	LOG NO: 1103	RD.
	ACTION	
	11011011.	
	FILE FIO	
REPORT ON TRENCHING	PROGRAM ON THE	
VERA AND SKOOKUM	A PROPERTIES	
VERNON MINING	DIVISION	Arres
	TSH COLUMBIA	A STATE OF STREET, STR
SOUTHEASTERN BRIT.	IOR COLUMBIA	
Locatio	n	
NTS 82-I.	/6W	
Latitude: 5	50 ⁰ 21'N 2	-
Longitude: 1	19 ⁰ 23'W	
Dongroude: 1		
	Zc *	
FOR	~ .	
Canova Resourd	ces Ltd.	
Suite 1560 - 701 West	Georgia Street 🛌 🖉	
Vancouver,	B.C.	
V7Y 1C6	6	
and		
	0	
Expeditor Resource	e Group Ltd. 🔿 🋴 👘 🎮	
Suite 1500-609 Gram	nville Street, 🕺 🚺 🎽	
Vancouver,	B.C.	E
V7y 1G5	5 🖌 🖌 🐼	4
	51 (C)	
	Ú 🕂	
BY		I
Helen C. Grond, M.Sc	F.G.A.C. and	
David Thompso	n, B.SC	
HI-TEC Resource Mar	nagement Ltd.	
1500 - 609 Granvi	ille Street	
vancouver,	B.C.	
V/Y IGS		1
	가지 않는 것이 가지 않는 것이 가지 않는 것이다. 이 가지 않는 것이 가지 않는 것이 가지 않는 것이 같이 있는 것이 있는 것이 없다.	
	[1] [1] [1] [1] [1] [1] [1] [1] [1] [1]	
	007	h t
	UUI 31 1988	Ì
		r
Astahan 1		
October, 1	L988 M.R. # \$	
October, 1	L988 M.R. #\$ VANCOUVER, ⊡.C.	

•

-

,

TABLE OF CONTENTS

٠

Ŧ

-

,

.

5...

1.0	SUMMARY	i
2.0	INTRODUCTION	1
2.1 2.2 2.3 2.4	Location and Access Property and Ownership Physiography History and Previous Work	1 1 3 3
3.0	GEOLOGY	4
3.1 3.2	Regional Geology and Mineral Deposits Property Geology	4 5
4.0	TRENCHING PROGRAM	6
4.1 4.2	Skookum Trench Geology and Mineralization Vera Trench Geology and Mineralization	7 8
5.0	CONCLUSIONS	9
6.0	RECOMMENDATIONS	11
7.0	REFERENCES	13

APPENDICES

APPENDIX I	Cost Estimates For Proposed Programs
APPENDIX II	Statement of Qualifications
APPENDIX III	Geochemical Preparation and Analytical Procedure
APPENDIX IV	Field and Analytical data for rock samples
APPENDIX V	Statement of Costs

.

•

۴

-

ILLUSTRATIONS

<u>After Page</u>

Figure	1.	General Location Map		1
Figure	2.	Claim Map		1
Figure	3.	Regional Geology Map		4
Figure	4.	Property Geology and Trench Sites	in	pocket
Figure	5.	Skookum Trench - Geology Plan		7
Figure	6.	Vera Trench - Geology Plan		8
Figure	7.	Skookum Trench, Geological Cross-Section	in	pocket
Figure	8.	Skookum Trench, Channel Sample Locations	in	pocket
Figure	9.	Vera Trench, Geological Cross-Section	in	pocket
Figure	10.	Vera Trench, Channel Sample Locations	in	pocket
Figure	11.	Jedi Showing, Trench Sketch	in	pocket

1.0 SUMMARY

Hi-Tec Resource Management Limited conducted a trenching program during the summer of 1988 on behalf on Canova Resources Ltd. and Expeditor Resource Group Ltd. The program was designed to follow-up results from a previous geological, geochemical and geophysical program carried out by Hi-Tec earlier in the summer.

The Vera/Skookum properties are located northwest of Okanagan Lake, approximately 15 km northwest of Vernon, B.C. and consist of 120 contiguous mineral claims.

The Vernon Area has seen minor placer activity since the early 1900's, however, there has been little exploration for lode gold deposits. In 1984, Huntington Resources began work on the Brett claims, which are located 20 kilometers southwest of the Vera property along Whiteman Creek. The discovery of a major epithermal gold system on the Brett claims has led to increased activity in the area, climaxing recently with the announcement by Huntington of a spectacular drill intersection of over 2 oz/ton Au over 235 feet.

The claims are underlain by Upper Triassic Nicola Group volcanics and Upper Triassic Slocan Group sedimentary rocks. The volcanics consist mainly of basaltic and andesitic tuffaceous rocks, while the sediments are primarily argillites. These rocks are cut be a granitic intrusion and numerous associated feldspar porphyry dykes. Quartz hosted precious and base metal mineralization is associated with these feldspar porphyry dykes at the Vera showing.

The Skookum showing consisting of a white sugary-textured quartz vein up to 4 meters wide, is hosted by a well

i

cleaved dark grey-black graphitic schist within a shear zone. Values of of to 320.83 opt Ag and 0.117 opt Au. have been obtained from the contact between the quartz and the graphite. Numerous other excellent precious metal values were obtained from other vein and graphite samples.

The Vera showing consists of a massive white and ironstained quartz vein hosted by a quartz-feldspar porphyritic intrusion. Grab sample values of up to 148.46 opt Ag and 0.146 Au have been obtained from galena and tetrahedriterich quartz vein samples.

A number of similarities between the Brett deposits and the Vera Showing include: proximity to an intrusive plug, associated feldspar porphyry dykes, the relationship to northwest trending structures and the proximity to basaltic and andesitic tuffaceous rocks.

2.0 INTRODUCTION

Pursuant to a request by Canova Resources Ltd. and Expeditor Resource Group Ltd., a trenching program was carried out by Hi-Tec Resource Management in August of The purpose of the trenching program was to expose 1988. the surface showings and obtain information on geometry and well mineralization structure of the zones as as parameters.

This report is based on the results of the 1988 exploration program and on the available literature pertaining to the area.

2.1 Location and Access

The Vera/Skookum properties are located in the Vernon Mining Division in Southern British Columbia. The claims are approximately 60 km north of Kelowna and 15 km northwest of Vernon on the north end of Okanagan Lake. The claims comprise a total of 120 units and cover an area of approximately 30 square km. The property is centered at latitude 50° 21' north and longitude 119° 23' west (Figure 1).

Access to the Vera property is by a 4 - wheel drive dirt road which commences 2 km north of the Irish Creek turnoff along Westshore Road, through the yard of a local farmer. Access to the Skookum property is by a 4 - wheel drive dirt road which commences 6 km north of the Irish Creek turnoff along Westshore Road, through the yard of local residents.

2.2 Property and Ownership

The property consists of two groups of mineral claims, the Vera group and the Skookum group, for a total of 120 units.

The Vera group was recorded November 20, 1987, while the Skookum group was recorded October 7, 1988. The claims are held jointly between Canova Resources Ltd. and Expeditor Resource Group Ltd.

The Vera Group consists of six 2-post claims, the Vera #1-6, recorded in the name of Vera Squinas of Penticton, B.C., and four modified grid claims, included the Golden Zone #1-3 and the Gloria #1 claim, all owned by Canova Resources Ltd. The Golden Zone #1 claim overstakes the six 2-post claims (Figure 2). The Hershey and Montana claims (10 units) have recently been staked and will probably be regrouped with the Vera claims for a total of 51 claims.

The Skookum Group consits of 3 modified grid claims, the Tick, Tock and Jep # 8 for a total of 34 units. The Tick and Tock claims are under option to Canova Resources from Mervin Boe. The Jep # 2 claims have been optioned from J. Irwin. In addition, there are 35 2-post claims, including the Brit 1-32, the Sun 1 and 2 and the Ona. The Brit and Sun claims are 100% owned by Canova and Expeditor, while the Ona claim is under option from Frank Leginus. Pertinent claim data is summarized below:

<u>Name No</u>	<u>o. of Units</u>	Record No.	<u>Expiry Date</u>
Vera 1	1	1764	April 26, 1989
Vera 2	1.	1765	April 26, 1989
Vera 3	1	1841	June 29, 1989
Vera 4	1	1842	June 29, 1989
Vera 5	1	1843	June 29, 1989
Vera 6	1	1844	June 29, 1989
Golden Zone	#1 12	2273	May 15, 1989
Golden Zone	#2 12	2278	May 25, 1989
Golden Zone	#3 6	2055	November 15, 1989
Gloria #1	3	2059	December 20, 1989
Tick	6	739	October 17, 1990
Tock	20	738	October 17, 1990
Sun 1	1	2935	August 3, 1991
Sun 2	1	2936	August 3, 1991
Ona	1	5943	October 9, 1991
Jep # 2	8	2550	June 16, 1991
Brit 1 - 24	24	2639 - 2662	June 21, 1991

<u>Name</u>	<u>No. of Units</u>	Record No.	<u>Expiry Date</u>
Brit 25 - Hershey Montana	32 8 10 2	2663 - 2670 2704 2703	June 22, 1991 June 24, 1989 June 24, 1989
The claim	locations are	shown on Figure 2	

The claim locations are shown on Figure 2.

