

- STETSON RESOURCE MANAGEMENT CORP. -

SUMMARY

The Sal property comprises 2 claims, totalling 40 units situated in the Atlin mining division in the northwestern British Columbia. The nearest communities are Telegraph Creek 90 kilometers to the southeast and Dease Lake, 160 air kilometers to the east. The property is situated 110 east of the Pacific Coast on the lee side of the Coast Range Mountains. The region has a relatively dry climate. The claims lie above the tree line, between 760 and 2000 meters above sea level.

The area presently covered by the Sal claims was initially staked and explored by Utah Mines Ltd. in 1980. The interest was in a porphyry style copper and molybdenum mineralization.

As a result of a research project, the ground was restaked in 1987, as the Sal property by Tahltan Holdings Ltd.. On behalf of Tahltan, Stetson Resource Management Corp. carried out an exploration program under the direction of the writer in 1987. Approximately \$23,000.00 was spent on geological mapping, prospecting, rock chip and soil sampling.

A shear zone hosts several quartz veins that contain gold, silver, copper and molybdenum mineralization.

A two phase exploration program is recommended to test the economic potential of the Sal property.

TABLE OF CONTENTS

SUMMARY	PAGE i
<pre>1. INTRODUCTION 1.1 Location and Access 1.2 Property 1.3 Physiography 1.4 History 1.5 1987 Exploration Program</pre>	1 1 2 2 3 4
 GEOLOGY 2.1 Regional Geology 2.2 Regional Mineralization 2.3 Property Geology 2.4 Property Mineralization and Alteration 	5 5 7 7
3. GEOCHEMISTRY 3.1 Rock Chip Sampling 3.2 Soil Sampling	8 8 8
CONCLUSIONS RECOMONDATIONS COST STATEMENT REFERENCES STATEMENTS OF QUALIFICATIONS APPENDIX I: Geochemistry Results	10 10 11 13 14 16
TABLESTable 1.2Claim StatusTable 3.1Rock Sample Description and Results	2 8
FIGURES AND MAPS	FOLLOWING PAGES
FIGURE 1.1 Location Map (1:1,000,000) FIGURE 1.2 Claim Map (1:50,000) Figure 2.1 Regional Geology (1:250,000) FIGURE 2.2 Property Geology (1:5,000) FIGURE 2.2.1 Cliff Section of Sal Shear (1:200) FIGURE 3.1 Rock Sample Location (1:5,000) FIGURE 3.2 Soil and Talus Sample Location (1:1000)	1 2 5 7 7 8 9

1. INTRODUCTION

The geology and economic potential of a precious metal prospect covered by the Sal property held by Tahltan Holdings Ltd. is discussed in this report. The data presented is from an exploration program carried out by Stetson Resource Management Corp. under the direction of the writer and public assessment reports discussing exploration work carried out by previous operators. A two phase exploration program is recommended to test the economic potential of these claims

1.1 Location and Access

The Sal property is situated in the Atlin mining division in northwestern British Columbia, approximately 80 kilometers northwest of Telegraph Creek, 140 kilometers west of Dease Lake and 140 kilometers southeast of Atlin. The claim blocks cover a total area of 10.0 square kilometers centered at 58 27'N and 132 17' W (Figure 1.1).

The nearest highway to the property area is Highway 114, which extends from Dease Lake to Telegraph Creek. A winter tote road (bulldozer trail) extends 130 kilometers from the highway to Chevron's Golden Bear property, which is 18 kilometers southwest of the Sal property. Construction of an all-weather road is underway to access the Golden Bear property. The new road will come within 8 kilometers of the southwestern corner of the Sal property.

Air access by fixed wing aircraft is available to three gravel landing strips in the area. One on the Sheslay River allows up to DC-3 sized planes; a second at Muddy (Bearskin) Lake handles airplanes up to Caribou size; and a third strip at the western end of Tatsamenie Lake allows airplanes the size of a Cessna 206 to land. Access to Tatsamenie or Little Tats Lake is available by float plane from June until late October and by plane on skis during winter months, except during freezing and break up periods. Helicopters must be used to travel from the lakes or strips to the property. Exploration can be carried out from a camp on the north shore of Little Tats Lake.

Groceries, fuel, lumber and general supplies are available to a limited extent, in Atlin and Dease Lake. The remainder may be trucked from Whitehorse to Atlin or from Terrace to Dease Lake.

1.2 Property

The Sal property covers two contiguous claims comprised of 40 units as listed below. Tahltan Holdings Ltd. holds title to the property by staking or Bill of Sale. Claim locations have been verified by legal (and other) corner posts, and blazed - flagged lines.

Table 1.2 <u>Claim Status</u>

Claim <u>Name</u>	Record <u>No.</u>	Record Date	Expiry <u>Date</u>	No. <u>Units</u>
Sal l	3046	07/10/87		20
Sal 2	3047	07/10/87		20

1.3 <u>Physiography, Vegetation and Climate</u>

The claims are situated on the lee side of the Coast Range Mountains, 80 kilometers east of the Pacific Coast. The region has a relatively dry climate; snow cover in winter is moderate; snow, rain and wind storms are common all year round.

The property covers a semi-rugged to sub-alpine terrain. Elevations range from 760 meters (2,500 feet) to 1,950 meters (6,400 feet). Some slopes are fairly steep, but most may be traversed with care.

Vegetation is sparse; treeline is at a elevation of approximately 1,000 meters above which alpine tundra covers the property; shrubs and trees are restricted to valley bottoms. Engelmann spruce, alpine fir, lodgepole pine, white spruce and white bark pine trees characterize the vegetation.

Water and timber resources for exploration and development purposes are available in valleys of creeks flowing northeasterly into the Samotua River. Several tributaries to these main creeks carry sufficient drilling water during most of the year.

- STETSON RESOURCE MANAGEMENT CORP. -

1.4 <u>History</u>

The Tatsamenie Lake area was initially explored in the fifties for its porphyry copper potential. Of several copper showings in the area; two have been classified as small porphyry copper type occurrences.

In August of 1980, an exploration program was carried out by Utah Mines Ltd. to delineate a shear zone containing chalcocite, bornite, molybdenite and precious metal mineralization.

- 3 -

1.5 <u>1987 Exploration Program</u>

In 1987 an exploration program was undertaken by geologists, prospectors and field technicians employed by Stetson Resource Management Corp. under the direction of J.C. Freeze of Stillwater Enterprises Ltd. Approximately \$23,000.00 was spent on the following surveys which were carried out between August 17 and September 17:

- Geological mapping was carried out over the center portion of the property at a scale of 1:5,000 and at larger scales where mineralization was discovered (see Figures 2.2 and 2.2.1).
- Rock chip sampling of quartz veins, and all pyritic rocks was carried out over the areas mapped (see Figure 3.1);
- 3) Soil and talus sampling was carried out at 2 meter intervals on lines spaced 25 meters apart covering the shear zone on the Sal 2 claims. (see Figure 3.2)

2. GEOLOGY

2.1 Regional Geology

The Tatsamenie Lake area was mapped as part of the Tulsequah map sheet by J.G. Souther of the Geological Survey of Canada in 1971 (Figure 2.1). The oldest unit in the area is a Permian serpentinite and diorite gneiss of unknown age. limestone units are overlain by Pre-Upper Triassic clastic sediments and volcanic rocks. The Permian and Pre-Upper Triassic rocks belong to the Stikine Terrane which is an allochthonous package accreted to the North American craton in latest Triassic to Middle Jurassic time (Monger, 1984). Sedimentary, volcanic and volcaniclastic rocks were deposited on the Stikine Terrane in Triassic to Jurassic time. Four igneous events have intruded these rocks: a Triassic granodiorite; a Jurassic diorite (part of the Coast Complex); Cretaceous-Tertiary group of rhyolite dykes, and a porphyritic feldspar diorite and Late Tertiary-Pleistocene intermediate and felsic extrusive and intrusive rocks.

2.2 <u>Regional Mineralization</u>

The Stikine Terrane hosts several precious and base metal ore deposits.

In the Iskut area, at the southern end of the terrane, two structurally controlled precious metal deposits have been outlined. Both the Reg property held by Skyline Explorations Ltd. and the Snip property held in joint venture by Cominco Ltd. and Delaware Resource Corp. will be put into production in the near future.

In the Stikine River area two porphyry copper - gold + molybdenum deposits on Galore Creek and Schaft Creek have been outlined.

In the Stikine Arch area the Red Dog property hosts structurally controlled gold mineralization with associated base metals.

At the northern end of the terrane, in the Taku River area, base and precious metal ore in volcanogenic massive sulphides were produced at the Tulsequah Chief mine and gold ore was produced at the Polaris Taku mine.

- 5 -

LEGEND	
LATE TERTIARY	
10 LEVEL MOUNTAIN GROUP-	7 7 5 CHEVRON 45 7 5 45
CRETACEOUS and TERTIARY	
SLOKO GROUP - Felsic volcanic flows, intrusives and pyrociastics	
90 Quartz monzonite	9R A CONTRACTOR OF
9F Felsite	
9R Rhyolite	5 5 TRAPPER
UPPER JURASSIC	5 90 LAKE 90 L
8 Diorite granodiorite	I I I I I I I I I I I I I I I I I I I
JURASSIC	90
LABERGE GROUP	
7 TAKWAHONI FORMATION -Conglomerate, sandstone	
UPPER TRIASSIC	
6 SINWA FORMATION-Limestone, clastics, cher*	9R 2-9F
5 STUHINI GROUP - Volcanic and sedimentary rocks	
TRIASSIC	
Gronodiorite, quartz diorite, folliated diorite	
PRE-UPPER TRIASSIC	
3 Sedimentary and volcanic rocks	3 P
PERMIAN	
2 Limestone, dolomitic limestone, chert	
	34
A Diorite gneiss, age unknown	
	30 32
	1 1 + 55
	A NORTH AMERICAN
	METALS / CHEVRON
GEOLUGICAL BOUNDARY (defined, opproximate	
	A star and a star and a star a
FAULT (defined, approximate)	
📥 📥 📥 - THRUST FAULT (defined, approximate)	
MAJOR DYKE SWARM	
- ANTICLINE (orrow indicates plunge)	Nr. 1
SYNCLINE	いて、 パネノキン
ZONE OF HYDROTHERMAL ALTERATION	
SILICIFICATION AND PYRITIZATION	Km 3
X MINERAL OCCURRENCE	
X MINERAL PROPERTY	
	AFTER J.D. SOUTHER (97)
	·

In the Tatsamenie Lake area, centrally located within the Stikine terrane, both porphyry style copper - molybdenum and structurally controlled precious metal mineralization has been found. The most significant precious metal deposit discovered to date is the Bear deposit on the Golden Bear property held by Chevron and North American Metals. The deposit is hosted by an extensive northerly trending structure called the West Wall fault. North trending vertical fault structures between Permian limestone and Pre-Upper Triassic tuff control gold mineralization and associated quartz-carbonate alteration. Both the limestone and the tuff act as hosts to the ore. The gold is commonly associated with disseminations and fracture fillings of fine grained pyrite, predominantly along fault contacts. Accessory minerals include pyrrhotite, arsenopyrite, tetrahedrite and minor galena, sphalerite, chalcopyrite and tellurides. Most of the gold is submicron in size and not visible to the naked eye (Kenway, 1986). The mineralization is considered to fit Lindgren's (1933) mesothermal classification of ore deposits.

The basic model for mineralization in the Bear Deposit comprises:

- Major structures acting as conduits for mineralizing fluids;
- A heat source such as intrusive bodies creating hydrothermal convection cells;
- 3) Structural traps such as folds;
- Host rocks which are either chemically or physically receptive to deposition of metallic mineralization.

2.3 Property Geology

The Sal claims are underlain predominately by a Cretaceous to Early Tertiary Sloko group quartz monzonite batholith (see Figure 2.2). The monzonite is intruded by aplite dykes and quartz veins which are genetically related to the Sloko group.

The quartz monzonite is medium to coarse grained with a color index of 10 or less. Plagioclase occurs as subhederal white to light grey crystals surrounded by anhederal flesh pink crystals of potassium feldspar. Biotite and hornblende are the major mafic minerals present with biotite being predominate.

Aplite dykes composed of quartz eye porphyry and quartz monzonite porphyry run parallel to the main shear on the Sal 2 claim. Included in this shear is several parallel quartz veins, which vary in width from 2 to 40 centimeters.

2.4 Property Mineralization and Alteration

The most distinct alteration feature on the Sal property is the shear which occurs on the Sal 2 claim. A potassic to sericitic alteration halo surrounds the shear zone. The shear is 40 metres wide and trends 127 and can be followed for 120 metres and is then lost in talus.

Mineralization on the property occurs in the quartz veins associated with the shear. The veins contain malachite, azurite, bornite, and minor amounts of molybdenum.

Porphyry style copper and molybdenum mineralization has been known to occur with the Sloko Group quartz-feldspar porphyry stock since the sixties. Quartz stockwork in clay alteration zones within the quartz-feldspar porphyry also host silver and weak gold mineralization.

3. GEOCHEMISTRY

3.1 Rock Chip Sampling

3.1.1 Sampling, Sample Preparation and Analytical Procedures

Rock chip samples were collected from all outcrops with visible mineralization, boxwork, iron staining or silicification, and from all quartz <u>+</u> carbonate stockwork veins.

Selected samples were taken where the width of the zone of interest could not be determined. Chip samples were taken at regular intervals (according to the size of the unit) across: the width of lenses and veins; wallrock to beds and veins; and gossanous, siliceous or pyritic zones. A total of 54 rock samples were collected and sent for analysis.

