the claim group. Soil samples should be collected at 50 metre intervals along the lines.

The soil grid and the acquisition of recent airphotography will help with control for geologic mapping and rock sampling which should cover the entire claim group.

Respectfully submitted,

Rex Pegg, BASc., P.Eng.

BIBLIOGRAPHY

Humphreys, N., 1984 : Summary Report on the 1984 Geological and Geochemical Exploration Activities - Phil 17 Claim.

.

.

1

APPENDIX I: Geochemical Analytical Procedures

• •

.

,

Geochemical Analytical Procedures

The geochemical samples were shipped to Acme Analytical Laboratories Ltd. of Vancouver for analysis.

all the rock, soil and moss mat samples were analyzed for the thirty element I.C.P. package (Mo,Cu,Pb,Zn,Ag,Ni,Co,Mn,Fe,As,U,Au,Th,Sr,Cd, Sb,Bi,V,Ca,P,La,Cr,Mg,Ba,Ti,B,Al,Na,K,W) and gold.

The Acme methods are as follows:

- a) I.C.P. Package: a 0.500 gram sample is digested with 3 ml. 3-1-2 (HCL-HNO₃-H₂0) at 95° for one hour and is diluted to 10 ml. with water. This leach is partial for Mn,Fe,Ca,P,Cr,Mg,Ba,Ti,B,Al,Na,K and W. The Au detection limit is 3 ppm.
- b) Geochemical Au: 10.0 gram sample ignited, hot aqua regia leached, MIBK extraction and analyzed by Atomic Absorption.

,
APPENDIX II: List of Geochemical Data - Soils and Moss Mats

,

¢

_

1-7	SAMPLE	TYPE

GF	INFRAL									LIST 1
1.7		1_7		1_7					•	
1-1	SAMPLE TYPE	1-2	SAMPLE TYPE Cont.	1-2	<u>50</u>	DEC TIPE CONE.	в	PROJECT IDENTIFICATION	1	INTRUSIVE NUCKS
	10. Stream water	51.	rich samples or when 2 samples	86.	Dra	annel semple/split core		A.B.C. etc properties.	-1-	QUART2 RICH Granite
	12. Drainage ditch sediment	••	taken at same hole) From holi ov soores holl	87.	Dri	ili sludge		anomalies. (List 6)	2	QUARTE MONZONITE
	 15. Neavy mineral concentrate 20. Seepage [spring] sadiment 	54.	Groundwater sample	•89.	Rig	gh grade sample	9	DUPLICATE SAMPLES	3	Granodiorite Quartz diorite
	21. Seepage (spring) water	55.	Deep overburden sample	•90.	Spe	ecial sample-specify		Label duplicates as 1,2, etc.	-7-	INTERMEDIATE
	30. Lake sediment - lake center 31. Lake water	58. 60.	Talus fines	99.	Sta	Anderd Sample			1	Syenite
	32. Lake sediment-near shore	63.	Talus blocks-hand sample	*C144		y label if high grade.	10-12	SAMPLER IDENTIFICATION		Monzonite
	40. Bog-upper 100 cm 41. Bog-stannant water	64. 68.	Talus blocks-chips Heavy mineral concentrate		Sp	cial Note	110-11	'(List 7)	4	Gabbro
	42. Bog-below 100 cm	70.	Biogeochemical sample		FOI	r keypunchers benefit. 7's huld be prossed = and O's	13-15	SAMPLE NUMBER	-1-	FELDSPATHOID RICH
	4). Bog-organic material at	75. AD	Radon Redrock band Specimen		110	eccer) should be slashed Ø	19-24	EAST COORDINATE	1	Nepheline Syenite
	44. Bog-mineral horizon	81.	Bedrock chips + hand sample	a' 4			25-31	NORTH COORDINATE	2	Sepheline Monzon.
	50. Soll-top of the B horizon	82.	Float hand specimen	3-4			34-38	NTS MAP SHEET NUMBER	-40	OLTRABASIC
	if B horizon absent]	84.	Drill core specimens	5-7	280	OJECT NUMBER		Example: record 92F/3 49	-50	CARBONATITES
								42103	-6-	SPECIAL TYPES
S	TREAM SEDIMENTS								2	Aplite
40	SAMPLE ENVRIONMENT	45	OVERBURDEN ORIGIN Cont.	53-55	5	VERAGE DEPTH OF STREAM-CM	68	ORGANIC FRACTION COmplete	3	Lamprophyre De ve
	1 Side of crest		7. Take and ment-clay					where sediment composition is	5	rrap Feisite
	4. Niddle of stream		8. 7ajuş	56	51	TREAM VELOCITY		unusual)	6	Intrusion Brecci.
	9. COmposite across stream		9. Residual *use only if		- L.	. Dry		posed leaves, twigs, etc.	7	JIADASE
	A. 3011		0. Gravel cannot be		3	. Slow		4. Large amount of weil-de-		LIST 2
41	WATER HORKINESS		E. Soil* identified		4	. Moderate		Composed Vegetation 5. Moss	2	VOLCANIC ROCKS
	alans-Clear 1. Nurky (report findings in	46	BEDROCK		5.	. Fast . Turbulent		7. Sediment grains coated in	-0-	UNDIFFERENTIATED
	note section)		H Hungalingd					organic matter	-1-	BASALT
42	PRECIPITATE		P. Present within 100m upslope	57	<u>1</u>	NDICATE AS TRIBUTARY		C. Jake sectment Outer	-2-	ANDESITE
	Blank-none		D. Present within 100m down-		R.	. Stream enters on the right	69	MINERAL FRACTION *(Complete	-1-	DACITE
	1. Record colour (report		B. Underlies sample site		L	. Stream enters on left		usuall	-4-	BHYOLITE
	in immediate vicinity in		G. Gossan			looking down main stream		3. Notable content of mafic		NILODILD
	Stream bed. If heavy		F. Fe surface stains S. Radinactivity	58~6(OCAL BEDROCK COMPOSITION		minerals, resistates 4. Very high content of	-,-	JUNNEZ CALLE
	precipitate, sample separately as sample type			10 0	- <u>-</u>	stymare.use lacts -d		mafics. resistates	-0-	LATITE
	90)	47-44	a bu					SCINT OWETER NUMBER	- / -	TRACHTE
43	OVERBURDEN TRANSPORT	49	SAMPLE TEXTURE	61-66	6 <u>C</u>	OLOUR	17-76	CANNA CONNET AT CAMPLE DEPTH	-8-	PRONOLITE
	L. Local M. Hired local		Ø. Organic-decomposed		×.	unsell notation or	12-13	GRAMA COUNT AT SAFE DE CEPTIN	-9-	NEPHELINE LATITE
	E. Extensive 6 extensive		1. Clay 2. Silt and fine sand		91	DBreviation		(make note it landscape is affecting damps count)	2	Prophyricic flow
	U. Unknown		J. Sand	67	<u>c</u> (ONTAMINATION	76	RICK)	Crystal tuffs
45	OVERBURDEN ORIGIN		4. Gravel 6. Cemented		6	Lank - none L - logging		Star of bedrock on unfluen-		Lapilli tuffs
	1. Till-angular boulders		7. Precipitate		ç	- culvert M - mine		ing seine count	6	Agglomerate
	boulders		8. Twigs or undecomposed		Ġ	- garbage I - trench	77-76	APPROXIMATE SLOPE ANGLE		Lapilli breccia Biock breccia
	3. Lake sediment-sand/silt	10.0			н	- house B - other - spec.	70.00		9	Turbidite
	 Alluvium-stream deposit Pest-boq 	50-52	Decinel point in col 51 (or col		4	- industry	79-HC	APPROXTRATE SLOPE DIRECTION		LIST 3
	6. Coliuvium*		52 if stream > 10m widel)	SEDIMENTARY ROCK
50	א וור								-1-	ARENACEOUS
									1	Siltstone Mudstone
40	SITE TOPOLRAPHY	45	OVERBORDEN SHIGIN	35-50	<u> 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</u>	DIL HORIZON	20	SUIL TYPE CONT.	3	Greywake
	1. Hill top 2. Gentle slope		 Till-angular boulders Outwash-sandy, rounded 		11	N. Lear, humus layer, unde- composed vegetation lying		L, LUVISOL-BT MOTIZON diagnostic	4	Sandstone
	1. Steep slope > 200		boulders			on the ground surface		P. Podzol-BF horizon	6	Conglomerate
	4. Base of slope 5. Walley floor		3. Lake sediment-sand/silt 4. älluvium-stream deposit			ido not sample) H. Dark grey to black organic		diagnostic 8 Scinisol-AM borizon (S	-2-	ARGILLACEOUS
	6. Depression		5. Pest-bog			-rich mineral borizon		only 8 horizon of profile	1	Shale
	7. Level		6. Collavium			usually no deeper than 15cm		R. Regosol-little or no soil	2	Argillite
	9. 809		8. Talus			ido pot sample)		borizon, only LH (meybe)	-1-1	Linestone
41			9. Residual 6. Secto boulet		Ą	E. Grey to white (occassionally brown) leached menoral	,	and C horizon	2	Dolomite
••			B. Seepage Boils*			horizon near ground sur-		diagnostic	-4-	CHEMICAL PRECIPY
	2. Tundra-dry		C. Boulder field*			face, usually sandy;		Ø. Organic soil-bog vegeta-	1	Chert Nazble
	3. Tundra-swampy		D. GRAVET-			horizon at depth			3	Iron Formation
	4. Grassland, meadows 5. Peat mounds		 Use only if former origin cannot be identified. 			(do not sample)	58-60	Estimate-use Lists 1-4		LIST 4
	6. Bog in depression	46	SEDBOTX		BI	H, Black, organic-rich <u>min-</u>	51-66	COLOUR	4	METAMORPHIC ROCK
	7. forest-consferous 8. Forest-deciduous		M Hypersity and			greater than 15cm		Munsell notation of		
	9. forest-mixed		P. Present within 100m up-			(do not sample) E Sad-brown isometrich		abbrevation	-10	FINE GRAINED COM
	A. Alder or willows		slope		•	horizon	67	CONTAMENATION	-2-	PHANEFITIC Meta quartzite
	C. Desert, semi-arid		slope		B	T. Brown, clay-rich horizon		Blank - none L - logging	z	Marble
	D. Barren		8. Underties sample site		64	saturated most of the		L ~ CULVERL N → Mine F - farming R → read	3	Soapstone Norn(ele
	E. Talus fan F. Bank soil-stream		G, GOSSAN F. Fe surface stains			year, identified by red		G - garbage T - trench	5	Serpentine
	G. Sant soll-lake		R. Radioactivity		p.	brown mottles M. Brown borizon which is		H - house g - other - apac. I - industry	6	Skarn Amphiliph
	K. Road cut	47-4	в <u>ри</u>		P	only slightly different			8	Eclogite
42	SITE DRAINAGE	49	SAMPLE TEXTURE			in appearance from under-	68-69	CUARSE FRAGMENTS	-1-	HECHANICAL
	1. Dry		0. Organic muck		ċ	1,62.63, etc. Parent material	70	A. ADDULAR	1	Nylonice
	2. Moist		1. Fibrous, peaty organic			for soil		A. Rounded	2	flaser Augen
]. Wet 4. Saturated		matter 2. Verv sandv		¢	A. White calcium carbonate precipitate in C borizon		S, Subrounded M. Mixed above types	4	Oltramylonite
	··		3. Sandy		ø	1.02.0). etc. Bog sample at	.,	COLUMN CONTRACTOR	-40	SLATE
43	OVERBURDEN TRANSPORT		4. Sand-slit 5. Sand-slitecian		-	versous depths T. Talus fines	**	COMPANYED TO A COMPANY	-50	PHYLLITE
	L. Local		6. Salt	. 1	-		12-75	Scint reading at ground	-60	SCHIST
	B. ARCENBAVE		1 0.1 h +1		2			to any second parts.		