2.3 Physiography

The claims are situated in the Okanagan Highland at the northeast edge of the Thompson Plateau. Local topographic relief varies from moderate to very steep. Elevations on the property range from 1050 meters to 1350 meters. The main Vera showing is exposed on a steep easterly facing slope which drains into Irish Creek. The Skookum showing is located between the forks of Newport Creek.

2.4 History and Previous Work

The Vernon area has seen minor placer activity since the early 1900's, however, there has been little exploration for lode gold deposits. In 1984, Huntington Resources began work on the Brett claims, which are located 20 kilometers southwest of the Vera property along Whiteman Creek. The discovery of a major epithermal gold system on the Brett claims has led to increased activity in the recently with area, climaxing the announcement by Huntington of a spectacular drill intersection of over 2 oz/ton Au over 235 feet.

The showings on the Vera property were originally discovered in 1923. Development work included the excavation of one 15 m long adit as well as several pits. Two tons were shipped and reported to run 1.0 oz/ton Au and 41.0 oz/T Aq. No further work is reported in the area of the claims until 1970, when a geochemical soil survey, magnetic survey and geology was completed over the May and

Red Hawk claims (Assessment Report 2552). These claims are no longer in existence, however part of the area is now covered by the Golden Zone #1 claims. Summary reports on the property have been written by Daughtry, 1980; Wilmot, 1985; Livgard, 1986; and Shaw, 1987, 1988.

The Skookum showing was originally staked in 1930. Records indicate that approximately 200 feet of shafts and drifts were dug with 127 tons of material sent to the smelter in trail. Recovery averaged 0.44 opt Au an 17.06 opt Ag. Reported values of 31.06 opt Au and 231 opt Ag were obtained from samples of decomposed quartz.

A limited magnetic and electromagnetic survey (1.2 km) was carried out by Canova Resources Ltd. in December of 1987, (Freeze and Wetherill, 1988). The results of this program were inconclusive.

In the early summer of 1988, Hi-Tec Resource Management conducted а geological, geochemical and qeophysical exploration program on behalf of Canova Resources Ltd. The results of the program outlined a number of northwest trending geophysical and geochemical anomalies in the vicinity of the Vera showing, suggesting possible parallel Follow-up trenching was recommended to test structures. the zones, the results of which are included in this report.

3.0 GEOLOGY

3.1 Regional Geology and Mineral Deposits

The Vera/Skookum property lies within the Omineca Geological Belt. According to Okulitch et al, (1979), the area is underlain by a sequence of Triassic and Jurassic Nicola Group andesite and basalt flows with associated

-

pyroclastics and Slocan Group sediments, consisting of shale, argillite and siltstone. This package is intruded by plugs of Cretaceous Salmon Arm Pluton with granodiorite, granite, and quartz monzonite compositions.

Tertiary Plutonic rocks consisting primarily of syenites are located in the Whiteman Creek and Whiterocks area. In the Whiteman Creek area, the syenites are closely associated with a recently discovered, high grade gold zone at the Brett property, by Huntington Resources Ltd. Huntington reports results including 235 ft. of greater than 2 oz/ton Au from a recent diamond drill hole.

The geology of the Brett property consists of tertiary volcanics, including interbedded basaltic and andesitic flows and pyroclastic (tuffaceous) rocks, in fault contact with granitic rocks. A small syenitic intrusion cuts the granitic rocks and is closely related to a series of feldspar porphyry dykes which are directly associated with the main gold bearing structures on the property. The north-northwesterly trending mineralized structures occur within the tertiary volcanics rocks and are epithermal in origin. According to W. Grunenwald, (1987), "the dykes are associated with shear zones that likely provided the planes of weakness for their emplacement".

Major west-northwest trending fault structures occur throughout the area on the northwest side of Okanagan Lake and can often be identified on the topography maps by drainage patterns.

3.2 Property Geology

The claims are underlain by Upper Triassic Nicola Group volcanics and Upper Triassic Slocan Group sedimentary rocks. A dioritic intrusion, presumably of Cretaceous age occurs on the east side of Newport Creek (Figure 4). Detailed mapping along the main road leading to the Vera showing, (Grond, 1988) indicates that the argillites are intercalated with basaltic and andesitic tuffaceous volcanic rocks and are cut by numerous feldspar porphyry dykes ranging from 2 to 100 meters wide. The pyroclastics consist mainly of mafic, crystalline tuffs with fragments up to 5 cm in diameter. Intense chloritization has occurred through the tuffaceous unit.

The Skookum showing is located in the northern portion of the Tock claim. The showing consists of an extremely decomposed, sugary quartz vein within a highly altered graphitic schist. The schist unit is in thrust contact to the north with rusty phyllitic sediments. The schist hosted quartz veins appear to be related to a wide shear zone which may be associated with a nearby dioritic intrusion.

4.0 TRENCHING PROGRAM

A program of trenching was carried out on the Vera and Skookum showings during July and August, 1988. A sixty meter long trench was excavated at the Vera showing and a forty-five meter long trench was excavated at the Skookum A Komatsu exacavator was used to strip the showing. overburden from bedrock. At the Vera showing the bedrock was drilled with a Continental BL 140 tank drill equipped with an Ingersoll-Rand hammer. The drill holes were loaded with Austinite Fertilizer and Apcogel blasting powder and the trench was electrically blasted. The excavator was used to remove the blast rubble, exposing a five meter vertical face. At the Skookum showing, the rock was sufficiently friable to enable the excavator to dig through and expose fresh bedrock without blasting.

The trenches were mapped in detail at a scale of 1:100 (Figures 7,9) and channel sampled at five meter intervals and in more detail across quartz veins and mineralized zones (Figures 8, 10). In addition, the Jedi Showing (not on claims) was examined (Figure 11).

4.1 SKOOKUM TRENCH GEOLOGY AND MINERALIZATION

Skookum showing, the forty-five meter trench At the emplaced exposed a portion of quartz vein up to five meters wide within a bed of massive, soft, graphitic rock. The is intensely sheared and no bedding graphite is The guartz and graphite are overlain by discernable. strongly sheared and folded interlayed argillite and phyllite. The contact between the graphite and argillite is interpreted to be a shear and possible thrust contact.

values are associated with precious metal The best tetrahedrite, galena mineralization is guartz veins. The highest value obtained was 320.83 opt Ag and .117 opt Au 30-40% sample containing galena and from а grab tetrahedrite in guartz. Other high values were obtained from sample 88DTS-19, 205.92 opt Aq and 0.070 opt Au from a grab of 15-20% Tetrahedrite, galena and sphalerite, and 88DTS-27, 224.00 opt Ag and 0.071 opt Au from a grab of 15% tetraherite in a quartz vein.

The highest value obtained from a channel sample was 68.83 opt Ag and 0.094 opt Au across 2 meters of 15% tetrahedrite in a quartz vein (88DTS-27).

Precious metal mineralization occurs within the graphite as well as the quartz veins and stringers which invade the graphite. Lenses and partings within the quartz are often rich with tetrahedrite, sphalerite and galena. Pyrite within the graphite is likely syngenetic. Based on the

assay results of samples of the sheared graphite, it is probable that the sheared graphite contains appreciable tetrahedrite which is fine grained and not visible in hand sample. Several samples which demonstrate this are: 88DTS-12, grab of massive graphite at lower contact of quartz, 4.87 opt Ag, .011 opt Au and 88DTS-17, minor quartz in massive graphite, 12.98 opt Ag, .006 opt Au. Values up to 30667 ppm Cu, 108634 ppm Pb and 68996 ppm Zn were also recorded.

Approximately fifty meters north of the Skookum trench, a body of hornblende porphyritic intrusive rock outcrops. This rock is pale green with abundant black xenoliths of argillaceous wallrock and small, black, euhedral hornblende phenocrysts. Several outcrops of this intrusion occur north of the Skookum trench.