The samples were placed in numbered plastic bags and sent to Bondar-Clegg in Whitehorse for analysis. In the laboratory, samples were put through primary and secondary crushers. A sub-sample of approximately 250 gm was then pulverized to minus 100, 140 or 150 mesh. The pulp was then analyzed for gold, silver and other elements according to visible or suspected mineralization (see Appendix I for specifics).

3.1.2 Discussion of Results

Quartz veins occurring in the shear zone generally carried low gold values, anomalous gold values were detected from samples 101WR,111WR, 114WR,115WR, and 7017. Sample 101WR occurrs where the shear is lost to talus. Samples 111,114,115WR occur in small parallel shears just to the north of the main shear zone. Sample 7017 was taken in the cirgue below the main shear (see Figure 3.1).

Significant assay results, locations and descriptions of samples are given in Table 3.1. All sample locations are shown on Figure 3.1 and results are in Appendix I.

3.2 <u>Soil Sampling</u>

3.2.1 Sampling, Sample Preparation and Analytical Procedures

On the Sal property soil samples were collected at 2 meter stations on lines trending 020 spaced 25 meters apart. The grid covers the surface expression of the shear on the Sal 2 claims.

– STETSON RESOURCE MANAGEMENT CORP. —

Preparent by SINISON RESOURCE MONT. CORP.

PROF 2TY

Sal Table 3.1

5AMPLE #	LOCATION	ROCK TYPE W/MINERALIZATION	ALTERATION	WIDTH	ATTD.	ANALYTICAL
10K) W/R		Quarte precia Malustite, Azurile, Molyhilenice	_Pottussic	Talus		
IDI WE	258 malong	De ven, Mat Malachite, Bornite, Moly Interite	· · · · · · · · · · · · · · · · · · ·	Talus_		200pp/201 15.0 pm/20
102_WR	203m along	Dralachite Melyblenite		Talus_		15_ppb_Ar85ppm2
103 WR	_shear			Talus_		JOpph Au 140 pomby
109 WR	shear	Monzurge, with quartz eyes, Malachite	Pattossic	Talus_		<5 ppb Au 4 ppzz Au
10.5 WR	_ 5/1ear	Monzonite	Pattassic	Tulus_		<5 John Sponay
LOG NR.	_S/1eur	Plalochele	Pottassic			<5 pp/2/4 - 1 p200 94
LOZME	ulorig Shau	Quartz vern, Malachite, Bornite	Pottassic	verns 8,5,1 <u>cm</u>	127/66 SE	5 pphAu -8 ppm Ag
LOBUR	AT CU!!-	Quartz Dec 77, Malachice, Bornite		Ham_	127/66 SE	
109 WR		Quartz vec77, 17/alachite	Pottassic	<u>25 cm</u>	127/ 665E	15_00/204 7.5 0002 Aa
110 WR	A/C((F)	Quartz Occ77, Malachite, Bernice		18cm	127/ 1665E	25 polzau 5.6000 As
ILLWR_	el 12 an shan	Quartz vein, Malachite				400 pipto Au >50 com Ai
112 WE_	OF LURIU	Quartz Dein, Malachite, Bornite		14cm	12.7/ 535E	50 pp/2Au Harmin Au
123 WR	of WEII	Quartz vein, float, Malachite	Pattassic			BÜDDDAU 17º man AG
LL+WE_	35m West	Quartz vein, Float	Pottossic			17000 20 150 000 Ac
115 WR	samples	Quartz vein, Maladute, Barnite	Pottassic			130,000/2AU 250.0 A.
116_WR_	Sumples 46-119	altered Monzonite, Malachite	Pottossii		;	22 phanes production Ad
117 WE	Taken at <u>Cliff</u>	j	Pottassic			<5 100/Au .5 2000 Au
118 WR	alony 5/1021-	·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··	Pottossic		1	<5 NODAL 5 MARCHA
119 WR	•		Pottassic	:	;	45 ppbAu .5 pm Ag

PROF ITY DALS ROPARIOS

SAMPLE #	LOCATION	ROCK TYPE W/MINERALIZATION	ALTERATION	WIDTH	ATTD.	ANALYTICAL
<u>_7001</u>	Knollat foot of Jal Shr	Monvz Rotron Shrw/ 11 sheered QzVs. 10.50m	iogenee?		07 <u>0-/805</u>	Ag. 6 An 10 ppb
-7002			Super sene	CRAB_		Ax. X An 10 ppb
1003	Endución Uni	Monr. Rusis She Minu blobs Mol	Supervent +	<u>am</u>		> NULSubmitted ?!
1-2x21	_0107M_	Monz K. Spack Ali 2 sm Q2 V.	Potassic-Kspar	<u>0=4m</u>		As. Auks
7005	Otorim	Rhy'c chybe	NotEvident	<u>0•15m</u>	VecticaC	
-Z006	-0113M	" w/ Mal staining	45 - 4 L	Qo2m	() 	· · · · · · · · · · · · · · · · · · ·
2007	_OILAra	QzVs (7 across Sm)	· · · · · · · · · · · · · · · · · · ·	<u>5.0m.</u>	<u>Lki/tow</u>	Au320pp/ Az 250 +
7008		QzV.s(tacm) in BRWW Wondood MUN2	maigles	<u>1.0m</u>	140/0W	
7007	_Q-148	Oz Vic(12mi) in BRIUNUhilord Monz.	Maybe	15m	Molectu	·
7010	15 mahour 13 mahour 13 mahour 14	Khursill Flow banding thick	·	jual.		1.11 Au 10
	20mabue	QzV. (-25m) Malin H/W	Potaosix Alt. Seluce-Konz	0	!	Asoz Aulo
7012	Server HIWNed Sallshe	Monz. Rusry w/blobs of Boto 20%	Potossic Alt.	<u></u>	2	As 8.1 Au 75
1/013	Q+S2m_	Muz. "Pik wsmallsgroug Q2V.	+t h	Im.	0	
7014	Q184m_	Mouz. " Mangenese Star	<u>11 11</u> S	0.7m:		As:3 Auks
7015	12770m:	(J2V.s(3.5cm+2cm) Rusty	Unknown	•175m	122/JSW	Aco2 Aux5 Cu 152.
7016	HASM.	Mov Bo Mowz. Hose	<u>lı ı</u>	Edsner	2	Ac1.8 Au 70 pp6
7017.	۱ <u>۱</u>	MsuBa Tobulario 2.5cm Thick		۱۱	->	Ac250 Au7900006
1/018	2104 m.	MinzQ2+BX Source	hes.	CROC.	-2	1:3.1 Aulo C. 3400
<u> Deng.</u>	3153	Cause train L/A (lowande) Fault.	Faull Couse	.25m.	<u>012/45</u> W	AS.6 Aus
	•	· · · · · · · · · · · · · · · · · · ·	· · · ·	,	,	· •

A total of 80 samples were collected from the "B" soil horizon at an average depth of 10-15 centimeters using a lightweight mattock. All samples were sent to Bondar-Clegg in Whitehorse.

In the laboratory, samples were oven-dried at approximately 60° C. The dried samples were ring pulverized to minus 80 mesh and were analyzed for gold and 33 elements by ICP (Inductively Coupled Plasma).

3.2.2 Discussion of Results

Only gold values (ppb) have been plotted, the soil samples do not delineate any major features, several spot highs do occur but do not show any preferred orientation or pattern (see Figure 3.2).

이 가슴 이 나는 것 같아요. 이 가슴 가슴 귀엽다.

CONCLUSIONS

Mineralization on the Sal property is confined primarily to the shear zone located on the Sal 2 claim. Bornite, malachite, azurite and minor amounts of molybdenite are visible in quartz veins. High gold and silver values were obtained from 5 samples either taken from the main shear or from parallel shears to the north.

RECOMMENDATIONS

Based on the conclusions stated, the following two phased exploration program is recommended. The decision to proceed with Phase II is contingent upon favourable results from Phase I.

<u>Phase I</u>

- Geophysical Surveys: Magnetic and Electromagnetic Surveys should be carried out over the main shear zone to delineate its extent.
- Detailed mapping and systematic rock chip sampling of the extension of the shear zone delineated by the geophysical surveys.
- 3) Blasting or trenching of zones with anomalous metal concentrations in soils or felsenmeer.
- 4) Prospecting should be carried out on portions of the property unexplored to date.

<u>Phase II</u>

Diamond drilling should be carried out on the best targets outlined by Phase I. Favorable structures should be tested for both strike and depth extents.

Respectfully Submitted, STETSON RESOURCE MANAGEMENT CORP.

OCIATION wo W. ROBB, B.Sc. W.J. DYNES, Prospector 00 J.C. FREEZE J.C. FREEZÉ. F.Q.A.C. FELLON STILLWATER ENTERPRISES LTD:

- STETSON RESOURCE MANAGEMENT CORP. -

COST STATEMENT FOR THE VINE AND SAL PROPERTIES

Project Preparation:

Print	ting						\$	54.16
Maps	-							612.63
Draf	ting							373.95
Pers	onnel:							
J.C.	Freeze	2	man	days	é	\$300/day		600.00
J.F.	Wetherill	10	man	days	ę	\$225/day		2,250.00
				-			333	

\$ 3,890.76

Field Personnel:

Geolo	ogists:							
J.C.	Freeze	12	man	days	é	\$300/day	\$ 3	,600.00
J.F.	Wetherill	13	man	days	e	\$225/day		.925.00
w.	Robb	7.5	man	days	e	\$225/day	3	687.50
Pros	pectors:			-		· / -		•
W.J.	Dynes	10	man	days	e	\$225/day	2	2.250.00
R.	Prois	8	man	days	é	\$200/day	1	.600.00
Field	d Technicians	:		-	-			,
м.	Pym	12	man	days	e	\$200/day	2	.400.00
c.	Gjendem	13	man	days	ē	\$175/day	2	.275.00
A.	Wardwell	11	man	days	ē	\$175/day	3	,925.00
L.	Beaudin	9	man	days	é	\$175/day	3	.575.00
Cook	and First Ai	d Attenda	nt:	-		• • •		• • • • • • •
W.	Elliot	11	man	days	ą	\$200/day	2	200.00
				_		-		

Support:

Mobilization/Demobilization		
Truck Rental	\$ 251.	46
Freight	370.	. 06
Fixed Wing	2,066.	.24
Flights	2,905.	.77
	#22242493	

Total: \$ 5,593.53

Total: \$ 22,437.50

. -

Camp: 104.5 man days @ \$25.00/mdy \$ 2,612.50 Room 104.5 man days @ \$21.77/mdy 2,274.97 Groceries Grocery Flights 104.5 man days @ \$ 5.02/mdy 524.59 Motel Accommodation 172.95 Restaurant Meals 309.16 Equipment Rental: 104.5 man days @ \$2.77/manday \$ Generator 289.47 104.5 man days @ \$3.34/manday Chainsaw 349.03 Communications: SBX-11-Rental 104.5 man days @ \$1.22/manday 127.49 104.5 man days @ \$1.84/manday 192.28 Parts Walkie Talkies 104.5 man days @ \$3.23/manday 337.54 Long Distance 330.95 104.5 man days @ \$10.95/manday Expediting 1,144.28 Total: \$ 8,665.19 Supplies \$ 5,112.57 Assays \$10,551.60 Transportation: Helicopter & Fuel - 31.77 hours @ \$591.9/hour \$18,804.66 Fuel Flights 1,469.86 Courier & Taxis 412.99 _____ \$ 20,687.51 Total: Sub Total \$ 76,938.66 12% Overhead Administration: \$ 9,232.64 . • TOTAL COSTS \$ 86,171.30 Allocation of costs to the Vine Property: 75.5 man days / 104.5 total man days = 72.25 % 72.25% of Total Costs \$86,171.30 = \$62,258.76 Allocation of Costs to the Sal Property: 29 man days / 104.5 total man days = 27.75 % 27.75% of Total Costs \$86,171.30 = \$23,912.54

– STETSON RESOURCE MANAGEMENT CORP. —

REFERENCES

FREEZE, J.C., May 1987 Report on the Northern Gold Project, Atlin Mining Division for Lightning Creek Mines Ltd. and Dia Met Minerals Ltd. FREEZE, J. C., Feb. 1988 Report on the Vine Property, Atlin Mining Division for Waterford Resources Ltd. FREEZE, J.C., Mar. 1988 Report on the Ant Property, Atlin Mining Division for Wicklow Resources Ltd. KENWAY, R.W., 1986 Golden Bear Project of North American Metals Corp. by Uma Engineering Ltd. LINDGREN, W., 1933 Mineral Deposits, p. 529-534. MONGER, J.W.H., 1984 Cordilleran Tectonics: a Canadian perspective; Societe Geologique de France, Bulletin (7) + XXVI, No. 2 P.255-278. NEY, C.S., 1963 Report on Geology and Geochemistry Prospect, Fae claims, Atlin Mining Division for Kennco Explorations Limited. SEVENSMA, P.H., 1972 Geological and Geochemical Report for Skyline Explorations Ltd., Norm Group. SOUTHER, J.G., 1971 Geology and Mineral Deposits of Tulsequah Map Area, British Columbia; Geol. Surv. Can. Mem. 362. STEVENSON, R.W., 1976 Report on Rock, Soil and Silt Geochemical Survey, Fae No. 1 Claim Group for Kennco Explorations Limited. THICK, M., and Assessment Report Geological and WALTON, G., 1983 Geochemical Survey, Iver Group, Atlin Mining Division. WALTON, G., 1984 Assessment Report Geological, Geochemical Surveys, Giver, Taker claims, Atlin Mining Division.

STATEMENT OF QUALIFICATIONS

NAME: Freeze, J.C., (nee Ridley), F.G.A.C.