D. Unknow M. Nixed

44 WATER SOVEMENT

- S. Seepage
- 8. Clay 9. Gravel
- 50-51 THICKNESS OF SOLL SAMPLE INTERVAL-CM
- 52-54 BOTTON OF SOIL SAMPLE INTERVAL-
- C. Chernozem-prairie Soil usually under grassland or meadow, thick AH >10cm, CA horizon at depth S. Solometr-saline soil, high content of NaCl
- 76
 - ROCK *Star 17 bedrock 15 in-fluencing scint counts
- 77-78 APPROXIMATE SLOPE ANGLE
- 79-80 APPROXIMATE SLOPE DIRECTION
- FELDSPATHOID RICH Nepheline Syenite Sepheline Monzonite ULTRABASIC CARBONATITES SPECIAL TYPES Pegmatite Aplite Lamprophyre Trap Felsite Intrusion Breccia JIADASE LIST 2 VOLCANIC ROCKS UNDIFFERENTIATED BASALT ANDESITE DACITE RHYOLITE QUARTZ LATITE 171 TAL TRACHTE PRONOLITE PROPOSITE NEPHELINE LATITE Fins graaned flows Crystal tuffs Ash cuffs Lapilli cuffs Agglomerate Lapilli brecta Block brecta Turbidits LIST 3 SEDIMENTARY ROCKS ARENACEOUS Siltstone Mudstone Greywake Sandstone Juartzite Conglomerate ARGILLACEOUS Shale Argillite CALCAREOUS Linestone Dolomite CHEMICAL PRECIPITATE Chert Marble Iron Formation Chert LIST 4 NETAMORPHIC ROCKS FINE GRAINED CONTACT PHANERITIC PHANERITIC Meta quartite Marble Soapstone Nornfels Serpentine Skarn Amphibolite Eclogite HECHANICAL Nyionice Flaser Augen Oltramylonite SLATE PHYLLITE SCHIST GNEISS . CNEISS * NICAATITE * *Granate Monzonite Granodiorite Conglomerate Sandstone Augen Granulate Quartz diorite Diorite Amphibolite -7--B---J --2 --3 --4 --5 --6 --7 --8 --9

,

--0

LAKE SEDIMENTS

1. None 2. Low 3. Moderate 4. High 69 TEXTURE Nearshore sands/gravels Deltaic sands/gravels Woody Well decomposed vegetation (bog) 5. Algae 6. Ooze 7. Clay 70 B. Silt/sand 9. Pre-lake deposits 50-52 MAXIMUM LAKE LENGTH IN METRES - 10 53-55 MAXIMUM LAKE VIDTH IN 71] METRES - 10 LAKE DEPTH AT POINT OF SAMPLING-METRES LOCAL BEDROCK COMPOSITION-PRIMARY UNIT 72 Estimate - use lists 1-4 Nunsell notation or abbreviation

6. Colluvium

```
CONTAMINATION
         Black - none L = logging
C = culvert N = wine
F = farming R = road
G = garbege T = trench
         G - garbege
R - house
                            d - other - spec.
         I - industry
68
         LAKESHORE CHARACTER
         B. Boggy
S. Sandy
         N. Hised boggy and sandy/
             tocky
         NUMBER OF HAJOR INFLOW
         STREAMS
         Blank - none
         1. 1
2. 2
         3. 3
4. 4-10
         5. >10
         PROXIMITY OF SAMPLE SITE
         TO MAJOR INFLOW STREAKS
         1. 0-50m
2. 51-100m
3. 101-250m
         4. 251-500m
         5.
               > 500
         SANTLE HOMOGENEITY
         H. Homogenous
L. Layered
T. Turbidite
```

6. Other - specify SEDIMENT CONSISTENCY

S. Soupy F. Firm

9. Other

73 ISLANDS

Blank-none Low density
 Moderate density
 High density

74 PRECIPITATE

- F. Fe oxides-red brown M. Mn oxides-black C. Calcium-carbonate
- -white Ø. Other specify

75) TEATURE

- 1. Fe concretions Nn concretions
 Fe+Mn concretions
- Shell fragments
 Other specify

(76) SEDIMENT ODOUR

- Blank-none H. Hydrogen sulphide F. Fishy Ø. Other - specify

78-80 LOCAL BEDROCK COMPOSITION

Secondary Unit Estimate-use lists 1-4

 Intermittent-poor
 Inclated-well Esolated-poor
 Float . 50 MEATHERING 43 Frost heaved
 Hechanical-plants
 Sheeting(as(c)listion)
 Chemical disintegration
 Hechanical disintegration \$1 (grus) 6. Leached 6. Other 52 44 CHEMICAL WEATHERING 1. Treah 3. Weathered 2. Normal 4. Decomposed

Gossen-manoralised Gossen-berren Primery ore minerals Secondary ore minerals Iron and manganese from and mangamese from Mangamese Calcium carbonate Nalachite/aturite Other 46-48 MEATHERED SURFACE COLOUR L.-Light N.-medium D.-dark BR - Orange BR - Stown RE - Red BK - Black YE - Yellow GY - Grey PI - Pink WH - White BL - Blue RB - Ged Brown PU - Purple 38 - Orange Brown GR - Green TEXTURE #1 A - Aphanitac F - fine grained M - Bedius grained C - coare grained E - equigranular P - porphyritic V - vesicular B - breccisted G - glassy

- TEXTURE 42 Use same coding an for col. 49
- FRACTURE INTENSITY
 - Massive Widely spaced Noderstaly spaced Closely spaced Shattared 1. 2. 3. 4. 5.
- 1. 2.
- З.
- Massive Widely spaced Moderately spaced Closely spaced Very closely spaced

- 54-56 PRESH SURFACE COLOUR - Use same codes as for columns 47-49
- 57 PORMATION NAME
 - Use a list describing local lithological write
- 58-62 LOCAL BEDROCK CONPOSITION - Use list 1-4 detailed on the rock coding form
- 64-65 ORE ELEMENT #1 Use chemical element
- 56-67 ORE ELEMENT #2
 - Use chemical element -
- 68-69 ORE ELEMENT 11 Use chanacal element symbol
- 70-71 ORE ELEMENT 14 Use chamical element
- a ymbol

73 PROMINENT OUTCROP FEATURE <u>e1</u>

- 1. Bedding 2. Banding Foltation
- 3. 4.
- Shearing Faulting \$.
- Veining
- Vaining
 Diking
 Contact zone
 Alteration
 Crossbedding
 Pold axis
 Greenschist meta
 Aphibolite meta
 Contact meta