4.2 VERA TRENCH GEOLOGY AND MINERALIZATION

At the Vera showing, the existing exposure of quartz veins at and around the adit was extended to reveal an excellent cross-section of the geology. A vertical face up to five meters high was created, allowing for a good interpretation of the vein structure.

The massive white and accasionally iron-stained quartz vein is hosted by a quartz-feldspar porphyritic intrusion containing fifteen percent white, potassic-altered feldspar 35-40 percent clear, phenocrysts and qlassy quartz The porphyry is generally strongly fractured phenocrysts. and jointed and contains up to one percent disseminated The quartz vein is of a pinch and swell nature, pyrite. near the adit. The vein is often strongly fractured and in several locations has been offset by slip planes displaying normal movement. The slip planes are commonly filled with vuggy calcite up to six inches thick. To the

south of the adit the quartz vein pinches out to less than a one meter thickness and feeds into a strong stringer zone. The hanging wall contact with the main vein appears to be sheared, with slickensides often visible.

Mineralization in the Vera trench is disseminated, with occasional clots of coarse galena and minor tetrahedrite within the main body of the vein. Minralization is more common along the upper and lower contacts of the main vein and within the stringer zone. Copper oxide mineralization is common along these contacts, with malachite more abundant than azurite. The oxide coats large clots and layers up to thirty centimeters long by two centimeters wide of massive galena and tetrahedrite. Minor associated sphalerite is also visible in several locations. Vuqqy calcite in the major slip planes is unmineralized and returns no significant assay results.

The best precious metal values obtained from the zone was a grab sample of 148.46 opt Ag and 0.146 opt Au from 15% galena in Quartz Vein rubble. Other values recorded include sample 88DTV-54, 64.46 opt Ag and 0.064 Au from 15% galena and tetrhedrite in quartz stringers across 0.6 m and 88DTV-60, 67.96 opt Ag and 0.085 opt Au across 0.7 m of 10% galena and tetrahedrite in quartz stringers. Base metal values of up to 8030 ppm Cu, 110763 ppm Pb and 4773 ppm Zn were also recorded.

5.0 CONCLUSIONS

The results of the recent trenching program carried out by Hi-Tec Resource Management Ltd. indicate that highly anomalous levels of precious metals occur on both the Vera and Skookum showings. Although the two deposits are hosted in different geology, mineralization modes and values are quite similar.

The Skookum showing consists of a white sugary-textured quartz vein up to 4 meters wide hosted by a well cleaved dark grey-black graphitic schist. The graphitic schist is developed within a major shear zone and contains significant amounts of visible base metal mineralization. Massive tetrahedrite and pyrite are commonly evident in samples.

An associated tension gash array developed along the thrust contact of graphite and the overlying phyllite is also mineralized. The contacts of the vein carry values in addition to the graphitic partings in the vein. Samples from this contact yielded a high grade grab sample value of 320.83 opt Ag, 0.117 opt Au. Additional values recorded from the showing have included values of up 224.0 opt silver and 0.071 opt gold. Values of up to 68.83 opt silver and 0.094 opt gold have been recorded from channel samples across 2.0 meters.

The Vera showing consists of a massive white and ironstained quartz vein hosted by a quartz-feldspar porphyritic intrusion. The quartz vein is of a pinch and swell nature, reaching a maximum thickness of two meters near the adit. Mineralization consisting of galena and tetrahedrite is concentrated along the the upper and lower contacts of the main vein and within the stringer zone. Grab sample values of up to 148.46 opt Ag and 0.146 Au have been obtained.

A recent announcement of an extremely high grade gold drill intersection (> 2 oz/ton over 235 feet), was made by Huntington Resources on their Brett property, located 20 kilometers southwest of the subject claims. Proximity to this very interesting property and a similar geologic environment suggest that the area has potential for significant precious metal deposition.

6.0 RECOMMENDATIONS

In order to further evaluate the subject property, separate exploration programs are being recommended for the Vera and Skookum zones.

For the Skookum showing, a two-phased exploration program recommended with second the phase being is highly contingent upon favourable results from Phase I. An extensive ground geophysical magnetometer and VLF survey should be conducted during phase I on the anomalous zone outlined by the 1988 exploration program. The survey should be carried out over 46.5 kilometer а grid established over and around the main Skookum showing. This survey would define the extent and position of the major shear zones in the area. This stage of the program should also involve limited follow-up geochemistry on the remainder of the mineral claims.

A phase II program comprising detailed drill assessment of the anomalous zone of the Skookum showing is also recommended. However, diamond drilling should only be used limited capacity to define the geometry of the in a currently outlined mineralized zone and any additional anomalous targets defined by phase I. Α reverse circulation drill rig used in conjuction with this may be more appropriate and less expensive for use as fill-in holes. The fill-in holes would be used to define the grade characteristics of the deposit.

An estimated cost breakdown for the Skookum program is given in Appendix I.

Recommended work on the Vera property includes a first phase of Induced Polarization surveying, followed by

trenching of anomalous targets. Previous work has shown that VLF-EM and soil geochemistry have been relatively unsuccessful in delineating the mineralized zone. Minequest, however, has had good success using I.P. to outline veins similar to the Vera vein on their property adjoining the subject property to the north. Contingent upon favourable results from the first phase program, diamond drilling of targets is recommended.

An estimated cost for the Vera program is given in Appendix I.

Respectfully Submitted,

HI-TEC RESOURCE MANAGEMENT LTD.

Grond, M.Sc., F.G.A.C.

7.0 REFERENCES

er ---

Daughtry, K.L., (1980) Ronald (Octagon) Property, Vernon, B.C.

Freeze, J. and Wetherill, F. (1988) Geophysical Report on the Vera Claim Group, Vernon Mining Division.

Grond H. (1988) Geological, Geophysical and Geochemical Report on the Vera claims, Private Report for Canova Resources Ltd.

Livgard, E. (1986) Report on the Vera Claim Group, Vernon Mining Division.

Jones, A.G. (1959) Geological Survey of Canada Memoir 296, Vernon Map Area.

- Kikuchi, T. and Venkataramani, S. (1970) Geological Report, May and Red Hawk Claims Vernon Area, Brown-Overton Mines Ltd.
- Okulitch, A.V. and Campbell, R.B., (1979) Geological Survey of Canada Open File 637, Thompson-Shuswap-Okanagan Geology.

Wilmot, A.D. (1985) Report on the Vera Mineral Claims, Vernon Mining Division. preliminary Map. 65.

APPENDIX I

~

-

-

Cost Estimates For Proposed Programs

<u>PROPOSED BUDGET</u> <u>CANOVA/EXPEDITOR JOINT VENTURE</u> <u>SKOOKUM SHOWING</u>	
Mobilization/Demobilization	\$ 1,650.00
Project Preparation (Salaries, Maps)	1,775.00
Linecutting 46.5 kilometers @ \$400.00/kilometer	18,600.00
Geophysics Mag. Total Field & Vert. Grad. 46.5 kilometers @ \$200.00/kilometer VLF-EM Survey (2 channels) 46 5 kilometers @ \$200.00/kilometer	9,300.00
46.5 KIIOMELEIS & \$200.007KIIOMELEI	9,300.00
Prospector 16 days @ \$250.00/day	4,000.00
Geochemistry Streams 10 samples \$1.00/sample preparation 10. 10 samples \$12.25/6 element ICP;Au FA 122. Rocks 50 samples \$3.75/sample preparation 187. 50 samples \$12.25/6 element ICP;Au FA <u>612.</u>	00 50 50 <u>50</u> 932.50
Truck Rental & Fuel 16 days @ \$125.00/day	2,000.00
Domicile 32 man days \$80.00/man day	2,560.00
Field Supplies 32 man days \$25.00/man day	800.00
Accounting/Communications	1,000.00
Report Compilation/Drafting	5,000.00
Project Management @ 15.00% (Not on Salaries) SUB-TOTAL Contingency TOTAL	7,476.38 \$64,393.88 5,619.75 \$70,013.63

PHASE II:

~

-

The exact cost of Phase II is difficult to estimate at the present time because it will depend of how many targets are generated in Phase I. A reasonable cost for Phase II diamond drilling and reverse circulation drilling would be in the order of \$200,000.00.