PROFESSION: Consulting Geologist

EDUCATION: 1981 B. Sc. Geology -University of British Columbia

> 1978 B.A. Geography -University of Western Ontario

PROFESSIONALFellow of the Geological Association**ASSOCIATIONS:**of Canada

EXPERIENCE: 1987 - Present: Consulting Geologist with Stillwater Enterprises Ltd. Directing exploration programs and reviewing properties in Canada and U.S.A.

> 1985 - 1986: Project Coordinator -Geologist with White Geophysical Inc. Coordinating mineral exploration projects involving geology, geochemistry, geophysics and diamond drilling in B.C. and Yukon.

> 1981 - 1985: Project Geologist with Mark Management Ltd. Hughes-Lang Group. Responsible for precious metals exploration programs involving geology, geochmistry, geophysics and diamond drilling in Western Canada.

> 1979 - 1981: Summer and part-time Geologist involved with coal exploration in N.E. B.C. with Utah Mines Ltd.

– STETSON RESOURCE MANAGEMENT CORP. –

- 15 -STATEMENT OF QUALIFICATIONS NAME: Dynes, W. J. PROFESSION: Prospector 1985 Exploration Geochemistry TRAINING: U.B.C. 1983 B.C.D.M. Mineral Exploration Course 1982 B.C. Yukon Chamber of Mines Prospectors Mining School PROFESSIONAL Member of the Geological Association ASSOCIATIONS: of Canada - Cordilleran Division **EXPERIENCE:** 1987 - Present: Prospector with Stetson Resource Management Corp. Field Supervisor for exploration programs involving geology, geochemistry, and geophysics in B.C. and Yukon. 1984 - 1987: Prospector and Manager of Geo P.C. Services Inc. Prospector involved with geological geochemical and geophysical aspects of exploration programs in B.C. 1975 - 1978: Analytical Chemist with Noranda Mines Ltd., Boss Mountain Division

- 16 -

STATEMENT OF QUALIFICATIONS

NAME: Wetherill, J. F.

PROFESSION: Geologist - Engineer in Training

EDUCATION: 1987 B.A.Sc. Geology -University of British Columbia

EXPERIENCE: 1987 - Present: Geologist with Stetson Resource Management Corp. Field Supervisor for exploration programs involving geology, geochemistry, and geophysics in B.C. and Yukon.

> 1986, June - August: Field Assistant - Geologist involved with geological, geochemical and geophysical aspects of exploration programs in B.C.

STATEMENT OF QUALIFICATIONS

Robb, W.D.

PROFESSION: Geologist

NAME:

EDUCATION: 1987 B.Sc. Geology -University of British Columbia

EXPERIENCE: 1987 - Present: Geologist with Stetson Resource Management Corp. Field Supervisor for exploration programs involving geology, geochemistry, and geophysics in B.C. and Yukon.

> 1986, June - August: Field Assistant - Geologist involved with geological, geochemical and geophysical aspects of exploration programs in B.C.

> 1978 to 1982: Land Surveyor with Canadian National Railways, Edmonton, Alberta; British Columbia Railways, Tumbler Ridge; and Hargraves and Associates, Vancouver, B.C.

APPENDIX I

Rock Geochemistry Results

- 18 -

Cing & ENI. k 130 Pemberton Ave. North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-0681 Telex: 04-352667

00

THE

Ľ.

A REAL PROPERTY OF A REA

4

4

2**80** 1947

1

1990. S.

- 2 **-**

. •

REF	PORT: 127-	-10728	(CÓM	PLETE)					REFERENCE	INFO:			
CL I Pro	ifnt: stet Nect: sal	son re	SOURCE	Management				5 1	SUBRITTED DATE PRIN	BY: UNKNOWN TED: 16-DEC-	87		
	ORDER	8	LEXENT		NUMBER ANALYSI	of Es det	LOWER TECTION LIMIT	EXTRACTION		METHOD			
	1 2	Ag Au	Silver Gold -	Fire Assay	33 33		0.1 PPH 5 PPB	hno3-hcl. ho fire-assay	t extr	Atomic Abs Fire Assay	arption AA		
	SAMPLE	IYPES		NUMBER	SI7	e fracti	IONS	NUMBER	SAMPLE	PREPARATION	s NUMBER		
	s sotl: R rock	S : OR 81	ed rock	1 32	1 2	-80 -150		1 32	ory, s Crush,	IEVE -80 Pulverize -1	1 50 32		
	REMORKS	· SAMP	4 F SAL 1	MUR REPEAT =	: 50 PPB 4	f	· ·						
		£	say of	HIGH Ag TO FO	h Low on Ri	eport 14	527-10228						
	REPORT	COPIFS	s to: st	etson resourc	e hang.		<u> </u>	INVOIC	CE 10: ST	ets on resourd	ie hang.	¥	
	REPORT (COPIFS	s to: st	etson resourc	e hans.			INVOIC	CE TO: ST	ets on resourd	e hang.		
	REPORT (COPIFS	S TO: ST	etson resourc	e hang.			INVOIC	CE 10: ST	ets on rfsour	je hang.		
	REPORT		5 TO: ST	etson resourc	e hang.			DNUO IC	CE 10: ST	ets on resour	je kang.		
	REPORT		5 TO: STI	etson resourc	e nang.			INVOI C	CE 10: ST	ets on rfsour	E KANG.		
, 	REPORT		5 TO: STI	etson resourc	E MANG.			INVOIC	CE 10: ST	ets on rfsour	E Mang.		
	REPORT		5 TO: STI	etson resourc	E MANG.			INVOIC	CE 10: ST	ets on rfsour	E KANG.		
	REPORT		5 TO: STI	ETSON RESOURC	E MANG.			INVOIC	CE 10: ST	ets on resourd	E KANG.		
, 	REPORT		5 TO: STI	ETSON RESOURC	E MANG.			INVOIC	CE 10: ST	ets on rfsourd	E MANG.		
	REPORT		5 TO: STI	ETSON RESOURC	E MANG.			INVOIC	CE 10: ST	ets on rfsour	E KANG.		

Sondar-Clug & Company Lat. 130 Peraberson Ave. North Vancouver, B.C. Canada V7P 2R3 Phone: (604) 985-0641 Teles: 04-352667

Geochemical Lab Report

-

(
	REPORT: 127-10	28		PAGE 1
	SAMPI E	ELEMENT Ag	Au	
	NUMBER	UNITS PPH	PPB	
	ST FAULT GOUGE	0.8	10	
	R2 DY503	8_4	<5	
	R2 DY514	ก.6	10	
	R2 DY518	11.0	35	
	R2 DY522	0.8	<5	
	R2 JCF 108	0.1	10	
	R2 SAL100WR	>50.0	760	
	R2 SAL1019R	15.0	200	
	R2 SAL1024R	8.5	15	
	R2 SAL103HR	14.0	10	
	R7 SAL184UR	0.4	<5	
	R2 SAL105HR	0.5	<5	
	92 SAL1064R	0.1	<s< td=""><td></td></s<>	
	R2 SAL1074R	0.8	5	
·····	R2 SAL1094R A	0.2	ব্য	
	R2 SAL1094R B	7.5	15	
	R2 SAL110MR	5.6	25	
	R2 SAL111MR	>50.0	400	
	R2 SAL1124R	46.0	5 0	
	R2 SAL113HR	17.0	80	
	R2 SAL114HR	>50.0	170	
	R2 SAL115WR	>50.0	130	
	R2 7001	8.6	10	
	R2 7004	0.1	<5	
	32 7010	0.1	<5	
	R2 7011	0.2		
	82 7012	3.1	75	
	R2 7016	1.8	70	
	R2 7017	>50.0	7900	
	82 7021	1.4	10	
	:82 7022	8.5	<5	
	R2 7024	0.1	<5	
	72 7029	<0.1	(5	

-- -

Bender-Clegg & Company Ltd. 130 Pemberton Ave. Norsh Vancouver, B.C. Caasda V7P 2R9 Phone: (604) 985-0661 Tetet: 04-352667			Near	Redect	Geochemicai Lab Report
)CT UR 198	7	
REPORT: 127-7336. (COMP	137E ()	ם טטים	3015U U	REFERENCE INFO:	
CLIENT: STETSON RESOURCE PROJECT: SAL	E MANAGEMENT		••••	SUBMITTED BY: J DATE PRINTED:	- FREEZE 6-0C*-37
ORDER	<u>E 39</u>	NUMBER OF ANALYSES	LOWER DETECTION LINI	T EXTRACTION NET	ic'3
í Au Z Sbr	Ga-d.	45 46	5 ob3	NOT APPLICABLE INST NOT APPLICABLE INST	L NEUTRON ACTIV
· · · · · · · · · · · · · · · · · · ·					
3 QS 4 Ra	Arsenic Ratine	45	1 PPH	NOT APPLICABLE INST NOT APPLICABLE INST	NEUTRON ACTIVE
4 0a 5. βπ	Brosine	46	1 29 2	NOT APPLICABLE INST	L NEUTRON ACTIV.
6 G	Cadalus	46	10 PPN	NOT APPLICABLE	. NEUTRON ACTIV.
(s) (f	Cerian	46	10 994	NOT APPLICABLE INST	. NEUTRON ACTIV.
8 Es	Casius	46.	1 PP#	NOT APPLICABLE INST	L NEUTRON ACTIV.
9 Cr	Chrosium	46	- 50 201	NOT APPLICABLE INST	NEUTRON ACTEV:
19 Co	Cobalt	46	10 291	NOT APPEICABLE INST	I. NEUTRON ACTIVE
11 E9	Earopium	- 46	2 PP#	NOT APPLICABLE	A NEUTRON ACTIVI
12 Hf	Hafoium.		2 PP1	NOT APPLICABLE	. NEUTRON ACTIV.
13 jr	Iridiua	46	100 PPS	NUT APPLICABLE INST	. NEUTRON ACTIV.
5 14 Fe	Ігол	46	0.5 PCT	NOT APPLICABLE	L NEUTRON ACTIV.
15 La	Lantbamin	46	5 PP#	NOT APPLICABLE	NEUTRON ACTIV
16 Lu	Lutetion	46	0.5 99%	NOT APPLICABLE	NEUTRON ACTIV
17 ta		46	2 991	NOT APPLICABLE	. NEUTRON ACTIV.
13 N	Nickel	40	58.295	NOT APPLICABLE INST	L NEUTRON ACTIV.
19 RE	Rub drum	46	10 998	NOT APPLICABLE	NEUTRON ACTIV.
20 Sa	Samarium	46	0.1 PP#	He I I I I I I I I I I I I I I I I I I I	L NEUTRON ACTIV.
21 Sc	วิธรกษายุษ	46	U.S PPN	NOT APPLICABLE INST	. NEUTRON ACTIV.
22 Se	Seleniue	46	10 991	NOT APPLICABLE	r. Reutron activ.
23 Ag	Siver	46	5. PPN	NOT APPLICABLE INST	NEUTRON ACTIVISION
24 Na	Socium	- 46	0.05 PCT	NOT APPLICABLE	I. NEUTRON ACTIV.
25 Ta	Tantalus	46	1. PP#	NOT APPLICABLE INST	I. NEUTRON ACTIV.
26 Te	Tellurium	46	20 PPn	NOT APPLICABLE INS	L NEUTRON ACTIV.
27 15	Terbius	46		NOT APOLICABLE INS	I. NEUTRON ACTIV.
28 Th	Thorium	- 46	0.5 PPT -	NOT APPLICABLE INS	L NEUTRON ACTIV
29 Sa	Ta San	46	200 201	NOT APPLICABLE INS	L NEUTRON ACTIV
30 N	Turgsten	46	2 PON	NOT APPLICABLE	T. NEUTRON ACTIV
- 31 U	ยี่ราวกรับส.	- 46	ି ଲ ି.ସ. ସ ମହା	NOT APPLICABLE	NEUTRON ACTIV
32 Y5	Ytterblam		5 997	NOT APPLICABLE INS	T. NEUTRON ACTIV.
33 Za	Zinc	- 46	200 PP#	NOT APPLICABLE AND INS	T. NEUTRON ACTIV
34 Zr	Zircanise	46	SUD PPH	NOT APPLICABLE	T_ NEUTRON ACTIV.
· · · · · ·					
1 <u>1</u>	•				
e setter e					

ļ

Breater-Carg & Comparty Ltd. 130 Persiberton Ave. North Vancouver, B.C. Casada V7P 2R5 Phone: (604) 985-1661 Telex: 04-152667