PROMIMENT OUTCROP FEATURE 12 Use same codings as for col 73

74

75

77

ė0

PRONEMENT OUTCROP FEATURE 13 Use same coding as for col 73

ALTERATION MINERAL IL

- A. Albite/Amorthit
- A. Albite/Anorthite B. Secondary blotite C. Cerbonate E. Epidote G. Gypaum/anhydrite I. filite K. Kaolinite L. Chlorite H. Montmorillonite P. Potam feldapar

- Potamh feldmpar
 Quartz/silica
 Sericite
 Tourmaline
 Toolites
 Other-specify in notes

- ALTERATION MINERAL #2
 - Use list for col 77
- ALTERATION HINERAL 13 79
 - Use list for col 77
 - ALTERATION HTHERAL #4
 - Use tist for col 77

- VEINING INTENSITY

54491 2 TYPE (0)	50/19							
BEORDON TYPE:3)	ALL							
5311 4021708(9)	411							
SAMELE TEXTURE(S)	411							
OVERBURDEN ORIGIN(S)	411							
ABORATORY-SITE FRACTION-FYTRACTION(S	41							
PAIR STATUS	Δι.							
RECS SMPLS HTN-F HTN-H	ALC			на	F 11 (20 7U	NT 11	MM 65 46
9A9 T098904K 7940070521778414099115	97801 2718 1	STA TEREP	803 (59	104 1	22	10 75	17 5	225 4 53 (
R70 50889010 9940016804132474099041	93:01 27:01	STA CORRE	NO: YE 155	PH 1	70	10 12	20 5	227 4 33 1
971 5033904K 9960044664338416099016	93NG: 2719 A	510 7585P	H9201 706		49	11 41	19 5	377 4.97 .1
872 E088904K 9940050804138404039945	93NG1 4770 1	510 70889	10 159	55 1	52	11 70	25 5	849 4.78.7
872 5038904K 996006484328435098917	93901 2700 1	510 TOREP	202 105	5531	34	11 59	20 5	277 3.95 2
871 5083904K 3940076844738404089848	95801 2711 1	510 358FP	HERGI TOS	7521	74	10 92	27 5	441 T.95 t
18367-500704 99000 99000 9000 900	93NO1 2730 1	510 308FP	NOS 40M	59 1	15	a 45	4 5	155 3.05 7
876 5089904K 994009484437940499747	93801 2721 98	510 30862	MER 705	58.1	47	v 20 11 714	12 5	349 7.19 .2
877 5088904K 9940108804338374098714	93801 2710 1	510 30BFP	207 808	56 1	45	17 50	77 5	760 4.79 .1
878 F088906K 9960116804558596078718	43HO1 2710 4	510 70868	NOD 505	40541	80	10 00	19 5	792 5 79 3
979 FORBOAK 9940136941 TRAILOSSA	97801 3711 G	STO AORER		14207	114	19 125	74 5	1459 7.97 .7
920 SC28903F 994A144244779724498411	97801 4778 1	510 308M9	NAL 255	20461	70	10 14		704 4 40 7
981 5098904K 9960156364759376098515	93861 9720 4	510 TORE2	MCD00 100	15863		11 57	10 5	276 4.16 1
000 EU00091K 00401400440914704660081	FTM01 7778 1	510 40050	MODUL IVA	10.101	71 74 (13 JZ 9 Ki	17 5	197 7 58 1
961 5090604K 7940136864538358678514	70001 2720 I DTM01 2720 I	510 75950	800000 200 800000 750	711 1	74		18 5	707 2 78 1
968 50000AW 99401060AFTTTL0968+T	1 9212 1990	510 355FT		15 (40 ·		17 5	170 2 15 1
965 FREEDAK 904019864-305358012417	75NG1 1710 1	410 40852	HOD 155	10 1	71	10 37 D TO	20 E	751 745 7
994 F099903Y 284070484556528076555	70001 1700 1 . 03801 27201 1	510 30000	NOC 100	10 1	77	7 37 11 70	40 J	101 1.00 11
061 AUDIONA 11001040433004007014	- 72003 2720 1 - 03001 2778 1	510 300FF 510 75090		111	22	11 JT 10 TT	17 5	197 2.78.1
999 SN09904K 39107780417990276076288	92801 2730 1 92801 2770 1	510 45900	LOLDON IVO	114 1	20	10 3/ 7 70	18 5	179 7 07 1
280 FASPORAR 201077292437171092719	97801 2750 1	510 1000	NCI 150	714 (45	, <u>47</u> 0 88	70 0	77G 7 7
890 5089905K 9950744844334774098749	93001 2720 1	510 30852	M8R 705	TN 1	79 .	9 70	17 5	378 3.11 .1
891 EORE904K 99607F58647T1776098774	93861 272H 1	510 300FF	MBR 109	24 t	17	10 R4	17 5	691 7.67 .3
897 5083904K 9940744804374704099749	93401 2724 1	510 40BSP	MRR 105	411	53	11 41	31 5	547 4.(R.4
892 2058904Y 996027684533620698627!	97801 2728 I	510 358FP	HOR 155	1981	73	9 71	17 5	359 3.39 .3
846 502000 1700000000000000000000000000000000	43HO1 2725 1	510 308FP	N98 759	4111	31	10 67	17 5	253 4.13 .3
825 5088904K 9760794844336796098515	93801 272: 1	510 30PEP	MRB 255	4881	41	17 101	15 5	344 3.45 .4
895 5088904K 9950704944314304095549	93861 1711 RF	STO ADDEF	BSR 504	358 1	99	18 105	15 5	919 5.98 4
997 5098904K 9940314804374304098548	95NO1 3721 92	510 408FP	598 50A	758 1	72	17 89		543 5 99 .1
879 S088704K 9940354944534524099403	97001 4771 4	510 35REP	088 108	305 1	36	17 154	10 5	4156 7.74 .7
R79 5089904K 9960346844334316098602	97801 3711 6	510 30BEP	KOPORE 105	255 1	47	17 73	22 5	467 6.73 .3
900 5089504K 7940756864334794099444	93001 2770 1	510 70869	NER 205	78 1	77	11 40	18 5	707 4.33.7
901 5098904K 9940344841374504098719	95801 272U 1	510 20852	N99 255	75 1	77	11 11	18 5	741 5.75 .2
907 5089904K 7940576864354714099749	93801 2778 1	5to TOREP	NGR 705	AN 1	77	10 A7	18 5	254 4.48 .1
903 5089904K 994038682433433433409010	95801 2778 3	SIG COMPR	MOR 105	70	20	7 70	18 5	357 4.37 1
904 20581942 196000001040000000011	90001 2720 1	510 COBEP	NON 205	711	25	, ,0 9 97	15 5	265 3.79 3
905 5068904K 9940404944374744499977	93NO1 2720 1	Sto AORMA	NARLOL 205	24 (29	g 39	15 5	291 7.97 1
906 TOSSTON POLOAICRAITATAADOOLO	97201 2710 1	510 75BED	H92 705	78 1	47 97	5 5' 7 71	17 5	706 2.75 2
907 FORROAL 904047300000000000	70000 1710 1 97901 177001	510 FORME	NOI 30 409	077 J 1077 J	4.7	17 40	27 4	AdA 3.55.2
101 04001044 11004100040000000000011010	73001 470001	910 Secon	NOCON 410	<u>.</u>	-4		20 3	770 JIJU II