Say Total : \$70,000.00

<u>PROPOSED BUDGET</u> <u>CANOVA/EXPEDITOR JOINT VENTURE</u> <u>VERA SHOWING</u>

Mobilization/Demobilization	\$ 1,650.00
Project Preparation (Salaries, Maps)	1,775.00
Linecutting 20.0 kilometers @ \$400.00/kilometer	8,000.00
Geophysics Induced Polarization 17.0 kilometers @ \$1,500.00/kilometer	25,500.00
Project geologist 12 days @ \$350.00/day	4,200.00
Geochemistry Streams 10 samples \$1.00/sample preparation 10. 10 samples \$12.25/6 element ICP;Au FA 122. Rocks 50 samples \$3.75/sample preparation 187. 50 samples \$12.25/6 element ICP;Au FA 612.	00 50 50 50
<u> </u>	932.50
Trenching 80 hrs @ \$105/hr	8,400.00
Truck Rental & Fuel 17 days @ \$125.00/day	2,125.00
Domicile 97 man days \$80.00/man day	7,760.00
Field Supplies	500.00
Accounting/Communications	1,000.00
Report Compilation/Drafting	5,000.00
Project Management @ 15.00% (Not on Salaries) SUB-TOTAL Contingency	<u>9,216.38</u> \$76,058.88 <u>3,941.12</u>
TOTAL	\$80,000.00

PHASE II:

r

The exact cost of Phase II is difficult to estimate at the present time because it will depend of how many targets are generated in Phase I. A reasonable cost for Phase II diamond drilling would be in the order of \$200,000.00.

APPENDIX II

.

.

-

~

9

~

Statement of Qualifications

STATEMENT OF QUALIFICATIONS

I, HELEN C. GROND, of the city of Vancouver, Province of British Columbia, hereby certify that:

1. I am a geologist residing at 2729 Yale Street, in the City of Vancouver, Province of British Columbia.

2. I obtained a Bachelor of Science degree in Geology from the University of British Columbia in 1980, and a Master of Science degree in Geology from the same University in 1982.

3. I am a Fellow, in good standing, of the Geological Association of Canada.

4. I have been practising my profession as a geologist in Canada and the United States permanently since 1982 and seasonally since 1978.

5. I have not received, nor do I expect to receive, any interests, direct or indirect in the securities of Canova Resources Ltd.

Dated in Vancouver, British Columbia, this 20 day of October, 1988.

SIGNED:

Hend Belen C. Grond, M.Sc., F.G.A.C.

STATEMENT OF QUALIFICATIONS

David A. Thompson, B.Sc. Project Geologist

I, David A. Thompson of 105 - 875 Badke Road, Kelowna, British Columbia, do hereby certify:

- I am a project geologist under the employment of Hi-Tec Resource Management Ltd. of 1500 - 609 Granville Street, Vancouver, British Columbia.
- 2. I am a graduate of the University of British Columbia, with a B.Sc., 1986, in Geological Sciences.
- 3. I have practised my profession, as a geologist, for four field seasons prior to and since my graduation as follows:

 1986 - 1987 Geologist, Homestake Mineral Development Company, Vancouver, British Columbia
1987 - 1988 Project Geologist, Mascot Gold Mines Limited, Vancouver, British Columbia

- 4. I have not received, nor do I expect to receive, any interests, direct or indirect in the securities of Canova Resources Ltd.
- 5. That this report is based upon a trenching program conducted by myself during July and August, 1988.

Dated at <u>VANCOUVER</u>, B.C. this <u>11</u> day of <u>OCTOBER</u>, 1988.

David A. Thompson, B.Sc.

APPENDIX III

.

÷.

-

p- -

•---

~

•...

Geochemical Preparation and Analytical Procedure

PHONE: (604) 980-5814 or 988-4524

TELEX: 04-352828

MIN-EN Laboratories Ltd.

Specialists in Mineral Environments Corner 151h Street and Bewicke

705 WEST 151H STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2

FIRE GOLD GEOCHEMICAL ANALYSIS BY MIN-EN LABORATORIES LTD.

Geochemical samples for Fire Gold processed by Min-En Laboratories Ltd., at 705 W. 15th St., North Vancouver Laboratory employing the following procedures.

After drying the samples at 95 °C soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed and pulverized by ceramic plated pulverizer.

A suitable sample weight 15.00 or 30.00 grams are fire assay preconcentrated.

After pretreatments the samples are digested with Aqua Regia solution, and after digestion the samples are taken up with 25% HCl to suitable volume.

Further oxidation and treatment of at least 75% of the original sample solutions are made suitable for extraction of gold with Methyl Iso-Butyl Ketone.

With a set of suitable standard solution gold is analysed by Atomic Absorption instruments. The obtained detection limit is 1 ppb.

MIN-EN Laboratories Ltd.

Corner 15th Street and Bewicke 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2

Analytical Procedure Report for Assessment Work

31 Element ICP

Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sr, Th, U, V, Zn, Ga, Sn, W, Cr

Samples are processed by Min-En Laboratories Ltd., at 705 West 15th Street, North Vancouver, employing the following procedures.

After drying the samples at 95°C soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed by a jaw crusher and pulverized by ceramic plated pulverizer or ring mill pulverizer.

1.0 gram of the sample is digested for 4 hours with an aqua regia $HClO_A$ mixture.

After cooling samples are diluted to standard volume. The solutions are analysed by computer operated Jarrall Ash 9000 ICAP or Jobin Yvon 70 Type II Inductively Coupled Plasma Spectrometers. Reports are formatted and printed using a dot-matrix printer.

APPENDIX IV

.

-

•

•

٣

.....

Field and Analytical Data For Rock Samples

Sample Descriptions

*

-

a

.

5

•

.

<u>Sa</u>	<u>mple No.</u>	Type	<u>Length</u>	Location
88	DTV- 1	Grab		Vera - Blast Rubble
	-massive	quartz vei	n with 1-2%	pyrite.
88	DTV-2 Se	emi-Channel	2 m	Vera - South End
	-60-70% c	quartz stri	ngers in por	Tphyry wallrock.
88	DTV- 3 -Quartz v	Grab vein with v	ery strong]	Vera - Rubble Limonite.
88	DTV- 4	Grab	Ve	era - South End Shear
	-Vuggy ca	alcite and	quartz in sl	Near.
88	DTV- 5 -Quartz v	Grab vein and ha	.nging wall p	Vera - South End porphyry with 10% pyrite.
88	DTV- 6	Grab		Vera - South End
	-Quartz v	vein and fo	otwall rock	and Cu staining.
88	DTV- 7	Grab		Vera - Adit Rubble
	-Quartz v	vein; trace	sulphides;	Fe staining.
88	DTV- 8	Grab		Vera - Adit Rubble
	-Quartz v	vein; 10% t	etrahedrite	and galena.
88	DTS- 9	Grab		Skookum - Contact
	Sheared r	massive gra	phite and mi	inor argillite.
88	DTS-10	Grab		Skookum West End
	-Same as	above, wit	h 30-40% qua	artz.
88	DTS-11 Se	emi-Channel	2 m	Skookum - Central
	-Massive	crumbly qu	artz with 2-	-3% tetrahedrite.
88	DTS-12	Grab		Skookum - Central
	-Massive	graphite a	t lower cont	act of quartz.
88	DTS-13	Channel	l m	Skookum @ 5 m
	-Sheared	unminerali	zed argillit	ce.
88	DTS-14	Channel	l m	Skookum @ 10 m
	-Massive	graphite a	nd quartz st	ringers.
88	DTS-15 -Argillit	Channel	1 m	Skookum @ 10 m
88	DTS-16	Grab		Skookum @ 10.5 m
	-5% tetra	hedrite an	d galena in	quartz.

Channel 2 m Skookum @ 15 m 88 DTS-17 -Minor quartz in massive graphite. Skookum @ 15 m 88 DTS-18 Channel 1 m -Argillite. __ 88 DTS-19 Grab Skookum @ 15.5 m -15-20% tetrahedrite, galena and sphalerite. Skookum @ 20 m 88 DTS-20 Channel 2.5 m -Mixed graphite and quartz stringers. 1 m Skookum @ 20 m 88 DTS-21 Channel -Sheared argillite. Skookum @ 25 m 88 DTS-22 Grab ---Fe - Stained quartz stringer in argillite. 88 DTS-23 Channel 1 m Skookum @ 25 m -Argillite. 88 DTS-24 Channel 2 m Skookum @ 25 m -Mixed graphite and quartz stringers. 88 DTS-25 Channel 3 m Skookum @ 30 m -Massive quartz vein with graphitic partings. 88 DTS-26 Grab Skookum @ 30 m -10% tetrahedrite in massive guartz vein. Skookum @ 30 m 88 DTS-27 Grab ---15% tetrahedrite in quartz vein. Skookum @ 30 m 88 DTS-28 Channel 1 m -Argillite with minor pyrite and graphite. 88 DTS-29 Channel 0.5 m Skookum @ 35 m -Massive quartz vein with graphite partings. 88 DTS-30 Channel 0.15 m Skookum @ 35 m -Sheared graphite from contact. 88 DTS-31 Channel 1 m Skookum @ 35 m -Argillite. 88 DTS-32 Channel 1 m Skookum @ 40 m -Argillite with minor pyrite. 88 DTS-33 Channel 2 m Skookum @ 42 m -Strongly weathered argillite. Channel 88 DTV-34 1 m Vera @ 0 m

-Hanging wall quartz feldspar porphyry.