ļ

Geochemical Lab Report

-

REPORT: 127-7	336							P	ROJECT	: SAL			PAGE 14	
	······································			ł				L			•			
Sample	ELEMENT	Âu'		49	, ∃a	37*	, Cđ	جک ہے۔	. (Cs	Cr	Ca	<u>्</u> Eu	r*†
NUTSER	UNITS	209	- 291	PPH	D DH	PPH	PP#	PPN	P4	25 .	PPH	PPfi	PP#	204
22 LO+00 2#5		6	9,5	17	691	ও	<18	34	<u>-</u> -	2	€58	ci I	2	. 5
32 L0+00 4#5	1.2	4	2.9	13	763	ও	<10	15		3	ั<ริฮิ	<19	(2)	. 3
32 10+00 685		<5	1.7	16	713	6	1 dt3	23	1.5	4	<sc< td=""><td><19</td><td>2</td><td>·</td></sc<>	<19	2	·
82 10+00 BMS		<5	3.4	16	152	. 5	<18	23	·	2	<50	(15	12	7
32 LO+00 1045		K 5	1.2	7	628	୍ଷ	<18	11		đ	79	<13	(Z	2
24.1 26.11 66			1.0		1400		415	(10			<i>(ΕΔ</i>			
12 LUT23 LN		~	1 7	· +3	243		×10	Nite Ter		• •		110	· · · · · · · · · · · · · · · · · · ·	
72 1323 904 72 1727 196			1.1	. <u>.</u>	116		10	<i>ت</i> د وز		3	- Cu - 255 -	1122		· /
92 10-25 0mB		13	L.1 	- A. 	7.99		10 640	10 • 7		.4 •		440	<u> </u>	
52 10-22 9943 52 10-26 1096		10	1.2		814 **08		A12 A11	13		~ . ~		. 0.0		: <u>.</u>
AZ COTZU 1845			· • • • •	<u> </u>	5.00	9	*10			£ .	CB	دنيا ؟	\$ 4	4
R2 18+50 255		S	2.5	31	1109	5	c18	17		2	SB	<18	<2	2
R2 10+50 4HS		~ <5	1.5	15	938	S	<19	<18		1	70	<13	· 2	2
82 13+58 685		<5	2.3	13	963	S	C19	13		2 .	<58	312	10	<2
82 LO+50 885		<5	1.8	18	760	୍ଦ	10	CO		2	58	2.00	2.0	2
82 LO+58 1085		ও	1.1	6	1100	S	10	20		2	175	(13	ć	2
· · · · · · · · · · · · · · · · · · ·			· · · ·					100 C			1 i e 🖓		1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	
Th L0+50 1285	1	<5	1.5	16	1160	<5	00			8	59	€10	. <2	· · · · · · · · · · · · · · · · · · ·
_ L0+75-21S	4	<s< td=""><td>-2.0</td><td>10</td><td>\$23</td><td></td><td>81></td><td>ेंे ता</td><td></td><td>2</td><td>59</td><td>. <18</td><td>2</td><td></td></s<>	-2.0	10	\$23		81>	ेंे ता		2	59	. <18	2	
R2 L8+75 4115		- (5	1.8	8	1000	୍ଦ	81) · · ·	16		3	73	<10	2	2.00
82 L0+75 605		7	11.3	88	1100	ં રક્	619	- 22		1	ഔ		· Z	3
82 LQ+75 885		<5	1.6	3	1300	્ડ	<10	, (10		3	89	d 0	•2	3
079 1 0 . 7E . 41980							44.0							
03 (1.00 38C		· 0.	£_1 3 3	11 	1100	2012 - 20	51U 2+0	410		2		<14 4 B	2 . .	, s
32 L1 93 204 3		 	2.3	0	1108	U N	C10			1	20	410		
. NZ LIYUL HING. . 92 I CIND ZHC	· · · · · · · · · · · · · · · · · · ·	. \3	1	7	1000		113 APR			3		<115 (117)	ب و م	4
02 11-00 9MC	an di ta si si si		1.7	7	1220		10	111	*	• 3	<u>ू</u> २३७	- 44	· · · · · · · · · · · · · · · · · · ·	
· ··· ··· ··· ··· ··· ··· ··· ··· ···	- 1			,	1:00			14	, de la composición d	÷	. 110		42	
82 L1+00 10MS		3	1.4	5	1000	S	<10	11		1	1. 11.	a	2	2
R2 11-25 288		×5	1.9	12	690	‹ 5	<18	31		4	5 1 a	12	· · · · · ·	3
R2 L1+25 4110		5	1.9	13	1000		<19	38		5	61	<18	<u>a</u>	2
RZ 11+25 685		S	1.1	.6	580	্ ত	<18	্য বাই		<1	84	<18	40	3.3
R2 L1+25 8MS	an a	7	2 1.7	7	1805	< 5	<10	17		2	99	<13	đ	;
00 14 05 45							· · · · · · · · · · · · · · · · · · ·							
RZ E1+25 195	. t	0	1.6	8	1390	 5 	<15	<19		З	52	<11	 	2 (2 5 (1)
NZ 11+50 255		S	2.9	. 7	560	< 5	- ⇒<19	<19		Z	72	<18	<u>a</u>	m™i (2
RZ LIHSU 475		- 45	1.1	4	1290	ده.	<10	ុះឆ		a :),	. 50	್ಷ-ಆತಿ	C .	2
RZ 11-50 685	· · · ·	<5	2.1	16	718	୍ ଏ	<10	22		3	83	े <10	a e	- (2
RZ 11+50 3#8.		<5	1.1	7	1303	ও	<13	13		2	62	Et>	2	<u>6</u> 2
82 L1+50 10MS		S	1.1	, 5	1100	<u>(5</u>	<10	<11		2	120	<13		3
P2 11+75 25\$		· <5	0.8	4	738	रेड	<10	CI I		3	<50	<19	2	4
Lt+75 4MS		s	1.1	6	990	্র	5 (10	16		2	<50	<10	2	2 . 12
. 32 11+75 675		<5	2.1	7	960	. (5	(18	16	-	3	100	<: C0	<2	
R2 L1+75 3MS		ৎ	1.9	6	1290	୍ତ୍ରାଷ	10			1	85	<10	2	6

Bondar-Chag & Company Lat. 130 Pemberton Ave. North Vancouver, B.C. Canada V7P 185 Phone: (604) 985-9682 Teles: 04-152667

GARDLE

198853

82 L1+75 8#S

ļ

<108

1.1

<S

@.5

4 * 1

Geochemical

ं <5

<10

2.4

Lab Report

H:CEF

. .

RZ 1 3+75 8	INS .	(16	10 1.3	ৎ	<0.5	3	<s0< th=""><th>43</th><th>9.7</th><th>1.5 ና1</th><th>J (5</th><th>2.38</th></s0<>	43	9.7	1.5 ና1	J (5	2.38
32 10+75 1	ans	<11	0.6	5	<0.5	2	ঙা	56		1.0 <1	1 <5	2.30
92 11+00 2	Ins -	<18	10 1.1	.<\$	<0.5	4	<\$0	43	0.7	2.7) - C C	3.50
R2 L1+00 4	ins .	41	1.9	. 6	- < 6.5	2	୍ଟର	58	0.7	2.4 <1) (A C 🦓	2.90
92 LI+00 6	HC	<1	1.4	5	c3.5	<u> </u>	<58	43	9.7	2.0 <1	3 7 7	2.69
82 L1+08 3	Ins	C19	1.0	<\$	<0.5	2 1 Jan 3	C 8	52	0.6	2.0 (1	i 8	2.79
92 L1+50 I	UHS		10 a./	<u>ح</u>	<0.5	3	୍ତୀ	n	6.7	1.3 Jac Cl) - (5	2. 29
82 t1+25 Z	ns i	<11	2.4	. 17	<0.5	<u>, 3</u>	<u>.</u> 39	65	1.8	3.3 3 41	s s	2,40
82 (1+25 4	ins .	(1)	10 2.2	. 17	8.5	- 19 4	୍ ରହ	39	2.6	3.9 CI	I G	2,30
92 L1+25 6	ins	<1	10 0.7	୍ ୍ ୪	<9.5	(2	S 8	21	5.9	i.6 <1	1 <u>5</u>	3.19
72 61+25 8	ins	<1	30 0.9	<5	<9.5	2	<50	68	8.7	2.0 <1	J - 5 🖸 🗇	2.68
87 L1+25 1	IBHS		<u>1.3</u>	< <u><</u> \$	(0.5	2	ଏହ	.49	0.7	2.2	3 6	2.10
92 L1+50 2	275	(1)	10. 1.5	ে ব	<0.5	3	<50	<22	0.7	j 2.5 d	3 <5	4,30
32 11+50 4	INS 1	· · · · · · · · · · · · · · · · · · ·	Ю 🔅 0.6	. KS	्र <8.5	9	S2	. 58	5.5	1.1 <1	3 5	2. 70
82 (1+50 6	595	<1	30 1.3	7	<8.5	7	<51	51	9.8	2.3 4	1 4	2. 70
82 L1+50 8	372	<1	00 0.8	<5	<0.5	<2	<58	50	9.7	1.7 <1	്	2.30
32 (1+50 1	Lans	<1	30	ে	. (8.5	3	< ব		- 0.6	1.8 200 (1	9 <u>s</u>	2.61
£1+75 2	285	<1	00 <0. 5	6	. < 0. 5	<u> </u>	<58	. 47	8.7	2.1 (1	8 2°65 - 1	4.0
	ang i	<1	80 0.3	3	<0.5	. 3	<53	41	1.1	0.9 (1	1 5	2.5
82 11+75 6	Sas	<1'	00 ្ច.3	7	<8.5	4	<58	28	1.1	2.8 <1	3 5	3.3

5

ব্য

85

- 2-- **8.6**

1.5

Bondar-Clog & Computy Ltd. 130 Persberton Ave. North Vancouver, B.C. Canada V7P 185 Phone: (064) v85-0681 Telex: 04-152067

ŀ

REPORT: 127-7	136	<u> </u>							icliect: Sa	<u> </u>	•	940E 10
SAMPLE	ELENENT	īa.	Īę	75	ħ	Sn	- 4	<u> </u>	Y5	Zn	7	
NUMBER	UNITS	PP1	<u>PPN</u>	PPM	P91	PPH	P93		PPN	PPN.	- Połł	
32 11-98 2 * S		. 1	<29	<1	2.2	(203	5	2.2		(250	<\$00	
32 19+08 450		· 1	<20	- G	2.3	<288	<2	2.3	ৎ	(228)	<500	
32 13 90 648		4	(29		2.8	<266	<2	2.5	- 6	<290	<503	
₹2 1.8+00 35S		1	<25	. 🕄	2.5	<200	1	1.5	୍ର	<200	KSGB	
R2 L0+00 1005	<u> </u>	<u></u>	(23	¢.	2.6	<200	· (2	1.1	ંડ	<2™	<\$38	· · ·
72 10+25 ZBS		· <1	(29	<1	1.5	<205	J	1.2	<5	<200	<i>]</i> 43	
RZ 12+25 4*S		- < <u>t</u>	(29)	<1	- 1.9	<20 2	<2	2.1	(5	<203	<568	
RZ 10+25 6/15		<:	<25	d	2.3	< (200 .	. <2	. 1.3	 	<255	600	· · ·
92 LO+25 3#S		- <1	<20	- C	2.1	<250	<2	1.2		<298	<500	
82 10+25 10%5	 	<u>(1</u>	<20	đ	2.1	<200	2 ·	1.2		<200	<568	
82 10+50 255		<u>(</u>	<29	<u>e1</u>	<u> </u>	(200		2.7	٤5	7118	<500	
82 KIT+SR 455		i ei	<211	đ	2.9	(2011		7.7	65	(208		
RZ 10+58 435			<28	et	1.6	0760		1.5	5	(208	<500	5
32 18+58 855			(28		23	<200 (200	2	1.6		0113	- 990	
97 18+58 1845		đ	₹211		7 8	2200	0	17		(200	<58B	
	•						``L`					
E8+58 12#S		<1	<28	1>	1.9	<200	2	3.8		- (266	<\$00	
_ L0+75_2%S		< <u>₹</u>	<20	41	1.4	- CH	4	$-e \mathbf{j} \mathbf{J}$. <5	<258	STU	
R2 10+75 48S	1.4	<1	<28	< <u>1</u>	1.7	<239	2 . Z	1.4	5	(290)	୍ଟମେଶ	
R2 10+75 6MS		, < <u>1</u>	<29	54	1.6	<200	<2	4.8	· · · · S	<200	<280	
R2 E8+75 8#S			<20	d	1.7	<200	<2	1.6	्र _{िक} ଓ	<200	4508	
32 10+75 1005	;	-<1	<20	. <1	2.5	<200	<2	1.2	s	230	. (580	··· · · ·
82 11+88 255	· · ·	4	<29	<: C	. 2.1	<230	· · · 5	2.2	<5	<200	<500	
82 E1+88 47S		<1	<20	t	1.5	<200	a	1.4	্ ও	260	<500	
7 R2 11+00 6MS		- C	<20	<1	1.1	<200	·	1.5	୍ର ଓ	<200	<500	
92 L1-09 875		<1	<20		1.7	<200	2	1.6	4	<290	്ത	
32 11+08 1055	·		<20	<1	2.1	<200	2	5.8	S.	<200	<580	
32 11+25 285		1	<2 <u>9</u>	<1	6.1	<205	3	5.3	ડ	<200	<500	
RZ L1+25 485	1	<1	<20	d.	6.7	<260	~ ?	6.1	ંડ	(200	760	
R2 L1+25 685		. (1	<29	G.	1.8	286	1	1.2	S	<208	SUC	
37 L1+25 375		b	<28	a.	2.0	<200	2	1.3	<5	<200	<500	
32 11+25 1105		<u>.</u>	(2 B	د1	1.6	(200	+	1 7	<5	€298	<500	<u></u>
32 11+50 249	-	- d	01	1	1.A	(200	5	1.7		(2015	(500	
82 11+58 435		c1	(29	. (1	1.5	6708	0	5.0		CONF.	2500	
* 87 11+50 6MS	· · · · ·		<28	t d	3.6	ona		3_5	G	C288	918	
RZ 11+58 855		4	<25	G	1.2	200	a	1.9	હ	<200	<508	
97 11.50 1000			20T		2 П	2200				/200		
- 03 14732 3MG	•	· 24	220		1 6	2200	2	. · 1 5	2000 2000	2200	2508	
1 LATIJ 2000 11178 200		24	208	100 AL	تدري ع و	2200	*	· · · · · · · · · · · · · · · · · · ·	5 17	N200	 Cut Cut 	
241 FLATE CHC	•	14 71	120	1/1	1	-200	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	2.2.4	() /	2200	100 2001	
97 11-75 280		. N.L. 24	20		2.U 7 5			2.2 7 R		×230 2290	2500	
NE CT110 000			120	. Z T	2.3		2	۵.5		NEUD	i.	