SELECTION 9 1

~

Part 1 - Page 1

305	5028904K	9950431861035056097057	92304	2720-1	510	508F7	MREGL	203	2¥ 1	30	7	23	14	5	223	2.59 .	4
907	5088904K	99504448844236346699120	93261	2720 1	510	45865	MREHOL	105	क्ष्य (25	8	33	15	5	340	2.95 .	.1
910	20666441	9960456844000036099117	93801	3710-1	\$10	253FP	103	305	323 1	50	11	54	26	5	325	4.05 .	.2
۹.	5029404K	9950464844700086097155	93N01	3728 1	510	20945	16: YC	255	254 1	35	13	55	22	5	34C	4,64 .	2
912	5058904%	7550474844030776099214	75901	4709-1	510	203FP	XB 2	308	152 1	47	10	115	24	5	307	4.32	
910	5009504K	9950461884100175099250	933(0)	2720 1	510	10862	NPR	765	59 1	42	12	102	24	ē.	418	6.26	
211	50226464	101110101111111000117	95061	1778 1	515	TABEE	MRSVE	205	-C 1	73	14	36	21	5	245		5
9.5	TAGERASE	001/F6631/T0701/00710	27901	1711 1	\$10	76850	NCTC:	TAC	CC31	ec.	17	01	71	e .	701	57. 4 5 11	÷,
0.1	FREEDARY	0040E11001F70T01030411	101101	2719 1	F10	NUMER NESCO	NC DI DI	145	7.7 1		1.2		17	5	010	an et a Note	*
217	5030014	30. SP1044744406477112	02034	1/10 i 47-p 3	44.7	-0500	1012101	242	ل خيرين. د الفغ	10	-	70	10	4	077	2268 . 8 81	. 1
717	50000040	2450014044004078044180	40403	./.Z .	410		1702 1.000	105	494 (40	r		20	2	114		ž.
730	5088704A	442020955553070366044011	423901	1/13-1	010	3027.9	CUX 01	105	<i>11</i>	14	ь	20	15	5	243	2.42.	2
913	2085404K	442021485420101048068468	42%01	2730	513	12845	NGL	105	52 (43	1	51	17	5	265	7,44 ,	7
120	2088504%	1450220804224216048623	a2H01	2729-1	510	45,865	MABLOL	153	59	35	7	35	19	5	189	2.39.	1
92i	2028549410	9950556804331435093270	95201	4720-2	510	10005	N9503	195		31	9	32	16	5	235	3.	2
922	5098904K	9960579996033426099815	93H)(473051	510	50 9FP	READ	205	SW 1	37	7	28	20	5	<u>5</u> 34 - 1	2.9 .	1
920	5038°04K	9920582864034446098785	42801	170031	510	758FP	853	205	414 (52	11	74	25	5	336	۹.	?
924	2023004%	79605748A4334446078717	93001	2720 :	510	CESNE	NOL	305	3¥ 1	42	8	52	23	5	311	5.38 .	.2
925	5088904X	9950504884334425098555	97,401	2728 2	410	359FP	MRS	605	2M (48	9	59	21	5	500	6, 19 .	1
022	eococa in	0010110015774676000157	93No (2725 2	112	20222	HDQ HCCO	405	28 1		10	54	21	5	121	J. 21 .	2
927	5038704K	7960624864551476098619	73301	4771 5	510	SORFE	DSB	105	302 7	55	13	170	13	5	771	5.31 .	.1
928	5099704X	1020064281171154000591	93501	1771 99	510	10989	NGRO	a n	308 1	43	10	89	11	5	1745	5.97	5
979	5089904K	994045686417147609517	97861	27210 (8	510	750CP	NOC	20 M	464 1	20	10	47	17	5	397	. באינו די ה	÷.
976	FAGCGAIN	30LALL201177120LA00F1L	atvo.	7776 /	\$10	75500	MODULA	765	701 1	77	a .	47	10	5	213	- •a	1
011	5000000M	00LACTA034771406470110	70/01	47.00 t 1700 t	210	76000	HOD	242	- 1949 <u> </u> - 1741 }	3) 45		70	17	J A	100 -	9837 4 6 28	
791	FORDOWN	0010101001001711111000111	A DEMO	24.01	610	TABEC	103	955	00 C	43	11	72	20	2 F	- 1949 - 1949 - 1949	3.14 . 	. 4 . 7
704	EVODEN NY	110/50%9H# 00/6900/3014	4.346.1	2720-1	519	00800	MERTUL	55	200 i	ين مە	19		17	3		3.37 . 	
700	20994048	AAS0538884004019048098	9.5401	2720 1	519	258FP	ARK	55	54 I	3.	8	46	14	1	744 244	5.02 -	1
959	2088A04K	P956768864334506098320	92301	271L I	510	506#9	LOL	153	69 1	32	7 ·	34	19	5	319	2.33 .	. Z
935	5088904K	99607168A4334516098268	93801	272L 1	510	406H8	1.01	105	SNUL	27	7	31	17	5	314	2.44	2
73à	5068904K	9950728864334526098219	82401	2709-1	510	40239	LDL	405	20 1	125	4	29	15 .	5	28 a	2.34 .	2
937	2088904K	99607385843322506098209	93N01	2728-1	\$19	JOBER	MSR	195	3981	43	8	60	16	5	341	2.72 .	,5
933	5088704K	7760716884332596075260	93801	4720 2	510	308FP	608	20S	5¥ 1	33	11	102	17	5	289	5.03 /	3
9 <u>7</u> 9	508 9 904K	99507528841032535095305	93801	\$A2LS7	510	70866	DREBGY	403	14 13	39	11	50	[4	5	204	8.5 -	, 3
74¢	5088904K	7980784844332576098259	42601	2729-1	210	JOBEP	MOB	155	4531	35	14	95	20	5	257	5.75 .	4
94;	5098904K	9960776864332260609E407	931401	2728 1	519	208FP	NR SHOP	105	2N L	37	11	38	18	5	243	3.32 .	.1
942	5089704K	79607828A4332636098456	92301	2721. 1	510	10955	MOL	155	28 1	34	9	37	19	5	409	2.36 .	1
943	5038904K	7960799884002666098502	93801	272L (519	35368	NOL SRB	205	4111	17	5	39	12	5	779	2.32 .	.1
944	50889041	7950904844732706099554	97801	3771	510	SOBER	508	758	ZON 1	57	ti -	67	70	5	579	d.7A .	2
945	5088704K	7940814844337774098574	97865	3728 1	516	TEREP	NDEDER	2011	1551 1	11	12	80	20	5	459	5.30	4
965	500999.tr	104020222222222222222222222222222222222	97461	1709 1	FIN	10239	NOL OR		10531	71	11	57	20	Š.	11	4 36	÷
247	50222046	4404316341477964498144	97961	7701	510.1	14952	100.0	745	74041	46	à.	41	14	ć	192	7 50	ĩ
010	FATGEACK	3D1A0FA02177770LA007AF	31001	3750 3	210 5	70852	RODVE	105	79 /	40 71		07	74		1/9	01.10 1 7 38	+
2.79	SACOGAR	2040611211222000000000	73001	2728 2	- 1		HODIE	100	SE I	34	14	a) 74	4.) 16	5	447	4.79 . 9 42	. 4
797	50321046	772930+084 //200975/02	401601	2723-1	519	10077	806	155	154 1	21	10	11	15	3	La)	3.18 x	.1
350	20827998	44500165844007505046501	94001	2710-1	410		NUB	105	(HA)	- 11	11	29	12	. 5	241	4.40 . 	4
111	20485048	4760968844002896698840	92301	2720 1	219	508MB	HOL	105	24 1	34	5	37	15	5	511	2.00	,1
951	508870**	AAP0265645255419066600	93NUT	2720-1	510	12246	LOL	10S	2% 1	25	5	29	16	5	237	2.32 .	. L
<u>,</u>	20583046	99609646A4032756098957	42 NO 1	4720 1	510	15369	LOL	155	20 (18	5	32	13	5	250	2.19 .	.1
75 I	2025404K	996091A864002956098957	93N01	4720-1	51÷	50845	LOL	155	39 1	19	3	25	12	5	242	2.05 .	1
95 5	20683504K	9950926344002976099004	75001	272E 1	510 8	SOBFP	103	105	104 1	26	1	31	12	5	201	2.37 .	.2
955	5088904K	996095A8A4200016099055	95861	270L 1	510	50588	LOL	5S	15¥ 1	59	п	57	20	5	759	3 . a	2
957	2092704K	9950946864000025000104	95201	2729-1	510	258FP	NCB	505	259 1	52	8	52	Z3	5	309	3.82 .	.1
958	2038904K	495075020401104060000065	93901	271E 2	4 5 3	108F2	HC B	55	121	45	9	56	19	5	723	J.81 .	1
														-			

)

Part 1 - Page 2

•

Part 1 - Page 3

5 - -

959	20386041	2950334881130428034015	95801 271E 2	5 5 COBER	MOR	ecs	19 1	26	:1	37	16	5	245	4,37	.3
760	5088904K	7960956844000076078967	93401 2720 1	510 408FP	#09	605	2NM 1	31	9	95	17	5	242	4,79	-1
761	5053904%	9960996844330406098912	93時01 271日 2	4 S 358FP	888	208	29 1	33	11	77	18	5	284	5.15	.1
962	50889041	7941006864000425095864	93001 271E 2	410 DEBFP	#G7	705	34 1	40	9	82	18	5	251	5. 27	
740	5083R04K	2781014884770416095818	93801 2728 1	510 752FF	103	505	58 Z	55	2	46	12	5	190	2.32	.1
964	20259040	9961026886000406099767	90N01 2720 1	514 C58FP	NCB	505	614 🙄	82	10	102	22	5	350	4.51	.ī
965	56597(.4%	P96103A864000416096715	93%01 172L PP	510 359FP	MYR	504	64 1	97	ą	94	24	5	724	2.94	.1
?áá	50839040	3951084824730425099568	93801 1721 98	510 10EFP	M2P	90A	59 1	60	17	178	57	5	665	7.32	.3
967	5083904K	9751052844350426079615	73N01 4720 89	510 768FP	M93023	754	1 205	210	22	164	24	5	2511	10.90	1.3
963	5055904X	7981078844000455098550	9380) 772L 1	510 JOBMB	HOL	155	25%41	73	9	57	Z2	5	681	3.58	.i
967	20635046	99610988844000466099514	93N01 2728 1	510 JS979	18 5	405	\$N92	48	11	63	25	5	293	4.57	.2
970	2058904K	29510F48A47J04J6098454	93001 C72E 2	410 20879	HOP	605	5¥ 1	57	4	73	22	5	400	5.57	.1
771	50887041	796110A9A4030436095414	73401 2721 1	5 3 406FP	M03	9 08	5541	211	10	49	28	5	605	3.59	.5
972	5028704K	P951114844330446098333	93NO1 2718 2	310 40EFF	MRB	50S	ZM 1	47	13	95	25	5	325	5.03	.1
973	5088904V	996112A844330438095315	73NO1 2721 98	510 JOBFP	M08	956	55%1	22	10	83	15	5	192	4.7	. Z
574	203870 V	99811028894000446099284	93001 172L 7B	510 CCSFF	808	90A	INET	37	13	117	12	5	270	6.33	.2
975	3499566	9951146864330466095212	93N01 172L 98	510 358FF	MOB	804	35 C	117	17	113	28	5	41á	8, 09	.2
97ó	1à82a94K	998010A8A4008078098628	93N01 M L 8	21.0 55	NSSR		2W 1	3ð	8.	77	18	5	6266	1.33	.3
977	1785704%	7960026344336276078533	93N01 H L 3P	21.0 65	1038		39 1	57	8	74	18	5	\$910	4.72	.2
978	1958904K	P760533804334466078571	90891 M 1 8P	21.0 65	DER		39 1	40	9	80	19	5	4172	4.91	. 2
979	19639044	996082A8A4172756098536	93N01 H L 6	20.5 65	086		34 1	37	6	66	19	5	1948	4.23	.1
780	1985904K	7960928884330376079099	95N01 M U I	20 435	DER		59 1	78	9	65	22	5	994 0	5.3	.6
981	199890 W	996106A8A4330416099526	93N01 M L 8P	21.0 65	DBS		CN 1	43	9	72	19	5	1717	4.2	.1
982	508990#K	755115A8A3300795113108	93NO2 3711 98	510 258FP	HOP	903	304 1	73	15	52	30	5	461	8.16	.3

.

.

Part 2 - Page 1

,

52C#	SXPLA	22	40	Au⊤	AS	89	SE	52		F	тч	67	81	"	PA	c 9		A1	~.	MC					
859	29500Z	7	2	0	2		7		- t		1		7		r.⇔ 75	3n 77	51	- ML	UH ZD	76	46	к.,	CE-	ξ η Τ	П
370	389002	3	5	ø	3		÷				;	1	\$	87	*3 **			1.75		.35	.01	,04			.08
871	safóGa	17	1	j	3		2		ĩ		;	÷	ź	, , ,	44	71		1.72	4	. 33	101	.03			.08
972	995005	:1	12	à	à		2		-		,	;	-	04	1.72			2.3/	124	. 71	. 01	.04			-12
873	796005	3	6	0	5		2		;		-		4	75	1/0			2.18	. 54	. 7 7	.02	.05			.07
974	295007	12	3	ð	5		ż		1		;		,	0 ł 0 ł	102	19		2.1	.4	. 5.3	.01	.UK			.09
875	196006	5	1	å	2		2		÷		î	;	-	71	70	26		4	. 57	.75	.01	.06			,08
875	775007	12	1	ò	2		2		ł		;	1	5	167	172			1.34			.01	.04			.95
277	975010	13	2	ð	á		2		;		,	÷	÷	107	1/1 30	70		9	- 41	1.1.	101	.96			.92
872	349011	15	1	à	17		-		÷		-	;	-	02	70	- 20 - 24		2.50	- 5Y	-81	.02	. 84			•66
979	775012	25	1	0	57		2		÷		÷	÷	÷	67 68	715	47		2.04	. 25	.54	.91	195			.02
880	796014	19	50	Ċ.	77		ā		-		1		-		100	40		2,90		.21	.01	.15			.01
135	995015	ġ.	3	ō	3		2		;			:	-	70	105			1.75	. 45	. 56	.01	.05			.05
882	995018	ŝ	12	à	2		;		5		:	1 T	-	47	71	39		2,47	.46	.61	.01	- 06			- 09
883	196017	e,		n i	ĩ		;		÷		1 7		-	97 60	0.0	28		2.08	. 41	. •5	.01	.05			.05
334	796013	ŝ	ŝ	ő	;		;		+		ź	;	4	59	85	ية. حم		2.19	.48	.55	.01	.04			.07
853	996019	4	÷	ň	;		-		-		-	1	-	34	8/	-9¢		2.19	- 18	, 48	.02	.94			.08
825	775070		4	å	2		2				1	1	-	50	144	35		2.18	126	• 57	.02	.05			.09
897	796021	ŝ	59	õ	÷		4		4		1	1	7	85	78	(<i>ب</i> ن		, 2.33	- 35	. 49	. ot	.04			.09
389	496077	5	3	ñ	2		\$		÷.		,	1	4	6/	/4	29		12.53	.25	.57	101	.03			.09
829	996023	ā.	ĩ	ň	;						-	1	ĩ	•/	38	21		1.92	-5		.02	- 05			.07
390	996071	a	÷	à	2		4				1	1	2	85	93	37		1.80	. 9	,78	101	.05			.08
391	794075	t 1	Ť	Å	7		4					1	2	68	76	29		1.99	. 53	.68	. 01	.05			.07
392	194075		17	à	1		4		1		1	I.	2	70	134	44		2,45	55	. 55	• 62	• 07			.08
207	2940-7	7	10	ň	7		2		1		1	1	2	<u>8</u> 0	120	4.6		2.54	. 50	• 92	.01	.08			. 09
394	294029	L	10	9 0	ې ۵		4		1		2	1	2	80	85	31		2.01	. 4	.5	.01	,08			.07
	ADATO -		•	v	٥		2		i,		1	ı	z	82	101	33		2.04	.4	. 10	101	.06			.07

and the second sec

Part 2 - Page 2

862 489016 1	4	ŷ.	3	2	1	t	1	2	71	107	72	2.18.35.57.01.08 .07
876 976030 19	4	Ø	20	2	1	1	1	2	91	716	76	2.91.24.51.01.06 .01
897 896031 13	1	ð	16	2	1	1	t	2	109	277	29	2.44 .2 .42 .01 .05 .01
909 904077 01	1	Å	4	-	-	1	ŕ	-	111	7.67	59	7 48 59 1.7 .01 .05 .08
Acc colory is	+	ň		÷		1	:	5	100	100	-0	7 71 7 1 04 05 05 04
311900- 10	1	ų.	¥	-	1	1	L	4	liv	1040	- (°	
900 995000 10	1	Û	5	2	1	2	1	2	80	95	28	2.78.05.01.00.00
901 996035 10	1	9	¢.	2	:	2	1	2	118	92	20	2.8 .25 .58 .01 .05 .07
901 996007 B	5	ú	4	2	2	1	1	2	92	9 9	-24	2.55.7 .55 .01 .04 .09
900 996008 3	3	()	5	2	1	2	1	2	85	<u>88</u>	25	2,22,34,59,01,05 .09
901 998079 7	13	0	6	3	1	2	1	2	77	35	32	2.02 .44 .22 .01 105 .09
905 994346 7	6	6	5	7	t	t	1	2	śЯ	76	41	1.91.5557010409
0A1 001011 T	ĩ	á	÷	2	;		;	÷	70	41		1 57 46 51 01 02 09
000 1007L J	;	9 A	č	-	;	:	-		76	104	70	
967 198041 IV	2	u	2	2	1	1	1	4	/5	10	47 **	2
908 795043 5	7	0	ě.	2	រ	i	1	2	60	26	39	1.47.57.59.01.003.09
964 396 <u>6</u> 44 8	1	a	2	2	1	1	1	2	75	53	16	1.57.75.67.07.04 .09
910 996645 11	L	0	2	3	1	1	1	2	92	72	34	2.2 .44 .31 .01 .07 .11
711 776046 13	9	0	17	2	1	i	1	2	95	78	32	2.58.37 1.08 .01 .08 .07
912 995047 13	L	0	5	3	- 1	2	ι	2	72	95	Z0	2.85.32.75.01.06.1
913 296048 15	3	6	i.	2	Î.	1	1	2	109	111	31	7.32 .44 1.04 .01 .11 .11
014 202040 9	ĩ	Å	÷	-		,	÷	-	95	74	**	R0. 10. 73 77 99 C
015 30L05A (5		Å	7	-			1	7		77	25	7 L7 T& D7 01 AL 07
715 778050 L5	74		2	2	1		1	3	77	77	20	0.07 104 102 101 100 107
419 A49031 3	. 7	Ģ	-	3	1	1	1	- 2	16	- 8	20	1.47.58.57.01.03
917 996051 7	1	ú	3	3	1	1	1	2	65	67	38	1,55.58,64,01.05 .08
718 396053 6	13	0	4	1 2	1	1	- 1	2	61	64	4Ç	1.95 .63 .56 .01 .05 .09
919 998054 6	i	0	2	2	1	ι	1	2	62	69	42	1.65.58.59.02.06 .07
920 998055 7	I	Q.	2	2	1	i	1	2	62	101	43	1.85.62.61.01.05.09
92: 996056 6	1	ą.	2	2	1	1	1	2	65	67	38	1.39.57.54.02.04 .08
977 994057 7	ť	'n	5	- 7	,	1	t	7	70	81	47	1.49.7 .53 .01 .05 .09
077 30LAED 14	÷	a	in	-	•	÷	÷	-	10	00	42	× 7 57 97 44 02 04 .05
TI TTOUD ID		~	10	4	1				/#	46	47	
714 770007 0	1		1	4	1	1		÷	02	0		2 10 101 101 101 100
925 995060 15	1	(î	2	7	1	1	1	2	47	121	92	2.76.85.8.02.04 ,08
925 995061 11	L	ġ.	4	3	1	1	1	2	88	112	39	2.5 .51 .95 .01 .05 .1
927 996062 16	93	0	10	4	1	1	1	2	:05	:82	16	3.4 .25 .72 .01 .07 .01
928 995054 14	3	٥.	14	2	1	1	1	2	72	124	29	1, 97 . 19 . 36 . 01 . 08 . 01
929 995055 7	1	Ą.	2	2	1	1	1	2	65	75	27	2.07 .29 .55 .01 .03 .07
920 294064 8	4	a	2	7	1	5	1	2	71	108	46	7,22,54,56,01,05,1
971 994047 11		ò	7	Ę		1	1	-	102	122	37	2.96.49.94.03.05.1
377 002010 d	10	Å	4	, ,		•	-	5	00	90	77	7 /1 /7 14 01 05 09
701 770000 G	42		4	ź				-	20	70		2110 - 40 - 101 - 400 - 101 2 17 AL E 02 0E AD
7 176Vaf 3	1	9	4	-	1	1	1	4	14	18	34	2,13,44,3,02,02,00, .00
40: 438030 8	5	0	2	2	- 2	i	1	2	69	87	52	1.52 .9 .51 .01 .08 .11
935 998671 7	1	Û	2	2	1	1	1	2	57	3.	52	1.23 .81 .55 .02 .06 .11
938 998072 6	8	¢	2	2	2	1	1	2	60	53	44	1.15 .75 .55 .01 .05 .1
937 996073 8	6	9	2	2	1	1	1	3	62	80	30	2,04 .43 .58 .01 .04 .1
973 994074 3	3	0	2	2	1	t	1	Ż	107	21	28	2,22,39,45,02,05,31
939 995075 19	5	ó	22	,	ť	i	1	7	107	184	40	2.03.58.58.01.09.03
940 391074 9	ĩ	Ň		1	÷	-		÷.	115	37		7 75 77 47 01 04 .09
744 776478 8	-	×	7	-		4	-	-	110	Q	**	
441 4~6U// /	د -م-	9	d C	3	1	1	1	2	61	P.4	35	2.20.5 .02 .01 .04 .1
941 996078 8	175	0	5	2	1	1	1	2	12	74	47	1.55.74.67.01.01 .01
943 996079 5	ŧ	Û.	5	2	1	1	1	2	51	6ô	49	1.51.75.64.01.00 .1
944 998080 13	1	Û	12	2	1	1	L	2	85	91	ĴÛ.	2.13.55.96.01.07.1
945 996081 14	1	0	9	2	1	1	i	7	92	90	39	2.73.45.39.01.0808.

•

Part 2 - Page 3

. 98

.1 .09 .09 .09 .07

.11 .1 .09 .02 .1 .07 .07 .07 .13 .05 .12 .13 .05 .13 .05 .13 .05 .13 .05 .09 .09 .09 .09 .09 .07 .04 .07 .03

.04 .02 .04 .31

346 996037 12	7	Q	5	2	1	1	1	2	84	99	62		2.1 1.19	:	. 01	.15
947 996084 7	1	0	5	2	1	1	1	2	78	84	30		2.08 .34	49	.01	.05
948 995085 10	1	0	9	2	1	2	1	2	84	67	23		3.01 .29	.54	.01	.05
949 994086 3	1	0	4	2	1	2	ĩ	2	48	67	26		2.49 .32	.46	.01	.05
950 996037 7	1	0	5	2	1	1	1	2	43	75	28		7. 1 . 44	. 58	.01	.04
951 298098 6	1	0	6	2	1	1	1	2	53	72	45		1.27.72	.5	.01	.05
752 996089 6	5	0	2	2	1	1	1	2	59	6 5	45		1.16 .74	.57	.01	.05
953 995090 8	1	0	6	3	1	1	1	2	37	5:	46		1.2 .7	- 6	.01	.05
824 <u>8660</u> 61 2	1	9	7	Z	1	L	1	2	54	50	43		1.13 .73	. 55	.01	.05
422 346045 5	15	0	4	2	1	1	1	2	68	72	40		1,57 .55	, 49	.01	.05
754 796095 13	1	٥	7	2	1	i	1	2	90	123	3 5		2.13 .7	.83	.01	.07
957 996091 10	3	e	12	2	1	1	1	2	đò	<u>99</u>	37		2.01.54	. 39	. 01	.09
958 996096 8	5	0	10	3	t	1	1	Z	75	67	23		2.97.52	.57	. 01	.02
939 998097 6	1	0	6	2	1	2	1	3	75	56	16		3.35.21	, 1 <u>5</u>	.01	04
490 4 <u>4</u> 9043 -	73	0	6	Z	1	1	1	2	83	127	24		3.1 .33	. 59	.01	.04
941 994099 9	1	0	8	3	1	1	i	2	104	75	74		3.1 .25	. 52	.01	د٥.
962 996100 P	915	Q.	7	2	í	2	i	2	121	102	25		2.94 .04	.63	.01	.03
760 996101 5	1	0	3	Z .	1	1	1	3	37	56	14		1.02 .15	. 17,	. 01	.0s
961 996102 13	1	0	5	2	:	:	1	2	100	113	25		3.25 .4	1.25	. 02	.00
965 996100 11	2	0	5	2	1	2	1	2	75	56	55		2.78.58	. 93	.01	.04
966 995104 21	1	0	10	3	1	1	1	Z	151	152	97		2.63.43	1.69	.01	.07
967 996105 66	1	0	435	16	1	1	1	2	150	439	356		4.03 .74	1.08	.01	. 68
768 996107 15	5	0	11	2	1	1	ſ	2	85	79	62		1.57 .71	.92	.01	.13
959 996108 12	1	0	10	2	1 .	1	1	2	93	112	35		2.58 .51	. 53	.01	.05
970 996109 17	1	0	5	2	1	i.	i	2	133	87	32		3.39.43	1.23	. 31	.05
771 996110 10	8	ø	9	2	1	1	1	2	77	66	50		1.79.76	-63	.01	.05
972 996111 12	1010	\$	5	Z	i	1	1	2	108	77	34		2.78.55	.76	. 01	.05
973 998112 7	260	0	18	7	1	2	1	2	113	78	25		2.23 .32	.43	.02	.03
974 995:13 11	1	0	51	2.	1	1	i	2	161	774	241	'	3.15.39	-6	,01	.03
975 996114 24	1	0	75	4	1	2	1	2	135	143	26		4.32.22	1.12	.01	.04
976 996013 18	2	G	7	2	1	2	i	2	59	203	64		1.49 1.27	. 49	.01	.1
977 996032 :7	3	0	6	2	1	2	1	2	64	203	59		1.1 1.11	. 52	.02	. 13
973 996063 (5	11	0	12	2	1	Z	1	2	72	201	68		1.52 1.29	. 59	. 01	. 27
979 996082 11	4	٥	10	2	\$	2	1	2	76	178	21		1.32.97	.58	•01	-19
750 996095 22	3	0	11	2	1	2	1	2	83	233	72		1.94 1.48	. 44	. 01	. 19
981 996106 1Z	72	0	8	2	1	1	1	2	76	176	57		1.45 1.05	. 51	.01	.09
982 995115 14	t	0	14	2	2	1	1	2	233	99	18		4.09.57	2.51	.02	<u> </u>

,

.

Ì,

Part 3 - Page 1

4,

REC	BEPL: P	, r	A '	сų.	B	ĊR	465	4E 5	8910E G6	IDN
867	994002	. 157	ŧ.		3	30			11000E3	00001
870	26092	.150	5		3	32			11000E	erşoy
871	ao?006	.033	1		5	76			11000E	000031
872	996005	.042	7		5	50			11000E	PETON
370	976006	. 390	5		9	39			1100GE	5600M
874	995007	. 025	17		5	40			11000E	97 5 0N
875	500375	. 351	5		3	25			110005	970¢N
976	995009	.154	5		2	24			11000E	=650N
877	aa5010	.111	5		4	69			110605	9600N
973	996011	. 845	7		4	24			11090E	75501
37ª	998812	.15	11		2	12			11000E	7525N
36 0	442613	1095	12		3	31			300011	?500M
921	976015	.075	ŝ			36			11009E	9450N

2

н Н

~

Part 3 - Page 2	Part	3	_	Page	2
-----------------	------	---	---	------	---

,

ł,

....

281 7950:5 .075 8	6	24	11000E 9400N
350 296017 .087 8	5	26	11000E 7350N
884 796018 .048 9	3	26	11000E 9300N
885 996017 .103 7	9	28	11000E 9250N
365 795320 .035 3	5	78	11000E 9200N
387 996001 .029 6	4	28	11000E F150M
582 996022 .05 7	2	25	11000E 9100N
289 795077 .034 7	5	37	10800E 7100N
890 F96014 .04T 7	7	31	10800E 9150N
891 976077 .07 11	6	56	10900E 7200N
892 796026 .067 7	4	40	10800E 9250%
892 996027 .158 7	ţ	51	10800E 7300N
894 796018 .151 6	5	29	10800E 9350N
895 996029 .069 10	2	30	10300E 4406N
896 796030 .095 7	5	20	10500E 9450N
897 396031 .086 5	2	12	10800E 9450N
898 794033 .174 10	2	14	10800E 9485N
899 995004 ,232 5	5	43	10800E 9500N
900 496035 .093 6	4	36	10800E 9550N
901 996036 .127 7	2	38	10800E 9500N
907 995037 .11 6	2	37	10800E 7650M
903 795033 .111 5	7	40	10800E 7700N
904 775037 .095 8	6	34	10500F 9750H
905 796040 .089 B	· .	78	10800E 9600N
705 775041 .06 6	8	27	108002 98508
907 995042 .075 9	Ś	36	LOBCOF 9900N
908 795013 .083 7	Ģ	78	10800E 2950N
705 395044 .087 6	Ś	79	108005100000
910 996045 .083 6	i	38	10700F10000N
911 995646 .097 5	3	35	10200E10050N
917 995047 .147 10	5	39	10200E10100N
913 996048 .213 6	4	44	10200E10150N
914 995049 .219 7	,	41	10206E10200N
915 994050 .791 5	ά	47	107005107508
915 996051 .087 7	ň	26	10400E10200N
917 796057 .097 8	5	29	10400E 3950N
919 99605 .095 8	ą	75	10400E 9900N
919 794054 .094 7	, X	77	10600E 9850N
970 996055 .083 8	15	28	10400E 9800N
901 996056 .091 9	7	30	104005 9750N
970 REALT (9		50 Ti	104005 27000
923 294052 061 16	5	5. E ^r	10600E 9650N
971 2940F0 A8 7	, i	10	104005 9400N
975 994040 064 7	ą	75.	104002 95508
954 923041 A45 4	5	35	104005 25504
927 994042 194 9	ĩ	10	10400E 9500M
978 VELANDI 1998 V	7	74	100000 10000
070 304045 AFF 0	á	4 7 70	10600E 9350N
910 995044 091 7	,	29	104005 94204
97: 204047 ASK 9	4	44	10,000 74000
077 101010 AGN 7	7	79 7*	104096 70200
/www.170000.00*0	0	30	10200E 42000

Part	3	_	Page	3

,

"

•

•••

933 996047 .09 3	3	21	10500E 7250N
954 296070 .075 9	5	20	10500E 9200N
935 996071 .095 9	6	29	10600E 9150N
933 998072 .097 3	7	25	10900E 4100M
937 996011 .028 3	5	30	10400E P100N
928 996074 ,149 6	7	4C	10400E P150N
939 996675 .101 9	4	26	10400E 9200N
940 996076 ,407 7	2	14	10466E 7250N
941 995077 .057 9	2	34	10400E 7300N
942 796079 .075 3	16	31	10700E A220N
943 996079 .058 6	11	Z4	10400E 7400N
944 996680 .081 7	3	37	10400E 9450N
945 796081 -138 7	6	41	10400E 3475N
944 994083 .14 9	8	43	10400E 7500N
947 996034 1092 5	4	34	10400E 9500N
948 793085 .13 6	5	41	10400E 7600N
949 996026 .105 à	6	32	104005 P650N
950 996087 .152 6	5	37	10400E 9700N
951 PP4088 ,085 10	6	27	10400E 9750N
952 996089 .094 8	3	25	10400E 200N
953 996090 .074 7	4	24	10400E 9850N
954 996091 .08 7	17	22	10400E 7950N
955 996092 .055 &	8	26	10400E 9900N
955 796092 .052 9	4	39	10400E 9950N
957 996094 .124 5	10	21	10400E10000N
958 996096 .231 4	6	35	10200E 9950N
957 995097 .24 6	4	37	10200E 9900N
960 996098 .103 6	3	28	10200E 9850N
751 798079 .32 8	6	42	102005 98000
762 996100 .096 6	6	41	10709E 9750N
962 996101 .035 3	2	17	10200E 970CN
954 99510I JISI 3	5	28	10700E F650N
965 796103 .114 5	10	53	10700E 9600N
966 796104 .19 5	8	173	102005 75500
967 995105 .33 4	2	32	10200E P5anM
958 995107 .107 9	6	33	10200E 7450M
959 996108 .075 3	ġ	24	10200E 9400N
970 995:09 ,30 <u>9</u> 4	- 7	\$1	10200E 9350N
971 995110 1054 15	q	44	10100E 9300N
772 FF2131 .Ç\$ \$	5	45	10200E 4320M
977 996112 ,129 7	F	33	10200E 3200
97: 7°6111 .21: 6	6	24	10200E 7150
975 995114 .07 7	4	21	10200E 7100
975 995010 ,105 9	ġ	27	11000E P520M
977 992071 .103 3	7	25	10800E 7475%
273 295067 .116 P	4	20	10400E R475M
777 795082 .397 7	5	31	10400E 3182H
350 9320 92 112 12	5	20	101115 59712
981 996108 .100 7	7	22	1010NE F¥TÊN
952 P95112 .053 5	ł	33	

ς.

APPENDIX III: Method of Histogram Interpretation

1

,

RULES FOR CHOICE OF SIZE CODING OR CONTOURING INTERVALS

- (1) Examine both arithmetic and logarithmic histograms for each geochemical survey. Choose the histogram which most closely approximates a normal (or lognormal) distribution. If several populations are present on the histogram, subjectively divide the data into a series of (overlapping ?) normal or lognormal distributions. Always avoid interpreting histograms which are strongly skewed. Portions of arithmetic or logarithmic histograms may be chosen over specific metal concentration intervals, if this allows for the best portrayal of the data in graphitical form.
- (2) Choose, as two of the coding intervals, points which represent between 90% and 95%, and 95% and 97.5% of the data; two different numbers. These choices highlight from 1 in 10 to 1 in 20 samples which are considered slightly anomalous and definately anomalous, respectively. These limits are optimistic in that the two categories are defined to be anomalous regardless of the distribution of values on the remainder of the histogram. A rigorous statistical approach would suggest that only values above the 97.5 percentile should be considered anomalous. Choice of any of the above percentiles is entirely subjective and meant to highlight the highest values of the survey.
- (3) Divide the remaining portion of the histogram into recognizable populations. The dividing point of each of these populations is chosen as a coding interval. Artifacts introduced as a consequence of detection limit considerations are ignored. These artificial breaks in the histogram can be recognized by referring to the laboratory reports and scanning data results.
- (4) For each population, choose one or two numbers which correspond to the 90% and 95% cumulative frequencies for that population (1 in 10 and 1 in 20 samples for that population). These will also be used to represent anomalous conditions for each population. Coding intervals can be no closer than 2X the detection limit for each element being considered.
- (5) A maximum of six numbers can be chosen to plot symbol maps. This number is dictated by the ability to present data in graphical form with sufficiently different symbol sizes for them to be easily distinguishable, particularly if maps are to be reduced. The seven defined concentration classes are normally sufficient to represent geochemical data on a map. More intervals can be chosen if data are to be contoured. Avoid choosing arithmetic intervals without considering rules (1) and (4).

(6) Maps plotted using the preceeding instructions might result in two areas being distinguished from each other by a relatively uniform density of symbol sizes, yet only poor contrast anomalies are indicated. Difference between the two areas, A and B, might be due to underlying geology, overburden character, soils etc. Whatever the cause, the data are not well displayed. If the underlying control distinguishing A and B can be recognized, the data can be divided and re-interpreted following steps (1) to (5). Two sets of maps can be drawn, or both sets of interpreted data can be plotted on a single map. For such superimposed geochemical maps, symbol sizes lose their absolute meaning but assume a more important stance, that of reflecting anomalous conditions regardless of the underlying control. To illustrate, consider the case where A and B are areas underlain by very different geology. Anomalous conditions for low background rock types might be concentrations which are much lower than average values for the high background rock types. Nevertheless, anomalies defined in each area are considered significant. Reliance on absolute concentrations can be misleading in such cases.

APPENDIX IV: Field Personnel

R. Pegg	- Project Geologist	July 7,8,12
S. Hoffman	- Senior Geochemist	July 7,8,12
V. Malo	- Geological Assistant	July 7,8,12

.

;

APPENDIX V: Statement of Qualifications

I, Rex Pegg of 700-890 West Pender Street, in the City of Vancouver, in the Province of British Columiba, DO HEREBY CERTIFY:

- That I am an exploration geologist employed by BP Minerals Limited, which has its office located at 700-890 West Pender Street, Vancouver, B.C. V6C 1K5.
- 2. That I am a graduate of the University of Toronto, located in Toronto, Ontario, where I obtained a Bachelor of Applied Science degree in Geological Engineering (Exploration Option) in 1976.
- 3. That I am a Registerd Member, in good standing, of the Association of Professional Engineers of British Columbia.
- 4. That I have practised my profession as a geologist for the past twelve years.
- 5. That I have supervised the geological and geochemical field work.

P.Eng. BASC. Rex S. Pegg,

Dated this 18th day of July 1988.

Statement of Qualifications - S. J. Hoffman

BSc 1969 - McGill University (Hons., Geology and Chemistry)

MSc 1972 - The University of British Columbia (Geochemistry)

PhD 1976 - The University of British Columbia (Geochemistry)

- 1. He has worked continuously for BP Minerals Limited since 1976, as an exploration geochemist.
- 2. He collected and/or supervised the collection of the soil and moss mat samples.
- 3. He has interpreted the soil and moss mat sample results.

•

APPENDIX VI: Rock Sample Descriptions

~~'		P	P.
COL	L F C LORS	5. 73	• 1 *

BP SL CO

ROCK SAMPLES

_RAIN___PROJECT - SURFACE ____ UNDERGROUND

DATE : _____ July 7, 1988____

		REP	SAM	PLE 1	TYPE ((LENG	STH)	BOCK		MAP
NUMBER	LOCATION NOTES	SAMPLE NUMBER	GRAB	CHIP	CHANNEL	CORE	FLOAT	Түре	SAMPLE DESCRIPTION	SHEET
705005	Reas W. border of Phil 17		~					Avaite (= Hornell	up to 5% Poldissem). tr. CPu - Pu polulithic	73N/IE
	(near Cl. Post IN)							Flow Breccia		
705006	near W. border of Phil 17		V		[[Andesitic	<1% Pu blebs . abund. olag oteros + frags	- 15
								Fragmental		
705007	mar W. border of Phil 17		1					NornLid - Augite	<1-5% diss. Pe: polylithic	н
								Tuff Brescia	,, , , , , , , , , , , , , , , , , , ,	
705008	near W. border of Phil 17		~					Hornbld-Augite	41-27. Po. tr. C.P.y. minor y. f.g. green patcles	4
					[_		-Plag. Flow		
	<u> </u>		Ĺ				L	0		
			[]			[
		Ţ				Į				[
										l
						ļ				<u> </u>
								I		
		<u> </u>				<u>ь</u>				
	<u> </u>									
						[[
			 							
			[
	<u> </u>						Ĺ			
					[
l									مى يەرىپى يەرىپى يەرىپى ئۆلۈرۈك بىرىپى بىرىپى بىرىپەر بىرىپەر بىرىپەر بىرىپەر تەرىپىرىپى تەرىپىرىپى تەرىپىرىپىر	

COLLECTORS:	$\mathcal{R}\mathcal{P}$

BP SE_CO

ROCK SAMPLES

RAIN_ PROJECT - SURFACE

UNDERGROUND

DATE: July 8, 1988

		REP	SAM	PLE	TYPE	(LENG	STH)	DOOK		ILLAP		
NUMBER	LOCATION NOTES	SAMPLE	GRAB	СНІР	CHANNEL	CORE	FLOAT	Туре	SAMPLE DESCRIPTION	SHEET		
705009	10m N. of B/L 104+50E		\square					Lapilli Tuff_	17. Y. f.g. diss. Po; black colour; polylittic	93N/1E		
705010	rear trib, of main cK		-					And. Tuff	brecciated; minor - mod. carb f.f.	5.		
705011	N, bank of main creek.							And Tuff?	1-57 Py(f.f. + diss); silicous, v.f.g.	- 11		
··-												
										<u> </u>		
<u> </u>												
						•						
			-		 		· · ·	·				
								·				
		-										
								<u> </u>				
		i	1			,	1 	.		*		

APPENDIX VII: Rock Sample Results

.

1

ACHE ANALYTICAL LABORATORIES LTD.

652 B. HABTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716

XEROX TELÉVUÉ

¢

¢

ឝ

, 88, 15: 22

(B L H B S S

1. U (

GEOCHEMICAL ANALYSIS CERTIFICATE

TCP - ,300 BRAN FAMPLE IS DIGESTED WITH JAG D-D-P MCL-ANDD-HID AT 95 DEG. C FOI OFF FOUS ARD IS DILATED TO IA HE WITH TATER. This stack is partial joi ma to be an a to be an an de an and be and be and all. An direction lingt be ach is d fro. - sample yure: docl — aut aralised of acce exactly a from 10 th sample. ________

DATS	RECRIV	BD i	1 844	12 13	11	DAT	6 A	SPUR	т н)	AILB	D: (Jnl.	1 16	88		A85	AYE	R,	: ^	:::j	D.	TOT	E ()]	R C.	reon	ю,	CERI	rifi)	D	ı.c.	78	AYERS	
									1	BP R	BBOL	IRCE	8 PF	OJE	CT-1	020	0	F 11	e f	894	2629	ł											
	SXPLE	Ne Frit	1) (1	tb PPK	16 178	kg H71	ni ten	CD PEN	NN N15	te 1	34 12	n HK	ne Bra	۲۲ ۲۱۱	ti DR	b) X14	43 11 8	- M - M	T PPR	ti N	ł	5a FEM	Cr RTR	74) 1	88 199	ti t	1 121	л) - Т	Jir A	1 1	T 399	20' 212	
	781056	18	111	14	14	.1	15	FR.	117	1.31	11	5	n	1	53	1	1	3	111	2.52	.961	1	31	1.58	11	.17	1	2.0	, 0	.85	2	1	
	131666		168	11			1		111	4.39	ï	- í	XD.	1	161	Í	i	1	ù	1.11	.179	ŧ	1	1.11	76	-11	12	1.11	.01	.0)	1	1	
	741441	- i	111	- iii	ö		- ú	ü	124	1.0	,	j,	15	i	11	1	Ì	1	in	1.0	. 111	1	- 12	1.11	34	.18	- I	2.55	.11	11	- 1	t	
	141046	- 1	110	14	ü	.1	ű	11	40	1.11	i	i	Ib	i	- Ĥ	i	- i	j	18	1.12	.112	1	- 16	1.6	116	.8	11	1.11	.91	1.11	ι	1	
	785089	i	15	ü	ü	.,	15	28	69	5.13	i	Ś	n	i	4	i	ł	1	133	1.11	, 101	5	អ	LIF	1i	.11	11	3.19	,12	30	1	1	
	205818	I	0	12	IJ	.1	IJ	12	913	1.11	1	5	H	1	ы	1	1	1	m	1.6	.112	1	Ð	1.93	. 11	.11	H	1.17	.IL	.46	Ę	1	
	<u>]0]</u> 041	U.	10	1	11	1	្ឋា	<u>. H</u>	413	1,61	1 _	5	10	, F	m	1)	. P.	10	1.11		i	0	1.41	11	- ,#1	•	1.33	.91	.16	1	9	
												· •																					

APPENDIX	VIII:	Statement	of	Expenditures
----------	-------	-----------	----	--------------

Coccese.

TY PEGGA

£

' 🕋 .

APPENDIX VIII: Statement of Expenditure	S C C C C C C C C C C C C C C C C C C C
1. <u>Geochemical Analysis</u> :	A CONTRACTOR
 i) 7 rock samples (sample prep., I.C.P. and Au analysis @ \$14.17/sample) 	= \$ 99.19
<pre>ii) 108 soil samples + 6 moss mats (sample prep., I.C.P. and Au analysis @ \$10.85/sample)</pre>	= \$ <u>1,236.90</u>
Total Geochemical Analysis Cost	: = \$1,336.09
2. <u>Helicopter</u> :	
(Bell 206) 4 hrs. @ \$564/hr.	= \$2,256.00
3. Computer Processing	
Moss mat/soil data @ \$2/sample	= \$ 228.00
4. Airfares:	
(Vancouver to Prince George, return)	= \$ 393.20
5. <u>Taxi</u> :	
(Vancouver to airport)	= \$ 12.00
6. <u>4 x 4 Vehicle</u> :	
(includes fuel) 3 days @ \$99/day	= \$ 297.00
7. <u>Wages</u> :	
i) R. Pegg (project geologist) 5 days @ \$240/day (July 7,8,12,15,18)	= \$1,200.00
<pre>ii) S. Hoffman (senior geochemist) 6 days @ \$300/day (June 17, July 7,8,12,15,18)</pre>	= \$1,800.00
iii) V. Malo (geological assistant) 3 days @ \$61.60/day (July 7,8,12)	= \$ 184.80
Total Wages	= \$3,184.80
8. Room and Board:	
9 man-days @ \$55/man-day	= \$ 495.00
9. Report (drafting, typing, copving, etc.)	= \$ 500.00
TOTAL EXPENDITURES	: = \$8,702.09

APPENDIX IX: Re-Interpretation of the 1984 Geochemical Data

The 1984 data defined 2 zones, anomalous in one or more of Au, Cu, Zn, Ag, Co, weak As, Sb, Ba, Al, Sr, Mg and Cr. Levels of Mn are regionally outstanding in a geological role, rather than due to bad sampling. Please see the attached sketches.

1

-

TE:	JULY '88	REV.:		DRAFTED BY: CHONG		CHONG	1	
T.S.	93N/1E		PROJ.:		REPORT	BPVR	88-3	

.

.