88 DTV-35 Channel 1 m Vera @ 5 m -Hanging wall Q.F.P. 88 DTV-36 Channel Vera @ 10 m 1.5 m -Fe stained hanging wall Q.F.P. 88 DTV-37 Channel 1.8 m Vera @ 15 m -Quartz vein with 1-2% galena and tetrahedrite. 88 DTV-38 Channel 1.8 m Vera @ 17 m -Quartz vein with 1-2% galena and tetrahedrite. 88 DTV-39 Channel 1.6 m Vera @ 18.5 m -Quartz vein with < 1% galena and tetrahedrite. 88 DTV-40 Channel 1.4 m Vera @ 20 m -Quartz vein with trace sulphides. 88 DTV-41 Channel 1 m Vera @ 21 m -70% quartz stringers, 27% wallrock, 3% galena. 88 DTV-42 Channel 1.6 m Vera @ 20 m -20% quartz stringers, 80% wallrock Q.F.P. 88 DTV-43 Channel 0.8 m Vera @ 23 m -70% vuggy calcite, 20% quartz, 10% wallrock. 88 DTV-44 Vera @ 27 m Channel 1.7 m -Sheared quartz vein and 20% calcite. 88 DTV-45 Channel 0.5 m Vera @ 27 m -Grey clay overburden and fault gouge (?) 88 DTV-46 Channel 2 m Vera @ 27 m -Hanging wall Q.F.P. with minor quartz. 88 DTV-47 Channel 0.7 m Vera @ 27 m -Shattered massive quartz vein. 88 DTV-48 Grab 2.2 m Vera @ 29 m -15% galena in quartz vein. 88 DTV-49 Channel 1 m Vera @ 30 m -Shattered quartz vein. 88 DTV-50 Vera @ 30 m Channel 1 m -Trace sulphides in massive quartz vein. 88 DTV-51 Channel 1 m Vera @ 37 m -Quartz vein with minor wallrock. 88 DTV-52 Channel 0.8 m Vera @ 39 m -Quartz stringer zone, sheared tr. sulphide.

88 DTV-54 Channel 0.6 m Vera @ 42 m -15% galena and tetrahedrite in guartz stringers. 0.6 m 88 DTV-55 Channel Vera @ 42 m -Sheared quartz vein with 5% coarse pyrite. 88 DTV-56 Channel 0.9 m Vera @ 45 m -Sheared quartz vein with 10% galena tetrahedrite. 88 DTV-57 Channel 1 m Vera @ 44 m -Quartz vein with coarse calcite. 88 DTV-58 Channel 0.8 m Vera @ 48.5 m -Quartz vein with coarse calcite. 88 DTV-59 Channel 1.9 m Vera @ 50 m -Footwall Q.F.P. with < 3% quartz. 88 DTV-60 Channel 0.7 m Vera @ 48 m -10% galena and tetrahedrite in guartz stringers. 88 DTV-61 Channel 0.7 m Vera @ 52.5 m -Massive quartz vein. 88 DTV-62 Channel 1.2 m Vera @ 53 m -Shear with vuggy calcite and quartz. 88 DTV-63 Channel 1.2 m Vera @ 53.5 m -Shear with vuggy calcite and quartz and minor Q.F.P. Vera @ 56 m 88 DTV-64 Channel 1.1 m -Sheared footwall Q.F.P. with 25% quartz. 88 DTV-65 Channel 2.5 m Vera @ 56 m -80% quartz stringers, 20% sheared Q.F.P. 88 DTV-66 Channel 1.2 m Vera @ 59 m -Shear with vuggy calcite and quartz. 88 DTV-67 Channel 1.3 m Vera @ 59 m -Shear with calcite, quartz and hanging wall Q.F.P. 88 DTS-68 Grab ---Skookum-above trench -Quartz float 100 m North of trench. 88 DTJ-69 Grab Jedi @ 55 m -Trace pyrite in massive rusty quartz. 88 DTJ-70 Grab Jedi @ 37 m -Minor pyrite and trace galena in quartz veinlet.

88 DTV-53 Channel 1.3 m Vera @ 39 m -Shear with calcite and quartz stringers.

88 DTJ-71 Grab Jedi @ 30 m ---Pinch and swell quartz stringer with 10% galena. 88 DTJ-72 Grab Jedi @ 31 m ---quartz stringer with up to 15% galena and pyrite. 88 DTJ-73 Jedi @ 30 m Grab _ _ -Sheared graphitic argillite wallrock. 88 DTJ-74 Grab Jedi @ 20 m -Quartz lens with 15% galena and pyrite. 88 DTJ-75 Grab ___ Jedi @ 47 m -Massive quartz with pyrite casts. DTS G-1 Grab Skookum @ 17 m

- -30-40% galena and tetrahedite in quartz.
- 88 VEF-2 Grab -- Vera grid, 00N,1+50W -quartz float
- 88 VEF-3 Grab -- Vera grid, 0+25N,1+75 -quartz float

I

1

~

• EN LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

<u>Certificate of ASSAY</u>

Company:HI TEC RESOURCE MANAGEMENT Froject:88BC006 Attention:M.BELL

File:8-1164/P1 Date:AUGUST 14/88 Type:ROCK ASSAY

We hereby certify the following results for samples submitted.

Sample Number	AG G/TONNI	AG EOZ/TON	AU .GZŢONNE .	AU . OZ/TON
SSDTV 1	18.2	0,53	.36	0.011
98DTV 3	12.0	0.35	- 16	0.005
SBDTV 5	2.3	0.07	.01	0.001
88DTS 13	1.9	0.06	.01	0.001
88DTS 15	3.9	0.11	.33	0.010
88DTS 16	1760.0	51.33	. 45	0.013
98DTS 17	445.0	12.98	.22	0.006
88DTS 18	8.0	0.23	.19	0.006
88DTS 19	7060.0	205.92	2.41	0.070
88DTS 20	40.6	1.18	.13	0.004
88DTS 21	25.7	0,75	. 21	0.006
88DTS 22	11.3	0.33	.17	0.005
88DTS 23	3.8	0.11	.20	0.008
88DTS 24	11.9	0.35	.06	0.002
SBDTS 25	8.4	0,25	.73	0.021
88DTS 26	2360.0	68.93	3.23	0.094
88DTS 27	7680.0	224.00	2.42	0.071
88DTS 28	25.9	0.76	.13	0,004
88DTS 29	540.0	15.75	1.27	0.037
88DTS 30	105.0	3.04	.37	0.011
88DTS 31	13.6	0.4 0	.06	0.002
88DTS 32	1.7	0.05	.20	0.006
88DTS 33 (1.5	0.04	.01	0.001
88DTV 34	0.4	0.01	, 01	0.001
88DTV 35	2.3	0.07	- 01	0.001
88DTV 36	0,3	0.01	.02	0.001
880TV 37	154.0	4.49	203	0.001
88DTV 38	308.0	8.98	. 19	0.006
89DTV 39	23.6	0.69	.01	0.001
88DTV 40	1.4	0.04	.02	0.001
88DTV 14 2	178.0	5.19	. 04	0.001

Certified by___

MIN-EN CAEORATORIES LTD.

ì

Ì

ı

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS · ASSAYERS · ANALYSTS · GEOCHEMISTS

VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867

TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

Certificate OF <u>Assay</u>

Company: HI TEC RESOURCE MANAGEMENT Project:88BC006 Attention: M. BELL

File:8-1164/P2 Date: AUGUST 14/88 Type:ROCK ASSAY

He hereby certify the following results for samples submitted.