Chag & Comp -• 130 Pemberton Ave. North Vancouver, B.C. Canada V7P 1R3 Phone: (604) 983-0681 Telen: 04-352667

l r

ONDAREBEECC ,

REPORT: 127-71	36							980	JECT: SAL			PAGE 28	<u> </u>
SAMPLE NUMBER	ELEMENT	PP8	Fe PCT	La PPN	Lu opn	tê PPt	N. PP-1	22 1991	Se Spa	Sc 291	Se PP5	AS PPN	943 PC *
R2 L1+75 1505 R2 L2+00 205 R2 L2+00 405 R2 L2+00 605 R2 L2+00 805 R2 L2+00 805		<109 <109 <109 <109 <100 <199	0.5 1.1 0.3 0.9 1.3	ंड 	<0.5 <8.5 <8.5 <8.5 <8.5 <8.5 <8.5	5 2 4 20	(5) (5) (5) (5) (5) (5)	67 31 41 51 40	0.4 0.9 1.3 0.7 0.3	1.6 2.1 2.5 1.9 1.3	<13 <10 <19 <10 <10	र उ र र र र	2.44 3.30 3.20 2.20 2.30 2.53
R2 12+00 19MS		<198	C. S.	٢	<0.5		S.	47	8.7	1.2	<19	<u>(</u> 5	1.95
							*						
			-										

Bondar-Claug & Company Ltd.

.

130 Pumberton Ave. North Vancouver, B.C. Canada V7P 285 Phone: (604) 985-0651 Telex: 04-552667

!

35PORT: 127-7336							PRO	ECT: SAL	•	24	NGE 20
SA PLE EL VUIBER	EHENT I UNITS PP	a le	Tb PP1	Th PPN	54 Polt	po 4)) (0014	Yb. PPH	Zn PPH	2r 204	. <u></u>
92 L1+75 1045 92 L2+60 245 92 L2+60 455 92 L2+60 645 92 L2+60 645 92 L2+60 845		1 <20	8 0 0 0 0	1.5 2.5 2.3 1.2 2.3	<208 <290 <208 <208 <269 <269	<2 <2 2 <2 42 <2	1.5 2.2 2.6 1.9 2.1	্ড ্ড ্ড ্ড ্ড	<208 <209 <200 <200 <200 <200 <200	<\$00 <\$00 <\$00 <\$07 <\$08	
92 L2+00 (0HS		(† 29 1977) 1977)		1.4	<200	<	2.1	3	(21)0	<500	
			¢.								

a, ACase & Cut - L14 130 2-monthing Ave. Geochemical North Vancouver, 8.C. Canada V*P 283 Phone: -6043 982-0681 12 Lab Report Teses: 94-152667 ACT 21 1981 REFERENCE INFO: REPORT: 127-7346 (COMPLETE) CLIENT: STETSON RESOURCE MANAGEMENT SUBRITTED BY: J.C. FREEZE 410L PROJECT: SAL 200 DATE PRINTED: 20-001-87 NUMBER OF LOWER ORDER ANALYSES ELEMENT DETECTION LIMIT EXTRACTION METHOD Åυ Gaid 87 5 299 NOT APPLICABLE t INST. NEUTRON ACTIV. 2. Sb Antisony 87 8.2 PPH NOT APPLICABLE INST. NEUTRON ACTIV. 3 As Arsenic 37 1 001 NOT APPLICABLE INST. NEUTRON ACTIV. 87 4 8a Barium 100 PPH NOT OPPLICABLE INST. NEUTRON ACTIV. 1 PPM 5 9т 87 Stoning NOT APPLICABLE INST. NEUTRON ACTIV. 6 ¢đ Cagnium 87 13 228 NOT APPLICABLE INST. NEUTRON ACTIV. Ŧ 87 Сe Cerise 10 995 NOT APPLICABLE INST. NEUTRON ACTIV. Ċs 8 Cesium 87 1 PP# NOT APPLICABLE INST. NEUTRON ACTIV. 9 Ċ٣ Chrowine 87 50 PP# NOT APPLICABLE INST. NEUTRON ACTIV. 10 Co Cobalt 87 10 PPM INST. NEUTRON ACTIV. NOI APPLICABLE 87 2 PPH 11 £œ Europium NOT APPLICABLE INST. NEUTRON ACTIV. 12 Ħf 87 Hafnium 2 PPM NOT APPLICABLE INST. NEUTRON ACTIV. 13 Ī۴ Iridium 87 188 223 NOT APPLICABLE INSF. NEUTRON ACTIV. 14 Fe Iron 87 0.5 PCT NOT APPLICABLE INST. NEUTRON ACTIV. 15 87 S PPH La Lanthanus NOT APPLICABLE INST. NEUTRON ACTIV. 16 Ľø Lutetium 87 0.5 PPH NOT APPLICABLE INST. NEUTRON ACTIV. 17 Nolybdenus 87 2 PP: No NOT APPLICABLE INST. NEUTRON ACTIV. 87 18 Ni Nickel 50 PP# NOT APPLICABLE INST. NEUTRON ACTIV. 19 Rubidius 87 10 PPH NOT APPLICABLE Rb INST. NEUTRON ACTIV. 21 Sa Samarium 87 8.1 PPH INST. NEUTRON ACTIV. 21 87 S¢ Scand Jua 0.5 PP# NOT APPLICABLE INST. NEUTRON ACTIV. 22 87 Se Selenium 10 PPN NOT APPLICABLE INST. NEUTRON ACTIV. 23 Ag Silver 87 5 998 NOT APPLICABLE INST. NEUTRON ACTIV. 24 Na Sodium 87 0.05 PCT NOT APPLICABLE INST. NEUTRON ACTIV. 25 Tantalus 87 1 PP: īα NOT APPLICABLE INST. NEUTRON ACTIV. Tellurium 87 26 Te 20 PPM NOT APPLICABLE INST. NEUTRON ACTIV. 27 Тb Terbium 87 1 PPN NOT APPLICABLE INST. NEUTRON ACTIV. 28 1h Thorius 87 .-0.5 PPM NOT APPLICABLE INST. NEUTRON ACTIV. 29 Sn Tin 87 200 PP# NOT APPLICABLE INST. NEUTRON ACTIV. 30 Ц Tungsten 87 2 PPn NOT APPLICABLE INST. NEUTRON ACTIV. U. 31 87 Uranium 0.5 PPH NOT APPLICABLE INST. NEUTRON ACTIV. 32 Ytterb ius 87 YЬ S PPH NOT APPLICABLE INST, NEUTRON ACTIV. 33 Zn Zinc 87 200 PPM NOT APPLICABLE INST. NEUTRON ACTIV. 34 Zircaniu 87 500 PPH NOT APPLICABLE Zr INST. NEUTRON ACTIV.

Instant Com & Company Ltd. 130 Persbertolt Ave. North Varcover, 8,C. Canada V7P 283 Phone: 16041 983-0683 Telex: 04-352567

REPORT: 127-7	346							P	ROJECT: SI	NL 200	•	P46E 14	- -
SAMPLE VUMBER	ELEMENT UNITS	Âu PPg	Sb PP:t	As PPM	8a PPit	8¥ ² PP#	Cd PPM	Ce PPM	Cs PPft	Сг роң	Co PPM	Eu Port	Hf Poy
51 0+00W 2 M.	N	ও	3.5	18	1109	7	<10	29	6	<50	<10	<2	5
S1 9+00M 4 N.	N	S	3.7	35	1100	7	<10	<23	7	<50	<10	2	<2
SI 0+00M 6 M.	N	<\$	8.0	67	880	9	<10	57	15	<50	<10	3	6
S1 9+804 8 M.	X	99	5.9	41	990	9	<18	27	12	-S0	<10	<2	<2
S1 8+00W 18 M	L.N.	28	5.7	42	1000		<18	22	11	<s0< td=""><td><19.</td><td></td><td>5</td></s0<>	<19.		5
S1 0+00¥ 12 0	I.N	ব্য	6.7	45	1208	10	<10	30	12	<58	<10	<2	5
S1 0+000 14 M	I.N	17	6.8	41	770	8	<10	<21	1Z	<50	<10	(2	5
S1 8+88¥ 16 8	1.8	67	4.5	28	1160	11	<10	- 39	tī	58	<18	< ? < ?	5
S1 0+00# 18 M	E.N	15	6.7	35	1000	9	<10	29	12	<58	<10	<2	5
S1 0+250 2 N.	N	<10	2.4	15	1020	9	<18	<32	12	<50	<10	<2	
S1 8+25H 4 H.	N	12	4.4	20	1100	ও	<10	26	. 9	<58	(18	. <2	5
S1 8+254 6 N.	N	ি ব	4,8	20	1100	5	<10	21	5	୍ୟ	<10	3.	5
S1 0+25W 8 H.	N	<5	3.6	17	1100	.6	<19	<10	8	<50	<18	342	4
S1 0+254 10 1	LN .	S	3.3	23	830	9	×1 8	<10	10	<\$0	<10	<2	· · · · · · · · · · · · · · · · · · ·
S1 0+25# 12 0	1.N	14	3_4		1000	6	<18	28	. 6	<58	<15		5
~ 0+25# 14 #	1.N	18	3.3	22	900	18	<10	33	11	57	<19	<2	(2
. 0+254 16 #	LN	18	3.7	41	- 910	9	<18	<10	7	<50	<10	· <2	4
S1 0+254 18 M	LN STA	11	3.2	26	1000	8	<10	25	10	ି ଏକ	40	1 12	5
S1 0+50N 2 N.	N	\$	3.5	23	860	11	<10	32	6	<50	10	<2	6
S1 0+504 4 M.	.н	<u> </u>	3.4	18	1100	· 10	୍ପଷ	43	1	<50	<10	<2	
S1 0+504 6 H.	N	ি ব	3.1	16	910	11	<10	21	: 8	62	20	(2	S
S1 0+504 8 ñ.	.N	56	3.7	17	710	10	<10	23	6	<\$0	<10	. <2	6
S1 0+50W 10 M	f.N	21	6.5	26	920	8	d 9	45	7	്ട്	· · · <10	2	5
S1 0+504 12 *	1.N	8	5.4	41	1000	7	<10	. <21	5	<50	<10	<2	6
31 D+58W 14 M	I.N	15	5.6		1200	<u> </u>	<u>, (11)</u>	49	5	<u> </u>		्य	
S1 0+504 16 M	1.N	23	5.8	100	878	12	<18	33	8	<50	<10	.«2	<2
S1 8+50W 18 M	1.N	17	_ € 4.1 .	81	1000	9	- S. <18	<21	1	<s0< td=""><td><10 </td><td>\$2</td><td>5</td></s0<>	<10 	\$2	5
S1 0+50¥ 20 f	1.N	27	2.8	25	889	18	<18	29	7	<50	<10	2	÷ 4
S1 0+754 2 H.	.N	87	3.4	21	900	13	<10	23	6	-58	<19	42	8
S1 0+754 4 N.	.N	50	4.1	±7	980	8	<10	22	<u> </u>	<50			. 6
S1 0+758 6 8.	.8	52	.4.9	19	890	11	<18	33	<u> </u>	<58	(10	2	6
S1 0+75H 8 H.	.8	43	6.5	23	900	11	<10	37	7	<58	13	2	. 9
S1 0+754 10 1	1.N 1.	68	6.2	24	890	14	ki (10	. 50	7	୍ଟର	iS	(2	
SI 0+75# 12 1	t.N	63	5.2	43	940	13	<10	<10	6	୍ୟୁ	୍ୟା	a	6
S1 8+75H 14 1	<u></u>	11	4.9	29	1200	11	<10	27	13	<50	<18	2	<u>e</u> 1 4
S1 0+75H 16 H	1.8	64	6.2	52	970.	7	c10	-26	10	<50	<10	a	June 1
** 0+75W 18 !	1.¥	61	5.0	47	868	10	<18	. 46	. 8	<50	<10	(2	6
0+7514 20 4	1.8	11	3.3	32	810	7 T	<10	<18 (18	8	<50	<10	<2	5
S1 1+98W 2 N.	.Я	12	3.7	16	960	8	<10		. 6	. S2	<18	. <2	-), S
S1 1+004 4 M.	.N	18	4.0	15	790	10	<10	· 34	- 41 g 4 1	<50	<10	2	5

Bondar-Carg & Company Ltt, 130 Pensberton Ave, North Vancouver, S.C. Canada VTP 2R3 Phone: +6043-982-0681 Tetex: 04-352667

SAMPLE ELSTENT IF Fe La Lu Nor NI Rb Se Sc Se Ac SI 0-00W 2 n.N (100 2.2 13 0.5 2 CS0 61 2.0 4.8 C10 CS SI 0-00W 8 n.N (100 2.7 19 0.6 8 GS0 32 2.1 6.2 C10 6 5.6 C10 CS 3 CS0 66 1.6 5.6 C10 CS C10 CS1 6.0 N.X C100 2.3 11 C0.5 3 CS0 81 1.4 5.4 C10 CS S1 0-00W 8 n.N C100 2.8 13 0.5 C CS0 71 1.5 4.9 C10 CS S1 0-00W 48 n.N C100 2.8 13 0.5 C CS0 72 1.2 5.2 C10 CS C10 CS CS0 71 CS	Na PCT 2.88 2.78 2.60 2.58 2.30 2.30 2.40 2.40 2.50 2.70 3.00 3.20 2.80
S1 0-00 2 2 13 0.5 2 CSD 61 2.0 4.8 CCD CSD S1 0+00 4 4 N , CL00 2.7 12 0.5 3 CSD 66 1.4 5.6 CL0 CSD S1 0+00 4 4 N , CL00 2.7 17 0.4 8 CSD 66 1.4 5.6 CL0 8 S1 0+00 4 4 N , CL00 2.7 17 0.4 8 CSD 82 2.1 6.2 CL0 8 S1 0+00 4 4 N , CL00 2.3 11 CL5 3 CSD 81 1.4 5.6 4 CD 7 1.5 4.9 CL0 CS S1 0+00 4 4 R , CL00 2.6 16 CL5 4 CSD 77 1.5 4.9 CL0 CS CSD 71 CL5 4.9 CL0 CS CSD 72 1.2 5.2 CL0 83 71 CL0 71 CL0 71 CL0 71	2.88 2.78 2.60 2.58 2.30 2.30 2.40 2.40 2.50 2.70 3.00 3.20 2.80
11 0-0704 4 R.M. C100 2.9 12 0.5 3 CS0 66 1.6 5.6 C10 c5 C1 0-000 6 R.N. C100 2.7 19 0.6 8 CS0 82 2.1 6.2 C10 8 S1 0-000 8 R.N. C100 2.3 11 C0.5 3 CS0 81 1.4 5.4 C10 C5 S1 0-000 12 R.N. C100 2.3 11 C0.5 3 CS0 97 1.5 6.9 C10 C5 S1 0-000 12 R.N. C100 2.6 16 C0.5 4 CS0 97 1.5 6.9 C10 C5 S1 0-000 12 R.N. C100 2.6 16 C0.5 4 CS0 72 1.2 5.2 C10 C5 S1 0-000 13 R.N. C100 2.6 13 0.5 4 CS0 72 1.2 5.7 C10 C5 S1 0-250 2 R.N. C100 2.8 19 0.6 4 CS0 93 2.1 5.7 C10 C5<	2.78 2.60 2.58 2.30 2.30 2.40 2.40 2.50 2.70 3.00 3.20 2.80
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.60 2.58 2.30 2.40 2.40 2.58 2.70 3.00 3.20 2.80
S1 D=DQU # 0.N C100 3.3 15 CL.5 3 CS0 93 1.4 5.6 C10 C5 S1 0=DQU 10 0.N C100 2.3 11 CL.5 3 CS0 81 1.4 5.6 C10 C5 S1 0=DQU 40 1.8 N.N C100 2.6 1.6 C0.5 4 CS0 77 1.5 4.9 C10 C5 S1 0=DQU 418 R.N C100 2.4 13 0.5 4 CS0 77 1.2 5.2 C10 G5 S1 0=DQU 18 N.N C100 2.4 C0 C0.5 4 CS0 77 C10 C5 S1 0=DQU 18 N.N C100 1.7 C0.5 C5 C50 93 2.1 5.7 C10 C5 S1 D=ZSU 2 A.N C100 2.8 15 G.S.5 C50 64 1.4 5.3 C10 C5 S1 D=ZSU 4 N.N C100 C5 S1 D=ZSU 4 N.N <t< td=""><td>2.58 2.30 2.40 2.40 2.50 2.70 3.00 3.20 2.80</td></t<>	2.58 2.30 2.40 2.40 2.50 2.70 3.00 3.20 2.80
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.30 2.40 2.40 2.50 2.70 3.00 3.20 2.80
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.30 2.40 2.50 2.70 3.00 3.20 2.80
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.40 2.40 2.50 2.70 3.00 3.20 2.80
S1 B+RDW C100 2.6 20 C0.5 4 C50 75 2.3 7.1 C10 2.5 S1 B+RDW C100 2.7 15 C0.5 5 C50 65 1.5 6.1 C10 3 S1 B+25W 2.8 19 C6. 4 C50 93 2.1 5.7 C10 C3 C4 C3 C4 C3 C4 C3 C4 C4<	2.40 2.50 2.70 3.00 3.20 2.80
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.58 2.70 3.00 3.20 2.80
S1 Q+25H Q = A.N C100 1.9 Q0 C0.5 G C50 93 Q.9 G.2 C10 13 S1 0+25H 4 M.N C100 Q.8 19 0.6 4 C50 93 Q.1 5.7 C10 C5 S1 0+25H 6 M.N C100 Q.8 15 C0.5 C2 C50 61 1.3 4.9 C10 C5 S1 0+25H 8 M.N C100 Q.4 12 0.5 C2 C50 63 1.4 5.3 C10 C5 S1 0+25H 18 M.N C100 Q.4 12 0.5 C2 C50 63 1.4 5.3 C10 C5 S1 0+25H 18 M.N C100 Q.4 11 0.5 C2 C50 64 1.4 5.8 C10 C5 1.4 S1 1.7 S.4 C10 C5 1.4 S1 1.7 S1 C10 C5 C50 A1 1.7 S1 S1 S1 <td>2.70 3.00 3.20 2.80</td>	2.70 3.00 3.20 2.80
S1 0+254 4 N.N C100 2.8 19 0.6 4 C50 93 2.1 5.7 C10 C5 S1 0+254 6 M.N C100 2.8 15 CD.5 C2 C50 61 1.8 4.9 C10 C5 S1 0+254 8 M.N C100 2.4 12 0.5 C2 C50 75 1.4 5.3 C10 C5 S1 0+254 12 M.N C100 2.9 12 C0.5 C2 C50 68 1.4 5.8 C10 6 S1 0+254 12 M.N C100 2.6 11 8.5 4 C50 56 1.2 7.1 C10 C5 S1 0+254 14 M.N C100 2.6 11 8.5 4 C50 56 1.2 7.1 C10 C5 S1 0+254 14 M.N C100 2.6 11 8.5 C2 C50 45 1.2 7.1 C10 C5 S1 0+254 14 M.N C100 2.7 15 C0.5 4 C50 75 1.9 5.1 C10 C5	3.00 3.20 2.80
S1 D+2SW 6 M.N C100 2.8 15 C0.5 C2 C50 61 1.8 4.9 C10 C5 S1 D+2SW 8 M.N C100 2.4 12 0.5 C2 C50 75 1.4 5.3 C10 C5 S1 D+2SW 10 M.N C100 2.9 12 C0.5 C7 C50 68 1.4 5.8 C10 6 S1 D+2SW 12 M.N C100 2.4 14 C0.5 5 C50 68 1.4 5.8 C10 6 S1 D+2SW 12 M.N C100 2.4 11 B.5 4 C50 56 1.2 7.1 C10 C5 S1 D+2SW 18 M.N C100 2.6 11 B.5 4 C50 56 1.2 7.1 C10 C5 S1 D+2SW 18 M.N C100 2.6 11 B.5 4 C50 75 1.9 5.1 C10 C5 S1 D+2SW 18 M.N C100 2.7 15 C9.5	3.28 2.80
S1 0+25W 8 N.N C100 2.4 12 0.5 C2 C50 75 1.4 5.3 C10 75 S1 0+25W 10 N.N C100 2.9 12 C0.5 C2 C50 63 1.4 5.8 C10 6 S1 0+25W 12 N.N C100 2.4 14 C0.5 S C50 41 1.7 4.8 C10 7 S* 0+25W 14 N.N C100 2.6 11 0.5 C2 C50 41 1.7 4.8 C10 7 S* 0+25W 18 N.N C100 1.6 10 C0.5 4 C50 56 1.2 7.1 C10 C5 S1 0+25W 18 N.N C100 1.6 10 C0.5 C2 C50 75 1.9 5.1 C10 C5 S1 0+50W 2 N.N C100 1.7 5.0 C2 C50 71 2.8 4.5 C10 C5 S1 0+50W 4 N.N C100 1.9 19 C0.5 C2 C50 71 1.1 5.4 C10 C5 <tr< td=""><td>2.80</td></tr<>	2.80
S1 0+25H 10 H.N. <100	
S1 0+25W 12 N.N C100 2.4 14 C0.5 5 C50 41 1.7 4.8 C10 7 5' 0+25W 14 N.N C100 2.6 11 0.5 4 C50 56 1.2 7.1 C10 C5 1+25W 16 N.N C100 1.6 10 C0.5 4 C50 56 1.2 7.1 C10 C5 S1 0+25W 18 N.N C100 2.7 15 C0.5 4 C50 75 1.9 5.1 C10 C5 S1 0+50W 2 N.N C100 1.9 19 C0.5 C7 C50 71 2.8 4.5 C10 C5 S1 0+50W 4 N.N C100 1.9 19 C0.5 C7 C50 64 2.3 5.5 C10 C5 C50 64 2.3 5.5 C10 C5 C50 C50 C10 C5 C100 C5 C50 C10 C5 C10 C5 C10 C5 C10 C5 C50 C10 C10 C5 C10 C5 <td< td=""><td>2.80</td></td<>	2.80
S1 0+254 14 N.N <100	3.20
1+25H 16 1.0 1.6 10 c0.5 c7 c50 45 1.7 5.4 c10 c5 S1 0+25H 18 n.N c100 2.7 15 c0.5 4 c50 75 1.9 5.1 c10 c5 S1 0+50H 2 n.N c100 1.9 19 c0.5 c7 c50 11 2.8 4.5 c10 c5 S1 0+50H 4 n.N c100 3.0 16 c0.5 2 c50 64 2.3 5.5 c10 c5 S1 0+50H 6 N.N c100 2.3 11 0.7 c2 c50 64 2.3 5.5 c10 c5 S1 0+50H 8 N.N c100 2.3 11 0.7 c2 c50 71 1.1 5.4 c10 c5 S1 0+50H 8 N.N c100 1.7 14 c0.5 5 c50 88 1.4 4.6 c10 </td <td>2.48</td>	2.48
S1 0+25H 18 fl.N C100 2.7 15 C0.5 4 C50 75 1.9 5.1 C10 C5 S1 0+50H 2 fl.N C100 1.9 19 C0.5 C7 C50 71 2.8 4.5 C10 C5 S1 0+50H 4 fl.N C100 3.0 16 C0.5 2 C50 64 2.3 5.5 C10 C5 S1 0+50H 6 fl.N C100 2.4 11 C0.5 C2 C50 64 2.3 5.5 C10 C5 S1 0+50H 8 fl.N C100 2.4 11 C0.5 C2 C50 64 2.3 5.5 C10 C5 S1 0+50H 8 fl.N C100 2.3 11 0.7 C2 C50 71 1.1 5.4 C10 C5 S1 0+50H 10 fl.N C100 1.7 14 C0.5 5 C50 88 1.4 4.6 C10 C5 S1 0+50H 12 fl.N C100 1.6 12 C0.5 3 C50 76 2.6 6.9 C10 <t< td=""><td>2.40</td></t<>	2.40
S1 0+50H 2 H.N. <100	2.40
S1 0+50H 4 N.N <100 3.0 16 <0.5 2 <50 64 2.3 5.5 <10 <5 S1 0+50H 6 N.N <100	2.30
S1 0+50H 6 N.N C100 2.4 11 C0.5 C2 C50 69 1.7 5.1 C10 C5 S1 0+50H 8 R.N C100 2.3 11 0.7 C2 C50 71 1.1 5.4 C10 C5 S1 0+50H 10 N.N C100 1.7 14 C0.5 5 C50 88 1.4 4.6 C10 C5 S1 0+50H 10 N.N C100 1.7 14 C0.5 5 C50 88 1.4 4.6 C10 C5 S1 0+50H 12 N.N C100 1.6 12 C0.5 C2 C50 59 1.7 4.9 C10 C5 S1 0+50H 14 N.N C100 2.5 21 C0.5 3 C50 76 2.6 6.9 C10 11 S1 0+50H 16 N.N C100 2.2 21 0.7 2 C50 99 2.5 6.7 C10 11 S1 0+50H 18 N.N C100 2.7 17 40.5 3 C50 71 1.8 5.9 C10 C5 <td>2.60</td>	2.60
S1 0+50N 8 N.N <100	2.98
S1 0+50H 10 N.N <100	3.20
S1 0+50H 12 N.N C100 1.6 12 <0.5	2.90
S1 0+50H 14 8.N <100	. 3.60
S1 0+58# 16 N.N <100	3.00
S1 0+50H 18 N.N <100	2.60
S1 B+50H 20 H.N <100	2.50
S1 0+75H 2 N.N <100 2.7 11 <0.5 <2 <50 69 1.2 5.1 <10 <5 S1 0-75H 5 N N <100 7.7 12 <0.5 <2 <50 69 1.2 5.1 <10 <5	2.30
	3.29
	3.30
S1 8+754 6 N.N <100 3.4 16 <0.5 2 <50 52 2.0 6.7 <19 <5	3.18
SI 0+754 8 M.N <180 Z.4 16 <0.5 3 <50 66 2.3 6.5 <10 10	2.80
S1 8+754 18 N.N <100 2.3 16 0.7 3 . <50 . 80 2.1 6.9 <10 (5	3.30
SI 0+758 12 A.N <100 2.2 11 <0.5 2 <58 49 1.2 5.8 <10 (5	2.80
S1 0+754 14 N.N <100 1.9 17 0.7 <2 <50 95 1.9 4.8 <10 <5	2.58
S1 0+75W 16 N.N <100 1.9 16 <0.5 4 <50 78 1.8 4.2 <10 <5	3.20
SI 8+75W 13 N.N <180 2.8 16 <0.5 6 <50 93 2.8 5.3 <18 (5	2.90
1+75W 2D N.N <100 2.2 11 <0.5 3 <50 59 1.2 5.4 <10 5	··· A /A
SI 1+00H 2 N.N <10B 2.0 13 <0.5 5 <50 66 1.5 3.8 <10 6	Z.60
St 1+084 4 M.N <100 2.6 17 <0.5 <2 <50 76 2.1 6.8 <10 <5	2.60

Bonder-Cleg & Company Let. 130 Persberton Ave. North Vancouver, B.C. Canada VTP 285 Phone: r00a3 985-0681 Teles: 04-152667

REPORT: 127-7	346							990	JECT: SAL	200		PAGE 10
SAMPLE NUMBER	ELEMENT UNITS	Ta PP I	Та роң	Tb PPit	Dı PPit	Sor PPH	월 PP II	99H 1	үр РРп	2л ррн	Zr pp q	· .
SI 0+000 2 1.	N	<1	<20	a	5.0	<208	5	3.8	<5	<208	<500	
S1 9+00H 4 ft.	N	<1	<28	d	4.0	<200	7	5.6	<5	<200	<580	
S1 0+088 6 M.S	И	<t< td=""><td><211</td><td><1</td><td>4.9</td><td><200</td><td>7</td><td>6.4</td><td>ৎ</td><td><208</td><td><\$00</td><td></td></t<>	<211	<1	4.9	<200	7	6.4	ৎ	<208	<\$00	
S1 0+00# 8 H.	N.	<1	<28	<1	3.9	<200	3	5.0	5	<200	<500	
S1 0+90W 10 8	.N	4	<20	<1	4.2	<200	5	4.8	<5	<200	(500	
St 8+00H 12 4	.N	<1	<20	<1	3.5	<200	6	5.0	<\$	(200	<\$90	
S1 0+084 14 #	.N	<t></t>	<28	1	4.5	<200	6	5.3	< <u>s</u>	<200	840	
S1 0+004 16 N	.#	<1	<28	<1	5.0	<200	6	5.7	ं ५५	<200	<500	
S1 0+089 18 a	.N	1>	<29	<1	4.5	<200	.6	4.7	ৎ	<208	<\$00	
S1 0+254 2 11.	N 312	4	<41	<1	2.3	<200	<2	4.4	<u>(</u> 5	<280	<1200	
\$1 8+25¥ 4 8.1	N.	4	<20	(1	4.3	<200	5	3.5	<5	<208	<508	<u> </u>
St 0+259 6 8.3	N *	· <1	<29	4	3.7	<200	11.4	4.0	· · <5	<208	<500	•
S1 0+254 8 0.1	×	D	<29	<1	3.0	<208	4	3.5	5	<200	<\$99	•
S1 0+254 10 H	. N	t	<20	_ <1	- 4.0	<200	4	3.7	<5	<200	<500	
S1 0+25W 12 N	.N 	<1	<20	<1	2.9	<200	2	3.1	<5	<200	<\$00	
St 0+25H 14 N	.×	<1	<20	<1	3.6	<200	7	4.8	(5).	<200	SAU	
0+25¥ 16 M	_N	<1	<20	(1	3.2	<280	3	4.3	ও	<280	<500	
S1 0+254 18 M	"N	4	<20	. 4	4.1	<200	5	·· 4.5	ৰ 🖒	<200	<s80< td=""><td></td></s80<>	
S1 0+50N 2 M.	N .	<1	<20	1	5.5	<200	3	4.7	ঁৎ	<201	91 0	
S1 0+50W 4 M.	N	<1	<20	<1	5.6	<200	6	4.5	<5	<200	<500	· · · ·
S1 0+500 6 8.	N	- 1	<20	<1	5.3	Q 00	<z< td=""><td>3.4</td><td>s.</td><td><200</td><td>1100</td><td></td></z<>	3.4	s.	<200	1100	
St 0+504 8 M.	N	<1	<21	4	3.8	<200	<2	3.4	ও	<200	<500	
S1 0+50W 10 M	_N	<1	<20	<1	4.0	<200	6	3.9	S.	<20D	<\$00	
S1 0+50W 12 N	.N	4	<20	<1	4.6	<200	4	2.3	<5	<269	<500	
SI 0+SON 14 M	.N	<1	<20	<1	5.6	<200	7	5.1		<200	<500	
S1 0+50H 16 M		1	<20	4	5.7	<200	4	5.9	3	<298	1608	
51 0+50W 18 N	. N	<1	<20	<1 ·	4.6	<200	- 4	5.7	<s< td=""><td><208</td><td><\$80</td><td>·</td></s<>	<208	<\$80	·
S1 8+504 20 M	N	(<u>1</u>	<20	<1	3.2	<288	5	5.7	< 5	<200	810	
S1 0+75W 2 m.	N	<1	<20	<1	4.6	<288	- 4	3.0	্র	<200	<\$80	•••
S1 0+754 4 H.	X	<1	<20	4	5.4	<200		4.1	<5	<200	<500	· . ·
S1 0+75W 6 M.	N	<1	(28	<u>(1</u>	. 4.5	<200	3	4.3	<5	<200	<\$00	
S1 0+754 8 M.	N	<1	<20	. (1	4.Z	<200	. 6	4.5	<5	300	<580	
S1 0+754 10 M	.N	<1	<20	D -	4.6	<200	7	4.9	<5	<208	<500	
S1 0+75# 12 #	LN .	<1	<28	<1	3.2	<200	7	3.5	<5	<200	<508	200 1410
S1 0+754 14 H	.N	<1	<20	<u></u>	4.6	<200	4	6.2	<5	<200	<500	
S1 0+75# 16 ff	.N		<29	<1	3.9	<200	6	.4.2	.(5	<208	780	
SI 8+758 18 #	.N	a	<20	<1	2.4	<208	6	4.1	S	<200	(50)	1
9+754 20 M	.8	. <t< td=""><td><20</td><td><1</td><td>4.6</td><td><209</td><td>3</td><td>4.8</td><td><5</td><td><238</td><td><500</td><td></td></t<>	<20	<1	4.6	<209	3	4.8	<5	<238	<500	
S1 1+00W 2 8.	N	<1	<20	đ	3.8	<298	6	4.4	s	210	<500	
SI 1+80W 4 M.	N	< <u>1</u> -	<20.	<1	3.9	<200	5	5.0	<s .<="" td=""><td><200</td><td>1100</td><td>• .</td></s>	<200	1100	• .

Bootss²Cong & Conguery Ltd. 130 Penabetton Ave. North Vancouver, B.C. Canada VTP 2R5 Phone: 60419850681 Telex: 04-052667

REPORT: 127-	7346							يع بع	ROJECT: S	AL 200		POGE 2A	
SAMPLE NUMBER	<u>elehent</u> Units	4u 228	Sb PPR	As PPtt	8a PPH	8r* 2011	Cd PPM	Ca PPn	Cs. PPH	Cr PPM	Ca PPM	Eu PP18	Hf PPM
SI 1+00W 6 M	 _N	<5	5.9	21	790	7	<10	<21		<50	<18	<2	. 6
S1 1+80¥ 8 f	19	<\$	7.8	29	800	t2	<10	42	- 6	83	<10	<2	. 6
S1 1+804 10	M.N	. (5	6.0	Ħ	670	11	<10	<18	- 4	ଔ	<19	<2	4
S1 1+804 12	11_1 1	10	6.1	62	1000	18	<18.	4 4	9	<50	<18	<2	<2
S1 1+084 14	#.N		6.2	16	991]	6	<10	37	7	60	<19		<2
St 1+004 16	N.N	7	5.7	33	570	S	<18	23	- 4	ଟ୍ର	<10	<2	4
S1 1+00¥ 18	#_H	7	5.0	27	720	6	<10	35	3	<58	<10	<2	(2
SI 1+004 20	#.N	<5	3.7	20	668	6	<10	<18	6	<50	410	<2	<2
S1 1+254 Z H	.N	8	3.1	13	680	-5	<18	26	6	82	<18	< <u>7</u>	
S1 1+254 4 1	.N		3.4	<u> </u>	670	8	<19 	<10			<15	. (2	
SI 1+25# 6 M	.N	18	2.9	17	740	10	<10	- 28	7	58	<10	<2	<2
_ S1_1+254 8 I	.₩	13	3.7	19	960	11	< <u>10</u>	37	11	୍ଟ୍ରୀ	15	<2	5
S1 1+25W 10	ñ.N	16	4.2	22	930	13	<10	24	10	्रः ८६	(18	·<2	<2
St 1+254 12	₩.N	22	5.1	40	700	10	<10		9	୍ଟର	(18	(2	4
SI 1+254 14	作_诗	14	5.5	58	728 -	10	<10	36	6	57	13	<2	<2
S* 1+25# 16	n.N	9	3.6	30	650	: 7	<18	25	7	<58	<19	(2	3
2+25¥ 18	ff.34	ও	2.9	27	980	7	<10	27	9	୍ଟଃ	<18	<2	· <2
SI 1+50H 2 H	. ₩	28	3.7	21	940	. 13	<10	35	16	<50	<10	<2	6
S1 1+504 4 d	LN	33	3.3	21	890	19	<10	40	8	୍ୟ	<10	<2	6
SI 1+50¥ 6 M	.N	37	2.5	20	800	22	<10		11	SU	<10	(2	6
S1 1+58W 8 M	.N	21	4.6	52	1100	16	D1>	56	29	SU	<19	a	2
S1 1+58¥ 10	n.N	18	3.0	31	990	14	<19	<21	23	୍ବର		2	<2
SI 1+50# 12	n.N	25	2.7	33	1000	17	<10	< ? 2	20	<58	<10	(2)	: <2
Si 1+504 14	8_N	35	3.4	28	1100	17	<10	30	15	<: <50	<10	2	. (2
51 1+754 8 8	.	31	4.8	43	1000	9	<10	44	<u> </u>	<50	<10	Q	
St 1+75# 10	n.N	<u>(5</u>	5.3	41	1000	8	<10	.43	- 11	<50	<10	· 2	<2
S1 1+75¥ 12	H_N	28	4.0	44		1 - 1 11	< 10	<21	9	<s0< td=""><td>)- C18</td><td><2</td><td>_ 6</td></s0<>)- C18	<2	_ 6
S1 1+75W 14	0.N	368	5.9	63	850	7	<10	43	10	ଟଃ	<10	2	9
S1 2+004 6 M	LN ⁻	5	5.6	19	- 13 - 900	୍ୟ	- <18	20	1	<50	<10	2	6
S1 Z+808 8 8	.N	12	6.9	28	950	22		33	8	<3	<10	<2	4
S1 2+00¥ 10	H.N	<u>(</u> 5	6.1	28	- 900	s	<19	44	6	<u>5</u>	<19	<2	3
SI 2+08# 12	8.N	19	6.8	29	760	8	<10	· 25	8 (14	<\$8	<10	<2	- 4
S1 2+254 6 1	LNC (31	6.0	28	870	s	d 0	17	S	୍ଟର	<10	<2	` ∶ <2
St 2+259 8 5	LN C	17	7.1	39	8 90	S	<10	36	5	୍ଷର	<10	2	8
S1 2+254 19	M.N	30	7.0	32	900	ও	<18	19	7	<50	<18	<z< td=""><td>4</td></z<>	4
S1 2+50# 4 3	LN	16	3.0	20	740	S	<10	<10	5	<50	<18	<2	3
S1 2+504 6 7	LN .	8	6.9	23	740	<5	<10	35	: 8	<50	<10	<2	5
1+50H 8 P	i_N-	21	9.0	29	560	<5	<18	<10	5	450	<10	<2	5
S1 2+504 10	3.N	12	7.8	25	690	ଓ	<10	<10	. · 4	୍ଟେଡ	(10	<2	- - - -
R2 1+75# 2 3	L.N	11	1.1 .	7	930	ও	<18	<19	3	66 (<10	(2	3

Bindiar (Jung & Company Ltd. 130 Pemberson Ave, North Vancouver, B.C. Castada V7P 2R5 Phone: r6061 983-9881 Tetex: 104-352667

REPORT: 127-7	346	•						P8	ROJECT: CA	NL 200		P468 28	
SAMPLE NUMBER	ELEMENT UNITS	Ir PP8	Fe PCT	La PPH	Lu 293	fto- PPH	N) PPH	RD PPM	Sa PPit	Sc PP r	5e 004	Ag 20 <u>H</u>	Na PCI
S1 1+004 6 N.N	•	<100	2.1	14	<0.5	<2	<50	59	1.5	5.5	<10	8	3.10
01 1-009 8 GU 04 1-009 8 GU	N	100	2.3	13	0.U 2 Th	12	450 450	9C	1.3	•.2 £ 2	<19 218	() /5	2,30
- 51 1+6010 10 57 H		100	23	21	11.5	~2	450	88	3.2	5.6	619	<5	2.30
SI 1+000 14 M.	_N	<100	2.2	16	(0.5	6	< এ	58	2.2	4,4	<10	S	3.00
S1 1+00H 16 M	.N	<100	1.6	12	(0.5		<50	61	1.6	4.1		<\$	3.30
SI 1+08¥ 18 4	.N	<108	1.6	14	<0.5	5	<50	74	1.7	4.2	<10	< 5	2.60
S1 1+08# 20 N	.N	<100	2.3	9	<8.5	2	<50	69	. 1.1	4.7	<18	7	2.10
SI 1+254 2 M.	t .	<100	2.2	9	<0.5	3	<\$0	59	1.0	3.6	<13	<5	2.50
St 1+25H 4 H.	N ,	<100	2.2	14	<0.5	· 4.	<50	מ	1.2	5.0	<18	<\$	2.91
S1 1+25# 6 H.	*	<190	3.0	21	0.5	2	<50	85	1.8	6.1	<10	G	2.56
S1 1+25H 8 N.I	N	<100	3.5	15	0.6	4	<58	58	2.0	6.3	<18	2>	2.30
51 1+25W 10 M	. м	CUU	1.9	18	8.6	2	<50	61	2.6	5.8	<10	(5)	2.49
51 1+254 12 M	.15	<100	2.2	17	4.5 2 T S	з т.		51	- 2-2	5.3	<18 210	0.	2.30
31 1-234 14 3.		<100	<u> </u>					J1	2.5		<u></u>		3.00
S1 1+25W 16 M	.*	<100	1.8	12	<8.5	2	<50	58	1.5	3.6	d 0	<s< td=""><td>2.29</td></s<>	2.29
.+25W 18 M	N	<100	2.4	10	<8.5	. 4	<50	60	.1.4	5.2	<10	5	1.70
S1 1+504 Z H.	N.	<100	3.5	15	<0.5	7	<50	100	1.8	8.1	<10	S	2.99
51 1+500 4 0,0 01 1,500 C 0 1	4	<198 c+00	J.4 7 9	14	0.8	а т	- SU	10	1.7	5.5	<10 <10	().	2.20
31 1+20 4 6 II.	·····	100	<u> </u>				~		1.0				×.+4
S1 1+504 8 M.1	1	<100	2.7	20	1.3	7	രാ	110	2.5	8.2	<10	9	1.98
S1 1+SON 10 M	.N	<100	Z.5	12	0.6	2	<50	87	1.2	6.5	<10	<s s</s 	1.70
SI 1+50W IZ M	, К ,		- 2.5	15	9.5	4	<50	67	2.1	6.6		0	1.00
51 1+3UN 14 8		100	1.7	14	1.1	4. 	· 11	110	2.5	· 6.2	<10 (10	C) 	2.30
		100	4. +	10		9				3.8	×15	41	2.00
G1 1+75# 10 ff	. Х	<100	2.5	16	<0.5	1	<50	64	2.0	5.9	<18	ও	2.60
S1 1+754 12 8	.N	<100	2.4	. 14	0.5	6	_ <50	61	1.8	5.8	<10	S	- 2.40
SI 1+754 14 M	_N	<100	2.5	1/	0.7		<s0< td=""><td>58</td><td>1.9</td><td>5.7</td><td>81></td><td></td><td>3.20</td></s0<>	58	1.9	5.7	81>		3.20
51 24000 8 R.	N		1.5	. 15	(0.5		- 450-	10 10	··· 1.6	3.1		· ()	100-E
51 2.00% 8 7.		<104	2.1	16	- 40.5	· · •	100>	<u> </u>	4.4	3.7	<1U		3.30
S1 2+00W 10 M	.N	<100	1.6	15	<0.5	4	<50	. 64	2.0	4.8	<10	<5	3.30
S1 2+904 12 N	.¥	<100	1.7	15	<0.5	<2	<50		1.9	5.1	<10	<5	2.80
S1 2+25H 6 M.	N	<100	1.9	13	<0.5	.	<s0< td=""><td><10</td><td>1.5</td><td>3.7</td><td><10</td><td>ও</td><td>3.30</td></s0<>	<10	1.5	3.7	<10	ও	3.30
S1 2+254 8 H.	N	<100	Z.0	14	<0.5	6	୍ୟ	42	1.9	4.0	<10	6	3,20
SL 2+25W 10 M		CLUU	1./	12	4.5		CU	92		4.2		0	3.38
S1 2+SOW 4 H.	N	<100	1.5	8	<0.5	5	<50	48	1.3	2.5	<10	<5	2.90
S1 2+504 6 M.	Ni i	<100	1.3	· 9	0.5	5	<50	53	1.5	Z.1	<10	ও	3.10
5 +50H 8 N.	N	<109	1.1	12	<8.5	4	(50	53	1.5	2.7	<10	S (S	3.60
51 Z+50W 10 R	.7 1	<100 <100	1.1	. 11	<0.5 20 E		<51 250	·: 54	1.4	3.4	€1U 240	. <>	3.20
RC 1-758 Z R.		×100	1.3	. 0	<0.3	· •	00		u.	T*0-	<10	U U	·

Bornia-Cleag & Compary Life 130 Prinbertow Ave. North Vancouver, B.C. Canada V*P 283 Phone: (604) 985-0841 Telex: (8-352667

REPORT: 127-734	6							PRO	JECT: SAL	288		P465 20
SANPLE NUMBER	ELEMENT UNITS	la PPN	ie PPit	Tb. PPit	th PPN	Sø PPN	H PP1	U PP#	Yb PPtt	Zn PP n	Zr PPH	
S1 1+004 6 M.N		<1	<20	<1	3.4	<200	4	4.0	<5	<208	<509	
G1 1+00k 8 H.N		4	<20	\mathbf{D}	2.8	<260	Ş	3.8	<s< td=""><td>(298</td><td><500</td><td></td></s<>	(298	<500	
SI 1+00H 10 N.)	ł	_ <1	<20	<1	3.4	<298	4	3.6	<\$.	<298	<208	
S1 1+00W 12 NJ	ł	4	<20	<1	4.9	<200	<2	7.9	S	<200	<\$80	
SI 1.00W 14 H.3	l ·	<1	<28	<1	4.2	Q00	4	4,4	ও	<2110		
S1 1+800 16 N.M	ŧ	<1	<20	<1	3.6	<200	6	4.7	< <u>\$</u>	(280	\$ 10	
S1 1+004 18 MJ	f	12	<20	1>	2.9	<200	3	3.5	ও	220	1000	
S1 1+00W 20 M.	t en la companya de l	<1	<20	<1	3.1	<200	3	3.3	45	<200	690	
S1 1+25H 2 B.N	$(1, \dots, n)$	<1	<28	<1	2.8	<200	4	3.2	3	(200	/10	
S1 1+258 4 R.N		<1	<28		4.9	<209	, (2	4.7	. 45	(200	<sub< td=""><td><u></u></td></sub<>	<u></u>
St 1+25# 6 H.N	1.4	্ ব	<28	<1	5.4	<200	- 3	5.4	Ð	<208	689	· · · · · · · · · · · · · · · · · · ·
S1 1+25H 8 H.H		₹	(21)	: < 1	3.8	<200	5 5	4.3	ତ	<208	<\$80	
S1 1+254 10 N.	ŧ	2 1	<29	t	4_0	<200	4	÷.8	- 6	<208	<500	* *
S1 1+254 12 HJ	€ ₁ strategy	4	<20	<1 .	S.3	<200	- 4	5.8	୍ଦ	<280	<500	. .
51 1+254 14 MJ	t	1>	(21)	4	5.2	<200	5	6_8	<u></u>	<200	<\$00	· · · · · · · · · · · · · · · · · · ·
S1 1+254 16 8.1	+	t>	<28	<1	3.2	<200	2	4.3	ৎ	<200	<500	······································
1+25¥ 18 N.	€	. d	<2 <u>9</u>	<1	3.9	<200	6	3.7	< <5	200	Sill	· .
51 1+504 2 N.N		4	<20	, 4	4.7	<208	5	6.5	<	218	1400	
S1 1+504 4 N.N		<1	<28	<1	4.7	<200	5	6.5	<5	270	4500	
S1 1+50H & N.N		<1 -	<20	4	4.2	<200		6.4	< S	<200	-508	
SI 1+SON 8 N.N		<1	<20	1	5.7	<200	<2	17.0	Q	<290	S 80	
SI 1+50W 10 M.)	4	<1	<20	<1	.4.5	<200	4	8.7	<5	<200	<500	
S1 1+50# 12 N.	1		<28	<1	5.6	<208	7	11.6	े (5	<201	<500	•
S1 1+58H 14 H.)	4		<20	D	6.1	<200	5	11.0	- , <5	<2011	<500	
S1 1+75W 8 H-N		<1	<20	1 `	5.4	<200	4	9.1	<u>ح</u>	<200	1100	••
St 1+758 10 N.I		<1	<20	<1	. 4.1	<269	5	6.7	5	238	<500	
SI 1+75# 12 #.	N C	D	<28	1	4.2	<200	7	5.9	ંડ	<200	- <500	
SI 1+758 14 M.	¥., ¹ .	4	` <2 8	া ব	5.2	<200	3	6.8	<s :<="" td=""><td>298</td><td><589</td><td></td></s>	298	<589	
S1 2+804 6 N.N		<1	<20	<1	2.0	<200	5 7	3.6	ত	<200	<500	
SI 2+004 8 N.N		<u>, d</u>	<29	4	2.7	<200	9	4.1	<\$	<200	<500	· · ·
S1 2+004 10 M.	N	đ	<29	(1	-3.8.	<200	6	3.4	5	<200	<500	
S1 2+00W 12 M.	¥	· 1	<20	<1	3.4	<200	4	4.6	Ś	(200	S 00	
S1 2+258 6 N.N		n	<20	ā	3.3	<200	4	4.3	Ś	<200	<500	
S1 2+254 8 H.N	۰.	đ	<20	1	3.6	<200	8	5.8	ঁ	(200	<500	
S1 2+254 10 M.	¥	· · · · ·	<20	4	3.9	<200	3	5.5	<5	<200	<500	
S1 2+504 4 N.N		<1	<28		2.4	<200	3	3.9	S	<200	(S00	
S1 2+504 6 M.N		2	<29	<1	3.6	<208	4	3.5	S	<200	<500	
2+584 8 8.8		<1	<28	<1	3.5	<200	5	4.4	<5	<200	<00	
JE 2+588 18 M.	N	<1	<29	<1	2.8	<200	(2	3.8	ও	<200	Süb	
R2 1+75H 2 H.N		· •	<20	<1	1.5	<200	<2	1.7	<5	<288	<500	

Beam-Cleg & Company Ltd. 130 Prespection Ave, North Vancouver, B.C. Canada VTP 1R5 Phone: 604: 986-1081 Telex: 14-352667

REPORT: 127-7	346							99	WECT: SAL	200	Ś	PAGE 34	
SAMPLE NUMBER	ELEMENT	Au ppg	Sb PP#	Âs PPtt	Ba PP4	مبرو ۲۳۹	C3 PPM	Ca port	Cs. PPH	Cr PP1	Ca PPH	Ец - рб <u>н</u>	Hf PPM
R2 1+754 4 M. R2 1+754 6 M. R2 2+004 2 M. R2 2+004 4 M. R2 2+254 2 M.	N N N N	8 (5 (5 8 5	1.8 2.7 1.4 1.5 8.9	4 13 5 6 9	900 740 1190 770 1290	ৎ ড ও ও ড	<10 <10 <10 <10 <10 <10	19 15 <10 <19 29	<1 2 3 2 2	64 55 110 84 119	<10 <10 <10 <10 <10 <10	2 2 2 2 2 2	<pre></pre>
R2 2+254 4 H. R2 2+504 2 H.	N N .	14 11	2.2 5.5	10 42	940 960	্য ব্য	<10 <10	<18 <10	4 2	62 110	<18 <18	<2 <2	2
	· · · · · ·	r											
						·		••••••••••••••••••••••••••••••••••••••			•	•	
			· · ·										• • •
				-	· · · · · · · · · · · · · · · · · · ·			• •					
								· · · · · ·					
· · · · · · · · · · · · · · · · · · ·						··	· · · ·						
<u>.</u>					· · ·								

Bondar-Clagg & Company Ltd. 130 Temberton Ave. North Vancouver, B.C. Canada V7P 185 Phone: (66): 985-1961 Telex: (14-152567

Geochemical Lab Report

REPORT: 127-734	μά							25(IJECT: CAL	200	P	AGE 18	
SAMPLE NUMBER	ELEMENT	Ir PP9	Fe PCT	La PPh	Lu 797	Nó PP1	Ni PPH	Rb PPh	Se PPN	Sc PPM	Se PPH	Ag pog	Na PCT
82 1+75H 4 N.N		<100	0.9	<5	<0.5	4	<50	32	0.7	1.7	<10	1	3.90
82 1+75H & H.N		<100	1.0	8	<0.5	7	<50	46	0.7	1.2.	<18	<۶	3.20
R2 2+004 2 N.N		<100	0.1	<5	<0.5	7	(51)	64	<8.5	1.7	<18	6	2.40
82 2+00H 4 H.N		<100	8.6	8	<1.5	3	<50	51	0.8	1.7	<18	S	3.29
R2 2+254 2 M.N		<100	0.6	6	0.6	16	<50	59	0.7	2.2	<18	.6	2.80
92 2+254 4 H.N		<100	1.3	9	<1].5	5	- হো	48	1.0	2.2	<10	(5	3.20
R2 2+564 2 N.N		<100	1.3	6	<0.5	12	<50	S 5	8.8	2.2	<10	6	2.90

	 	 	 	 		 ·			
· .									
• .								-	
				· ,			• . • •		
					12				

 · · · · · · · · · · · · · · · · · · ·			
	· · · · · · · · · · · · · · · · · · ·	· .	

138 Pemberton: Ave, Nerth Vancouver, B.C. Canada V7P 385 Phone: (404) %5-0881 Teles: (44352467

Geochemical Lab Report

127-734	ń							297,	JECT: DAL	. 730		9462 -	÷C
iampi e Number	FLEMENT UNITE	Ta 90ji	Te 2014	po ii Poii	55 904	ীন" সম্প	لا 1904	ij por	נ <mark>ויי</mark> נייזכ	Zn PP y	۳: ۲= ۲		
RE 19754 × 11.N		(1	:20	4	2.3	<200	<2	1.5	৻৻	<2011	्रम्ध		
R2 1+75# 6 J.N		<1	:29	<		<200	2	1.9	5	<200	SED		
82 2+104 2 N.N		<1	:29	<1	1.1	-200	<2	1.5	-5	<201	<599		
82 25089 4 J.N.		4	<20	<1.	2.3	<230 .cono	< <u>2</u>	2.2	() ()	<290 2000	<508 2508		
12 2+23# 2 T.A			°20	<u></u>).+ 	~400	-4	<u> </u>		~20H			
12 24254 4 M.N		1	-29	<1	2.1	<210 1200	(2	3.1	< <u>5</u>	<200	- <u>530</u>		
и струж с пля		· •	128	* <u>*</u>	2.3	\$200	Υ.	ű.J	13	×200	1.201		1.2
													*
	, 												2
а л. Т												-	
								-					
			······										
													<u> </u>
										•			· 10
										•			
			<u></u>								<u> </u>		;
								1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	:.				
								· :_					
							·						
		•											
													: .
			······································										
						· .							
-									•				
										•-			

BONDAR-CLEGG