| LOG NO: 0404 RD. /            | Maxama - 1940 - 19 Mark Starse (n. 19 - K minute) - M. Sama Marka - San - Mark Mark Mark - Mark - Mark - Mar                                                      |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ACTION: Doste received report | 1025                                                                                                                                                              |
| back from amendments.         |                                                                                                                                                                   |
| FILE NO: GEOLOG               | ICAL ASSESSMENT REPORT                                                                                                                                            |
| TILL NO.                      | ON THE                                                                                                                                                            |
|                               | FAE PROPERTY                                                                                                                                                      |
| FAE 1-3,                      | TAG 1-4, SAM 2&4 CLAIMS                                                                                                                                           |
| ATI                           | LIN MINING DIVISION FILMED                                                                                                                                        |
| TATSAMENIE 1                  | LAKE AREA, BRITISH COLUMBIA                                                                                                                                       |
| נא                            | TS 104K/8 & 103J/5                                                                                                                                                |
| 58                            | 8° 17'N 132° 02'W                                                                                                                                                 |
|                               | SUB-RECORDER                                                                                                                                                      |
|                               | PREPARED FOR                                                                                                                                                      |
|                               | OCT 1 1 1988                                                                                                                                                      |
| TAT                           | HLTAN HOLDINGS LTD. M.R. #                                                                                                                                        |
|                               | 3 - 1155 MELVILLE STREET                                                                                                                                          |
| VANCOL                        | GEQLOGICAL BRANCE                                                                                                                                                 |
| VAICO                         | UVER, BRITISH COLUMBIA SICAL BRANCE<br>ASSESSMENT REPORT                                                                                                          |
|                               |                                                                                                                                                                   |
|                               | PREPARED F                                                                                                                                                        |
| STETSON F                     | RESOURCE MANAGEMENT CORP.                                                                                                                                         |
| SUITE 13                      | 3 - 1155 MELVILLE STREET                                                                                                                                          |
| VANCOU                        | UVER, BRITISH COLUMBIA                                                                                                                                            |
|                               | V6E 4C4                                                                                                                                                           |
| W.J. DYNES, Pr<br>W.D. ROBB,  | F.G.A.C., STILLWATER ENTERPRISES LTD.<br>rospector, STETSON RESOURCE MANAGEMENT<br>B.Sc. , STETSON RESOURCE MANAGEMENT<br>L, B.A.Sc., STETSON RESOURCE MANAGEMENT |
|                               | MARCH, 1988                                                                                                                                                       |
|                               |                                                                                                                                                                   |
|                               |                                                                                                                                                                   |
|                               | ]                                                                                                                                                                 |

## SUMMARY

The Fae property comprises nine claims, totalling 148 units, situated in the Atlin mining division in northwestern British Columbia. The nearest communities are Telegraph Creek, 80 air kilometres to the southeast and Dease Lake, 140 air kilometres to the east. The property is situated 80 kilometres east of the Pacific Coast on the lee side of the Coast Range Mountains. The region has a relatively dry climate. Most of the claims lie above the tree line, between 760 and 1950 metres above sea level.

The area presently covered by the Fae claims was initially staked as the Fae claims by Kennco Explorations Limited in 1963 and by Skyline Explorations Ltd. as the Norm claims in 1970. Both companies were interested in porphyry style copper and molybdenum mineralization. The Tag claim area was covered by the Giver-Taker property, one of several gold prospects staked by Chevron in the Tatsamenie Lake area in 1982.

One of Chevron's other properties, the Golden Bear, contains proven and probable reserves of 1.5 million tons grading 0.31 oz. gold per ton in a structurally controlled mesothermal deposit. Chevron and joint venture partner, North American Metals (now held by Homestake Development Co.), plan to put the deposit into production once construction of an all season road is completed to the property.

As a result of a research project, the ground was restaked in 1987 as the Fae property by Tahltan Holdings Ltd. Stetson Resource Management Corp., carried out an exploration program under the direction of the writer in 1987. Approximately \$87,500.00 was spent on geological mapping, prospecting, rock chip and soil sampling. A total of 121 talus samples, 198 rock chip samples, and 5 stream sediment samples were collected.

Several zones host gold with or without silver, copper, lead zinc, antimony, arsenic and mercury mineralization in structurally controlled quartz  $\pm$  carbonate veins and associated alteration zones fitting mesothermal and epithermal descriptions.

A two phase exploration program is recommended to test the economic potential of the Fae Property.

i

# TABLE OF CONTENTS

| SUMMAR     | Y             |                                          | <b>Page</b><br>i, |
|------------|---------------|------------------------------------------|-------------------|
| 1. I       | NTRODU        | CTION                                    | 1                 |
|            |               | cation and Access                        | ī,                |
| 1          | 2 87          | onerty                                   | 2                 |
| 1          | 2 Dh          | oper cy                                  | ົ້                |
| 1          | · 7 FI        | operty<br>ysiography<br>story            | 2 ,<br>2<br>3 ,   |
| 1          | -4 n±         | 87 Exploration Program                   | ر<br>آر           |
| Ŧ          | .5 19         | 87 Exploración Program                   | 4                 |
|            | EOLOGY        |                                          | 5 .1              |
| 2          | .l Re         | gional Geology                           | 5                 |
| 2          | .2 Re         | gional Mineralization<br>operty Geology  | 5                 |
| 2          | .3 Pr         | operty Geology                           | 7                 |
| 2          | .4 Pr         | operty Mineralization and Alteration     | 8                 |
| 3. G       | EOCHEM        | ISTRY                                    | 10,               |
|            |               | ck Chip Sampling                         | 10/               |
|            |               | ream Sediment Sampling                   | 11                |
| CONCLU     | SUUTONS       |                                          | 12                |
|            | ENDATI        | ONG                                      | 14                |
|            | STIMAT        |                                          | 15                |
| REFERE     |               |                                          | 17                |
|            |               |                                          | 18                |
| CERTIF     |               | Rock and Stream Sediment                 | <b>TO</b>         |
| APPEND     | <b>JA 1</b> : |                                          | 2.2               |
|            |               | Geochemistry Results                     | 22                |
| TABLES     | 1             |                                          |                   |
|            |               | Claim Status                             | 2                 |
| Table      | 3.1           | Rock Sample Descriptions and Results     | 10a               |
|            |               | I                                        | ollowing          |
| FIGURE     | S AND         | MAPS                                     | Page              |
| Figure     | 1.1           | Location Map (1:1,000,000)               | 1                 |
|            |               | Claim Map (1:50,000)                     | 2                 |
| Figure     |               | Regional Geology (1:250,000)             | 5                 |
| Figure     |               | Property Geology (1:10,000)              | 7                 |
| Figure     |               | Rock and Stream Sediment Sample Location |                   |
| Tigure     |               | (1:10,000)                               |                   |
| The second |               |                                          | 10                |
|            |               | Analytical Results (1:10,000)            | 10                |
| Figure     | 3.2           | Talus Sample Locations and               | 10                |
|            |               | Gold Results (1:5,000)                   |                   |
|            |               |                                          |                   |
| /          |               |                                          |                   |

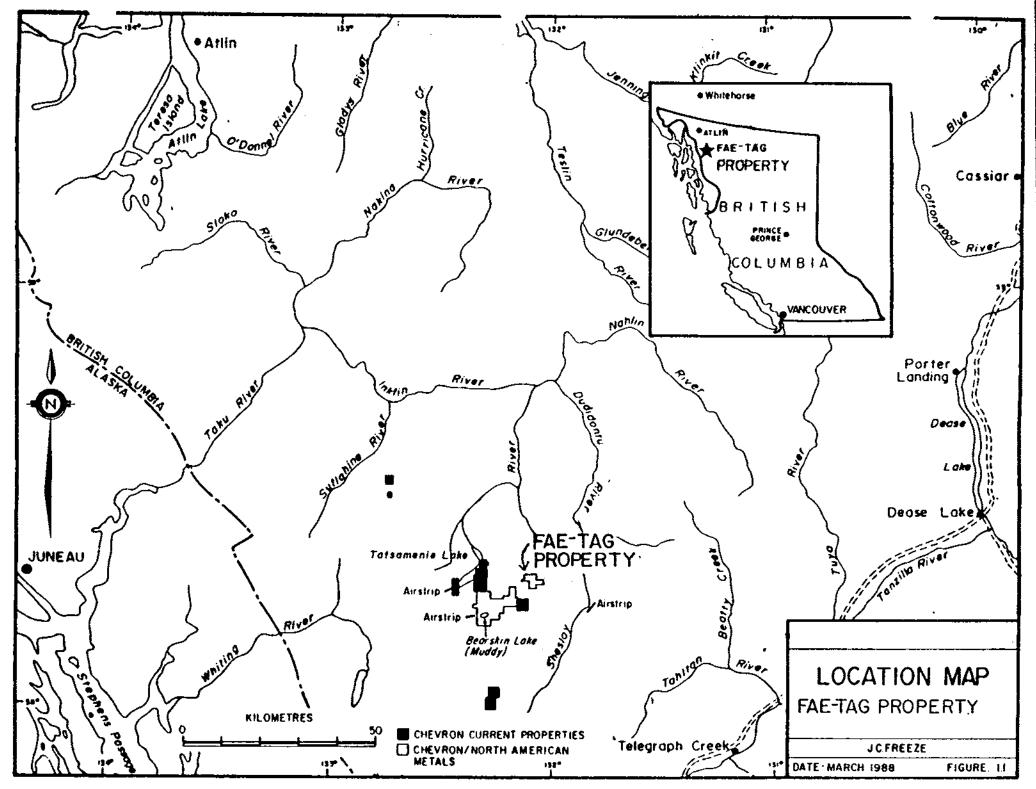
JCF/ms GR-0427

· \_\_\_\_

\_\_\_\_\_

#### 1. INTRODUCTION

The geology and economic potential of a precious metal prospect covered by the Fae property held by Tahltan Holdings Ltd. is discussed in this report. The data presented is from an exploration program carried out by Stetson Resource Management Corp. under the direction of the writer and public assessment reports discussing exploration work carried out by previous operators. A two phase exploration program is recommended to test the economic potential of these claims


## 1.1 Location and Access

The Fae property is situated in the Atlin mining division in northwestern British Columbia, approximately 80 kilometres northwest of Telegraph Creek, 140 kilometres west of Dease Lake and 140 kilometres southeast of Atlin. The claim blocks cover a total area of 27.5 square kilometres centred at 58 17'N and 132 02' W (Figure 1.1).

The nearest highway to the property area is Highway 114, which extends from Dease Lake to Telegraph Creek. A winter tote road (bulldozer trail) extends 130 kilometres from the highway to Chevron's Golden Bear property, which is 18 kilometres southwest of the Fae property. Construction of an all-weather road is under way to access the Golden Bear property. The new road will come within 2 kilometres of the northwestern corner of the Fae property.

Air access by fixed wing aircraft is available to three gravel landing strips in the area. One on the Sheslay River allows up to DC-3 sized planes; a second at Muddy (Bearskin) Lake handles airplanes up to Caribou size; and a third strip at the western end of Tatsamenie Lake allows airplanes the size of a Cessna 206 to land. Access to Tatsamenie or Little Tats Lake is available by float plane from June until late October and by plane on skis during winter months, except during freezing and break up periods. Helicopters must be used to travel from the lakes or strips to the property. Exploration can be carried out from a camp on the north shore of Little Tats Lake.

Groceries, fuel, lumber and general supplies are available to a limited extent, in Atlin and Dease Lake. The remainder may be trucked from Whitehorse to Atlin or from Terrace to Dease Lake.



## 1.2 Property

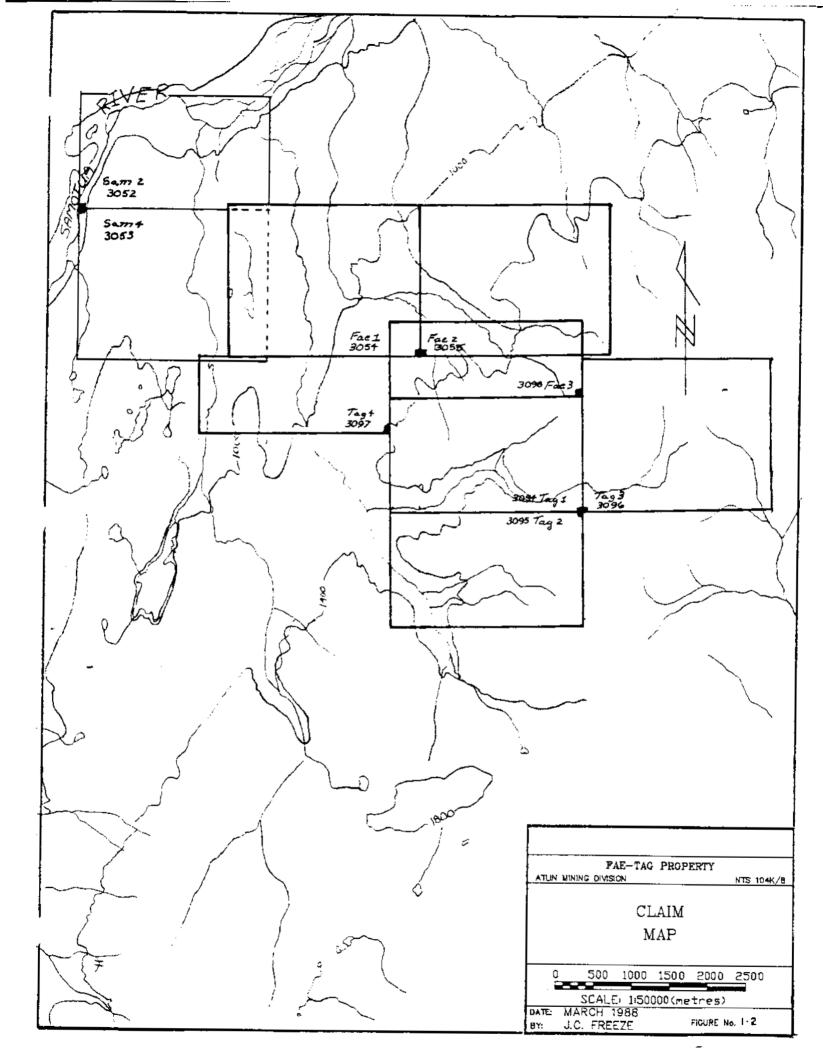
The Fae property covers nine contiguous claims comprised of 148 units as listed below. Tahltan Holdings Ltd. holds title to the property by staking or Bill of Sale. Claim locations have been verified by legal (and other) corner posts, and blazed - flagged lines.

## Table 1.2 <u>Claim Status</u>

| Claim<br><u>Name</u> | Record<br><u>No.</u> | Record<br>Date | Expiry<br>   | No.<br><u>Units</u> |
|----------------------|----------------------|----------------|--------------|---------------------|
| Fae l                | 3054                 | July 10, 1987  | 1991         | 20                  |
| Fae 2                | 3055                 | July 10, 1987  | 1991         | 20                  |
| Fae 3                | 3098                 | Sept 9, 1987   | 1991         | 10                  |
| Tag l                | 3094                 | Sept 9, 1987   | <b>199</b> 1 | 15                  |
| Tag 2                | 3095                 | Sept 9, 1987   | 1991         | 15                  |
| Tag 3                | 3096                 | Sept 9, 1987   | 1991         | 20                  |
| Tag 4                | 3097                 | Sept 9, 1987   | 1991         | 10                  |
| Sam 2                | 3052                 | July 10, 1987  | 1989         | 18                  |
| Sam 4                | 3053                 | July 10, 1987  | 1989         | 20                  |

## 1.3 <u>Physiography, Vegetation and Climate</u>

The claims are situated on the lee side of the Coast Range Mountains, 80 kilometres east of the Pacific Coast. The region has a relatively dry climate; snow cover in winter is moderate; snow, rain and wind storms are common all year round.


The property covers a semi-rugged to sub-alpine terrain. Elevations range from 760 metres (2,500 feet) to 1,950 metres (6,400 feet). Some slopes are fairly steep, but most may be traversed with care.

Vegetation is sparse; treeline is at a elevation of approximately 1,000 metres above which alpine tundra covers the property; shrubs and trees are restricted to valley bottoms. Engelmann spruce, alpine fir, lodgepole pine, white spruce and white bark pine trees characterize the vegetation.

Water and timber resources for exploration and development purposes are available in valleys of creeks flowing northwesterly into the Samotua River. Several tributaries to these main creeks carry sufficient drilling water during most of the year.

- STETSON RESOURCE MANAGEMENT CORP. -

- 2 -



## 1.4 <u>History</u>

The Tatsamenie Lake area was initially explored in the fifties for its porphyry copper potential. Of several copper showings in the area; two have been classified as small porphyry copper type occurrences.

In 1963, Kennco Explorations Limited delineated low grade disseminations of chalcopyrite and molybdenite in silicified fracture zones. These zones occur on the southern margin of a quartz monzonite porphyry intruding Pre-Upper Triassic sediments and volcanics. A copper bearing magnetite rich skarn was also found on the north side of the same intrusive body. Four Fae claims covering these showings were held until 1986.

In 1970 Skyline Explorations Ltd. staked the Norm claims to surround the Fae group and cover any further porphyry style copper and molybdenum mineralization.

Chevron Canada Resources Limited explored the Tatsamenie Lake area for precious metals in 1982. The area now covered by the Tag claims was one of the Chevron properties, called the Giver-Taker, staked to cover an extensive iron carbonate alteration zone.

Several of Chevron's other properties have been developed through to the diamond drilling stage. The most advanced to date is the Golden Bear property on which North American Metals has, under a joint venture agreement with Chevron, developed proven and probable reserves of 1.5 million tons grading 0.31 oz gold per ton. An all season road to the property is currently under construction.

\_\_\_\_

## 1.5 1987 Exploration Program

The 1987 exploration program was undertaken by geologists, prospectors and field technicians employed by Stetson Resource Management Corp. under the direction of J.C. Freeze of Stillwater Enterprises Ltd. Approximately \$87,500.00 was spent on the following surveys which were carried out between August 17 and September 17:

- Geological mapping was carried out over the center portion of the property at a scale of 1:10,000 and covered 15,000 hectares (see Figures 2.3).
- 2) Rock chip sampling of quartz and calcite veins, quartz-carbonate stockwork zones, hydrothermal and iron carbonate alteration zones and all pyritic rocks was carried out over the areas mapped (see Figure 3.1). A total of 198 rock chip samples were analysed.
- 3) Talus sampling was carried out at 25 metre intervals on two contour line crossing the iron carbonate alteration zone on the Tag claims. A total of 121 talus fines and soil samples were collected.

## 2. GEOLOGY

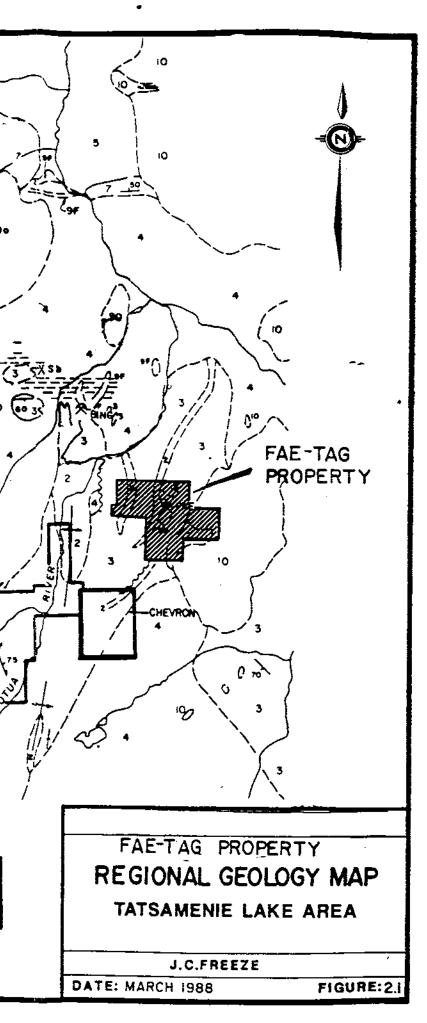
#### 2.1 <u>Regional Geology</u>

The Tatsamenie Lake area was mapped as part of the Tulsequah map sheet by J.G. Souther of the Geological Survey of Canada in 1971 (Figure 2.1). The oldest unit in the area is a diorite gneiss of unknown age. Permian serpentinite and limestone units are overlain by Pre-Upper Triassic clastic sediments and volcanic rocks. The Permian and Pre-Upper Triassic rocks belong to the Stikine Terrane which is an allochthonous package accreted to the North American craton in latest Triassic to Middle Jurassic time (Monger, 1984). Sedimentary, volcanic and volcaniclastic rocks were deposited the Stikine Terrane in Triassic to Jurassic time. on Four igneous events have intruded these rocks: a Triassic granodiorite; a Jurassic diorite (part of the Coast Complex); Cretaceous-Tertiary group of rhyolite dykes, a and porphyritic feldspar diorite and Late Tertiary-Pleistocene intermediate and felsic extrusive and intrusive rocks.