Samplı Number	e r	AG G/TONNE	AG OZ/TON	AU G/TONNE	AU OZ/TON	
SEDTV	41	48.3	1.41	. 01	0.001	X AND ADDRESS CONTRACTOR OF A DECOMPOSITION ADDRESS
98DTV	42	3.6	0.11	.01	0.001	
88DTV	43	1.6	0.05	.01	0.001	
980TV	44	2.7	0+08	. 02	0.001	
88DTV	45	1.2	0.04	.12	0.004	
SSDTV	.46	1.9	0.06	. 01	0.001	
89DTV	47	1.2	0.04	.01	0.001	
88DTV	48	5090,0	148.46	4,99	0.146	
880TV	49	5.9	0.17	-02	0.001	
88DTV	50	37.6	1.10	-03	0.001	
BBDTV	51	10.5	0.31	. 26	0.008	
SODIA	52	35.0	1,02	.01	0.001	
SBDTV	53	6.2	0.18	.01	0.001	
VTG89	54	2210.0	54.46	2.20	0.064	
88DTV	55	20.3	0.59	.01	0,001	
SSDTV	56	189.0	5.51	.02	0.001	
88DTV	57	338.0	9.86	<i>.</i> 38	0.011	
88DTV	58	2.4	0.07	.02	0.001	
BSDTV	59	4.0	0.12	.05	0,001	
SOLAGE	60	2330.0	67.96	2.90	0.085	
BEDTV	61	8.3	0.24	.01	0.001	# # # # # # # # # # # # # # # # # # #
VTCBB	62	8.6	0.25	. 29	0.008	
98DTV	63	8.7	0.25	.02	0.001	·
98DTV	64	6.2	0.18	.01	0.001	
SSDTV	65	2.8	0.08	.72	0.021	
SSDTV	 66	1,8	0,05	.03	0,001	₩_=1114 = 1112 H =
BSDTV	67	0.8	0.02	, 04	0.001	
88DTS	68	0.8	0.02	.01	0.001	
68DTJ	ሪዎ	1.3	0.04	.02	0.001	
88DTJ	70	1.2	0.04	.01	0.001	

Certified by

MIN-EN LABORATORIES LTD.

.

VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621 TRABABLE OFFICE.

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

Certificate of Assay

Company:HI TEC RESOURCE MANAGEMENT Project:B88C006 Attention:M.BELL

File:8-1164/P3 Date:AUGUST 14/88 Type:ROCK ASSAY

He hereby certify the following results for samples submitted.

مربعة المراجع المراجع المراجع

Certified by_

MIN-EN 4 ABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS + ASSAYERS + ANALYSTS + GEOCHEMISTS

VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-452 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-962

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX B67 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

<u>Certificate of ASSAY</u>

Company:HI-TEC RESOURCE MANAGEMENT Project:PN88BC006 Attention:D.COLLINS

File:8-1119/P1 Date:AUG.4/88 Type:ROCK ASSAY

<u>We hereby certify</u> the following results for samples submitted.

Sample	AG	AG	AU	AU	
Number	G/TONNE	OZ/TON	G/TONNE	07/TON	
88-VEF-3	3.4	0.10	. 17	0.005	n tha an de anna an an tha an tha ann an tha
88-DTV-2	0.6	0.02	. 14	0.004	
88-DTV-4	5.7	0.17	. 01	0.001	
88-DTV-5	2.6	0.08	. 21	0.006	
88-DTV-7	585.0	17.06	. 88	0.026	
88-DTV-8 88-DTS-9 88-DTS-10 88-DTS-11 88-DTS-12	860.0 10.2 2260.0 254.0 167.0	25.08 0.30 65.92 7.41 4.87	.81 .36 .42 .39 .37	0.024 0.011 0.012 0.011 0.011 0.011	
B8-DTSG-1	11000.0	320.83	4.02	0.117	

Certified by

MIN-EN ABORATORIES LTD.

COMFANY: HI	TEC RESOURCE	MANAGEMENT		MIN-	EN LADS I	CP REPORT				(ACT:	531) PA	SE 1 25 3
PROJECT NO:	8880006		705 WEST	1578 ST.	, NORTE V	ANCOUVER,	8.C. V78	172		Fl	18 NB: 9	-11845/P1
ATTENTION: M	BELL			(604) 980	-5814 OR	(604)788-3	524	I TYPE R	OCK GEDCHEM (DAT	'E:AUGUET	<u>14, 1988</u>
(VALUES IN	PPM) AS	AL	AG	Đ	BA	BE	FI	<u>CA</u>	20	<u>C0</u>		22
8807V1	17,9	390	22	1	6	.2	5	460	2.7	7	57	£280
SEDIV3	12.1	1010	26	1	31	. 4	5	4760	2.7	7	63	13790
88DTV6	2.3	660	2 2	1	26	.3	5	300	2.5	8	27	5030
EEDTS13	1.0	5930	29	1	52	.6	5	34760	6.7	18	129	39260
880TS15	2.5	\$350	67	1	146		55	33290	4.4	21	106	4:220
8807516	710.6	1620	74	1	130	4	5	13540	19.3	10	3623	12800
6807917	379.9	5710	51	í	42	. 8	1	27670	46.9	19	1478	35960
88DT318	7.1	3810	62	1	47	.6	5	20710	3.7	23	124	47830
8807519	827.2	820	3	3	22	.5	7	3310	355.0	12	20549	13820
88D1520	36.5	3900	77	1	82	5		24260	6.6	19	207_	39040
8807521	24.6	4000	110	1	43	.5	5	29430	21,4	23	245	42100
88DTS22	11.6	5840	57	1	35	.7	6	5400	6.9	15	79	32980
88D1523	3.9	4280	81	1	50	.4	5	42030	4.5	19	75	4 84 9 0
88DTS24	9.5	5460	56	1	44	.9	5	19810	5.6	18	77	40870
88DTS25	8,7	1040	19	1	12	. 4	5	4310	18.9	8	44	11300
8907526	1010.5	1340	183	1	19	. 4	2	1840	71.9	9	8947	10030
8801527	831.9	190	474	1	4	. 4	24	300	187.9	ç	30667	5740
88DTS28	23.9	4560	33	9	52	.6	5	21850	5.0	19	217	39570
88D1S29	507.4	2410	18	1	21	, 4	2	4890	67.4	11	2015	17290
88D1530	97.3	5970	78	<u> </u>	4 0			25630	11.8	21	541	46560
98DT\$31	12.7	4690	59	1	70	.8	5	34000	6.5	22	164	45190
8811532	2.0	3390	44	1	43	.8	5	30390	5.1	20	117	41780
88DTS33	1.8	14030	8	2	6 3	- 6	5	13030	4.5	19	85	41770
B8DTV34	.7	10230	6	1	44	.7	6	2270	2.8	12	14	18150
_B80TV35	1.2	3890	19	1				6620	2.4	!!	19	19910
88DIV36	.5	9550	15	1	55	.8	7	2690	2.4	13	9	15930
8BDTV37	155.7	290	29	1	6	.3	7	760	3.3	7	214	4290
88D1A38	285.8	350	27	:	6	.3	7	3790	5.5	7	457	4 590
88DTV39	22.5	960	19	1	15	.3	6	5510	2.7	8	40	4540
8801740	1.2	250	12	1	77		6	7219	2.7	7	18_	3230_
880TV14	152.0	8460	52	1	122	.8	5	26190	6.7	17	550	33950

CC	N9	8N)	(1)	31	7EC	REBOURCE	MANAGEMENT
----	----	-----	-----	----	-----	----------	------------

-

COMPANY: HE TH	EC RESOURCE MAN	AGEMENT		MIN-B	EN LABS ID	P REPORT				(ACT:3	31) FAGE	2 OF 3
PROJECT NO: 88	BBC006		705 WEST	15TH ST.,	NORTH VA	NCCUVER,	8.8. V7M	172		FI	E NE: 8-1	164R/P1
ATTENTION: M.I	BELL			(604) 990-	-5914 OR (604) 988-4	524 🕴	TYPE RO	DOK GECOHE	H T DATE	:AUSUST 1	4, 1983
(VALUES IN P	PMA) K	LI	MG	MN	MC	NA	NI	¢.	PB	SĔ	ŝ.	ŤĤ
89DTV1	620	29	890	93	5	270	12	100	128	17	5	1
88DTV3	920	29	1200	401	5	270	12	90	71	7	11	1
8BDTV6	1040	20	780	201	6	280	13	90	77	8	6	1
88DTS13	1780	32	3180	636	11	570	51	1140	19	4	107	1
860TS15	2050	31	3950	590	20	440	70	1080	21	10	177	1
88DTS16	1070	31	3560	297	7 7	270	15	300	2772	2445	65	1
8807517	1980	29	15570	597	6	310	33	1010	1115	915	121	1
8807518	2000	29	3290	739	13	380	48	1180	44	20	4 7	1
88DTS19	950	29	2210	181	4	290	1	810	108634	12873	65	2
88DTS20	1960	29	12730	596	6	310	29	1070	339	113	130	2
880TS21	2030	31	3570	767	8	340	51	9 70	427	149	67	1
88DTS22	1720	32	6160	221	10	310	25	730	139	33	35	1
89D7523	2150	29	2820	324	13	400	59	1000	53	23	50	1
88DTS24	2170	30	11630	531	14	320	47	1040	59	25	82	1
88DTS25	920	31	3189	163	5	290	14	300	535	18	27	1
880T326	920	31	2240	84	7	290	10	410	8672	6257	24	1
88DTS27	630	29	820	23	8	270	1	860	24585	22053	37	2
88DTS28	1950	29	5140	348	6	49 0	45	1120	118	90	43	1
8807529	1200	30	4120	153	6	300	20	370	888	1191	30	1
88DT530	2310	30	14820	610	5	320	35	1270	738	231	137	2
88DTS31	2000	30	15680	584	7	380	40	1140	95	39	160	1
BBDTS32	1950	30	13940	484	10	420	41	1120	22	9	131	2
88DTS33	1790	67	7580	501	8	500	61	1050	19	5	30	1
88DTV34	1900	39	5640	416	4	540	19	610	19	5	13	1
88DTV35	2120	40	4990	451	5	65 0	16	6 30	19	5	30	1
8807736	1880	37	5520	316	5	660	24	620	13	3	15	1
88DTV37	690	32	800	51	5	300	11	90	471	174	6	1
88DTV38	6 90	31	850	67	5	320	9	100	1647	333	9	1
BBDTV39	990	30	900	111	5	410	11	200	791	16	14	1
88DTV40	690	$\overline{30}$	1580	63	5	28 0	11	9 0	38	6	23	1
88DTV14	2280	35	13440	513	8	380	37	910	170	323	103	2

COMPANY: HI TEC :	RESCURCE	MANAGEBENT		MIN-E	N LABS ICF	REPORT			•	(ACT:F31) PASE 3 BF 3
PROJECT NO: 8880	006		765 WEST	157a ST.,	NORTH VAN	COUVER,	B.C. V7M	172		FILE NO: 8-1164R/P1
ATTENTION: M. BEL	-			(604) 780-	5814 DR 18	04)988-4	524	I TYPE ROCK	6506HEX 1	DATE: AUGUST 14, 1909
(VALUES IN PPM	;	V	2 N	ŝÅ	SN	N	CR			
880TV1	3	7.4	45	1	2	6	176			
BBDTV3	3	9.3	88	1	1	4	148			
88DTV6	4	7.9	64	2	2	7	179			
88DTS13	1	23.4	247	1	1	i	40			
B8DT515	1	28.5	156	1	1	1	50			
88DTS16	2	11.9	522	1	2	1	138			
88DT517	1	21.6	3379	1	1	1	83			
88DTS18	1	17.9	132	1	1	1	42			
88DTS19	1	9.6	68996	1	1	1	206			
880T520	1	19.2	304	1	2	1	67			
88DTS21	1	19.5	709	1	1	1	110			
88DTS22	3	25.6	292	1	1	4	141			
8801523	1	22.6	254	1	1	1	47			
88DTS24	1	25.7	167	1	1	1	73			
B807525	3	10.0	1202	1	1	6	192			
BSDTS26	4	11.0	3152	1	2	!	170			
88DTS27	3	7.0	7309	1	3	i	177			
8BDTS2B	1	17.2	226	1	1	1	40			
88DTS29	3	13.1	3715	1	1	2	192			
88DT530	1	20.6	546	1	<u>i</u>	1	47			
BBDTS31	1	19.3	230	1	1	1	48			
88DTS32	1	17.0	152	1	2	1	38			
88DTS33	2	47.2	167	1	1	1	53			
86D1V34	3	27.0	37	2	2	1	73			
88DTV35	2	17.9	34	2	2	2	80			
88DTV36	3	23.7	34	2	2	1	63			
BBDTV37	5	7.5	28	2	2	7	208			
880TV38	5	7.4	123	1	2	5	139			
BEDTV39	Ą	6.2	56	2	2	6	195			
88DTV40	4	7.3	18	2	22	7	185			
880TV14	1	28.7	188	1	2	2	97			
						*				

.

.

TENTION: M.BELL				(604) 980	-5814 08 (604) 985-4	524	1 TYPE 83	EK GEDCHEN	x 847	C. 40000 -	18 199
VALGES IN PPM }		ата А`_	A5	B	RA	AF	AT.	- <u></u>	20-3559-55- 67	. <u></u> 221	E1000051	171.175
BBDTV41	39.5	1150		·	23		5	12230	3.3			8440
180TV42	2.0	8180	12	1	67	.6	7	12650	2.7	11	14	13480
I8DTV43	.8	1640	19	1	43	.7	7	150880	2.6	7	17	9740
IBDTV44	2,2	310	11	1	14	.4	6	34130	2.4	7	23	3970
18DTV45	.6	16520	13	3	152	.8	7	4980	3.9	22	71	38150
IBDTV46	1,4	9420	12	1	60		6	11580	2,4	11	12	16:70
BDTV47	.7	560	15	1	20	.4	6	26790	2.9	7	14	4290
IGDTV48	951.8	170	69	t	14	.4	13	2910	54.9	8	8030	4620
8DTV49	4.8	170	15	1	4	.3	6	7990	2.6	7	38	3450
8DTV50	35.3	230	17	1	5	.3	6	1870	2.8	7	101	3350
BDTV51	9.3	2040	39	1	36	.3	7	970	5.3	9	50	10010
EDTV52	33.3	2700	41	1	39	.4	6	2080	2.7	9	67	12180
8DTV53	5.2	3730	26	1	61	.9	6	79660	3.0	9	60	12190
8DTV54	777.0	2460	260	1	42	.5	7	1030	45.3	10	2800	15570
BDTV55	19.8	1640	24	1	21	.3	6	10510	3.8	8	67	6540
BDTV56	154.5	1230	37	1	22	.3	5	26310	4,4	8	311	9970
EDTV57	268.3	1250	42	1	23	.3	6	33300	4.9	8	529	10270
BDTV58	2.5	1580	24	1	35	.3	6	16120	2.1	8	20	6550
BDTV59	3.8	5220	23	1	80	.5	5	9650	4.3	10	29	16450
8DTV60	828.0	1560	140	11	33	,4	7	1890	24.6	10	3410	13230
8DTV51	8.0	1710	29	1	30	.3	6	4320	2.4	7	34	6740
8DTV62	7.1	2140	32	1	35	,5	6	44200	2.5	8	26	12160
8DTV63	7.2	1470	22	1	54	.7	5	60210	5.4	8	24	10840
9DTV64	6.6	2420	34	1	44	.5	6	27900	2.1	9	33	12280
8DTV65	3.1	2240	78	1	25	.5	6	1190	2.6	12	12	19600
8DTV55	.8	1560	25	1	60	.9	6	98020	3.2	8	14	13330
BDTV67	.8	1130	32	1	33	.5	6	52570	2.1	7	11	6900
9DTS68	.9	500	17	1	12	.2	7	1060	2.1	7	36	5240
3DTJ69	1.6	270	24	1	8	.2	7	340	2.3	7	14	4340
<u>801J70</u>	1.2	670	23	1	17	.2	7	1210	3.6	9	17	5110
89TJ 71	19.8	510	28	1	12	.3	13	1180	5.1	7	1.	7730
30TJ 72	171.6	950	54	1	27	.4	38	340	11.5	8	17	7190
BDTJ 73	2.2	9860	21	1	109	.8	5	291 30	14.9	1:	**	25540
3013 74	4.0	270	51	1	6	.2	9	280	4.9	9	8	14170
6DTJ 75	3.6	600		<u>!</u>	23		6	280	2.9	8	11	8710
WEF 2	4,3	430	28	1	13	,2	5	3010	2.5	7	13	7290