## 2.2 <u>Regional Mineralization</u>

The Stikine Terrane hosts several precious and base metal ore deposits.

In the Iskut area, at the southern end of the terrane, two structurally controlled precious metal deposits have been outlined. Both the Reg property held by Skyline Explorations Ltd. and the Snip property held in joint venture by Cominco Ltd. and Delaware Resource Corp. will be put into production in the near future.


In the Stikine River area two porphyry copper - gold + molybdenum deposits on Galore Creek and Schaft Creek have been outlined.

In the Stikine Arch area the Red Dog property hosts structurally controlled gold mineralization with associated base metals.

At the northern end of the terrane, in the Taku River area, base and precious metal ore in volcanogenic massive sulphides were produced at the Tulsequah Chief mine and gold ore was produced at the Polaris Taku mine.

| X Cu.                                                                    |
|--------------------------------------------------------------------------|
| 30 4                                                                     |
| De                                                                       |
|                                                                          |
| 1                                                                        |
| 3 / 4 / 74                                                               |
| 9 <sup>s</sup>                                                           |
| 26 - JFT ;                                                               |
|                                                                          |
| 25 X 58 X 54                                                             |
|                                                                          |
| 3                                                                        |
| RON - A STALL CHEVRON                                                    |
| $\int_{-2}^{2} \frac{1}{2} \left( \frac{3}{2} - \frac{3}{2} \right)^{4}$ |
|                                                                          |
|                                                                          |
| 2 4                                                                      |
| Bear / Bear / Bear /                                                     |
|                                                                          |
| NORTH AMERICAN                                                           |
| METALS / CHEVRON                                                         |
| ′ <i>کر</i> \ <b>د</b> (                                                 |
| 98 2 3                                                                   |
| 2                                                                        |
| · /.                                                                     |
| $\langle \hat{\Lambda} \rangle$                                          |
| 9F   8                                                                   |
| ، <b>اسل</b> م (۲۰۰۰) ، ا                                                |
| CHEVRON S                                                                |
| لمبر ب <sup>2</sup> ا                                                    |
| 3 <b>L</b> 1                                                             |
|                                                                          |
|                                                                          |

.....



In the Tatsamenie Lake area, centrally located within the Stikine terrane, both porphyry style copper - molybdenum and structurally controlled precious metal mineralization has The most significant precious metal deposit been found. discovered to date is the Bear deposit on the Golden Bear property held by Chevron and North American Metals. The is hosted by an extensive northerly trending deposit structure called the West Wall fault. North trending vertical fault structures between Permian limestone and Pre-Upper Triassic tuff control gold mineralization and associated quartz-carbonate alteration. Both the limestone and the tuff act as hosts to the ore. The gold is commonly associated with disseminations and fracture fillings of fine pyrite, predominantly fault contacts. grained along minerals Accessory include pyrrhotite, arsenopyrite, tetrahedrite and minor galena, sphalerite, chalcopyrite and Most of the gold is submicron in size and not tellurides. visible to the naked eye (Kenway, 1986). The mineralization considered to fit Lindgren's (1933) mesothermal is classification of ore deposits.

The basic model for mineralization in the Bear Deposit comprises:

- Major structures acting as conduits for mineralizing fluids;
- A heat source such as intrusive bodies creating hydrothermal convection cells;
- Structural traps such as folds;
- Host rocks which are either chemically or physically receptive to deposition of metallic mineralization.

## 2.3 Property Geology

The Fae property is underlain predominantly by Permian and Pre-Upper Triassic limestone, clastic sediments and volcanic rocks which have been intruded by two igneous events. The intrusion was a diorite stock in Upper Jurassic time. first second was the Cretaceous and Tertiary Sloko Group of The felsic volcanic flows, intrusives and pyroclastics. Jurassic Takwahoni Formation sediments cap the Pre-Upper Triassic package in the southeastern portion of the property. Late Tertiary and Pleistocene Hearts Peak Formation felsic flows and pyroclastic rocks and Level Mountain Group basalt flows cap the older rocks on the east side of the property. (see Figure 2.3).

The Permian Limestone comprises a succession of massive limestone beds, hundreds of feet thick, intercalated with chert, shale and sandstone beds. The limestone is most fine grained and medium commonly grey in colour. Recrystallization occurs near intrusive contacts turning the limestone into a marble. The limestone outcrops in northerly trending elongate bodies on the western portion of the property.

The Pre-Upper Triassic package comprises fine grained, clastic sediments rocks and intercalated andesite volcanic flows and tuffs; chert, jasper, greywacke and limestone. Intense folding and shearing of this package has resulted in the development of slaty cleavage and foliation. Fine grained secondary mica in the sedimentary rocks creates a platy, phyllitic texture and lustrous sheen. The cherts in medium the limestones in beds tens of feet thick. beds; The volcanic rocks have been altered predominantly to а greenstone and chlorite-amphibolite schist.

The Takwahoni sedimentary package comprises predominantly thinly intercalated quartzose sandstone, siltstone and shale. Minor limestone lenses, chert pebble conglomerate and granite boulder conglomerates occur within the sequence. These sediments outcrop on the southeastern portion of the property.

The Post Middle Jurassic intrusive is a fine to medium grained hornblende diorite to quartz monzonite stock. These stocks intrude the Pre-Upper Triassic package in the northeastern portion of the property and both northeast and southwest of Vermillion Ridge.

The Cretaceous-Tertiary Sloko Group intrudes the Permian limestone and Pre-Upper Triassic package as a quartz feldspar porphyry stock on the Fae claims.

- 7 -

At the highest point on the property, the northeast corner, Level Mountain Group basalts cap and are intercalated with Hearts Peak Formation pyroclastics and epiclastics. Basalts also cap Takwahoni sediments in the southeastern portion of the property. The basalts are predominantly fine grained, columnar flows. Vesicles filled with chalcedony amygdules occur near the top of flows. The pyroclastics comprise felsic to intermediate ashflow tuffs and epiclastics comprising clasts of tuffs and Takwahoni sediments.

Pervasive epidote and a yellow-green alteration occurs in the tuffs below the basalts. At the highest basalt-tuff contact a bright orange gossan occurs in extremely weathered material.

## 2.4 <u>Property Mineralization and Alteration</u>

The most distinct alteration feature on the Fae property is a pervasive iron carbonate alteration zone that weathers to a bright orange colour and appears to be controlled by a northerly striking and westerly dipping structure. The alteration extends from the southwest end of Vermillion Ridge along the ridge to the north across Tag Creek and up Vermillion Tributary. A small iron carbonate alteration zone The also occurs in Fae Creek. Pre-Upper Triassic sediment-volcanic package is the most susceptible unit to Quartz-carbonate stockwork often occurs this alteration . within the pervasive alteration zone. Silicified limestones exposed within this zone may be fault controlled Permian limestone or the Pre-Upper Triassic limestone unit.

Above the headwaters to Vermillion Tributary a bright red gossan occurs at the contact between felsic tuffs and overlying basalt flows. The gossanous material is weathered beyond recognition and no mineralization is visible. However anomalous silver, lead and zinc values were obtained from it.

Silicification is most prominent as a hornfels zone proximal to the intrusive bodies. In addition to the hornfels zones, a distinct east-west zone of cryptocrystalline quartz crosses Fae Creek just north of Chert Peak. The silicified zone comprises brecciated cherts and/or rhyolites healed by chalcedony and quartz, disseminated and massively banded or bedded pyrite, shear zones and complex folding which includes an overturned antiform cored by limestone.

Porphyry style copper and molybdenum mineralization has been known to occur with the Sloko Group quartz-feldspar porphyry stock since the sixties. Quartz stockwork in clay alteration zones within the quartz-feldspar porphyry also host silver and weak gold mineralization.

- 8 -

The siliceous zone crossing Fae Creek hosts gold and silver bearing pyrite in a carbonate altered cherty breccia with fuchsite as well as with chalcopyrite in a silicified limestone in an overturned antiform.

Anomalous gold, silver, antimony and arsenic values occur with blebs of galena, sphalerite and chalcopyrite in iron carbonate altered tuffs in felsenmeer on Fae Ridge south of the east-west siliceous zone.

In the Tag Creek area gold  $\pm$  silver bearing pyrite is found in: quartz veins with limonite staining; in iron carbonate altered tuffs with quartz lenses; and in graphitic shear zones.

Weak gold mineralization occurs in talus samples throughout much of the pervasive iron carbonate alteration zone.

On the northern end of Vermillion Ridge, within the iron carbonate alteration zone, gold bearing pyrite-arsenopyrite <u>+</u> galena occurs with weak silver mineralization in: a fuchsitic quartz-carbonate stockwork zone in schists and phyllites; in silicified limestone with sphalerite; and in malachite stained rubble.

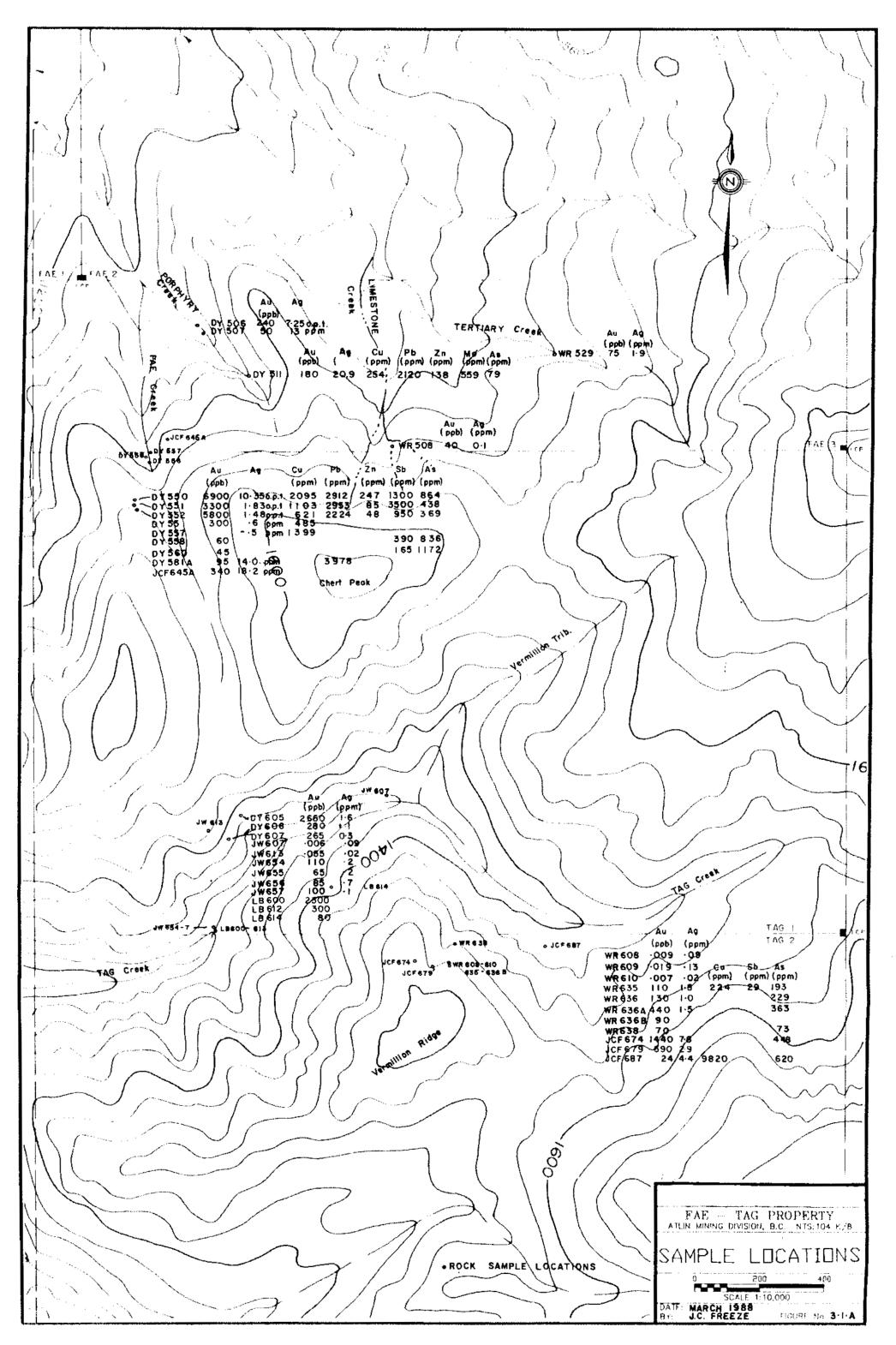
#### 3. GEOCHEMISTRY

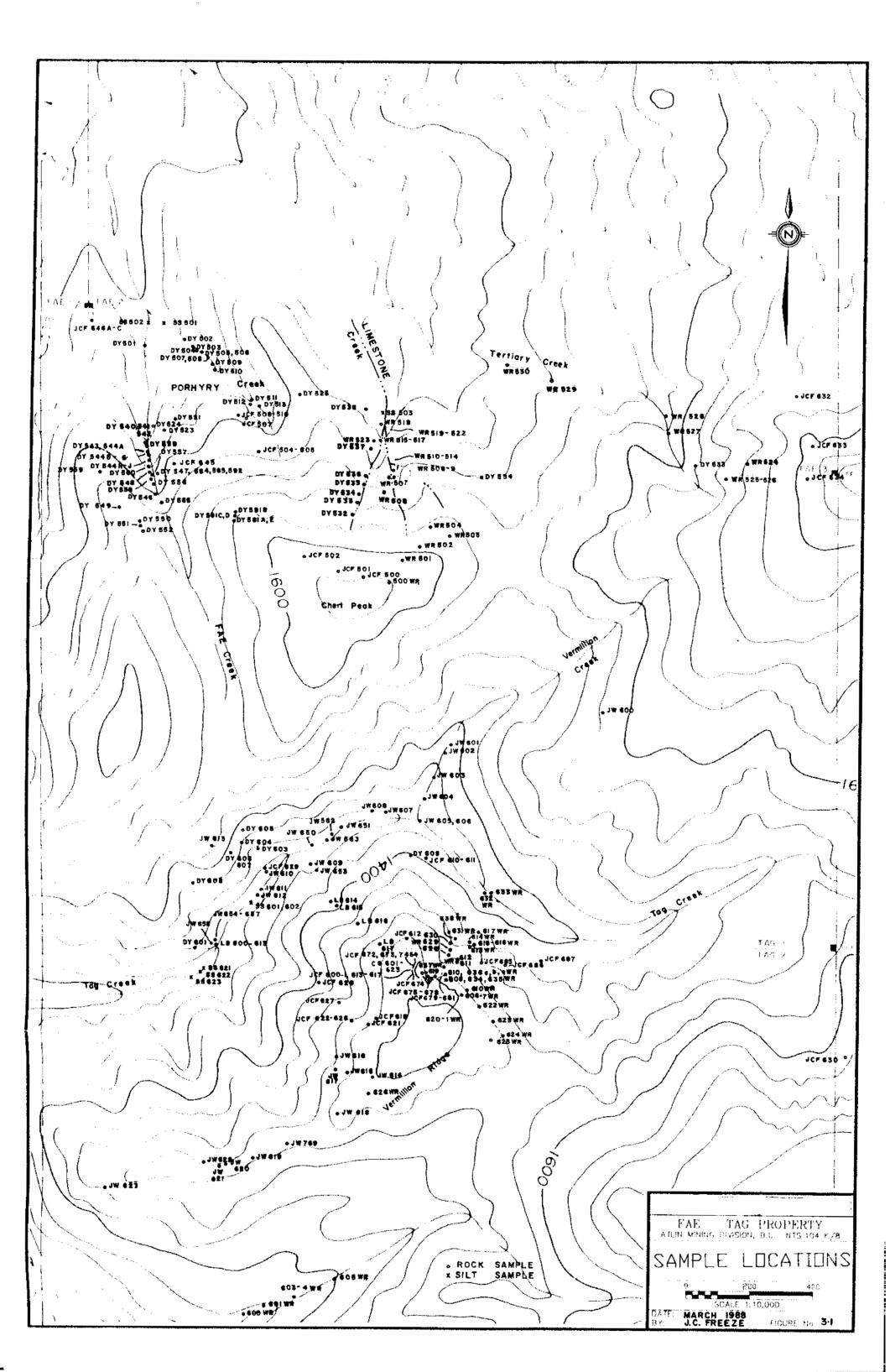
## 3.1 Rock Chip Sampling

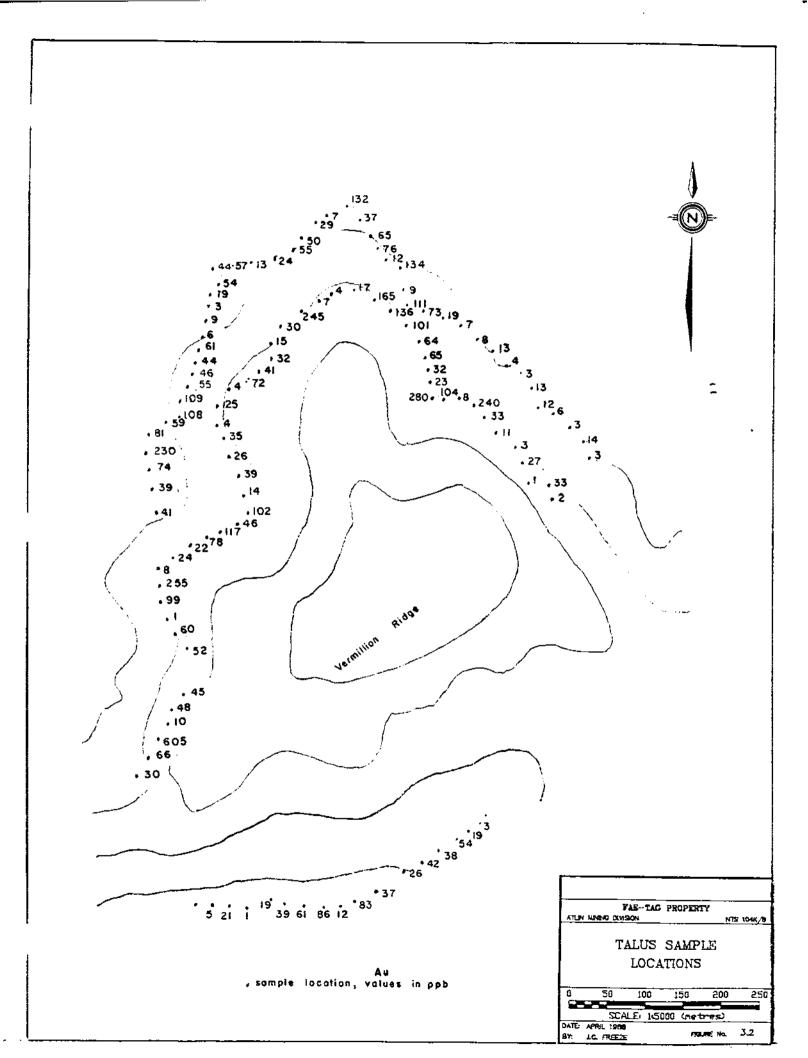
## 3.1.1 Sampling, Sample Preparation and Analytical Procedures

Rock chip samples were collected from all outcrops with visible mineralization, boxwork, iron staining or silicification, and from all quartz  $\pm$  carbonate stockwork veins.

Selected samples were taken where the width of the zone of interest could not be determined. Chip samples were taken at regular intervals (according to the size of the unit) across: the width of lenses and veins; wallrock to beds and veins; and gossanous, siliceous or pyritic zones. A total of 223 rock samples were collected and 198 samples were sent for analysis.


The samples were placed in numbered plastic bags and sent to Bondar-Clegg in Whitehorse, Acme Analytical Laboratories Ltd. Vancouver and Chemex Labs Ltd. in North Vancouver for in In the laboratory, samples were put through analysis. sub-sample secondary crushers. Α of primary and approximately 250 gm was then pulverized to minus 100, 140 or The pulp was then analyzed for gold, silver and 150 mesh. elements according to visible or suspected other mineralization (see Appendix I for specifics).


## 3.1.2 Presentation and Discussion of Results


Significant assay results, locations and descriptions of samples are given in Table 3.1. All sample locations are shown on Figure 3.1 and results are in Appendix I.

In Porphyry Creek on the Fae claims quartz stockwork within a clay alteration zone in the quartz feldspar porphyry carries up to 140 ppb gold and 7.25 oz per ton silver over 2.9 metres.

In the siliceous zone on Fae Creek a silicified and dolomitized limestone with pyrite, chalcopyrite and haematite staining contains up to 300 ppb gold with 485 ppm copper across .2 metres. A carbonate altered chert breccia with fuchsite contains 340 ppb gold and 18.2 ppm silver.







Above this zone a .15m wide galena and tetrahedrite bearing quartz vein in an iron carbonate alteration zone contains 6900 ppb gold, 10.35 oz. per ton silver, 2095 ppm copper, 2912 ppm zone, 257 ppm antimony, 1399 ppb mercury and 865 ppm arsenic.

On the north slope of Tag Creek, a quartz vein and a black carbonate vein within a quartz-carbonate stockwork zone contain 0.55 oz. gold per ton and 2650 ppb (0.77 oz. per ton) gold over .15 metres and .10 metres, respectively. In Tag Creek below the latter zone, a gouge zone within sheared tuffs, carries 2300 ppb (0.67 oz. per ton) gold over 1.5 m.

Talus samples across the iron carbonate alteration average 40 ppb gold and often exceed 100 ppb gold. At the north end of Vermillion Ridge a fuschsitic quartz-carbonate stockwork zone with disseminated pyrite and arsenopyrite contains 1440 ppb gold, 7.8 ppm silver, 305 ppm lead and 488 ppm arsenic. Below this to the east a pyritic silicified limestone pod contains up to .019 oz. gold per ton, 0.13 oz. silver per ton and 3634 ppm arsenic. A total of 121 talus samples were collected.

#### 3.2 Stream Sediment Sampling

#### 3.2.1 Sampling

Five stream sediment samples were collected from Tag Creek. Approximately 300 gm of fine sand to clay-sized material was sampled by hand and placed in numbered Kraft envelopes. The samples were sent to Bondar-Clegg in Whitehorse for analysis.

#### 3.2.2 Sample Preparation and Analytical Procedure

The samples were oven-dried and sieved to minus 80 mesh. A 10 gram subsample was preconcentrated by fire assay and analyzed for gold by atomic absorption.

#### 3.2.3 Results

Only one sample contains slightly anomalous gold concentrations (20 ppb). Sampling of fine materials in the stream bed has not been very successful in delineating the fine grained gold mineralization in the Tatsamenie area and is not recommended as an efficient exploration tool in this area (Chevron and North American Metals, Pers. Comm.).

## CONCLUSIONS

Gold  $\pm$  silver with occasional chalcopyrite, galena, sphalerite, molybdenum, arsenopyrite and mercury mineralization occurs in several zones on the property. The sulphides occur in quartz  $\pm$  carbonate vein structures and in the surrounding stockwork and alteration halos, in silicified limestones, in shear zones and in siliceous breccias.

These mineralized structures occur predominantly in the Permian limestone and Pre-Upper Triassic sediment-volcanic package.

Comparing the mineralization discovered on the Fae property to the most economically significant property in the Tatsamenie Lake area, the following observations can be made:

Bear Deposit Model

- Major structures acting as conduits for mineralizing fluids;
- 2) A heat source such as intrusive bodies creating hydrothermal convection cells fundamental to both mesothermal and epithermal ore bodies.
- 3) Structural traps;
- 4) Host rocks such as limestone and tuffs, that are either chemically or physically receptive to deposition of mineralization.

#### Fae Observations

1) The Vermillion Ridge iron carbonate alteration zone appears to be controlled by a major northerly striking and westerly dipping structure as evidenced by the outcrop pattern. Anomalous gold values occur in several veins and stockwork zones as well as in the talus covering much of this zone. The Fae Creek gold bearing siliceous zone appears to be controlled by an east-west structure.

- Both Tertiary Sloko Group and Post Middle Jurassic 2) stocks intrude the Permian and the Pre-Upper Triassic host gold mineralization. These which package intrusive bodies and a deeper seated batholith may have to create necessary provided the heat source hydrothermal convection cells.
- No structural traps have been identified yet but folding 3) occurs in the sediments in Fae Creek.
- On the Fae property limestone and tuff units similar to 4) mineralized in the Bear deposit host the those structures.

As in the Bear deposit most of the mineralization on the Fae property fits Lindgren's (1933) mesothermal model for ore Quartz ± carbonate hosting pyrite, chalcopyrite, deposits. and tetrehedrite sphalerite, galena, arsenopyrite, mineralization in veins and associated alteration halos are described by Lindgren (1933) as mesothermal ore deposits. Where the mineralization comprises fewer base metals and an increase in mercury and antimony in cryptocrystalline quartz breccias it fits Lindgren's epithermal model. Both deposits similar systems; mesothermal ore forms at form in intermediate depths under high pressures and intermediate temperatures while epithermal ore forms near surface at low pressures and temperatures. In both cases intrusive bodies are important as heat sources for mineralizing fluids. Both produce a large proportion of the worlds gold and silver ore.

In conclusion, the Fae property is believed to have excellent potential for hosting an economic mineral deposit.

Respectfully Submitted, STETSON RESOURCE MANAGEMENT CORP.

DYNES, Prospector

ROBB, B.SC

FREEZE, /F.G.A.C. J.C. STILLWATER ENTERPRISES LTD.



- 13 -

## RECOMMENDATIONS

Based on the conclusions stated, the following two phased exploration program is recommended. The decision to proceed with Phase II is contingent upon favourable results from Phase I.

## <u>Phase I</u>

- Detailed mapping and rock chip sampling of mineralized zones discovered to date. Both the strike and width extent of these zones should be investigated. Investigations should be prioritized as follows:
  - a) Fae Ridge Iron-Carbonate Zone;
  - b) Tag Creek Iron-Carbonate Zone;
  - c) Northern end of Vermillion Ridge;
  - d) Fae Creek Siliceous Zone;
  - e) Basalt Peak Gossan.
- Geophysical Surveys: Magnetic and Electromagnetic Surveys should be carried out over mineralized zones to delineate structural controls. Investigations should be prioritized as in Step 1.
- Soil sampling should be carried out over the strike extension of all mineralized zones where they are covered by soil.
- Prospecting should be carried out on portions of the property unexplored to date.

#### <u>Phase II</u>

Diamond drilling should be carried out on the best targets outlined by Phase I. Favorable structures should be tested for both strike and depth extents. COST STATEMENT

**Project Preparation:** 

 Printing
 \$ 54.16

 Maps
 612.63

 Drafting
 373.95

 Personnel:
 J.C. Freeze
 2 man days @ \$300/day
 600.00

 J.F. Wetherill
 10.5 man days @ \$225/day
 2,362.50

\$ 4,003.25

## Field Personnel:

| Geold | ogists:     |       |          |     |      |   |           |             |           |
|-------|-------------|-------|----------|-----|------|---|-----------|-------------|-----------|
|       | Freeze      |       | 12.5     | man | davs | e | \$300/day | Ś           | 3,750.00  |
| J.F.  | Wetherill   |       | 8        |     |      |   | \$225/day |             | 1,800.00  |
| W.    | Robb        |       | 14       | man | days | 6 | \$225/day |             | 3,150.00  |
| Pros  | pectors:    |       |          |     | -    |   |           |             |           |
| W.J.  | Dynes       |       | 11       | man | days | 6 | \$225/day |             | 2,475.00  |
| R.    | Prois       |       | 8        | man | days | 6 | \$200/day |             | 1,600.00  |
| Field | d Technicia | ns:   |          |     | _    |   |           |             |           |
| М.    | Pym         |       | 13       | man | days | 6 | \$200/day |             | 2,600.00  |
| с.    | Gjendem     |       | 9        | man | days | 6 | \$175/day |             | 1,575.00  |
| Α.    | Wardwell    |       | 11       | man | days | 6 | \$175/day |             | 1,925.00  |
| L.    | Beaudin     |       | 7        | man | days | 6 | \$175/day |             | 1,225.00  |
| G.    | Heynen      |       | 8        |     | days | 6 | \$175/day |             | 1,400.00  |
| Cook  | and First   | Aid 1 | Attendai | nt: |      |   |           |             |           |
| W.    | Elliot      |       | 12       | man | days | 6 | \$200/day |             | 2,400.00  |
|       |             |       |          |     | -    |   |           | 72          |           |
|       |             |       |          |     |      |   | Total:    | <b>\$</b> : | 23,900.00 |

Support:

| Mobilization/Demobilization |        |                |
|-----------------------------|--------|----------------|
| Truck Rental                |        | \$<br>269.51   |
| Freight                     |        | 396.62         |
| Fixed Wing                  |        | 2,214.53       |
| Flights                     |        | 3,114.32       |
|                             |        |                |
|                             | Total: | \$<br>5,994.98 |

- 15 -

Camp: Room 112 man days @ \$25.00/manday \$ 2,800.00 Groceries 112 man days @ \$21.77/manday 2,438.24 Grocery Flights 112 man days @ \$ 5.02/manday 562.24 Motel Accommodation 185.36 Restaurant Meals 331.30 Equipment Rental: Generator 112 man days @ \$2.77/manday \$ 310.24 Chainsaw 112 man days @ \$3.34/manday 374.08 Communications: SBX-11-Rental 112 man days @ \$1.22/manday 136.64 Parts 112 man days @ \$1.84/manday 206.08 Walkie Talkies 112 man days @ \$3.23/manday 361.76 Long Distance 354.70 Expediting 112 man days @ \$10.95/manday 1,226.40 \*==\*== Total: \$ 9,287.04 Supplies \$ 5,479.50 Assays \$ 6,003.03 Transportation: Helicopter & Fuel - 35.96 hours @ \$591.9/hour \$21,284.72 Fuel Flights 1,663.71 Courier & Taxis 442.63 \*\*\*\* Total: \$ 23,391.06 Sub Total \$ 78,058.86 12% Overhead Administration: \$ 9,367.06

TOTAL COSTS \$ 87,425.92

- 16 -

\_\_\_\_\_

\_\_\_\_

## REFERENCES

| FREEZE, J.C., May 1987             | Report on the Northern Gold<br>Project, Atlin Mining Division<br>for Lightning Creek Mines Ltd.<br>and Dia Met Minerals Ltd. |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| FREEZE, J. C., Feb. 1988           | Report on the Vine Property,<br>Atlin Mining Division for<br>Waterford Resources Ltd.                                        |
| FREEZE, J.C., Mar. 1988            | Report on the Ant Property, Atlin<br>Mining Division for Wicklow<br>Resources Ltd.                                           |
| KENWAY, R.W., 1986                 | Golden Bear Project of North<br>American Metals Corp. by Uma<br>Engineering Ltd.                                             |
| LINDGREN, W., 1933                 | Mineral Deposits, p. 529-534.                                                                                                |
| MONGER, J.W.H., 1984               | Cordilleran Tectonics: a Canadian<br>perspective; Societe Geologigue<br>de France, Bulletin (7) + XXVI,<br>No. 2 P.255-278.  |
| NEY, C.S., 1963                    | Report on Geology and<br>Geochemistry Prospect, Fae<br>claims, Atlin Mining Division for<br>Kennco Explorations Limited.     |
| SEVENSMA, P.H., 1972               | Geological and Geochemical Report<br>for Skyline Explorations Ltd.,<br>Norm Group.                                           |
| SOUTHER, J.G., 1971                | Geology and Mineral Deposits of<br>Tulsequah Map Area, British<br>Columbia; Geol. Surv. Can. Mem.<br>362.                    |
| STEVENSON, R.W., 1976              | Report on Rock, Soil and Silt<br>Geochemical Survey, Fae No. 1<br>Claim Group for Kennco<br>Explorations Limited.            |
| THICK, M., and<br>WALTON, G., 1983 | Assessment Report Geological and<br>Geochemical Survey, Iver Group,<br>Atlin Mining Division.                                |
| WALTON, G., 1984                   | Assessment Report Geological,<br>Geochemical Surveys, Giver, Taker<br>claims, Atlin Mining Division.                         |

.

#### STATEMENT OF QUALIFICATIONS

Freeze, J.C., (nee Ridley), F.G.A.C.

PROFESSION: Consulting Geologist

NAME:

EDUCATION: 1981 B. Sc. Geology -University of British Columbia

> 1978 B.A. Geography -University of Western Ontario

**PROFESSIONAL**Fellow of the Geological Association**ASSOCIATIONS:**of Canada

EXPERIENCE: 1987 - Present: Consulting Geologist with Stillwater Enterprises Ltd. Directing exploration programs and reviewing properties in Canada and U.S.A.

> 1985 - 1986: Project Coordinator -Geologist with White Geophysical Inc. Coordinating mineral exploration projects involving geology, geochemistry, geophysics and diamond drilling in B.C. and Yukon.

> 1981 - 1985: Project Geologist with Mark Management Ltd. Hughes-Lang Group. Responsible for precious metals exploration programs involving geology, geochmistry, geophysics and diamond drilling in Western Canada.

> 1979 - 1981: Summer and part-time Geologist involved with coal exploration in N.E. B.C. with Utah Mines Ltd.

— STETSON RESOURCE MANAGEMENT CORP. —

## STATEMENT OF QUALIFICATIONS

NAME:

Wetherill, J. F.

PROFESSION:

EDUCATION:

EXPERIENCE:

University of British Columbia

1987 B.A.Sc. Geology -

Geologist - Engineer in Training

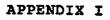
1987 - Present: Geologist with Stetson Resource Management Corp. Field Supervisor for exploration programs involving geology, geochemistry, and geophysics in B.C. and Yukon.

1986, June - August: Field Assistant - Geologist involved with geological, geochemical and geophysical aspects of exploration programs in B.C.

## STATEMENT OF QUALIFICATIONS

NAME:

Robb, W.D.


PROFESSION: Geologist

EDUCATION: 1987 B.Sc. Geology -University of British Columbia

EXPERIENCE: 1987 - Present: Geologist with Stetson Resource Management Corp. Field Supervisor for exploration programs involving geology, geochemistry, and geophysics in B.C. and Yukon.

> 1986, June - August: Field Assistant - Geologist involved with geological, geochemical and geophysical aspects of exploration programs in B.C.

> 1978 to 1982: Land Surveyor with Canadian National Railways, Edmonton, Alberta; British Columbia Railways, Tumbler Ridge; and Hargraves and Associates, Vancouver, B.C.



Rock Geochemistry Results

.-

# <u>TABLE 3.1</u> Rock Sample Descriptions and Results

# FAE CLAIMS

|                    |                   | Rock Sample                                         |              | <u>E_3.1</u><br>iption: | s and     | Resul       | lts        |                     |           |                   |           |
|--------------------|-------------------|-----------------------------------------------------|--------------|-------------------------|-----------|-------------|------------|---------------------|-----------|-------------------|-----------|
|                    |                   |                                                     | <u>Fae</u>   | CLAIMS                  |           |             |            |                     |           |                   |           |
| <b>HE</b> 2<br>10. | Location          | Rock Type With<br><u>Mineralization</u>             | Width_       | Atta                    | Au<br>ppb | Ag<br>ppm   | Cu<br>ppm  | dq<br>mqq           | Zn<br>ppm | Sb<br>ppm         | As<br>ppm |
| <b>y</b> 506       | Porphyry<br>Creek | Qz fldspr<br>prphry-cly alt<br>w/Qz stkwrk          | 2.9m         |                         | 240       | 7.25        | opt        |                     |           |                   |           |
| y507               | ••                | 11                                                  | 8m           |                         | 50        | 13 pj       | <b>D</b> m |                     |           | Мо                |           |
| <u>9</u> ¥511      | H                 | Qz fldspr<br>porphry-cly alt<br>& shr'd-Qz<br>vnlts | 8m           |                         | 180       | 20.9        | 254        | 2120                | 138       | <b>ppm</b><br>559 | 79        |
| 92550              | Fae Ridge         | Fe Cb-Qz Vn-Ga<br>bnd-Te                            | .15m         | Fls<br>nmr              | 6900      | opt<br>10.3 | 5 209      | Hg<br>ppb<br>5 1300 | 0 291:    | 2 24              | 7 864     |
| Y531               | H                 | Fe-Cb-Qz<br>(Cryptxln)-Ga<br>Orng wthrng            | .15m         | 19                      | 3300      | 1.83        | 1103       | 3500                | 2953      | 85                | 438       |
| ¥552               | 11                | Qz-Cryptxln-Sp                                      | .10m         |                         | 5800      | 1.98        | 621        | 950                 | 2224      | 48                | 369       |
| ¥555               | Fae Creek         | Lmstn-Gry Su-<br>He-Py                              | .2m          | <u>130</u><br>45N       | 300       | .6          | 485        |                     |           |                   |           |
| ¥556               | F4                | 11                                                  |              |                         | 80        | 5           | 1399       |                     |           |                   |           |
| ¥558               | 68                | Chrt-Blk-Py-<br>He & Ja                             | .15m         | <u>130</u>              | 60        |             |            | 390                 |           |                   | 836       |
| ¥560               | "                 | Qz Vn-Brx w/Su                                      | slct         | <u>040</u><br>90        | 45        |             |            | 165                 |           |                   | 1172      |
| ¥581               | Chert             | Fe Cb Vn w/Ga,<br>Sp, Cp, grnstn                    |              |                         | 95        | 14.0        |            |                     | 3978      |                   |           |
| R508               | Lmstn<br>Ck       | Slcfc Lmstn<br>Py Qz fldng                          | <u>+</u> .2m | <u>155</u><br>42W       | 40        | 0.1         |            |                     |           |                   |           |
| R529               | Tert Crk          | Epiclastic tuff<br>Py blebs-K alt                   |              |                         | 75        | 1.9         |            |                     |           |                   |           |

## TAG CLAIMS

|   | <u> </u>      |                          |                                   | TAG C                | LAIMS             |           |           |           |           |           |           |           |
|---|---------------|--------------------------|-----------------------------------|----------------------|-------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|   | samp<br>IO.   | Location                 | Rock Type With<br>Mineralization  | Width                | Attd              | Au<br>ppb | Ag<br>ppm | Cu<br>ppm | Pb<br>ppm | Zn<br>ppm | Sb<br>mqq | As<br>ppm |
|   | JCF645<br>3   | ; **                     | Fuchsite in Cb<br>alt Chrt brx    |                      |                   | 340       | 18.2      |           |           |           |           |           |
|   | <b>J</b> ¥605 | Tag Crk                  | Cb Vn wht & blk<br>Py             | <u>+</u> .lm         | <u>098</u><br>80N | 2650      | 1.6       |           |           |           |           |           |
|   | <u> </u>      | **                       | Cb stkwrk blk<br>w/sulph Cb       | slct                 | talus             | 280       | <0.1      |           |           |           |           |           |
|   | DY 60'7       | 59                       | Cb alt phlt w/<br>blk Cb vnlts Cb |                      |                   | 265       | 0.3       |           |           |           |           |           |
|   | JCF679        | ) Verm<br>Ridge<br>WR636 | Si brx Py>1%                      |                      |                   | 590       | 2.9       |           |           |           |           |           |
|   | JCF674        | l Verm<br>Ridge          | Qz-Cb stkwk<br>w/ Fu              | slct                 |                   | 1440      | 7.8       |           | 305       |           |           | 488       |
|   | T7F687        | 7                        | Cu stn rbl                        |                      |                   | 24        | 4.4       | 9920      |           |           |           | 620       |
|   | JW607         | Tag Crk                  | Brx Vis Su's<br>Qz-Cb             | slct                 | <u>065</u><br>805 | .006      | .09       |           |           |           |           |           |
|   | JW613         | 19                       | Msv Qz vn Su's                    | .15m                 | <u>020</u><br>76E | .055      | .02       |           |           |           |           |           |
|   | JW654         | 11                       | Cb-Qz stkwk in<br>ultrmfc         | .40m                 |                   | 110       | .2        |           |           |           |           |           |
|   | JW655         | te                       | Tuff-blk<br>crumbly               | slct                 |                   | 65        | .2        |           |           |           |           |           |
| I | JW656         | 18                       | Cb alt tuff                       | .30m                 |                   | 85        | .7        |           |           |           |           |           |
|   | JW657         | <b>59</b>                | Qz Cb stkwk                       | slct                 | <u>045</u><br>70N | 100       | .1        |           |           |           |           |           |
|   | LB600         | Tag Crk<br>1240 El       | Tuff & gouge<br>Mnr Su's Chl      | <u>1.5m</u><br>19.5m |                   | 2300      |           |           |           |           |           |           |
|   | LB612         | Tag Crk                  | Tuff w/Qz lens                    | 59                   |                   | 300       |           |           |           |           |           |           |
|   | LB614         | 18                       | Qz-Cb alt<br>phyllite-Su          |                      |                   | 80        |           |           |           |           |           |           |

| Samp<br><u>No.</u> | Location         | Rock Type With<br>Mineralization             | Width | Attd_ | Au<br>ppb          | Ag<br>ppm         | Cu<br>ppm_ | Pb<br>_ppm_ | Zn<br>_ppm_ | Sb<br>ppm | As<br>ppm |
|--------------------|------------------|----------------------------------------------|-------|-------|--------------------|-------------------|------------|-------------|-------------|-----------|-----------|
| WR608              | Verm<br>Ridge    | Slcfd lmstn Py<br>As Py                      | slct  |       | <b>opt</b><br>.009 |                   |            |             |             |           |           |
| WR609              | 64               | Slcfd lmstn Py                               | 61    |       | .019               | .13               |            |             |             |           |           |
| WR610              | 11               | Slcfd lmstn<br>diss Py                       | 18    |       | .007               | .02               |            |             |             |           |           |
| WR635              | NE Verm<br>Ridge | Slcfd lmstn Py<br>grey Qz                    | .3m   |       | <b>ppb</b><br>110  | <b>ppm</b><br>1.5 | 224        |             |             | 29        | 193       |
| WR636              | <b>FT</b>        | Qz stkwk in Si<br>lmstn yellow Py            | .08m  |       | 130                | 1.0               |            |             |             |           | 229       |
| WR636<br>A         | Ħ                | Qz stkwk in Si<br>lmstn yellow<br>Py grey Qz | .08m  |       | 440                | 1.5               |            |             |             |           | 363       |
| WR636<br>B         | ¥?               | Qz stkwk in Si<br>lmstn                      | .08m  |       | 90                 |                   |            |             |             |           |           |
| WR633              |                  | Qz stkwk in Si<br>lmstn                      | .08m  |       | 70                 |                   |            |             |             |           | 73        |

·

,

Bondur-Clegg & Company Ltd. 5420 Canotek Rd., Ottawa, Ontario, Canada K1J 8X5 Phone: (613) 749-2220 Teles: 053-3233

## Geochemical Lab Report

20

| REPURT: 117-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1982                       |                  |                      | ]                  |             |            | 22         | UJECT: FA                               | E+IAG                                      | State P                                   | AGE IC                                | 编编          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------|----------------------|--------------------|-------------|------------|------------|-----------------------------------------|--------------------------------------------|-------------------------------------------|---------------------------------------|-------------|
| SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ELEMENT                    | Ie               | ya                   | La                 | - Ce        | Ia         |            | 11                                      | Pb                                         | Bi                                        | Sea Parri                             |             |
| NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | UNITS                      | 254              | PPN                  | PPM                | 222         | P27        | PPH        | 22M                                     | PPH                                        | PPH                                       |                                       |             |
| JCE-632                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 論認識の対                      | 21               | 369                  | 22                 | 24          | <10        | 010        | <10                                     | 30                                         | (3                                        | - Altainin                            |             |
| JCE-634                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Acres Barrow               | $\approx H^{-2}$ | 336                  | 51                 | 87          | <10        | · (10      | <10                                     | 105                                        | <3                                        |                                       |             |
| JCE-640A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (一种学)(古)                   | (10              | 272                  | 9                  | 15          | <10        | <10        | <10                                     | 7                                          | . 3                                       | AND THE .                             | 18 P        |
| JCS-640B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | and the set of             | (10-             | 482                  | 29                 | -43         | <10        | <10        | <10                                     | 33                                         | 4                                         | - ANDER                               |             |
| JCE-640C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            | <10              | 97                   | 17                 | 29          | (10        | (10        | <10                                     | 10                                         | - C3 -                                    | 建注意                                   |             |
| 108-DJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | I                | 59                   | 12                 | (5          | <10        | <10        | 24                                      | 5.1                                        | (3                                        | N.S. IN                               |             |
| CG-603                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Fallen INT und and         | 10               | 254                  | 13                 | (5          | <10        | (10        | 10                                      | 12                                         | (3                                        | Station of the                        |             |
| CG-605                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | and a state of a           | (10              | 115                  | II                 | . (5        | <10        | <10        | 17                                      | 35                                         | 0                                         | 建建长以                                  | Constanting |
| CG-606                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.00027000                 | (10              | 162                  | - n                | (5          | <10        | <10 ·      | 19                                      | .4                                         | 3                                         |                                       |             |
| CG-607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | - 11             | 33                   | 14                 | 5           | <10        | (10        | 12                                      | (4                                         | 5                                         | i fes                                 | interior in |
| C0-608                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | 17               | 23                   | 15                 | <u> </u>    | <10        | <10 -      | 12                                      | ······································     | 4                                         |                                       | Read        |
| CG-618_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            | C10              | 53                   | 13                 | (5          | (10        | ¢10        | <10                                     | 12                                         | 5                                         | and car                               | 1.1.1       |
| CS-619                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | and some fit               | (10              | 57                   | 13                 | 5           | <10        | .00        | <10                                     | 17                                         | 6                                         | and the                               | NECT        |
| - CG-620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            | 14               | 236                  | 13                 | G           | <10        | (10        | 16                                      | 6                                          | -0                                        |                                       |             |
| _CG-621                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            | 19               | 131                  | 14                 | 5 G         | <10        | CI0        | 20                                      | - 14                                       | 6                                         |                                       | 山口之         |
| Di-622                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | 15               | 188                  | 14                 | (5          | <10        | <10        | <10                                     | 28                                         | 9                                         |                                       | 10 YA       |
| 06-623                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ALCO PE                    | <10              | 80                   | 7                  | G           | 010        | C10        | <10                                     | 45                                         | 5                                         |                                       |             |
| DY-543                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | (10              | 32                   | - 14               | (5          | <10        | <10        | <10                                     | - <4                                       | 9                                         | and the s                             |             |
| BY-544F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            | <10              | 5                    | 19                 | 5           | (10        | (10        | (10                                     | 5                                          | 3                                         |                                       |             |
| DY-5446                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Hur - East                 | ¢10              | 2/                   | 20                 | (5          | <10.       | <10 y      | 23                                      | 79                                         | 3                                         |                                       |             |
| DY-544H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            | (10              | 16                   | - 13               | n           | (10        | (10        | <10                                     | 5                                          | Class.                                    |                                       | a state     |
| DY-5441<br>DY-544L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | to the same                | 22<br>22         | 6                    | 11<br>13           | CS .        | (10<br>(10 | <10        | <10                                     | (4                                         | 22                                        | 日日、作り                                 | 1 42 F      |
| DI JAAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            | 64               | 6                    |                    | G ·         | (10        | <10        | <10                                     | - 4                                        |                                           | and the second                        |             |
| 199 - B B B.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |                  | 11 10 10 10 100 1000 | e a standard and a | S. March    |            | - raine    |                                         |                                            | the state                                 |                                       | 统社          |
| New Designment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | while the of the filler of | THE REAL OF      |                      | AND REAL PROPERTY. |             |            |            | 的总统。                                    | CITE HARE SIL                              |                                           |                                       |             |
| and the second s | 國行動                        |                  |                      |                    |             |            | 14. A. A.  |                                         | The start                                  | うない                                       |                                       |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                  |                      |                    | 1000 A      |            |            |                                         |                                            |                                           |                                       |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ALC: MARKE                 |                  |                      |                    |             |            |            |                                         |                                            |                                           | · · · · · · · · · · · · · · · · · · · | 1           |
| CONTRACT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and the start of           | anenco           | 103119423            | ARCIERS.           | THE SECTION | 國際中央的      | 四日の記録      | nan an | 12128449                                   | (1) 11 11 11 11 11 11 11 11 11 11 11 11 1 | 52, A.                                | 就是10        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | the second       | - State              |                    |             |            |            | は語言                                     |                                            |                                           |                                       |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | 32               |                      |                    |             |            |            |                                         |                                            |                                           | Ent in                                |             |
| Charles Inc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                          |                  |                      |                    | 10.清望       |            |            | 不利的                                     | Sec. 1                                     | 1.2                                       |                                       |             |
| the state of the s | 241 A 2                    |                  |                      | No. Frank          | E Part      | R. SAN     | a same tak |                                         | 調整物料                                       | 举新问                                       |                                       | 20 SALE     |
| · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 6 32                     | 26.1             | 1000                 | 1000               | 3 - Z - 2   | 1 ALL      | Se T       |                                         |                                            | -intar                                    |                                       |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                  | A PAR C              |                    | THE REAL    |            |            |                                         |                                            |                                           | die e                                 |             |
| and the second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |                  | CHIG-PER             | 1. LA - 19 - 19    | Mar Carol   | - Start    |            | No. Contraction                         | 12. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | Seat the own                              | A Parting                             | Sec. Solo   |

P

3.1

1

1741=

.

| Ottawe, Ontario,<br>Canada K13 8X5<br>Phone: (613) 749-2220<br>Telex: 053-3233 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |                                    | L                                          | ab Re          |
|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------|--------------------------------------------|----------------|
| )                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PLL- 9                  | BUBNIT                             |                                            |                |
| REPUNI: 117-4982 ( CUMPLETE                                                    | $\mathcal{F}$ and $\sigma_{\mu\nu}$ and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NON NON                 | SUU STREFERE                       | NCE INFO: 47-7344                          | 10. A.         |
| LLIENT: STETSUN RESOURCES N                                                    | ANAGENENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - Hora                  | SUBNIT                             | JED BY: J.C. FREEZE                        |                |
| PROJECT: EAE+TAG                                                               | の言葉を開始                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - mark                  | BATE P                             | RINTED: 17-NOV-87                          |                |
| ORDER                                                                          | NUMBER OF<br>ANALYSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LOWER<br>DELECTION LINI | IT EXTRACTION                      | NETHOD                                     |                |
| l Li Lithium<br>2 8e Berylliu                                                  | 23<br>23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | l PPM<br>0.5 PPM        | HC1-HN03, (1:3)<br>HC1-HN03, (1:3) | Ind. Coupled Plasma<br>Ind. Coupled Plasma |                |
| 3 B Boron                                                                      | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 227                   | HC1-HN03, (1:3)                    | Ind. Coupled Plases                        |                |
| 4 Sc Scandium<br>S V Vanadium                                                  | The second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | l PPM<br>l PPM          | HCI-HN03, (1:3)                    | Ind. Coupled Plasma                        |                |
| 6 Cr Chronium                                                                  | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 928                   | HE1-HN03, (1:3)<br>HE1-HN03, (1:3) | Ind. Coupled Plasma                        |                |
| 7 Co Cobalt                                                                    | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 PPM                   | HCI-HN03, (1:3)                    | Ind. Coupled Plasma                        | and the second |
| 8 Al Mickel<br>9 Cu Copper                                                     | - <u>-</u> | L PPA                   | HC1-HN03, (1:3)                    | Ind. Coupled Plasma                        | - Sala         |
| 10 Zn > Zinc                                                                   | 23<br>23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | l PPM<br>L PPM          | HC1-HN03, (1:3)<br>HC1-HN03, (1:3) | Ind. Coupled Plasma                        | the state      |
| Il 56a Sallium                                                                 | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 PPH                   | HE1-HN03, (1:3)                    | Ind. Coupled Plasma                        | A.R.           |
| 12 As Arsenic                                                                  | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 PPM                   | RC1-IN03, (1:3)                    | Ind. Coupled Plasma                        |                |
| 13 Rb Rubidium                                                                 | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20 PP#                  | HC1-HN03, (1:3)                    | Ind. Coupled Plasma                        |                |
| 14 Sr Strontius<br>15 C Yttrius                                                | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | I PPM                   | BC1-HN03, (1:3)<br>HC1-HN03, (1:3) | Ind. Coupled Plasma                        | A State        |
| IS It Zirconius                                                                | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 PPM                   | HC1-HN03, (1:3)                    | Ind: Coupled Plasma                        |                |
| 17 NB Niobium                                                                  | 5451 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 PPH                   | HC1-HN03, (1:3)                    | Ind. Coupled Plasma                        | 24.5           |
| 18 No Molybdenu<br>19 Ag Silver                                                | AND A REAL PROPERTY AND A REAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 PPM                   | HC1-HN03, (1:3)                    | Ind. Coupled Plasma                        |                |
| 20 Cd Cadmium                                                                  | 23<br>23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.5 PPH<br>1 PPM        | HC1-HN03, (1:3)<br>HC1-HN03, (1:3) | Ind. Coupled Plasma                        |                |
| 21 Sn Tin                                                                      | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20 PPM                  | HC1-HN03, (1:3)                    | Ind. Coupled Plasma<br>Ind. Coupled Plasma | Store State    |
| 22 Sb Antimony                                                                 | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 PPM                   | HC1-HN03, (1:3)                    | Ind. Coupled Plasma                        |                |
| 23 Te Tellurius                                                                | A REAL CONTRACTOR AND A REAL PROPERTY AND A REAL PROPERTY OF A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IO PPM                  | - HC1-HN03, (1:3)                  | Ind. Coupled Plasma                        | and the second |
| 24 Ba Barium<br>25 La Lantharum                                                | 23<br>23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 PPN<br>1 PPN          | HCI-HN03, (1:3)                    | Ind. Coupled Plasma                        |                |
| 26 Ce Ceriua                                                                   | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 PPM<br>5 PPM          | HCI-HN03, (1:3)<br>HCI-HN03, (1:3) | Ind. Coupled Plasma<br>Ind. Coupled Plasma |                |
| 27 Ia Tantalua                                                                 | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10 PPM                  | HCI-HN03, (1:3)                    | Ind. Coupled Plasma                        | X              |
| 28 V Tungsten<br>29 Tl Thallium                                                | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10 PPM                  | HC1-HN03, (1:3)                    | Ind. Coupled Plasma                        | il a sti       |
| 29 TI Thallium<br>30 Pb Lead                                                   | 23<br>23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10 PPM<br>4 PPM         | HC1-HN03, (1:3)<br>HC1-HN03, (1:3) | Ind. Coupled Plasma                        |                |
| .31- Bi Bismuth                                                                | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 PPH<br>3 PPM          | HCI-HN03, (1:3)<br>HCI-HN03, (1:3) | Ind. Coupled Plasma<br>Ind. Coupled Plasma |                |
| ・シーン学校報道                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |                                    |                                            |                |
|                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |                                    |                                            | 1              |
|                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         | Part Cart                          |                                            | and an         |

| North Va<br>Canada V | (604) 985-0681                        |                | BONDA          |                                                   | EGG Ceochemic<br>Lab Repo       |  |
|----------------------|---------------------------------------|----------------|----------------|---------------------------------------------------|---------------------------------|--|
|                      | 101-7336 ( 00#PLETE 3                 |                | -              |                                                   | REFERENCE (NED:                 |  |
|                      | UTETOON RESOURCE MANAGERS             | :N.            |                | SUBMITTED BY: J. FREEZE<br>DATE PRINTED: 6-QCT-37 |                                 |  |
|                      | 04MP1E 79PES                          | NUMBER         | GIZE FRACTIONS | NUTRER                                            | 04*015 0850484 (CONS - VC=353   |  |
|                      | ROCK OR BED ROCK                      | ÷.;            | C -150         | 46                                                | CRUCH, PULVERIZE -158 46        |  |
|                      | REPORT COPIES TO: 01                  | ETOON YEDDURCE | dang,          | INU                                               | DECE TO: STETSON REDOURCE TANG. |  |
|                      |                                       |                |                |                                                   | <u></u>                         |  |
|                      |                                       |                | · ·            |                                                   |                                 |  |
|                      |                                       |                | -<br>          |                                                   |                                 |  |
|                      |                                       |                |                |                                                   |                                 |  |
|                      | · · · · · · · · · · · · · · · · · · · |                |                |                                                   |                                 |  |
|                      |                                       |                |                |                                                   |                                 |  |
|                      |                                       |                |                | · · · · ·                                         |                                 |  |
| · .                  |                                       |                |                |                                                   |                                 |  |
| -                    |                                       |                |                |                                                   |                                 |  |
|                      | · .                                   |                |                |                                                   |                                 |  |

;

| Busine-Orag & Company<br>130 Periotecton Ave.<br>North Vancouver, B.C.<br>Canada V7P 2R5<br>Phone: (604) 985-1861<br>Feiex: 04-352667 | La.        |                            |              | NDAF            | <b>FELEC</b>      | Geochemica<br>Lab Repor                      |
|---------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------|--------------|-----------------|-------------------|----------------------------------------------|
| <u>`````````````````````````````````````</u>                                                                                          |            |                            |              | DCT 0 8 1987    |                   |                                              |
| E 30 : 107-0336 (                                                                                                                     | <u></u>    |                            |              | SULSUI          | 579               | CE INFO:                                     |
|                                                                                                                                       |            |                            |              | ******          |                   | FO 30. 1 20.7.10                             |
| LIENTE DIETSON RES<br>POLETTE CAL                                                                                                     | 0191       | - 409065453                |              |                 |                   | 50 37: 0. 988519<br>INTED: 0-601-37          |
|                                                                                                                                       |            |                            | AU/858 2F    | LOHER           |                   |                                              |
| ରନ୍ମ ଏକ                                                                                                                               |            | al mant                    | SNAL YOED    | DELECTION FINIS | EXTRACTION        | METHOD                                       |
| t,                                                                                                                                    | ж.         | Ga z                       | 14           | 5 208           | NGT SPPLICABLE    | INST. NEUTYON ACTIV.                         |
| 2                                                                                                                                     | 3 <b>5</b> | ant sony                   | 40           | 9.2 DDB         | NOT SPONTCABLE    | DYST. NEUTRON ACTIV.                         |
|                                                                                                                                       | 23         | inten ic                   |              | + GC            | VOT APPLICABLE    | THAT. NELLYON ACTOR                          |
| 4                                                                                                                                     | 8a         | Sar is                     | 46           | 1.79 204        | NOT APPLICABLE    | ENST. NEUTRON ACTIV.                         |
| *<br>12                                                                                                                               | 04<br>37   | Sroelne                    | 412          | 4 22*           | NOT SPELICABLE    | INST. NEUTRON ACTIV                          |
| 6                                                                                                                                     | G.C.C.C.   | Gadajue                    | 46           | 10 000          | NOT PPPLICABLE    | INST. NEBTRON ACTIV.                         |
| 2                                                                                                                                     | сс<br>Га   | Carian                     | 40<br>44     | 18 294          | NOT APPLICABLE    | INST. NEUTRON ACTIV.                         |
| *                                                                                                                                     |            |                            |              | 4 2014          | NO. 1011 10401 2  | INST. NEUTRON ACTIV.                         |
| \$                                                                                                                                    | C2         | Casiu <b>s</b><br>Connotin | 46.<br>17    | 1 204           | NOT APPLICABLE    | INST. NEU RUM AU 19.<br>INST. NEU RON ACTIV. |
| 9<br>13                                                                                                                               | C-         | Chrosium                   | 45           | - <u>50 204</u> | NOT APPLICABLE    | INST, NEUTRON ACTIVE                         |
| 10<br>11                                                                                                                              | ср<br>63   | Capait<br>Serepium         | *0<br>45     | 10 PPH<br>2 PPH | NOT APPLICABLE    | INST. NEUTRON ACTIV.                         |
| 12                                                                                                                                    | 21)<br>14  |                            | 46           | 2 004           | NOT APPLICABLE    | INST. NEURON ACTIV.                          |
|                                                                                                                                       |            |                            |              |                 |                   |                                              |
| 13                                                                                                                                    | 1          | ្រែ ៤ ផ្លែង<br>-           | 46           | 120 205         | NOT APPLICASUE    | INST. VEUTRON ACTIU                          |
| 14                                                                                                                                    | Fig        | Iran                       | 46           | 0.5 207         | NOT APPLICABLE    | INST. NEUTRON OCTUL                          |
| 15                                                                                                                                    | 1.3        | Land anua                  | . 46         | 5 PPR           | NOT APPLICABLE    | INGT. NEUTRON ACTIV.<br>INST. NEUTRON ACTIV. |
| 16<br>17                                                                                                                              | ર્ધ<br>™ુ  | Lutetius<br>Tolycdenus     | 46           | 2 204           | NOT APPLICABLE    | INST. NEUFRON ACTIV                          |
| ·····                                                                                                                                 |            |                            |              | - • • • •       |                   |                                              |
| 13                                                                                                                                    | N)         | Nickel                     | 4 <i>i</i> 2 | SO PDH          | NOT APPLICABLE    | INST. NEUTRON ACTIV.                         |
| 19                                                                                                                                    | 35         | Rubidium                   | 54           | <u>-1</u> -0#   | NOT APPLICABLE    | SINCT. NEUTRON ACTIV.                        |
| 22                                                                                                                                    | Ga         | Samarium                   | 46           | D.1 PPH         | • •               | INCT. NEUTRON ACTIV.                         |
| 21                                                                                                                                    | Сс<br>С    | Geandiga                   | 46           | 0.5 201         | NOT APPLICABLE    | INST. NEUTRON ACTIV                          |
|                                                                                                                                       | ુટક        | Serenium                   | 46           | 10 opn          | NOT APPLICABLE    | INST. NEUTRON ACTU,                          |
| 23                                                                                                                                    | ۵ç         | Sliver                     | 46           | S PP#           | NOT APPLICABLE    | ENST. NEUTRON ACTIV.                         |
| 24                                                                                                                                    | Na         | Socium                     | . 46         | 0.05 PCT        | NOT APPLICABLE    | INST. NEUTRON ACTIV.                         |
| 25                                                                                                                                    | Ţa         | Tantalum                   | . 46         | 1. PP#          | NOT APPLICABLE    | INST. NEUTRON ACTEV.                         |
| 26                                                                                                                                    | !e         | Tel fur film               | 46           | 20 20           | NOT APPLICABLE    | DEST. NEUTRON ACTIV.                         |
| 27                                                                                                                                    | ۳S         | Tersina                    | 46           | 1 201           | NOT APOLICABLE    | INST. NEUTRON ACTIV.                         |
| 23                                                                                                                                    | 74         | ີ່ໄກວາ ນະ                  | 46           | 0.5 00          | NOT APPLICABLE    | INST. NEUTRON ACTIV.                         |
| 29                                                                                                                                    | Sa         | T'n                        | - 46         | 200 200         | NOT APOLICABLE    | INST. NEITRON ACTIV                          |
| 30                                                                                                                                    | 1          | Fungsten                   | 46           | 2 201           | NOT APPLICABLE    | INST. NEUTRON ACTIVIA                        |
|                                                                                                                                       | Ξâ         | Griefan                    | 46           | 0.5 204         | NOT APPLICABLE    | INST. NEUTRON ACTIVILA                       |
| • 32                                                                                                                                  | ¥5         | Ytters lam                 | 46           | 5 2014          | NOT APPLICABLE    | INST. NEUTRON ACTIV.                         |
| 17                                                                                                                                    | 7-         | Zinc                       | 46           | 208 208         | NOT ADDE TO ADA E | INST, NEUTRON ACTIU                          |
| 13<br>34                                                                                                                              | Σ.5<br>Ζ.+ | Zincanies                  | 46           | 500 PPH         | NOT APPLICABLE    | INST. NEUTRON ACTIV.                         |
|                                                                                                                                       | 27         | CI: Call 198               | 40           | JUB FFR         | NO REFLICHOLT     | THOSE MEDIUMA HELEAS                         |

I

-----

Bondar-Clagg & Company Ltd. 130 Pemberion Ave. North Vancouver, B.C. Canada V7P 2R5 Phone: 6604) 983-6681 Telen: 04-352667

. . .

----

---

- --



## Geochemical Lab Report

ľ

|   | REPORT: 127-102    | 28               |              |                    | ROJECT: SAL PAGE 1 |
|---|--------------------|------------------|--------------|--------------------|--------------------|
|   | Cample F<br>NUMBER | E EMENT<br>UNITS | Ag<br>PPH    | Au<br>PPS          |                    |
|   | AT FAULT GOUGE     |                  | :].3         | 10                 |                    |
|   | 92 DY503           |                  | J.4          | <5                 |                    |
|   | 32 DY514           |                  | 9.6          | 10                 |                    |
|   | R2 DY518           |                  | 11.0         | 35                 |                    |
|   | R2 DY522           |                  | 0.8          | <5                 |                    |
|   | R2 JCF 108         |                  | 0.1          | 10                 |                    |
|   | R2 SAL100HR        |                  | >50.0        | 760                |                    |
|   | R2 SAL101HR        |                  | t5.9         | 200                |                    |
|   | R2 SAL102HR        |                  | 3.5          | 15                 |                    |
|   | R2 SAL1034R        |                  | 14.0         | 10                 |                    |
|   | 87 SAL104MR        |                  | 9.4          | <5                 |                    |
|   | R2 SAL105HR        |                  | 0.5          | <5                 |                    |
|   | 92 SAL1064R        |                  | 0.1          | <5                 |                    |
|   | R2 SAL1074R        |                  | 1.S          | 5                  |                    |
|   | R2 SAL1094R A      |                  | N.2          | <5                 |                    |
|   | R2 SAL109WR B      |                  | 7.5          | 15                 |                    |
|   | 82 SAL110WR        |                  | 5.6          | 25                 |                    |
|   | R2 SAL1111R        |                  | >50.0        | 400                |                    |
|   | R2 SAL112HR        |                  | 46.0         | 50                 |                    |
|   | R2 SAL113HR        |                  | 17.0         | 80                 |                    |
|   | R2 SAL114MR        |                  | >50.0        | 170                |                    |
|   | R2 SAL115HR        |                  | >50.0        | 130                |                    |
|   | R2 7001<br>R2 7004 |                  | 0.6<br>0.1   | 10<br><5           |                    |
|   | 32 7010            |                  | 0.1          | <5                 |                    |
|   | -12 JULU           |                  | U•¥          |                    |                    |
|   | 82 7011            |                  | 0.2          | 18                 |                    |
|   | 82 7012            |                  | 3.1          | 75                 |                    |
|   | R2 7016            |                  | 1.8          | 7 <u>0</u><br>1920 |                    |
|   | R2 7017<br>R2 7021 |                  | >50.0<br>1.4 | 790 <b>0</b><br>10 |                    |
|   |                    |                  | 1.4          | ٤U                 |                    |
|   | 2 7022             |                  | 0.5          | <5                 |                    |
|   | 32 7024            |                  | 0.1          | < <u>s</u>         |                    |
|   | 72 //129           |                  | <0.1         | ×5                 |                    |
| • |                    |                  |              |                    |                    |

. ....

-- --

. . . . . . .

....

\_

| . 10 Permentan Ave.<br>Narin General S.C.<br>Meneral Fift 183     |                                                                                                                |                                          | R-CL                                   | -GGPP Dertificat                                |
|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------|-------------------------------------------------|
| n usaua + 19 1903<br>(Phosecholika 493–1998)<br>Tones, H4-19 2607 | the second s |                                          |                                        | OCT                                             |
| ~                                                                 | · · ·                                                                                                          |                                          |                                        |                                                 |
| REPORT: 427-790                                                   | 14 ( COMPLETE )                                                                                                |                                          |                                        | REFERENCE INFO:                                 |
| CLIENT: STETSON<br>PROJECT: TAG                                   | I RESOURCE MANAGEMENT                                                                                          | Wolf                                     |                                        | SUBHITTED 3Y: UNKNOWN<br>DATE PRINTED: 8-OCT-37 |
| ORDER                                                             | ELEMENT                                                                                                        | NUMBER OF LOWER<br>ANALYSES DETECTION LI | INTE EXTRACTION                        | nethod                                          |
| 1 Cu                                                              | Copper                                                                                                         | 1 0.01 PCT                               |                                        |                                                 |
| SAMPLE TYP                                                        | PES NUMBER                                                                                                     | SIZE FRACTIONS                           | NUMBER                                 | SAMPLE PREPARATIONS NUMBER                      |
| R ROCK OR                                                         | BED ROCK 1                                                                                                     | 2 -150                                   | 1                                      | ASSAY PREP 1                                    |
| REPORT COP                                                        | TES TO: STETSON RESOUR                                                                                         |                                          | INVO                                   | CE TO: STETSON RESOURCE MANG                    |
|                                                                   | Fax 604-685-64                                                                                                 | 40                                       |                                        |                                                 |
|                                                                   |                                                                                                                |                                          |                                        |                                                 |
|                                                                   |                                                                                                                |                                          |                                        |                                                 |
| <i>/</i> -                                                        |                                                                                                                |                                          |                                        |                                                 |
|                                                                   |                                                                                                                |                                          |                                        |                                                 |
| <b></b>                                                           | <b>_</b>                                                                                                       |                                          |                                        |                                                 |
| ·····.                                                            |                                                                                                                | · · · · · · · · · · · · · · · · · · ·    |                                        |                                                 |
|                                                                   |                                                                                                                |                                          |                                        |                                                 |
|                                                                   |                                                                                                                |                                          |                                        |                                                 |
|                                                                   |                                                                                                                |                                          | ······································ | ······································          |
|                                                                   |                                                                                                                |                                          |                                        |                                                 |
|                                                                   |                                                                                                                |                                          |                                        |                                                 |
|                                                                   |                                                                                                                |                                          |                                        |                                                 |
|                                                                   |                                                                                                                | · · · · · · · · · · · · · · · · · · ·    |                                        |                                                 |
|                                                                   |                                                                                                                |                                          |                                        |                                                 |
|                                                                   |                                                                                                                |                                          |                                        |                                                 |
|                                                                   |                                                                                                                |                                          |                                        |                                                 |
| •                                                                 |                                                                                                                |                                          |                                        |                                                 |
| ·                                                                 |                                                                                                                |                                          | <u></u>                                |                                                 |
|                                                                   |                                                                                                                |                                          | <u></u>                                |                                                 |
|                                                                   | <u> </u>                                                                                                       |                                          | <u></u>                                |                                                 |
|                                                                   |                                                                                                                |                                          |                                        |                                                 |
|                                                                   |                                                                                                                |                                          |                                        |                                                 |

| 130 Pembertón Ave.<br>North Vancouver, B.C.<br>Canada, VTP 185<br>Phone: (604) 985-0581<br>Telex: 04-352067 |                                                                 | Ben                              |                                                      | ECL                                                                          | ÷GG                           |                                                      | Geochemical<br>Lab Report |
|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------|------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------|------------------------------------------------------|---------------------------|
|                                                                                                             | 1904 ( COMPLETE )<br>ON RESOURCE MANAGEMENT                     |                                  |                                                      | SUUC                                                                         | FERENCE IN<br>BRITTED BY      | UNKNOLM                                              |                           |
| ORDER                                                                                                       | ELEMENT                                                         | NUMBER OF<br>ANALYSES D          | LOWER<br>ETECTION LINIT                              | EXTRACTION                                                                   |                               | ETHCO                                                |                           |
| 1 C<br>2 Z                                                                                                  |                                                                 | <del>41</del><br>41              | 1 PPN<br>1 PPN                                       | HN03-HCL HOT<br>HN03-HCL HOT                                                 |                               | asha<br>Asha                                         |                           |
| 3 Ay<br>4 Mi<br>5 Au<br>6 St<br>7 Hy                                                                        | o Natybdenus<br>5 Arsenic<br>6 Antisony                         | 41<br>41<br>41<br>41<br>41<br>41 | 0.5 PPf<br>1 PPf<br>5 PPf<br>5 PPf<br>5 PPf<br>5 PP8 | HN03-HCL HOT<br>HN03-HCL KOT<br>HN03-HCL HOT<br>HN03-HCL HOT<br>HN03-HCL HOT | EXTR PL<br>EXTR PL<br>EXTR PL | ASNA<br>ASNA<br>ASNA<br>ASNA<br>ASNA<br>Id Vapour AA |                           |
| SAMPLE TY                                                                                                   | u 30g Gold 30 grazs<br>YPES NUMBER                              | 41<br>SIZE FRAC                  | 5 PP8                                                | FIRE-ASSAY                                                                   |                               | te Assay AA<br>Parations Numb                        | ÷<br>ER                   |
|                                                                                                             | SEDINENT, STLT                                                  | 180                              |                                                      | <b>k</b>                                                                     | DRY_STEVE                     | -80                                                  | <u> </u>                  |
| R ROCK O                                                                                                    | DR BED ROCK 37<br>DPIES TO: STETSON RESOURCE<br>FAX 604-685-644 | 2 -150<br>E MANG.                |                                                      | 4<br>37<br>INVOICE                                                           | ASSAY PREP<br>CRUSH, PULV     |                                                      |                           |
| R ROCK O                                                                                                    | DR BED ROCK 37<br>DPIES TO: STETSON RESOURC                     | 2 -150<br>E MANG.                |                                                      |                                                                              | ASSAY PREP<br>CRUSH, PULV     | ERIZE -150 3                                         | 6                         |
| R ROCK O                                                                                                    | DR BED ROCK 37<br>DPIES TO: STETSON RESOURC                     | 2 -150<br>E MANG.                |                                                      |                                                                              | ASSAY PREP<br>CRUSH, PULV     | ERIZE -150 3                                         | 6                         |
| R ROCK O                                                                                                    | DR BED ROCK 37<br>DPIES TO: STETSON RESOURC                     | 2 -150<br>E MANG.                |                                                      |                                                                              | ASSAY PREP<br>CRUSH, PULV     | ERIZE -150 3                                         | 6                         |

| Bendar-Chag & Company En<br>130 Pemberton Ave.<br>North Vanconver, B.C.<br>Canada V/P 185<br>Phone: -004 953-081<br>Teles: 34-352607 |                                       |           |            | BC         | ND)         | AR-        | C         | Ēć        | G             | Ge<br>Li  | ochemical<br>ab Report                |
|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------|------------|------------|-------------|------------|-----------|-----------|---------------|-----------|---------------------------------------|
|                                                                                                                                      |                                       |           |            |            |             |            |           |           |               |           |                                       |
| REPORT: 127-7                                                                                                                        | 904                                   | ,         |            |            |             |            | PR        | OJECT: 1  | AG            | PAGE      | 2                                     |
| Sample<br>Number                                                                                                                     | ELENENT<br>UNITS                      | Cu<br>PPN | Zn<br>PPri | Ag<br>PPil | ilo<br>PPit | As<br>PP11 | Sb<br>PPM | Hg<br>PPB | Au 30g<br>PP8 |           |                                       |
| R2 14R638                                                                                                                            |                                       | 363       | 86         | <0.5       | 2           | 73         | 3         | 10        | 70            |           |                                       |
|                                                                                                                                      |                                       |           |            |            |             |            |           |           |               |           |                                       |
|                                                                                                                                      |                                       |           |            |            |             |            |           |           |               |           |                                       |
|                                                                                                                                      |                                       |           |            |            |             |            |           |           |               |           |                                       |
|                                                                                                                                      | · · · · · ·                           |           |            | ·····      |             |            |           |           |               |           |                                       |
|                                                                                                                                      |                                       |           |            |            |             |            |           |           |               |           | -                                     |
|                                                                                                                                      | · · · · · · · · · · · · · · · · · · · | ;         |            |            |             |            |           |           |               | <u> </u>  |                                       |
| <u>~-</u>                                                                                                                            |                                       |           |            |            |             | _          |           |           |               |           |                                       |
|                                                                                                                                      |                                       |           |            |            |             |            |           |           | - ·           |           |                                       |
|                                                                                                                                      | · · · · · · · · · · · · · · · · · · · |           |            |            |             |            |           |           |               |           | · · · · · · · · · · · · · · · · · · · |
|                                                                                                                                      |                                       |           |            |            |             |            |           |           |               |           |                                       |
|                                                                                                                                      |                                       |           |            |            |             |            |           |           | • · · · · •   |           |                                       |
|                                                                                                                                      |                                       | •         |            |            |             |            |           |           |               | •         |                                       |
| ······································                                                                                               |                                       |           |            |            |             |            |           |           |               |           |                                       |
|                                                                                                                                      |                                       |           |            |            |             | •          |           |           |               | <b>x-</b> |                                       |
|                                                                                                                                      |                                       |           |            |            |             |            |           |           |               | ·<br>·    |                                       |
|                                                                                                                                      |                                       |           |            |            |             |            |           |           |               |           | · .                                   |
|                                                                                                                                      |                                       |           |            |            |             |            |           |           |               |           |                                       |

\_\_\_\_\_ · · · ·

÷

DATT RECEIVED: AUG 29 1987 ACME ANALYTICAL LABOR TORIES 852 E. HASTINGS ST. NCOUVER 9.C. V6A 1R6 PHONE 253-3158 DATA LINE 251-1011 DATE REPORT MAILED:

## ASSAY CERTIFICATE

- SAMPLE TYPE: Rock Chips AU++ AND A6++ BY FIRE ASSAY.

Delight. DEAN TOYE, CERTIFIED B.C. ASSAYER ASSAYER:

... ..

 $\boldsymbol{\cap}$ 

STETSON RESOURCE FROJECT - TAG 600 File # 27-3757

SAMPLER A6\*\* AU\*\*

| ·> HITE 및                                           | аа <del>т</del><br>Одит  | 9044<br>02/7                         |
|-----------------------------------------------------|--------------------------|--------------------------------------|
| JEF-500                                             | .02                      | .001                                 |
| JEF-501                                             | .01                      | .001                                 |
| JEF-510                                             | .01                      | .001                                 |
| JEF-511                                             | .01                      | .001                                 |
| JEF-512                                             | .01                      | .001                                 |
| JCF-613<br>JCF-614<br>JCF-615<br>JCF-617<br>JCF-618 | .01<br>.02<br>.01<br>.01 | .001<br>.001<br>.001<br>.001<br>.001 |
| JCF-621                                             | .01                      | .001                                 |
| JCF-622                                             | .03                      | .002                                 |
| JCF-623                                             | .01                      | .001                                 |
| JCF-623                                             | .04                      | .001                                 |
| JCF-625                                             | .01                      | .001                                 |
| JCF-625<br>JCF-627<br>JCF-629<br>JCF-629<br>JCF-630 | .01<br>.02<br>.01<br>.01 | .001<br>.001<br>.001<br>.001<br>.001 |
| JCF-631                                             | .54                      | .477                                 |
| JW-603                                              | .01                      | .001                                 |
| JW-605                                              | .01                      | .004                                 |
| JW-606                                              | .02                      | .001                                 |
| JW-607                                              | .09                      | .006                                 |
| JW-609                                              | .01                      | .001                                 |
| JW-610                                              | .01                      | .001                                 |
| JW-613                                              | .02                      | .055                                 |
| JW-614                                              | .01                      | .001                                 |
| JW-615                                              | .01                      | .001                                 |
| JW-616                                              | .01                      | .001                                 |
| JW-617                                              | .01                      | .001                                 |
| JW-618                                              | .25                      | .001                                 |
| JW-619                                              | .01                      | .001                                 |
| JW-620                                              | .01                      | .001                                 |
| JW-621                                              | .01                      | .001                                 |
| JW-622                                              | .03                      | .001                                 |

-----

⊖age :

| ٠ | SUN | RESUUN |
|---|-----|--------|
|   |     |        |

| 日本内部山田井 | 46★+<br>87/T | AU <del>××</del><br>OZ∕T |
|---------|--------------|--------------------------|
| WR-200  | .01          | .001                     |
| WR-201  | .04          | .001                     |
| WR-602  | .01          | .001                     |
| WR-603  | .02          | .001                     |
| WR-603  | .02          | .001                     |
| WR-605  | .01          | .001                     |
| WR-605  | .01          | .001                     |
| WR-607  | .04          | .001                     |
| WR-608  | .09          | .009                     |
| WR-609  | .13          | .019                     |
| WR-610  | .02          | .007                     |
| WR-611  | .03          | .001                     |
| WR-512  | .04          | .001                     |
| WR-613  | .02          | .001                     |
| WR-615  | .03          | .001                     |
| WR-616  | .01          | .001                     |
| WR-617  | .01          | .001                     |

2

≓ag⊭ 5

į

-Chug & Co E30 Pemberton Ave. North Vancouver, B.C. Canada V"P 285 Phone: (604) 985-1681 Telex: (4-352687

(



.

| REPO   | RT: 1            | 27-7904                                                                                                                                                                                                                             | ·······   |               | 2               |                |                       |           | PROJECT:   | TAG                            | PAGE 1                                 |
|--------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------|-----------------|----------------|-----------------------|-----------|------------|--------------------------------|----------------------------------------|
| SAMP   |                  | ELEMENT                                                                                                                                                                                                                             | Cu<br>PPN | Zn<br>PPM     | Ag<br>PPit      | ile<br>PPii    | As<br>PP <del>N</del> | Sb<br>PPN | Hig<br>PP8 | Au 30g<br>PPB                  |                                        |
| 11 \$  |                  |                                                                                                                                                                                                                                     | 44        | 127           | <0.5            | 4              | 19                    | 5         | 140        | ত                              |                                        |
| 11 S   |                  |                                                                                                                                                                                                                                     | 41        | 121           | <0.5            | 3              | 15                    | 5         | 150        | <5                             |                                        |
| Tt S   |                  |                                                                                                                                                                                                                                     | 42        | 130           | <0.5            | 3              | t5                    | 6         | 150        | 5                              |                                        |
| Ji S   |                  |                                                                                                                                                                                                                                     | 42        | 137           | <0.5            | 3              | 12                    | ୍ୟ        | 158        | Q                              |                                        |
| R2 L1  | 8600             |                                                                                                                                                                                                                                     | 25        | <del>99</del> | <0.5            | <1             | ଓ                     | ୯         | 15         | 2300                           |                                        |
| R2 L   |                  |                                                                                                                                                                                                                                     | 29        | 110           | <0.5            |                | ত                     | 5         | 5          | 25                             |                                        |
| R2 L1  | 8602             |                                                                                                                                                                                                                                     | 19        | 116           | <0.5            | <1             | S                     | <5        | 25         | 20                             |                                        |
| R2 L   | 8603             |                                                                                                                                                                                                                                     | - 44      | 108           | <0.5            | 4              | ও                     | ধ্য       | S          | S                              |                                        |
| RZ LE  | 8604             |                                                                                                                                                                                                                                     | 28        | 89            | <0.5            | -ct            | <5                    | · <5      | 3          | 25                             |                                        |
| R2. L1 | 860S             |                                                                                                                                                                                                                                     | 9         | 116           | <0.5            | <1             | S                     | <5        | 5          | 50                             |                                        |
| 82 LI  | B606             |                                                                                                                                                                                                                                     | 93        | 136           | <0.5            | d              | ব                     | 5         | 15         | 10                             | ······································ |
| R2 L   |                  |                                                                                                                                                                                                                                     | 13        | 146           | 0.5             | 1              | હ                     | ঁ         | 10         | 20                             |                                        |
| R2 L8  |                  |                                                                                                                                                                                                                                     | 21        | 139           | <0.5            | à              | Ś                     | ও         | 5          | 5                              | •                                      |
| R2 LI  |                  |                                                                                                                                                                                                                                     | 21        | 108           | <8.5            | 1              | હ                     | 5         | 10         | Š                              | •                                      |
| 82 LE  |                  |                                                                                                                                                                                                                                     | 44        | 87            | <0.5            | 4              | ંહ                    | ંડ        | 5          | उ                              | •                                      |
| ~R2 L  | <b>B611</b>      |                                                                                                                                                                                                                                     | 22        | 97            | <0.5            | <1             | ত                     | ত         | <5         |                                |                                        |
|        | B612             |                                                                                                                                                                                                                                     | 7         | 125           | (0.5            | <1             | હ                     | ن<br>د    | 10         | 300                            |                                        |
| R2 LE  |                  |                                                                                                                                                                                                                                     | 27        | 119           | <0.5            | 4              | 5                     | د.<br>ی   | 5          | 25                             |                                        |
| R2 LE  |                  |                                                                                                                                                                                                                                     | 15        | 104           | <0.5            |                | 12                    | . S       |            |                                |                                        |
| R2 L   |                  | a de la composición d<br>Composición de la composición de la comp | 26        | 101           | <0.5            | 1              | 55                    | 6         | 55<br><5   | 80<br><s< td=""><td></td></s<> |                                        |
| R2 14  | R619             |                                                                                                                                                                                                                                     | 69        | 92            | <0.5            | 1              |                       | ত         | 20         | <u> </u>                       |                                        |
| R2 W   | R620             |                                                                                                                                                                                                                                     | 121       | 374           | 7.6             | 3              | 369                   | 12        | 140        | 55                             |                                        |
| R2 14  |                  | •                                                                                                                                                                                                                                   | 67        | 41            | <8.5            | 13             | 13                    | હ         | 5          | 10                             |                                        |
| R2 4   |                  |                                                                                                                                                                                                                                     | 19        | 86            | <0.5            | 4              | 15                    | ँ         | 20         | 15                             |                                        |
| R2 4   |                  |                                                                                                                                                                                                                                     | , 2       | 29            | <0.5            | <1             | ۍ<br>ک                | ও         | 15         | S                              |                                        |
| RZ W   | 02.75            |                                                                                                                                                                                                                                     | 77        |               |                 |                |                       |           | <u> </u>   |                                |                                        |
| RZ WR  |                  |                                                                                                                                                                                                                                     | 27        | 61            | <0.5            | - 15           | <u> </u>              | उ         | 10         | 0                              |                                        |
| R2 H   |                  |                                                                                                                                                                                                                                     |           | 18            | 0.5             | · · · · · ·    | . 5                   | ા ડ       | 5          | : ଓ                            |                                        |
| RZ SE  |                  | -                                                                                                                                                                                                                                   | 2         | 17            | <0.5            | 1) - <b>(1</b> | . 3                   | ଁ ଓ       | 5          | 10                             |                                        |
| R2 M   |                  |                                                                                                                                                                                                                                     | 3<br>51   | 64<br>158     | <0.5<br><0.5    | 1<br>10        | <5<br>64              | ও<br>ও    | 5<br>20    | ି ଏ<br>ଓ                       |                                        |
|        |                  |                                                                                                                                                                                                                                     |           | • <u></u> .   |                 |                |                       |           |            |                                |                                        |
| R2 HE  |                  |                                                                                                                                                                                                                                     | 2         | 17            | <b>40.5</b>     | - 2            | 27                    | ব্য       | 10         | 15                             |                                        |
| R2 4   |                  |                                                                                                                                                                                                                                     | 2         | 12            | <0.5            | 5              | ৎ                     | <∕S       | 10         | <5                             |                                        |
| R2 MR  |                  |                                                                                                                                                                                                                                     | 68        | 71            | <b>&lt;0.</b> 5 | 1              | <5                    | · - 6     | 30         | 5                              | ••• · · · ·                            |
| R2 W   |                  |                                                                                                                                                                                                                                     | 78        | 1097          | <0.5            | . 1            | 147                   | 12        | . 70       | 60                             |                                        |
| R2 146 | 763 <del>5</del> |                                                                                                                                                                                                                                     | 224       | 153           | 1.5             | 2              | 193                   | 29        | 65         | 110                            |                                        |
| R2 W   |                  | · .                                                                                                                                                                                                                                 | - 14      | - 65          | 1.0             | 10             | 229                   | 5.        | 10         | 130                            |                                        |
| RZ WR  |                  |                                                                                                                                                                                                                                     | 21        | 80            | 1.5             | . 6            | 363                   | 6         | <b>30</b>  | 440                            | · · · · ·                              |
|        | R636B            |                                                                                                                                                                                                                                     | 10        | 82            | <0.5            | 2              | 49                    | <5        | 15         | 90                             |                                        |
| R2. HR |                  |                                                                                                                                                                                                                                     | 14        | 75            | <0.5            | 1              | 16                    | <5        | 30         | 10                             |                                        |
| R2 HR  | R637             |                                                                                                                                                                                                                                     | 649       | 120           | <0.5            | 1              | 154                   | 26        | 800        | 10                             |                                        |
|        |                  |                                                                                                                                                                                                                                     |           |               |                 |                |                       |           | •.         |                                |                                        |

------

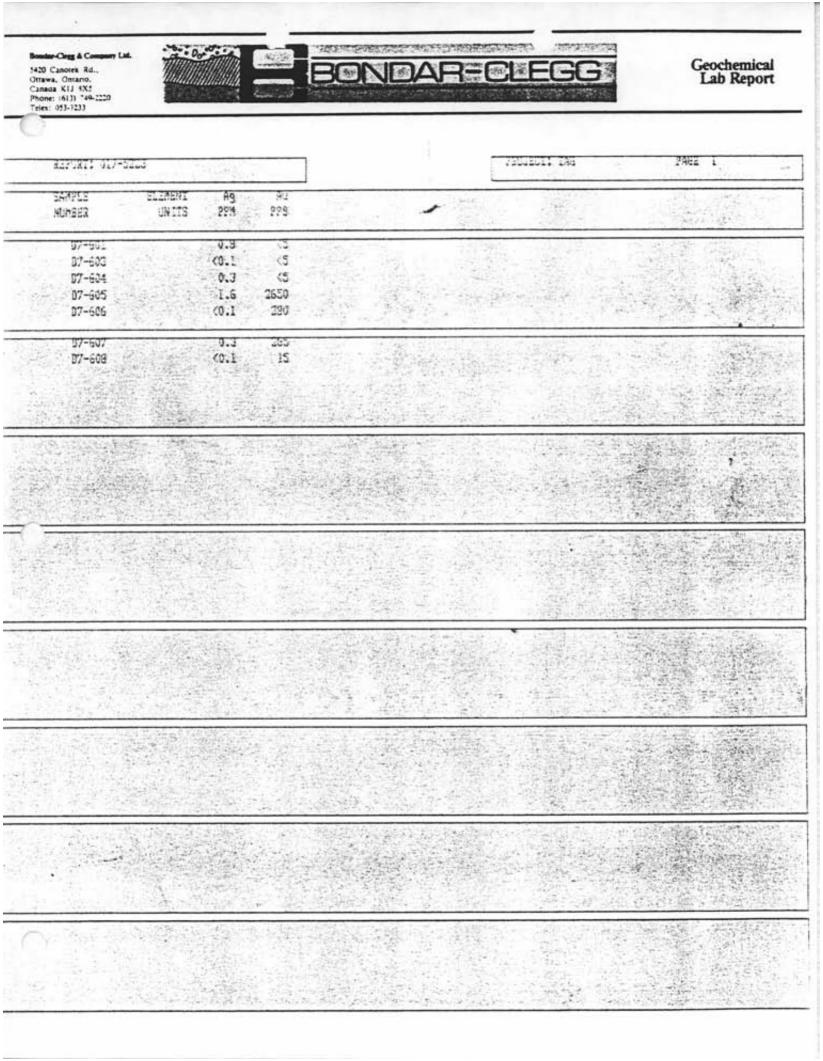
Bunder-Cleg & Compare Ltd. North Vanceuver, B.C. Sunth Vanceuver, B.C. Sanada V.P. 185 Phone: Helds With-data Totes: Helds Science Certificate of Analysis P46E 1 REPORT: 427-7904 PROJECT: TAG . . **-**... SAMPLE ELEMENT Ca NUMBER UNITS PCT 82 WR6368 <0.01 وم بين ا . Registered Assayer, Province of British Columb --------

.....

\_\_\_\_

-- --

## GEOCHEMICAL ANALYSIS CERTIFICATE


ICP - .500 GRAN SAMPLE IS DIGESTED WITH JNL 3-1-2 HCL-HN03-H20 AT 95 DEC. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. This leach is partial for NN FE CA P LA CR NG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPN. - SAMPLE TYPE: ROCK AU+ ANALYSIS BY AA FROM 10 BRAN SAMPLE.

ASSAYER: . N. Alff DEAN TOYE, CERTIFIED B.C. ASSAYER

STETSON RESOURCES PROJECT-TAG File # 88-0052

| SAMPLE#    | AG<br>PPM | AU*<br>PPB |
|------------|-----------|------------|
| JCF 500    | . 6       | 2          |
| JCF 501    | . 1       | 1          |
| JCF 502    | . 4       | 1          |
| JCF 504    | . 2       | 1          |
| JCF 505    | . 1       | 1          |
| JCF 507    | .3        | 1          |
| JCF 508    | .3        | 2          |
| JCF 509    | 1.5       | 1          |
| JCF 510    | .4        | 1          |
| JCF 550    | .8        | 4          |
| JCF 602    | .1        | 38         |
| JCF 675    | 5.1       | 22         |
| JCF 676    | .1        | 1          |
| JCF 677    | 1.4       | 30         |
| JCF 678A   | 1.9       | 12         |
| JCF 6788   | .3        | 1          |
| JCF 679    | 2.9       | 590        |
| JCF 680    | .1        | 1          |
| JCF 681    | .3        | 1          |
| 7464       | .1        | 5          |
| STD C/AU-R | 7.7       | 490        |

| Bandar-Cheg & Company Ltd.<br>420 Canores Rd.,<br>Ottawa, Owner, 6<br>Canada Kill 4X5<br>Phone: (613) 129-2220<br>Tetes: (93)-1233 | BONDAR                                          | CLEGG<br>Lab Report                                            |
|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------|
| 3EPCKT: 017-5023 ( CCMPLETE )                                                                                                      |                                                 | ABCEARNUS ENCE: 47-7345                                        |
| CLIENT: STEISON RESCURCES (4046EMENT<br>PROJECT: IAG                                                                               |                                                 | SUBMITIED BY: J.C. FREELE<br>DATE PRIMIED: 14-OCT-87           |
| URDER ELCHENE                                                                                                                      | NUMBER OF LEWER<br>ANALYSES DETECTION LIMIT EXT | RACTION METHOD                                                 |
| l Ag Silver<br>2 Au Gold                                                                                                           |                                                 | -MWO3, (II3) Atomic Absorption<br>A 355IA FA-AA 8 10 gm weight |
| SAMPLE TYPES NUMBER                                                                                                                | SIZE FRACTIONS                                  | ED SAMPLE PREPARATIONS NUMBER                                  |
| BCCK 7                                                                                                                             | -200                                            | 7 CRUSH, PULVER IZE -200 7                                     |
|                                                                                                                                    |                                                 | "学生"。"这些现在的自己的事件的问题是是不可能是是不是是                                  |
|                                                                                                                                    |                                                 |                                                                |
|                                                                                                                                    |                                                 |                                                                |
|                                                                                                                                    |                                                 |                                                                |
|                                                                                                                                    |                                                 |                                                                |
|                                                                                                                                    |                                                 |                                                                |



Bonnea Rd., Ottawa, Ontano, Canata KII SX2 Phone: (13) - 74-220 Teles: (13)-322

Geochemical Lab Report

| AET. | SET: 017-5234 ( COMPLETE )                      |                                                       | Refer                    | NCE (NEI: 47-7345                       |          |
|------|-------------------------------------------------|-------------------------------------------------------|--------------------------|-----------------------------------------|----------|
|      | LENT: STETSON RESOURCES MANAGEMENT<br>NECT: 140 | 1                                                     |                          | TED SY: J.C. PREEZE<br>REWIED: 6-DCT-87 | -16-<br> |
|      | urder eliment                                   | NUMBER OF LOWER<br>ANALYSES DETECTION LINE<br>4 5 PPB | extraction<br>Agua negla | METHOD<br>EA-AA 2 10 ga weigh           | <b>.</b> |
|      | SAMOLS TYPES NUMBER<br>STREAM SED., SILT 4      | ST28 FRACTIONS<br>-30                                 |                          | PLE PXEPAJATIONS NUMBER<br>,SIEVE -80 4 |          |
|      | REPORT COPIES TO: 19-1155 MELVILLE S            | 1.                                                    | INVOICE TO:              | 18-1155 MELVILLE ST.                    |          |
|      |                                                 |                                                       |                          |                                         |          |
|      |                                                 |                                                       |                          |                                         |          |
|      |                                                 |                                                       |                          |                                         |          |
|      |                                                 |                                                       |                          |                                         |          |
|      |                                                 |                                                       |                          | ¢                                       |          |

| Bondar-Clegg & Company Ltd<br>1420 Canotex Rd.,<br>Ottawa, Ontario,<br>Canada X13 X55<br>Phone: 1613) 149-2220<br>Tolex: 053-1233 |                        |                                          | ONDAR | -CLEGG       | Geochemical<br>Lab Report |
|-----------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------|-------|--------------|---------------------------|
| 0                                                                                                                                 |                        |                                          |       |              |                           |
| 32:533T: 017-5:                                                                                                                   | .24                    |                                          |       | 22010071 740 | 2802 L                    |
| Samble<br>Muxser                                                                                                                  | slement a<br>Un its pp |                                          | 1     |              |                           |
| 93601<br>93621<br>93622<br>93622                                                                                                  | 2<br>2                 | 5<br>5                                   |       |              |                           |
|                                                                                                                                   |                        |                                          |       |              |                           |
|                                                                                                                                   |                        |                                          |       |              |                           |
|                                                                                                                                   |                        |                                          |       |              |                           |
|                                                                                                                                   |                        |                                          |       |              |                           |
|                                                                                                                                   |                        | en e |       |              |                           |
| •                                                                                                                                 |                        |                                          |       |              |                           |
|                                                                                                                                   |                        |                                          |       |              |                           |

Talus and Soil Sample Analyses ACME ANT YTICAL LABORATORIES

852 E. HASTINGS ST. VANCOUVER D.C. V6A 1R6 FHUNE 253-3158 The 251-101

1

1

7

## GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH JML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR DWC HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MY FE CA P LA CR NO BA TI B W AND LIMITED FOR NA AND K. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: SOLL

**OCT** 08 1987 AUX ANALYSIS BY AA FROM 10 GRAM SAMPLE. ASSAYER. D. CALL DEAN TOYE, CERTIFIED B.C. ASSAYER Oct 6/87 DATE RECEIVED: SEPT 23 1997 DATE REPORT MAILED: STETSON RESOURCES PROJECT-TAG File # 87-4447 Page 1 SAMPLER TH 78 CU PB - ZN Aб NI CO НH. FE AS U AU SR CD 59 82 V. CA ₽ CR **#6** BA TI. Al/£ 1A 9 AL. ХÂ x 1 PPR PPA PPM PPA PPB PPH 298 P₽N z P₽N PPM PPM PPM PPM PPN PPN PPN. PPB I 1 PPN PPN 1 PPH z **PPR** ž 1 PPM PPR 1 TA647 1500 2.82 3 29 16 99 1.5 28 34 1863 10.51 70 5 115 2 2 47 . 140 24 7 .33 85 .03 5 .01 2 .62 .41 1 12 132 TA648 1500 10 147 159 1.7 56 40 670 4.57 110 5 ND 2 49 1 6 2 55 4.09 .075 11 24 .35 79 .01 7 . \$5 .02 .14 1 134 TA549 1500 11 32 567 2.89 5 ND 57 17 1 4 .2 11 8 3 1 1 2 2 41 3.01 . 167 6 2 .86 .02 8 .85 .03 .37 1 - 9 TA650 1500 4 159 45 31 2147 8.95 93 5 NÐ 242 .02 . 64 26 356 1.0 4 116 5 2 2 73 1.84 .167 22 14 .45 3 .03 .19 1 111 TA651 (500 2 119 11 99 .6 64 21 1398 6.51 25 5 NÐ. 2 197 2 2 125 9.97 .051 5 23 .52 118 **.**01 3 .51 .01 .07 2 73 1 TA652 1500 2 94 55 157 1.3 21 21 1767 8.96 33 5 .47 13 .22 104 .01 .02 .09 58 ND 3 76 3 2 100 .081 16 5 . 65 t TA653 1500 2 232 11 106 .5 24 19 1496 6.69 59 NØ 2 67 3.17 .069 9 .24 95 .01 .43 .02 19 5 2 168 1 7 11 ٩. .10 E TA654 1500 2 141 8 83 .6 29 25 807 5.43 27 5 ND t 208 6 2 52 9.60 .04L 2 9 .52 92 .01 2 . 41 :01 .09 1 7 1 TA655 1500 2 119 24 102 .9 17 24 1479 7,23 11 5 ND 1 216 1 2 2 182 4,87 .085 10 17 .49 149 .01 3 .74 .02 .14 2 A TA656 1500 6.89 12 5 15 .54 2 201 θ 130 .7 26 23 1189 ND 1 147 1 2 2 140 6.03 .976 8 110 .01 14 . 60 .02 .10 L. 13 STD C/AU-S 37 1.86 19 59 37 135 7.4 69 27 1044 4.07 37 20 1 40 51 18 17 21 59 .52 .086 30 63 .89 179 .09 .09 .15 £3 48 TA657 1500 78 177 37 72 . 28 14 15 .8 81 24 710 6.58 7 ₩D 1 209 5 2 40 5.8( .050 5 14 2.50 .01 5 .02 .04 Ł 4 1 TA558 1500 10 69 11 134 .7 66 23 1275 7.36 37 5 ND 3 171 2 43 2.59 .094 20 .11 89 .01 2 .45 .03 .06 2 16 1 -3 TA659 1500 350 113 12 32 2061 11.68 2 2 .98 227 .03 . 07 2 13 3 11 .7 11 5 ND 89 200 2.83 . 148 11 3 .01 6 1.32 - 1 2 28 1475 9.49 TA660 1500 3 219 9 124 .5 23 5 ЯĐ 51 2 227 1.06 .087 11 19 .95 78 .01 4 1.45 .03 .06 12 6 1 ŧ 2 1 TA641 1500 3 150 10 112 .7 31 25 1539 8.10 11 5 ЯQ 2 86 2 2 183 2.52 .055 13 23 .44 119 .01 2 .73 .03 .08 1 6 TA562 1500 2 112 16 148 .6 24 22 1690 7.98 14 5 ND 2 2 160 .37 .117 31 . 58 121 .02 4 1,50 .03 .09 1 46 12 1 1 -3 TA663 1500 220 22 23 3 157 17 ..7 1136 8,88 7 5 ND 2 51 1 2 2 243 .65 .084 10 19 .29 90 .01 3 .86 .03 .07 2 14 TA664 1500 2 111 8 122 .5 21 21 1136 7.90 6 5 NĎ Ł 51 1 2 2 211 .93 .077 8 17 .44 123 .01 5 .94 .03 .07 3 1 TA665 1500 103 29 192 .9 31 18 1409 7.69 13 5 NĐ 71 156 .109 12 38 .42 141 .02 2 4 1 2 2 .6B .01 5 1.05 .10 1 3 TA666 1500 73 53 250 .7 30 17 994 7,90 23 2 113 .39 .:43 11 41 .33 118 .02 5 1.10 .02 2 -5 ND 2 61 1 2 . 19 Т 19 TA667 1500 2 104 86 329 1.9 41 23 1321 8.22 34 5 ND 2 89 2 2 2 95 1.25 .164 19 44 .43 171 .03 5 1.18 .03 .21 54 1 28 2 92 27 .53 TA668 1500 2 91 39 193 .8 25 19 1935 7.92 5 ND 59 1 2 2 .54 .170 19 205 .03 7 1.43 .03 .34 Т 38 1A669 1500 2 73 28 192 .5 26 17 1962 8.17 26 5 ND 2 ŧL. 3 2 2 90 .48 .309 15 24 .41 202 .01 7 1.59 .03 .25 42 -1 TA670 1500 4 00 39 240 33 12 875 6.26 35 5 ND 2 58 2 2 2 89 .30 .155 12 52 .51 201 .02 9 2.03 .03 .19 2 26 . 6 TA671 1500 35 33 18 1281 8.44 35 .83 .186 23 .03 37 70 176 .9 5 ND 2 73 3 2 89 28 .59 226 .05 8 1.67 . 30 2 4 1 TA672 1500 4 112 122 227 1.7 44 17 1249 7.66 81 5 ND 2 90 2 2 2 88 .91 .198 23 53 .51 310 .04 7 1.39 .03 . 29 1 83 TA673 1500 91 45 175 38 20 2465 8.15 49 5 NÐ 3 2 2 92 .136 18 37 .46 271 6 1.43 .03 5 1.1 46 1 . 61 - 05 .17 1 12 TA674 1500 Ą. 131 63 230 1.7 37 24 2058 9.04 35 5 MD 3 64 2 2 2 104 .92 .158 23 27 .68 407 .07 10 1.61 .03 , 40 1 86 12 .70 23 37 .87 TA6/5 1500 2 53 14 128 .8 37 23 1671 8.61 5 ND 3 83 E 2 2 125 . 158 363 .11 9 1.86 ,04 . 50 1 1 105 .53 20 34 , 56 246 8 1.86 .03 TA575A 1500 24 42 149 .9 34 19 1911 7.49 24 5 NØ 2 45 2 2 . 100 ,00 .16 61 4 - 1 . 23 25 38 17 . 63 345 7 1.21 .03 39 TA676 1500 3 74 171 1.7 27 2694 11,28 26 5 ND 3 80 1 2 2 124 1.64 .200 .03 . 20 t 57 25 190 27 23 3607 8.59 25 5 ND 3 49 2 121 .32 .154 23 26 . 69 260 .05 7 2.44 .03 .17 19 TA577 1500 3 .4 1 2 τ 25 73 .03 TA678 1500 2 47 15 171 .3 26 11 1277 6.16 5 HD. 2 67 1 2 2 .43 .157 18 33 .47 195 .03 6 1.62 .23 1 1 TA679 1500 18 5 NÐ 137 2 89 3.00 32 14 .69 215 7 1.14 .03 21 2 -52 16 171 . 9 -19 25 1960 9.11 3 1 2 . 168 .04 .21 t TA680 1500 51 9 161 .4 19 23 1109 6.33 5 5 ND 108 ł 2 2 75 3.36 .162 21 11 .55 132 .02 11 .91 .03 .24 1 5 1 1 23 .51 223 .03 TAG01 1500 34 194 22 1438 7.28 43 5 ŇÐ 63 2 82 .71 .128 26 .05 7 1.45 . 35 5 2 67 1.1 -31 3 1 3 1

STETSON RESOURCES PROJECT-TAG FILE # 67-4447

| SAMPLER     | ן<br>1949 | CU<br>Ppn | PB<br>PPM | ZN<br>PPB | AG<br>Ppn | WI<br>Ppn | CO<br>PPN | HN<br>PPN | F£<br>1 | AS<br>PPM | U<br>P <del>PN</del> | au<br>Ppn | TH<br>PPN | SR<br>Pfm | CD<br>PPM | 5.<br>PPM | BI<br>PPM | V<br>PPN | CA<br>Z | P<br>I | LA<br>PPM | CR<br>Ppn | MG<br>I | 8A<br>PPN | 11<br>2 | 8<br>89% | AL<br>Z | NA<br>Z | K<br>1 | W<br>Ppn | AU <b>I</b><br>PPB |
|-------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------|-----------|----------------------|-----------|-----------|-----------|-----------|-----------|-----------|----------|---------|--------|-----------|-----------|---------|-----------|---------|----------|---------|---------|--------|----------|--------------------|
| TA683 1500  | 2         | 79        | 26        | [49       | .7        | 24        | 20        | 1127      | 7.72    | 59        | 5                    | ND        | 4         | 137       | 1         | 6         | 2         | 63       | 1.07    | . 131  | 20        | 19        | .54     | 255       | .03     | 3        | 1.35    | .04     | .11    | 3        | 30                 |
| TA684 1500  | 4         | 94        | 27        | 193       | 1.3       | 42        |           | 4675 1    | -       | 106       | 5                    | ND        | 5         | 70        | 1         | 3         | 2         | 40       | .62     | .177   | 26        | 3         | .15     | 175       | .01     | 2        | .52     | .03     | .10    | ĩ        | 66                 |
| TA685 1500  | 4         | 60        | 12        | 131       | 1.0       | 41        | 20        | 2132 1    | 0.24    | 24        | 5                    | ND        | 3         | 101       | 1         | 2         | 2         | 37       | 2.01    | .165   | 15        | 5         | .34     | 78        | .01     | 3        | .62     | .03     | .09    | 2        | 605                |
| TA686 1500  | 5         | 21        | 8         | 171       | .3        | 59        | 32        | 3513      | 9.14    | 5         | 5                    | ND        | 6         | 166       | 1         | 3         | 2         | 60       | .51     | .078   | 37        | 11        | .15     | 692       | .02     | 3        | .78     | .03     | .16    | 1        | 10                 |
| TA607 1500  | 6         | 60        | 13        | 173       | 1.0       | 33        | 34        | 2569 1    | 1.36    | 45        | 5                    | NÐ        | 5         | 81        | 1         | 2         | 2         | 48       | .62     | .172   | 24        | 6         | .20     | 122       | .01     | Ż        | .53     | .02     | .08    | 2        | 48                 |
| TA588 1500  | 3         | 60        | 26        | 154       | .8        | 32        | 20        | 1379      | 6.21    | 68        | 5                    | ND        | 2         | 165       | ł         | 4         | 2         | 37       | 6.59    | .109   | 13        | 8         | . 66    | 183       | .01     | 3        | -53     | .01     | .09    | 2        | 45                 |
| TA689 1500  | 2         | 50        | 6         | 66        | .6        | 15        | 16        | 574       | 3.00    | 23        | 5                    | NÐ        | 2         | 136       | 1         | 3         | 2         | 28       | 8.00    | .106   | 12        | 6         | .99     | ¥12       | .01     | 2        | .53     | .01     | •11    | 1        | 41                 |
| T#590 1500  | 2         | 50        | 68        | 251       | .9        | 19        | 15        | 782       | 5.21    | 56        | 5                    | ND        | 1         | - 74      | 2         | 2         | 2         | 49       | 2.22    | .144   | 13        | 12        | . 36    | 144       | .01     | 3        | . 69    | .03     | .07    | 1        | 39                 |
| T4691 1500  | 2         | 64        | 190       | 231       | 1.6       | 22        |           | 1202      |         | 97        | 5                    | ND        | 3         | 50        | 1         | 2         | 2         | 120      | .69     | .099   | 23        | 18        | .36     | 151       | .02     | 4        | 1.08    | .03     | .11    | 1        | 74                 |
| TA692 1500  | 2         | 31        | 127       | 264       | 1.2       | 15        | 13        | 1290      | 5.85    | 56        | 5                    | ND        | 2         | 94        | 1         | 2         | 2         | 32       | 1,90    | . 151  | 15        | 6         | - 20    | 221       | .01     | 5        | - 58    | .03     | . 96   | 1        | 230                |
| TABY3 1500  | 1         | 15        | 39        | 108       | .3        | 8         | 9         | 636       | 4.26    | 26        | 5                    | ND        | 2         | 50        | 1         | 2         | 2         | 21       | 1.05    | .078   | 12        | 4         | .16     | 179       | .01     | 2        | .54     | .03     | .08    | 1        | 81                 |
| TR674 1500  | 1         | 8         | 9         | 143       | .3        | θ         | 9         | 1146      | 6.89    | 9         | 5                    | ND        | 7         | 190       | 3         | 2         | 2         | 16       | 4,36    | .187   | 34        | 1         | .19     | 200       | .02     | 4        | . 49    | .02     | .11    | 1        | 95                 |
| TA695 1500  | 6         | 34        | 13        | 141       | .5        | 10        |           |           | 8.60    | 44        | 5                    | ND        | 7         | 84        | 1         | 2         | 2         | 12       | 1.32    | .102   | 30        | - I       | .15     | 116       | .01     | 2        | .42     | .03     | .68    | 2        | 245                |
| TA696 1500  | 4         | 47        | 61        | 199       | 1.3       | 15        |           |           | 6.29    | 105       | 5                    | ND        | 5         | 84        | t         | 3         | 2         |          | 5.03    | .107   | 27        | 5         | .30     | 102       | .91     | 2        | .53     | .01     | , 19   | 1        | <b>9</b> 1         |
| TA697 1500  | 2         | 68        | 55        | 174       | 1.9       | 21        | 25        | 1256      | 7.09    | 55        | 5                    | ND        | 4         | 112       | 1         | 2         | 2         | 75       | 3.68    | . 151  | 20        | 7         | .43     | 135       | .01     | 4        | .17     | .02     | .12    | 1        | 59                 |
| TA698 1500  | 2         | 59        | 27        | 187       | 1.0       | 29        | 34        | 2814      | 9.70    | 89        | 5                    | ND        | 4         | 165       | ł         | 2         | 2         | 57       | 1.95    | . 207  | 26        | 7         | . 39    | 209       | .02     | 7        | . 56    | .03     | .12    | 1        | 108                |
| TA699 1500  | 2         | 44        | 26        | 177       | .9        | 31        | 29        | 2618      | 8.24    | 167       | 5                    | ND        | 4         | 129       | 1         | 2         | 2         | 49       | 3.01    | .206   | 22        | 7         | . 35    | 203       | .02     |          | . 60    | .02     | .12    | 1        | 109                |
| TA6100 1500 | 5         | 78        | 42        | 215       | 1.4       | 25        | 18        | 1248      | 5.62    | 56        | 5                    | ND        | 2         | 124       | 2         | 4         | 2         | 44       | 14.0E   | .108   | 14        | 10        | . 48    | 177       | .01     | 3        | . 60    | .01     | .09    | 2        | 55                 |
| TA6101 1500 | 3         | 5t        | 92        | 255       | .8        | 23        | 26        | 2457      | 9.30    | 61        | 5                    | ND        | 5         | 86        | 1         | 3         | 2         | - 74     | .86     | .202   | 27        | - 14      | .29     | 221       | .02     | 7        | .85     | .03     | .16    | :        | 46                 |
| 1A6103 1500 | 4         | 60        | 40        | 722       | 1.2       | 18        | 24        | 1361      | 7.28    | 32        | 5                    | NÖ        | 3         | 241       | 1         | 9         | 2         | 81       | 4.19    | .142   | 21        | 10        | .91     | 278       | .01     | 4        | .77     | .92     | .10    | ì        | 44                 |
| TA6104 1500 | 2         | 49        | 31        | 128       | 1.2       | 15        | 19        | 693       | 7.39    | 55        | 5                    | NÐ        | 3         | 101       | 1         | 3         | 2         | $\eta$   | 1.87    | . 201  | 22        | 9         | .44     | 113       | .01     | 5        | . 88    | .03     | .07    | 1        | 61                 |
| TA6105 1500 | 2         | 63        | 11        | 180       | .1        | 13        | 43        | 2115 1    | 0.25    | 19        | 5                    | ND        | 5         | 164       | 1         | 2         | 2         | 143      | 3,55    | .195   | 36        | L.        | .44     | 246       | .0E     | 1        | .97     | .93     | •11    | i        | ŧ                  |
| TA6106 1500 | 2         | 49        | 37        | 193       | .7        | 15        | 30        | 1766-1    | 0.27    | 23        | 5                    | ND        | 5         | 115       | 1         | 2         | 2         | 133      | 3.50    | .170   | 24        | 4         | 1.05    | 107       | .01     | 2        | .65     | ,03     | .08    | 1        | 9                  |
| TA6107 1500 | 2         | 46        | - 11      | 129       | .5        | 12        | 19        | 912       | 7.99    | 18        | 5                    | ND        | 2         | 67        | 1         | 2         | 2         | 108      | 1.45    | .177   | 34        | 6         | -41     | 168       | 101     | 2        | .93     | .03     | .06    | 2        | 3                  |
| TA6108 1500 | 2         | 59        | 12        | 170       | .0        | 15        | 29        | 1926 1    | 0.65    | 25        | 5                    | ND        | 5         | 89        | 1         | 2         | 2         | 125      | 1.86    | .218   | 73        | 5         | .71     | 178       | .01     | 2        | 1.30    | -03     | . OB   | 1        | 19                 |
| TAG109 1500 | 2         | 58        | 95        | 225       | 1.0       | 25        | 25        | 1409      | 7.80    | 37        | 5                    | ND        | 3         | 102       | 1         | 10        | 2         | 65       | 1.13    | .137   | 25        | 18        | . 38    | 138       | .01     | 2        | .76     | .03     | . 13   | 1        | 54                 |
| TAG110 1500 | 2         | \$3       | 17        | 137       | ۰5        | 16        | 19        | 964       | 7.39    | - 24      | 5                    | ND        | 3         | 123       | 1         | 2         | 2         | 66       | 1.43    | .154   | 22        | - 11      | .41     | 156       | .01     | 3        | .76     | .03     | .t0    | 1        | 44                 |
| TA6111 1500 | 3         | 70        | 13        | \$29      | .6        | 19        | - 24      | 96Z       | B. 45   | - 41      | 5                    | ND        | 3         | 159       | - I       | 2         | 2         | 79       | 1.93    | . 163  | 19        | 12        | .55     | 219       | .01     | 2        | .87     | .03     | , 19   | 1        | 57                 |
| TAG112 1500 | i         | 87        | 15        | 123       | 4         | 22        | 21        | 798       | 6.99    | 45        | 5                    | ND        | - 4       | 125       | - I       | 2         | 2         | 95       | 2.46    | .133   | 17        | 28        | .64     | 130       | .03     | 2        | 1.28    | .04     | .12    | L        | 13                 |
| TAG113 1500 | 2         | 55        | 11        | 148       | .7        | 21        | 25        | 1577      | 9.15    | 31        | 5                    | ¥Ð        | 5         | 153       | 1         | 2         | 2         | 81       | 1.39    | .197   | 31        | 14        | .47     | 246       | ,01     | 2        | 1.03    | .03     | • 12   | 1        | 24                 |
| TA6114 1500 | 2         | 40        | 14        | 140       | .5        | 14        | 13        |           | 7.20    | 30        | 5                    | ND        |           | 87        | 1         | 2         | 2         | 53       |         | .129   | 30        | 12        | .26     | 250       | .01     | 2        | .84     | .03     | .12    | ļ        | 55                 |
| TA6115 1500 | 2         | 50        | 12        | 142       | . b       | 26        |           |           | 8.62    | 35        | 5                    | ND        | - 4       | 98        | 1         | 2         | 2         | 72       | .76     | .130   | 33        | 16        | .28     | 212       | .01     | 2        | . 88    | .03     | - 15   | 1        | 50                 |
| TA6115 1500 | 2         | 67        | 8         | 136       | .5        | 22        | 32        |           | 7.78    | 26        | 5                    | ND        | 3         | 181       | 1         | 2         | 2         | 56       | 5.44    | .148   | 17        | 6         | .72     | 138       | .02     | 6        | .67     | .02     | . 16   | L L      | 29                 |
| TA6117 1500 | 1         | 33        | 5         | 120       | .3        | 17        |           | 1063      |         | 9         | 5                    | ¥D.       | 4         | 243       | 1         | 2         | 2         | 44       |         | .102   | 15        |           | .56     | 176       | .05     | 2        | .51     | .01     | . 15   | 1        | 7                  |
| 1A6110 1500 | 2         | 91        | 4         | 90        | .5        | 41        | 23        | 1497      | 5.95    | 11        | 5                    | ND        | 2         | 125       | 1         | 2         | 2         | 86       | 5.64    | .089   | 14        | 43        | .64     | 148       | .01     | 2        | .51     | .01     | .07    | 1        | 132                |
| TA6119 1500 | 3         | 38        | В         | 133       | .5        | 19        | 28        | 2699      | 8.07    | 17        | 5                    | ND        |           | 140       | 1         | 2         | 2         |          | 5.77    | . 162  | 33        | 9         | .43     | 231       | .01     | 2        | . 62    | .01     | .11    | i.       | 37                 |
| STD C/AU-S  | 18        | 58        | 30        | 133       | 7.4       | 68        | 27        | 1037      | 3.98    | 37        | 20                   | 7         | 39        | 50        | 17        | 17        | 22        | 57       | .49     | .085   | 30        | 59        | .08     | 179       | .08     | 32       | 1.86    | .08     | .13    | 11       | 52                 |

P 'e 2

1

(

٤

í.

€

C

C

STETSON RESOURCES PROJECT-TAG FILE # 87-4447

|             |           |           |           |           |              |           |           |           |              |           |          |           |           |           |           |     |            | •          |         |        |           |           |         |           |         |          |         |         |        |          | •          |  |
|-------------|-----------|-----------|-----------|-----------|--------------|-----------|-----------|-----------|--------------|-----------|----------|-----------|-----------|-----------|-----------|-----|------------|------------|---------|--------|-----------|-----------|---------|-----------|---------|----------|---------|---------|--------|----------|------------|--|
| SAMPLEN     | 0.<br>898 | CU<br>PPM | P3<br>PPN | ZN<br>Pph | A6<br>PPN    | NT<br>PPM | CO<br>PPN | MN<br>PPN | FE<br>Z      | AS<br>PPM | U<br>PPM | AU<br>PPM | TH<br>PPM | SR<br>PPM | CD<br>PPM | PPN | B I<br>PPN | V<br>PPM   | CA<br>2 | P<br>1 | LA<br>PPM | CR<br>PPR | H6<br>7 | BA<br>PPM | 1]<br>2 | 8<br>PPM | AL<br>1 | NA<br>Z | K<br>Z | н<br>99н | AU‡<br>PPB |  |
| FA6120 1500 | 4         | 52        | ų         | 126       | . 6          | 20        | 31        | 2340      | 7.47         | 28        | 5        | NÖ        | 3         | 163       | 1         | 3   | 2          | 84         | 4.24    | .122   | 21        | 9         | .69     | 286       | .01     | 2        | . 61    | .02     | .09    | 1        | 65         |  |
| TA6121 1500 | 3         | 42        | Ŷ         | 128       | .7           | 15        | 28        | 1936      | 6.82         | 25        | 9        | ND        | 3         | 174       | L         | 4   | 2          | 58         | 6.41    | .147   | 18        | 6         | .62     | 249       | .02     | 3        | .58     | .02     | .10    | 1        | 76         |  |
| TAG: 1520   | 3         | 33        | 8         | 128       | .5           | 13        | 22        | 1679      | 6.41         | - 14      | 5        | ND        | 3         | 159       | t         | 4   | 2          | 48         | 6.17    | .145   | 19        | 6         | .64     | 265       | .0t     | 4        | .53     | .02     | .10    | 2        | 101        |  |
| TA62 1520   | 3         | 32        | 5         | 71        | .8           | 6         | 24        |           | 5.45         | 9         | 4        | ND        | - 4       | Z14       | 1         | 3   | 2          | 32         | 4.03    | .271   | 23        | 4         | .47     | 157       | .01     | 3        | .72     | .01     | . 20   | 1        | 64         |  |
| TA63 1520   | 9         | 57        | 20        | 226       | 1.0          | 32        | 34        | 3516      | 7.55         | 129       | 5        | ND        | 3         | 191       | ł         | 3   | 2          | 37         | 3.42    | .131   | 12        | 4         | . 38    | 137       | .01     | 5        | .51     | .02     | .13    | 1        | 65         |  |
| TA64 1520   | 3         | 468       | 12        | 805       | . 6          | 29        | 26        | 1554      | 7.05         | 182       | 7        | ND        | 2         | 52        | 14        | 4   | 2          | 38         | 3.24    | .099   | 11        | 8         | .29     | 134       | . 01    | 7        | .53     | .02     | .13    | 1        | 32         |  |
| TA65 1520   | 2         | 111       | 15        | 68        | . 6          | 18        | 16        | 964       | 4.71         | 44        | 7        | #D        | 1         | 117       | 1         | 8   | 2          |            | 5.68    | .069   | 6         | 12        | .79     | 107       | .01     | 2        | .36     | .02     | .06    | i        | 23         |  |
| TA66 1520   | 4         | 138       | 25        | 9t        | 1.2          | 39        | 30        | 1542      | 6.83         | 51        | 6        | ND        | 3         | 103       | 1         | 4   | 2          |            |         | .127   | 16        | 20        | .44     | 156       | .01     | 6        | . 61    | .02     | .17    | i        | 280        |  |
| TA67 1520   | 3         | 93        | ðő        | 159       | 1.3          | 21        | 18        | 1216      | 7.49         | 38        | 5        | ND        | 2         | 53        | 1         | 4   | 2          | 102        | .74     | .092   | 11        | 20        | .27     | 130       | .01     | 3        | .78     | .03     | .05    | 1        | 104        |  |
| TABU 1520   | 2         | 63        | 20        | 111       | .1           | 26        | 15        | 1227      | 5.70         | 25        | 5        | NÐ        | 2         | 89        | 1         | 3   | 2          | 87         | 5.00    | .081   | 5         | 23        | 1.35    | 156       | .01     | 5        | +41     | .03     | .07    | 3        | 8          |  |
| TA69 1520   | 3         | 163       | 70        | 175       | 2.1          | 41        | 30        | 1690      | 8.99         | 59        | 5        | HD        | 3         | 106       | 1         | 11  | 2          | 136        | 1.05    | .077   | 10        | 27        | .41     | 150       | .01     | 3        | .52     | .03     | .06    | L        | 240        |  |
| TA610 1520  | 3         | 162       | 40        | 153       | ٤.2          | 31        | 24        | 1570      | 8.02         | 31        | 5        | MD        | 3         | 151       | 1         |     | 2          | 141        | 1.83    | .092   | 12        | 22        | .37     | 164       | .01     | 5        | .55     | .03     | .07    | ł        | 33         |  |
| TAGLE 1520  | 3         | 117       | 26        | 110       | 4            | 22        | 16        | 863       | 5.23         | 72        | 5        | ND        | 3         | 67        | 1         | 7   | 2          | 101        | 2.19    | .077   | 12        | 25        | . 65    | 140       | .05     | 2        | 1.52    | .04     | .12    | 1        | 11         |  |
| TA612 1520  | 2         | 133       | 12        | 96        | - <b>,</b> ¥ | 14        | 18        | 1036      | 7.39         | 15        | 5        | ND        | 1         | 40        | 1         | 2   | 2          | 207        | . 99    | .086   | 11        | 13        | .29     | 128       | .01     | \$       | .79     | .03     | .02    | L        | 3          |  |
| JA613 1520  | 2         | 243       | 23        | 111       | 1.0          | 16        | 26        | 1847      | 9.28         | 16        | 5        | ND        | 2         | 55        | ŧ         | 2   | 2          | 168        | .94     | .153   | 12        | 23        | ,40     | 170       | .01     | 3        | 1,00    | .03     | .08    | 1        | 27         |  |
| TA614 1520  | 2         | 58        | 4         | 91        | .3           | 16        |           | 1492      |              | 4         | 5        | ND        | 2         | 74        | 1         | 2   | 2          | 298        | 3.35    | .070   | 5         | l1        | Z.02    | 95        | .03     |          | 2.28    | .03     | . 02   | 1        | 1          |  |
| TA615 (520  | 2         | 291       | 5         | 85        | .6           | 6         | - 41      | 2085      | 10.04        | 7         | 5        | ND        | 3         | 20        | 1         | 2   | 2          | 292        | . 88    | .112   | 11        | 3         | .59     | 106       | .01     | 5        | 1.13    | .03     | .03    | 1        | 33         |  |
| TA616 1520  | 2         | 105       | 5         | 105       | -,4          | 13        | 15        | 756       | 7.38         | 7         | 5        | ND        | 1         | 26        | 1         | 2   | 2          | 214        | . 47    | .078   | 7         | 15        | .40     | 102       | .01     | 3        | 1.02    | .02     | .03    | 1        | 2          |  |
| TA617 1520  | 3         | 61        | 46        | 166       | 1.0          | 20        | 21        | 1659      | 6.99         | 67        | 5        | NŨ        | - t       | 86        | 1         | 2   | 2          | 52         | 2.35    | .133   | - 14      | 15        | .49     | 214       | .02     | - 4      | .86     | .03     | .07    | 1        | 52         |  |
| TA518 1520  | 2         | 67        | 37        | 166       | 1.2          | 29        | 19        | 1018      | 6.41         | 63        | 5        | ND        | 2         | 81        | 1         | 2   | 2          | 46         | 1.69    | .126   | 17        | 12        | .36     | 210       | .01     | 4        | .72     | .03     | .12    | 1        | 60         |  |
| TA619 1520  | 1         | 57        | 9         | 114       | .4           | 20        | 26        | 1296      | 7.40         | 11        | 5        | ND        | 3         | 69        | ţ         | 2   | 2          | 90         | 1.88    | .142   | 18        | 15        | .5B     | 71        | .01     | 5        | .61     | .04     | .12    | 1        | 1          |  |
| TA620 1520  | - 4       | 58        | 156       | 394       | 2.4          | 12        | 28        | 1700      | 9.27         | 126       | 5        | ND        | 2         | 111       | 2         | 3   | 2          | 101        | 2.12    | .138   | 16        | 7         | .56     | 431       | .01     | 3        | .75     | .03     | .09    | 1        | 99         |  |
| TA621 1520  | 1         | 9         | 19        | 75        | .7           | 3         | 7         | 687       | 3.32         | 23        | 7        | ND        | 2         | n         | 1         | 2   | 2          | 11         | 4.24    | .063   | 8         | 1         | .15     | 76        | .01     | 2        | .34     | .02     | .06    | 1        | 255        |  |
| TA622 1520  | Z         | 47        | 7         | 121       | .2           | 13        | 25        | 1373      | <b>B.</b> 23 | 11        | 5        | ¥D.       | 3         | 74        | 1         | 2   | 2          | 77         | 2.48    | . 151  | 16        | 3         | .27     | 110       | .01     | 3        | . 58    | .03     | .07    | 1        | 8          |  |
| TA623 1520  | 2         | 48        | 8         | 131       | .4           | 14        | 28        | 1605      | 7.49         | 22        | 5        | ND        | 3         | 95        | L         | 2   | 2          | 94         | 5.06    | .124   | 20        | 5         | ,45     | 149       | .01     | 5        | .57     | .02     | .08    | ı        | 24         |  |
| TA624 1520  | 3         | 46        | 15        | 85        | .1           | 18        | 18        | 893       | 4.43         | 31        | 5        | ND        | 2         | 109       | t         | 2   | 2          | 26         | 11.02   | . 168  | 10        | 3         | . 42    | 129       | .01     | 2        | . 48    | .01     | .14    | 1        | 22         |  |
| TA625 1520  | 3         | 59        | 24        | 179       | 1.1          | 26        | -         |           | 9.01         | 76        | 5        | ND        | 3         | 167       | 1         | 2   | 2          |            |         | .190   | 23        | 1         | .40     | 219       | .02     | 4        | -65     | .03     | .10    | 1        | 78         |  |
| TA626 1520  | 4         | 39        | 19        | 133       | 1.1          | 30        | 23        | 1953      | 4.46         | 58        | 7        | ND        | - 4       | 133       | 1         | 2   | 2          | 35         | 5.03    | .139   | 81        | 4         | .31     | 199       | .01     | 3        | .59     | .01     | .13    | 2        | 117        |  |
| TA627 1520  | 2         | 40        | 27        | 126       | .9           | 16        | 18        | 1273      | 4.80         | 32        | 5        | ND        | 3         | 208       | 1         | - 4 | 2          | <b>5</b> 1 | 15.49   | .093   | 10        | - 7       | .45     | 153       | .01     | 2        | .47     | .01     | .08    | ŧ.       | 46         |  |
| TA628 1520  | 1         | 106       | 217       | 436       | 2.4          | 48        | 21        | 2122      | 7.38         | 71        | 5        | ND        | 2         | 11        | 3         | 4   | 2          | <b>6</b> 3 | 1.37    | .153   | 17        | 29        | .28     | 322       | .01     | 2        | .98     | .03     | .09    | 1        | 102        |  |
| TAE29 1520  | 3         | 49        | 30        | 197       | .8           | 23        |           | 2097      |              | 18        | 5        | ND        | 3         | 101       | 1         | 2   | 2          |            |         | .145   | 22        | 19        | .35     | 348       | .02     | 3        | .94     | .03     | .13    | ŧ        | 14         |  |
| TA630 1520  | 3         | 82        | 21        | 159       | .1           | 21        |           | 2043      |              | 43        | 5        | ND        | 3         | 110       | 1         | 5   | 2          |            |         | - 164  | 17        | 13        | ,61     | 218       | .02     | 9        | . 98    | .04     | . 10   | L        | 39         |  |
| TA631 1520  | 2         | 48        | 15        | 169       | .7           | 15        | -         | 3163      |              | 21        | 5        | ND        | 4         | 115       | t         | 2   | 2          |            |         | -185   | 25        | 10        | .61     | 329       | .01     | 7        | . 82    | .03     | .07    | 1        | 26         |  |
| TA632 1520  | 2         | 56        | 10        | 124       | .0           | 17        |           | 1375      |              | 36        | 5        | MD        | 4         | 73        | 1         | 2   | 2          |            |         | . 148  | 22        | 12        | .80     | 164       | .01     | 2        | .78     | .03     | .09    | L        | 35         |  |
| TA633 1520  | 2         | 70        | . *       | 94        | .4           | 19        | 24        | 966       | 6.56         | 8         | 5        | ND        | 3         | 76        | 1         | 2   | 2          | 74         | 2.38    | .138   | 16        | 19        | .58     | 140       | .01     | 2        | . 66    | .03     | .07    | 1        | 4          |  |
| TA634 1520  | 2         | 50        | 8         | 111       | .6           | 16        |           |           | 6.69         | 37        | 5        | ND        | 1         | 103       | 1         | 2   | 2          | -          |         | .218   | 15        | 15        | , 40    | 164       | .01     | 5        | .75     | .03     | .05    | 1        | 25         |  |
| STD C/AU-S  | 19        | 57        | 39        | 132       | 7.1          | 67        | 27        | 1031      | 3.98         | 38        | 16       | 7         | 38        | 50        | 10        | 14  | 20         | 5ó         | .50     | .083   | 37        | 60        | . 88    | 177       | .08     | 32       | 1.85    | .08     | .12    | 12       | 52         |  |

Page 3

t

1

6

r

ť.

{

1

1

•

(

(

(

٤

(

£

t

¢

STETSON RESOURCES PROJECT-T 3 FILE # 87-4447

| , SAMPLEN                  | 00<br>899 | CU<br>PPM | PB<br>PPM | ZN<br>Prm  | А5<br>Рра | N Z<br>Ppm | CO<br>PPR | MN<br>Pph    | FE<br>1      | AS<br>PPM | U<br>PPM | AU<br>Ppn  | TH<br>PPM | SR<br>PPM  | CD<br>PPM | SB<br>PPM | BI<br>PPM | V<br>PPM | CA<br>1      | P<br>1       | LA<br>PPM | ER<br>PPN | MG<br>1    | 8A<br>PPM  | 11<br>X    | 8<br>7911 | AL<br>I    | NA<br>X    | K<br>Z     | W<br>PPN | AUI<br>PPB |
|----------------------------|-----------|-----------|-----------|------------|-----------|------------|-----------|--------------|--------------|-----------|----------|------------|-----------|------------|-----------|-----------|-----------|----------|--------------|--------------|-----------|-----------|------------|------------|------------|-----------|------------|------------|------------|----------|------------|
| TA6 35 1520                | 2         | 44        | 10        | 155        | .5        | 14         | 37        |              | 10,40        | 30        | 5        | ND         | 5         | 55         | 1         | 2         | Z         | 142      |              |              | 37        | 3         | .40        | 240        | .01        | 8         | .88        | .03        | . 07       | 1        | 4          |
| TA5 36 1520<br>Ta6 37 1520 | 3         | 54<br>54  | 29<br>17  | 162<br>142 | .6        | 20<br>20   | 27<br>21  | 1635<br>1327 | 7,96<br>7,97 | 40<br>32  | 5<br>5   | ND<br>ND   | 4         | 156<br>127 | 1         | 2         | 2         | 69<br>61 | 3.28<br>1.27 | .126<br>.132 | 21<br>30  | 12<br>10  | .44<br>.41 | 149<br>175 | .01<br>.01 | 4<br>5    | .61<br>.68 | .03<br>.03 | .12<br>.12 | 1        | 72<br>41   |
| TAG 38 1520<br>Tag 39 1520 | 3<br>2    | 65<br>41  | 21<br>8   | 168<br>151 | .6<br>,4  | 20<br>14   |           | 2264<br>1265 |              | 41<br>15  | 5<br>7   | ND<br>ND   | 3<br>3    | 108<br>179 | 1         | 2<br>2    | 2         | 91<br>76 | 3.26<br>1.83 |              | 23<br>27  | 12<br>8   | .83<br>.43 | 250<br>179 | .01<br>.01 | 6<br>7    | .77<br>.83 | .04<br>.04 | .07<br>,08 | ן<br>1   | 32<br>15   |
| TAG 40 1520                | 2         | 42        | 15        | 149        | .5        | 12         | 18        | 1399         | 7.65         | 29        | 5        | ND         | 2         | 103        | 1         | 2         | ,         | **       | 1.70         | .150         | 24        | 5         | .35        | 230        | .01        |           | .71        | .03        | . 10       | 1        | 20         |
| TA6 41 1520                | 4         | 32        | 13        | 134        | .8        | 11         | 12        | 1814         | 6.92         | 46        | 5        | ND         | 6         | 49         | 1         | 2         | 2         | 28       | . 39         | .082         | 49        | 7         | .17        | 161        | .01        | i<br>i    | .55        | .02        | .13        | 1        | 245        |
| TAG 42 1520<br>TAG 43 1520 | 3         | 38<br>39  | 9         | 63<br>201  | .5<br>.4  | 20<br>26   | 26<br>56  | 5244         |              | 14<br>60  | 5        | N D<br>N D | 6         | 103<br>305 | 1         | 2         | 2         | 160      | 12.32        | .132         | 17<br>34  | 5         | .47<br>.48 | t04<br>739 | .01<br>.01 | 8         | .49<br>.81 | .01<br>.03 | .i0<br>.19 | 1        | 4          |
| TA6 44 1520                | 3         | 43        | 12        | 192        | .6        | 23         | 31        | 2665         | 10.23        | 29        | 7        | ND         | 4         | 91         | 1         | 2         | 2         | 93       | 1.12         | .113         | 28        | 7         | .50        | 200        | .04        | 2         | . 69       | .03        | .23        | ł        | 17         |
| TA6 45 1520<br>TA6 46 1520 | 6<br>4    | 39<br>40  | 22        | 184<br>146 | .8        | 17<br>16   | 27<br>26  | 4035<br>3060 | 8.69<br>7.05 | 82<br>41  | 5<br>5   | ND<br>ND   | 5         | 157<br>179 | l<br>l    | 2         | 2         | 77<br>63 | 2.62         |              | 31<br>22  | 3         | .45<br>.53 | 431<br>377 | .01<br>.01 | 6<br>5    | .64<br>.57 | .03<br>.02 | .16<br>.14 | 1<br>1   | 165<br>136 |
| STD C/AU-S                 | 18        | 58        | 36        | 121        | 6.9       | 68         | 27        |              |              | 38        | 20       | 7          | 39        | 49         | 17        | 17        | 22        | 56       | .49          | .084         | 37        | 57        | .85        | 173        | .08        | 37        | 1.83       | .08        | .13        | 12       | 52         |

· те 4

-t |

t -

٤.

6

C

(

(

(

€.

(

(

C

٩.

(

C