COMPANY: HI	TEC RESOURCE	MANASEMENT	T	MIN	-EN CABS D	ICP REPORT	i			- (AC1	(F31) F	AGE 2 OF 3
PROJECT NO:	86BC004		70E WES1	1 15TH ST.	., NORTH N	ANDOUVER,	B.C. V7	X 172		FI	E NO: 8-	164R/F2+3
ATTENTION: 1	.BELL			(604)93	0-5814 OR	(604) 988-	-4524	¥ TYPE B	IOCK SEGCH	EM 🕴 D4	TE: AUSUS	14. 1988
(VALUES IN	PPM)	K LI	M5	MN	MQ	NA	NI	2	P3	SE	SA	TH
B8DTV41	111	9 28	2510	119	5	340	10	170	1753	14	50	1
B8DTV42	201	0 35	6370	350	4	660	19	520	26	4	54	1
68DTV43	101	0 31	11930	579	5	290	10	190	25	6	602	1
88DTV44	66	0 29	1440	216	5	260	10	80	35	4	80	1
88DTV45	236	0 39	9950	630	6	470	<u>34</u>	1040	22	1	24	1
88DTV46	192	0 37	6430	396	4	6 20	14	540	16	2	48	1
88DTV47	74	0 29	5910	155	5	280	12	100	22	3	119	1
88DTV48	50	0 29	2360	20	8	270	1	290	110763	4883	78	1
88DTV49	63	0 29	960	104	5	280	11	80	229	22	8	1
_88DTV50	65	Q 30	770	70	5	280	<u>12</u>	90	481	64	6	1
88DTV51	140	0 32	860	193	6	570	13	280	481	19	9	1
88DTV52	144	0 32	1330	270	5	530	14	350	513	26	9	1
88DTV53	156	Q 32	3570	862	5	460	11	360	79	8	114	i
88DTV54	166	0 30	860	126	6	460	4	310	7020	5985	11	1
_88DTV55		0 30	1350	195	5	290	12	150	80	44	16	1
89DTV56	104	0 30	1260	438	6	370	11	160	769	193	108	1
89DTV57	110	0 29	1350	517	5	350	10	160	1339	290	149	1
88DTV58	140	0 30	98 0	214	5	390	12	210	28	13	43	1
88DTV59	253	0 31	1490	458	5	780	13	6 00	27	15	10	1
B8DTV60	126	0 30	780	133	7	4 30	5	280	8084	2608	9	1
88DTV61	139	0 30	97 0	122	5	300	12	130	68	20	24	1
B8DTV62	104	0 31	3710	272	5	480	11	260	44	14	159	1
88DTV63	110	0 29	10630	351	5	430	11	290	21	6	421	1
88DTV64	156	0 30	2130	352	5	560	12	380	20	14	42	1
88DTV65	110	0 31	1310	195		670	17	350	44	6	10	1
88DTV66	107	0 29	13400	746	5	350	9	220	22	6	613	1
88DTV67	101	0 28	3750	376	5	290	10	150	19	3	105	1
88DT568	76	0 30	820	81	5	280	10	170	9	4	9	1
88DTJ69	71	0 31	750	43	6	280	13	150	59	5	6	1
BBDTJ70	65	0 31	1200	366		290	18	140	32		7	1
88DTJ 71	78	0 31	880	29	6	280	7	150	5760	1	8	1
88DTJ 72	104	0 34	840	32	8	310	1	130	30308	32	11	2
88DIJ 73	252	0 36	9930	786	15	300	38	1410	423	i	67	1
88DTJ 74	67	0 31	740	25	6	289	11	130	3646	1	6	1
88DTJ 75	77	0 <u>29</u>	750	278		270	13	150	70	4	6	1
88VEF 2	70	0 29	720	127	6	270	14	100	74	6	20	2

COMPANY: HI	TEC RESCURCE	MANAGEXE	NT.	MIN-E	N LABS ICA	REPORT				(ACT:531)	PAGE 3 OF 3
PROJECT NO:	968C005		705 ¥EST	1578 ST.,	NORTH VAN	COUVER,	9.C. V7M	172		FILE NO:	8-11548/22+3
ATTENTION: M	.BELL			(604)990-	5914 DR (8	04)938-	4524 🕴	TYPE ROCK 6	ISCOREM #	DATE: AUS	LET 14. 1989
(VALUES IN	PPM)	U	V ZN	5A	SX	 ¥	CR				
. 88DTV41		1 8.	3 101	i	1	3	189				
98DTV42		1 19.	2 44	2	2	1	105				
88DTV43		1 7.	9 12	2	2	1	83				
88DTV44		1 8.	0 12	2	2	4	170				
88DTV45		1 62.	1 143	1	2	1	89				
88DTV46		1 23.	7 35	2	2	1	84			*******	
ESDTV47		1 8.	1 14	2	2	4	165				
899TV48		i 7.	2 4773	1	5	1	197				
ESDTV49		2 7.	0 74	2	2	5	194				
88DTV50		27.	6 95	2	2	6	229				
8BDTV5:		2 9.	3 608	[2 2	5	209	**-			
88DTV52		2 10.1	9 301	2	2	5	217				
BBDTV53		1 10.	4 166	2	2	1	109				
88DTV54	:	z 9.3	2 534	1	2	1	175				
B8DTV55		2 9.	6 146	2	2	6	232				
BEDTV56		1 9.0	0 167	1	2	6	236				
88DTV57		. 8.9	7 167	1	2	5	219				
88DTV58		Z 8.3	5 35	2	2	5	189				
88DTV59	:	2 11.0) 428	1	1	1	113				
66VTDE8	:	2 8.6	6 735	1	2	1	203				
88DTV61		2 8.1	7 21	2	2	8	256				
88DTV62	1	9.2	2 101	2	2	2	131				
88D1A92	:	t 8.4	5 245	2	2	i	105				
88DTV64	:	9.9	27	2	2	2	120				
BBDTV65	2	11.1	64	2	2	Ę.	193				
88DTV66		10.1	22	2	1	2	114				
88DTV67	1	9.2	2 13	2	2	4	164				
88DT56B	:	8.0) 9	2	3	6	226				
88DTJ69		2 8.0) 9	2	2	7	237				
BBDTJ70		9.5	S 50	2	2	10	292				
86DTJ 71	1	10.1	143	1	2	3	240				
88DTJ 72	1	11.2	268	1	4	1	264				
BBDTJ 73	t	53.6	498	1	1	3	172				
88DTJ 74	1	8,6	175	1	2	6	285				
88DTJ 75		9.3	54	2	2	9	300				
88VEF 2	1	8.8	28	2	2	12	350				

APPENDIX V

.

•

F

r

r

P ...

-

~

Statement of Costs

STATEMENT OF COSTS

CANOVA RESOURCES LTD. VERA PROPERTY PROJECT 88BCØØ6

PHASE III: Work Period July 21 - August 21, 1988 Salaries D. Thompson, geologist 17 days @ \$300/day \$ 5,100.00 E. Freeze, prospector 13 days @ \$250/day 3,250.00 \$ 8,350.00 Project Expenses 2,022.50 Project Preparation 1,410.70 Mobilization/Demobilization Geochemistry 77 assay sample prep @ \$3.75/sample \$ 288.75 77 silver-gold assays @ \$15/sample 1,155.00 66 rock geochem - 31 element ICP @ \$7/sample 462.00 109.12 Misc. Lab Charges 2,014.87 Excavating-Trenching Komatsu Excavator 90 hrs @ \$90/hr \$8,100.00 560.00 Mob/Demob of Excavator 8,660.00 Drilling and Blasting 260.00 Mob/Demob 1,047.41 Supplies 21 hrs @ \$135/hr 2,835.00 4,142.41 Maps, Reproduction, Communications 148.63 Field Supplies 107.09 Domicile 13 days @ \$75/day 975.00 Truck Rental and Fuel 13 days @ \$125/day 1,625.00 Accounting 350.00 Assessment Filing H. Grond 1 day @ \$325/day \$ 325.00 Filing Fees 1,230.00 1,555.00 Report Compilation and Drafting 4,500.00 15% Project Management Fee <u>3,</u>609.65 (not charged on salaries) \$39,470.85 TOTAL COST

FP Feldspar Porphyry Dyke

Geological contact

17,928

100 200 300 metres

CANOVA / EXPEDITOR

VERA and SKOOKUM GROUPS

PROPERTY GEOLOGY MAP

FIGURE No:

.

.

.

LEGEND

qν

НW

FΨ

i

<u>Fo</u>

GEO GEO ASS

ОМ

5 M

.

GEOLOGICAL BRANCH ASSESSMENT REPORT

CANOVA / EXPEDITOR

VERA and SKOOKUM GROUPS

VERA TRENCH

CHANNEL SAMPLE LOCATIONS

	SCALE: 1:100	N.T.S.: 821,76W	FIGURE No:
	DWN.8Y: J.Serwin	DATE: Oct./1988	10
11-125 Resource management LTD.	снкр. вү: H. Grond	PROJECT No: 88 BC006	FILE No:

