on the

MISTY AND MISTY 1-4 MINERAL CLAIMS

Terrace Area Skeena Mining Division, B.C.

$$
103 \mathrm{I}-10 \mathrm{~W}, 15 \mathrm{~W}
$$

(54045' N. Lat., $128^{\circ} 54^{\prime}$ W. Long.)
for (H. Long.)

GRANT F. CROORER, B.SC.,F.G.A.C. Consulting Geologist

TABLE OF CONTENTS

Page
SUMMARY AND RECOMMENDATIONS 1
1.0 INTRODUCTION 3
1.1 General 3
1.2 Location and Access 3
1.3 Physiography 3
1.4 Property and Claim Status 4
1.5 Area and Property History 4
2.0 EXPLORATION PROCEDURE 6
3.0 GEOLOGY AND MINERALIZATION 8
3.1 Regional Geology 8
3.2 Claim Geology 8
3.3 Mineralization 9
4.3 Prospecting 11
4.0 GEOCHEMISTRY 12
4.1 Soil Sampling 12
5.0 GEOPHYSICS 13
5.1 Magnetometer Survey 13
5.2 VLF EM Survey 13
6.0 CONCLUSIONS AND RECOMMENDATIONS 15
7.0 REFERENCES 17
8.0 CERTIFICATE OF QUALIFICATION 18
APPENDICESAppendix I - Geophysical Surveys, Interpretex Res.Appendix II - VLF EM and Magnetic DataAppendix III - Certificates of AnalysisAppendix IV - Rock Sample DescriptionsAppendix V - Cost Statement

ILLUSTRATIONS

FIGURE	PAGE	
1.	Property Location	follows page 3
2.	Claim Map	follows page 4
3	Compilation Map	follows page 5
4	Claim Geology	pocket
5	Sketch Plan, Creek Vein	follows page 10
6	Sketch Plan, Moss Vein	follows page 10
7	Geochemical Plan-West Half, Au	pocket
8	Geochemical Plan-West Half, Ag, As	pocket
9	Geochemical Plan-West Half, Cu, Fb, Zn	pocket
10	Total Field Magnetic Contours	pocket
11	VLF-EM In-phase \& Quadrature Profiles	pocket

SUMMARY AND RECOMMENDATIONS

The Misty Property is located in the Skeena Mining Division 32 kilometers northwest of Terrace in west-central British Columbia. The property consists of five mineral claims totalling 79 units (approximately 1,850 hectares).

The property lies on the steep south slope of Mount Allard, with access via helicopter from Terrace. Several overgrown old logging roads cross the eastern and southern boundaries of the claims.

Metasediments of the Upper Jurassic to Lower Cretaceous Bowser Lake Group have have been intruded by granodiorite and diorite of the Cretaceous Coast Crystalline Complex. Precious metal mineralization on the property is related to fracturing and shearing with associated quartz veining.

Previous work on the Misty I Claim during 1982 discovered a system of quartz filled fractures with high grade gold mineralization (grab, 77.3 gms gold per tonne). However subsequent drilling gave inconclusive results due to poor core recovery. The 1987 program located a number of gold and arsenic soil geochemical anomalies as well as the Creek and Moss veins. Sampling of the veins gave anomalous gold values of up to 0.10 oz per ton.

The 1988 program was initiated to continue evaluating the precious metal potential of the property. The program completed the grid and soil sampling on the Misty 4 Claim and initiated magnetometer and VLF EM surveying, geological mapping and prospecting on all of the grid. The hand trenching program was also started on the Creek and Moss veins but not completed. The steepness of the property and poor weather conditions make work on the property slow and tedious.

The 1988 soil geochemical sampling was generally disappointing as no widespread anomalies were indicated. Evaluation of the gold and arsenic anomalies delineated by the 1987 survey confirmed anomalous values, but thick overburden prevented determining the causes of the anomalies.

Four main conductor systems were delineated by the VLF EM survey, and one of them may be associated with the Moss vein and two with the Creek vein.

A limited program of trenching was carried out on the Creek and Moss veins and anomalous gold and silver values were obtained from both veins.

The Creek vein is exposed for approximately 150 meters along strike and varies from 0.5 to 1.5 meters in width. Anomalous values of up to 2100 ppb Au ($0.062 \mathrm{oz} / \mathrm{ton})$ and $19.7 \mathrm{ppm} \mathrm{Ag}(0.58$ oz/ton) over 0.65 meters were obtained. The Moss vein is exposed in five trenches over 110 meters. The highest value obtained from this vein is 1220 ppb Au ($0.033 \mathrm{oz} / \mathrm{ton}$) and $9.8 \mathrm{ppm} \mathrm{Ag}(0.34$ oz/ton) over 0.22 meters.

Recommendations are to complete the Stage I program outiined by C.R. Saunders, P. Eng., in his report of November 16, 1987. This should include the following:

1) Complete the magnetometer amd VLF EM surveys on the 1987 and 1988 grids.
2) Complete the geological mapping and prospecting over the remaining parts of the property.

3 Investigate the VLF EM conductor systems by prospecting and/or trenching to test their association with shearing and possibly quartz veining and precious metal mineralization.
4) Investigate the 1987 gold and arsenic soil geochemical anomalies by hand trenching.
5) Complete the trenching and sampling on the Creek and Moss veins to fully evaluate them (At least three weeks should be allowed for all the trenching).

Contingent on the success of the Stage I program, a Stage II program of diamond drilling be carried out on drill targets.

A buaget of approximately $\$ 70,000$ should be allocated to complete the stage I program.

1.0 INTRODUCTION

1.1 GENERAL

Field work was carried out on the Misty Claims from July 16 th to August 22nd 1988 by Grant Crooker Geologist, and three field assistants. The geophysical interpretation was provided by Mr. Ed Rockel of Interpretex Resources Ltd. of Richmond B.C..

The work program consisted of linecutting, soil sampling, magnetometer and VLF EM surveying, geological mapping, prospecting and trenching. The program concentrated on the western portion of the property and a camp was established on a small lake at the western edge of the Misty 4 Claim. Helicopter support was provided by Okanagan Helicopters Ltd. from Terrace B.C. .

1.2 LOCATION AND ACCESS

The property (Figure 1) is located 32 kilometers northwest of Terrace in west-central British Columbia and lies between 54044' and $54^{\circ} 46^{\prime}$ north latitude and $129^{\circ} 51^{\prime}$ and $129^{\circ} 57^{\prime}$ west longitude (NTS 103I-10W, 15W).

Access to the property is via helicopter from Terrace. However a logging road along the Kitsumkalum River does have several branches which reach the lower portion of the claims. Equipment and supplies can be taken in by helicopter from the ends of these roads, saving ferry time from Terrace.

1.3 PHYSIOGRAPHY

The property is located within the Ritimat Range of the Coast Mountains, on the south slope of Mount Allard. Elevation varies from 275 to 1650 meters above sea level and topography is steep. Outcrop is abundant on the higher elevations and sparse on the timbered slopes. A number of small creeks and several Alpine lakes are found on the claims.

The weather is typically coastal with wet summers and heavy snowfall in the winters. Large snow-drifts cover parts of the property until well into August, necessitating delay in work programs until the latter part of the summer. Dense fog is common on the property causing problems with helicopter support.

Vegetation varies from heather, blueberry and huckleberry on the upper slopes to Douglas fir, hemiock, alder and devil's club on the lower slopes below treeline. Progress below treeline on the steep, thick slopes is very slow and tedious.

1.4 PROPERTY AND CLAIM STATUS

The Misty property (Figure 2) is owned and operated by Corona Corporation, 1440-800 West Pender street, Vancouver B.C., V6C 2V6. Goldways Resources Inc., 930-470 Granville street, Vancouver, B.C., V6C IV5 is currently funding the program and may earn a 50\% interest in the property.

The property is located in the Skeena Mining Division and consists of five mineral claims covering 79 units (approximately 1,850 hectares).

Claim	Units	Mining Division	Record No.	Expiry Date*
Misty	15			
Misty I	20	Skeena	$1684(6)$	June 27, 1998
Misty II	15	Skeena	$3235(9)$	Sept. 22, 1998
Misty 3	14	Skeena	$3562(10)$	Oct. 13, 1998
Misty 4	15	Skeena	$6344(9)$	Sept. 2, 1998
		Skeena	$6345(9)$	Sept. 2, 1998

* Upon acceptance of this report.

1.5 AREA AND PROPERTY HISTORY

The Misty Claim was staked by C.C.H. Resources Ltd. during 1979 on the basis of a stream sediment anomaly indicated by a B.C. Ministry of Mines regional silt sampling program. Geological mapping, prospecting, silt sampling and reconnaissance soil sampling were carried out during 1979 and 1980. The soil geochemistry indicated widespread anomalous gold and arsenic values to the east of the Misty Claim and led to the staking of the Misty I Claim during 1981.

Geological mapping and soil sampling were completed on the property during 1981. The soil geochemistry indicated a large area with anomalous gold values.

An extensive program was carried out during 1982 to investigate the gold anomalies. This included staking the Misty II Claim and hand trenching and rock geochemistry over the soil geochemical anomalies. A system of auriferous quartz veins and veinlets in a fracture zone was found in the soil geochemical anomaly on the Misty I Claim (figure 3). Assays of up to 77.30 gms per tonne (2.25 oz/ton) gold were obtained from the narrow veinlets. Trenching and diamond drilling (5 NQ drill holes) tested the fracture zone, however core recoveries were poor and led to inconclusive results.

Mascot Gold Mines Ltd. purchased the claims in 1984. Additional work during 1986 extended existing soil geochemical anomalies amd located additional soil anomalies.

Work during 1987 consisted of linecutting, prospecting and soil and rock geochemical sampling. Several gold geochemical anomalies with coincidental arsenic, lead and zinc anomalies were found. The Creek and Moss Veins were also located during this time, and the Misty 3 and 4 Claims were staked.

2.0 EXPLORATION PROCEDURE

The grid was completed on the western portion of the Misty 4 Claim and soil sampling, geophysical surveying, geological mapping and prospecting were carried out. The geophysical surveying, geological mapping and prospecting were also carried out over the western portion of the 1987 grid.

GRID PARAMETERS

```
-baseline direction E-W
-survey lines perpendicular to baseline
-survey line separation }100\mathrm{ meters, 25 meter
    station spacing
-fill in line separation 50 meters, }20\mathrm{ meter
    station spacing
-survey total - 13.4 kilometers
-declination 26%/2
```


GEOCHEMICAL SURVEY PARAMETERS

```
-survey line separation 100 meters
-survey sample spacing 25 meters
-survey totals - 12.8 kilometers
    - }560\mathrm{ soil samples
    - }110\mathrm{ rock samples
-560 soil samples analyzed by 31 element ICP and for Au
-110 rock samples analyzed by 31 element ICP and for Au
-sample depth }10\mathrm{ to }30\mathrm{ centimeters
-sample taken from brown B horizon, where possible
```

All samples were sent to Min-En Laboratories Ltd., 705 West 15 th Street, North Vancouver, B.C. for geochemical analysis. Laboratory techniques for geochemical analysis consists of preparing samples by drying at $95^{\circ} \mathrm{C}$, and seiving or grinding to minus 80 mesh. A 31 element ICP analysis, and Au (fire assay, aqua-regia digestion, atomic adsorption finish) are then carried out on the samples.

The geochemical data was plotted on the 1987 base maps. The figures are at a scale of $1: 5000$ and are numbered 7 through 9.

GEOPHYSICAL SURVEY PARAMETERS

VLF Electromagnetic Survey

-survey line spacing 100 meters
-survey station spacing 25 meters
-survey totals - 20.5 kilometers
-Geonics EM-16 used for all survey
-transmitting station - Cutler, Maine - 24.0 KHZ ., or
Annapolis - 21.4 KHZ . if Cutler not transmitting
-direction faced northeasterly
-in-phase (dip angle) and out-of-phase (quadrature) components measured in percent at each station

TOTAL FIELD MAGNETIC SURVEY
-survey line spacing 100 meters
-survey station spacing 25 meters
-survey totals - 20.8 kilometers
-Scintrex MP-2 magnetometer used for all survey
-measured total magnetic field in gammas
-instrument accuracy ± 1 gamma
A base station reading was taken at the beginning and ending of each day. These values were used to obtain standard values for all baseline readings. All loops ran off the baselines were then corrected to these standard values by the straight line method.

The geophysical data was plotted on figures 10 and 11 at a scale of 1:5000.

3.0 GEOLOGY AND MINERALIZATION

3.1 REGIONAL GEOLOGY

The Misty property is located along the contact of the Coast Crystalline Belt and the Intermontane Belt. Upper Jurassic to Lower Cretaceous Bowser Lake Group sedimentary and volcanic rocks have been intruded by intrusives of the Coast Plutonic Complex.

The Bowser Lake Group consists mainly of marine and freshwater shales, greywackes, conglomerates and argillites. The intrusions range in composition from quartz monzonite to granodiorite and diorite and vary in size from small stocks to large batholiths. Contacts between the intrusions and sedimentary rocks are irregular.

No major faults have been mapped in the area of the Misty property.

3.2 CLAIM GEOLOGY

The oldest rocks on the property (figure 4) are metasediments of the Bowser Lake Group (units 1 and 2). The Bowser Lake Group consists of conglomerate, siltstone, mudstone, greywacke, argillite and andesitic to dacitic tuffs. The sediments on the Misty property are almost all extremely fine grained and are difficult to differentiate. Bedding is generally northwesterly to north northwesterly with moderate to steep dips to the east.

The sediments have been intruded by a northeast-southwest trending hornblende diorite (unit 3) stock of unknowm dimensions.

Several types of dykes (units 6 and 7) cut the intrusive and sedimentary rocks. The dykes range in composition from felsic to mafic and have a variety of strikes and dips.

The rock units developed for the 1981 geological report have been retained to provide as much continuity of information as possible between reports.

Unit 1 is a fine grained grey-green to buff metasandstone? outcropping along lines 73 E and 74 E . The unit appears to be up to 150 meters wide and interbeds with the fine grained grey metasediments along its northern contact. It strikes northwesterly with moderate dips to the northeast.

Unit 2 is a fine grained grey metasediment, which becomes argillaceous to the west. Bedding is again northwesterly with moderate to steep dips to the northeast. Unit 2 predominates on the property.

Unit 3 is a generally porphyritic, grey hornblende diorite. The rock is composed of $25-30 \%$ hornblende as euhedral phenocrysts up to 1 centimeter long within a grey groundmass. The hornblende diorite intrudes the sediments in a northeast-southwest direction.

Unit 6 is a grey to black, fine grained dyke with 10-20\%, 1 to 3 millimeter wide feldspar phenocrysts. The dykes are up to 10 meters in width and are exposed in several creeks. They have a variety of attitudes and cut both the sediments and intrusive.

Unit 7 is a grey-green to grey-white fine grained felsic dyke with 1-2\% biotite flakes and 2-4\% narrow hornblende laths. The dykes vary in width from 1 to 10 meters and again occur within the sediments and intrusive and have a variety of attitudes.

3.3 MINERALIZATION

Gold and lesser silver mineralization on the Misty property is related to quartz veins and veinlets within fracture zones and shear zones.

Most of the quartz veins and veinlets have a northwesterly strike with widely varying dips to the northeast and southwest. A second, much less prominent direction is northeast. Pyrite is the main sulphide mineral present, with lesser galena and sphalerite. Arsenopyrite, chalcopyrite and molybdenite have also been found on the property. Sulphide content is generally in the 1-2\% range, with local concentrations ranging up to 25\%.

The majority of quartz veinlets found either in float or in place are less than 25 centimeters wide and do not contain significant gold and silver values. However, a sample of quartz stockwork from 8850 E and 10800 N gave 2100 ppb Au and 947.9 ppm Ag and samples from 8400 E and 10300 N gave 1840 ppb Au and 325.3 ppm Ag.

The most significant showings found to date on the western portion of the grid include the Cliff showing, Creek and Moss veins and quartz stockwork at 67 E and 113 N .

The quartz stockwork at 67 E and 113 N is a zone up to 7 meters wide, containing 40-80\% quartz, minor pyrite, and graphitic shears. No anomalous gold or silver values were found within the zone.

The Cliff showing is a poorly exposed shear zone approximately one meter wide with $10-20$ centimeter wide quartz veinlets within the shear. The zone strikes 305° and dips $57^{\circ} \mathrm{NW}$. From 1-5\% galena was observed within the quartz. Gold and silver values were anomalous, with up to 610 ppb Au and 25.6 ppm Ag .

The Creek and Moss veins are the most significant showings found to date on the Misty 4 Claim. Both showings were trenched during the 1988 program, but due to scheduling problems with the blaster and bad weather the trenching was not completed.

The Creek vein (figure 5) is a north northwesterly trending structure exposed in two segments and occuring within a narrow creek. The northern segment is exposed for approximately 110 meters, while the southern segment is exposed for approximately 45 meters.

A 25 meter long trench was blasted at the northern end of the vein, and a number of other trenches blasted across the vein at other locations. The location of the vein within the creek along the northern portion makes blasting, mucking and sampling difficult. Trenching along the northern end of the vein shows a strong structure covered by 1.5 to 2.5 meters of overburden.

The Creek vein strikes from 335° to 350° and dips steeply easterly. The vein occupies a shear zone from 1 to 2.5 meters wide, with the vein itself varying from 0.5 to 1.5 meters wide. The character of the vein varies from massive white quartz, to sheared quartz, quartz stockwork and quartz breccia. Along the southern segment of the vein several 12 to 20 centimeter wide veins occur as branches off the main structure or parallel structures.

Mineralization within the vein consists of pyrite, with lesser amounts of galena, sphalerite, arsenopyrite and chalcopyrite. The most strongly mineralized portion of the structure is a 2 to 5 centimeter wide zone along the footwall shear, containing massive sulphides and quartz. A select sample of this material returned $4200 \mathrm{ppb} \mathrm{Au}(0.122 \mathrm{oz} / \mathrm{ton})$ and $205.7 \mathrm{ppm} \mathrm{Ag}(6.0$ oz/ton). Chip sampling along the vein returned anomalous samples of up to $2100 \mathrm{ppb} \mathrm{Au}(0.063 \mathrm{oz} / \mathrm{ton})$ and $60.5 \mathrm{ppm} \mathrm{Ag}(1.8 \mathrm{oz} / \mathrm{ton})$ over 0.65 meters.

The Moss vein (figure 6) is a northwesterly trending structure exposed in a shallow creek. It is exposed in 6 narrow trenches over a strike length of approximately 110 meters. The Moss vein also appears to occur within a shear zone.

The vein varies from 0.22 to 1.2 meters in width and strikes 305° to 310° with moderate dips to the northeast. The character of the vein varies from massive quartz to crushed quartz and quartz breccia with argillite? fragments. Mineralization is generally sparse within the vein, with 1% pyrite and minor galena and arsenopyrite. Sampling gave weakly anomalous values of up to $1220 \mathrm{ppb} \mathrm{Au}(0.033 \mathrm{oz} / \mathrm{ton})$ and $11.5 \mathrm{Ag}(0.34 \mathrm{oz} / \mathrm{ton})$.

A complete description of all samples taken from the Creek and Moss veins is given in appendix IV.

3.4 PROSPECTING

Prospecting was carried out on the Misty 4 Claim in conjunction with the geological mapping, and several traverses were made to check the geochemical anomalies discovered during 1987 on the Misty and Misty I Claims.

The geochemical anomalies were investigated by checking for mineralized outcrop and float, checking the quality of the soil and taking a few check soil samples. In almost all cases the anomalies occur in areas with little outcrop. Soils are generaliy a good brown B, and check sampling confirmed anomalous values, although of lower magnitude in most cases.

The lack of outcrop will require the most significant geochemical anomalies to be investigated by hand trenching.

4.0 GEOCHEMISTRY

4.1 SOIL SAMPLING

Five hundred and sixty soil samples were taken and analyzed by 31 element ICP and for gold. The background and anomalous values calculated for the 1987 program were also used for this program to keep as much continuity as possible between programs.

ELEMENT	BACKGROUND	ANOMALOUS	
Ag ppm	0.50	2	1.7
As ppm	95	\geq	260
Cu ppm	32	2	84
Pb ppm	32	2	110
Zn ppm	77	\geq	189
Au ppb	9		2

Gold
Gold values ranged from 1 to 1420 ppb and most anomalous values are scattered with no clustering. However, fill-in sampling and check sampling near 8400 E and 10300 N have confirmed anomalous gold values with coincidental anomalous arsenic and lead.

The fill-in sampling near the Creek and Moss veins show a few scattered anomalous values but no clustering or anomalies.

Silver

Silver values ranged from 0.1 to 5.4 ppm and no anomalies were outlined. However several anomalous values were obtained along line 7250 E at 10500 N and 10520 N . This clustering occurs where the 1987 soil survey also indicated anomalous silver values ranging from 2.3 to 3.9 ppm .

Arsenic

Arsenic values ranged from 1 to 2335 ppm and no broad anomalies were outlined. However a number of anomalous samples along line 7000 E at 9925 N and 9900 N , and line 7200 E at 10150 N and 10175 N may be an extension of the southwest trending arsenic anomaly extending from 7300 E to 7800 E from the 1987 survey.

Lead
Lead values ranged from 5 to 469 ppm and no anomalies were indicated by the survey.
zinc
Zinc values ranged from 6 to 809 ppm and no anomalies were indicated by the survey.

5.0 GEOPHYSICS

The geophysical interpretation was provided by Interpretex Resources Ltd., and appendix I contains the complete geophysical report on the survey. Only the highlights will be covered in the text here.

5.1 MAGNETOMETER SURVEY

Magnetic results (figure 10) showed a magnetically active region from line 7500 E to 8400 E in the vicinity of 10300 N to 10600 N . In this portion of the area positive anomalies such as one over 58,700 gammas (relative to a 57,500 area range value) were observed.

Three VLF EM conductor systems appear to have a direct correlation with magnetism and are discussed in the next section. However the strong localized anomalies are not conductive and are believed to be caused by concentrations of magnetite. Although strong localized anomalies are found throughout the survey area, most occur in the aforementioned active environment and seem to form an east west trend, possibly indicating basic intrusive or extrusive rock.

5.2 VLF EM SURVEY

VLF EM data profiles (figure 11) show the effect of steep topography in the form of a positive bias on in-phase readings when facing up hill. Other than topography effect, VLF EM data are mostly noise free. Overburden was not considered to be a problem in the area because of its shallow depth on steep slopes.

VLF EM results showed response to conductivity on various lines within the area surveyed. Response character was used to join anomalies into conductor systems. The conductor systems showed a general northwest trend direction in this survey grid and profiles suggest that most conductors are shallow and have moderate to poor conductance.

Three conductor systems appear to have a direct correlation with magnetism. The east end of conductor "A" seems to occur near the peak of a narrow magnetic high on lines 7000E and 7100E, suggesting an association with magnetic minerals. Two anomalies within conductor system "B", on lines 7000 E and 7100 E , correlate directly with another small magnetic anomaly. This suggests that magnetic pyrrhotite has contributed to conductivity in system "B". All three anomalies within conductor system "C" also seem to be associated with a magnetic high anomaly, again indicating the possible prescence of pyrrhotite.

The northwest trending conductor system at the north end of lines $6700 E$, 6800 E and 6900 E may be associated with the quartz stockwork, shearing and graphite found in a small showing there.

No conductors were indicated on lines 7300 E and 7400 E , adjoining the Moss vein. However conductor system "B" occurs 200 meters northwest of the Moss vein and on strike. This conductor system may represent an extension of the Moss vein.

Conductor systems "C" and "D" are both northwest trending and located adjacent to the Creek vein. They may represent the shearing associated with the creek vein, or parallel structures.

6.0 CONCLUSIONS AND RECOMMENDATIONS

The 1988 program concentrated on investigating the gold geochemical anomalies and quartz veins on the Misty 4 amd Misty Claims. No broad gold geochemical anomalies were located by the 1988 program and prospecting of the previously located anomalies showed trenching will be required to determine the causes of the anomalies.

A number of quartz bedrock and float samples located on the property gave anomalous values in gold and silver. However with the exception of the Creek and Moss veins, most structures are very narrow or give very low gold values.

The VLF EM survey indicated four main northwest trending conductor systems. Conductor system "B" is on strike with the Moss vein and may represent an extension of the structure. Conductor systems "C" and "D" are both associated with the Creek vein and may represent extensions of the vein or parallel structures. The lack of soil geochemical expression, and the shearing and fracturing associated with the Creek and Moss veins, give the conductor systems added importance.

A limited program of trenching was carried out on the creek and Moss veins. The Creek vein is exposed for approximately 150 meters along strike and varies from 0.5 to 1.5 meters in width. Anomalous values of up to $2100 \mathrm{ppb} \mathrm{Au}(0.062 \mathrm{oz} / \mathrm{ton})$ and 19.7 ppm Ag ($0.58 \mathrm{oz/ton}$) over 0.65 meters were obtained. The Moss vein is exposed in five trenches over 110 meters. The highest value obtained from this vein is $1220 \mathrm{ppb} \mathrm{Au}(0.033 \mathrm{oz} / \mathrm{ton})$ and 9.8 ppm Ag ($0.34 \mathrm{oz} / \mathrm{ton}$) over 0.22 meters. Additional trenching is warranted to fully evaluate these two veins.

Recommendations are to complete the Stage I program outlined by C.R. Saunders, P. Eng., in his report of November 16, 1987. This should include the following:

1) Complete the magnetometer amd VLF EM surveys on the 1987 and 1988 grids.
2) Complete the geological mapping and prospecting over the remaining parts of the property.

3 Investigate the VLF EM conductor systems by prospecting and/or trenching to test their association with shearing and possibly quartz veining and precious metal mineralization.
4) Investigate the 1987 gold and arsenic soil geochemicai anomalies by hand trenching.
5) Complete the trenching and sampling on the creek and Moss veins to fully evaluate them.

Contingent on the success of the Stage I program, a Stage II program of diamond drilling be carried out on drill targets.

A budget of approximately $\$ 70,000$ should be allocated to complete the Stage I program.

7.0 REFERENCES

Jorgenson, N.B., (1981): Geological and Geochemical Report on the Misty 1 Claim; in-house report.

McNaughton, K., (1987): Geochemical and Geophysical Report on the Misty, Misty 1 and Misty II Mineral Claims; in-house report.

Saunders, C.R., (1987): Report on the Misty Property, Terrace Area, British Columbia for Goldway Resources Ltd.

Tindall, M., (1987): Geological amd Geochemical Report on the Misty and Misty 1-4 Mineral Claims.

Wilson, N.J., (1979): Report on Prospecting Misty Claim, Skeena Mining Division; in-house report.

Wilson, R.G., (1981): Report on Geology and Soil Geochemistry on the Misty Claim; in-house report.

Wilson, R.G., (1982): Aiyansh Project Misty Group, Report on Exploration Progress, 1982 Trenching and Drilling: in-house report.

8.0 CERTIFICATE OF QUALIFICATIONS

I, Grant F. Crooker, of Upper Bench Road, Keremeos, in the Province of British Columbia, do hereby certify that:

1. I graduated from the University of British Columbia in 1972 with a Bachelor of Science Degree in Geology.
2. I have prospected and actively pursued geology prior to my graduation and have practised my profession since 1972.
3. I am a member of the Canadian Institute of Mining and Metallurgy.
4. I am a Fellow of the Geological Association of Canada.

5 I have no direct or indirect interest, nor do I expect to receive any interest directly or indirectly in the Misty Property or in the securities of Corona Corporation or Goldways Resources Inc..
6. I consent to the use of this report for any Filing Statement, Statement of Material Facts, or assessment work filed by Corona Corporation or Goldways Resources Inc..

Dated this 2/st day of oct. , 1988, at Reremeos, in the Province of British Columbia.

Appendix I

GEOPHYSICAL SURVEYS, INTERPRETEX RESOURCES

1. INTRODUCTION

1.1 SURVEY SPECIFICATIONS

Survey Parameters

- survey ilne separation - 100 meters
- survey station spacing - 25 meters
- horizontal control - survey lines were located with flagging bearing atation coordinates (felt marker pen)
- base line direction - Baseline 104 N - east-west
- survey lines were perpendicular to the base line
- survey totais - VLF EM survey 20.525 km .
- magnetic survey 20.050 km .

Equipment Parameters
VLF Electromagnetic Survey

- Geonics EM-16 used for all survey
- transmitting station - Cutler and Annapolis
- direction faced - northerly
- in-phase (dip angie) and out-of-phase (quadrature) components measured in percent at each station

Total Field Magnetic Survey

- Scintrex MP-2 magnetometer
- measured total magnetic field in gammes
- magnetic variationa controlled by field base atation tie back method uging linear correction curveg
- instrument accuracy +/- 1 gamma
- station repeatability better than +/- 3 gammas

Calculations

VLF Electromagnetic Survey
No calculations were performed on VLF EM data.
Total Field Magnetic Survey
Total field magnetic readings were corrected for variationa in the earth's magnetic field uaing field magnetic base station values recorded on baseline 10400 N.

Equipment Specifications - as follows

GEONICS LIMITED
VLF EM 16

Source of Primary Field: VLF transmitting stations
Transmitting Stations Used: Any desired station frequency can be supplied with the instrument in the form of plug-in tuning units. Two tuning units can be plugged in at one time. A switch selects either station.

Operating Frequency Range: About $15-25 \mathrm{~Hz}$
Parameters Measured:

Method of Reading:
In-phase from a mechanical inclinometer and quadrature from a calibrated dial. Nulling by audio tone.

Scale Range: In-phase $\pm 150 \%$; quadrature $\pm 40 \%$
Readability: $\pm \uparrow \%$
Reading Time: $\quad 10-40$ seconds depending on signal strength
Operating Temperature Range: -40 to $50^{\circ} \mathrm{C}$.
Operating controls: $\quad 0 N-O F F$ switch, battery testing push button, station selector, switch, volume control, quadrature, dial $\pm 40 \%$, inclinometer dial $\pm 150 \%$

Power Supply:
6 size AA (penlight) alkaline cells. Life about 200 hours

Dimensions:
$42 \times 14 \times 9 \mathrm{~cm}(16 \times 5.5 \times 3.5 \mathrm{in})$
1.6 kg (3.5 lbs)

Instrument Supplied With:
Monotonic speaker, carrying case, manual of operation, 3 station selector plug-in tuning units (additional frequencies are optional), set of batteries

Shipping Weight:
4.5 kg (10 1bs.)

Name and Address of Manufacturer:

Geonics Limited
1745 Meyerside Drive/Unit 8
Mississaúga, Ontario
L5T IC5

Specification:

The AfP-2 has the following specifications:

lution	1 samma
Total Ficdd trouraty	:1 gamat over full operating range
Kange	20, mon to lue, 000 gammas in 25 overlapiag steps.
Internal Measuring frugrm	1 ruadimg appears 1.5 seconds after Nepression of the Operate Switch and remains displayed for 2.2 seconds for a cozal of 3.? seconds per single rcaling. Recycling feature permits automatic ropetitive readings at 3.? second intervals.
Extermal Trigger	External trigger input permits use of sampling intervals longer than 3.7 seconds.
Display	5 digit LED (iight emitting diode) readout displaying total magnetit field in gamas or normalized bettery voltage.
Data Output	Multiplied precession frequency and gate time outputs for base station recording using interfac-ing-optionally available from Sciatrex.
Gradient Tolerance	Up to $5000 \mathrm{gamas} / \mathrm{moter}$.
Power Source	8 alkaline " 0^{\prime} cells proyide up to 25,000 readings at 25 C under reasonable signal/noise conditions (less at lower temperatures). Premium carbon-zinc cells provide about to: of this number.
Sensor	Omnidirectional, shielded, noisecancelling dual coil, optimized for high gradient tolerance.
hamess	Complete for operation with staff or back pack sensor.
Operating Temperature Range	$-35^{\circ} \mathrm{C}$ to $000^{\circ} \mathrm{C}$
Size	Console, with bacteries: so $\times 160 \times 250$ mat Sensor: so x 150 mm Stafi: $\quad 30 \times 1550 \mathrm{ma}$ (extended) at $\times 060 \mathrm{~mm}$ (collapsed)
Weights	Console, wich batteries: 1.3 kg sensor: 1.5 hs itatf: 0.0 kg

1.2 PRESENTATION

```
VLF Electromagnetic Survey
    - VLF EM in-phase and out-of-phase readings are presented as
        tables in 5 . DATA LIISTING showing values located with
        respect to line number and station number
    - VLF EM in-phase and out-of-phase readings are presented in
        profile form on a plan map at a scale of 1:5000.
Total Field Magnetic Survey
    - Corrected field magnetic valueg are presented as tableg in
        5. DATA LISTING showing values lacated with respect to iine
        number and station number
    - Final total field values are presented as contourg on a
        plan map at a scale of 1:5000.
Interpretation
    - The VLF EM profile map has been used as an interpretation map
        including appropriate interpretation labeling.
```


2. DISCUSSION

VLF EM data profiles show the effect of steep topography in the form of a positive bias on in-phase readings when facing up hill. Other than topography effect, VLF EM data are mostly noise free. Overburden was not considered to be a problem in this area because of its ahallow depth on steep slopes.

VLF EM resulta showed response to conductivity on various lines within the area surveyed. Response character was used to join anomalies into conductor systems. The conductor systema showed a general northwest trend direction in this survey grid.

Magnetic results showed a magnetically active region from line 7500 E to 8400 E in the vicinity of 10300 N to 10600 N . In this portion of the area positive anomalies such as one over 58,700 gammas rrelative to a 57,500 area range value) were obeerved.

3. CONCLUSIONS

VLF EM profiles suggest that most conductors in the area are shallow and have moderate to poor conductance. Some are believed to be caused by structural features auch as narrow shear zones. possibly graphitic.

Three conductor systems appear to have a direct correlation with magnetism. The east end of anomaly "A" seems to occur near the peak of a narrow magnetic high on lines 7000 E and 7100 E , suggesting an agsociation with magnetic minerals. Lack of magnetic coverage to the west of line 7000 E prevents further correlations to the west. Two anomalies within conductor system "B", on lines 7000 E and 7100 E , correlate directly with another amall magnetic anomely. This suggests that magnetic pyrrhotite has contributed to conductivity in aystem "B". All three anomalies within conductor system "C" also seem to be asgociated with a magnetic high anomaly, again indicating the possible presence of pyrrhotite.

The location of conductor system "D" on lines 7800 E and 7900 E suggests that it may relate to a vein known as the "Creek Vein". It is noteworthy only because of its posaible association with a known geologicel feature.

Magnetic resuits show a relatively active magnetic environment in the middle eastern portion of the area as described above in 2 . DISCUSSION. The relatively strong localized anomalies are not conductive and are believed to be caused by concentrations of magnetite. Although atrong local anomalies are found throughout the survey area, most occur in the eforementioned active environmnet and seem to form an east west trend, possibly indicating basic intrusive or extrusive racks.

4. RECOMMENDATIONS

Magnetic conductors "A", "B" and "C" ahould be investigated on the ground to confirm the presence of pyrrhotite and $1 t s$ importance as an associated mineral in the search for gold mineralization. Geological and geochemical exploration is recommended with blasting and aampiing if aurface mineralization can be found. Strong magnetic high anomaliea should be checked to determine if megnetite is present and, if poasibie, to correlated the magnetism with geological features.
5. DATA LIISTING

- as follows

I, Edwin Ross Rocket, Geophysicist of Vancouver, British Columbia, Canada, hereby certify that:

1. I received a B. Sc. degree in Geophysics from the University of British Columbia in 1966.
2. I am a Consulting Geophysicist and owner of Interpretex Resources Ltd. of Box 48239, Bentall p.O., in the City of Vancouver, in the Province of British Columbia.
3. I currently reside at 6571 Cooley Rd., in the City of Richmond, in the Province of British Columbia.
4. I have been practising my profession since graduation.
5. I am a Professional Geophysicist registered in the Province of Alberta.
6. I an a Professional Engineer registered in the Province of Saskatchewan.
7. I am a Certified Professional Geological Scientist registered in the United Stated of America.
8. This report may be used for the development of the property, provided that no portion will be used out of context in such a manner as to convey meanings different from that set out in the whole.
9. Consent is hereby given to the company for which this report was prepared to reproduce the report or any part of it for the purposes of development of the property, or facts relating to the raising of funds by way of a prospectus and/or statement of material facts.

Vancouver,
British Columbia

Edwin Rosa Rocker
B. Sc., P.Geoph., P. Eng.

Respectfully Submitted
 INTERPRETEX RESOURCES LTD.
 Vancouver, British Columbia

E.R. ROCKEL

Consulting Geophysicist

Appendix II

VLF EM AND MAGNETIC DATA

6500	10725	35	-12
6500	10750	37	-15
6600	10775	45	-22
6600	10800	55	-19
6600	10825	53	-2.
6600	10850	63	-23
6800	10875	63	-25
6600	10900	65	-16
6600	10325	44	-5
6600	10950	27	0
6600	10975	c9	7
6600	11000	37	9
6600	11025	42	10
5600	11050	41	13
6600	11075	55	16
6600	11100	72	12
6600	11125	57	8
6600	11150	45	3
6600	11175	33	2
6600	11200	23	2
6600	11225	\%2	1
6600	11250	21	2
6600	11275	9	1
6600	11300	-4	4
6600	11325	-16	-1
line 6700			
6700	9800	33	16
6700	9825	36	16
6700	9850	35	12
6700	9875	31	17
6700	9900	27	16
6700	9385	22	18
6700	9950	17	15
6700	5375	15	15
6700	10000	29	12
5700	10025	22	13
6700	-10050	18	12
6700	10075	12	7
6700	10100	5	2
6700	10125	0	-3
6700	10150	2	-6
6700	10175	7	-8
6700	10200	14	-4
6700	10225	22	-6
6700	10250	23	-9
6700	10275	24	-9
6700	10300	26	-8
6700	10325	27	-8
6700	10350	25	-10
6700	10375	20	-12
6700	10400	12	-14
6700	10425	13	-14
6700	10450	17	-11
6700	10475	14	-13
6700	10500	7	-12
6700	10555	10	-14

6700	10550	13	-16
8700	10575	17	-13
6700	10500	22	-12
6700	10625	17	-17
6700	10650	27	-14
6700	10675	29	-20
6700	10760	38	-18
6700	10725	57	-:2
6700	10750	68	-1:
6700	10775	47	-13
6700	10800	32	-22
6700	11885	36	- 23
6700	10850	49	-27
6700	10875	58	-24
6700	10900	42	-88
5700	10935	27	-9
5700	10950	20	0
6700	10975	23	0
6700	11000	23	2
6700	11025	23	3
6700	11050	23	5
6700	11075	22	7
6700	11100	26	8
6700	11125	3	7
6700	11150	33	5
6700	11175	40	7
6700	11200	43	8
6700	$112{ }^{2} 5$	39	0
6700	11250	27	-4
6700	11275	7	-3
6700	11300	-12	-7
line $68(x)$			
6800	9800	32	10
6800	9825	30	14
6800	9850	31	13
6800	9875	32	12
8800	9700	30	8
6800	9925	32	8
6800	9950	33	7
6800	9975	32	8
6800	10000	30	5
6800	10025	32	4
6800	10050	30	4
6800	10075	31	1
6800	10100	28	0
6800	10125	28	0
6800	10150	27	-2
6800	10175	27	-4
6800	10200	23	-5
6800	10225	28	-5
6800	10250	27	-8
6800	10275	27	-10
6800	10300	22	-12
6800	10325	22	-10
6800	10350	28	-11
6800	10375	28	-12

6800	10400	22	-12
6800	10425	22	-:2
6800	10450	28	-12
5800	10475	25	-14
6800	10500	32	-14
6800	10525	24	-15
6800	10550	28	-15
6800	10575	30	-12
6800	10600	34	-15
6800	10625	40	-13
6800	10650	48	-12
5800	10675	53	-15
6800	10700	58	-15
6800	10725	38	-20
6800	10750	34	-23
6800	10775	36	-25
6800	10800	32	-25
6800	10825	33	-88
6800	10850	44	-27
6800	10875	52	-25
6800	10300	25	-8
6800	10925	27	-2
5800	10950	32	-1
6800	10975	32	-1
6800	11000	18	3
5800	11025	19	3
6800	11050	14	1
6800	11075	15	3
6800	11100	16	6
6800	11125	18	10
6800	11150	18	12
5800	11175	22	10
6900	11200	32	7
5800	11225	15	5
E800	11250	11	2
6800	11275	3	2
6800	11300	-2	1
6800	11325	-3	0
6800	11350	-6	1
6800	11375	-11	3
6800	11400	-20	1
line 6900			
6900	9800	30	15
6900	9825	25	12
6300	9850	28	12
6900	9875	30	8
6900	9900	27	12
6500	9725	31	11
6700	9350	27	10
6900	9975	30	9
6900	10000	30	8
6900	10025	30	5
6900	10050	32	6
6900	10075	28	6
6900	10100	29	4
6900	10125	28	1

6300	10150	29	4
6900	10175	32	0
6300	10200	28	-4
6900	10225	25	-4
6900	10250	25	-1
6900	10275	26	-9
6700	10300	32	-2
6900	10325	31	-10
6300	10350	28	-10
6900	10375	30	-12
5900	10400	32	-10
6900	10425	44	-16
6900	10450	45	-10
6900	10475	47	-15
6900	10500	49	-12
6900	10525	53	-15
5900	10550	52	-20
6900	10575	63	-11
5800	10600	66	-12
690	10625	58	-19
6900	10650	56	-24
6900	10675	55	-26
6900	10700	56	-26
6900	10725	52	-2E
6300	10750	41	-29
6900	10775	43	-3:
6300	10800	51	-28
6900	10825	57	-30
6300	10850	63	-16
5300	10875	53	-:4
6900	10900	39	-6
6900	10925	40	1
6900	10350	41	-6
6900	10975	22	-5
6300	11000	25	-1
6900	11025	20	-2
6900	11050	14	1
6900	11075	10	8
6900	11100	8	8
6300	11125	10	7
6900	11150	14	6
5900	11175	18	6
6900	11200	22	5
6900	11225	22	-2
6900	11250	17	-4
6900	11275	12	-5
6900	11300	6	-3
6900	11385	8	-1
6900	11350	11	0
6900	11375	$\hat{2}$	-8
6900	11400	-13	-14
line 7000			
7000	9800	33	16
7000	9825	31	13
7000	9850	32	15
7000	9875	32	15

7000	9500	32	15			
7000	9325	32	16			
7000	7950	30	13			
7000	9375	36	14			
7000	10000	30	I:			
7000	10025	33	11			
7000	10050	35	7			
7000	10075	33	E			
7000	10100	31	4			
7000	10125	25	3			
7000	10150	27	2			
7000	10175	23	0			
7000	10200	31	2			
7000	10235	35	-2			
7000	10850	$\underline{8}$	-3			
7000	10275	35	-3			
7000	10300	30	-4			
7000	10325	31	-5			
7000	10350	38	-9			
7000	10375	38	-10	Ifre 7000		
7000	10400	44	-3	7000	10400	57455
7000	10425	43	-11	7000	10455	57485
7000	10450	50	-15	7000	10450	57385
7000	10475	48	-11	7000	10475	574.2
7000	10500	55	-14	7000	10500	57451
7000	$105 \% 5$	60	-12	7000	10525	57356
7000	10550	58	-10	7000	10550	574.2
7000	10575	58	-13	7000	10575	57403
7000	10600	57	-22	7000	10600	5738\%
7000	10685	51	- 24	7000	10685	574:9
7000	10650	50	-20	7000	10650	57388
7000	10575	42	-13	7000	10675	57476
7000	10700	30	-25	7000	10790	57488
7000	10725	37	-24	7000	10765	57427
7000	10750	28	-20	7000	10750	57334
7000	10775	31	-24	7000	10775	57401
7000	10800	35	-20	7000	10800	57392
7000	10825	30	-19	7000	10825	57398
7000	10850	39	-10	7000	10850	57530
7000	10875	27	-8	7000	10875	57440
7000	10900	18	-2	7000	10900	57407
7000	10925	10	-10	7000	10925	57405
7000	10950	16	-2	7000	10950	57415
7000	10975	28	-5	7000	10975	57436
7000	11000	32	-2	7000	11000	57424
7000	11025	12	8	7000	11025	57419
7000	11050	5	12	7000	11050	57432
7000	11075	4	13	7000	11075	57385
7000	11100	5	12	7000	\$1100	57433
7000	11125	10	6	7000	11125	57509
7000	11150	12	7	7000	11150	57719
7000	11175	15	5	7000	11175	57717
7000	11200	20	6	7000	11200	57403
7000	11225	22	2	7000	11225	57557
7000	11250	24	-4	7000	11250	57464
7000	\$1275	25	-2	7000	11275	57460

7000	11300	32	5	7000	11300	57401
7500	\$1325	33	5	7000	11365	57384
7000	11350	4	-11	7000	11350	57417
7000	11375	-10	-3	7000	11375	57428
7000	11400	-42	0	7000	11400	57555
line 7100				line 7100		
7100	10000	32	13	7160	10000	57529
7100	10005	31	10	7100	10025	37533
7100	10050	31	9	7100	10050	57553
7100	10075	29	6	$7: 00$	10075	57587
7100	10100	31	0	7100	10100	57551
7100	10125	29	1	7100	10165	57651
7100	10150	28	-3	7100	10150	57500
7100	10175	30	0	7100	10175	57527
7100	10200	30	0	7100	10800	57490
7100	10235	30	-3	7108	10225	57482
7100	10850	31	-4	7100	10250	57481
7100	10275	35	-4	7100	10275	57294
7100	10300	33	-4	7100	10300	57448
7100	10335	38	-10	7100	10355	57458
7100	10325	33	-6	7100	10350	57439
7100	10350	37	-8	7100	10375	574×9
7100	10400	45	-5	7100	10400	57457
7100	10425	46	-5	7100	10425	57504
7100	10450	48	-6	7100	10450	57536
7100	10475	52	-9	7100	10475	57568
7100	10500	57	-10	7100	10500	57583
7100	10585	59	-11	7100	10525	57545
7100	10550	62	-11	7100	10550	575:6
7100	10575	66	-8	7100	10575	57468
7100	10600	73	-9	7100	10600	57504
7100	10685	45	-20	7100	10625	575.5
7100	10650	24	-22	7100	10650	57493
7100	10675	87	-18	7100	10675	57489
7100	10700	37	-17	7100	10700	57432
7100	10725	37	-18	7100	10755	57430
7100	10750	36	-14	7100	10750	57448
7100	10775	26	-7	7100	10775	57454
7100	10800	20	-11	7100	10900	57503
7100	10825	19	-9	7100	10825	57487
7100	10850	19	-10	7100	10850	57525
7100	10875	3	-3	7100	10875	57460
7100	10900	- 4	- 11	7100	10900	57503
7100	10325	5	-9	7100	10925	57457
7100	10950	17	-3	7100	10950	57468
7100	10975	10	5	7100	10975	57471
7100	11000	3	31	7100	11000	57480
7100	11025	3	32	7100	11025	57475
7100	11050	8	40	7100	11050	57458
7100	11075	8	35	7100	11075	57508
7100	11100	9	12	7100	11100	57428
7100	11125	5	7	7100	11125	57555
7100	11150	12	2	7100	11150	57793
7100	11175	16	5	7100	11175	57931
7100	11200	20	6	7100	11200	57486
7100	11225	23	10	7100	11225	57425

7100	11550	25	-1	7100	11250	57480
7100	11275	25	-1	7100	11275	57493
7100	11300	25	-1	7100	11300	57549
7100	11335	14	-6	7100	11325	57445
7100	11350	0	-14	7100	11350	57530
7100	11375	-9	-2	7100	11375	57546
7100	11400	-26	-1	7100	1:400	57500
line 7200				line 7200		
7200	5800	47	11	7200	9800	57473
7200	9825	43	14	7200	9825	57486
7200	9850	47	16	7200	9850	57508
720)	9875	47	19	7200	9875	57463
7200	9700	47	20	7200	9900	57535
7200	9925	40	17	7200	9925	57523
7200	9950	42	14	7200	9350	57534
7200	9975	35	13	7200	9975	57537
7200	10000	35	45	7200	10000	57542
7200	10025	30	19	7200	10025	57545
720	10050	33	8	7200	10050	57502
7200	10075	30	9	7200	10075	57488
7200	10100	27	5	7200	10100	57504
7200	10125	27	-1	7200	10125	57541
7200	10150	32	1	7200	10150	57536
7200	10175	26	0	7200	10175	57545
7200	10200	30	-3	7200	10200	57432
7200	10225	33	-2	7200	102 E 5	57523
7200	10250	32	-3	7200	10250	57468
7200	10275	34	-	7200	10275	57456
7200	10300	35	-5	7200	10300	57420
7200	10325	32	-5	7200	10325	57454
7200	10350	31	-6	7200	10350	57451
7200	10375	34	-4	7200	10375	57455
7200	10400	37	-5	720	10400	57475
7200	10425	42	-5	7200	104 ç	57401
7200	10450	44	-5	7200	10450	57412
7200	10475	38	-11	7200	10475	57403
7200	10500	41	-9	7200	10500	57387
7200	10525	40	-14	7200	10525	57394
7200	10550	34	-19	7200	10550	57409
7200	10575	23	-18	7200	10575	57427
7200	10500	31	-27	7200	10600	57392
7200	10525	44	-15	7200	10625	57367
7200	10650	45	-16	7200	10725	57377
7200	10675	44	-18	7200	10750	57433
7200	10700	54	-20	7200	10775	57412
7200	20725	44	-20	7200	10800	57400
7200	10750	33	-20	7200	10825	57402
7200	10775	26	-22	7200	10850	57393
7200	10800	18	-18	7200	10875	57415
7200	10825	8	-18	7200	10900	57449
7200	10850	8	-18	7200	10925	57505
7200	16875	12	-11	7200	10950	57453
7200	10900	16	-7	7200	10975	57427
7200	10925	6	-8	7200	11000	57440
7200	10950	5	-11	7200	11025	57429
7200	10975	2	-8	7200	11050	57430

7200	11000	8	-10	7200	11075	574.35
7200	11025	10	-8	7200	11100	$574{ }^{2}$
7200	11050	8	-5	720	11135	57435
7200	11075	16	-8	7200	11150	57457
7200	11100	20	-3			
7200	11125	30	0			
700	11150	37	6			
7200	11175	33	2			
7200	11200	26	-2			
7200	11225	28	-6			
7200	11250	28	-7			
7200	11275	20	-12			
7200	11300	12	-12			
7200	11325	8	-14			
7200	11350	-1	-10			
7200	11375	-11	-9			
7200	11400	-21	-5			
line 7300				lite 7300		
7300	9950	27	12	73605	9950	57474
7360	9975	30	11	7300	9975	57485
7300	10000	33	11	7300	10000	57505
7300	10025	32	6	7300	10025	5750
7300	10050	34	6	7300	10050	57517
7300	10075	31	6	7300	10075	57512
7300	10100	34	5	7300	10100	575:7
7300	10.25	31	3	7300	10125	57498
7300	10150	32	4	7300	10150	57439
7300	10175	31	1	7300	10175	57501
7300	10200	33	-2	7360	10200	57498
7300	10225	31	-1	7300	10225	57435
7300	10250	36	0	7300	10250	57523
7300	10275	33	-2	7300	10275	57563
7300	10300	36	-2	7300	10300	57513
7300	10325	38	-3	7300	10325	57478
7300	10350	35	-5	7300	10350	57454
7300	10375	35	-5	7300	10375	57420
7300	10400	40	-6	7300	10400	57393
7300	10425	41	-6	7300	10425	57491
7300	10450	42	-6	7300	10450	57388
7300	10475	50	-7	7300	10475	57380
7300	10500	40	-10	7300	10500	57376
7300	10525	36	-14	7300	10525	57396
7300	10550	30	-17	7300	10550	57330
7300	10575	30	-17	7300	10575	57381
7300	10600	28	-20	7300	10600	57416
7300	10525	28	-28	7300	10625	57420
7300	10550	29	-2i	7300	10650	57436
7300	10675	31	-22	7300	10575	57403
7300	10700	32	-24	7300	10700	57402
7300	10725	35	-20	7300	10725	57402
7300	10750	29	-21	7300	10750	57399
7300	10775	18	-20	7300	10775	57486
7300	10800	11	-18	7300	10800	57430
7300	10825	11	-21	7300	10825	5743!
7300	10850	15	-18	7300	10850	57398
7300	10875	8	-17	7300	10875	57414

7300	10900	E	-15	7300	10900	57429
7300	10925	6	-16	7300	10925	57466
7300	10950	6	-16	7300	10950	57455
7300	10975	10	-17	7300	10975	57463
7300	11000	17	-15	7300	1:000	57429
7300	11025	21	-13	7300	11085	57445
7300	11050	31	-12	7300	11050	57450
7300	11075	34	-8	7300	11075	574E゙気
7300	11100	45	-3	7300	11100	57440
7300	11125	47	1	7300	11!25	57458
7300	11150	48	0	7300	11150	57456
7300	11175	39	-1	7300	11175	57455
7300	11200	32	-6	7300	11290	575.39
7300	11225	23	-10	7300	11225	59660
7300	11250	15	-10	7300	11250	57647
7300	11275	3	-8	7300	11275	57545
7300	11300	-3	-40	7300	11300	57519
line 7400				Line 7400		
7400	9975	40	15	7400	9975	57459
7400	10000	35	11	7400	10000	57511
7400	10025	37	8	7400	10005	57489
7400	10050	33	6	7400	10050	57516
7400	10075	34	5	7400	10075	57329
7400	10100	35	6	7400	10100	57543
7400	10135	33	4	7400	10125	57545
7400	10150	36	3	7400	10150	57576
7400	10175	32	1	7400	10175	57542
7400	10200	34	2	7400	10200	57556
7400	10205	32	0	7400	10235	57575
7400	10250	32	0	7400	10250	57515
7400	10275	35	-4	7400	10275	57477
7400	10300	35	-1	7400	10300	57459
7400	10325	35	-2	7400	10335	57477
7400	10350	35	-3	7400	10350	57420
7400	10375	35	-8	7400	10375	57426
7400	10400	38	-3	7400	10400	57428
7400	10425	38	-3	7400	10425	574.5
7400	10450	40	-2	7400	10450	57431
7400	10475	40	-4	7400	10475	574.7
7400	10500	41	-1	7400	10500	57411
7400	10525	42	-4	7400	10535	57427
7400	10550	35	-6	7400	10550	57428
7400	10575	30	-10	7400	10575	57430
7400	10600	23	-25	7400	10600	57453
7400	10685	22	-14	7400	10625	57452
7400	10550	14	-17	7400	10550	57460
7400	10675	15	-17	7400	10675	57455
7400	10700	15	-22	7400	10700	57463
7400	10725	15	-16	7400	10725	57475
7400	10750	16	-18	7400	10750	57436
7400	10775	14	-19	7400	10775	57456
7400	10800	18	-18	7400	10800	57456
7400	10825	16	-18	7400	10835	57440
7400	10850	15	-18	7400	10850	57451
7400	10875	20	-16	7400	10875	57471
7400	10900	22	-20	7400	10960	57430

7400	10925	25	-17	7400	10525	57466
7400	10950	22	-17	7400	10950	57505
7400	10975	30	-20	7400	10975	57517
7400	11000	31	-16	7400	11000	57532
7400	11025	48	-18	7400	15025	57608
7400	11050	52	-14	7400	11050	57507
7400	11075	50	-11	7400	11075	57497
7400	11100	26	-18	7400	11160	575:5
7400	11125	19	-14	7400	11125	575:0
7400	11150	24	-9	7400	11150	573%
7400	11175	40	-6	7400	11175	57513
7400	11200	34	-2	7400	11200	57527
7400	11205	\% 6	-6	74(4)	11235	57568
7400	11250	20	-9	7400	11250	57547
7400	$1: 275$	11	-10	7400	11275	57552
7400	11300	6	-11	7400	11300	57516
7400	11325	-25	-22	7400	11325	57537
7400	11350	-22	-14	7400	11350	57557
7400	11375	-38	-6	7400	11375	57543
7400	11400	-33	-6	7400	11400	5754:
line 7550				line 7560		
7500	9925	38	9	7500	3925	57313
7500	9950	41	12	7500	9950	57345
7500	9975	40	14	7500	3975	57561
7500	10000	35	6	7500	10000	57371
7500	10025	32	10	7500	10025	57437
7500	10050	32	6	7500	10050	57410
7500	10075	35	6	7500	10075	57485
7500	10100	32	6	7500	10100	57406
7500	10125	34	6	7500	10165	5749:
7500	10150	35	3	7500	10150	57473
7500	10175	35	e	7500	10175	57545
7500	10200	34	3	7500	10200	57438
7500	10225	34	2	7500	10225	57435
7500	10250	36	1	7500	10850	57456
7500	10275	36	-2̂	7500	10275	57405
7500	10300	36	0	7500	10300	57380
7500	10325	35	1	7500	10325	57325
7500	10350	35	-3	750	10350	57372
7500	10375	35	-2	7500	10375	57404
7500	10400	35	2	7500	10400	57400
7500	10425	40	-1	7500	10425	57452
7500	10450	38	-2	7500	10450	57510
7500	10475	40	0	7500	10475	57562
7500	10500	40	0	7500	10500	57398
7500	10525	43	-i	7500	$105: 5$	57402
7500	10550	42	0	7500	10550	57401
7500	10575	40	-2	7500	10575	57654
7500	10600	37	-5	7500	10600	574:0
7500	10625	30	-6	7500	10625	57424
7500	10850	30	-8	7500	10650	57435
7500	10675	28	-8	7500	10675	57433
7500	10700	22	-9	7500	10700	57426
7500	10725	20	-16	7500	10725	57440
7500	10750	21	-16	7500	10750	57459
7500	10775	21	-16	7500	10775	57455

7500	10900	24	-16	7500	10800	57457
7500	10825	21	-20	7500	10825	57467
7500	10850	21	-22	7500	10850	57433
7500	10875	21	-23	7500	10875	57382
7500	10900	25	-22	7500	10300	57383
7500	10925	25	-24	7500	10925	57420
7500	10950	21	-25	7500	10950	57431
7500	10975	22	-25	7500	10375	57437
7500	11000	31	-20	7500	11000	5745 :
7500	11025	22	-23	7500	11025	5740!
7500	11050	21	-18	7500	11050	57427
7500	11075	12	-17	7500	11075	57467
7500	11100	8	-11	7500	11100	57476
7500	11125	4	-14	7500	11125	57468
7500	11150	1	-13	7500	11150	57477
7500	11175	1	-11	7500	11175	57462
7500	11200	-2	-8	7500	11200	57449
7500	11225	-2	-8	7500	11285	57478
7500	11250	-4	-5	7500	11250	57483
7500	11275	-2	-2	7500	11275	57471
7500	11300	-4	-1	7500	11300	57447
7500	11335	-6	-2	7510	11325	57747
7500	11350	-4	-3	7500	11350	57560
7500	11375	-2	-3	7500	11375	57590
7500	11400	2	-8	7500	11400	57751
line 7600				Line 7600		
7600	10000	40	16	7600	10000	573:6
7600	10025	41	13	7600	10005	57340
7600	10050	39	6	7600	10050	57384
7600	10075	40	10	7600	10075	57413
7600	10100	35	6	7600	10100	57393
7600	10125	35	7	7600	10125	5742 z
7600	10150	37	8	7600	10150	57252
7600	10175	32	2	7600	10.75	57373
7600	10200	31	1	7600	10200	57397
7600	10225	31	1	7600	10225	57436
7600	10250	34	2	7600	10250	57510
7600	10275	36	0	7600	10875	57521
7600	10300	36	-1	7600	10300	57549
7600	10325	33	2	7600	10325	57680
7600	10350	35	0	7600	10350	57574
7600	10375	37	1	7600	10375	57571
7600	10400	35	0	7600	10400	57779
7600	10425	38	-1	7600	10425	57748
7600	10450	41	0	7600	10450	58184
7600	10475	41	0	7600	10475	58388
7600	10500	45	2	7600	10500	57946
7500	10525	45	-1	7600	10505	57604
7600	10550	50	4	7600	10550	57653
7600	10575	53	4	7600	10575	57567
7600	10600	52	4	7600	10600	57538
7600	10625	55	4	7600	10625	57525
7600	10650	53	0	7600	20650	57536
7600	10575	50	-3	7600	10675	57534
7600	10700	41	-11	7500	10700	57520
7600	10725	31	-18	7600	10725	57564

7600	10750	23	-14	7600	10750	57538
7600	10775	15	-12	766	10775	57536
7600	10800	8	-10	7600	10800	57525
7600	10825	-25	-29	7600	10825	57503
7600	10850	1	-40	7600	10850	57480
7600	10875	7	-30	7600	10875	57490
7600	10900	18	-28	7600	10900	57486
7600	10925	15	-16	7600	10965	57487
7600	10950	10	-12	7600	10950	57487
7600	10975	2	-4	7600	10375	57559
7600	11000	2	-3	7600	11000	57467
7600	11025	-5	3	7800	11025	57468
7600	11050	-11	8	7600	11050	57475
7600	11075	-1	8	7600	11075	57483
7600	11100	-2	6	7600	11100	57452
7600	11125	-2	3	7600	11125	57500
7800	11150	-1	2	7600	11150	57480
7600	11175	-1	2	7500	11175	57535
7600	11200	1	0	7600	11200	575:8
7600	11225	-1	2	7600	11225	57540
7600	11250	-1	3	7600	11200	57527
7600	11275	1	3	7600	11275	5753
7600	11300	2	-2	7600	11300	57544
7600	11385	0	-7	7600	11325	57570
7800	11350	0	-7	7600	11350	57610
7600	11375	1	-5	7600	11375	57617
line 7700				lire 7700		
7700	10135	32	8	7700	10165	57564
7700	10150	33	8	7700	10150	57614
7700	10175	35	9	7700	10175	57580
7700	10000	37	6	7700	10200	57543
7700	10285	35	2	7700	10225	57537
7700	10250	39	4	7100	10250	57715
7700	10275	37	3	7700	10275	57878
7700	10300	45	4	7700	10300	57637
7700	10325	36	3	7700	10325	57621
7700	10350	38	1	7700	10350	57735
7700	10375	36	4	7700	10375	58.29
7700	10400	39	1	7700	10400	57547
7700	10425	41	0	7700	10425	$58 \% 89$
7700	10450	42	0	7700	10450	57583
7700	10475	45	0	7700	10475	57917
7700	10500	48	2	7700	10500	57889
7700	10525	50	4	7700	$105 \% 5$	57474
7700	10550	54	5	7700	10550	58036
7700	10575	65	5	7700	10575	57771
7700	10600	74	9	7100	10800	57551
7700	10625	85	10	7700	10625	57545
7700	10650	80	8	7700	10650	575.26
7700	10575	70	0	7700	10675	57550
7700	10700	68	7	7700	10700	57562
7700	10725	54	3	7700	10725	57573
7700	10750	23	-2	7700	10750	57553
7700	10775	11	-3	7700	10775	57541
7700	10800	7	-3	7700	10800	57531
7700	10825	4	-12	7700	10825	57241

7700	10850	0	-12	7700	10850	57532
7700	10875	-7	-14	7700	10875	57511
7700	10900	-10	-2	7700	10300	57512
7700	10925	-5	-24	7700	10925	57507
7700	10950	6	-26	7700	10950	57493
7700	10975	12	-10	7700	10975	57534
7700	11000	12	0	7700	11000	57552
7700	11025	11	1	7700	11025	57609
7700	11050	7	0	7700	11050	57808
7700	11075	2	-2	7700	11075	57553
7700	11100	2	2	7700	11100	57501
7700	11125	1	-2	7700	11125	57720
7700	11135	2	-1	7700	11150	57531
7700	11150	1	-1	7700	11175	57548
7700	11200	1	-1	7700	11200	57388
7700	11225	2	-1	7700	11225	57601
7700	11250	0	-2	7700	11250	57568
7700	11275	1	-2	7700	11275	57591
7700	11300	2	-2	7700	11300	57582
7700	11325	3	-4	7700	11325	57652
7700	11350	8	-6	7700	11350	57615
7700	11375	10	-10	7700	11375	57669
7700	11400	14	-8	7700	11400	57652
line 7800				Litre 7800		
7800	9950	32	16	7800	9950	57340
7800	9975	27	12	7800	9975	57356
7800	10000	28	10	7800	10000	57400
7800	10025	¢3	12	7800	10025	57464
7800	10050	31	10	7800	10050	57530
7800	10075	32	11	7800	10075	57586
7800	10100	34	14	7800	10100	57687
7800	10125	32	5	7800	10125	57632
7800	10150	31	7	7800	10150	57615
7800	10175	36	θ	7800	10175	57593
7800	10200	36	8	7800	10200	57558
7800	10225	35	2	7800	10225	57542
7800	10250	36	4	7800	10250	57467
7800	10275	37	6	7800	10275	57506
7800	10300	35	2	7800	10300	57688
7800	10325	38	2	7800	10325	57559
7800	10350	43	4	7800	10350	57456
7800	10375	41	2	7800	10375	57537
7800	10400	42	2	7800	10400	57580
7800	10425	43	2	7800	10425	58027
7800	10450	48	0	7800	10450	58467
7800	10475	50	0	7800	10475	58405
7800	10500	52	-4	7800	10500	58253
7800	10525	54	-3	7800	10525	57931
7800	10550	63	2	7800	10550	57783
7800	10575	70	2	7800	10575	58355
7800	10600	70	4	7800	10600	57704
7800	10625	78	6	7800	10525	57652
7800	10650	70	7	7800	10550	57561
7800	10675	74	5	7800	10575	576×9
7800	10700	62	3	7800	10700	57640
7800	10725	51	2	7800	10725	57562

7800	10750	48	0	7800	10750	57555
7800	10775	45	1	7800	10775	57491
7800	10800	45	1	7860	10800	57493
7800	10825	35	1	7800	10825	57535
7800	10650	23	-1	7800	10850	5752 2
7800	10875	13	-1	$78(6)$	10875	57530
7800	10300	5	-7	7800	10500	57553
7800	10885	-1	-19	7800	10985	57E40
7800	10350	3	-11	786	10350	57548
7800	10975	7	-5	7800	10375	57513
7800	11000	8	-4	7800	11000	57646
7800	11025	5	-2	7800	11085	$5755{ }^{5}$
7800	11050	3	-3	7800	11050	57521
7800	11075	2	-12	7800	11075	57686
7800	11100	5	-15	7800	11100	57589
7800	11125	6	-11	7800	11125	57633
7800	11150	10	-8	7800	11150	57621
7800	11175	11	-8	7860	11175	57687
7800	11200	11	-6	7800	11200	576.7
7800	11225	12	-4	7800	12885	57627
7800	11250	5	5	7800	11250	57558
line 7900				line 7900		
7900	9900	29	18	7950	9900	57238
7900	9325	26	14	7200	9325	57356
7900	9950	26	14	7900	9950	57342
7904	9975	28	13	7500	9975	57358
7300	10000	26	15	7900	10000	571:0
7900	10025	28	14	7900	10025	57431
7900	10050	$3!$	14	7900	10050	57472
7900	10075	32	15	7900	10075	57505
7900	10100	28	14	7300	10100	57528
7900	10125	33	12	7900	10125	5753
7900	10150	32		7700	10150	57484
7900	10175	31	8	7900	10175	575es
7300	10200	31	11	7950	10200	57520
7500	10225	32	12	7500	10225	57473
7900	10250	38	4	7300	10250	57502
7900	10275	33	9	7900	10275	57539
7900	10300	36	10	7900	10300	57484
7900	10325	34	2	7900	10355	57506
7900	10350	34	5	7900	10350	57676
7900	10375	42	5	7900	10375	57619
7900	10400	41	3	7300	10400	57532
7900	10425	48	3	7900	10425	57539
7900	10450	43	1	7900	10450	57540
7900	10475	51	0	7300	10475	57414
7900	10500	50	3	7900	10500	57538
7900	10525	50	1	7900	10585	57455
7900	10550	50	-2	7900	10550	57477
7900	10575	54	-3	7900	10575	57413
7900	10600	60	-5	7900	10600	
7900	10625	60	-5	7900	10625	57459
7500	10650	72	-4	7900	10650	57467
7900	10675	72	-3	7900	10675	57390
7900	10700	80	0	7300	10700	57365
7900	10725	81	3	750	10725	57380

7300	10750	76	-2
7900	10775	61	-2
7900	10800	60	-8
7900	10825	53	-8
7900	10850		
7900	10875	47	-12
7300	10900	40	-14
7900	10925	30	-12
7500	10950	17	-14
7900	10975	22	-14
7900	11000	23	-14
7900	11025	22	-11
7900	11050	18	-8
7900	11075	16	-11
7900	11100	19	-10
7900	11125	15	-9
7900	11150	15	-8
7500	11175	14	-6
7900	11200	9	-7
7500	11225	9	-6
7900	11250	10	-5
7900	11275	9	-5
7900	11300	7	-6
7900	11325	2	-3
7900	11350	3	-2
7900	11375	1	-2
7900	11400	2	-1

7900	10750	57398
7900	10775	57363
7900	10800	57380
7900	10825	57451
7900	10850	
7900	10875	57436
7900	10900	57471
7900	10925	57485
7900	10950	575:4
$79(0)$	10975	57518
7900	11000	57502
7900	11025	57506
7910	11050	57525
7900	11075	57535
7900	11100	57587
7900	11125	57533
7300	11150	57586
7900	11175	57666
7900	12200	57682
7900	11225	576\%
7800	11250	57673
7800)	11275	57534
7300	11300	575)2
7500	11325	57338
7900	11350	57750
7900	11375	57595
7900	11400	57551
line 8000		
8000	9800	57590
8000	98\%	57307
8000	9850	57328
8000	9875	5738
8000	9900	57340
8000	9985	57349
8000	9350	57372
8000	9975	57413
8000	10000	57416
8000	10025	57407
8000	10050	57471
8000	10075	57523
8000	10100	57507
8000	10125	57492
8000	10150	57495
8000	10575	57473
8000	10000	57478
8000	10225	57467
8000	10250	57471
8000	10275	57469
8000	10300	57582
8000	10325	5751:
8000	10350	57508
8000	10375	57578
8000	10400	57871
8000	10425	58768
8000	10450	58051
8000	10475	58091

CSGLS	sesot	0018
9ESLS	00sot	0018
¢Y\%	cleol	0018
6LHLS	05201	0018
SL4LS	cezot	cois
88725	00201	0018
L6t 19	slitio	0018
5L4LS	OSt01	0018
908LS	çiol	0018
19\%2S	00105	0018
Let 2 S	SLOOI	0018
97\% 25	OSOOI	0018
0itas	S200t	0018
288LS	00001	0018
84825	S 366	0018
$178 / 5$	0366	0018
OIELS	9266	0018
S8CLS	00E6	0018
lezLs	SL85	0018
EICLS	0586	0018
323LS	5286	0010
22JLS	0086	0018
		00te
L26LS	00811	0000
$\varepsilon 己 \angle L S$	Slett	0000
OLLLE	0 OEII	0008
gells	geztl	00008
S908S	002 II	0008
6ELLS	Scitl	0000
- 5 Lic	OSTH	0006
$46 E L S$	selll	01008
IESLS	0015	0008
9\%SLS	SLOII	0008
ELLIS	OsOH	0008
E59LS	52011	0009
95915	000 t t	0008
65925	SL50T	0008
859LS	0S601	0008
LOSLS	52501	0009
ISSLS	00601	0008
65925	SLPOT	0008
3/9LS	05801	0006
2TSLS	S 280 T	0108
567LG	00601	0008
	SLLOT	0008
0:SLS	OSLOF	0008
1+6LC	selot	0008
ELSLS	O0LOT	0008
90915	S 2901	0000
2¢92S	0S901	0008
ILLLS	S2901	000 O
EEBLN	00901	0008
23LLS	GLSOI	0008
Scelc	OSGOI	0009
OLGLS	gesot	0008
$26 L L S$	OUSOI	0006

8100	10350	57563
8100	10375	57504
8100	10400	57768
8100	10425	57716
8100	10450	57680
8100	10475	57ER1
8100	10500	57698
8100	10525	57699
8100	10550	57695
8100	10575	57623
8100	10600	57766
8100	10625	57737
8100	10650	57631
8100	11675	57815
8100	10700	57848
8100	10725	58015
8100	10750	57723
8100	10775	57723
8100	10800	57758
8100	10885	57861
8100	10850	57621
8100	10875	57896
8100	10900	57833
8100	10955	57724
8100	10950	57735
8100	10975	57663
8100	11000	5793%
8100	11025	50185
8100	11050	57797
8100	11075	57739
8100	11100	57754
8100	11125	57823
8100	11150	57001
8100	11175	57493
8100	11200	57409
8100	11225	57655
8100	11250	57703
line		
	9850	57262
	9875	57271
	9900	57267
	9925	5728 C
	9950	57333
	9975	57341
	10000	57366
	10085	57389
	10050	57447
	10075	57418
	10100	57437
	10125	57439
	10150	574\%
	10175	57549
	10200	575.96
	10225	57570
	10250	57573
	10275	57735

8200	10300	57626
8200	10325	57663
8200	10350	57753
8200	10375	57730
8200	10400	58189
8200	10425	57689
8200	10450	57630
8800	10475	57644
8 CO	10500	57778
8200	10585	57802
8 c 00	10550	57830
8200	10575	57754
8200	10600	57920
8200	$106 ¢ 5$	57399
8200	10650	57861
8200	10675	58080
8200	10700	58085
8200	10725	57885
8200	10750	57864
8200	10775	57856
8200	10800	57802
8200	10825	57736
line 8300		
8300	9500	57379
8300	9525	57366
8300	9550	57377
8300	9575	57361
8300	9600	57378
8300	9625	57362
8350	9650	57387
8300	9675	57387
8300	9700	57413
8300	9725	57390
8300	9750	57414
8300	9775	57418
8300	8800	57432
8300	98.5	57438
8300	9850	57446
8300	9875	57460
8300	9900	57474
8300	9925	5748;
8300	9350	57506
8300	9975	57536
8300	10000	57466
8300	10025	57546
8300	10050	57593
8300	10075	57633
8300	10100	57622
8300	10125	57644
8300	10150	57698
8300	10175	57684
8300	10200	5770
8300	10225	57707
8300	10250	57743
8300	10275	57770
8300	10300	58104

114．45	00tot	00\％ 8
699LS	Sl00t	00） 68
9c9／S	0 COOI	0078
E19LS	\＄2001	0048
－ 6 CSL	0000］	$00+8$
0 ORLS	SL66	0068
88519	0566	0048
SSSLS	9266	00t\％
82CLS	0066	0048
LISLS	5196	0068
967／S	OS86	0048
B $力$ 加 25	5286	0068
S8b2S	0066	0048
68\％ 25	S 126	0048
Ety 25	OSL6	0048
$5{ }^{4}+2.5$	5326	00 ± 7
Stitcs	0026	$00+8$
5×425	9496	0068
00725	0596	0048
48815	5796	$00+8$
8GELS	0096	$00+8$
\％ 2 LELS	StS6	0069
E9ELS	OSG6	$00+8$
Scsels	G256	0078
O9ELS	0096	0048
tSELS	Sl\＄6	0068
2tcls	05 56	$00+8$
8 ¢たLS	S2\％6	0068
09215	00女5	0078
		0048
46085	0S601	0088
2LOMS	92601	0058
95085	00501	0098
\＄6ELS	51801	0088
6509S	OSPet	0088
E38LS	S2801	00cs
IEGLS	00801	0088
915L5	SLLOI	0089
S9LLS	DELOT	0088
2LLS	getor	0088
EL9LS	00L01	0029
OLLLS	G1901	DOES
108LS	05901	0028
88925	\＄2901	ODES
E100s	00901	0088
L9LLS	SLSOT	O0S8
8：8LG	OScol	0028
836， 5	52501	OOEP
92289	00501	0088
99885	S（tol	0089
52085	0Stol	0088
tgobs	$52+51$	（m） 5
18109	00tor	0088
23085	gecill	0098
29825	OSSOT	0088
5＋8LS	gaset	OOCB

8400	10125	57745
8400	10150	57777
8400	10175	57748
8400	10200	57802
8400	$108 E 5$	57826
8400	10250	57893
8400	10275	57919
8400	10300	57934
8400	10325	57970
8400	10350	57962
8400	10375	57985
8400	10400	58031
8400	10425	58051
8400	10450	58025
8400	10475	57892
8400	10500	57832
8400	10525	57883
8400	10550	58039
8400	10575	57558
8400	10600	57996
8400	10625	58209
8400	10650	58000

Appendix III

CERTIFICATES OF ANALYSIS

(VaLues INPPM)	A ${ }^{-1}$	AL	AS	B	BA	BE	81	CA	CD	CO	Cid	FE
68\%001	. 5	11690	21	4	66	.6	10	3130	2.4	5	7	30050
88KR002	2.0	1140	247	1	9	. 4	13	290	2.8	1	21	5200
8BMROOS	1.8	5790	38	1	28	. 4	12	430	3.7	1	27	13730
88M8004	1.8	2200	50	1	24	.5	13	500	3.6	3	38	8170
88MR005	4.0	3710	66	1	22	. 4	22	310	3.3	1	18	9200
$88 \mathrm{MR006}$	6.1	1260	49	1	12	. 5	13	330	27.4	4	53	10790
88HR007	1.2	10380	40	1	91	. 5	15	2730	3.5	5	27	18500
88 n 008	3.6	65380	95	1	32	. 4	16	430	9.5	7	45	21300
884R009	27.3	4910	1047	1	24	. 5	11	720	8.5	3	73	18710
88MR010	4.6	790	2487	1	11	. 4	13	210	1.6	1	53	8020
88.8011	3.8	560	116	1	6	. 4	44	160	3.9	1	23	8710
$884 \mathrm{ROL2}$	10.7	9630	3789	4	99	.6	16	1300	5.3	4	24	52070
88Mrot3	1.5	6720	172	1	43	. 5	11	1380	2.5	8	41	14290
98\%R014	1.5	4250	116	1	21	. 4	12	390	2.8	3	18	11060
88MR015	2.3	1030.	86	1	6	. 4	13	189	3.2	1	19	5120
-88MF016	2.8	1700	67	7	15	. 4	14	220	3.1	1	85	9540
88HROL7	2.3	1810	88	1	11	. 3	14	160	3.1	1	14	14480
884R0I8	2.0	6730	2151	1	8	. 5	13	6140	. 7	2	19	6860
88MR0:9	2.6	960	156	4	11	. 4	12	330	3.3	2	204	8790
88urion	2.2	770	62	9	5	. 4	12	300	3.1	3	238	8300
-88MR21	2.1	330	69	11	5	. 4	16	170	2.4	16	398	38300
88\%R022	16.0	3720	205	1	16	. 3	13	210	2.0	2	74	25750
884R023	7.2	900	24573	1	14	.3	11	290	39.7	5	6	28860
88KR024	325.3	510	14109	3	10	. 3	5	180	48.6	2	261	21030
B8MR025	3.7	11090	11741	3	35	. 6	12	1390	13.9	10	73	33090
-884in 026	4.0	5700	8477	1	46	. 6	14	2120	1.3	5	56	16500
88\% 2027	3.7	3880	187	1	51	. 3	32	1010	2.6	2	153	17030
88 MP 028	2.1	1080	98	1	7	. 4	13	450	3.3	1	31	9990
$88 \mathrm{kr029}$	2.5	1550	84	1	8	. 4	12	250	3.1	1	61	18060
884030	2.0	2760	76	1	22	. 5	13	320	3.1	1	21	10360
-8mant	2.2	5800	81	1	42	.7	13	350	3.3	1	15	14620
8848032	2.5	2800	74	1	23	.6	14	530	3.0	1	19	6050
88.hr033	2.8	4510	94	1	27	.6	14	840	3.5	1	20	7640
88MR0̇34	2.3	700	67	1	7	. 3	13	270	2.9	1	19	3840
88MR035	2.1	6500	70	2	31	. 5	12	590	2.1	1	48	28500
-88MR036	2.0	1100	49	1	8	. 4	12	250	3.5	1	31	5960
88HR037	10.7	760	2681	1	7	. 4	15	410	. 7	5	98	16520
88\%R038	2.3	3350	1231	1	33	. 4	13	890	1.9	4	74	8320
88:1R039	2.2	10320	106	4	55	. 4	13	610	1.6	3	160	25760
88MRO40	3.8	3120	10243	1	27	. 4	13	1000	13.9	5	21	15760
-88\% ${ }^{3} 041$	4.9	4960	- 509	4	64	. 3	12	1110	2.0	8	295	19700
88 RO 042	1.7	11760	673	4	71	.7	12	3640	. 4	7	31	16590
88MR043	7.9	5540	91	1	11	. 4	44	240	3.1	2	31	6050
88\%R044	2.5	7880	57	3	69	. 6	13	1730	2.8	4	109	19520
B8HR045	2.1	2780	52	1	35	- 7	13	710	3.0	1	22	2910
-8807046	2.3	1100	7235	1	6	. 4	12	270	10.2	2	36	14630
88 K 9047	1.1	12030	332	b	46	. 7	9	2950	1.0	6	235	30230
88MR048	3.0	1120	73	1	11	. 4	13	280	4.5	1	25	8070
884R049	2.8	270	67	1	5	.4	13	170	3.6	1	21	2760
88 HR 050	. 5	21090	43	6	75	. 9	10	790	1.9	10	36	- 43240
-88MR051	14.7	8620	74	5	43	. 9	7	31900	3.6	14	73	34510
88\%R052	947.9	5370	1	9	22	. 5	2	17000	126.7	7	2801	25440
B8HR053	25.8	10440	29	6	77	. 5	8	19190	3.9	12	36	40810
88189054	12.5	5150	75	5	52	. 2	9	18490	2.9	17	100	46030
88MR055	2.7	7060	46	2	40	. 5	10	380	2.8	5	21	15300
- $88 \mathrm{M} \times 50$	3.9	5310	42	1	32	.6	12	290	2.8	4	19	9860
884R057	1.8	4850	52	1	28	.4	13	190	2.8	5	16	11490
886×1058	2.5	6560	48	1	23	. 5	13	200	2.5	5	15	12930
884ROS9	. 9	12410	28	3	56	. 6	12	620	2.3	7	17	20260
88 MR060	1.7	9710	41	2	45	. 6	13	320	2.0	6	24	14560

COMPANY: CORONA CORPORATION
MIN-EN LABS ICP REPBRT
(ACT:F31) PAEE 2 OF 3
PROJECT MO: HISTY E88-13 P.0.8090 705 WEST 15 TH ST., NORTH VANCOIVER, B.C. V7M 172
FILE NO: B-1347/P!42 ATTENTION: L, SALEKEN/G.CROOKER

ATTENTION: $1.5 A L E K$	6.			(60)				-ROC	CHE			988
(VALUES IN PPM)	K	11	Mg	MN	M0	NA	NI	P	PB	58	SR	TH
- B6MP001	2580	58	5240	666	9	520	11	840	12	6	8	1
$88 \mathrm{HROO2}$	1250	56	1720	43	49	490	16	170	14	16	9	1
B8HROO3	1720	57	3600	84	60	610	15	250	12	10	10	1
8BMROUS 4	1310	57	1940	163	13	870	18	250	10	12	10	1
88YROO5	1480	57	3350	63	9	580	19	200	39	13	9	1
BBMROOS	1290	59	1850	66	9	510	15	230	268	5	9	1
	2180	60	6070	346	9	840	15	600	23	7	16	1
88MROOB	1310	59	5170	824	11	510	14	220	96	7	9	1
984R009	1560	55	4370	395	10	480	15	330	1027	18	10	1
B8HR010	1140	5 B	1750	123	41	510	16	160	123	21	9	1
GBMREI	1140	57	1560	39	11	480	16	150	35	12	8	1
98MRU!2	1760	57	6740	267	49	460	5	560	980	18	12	2
88HROt3	2160	57	3590	276	11	490	18	700	49	8	9	1
gerroli	1380	57	3370	375	11	530	16	200	23	11	B	1
明MROLS	1140	58	2110	71	10	490	18	160	13	12	8	1
BBFROI6	1340	5 B	1530	32	655	550	16	170	21	14	9	1
88MR017	1290	58	2080	51	27	500	16	130	11	17	9	1
BEHRO1B	1220	58	2040	145	13	510	18	140	46	15	20	1
88MR019	1120	57	1730	42	445	530	16	150	16	12	9	1
BBMRO20	1090	54	1640	31	825	530	18	200	11	10	8	1
8BMR021	1110	54	1340	44	32	470	14	130	10	6	8	1
88MK022	1140	56	3990	259	19	460	14	180	23	9	B	1
98HRO23	1330	54	1490	47	9	470	11	210	782	56	10	1
88MR024	1220	55	1390	30	9	470	1	190	27580	187	17	1
-8848025	1850	60	9820	809	16	650	12	370	178	37	13	1
-88MR026	1560	57	3640	192	14	480	15	240	141	28	13	1
88KR027	1940	60	2580	125	13	490	15	350	30	11	10	1
88MRU2\%	1130	55	1480	38	22	470	17	140	16	12	9	1
$88 \mathrm{MR029}$	1130	55	1890	52	12	470	14	150	19	11	10	1
88YR030	1450	56.	1700	56	10	460	19	260	18	11	9	1
- 9 MR13	1790	59	4320	101	9	480	16	1770	57	10	15	1
$88 \mathrm{MR0} 32$	1410	58	1920	34	9	490	17	420	46	13	9	1
88MR033	1840	58	3100	88	9	490	16	310	30	13	10	1
88MR034	1160	55	1590	55	8	490	16	140	12	13	8	,
-88HRO35	1580	56	2830	82	11	-560	10	260	9	11	23	1
-88MRO36	1160	54	1520	38	39	580	17	1350	10	11	9	1
$8 \mathrm{CMR037}$	1150	54	1610	47	16	480	16	260	B6	37	8	1
98HRO38	2000	56	1850	86	28	840	16	210	21	15	14	5
88MR039	2610	58	2810	50	30	680	12	320	16	14	17	1
- 884 RO 040	1750	56.	2050	54	11	510	15	360	22	53	12	1
-88M641	2100	57	2620	114	142	590	16	420	100	22	14	1
88 MRO 42	2710	60	6670	383	35	670	20	390	28	39	13	1
88MR043	1240	57	2170	48	16	530	17	150	20	14	9	1
88 MR044	3040	57	4650	203	72	630	14	180	14	13	10	1
88MR045	2160	54	1490	56	14	870	16	230	19	12	10	3
-8BMR 46	1160	56	1870	105	10	490	16	120	11	28	8	1
889 RO 47	2150	57	5090	335	205	990	13	400	13	5	12	12
88MR048	1250	56	1670	150	11	500	16	160	104	11	9	1
88MR049	1140	57	1420	28	9	500	10	140	12	15	8	1
8848050	2550	67	16400	302	8	580	48	590	22	1	10	1
$88 \mathrm{mR051}$	2790	55	11110	1052	8	520	22	1230	187	42	32	2
89MF052	1800	56	4800	680	7	490	1	530	55396	51.	22	1
$88 \mathrm{MR053}$	3070	56	5900	1257	b	620	9	1340	748	9	14	2
88MR054	2750	53	4800	938	14	570	10	1090	521	23	24	1
88MR055	1800	55	3600	541	17	500	16	220	48	11	9	1.
88MR056	1570	55	3120	303	11	480	18	180	30	10	9	1
$88 \mathrm{MRO57}$	1570	56	2640	472	10	500	15	180	33	11	9	1
88MR058	\$520	59	3790	185	10	490	17	210	15	12	8	1
88MR059	1840	5B	4750	468	9	560	19	520	20	7	9	1
8EMRObN	1890	58	3410	400	9	500	19	270	17	10	8	1

WALIES MPPY)	U	V	iN	69	SN	1	C8	AU-P9B	
	1	22.2	75	1	2	1	136	5)
88HR002	1	16.0	16	3	2	2	195	17	
884R003	1	26.5	27	3	2	2	172	40	
88MR004	1	18.4	18	3	2	2	167	12	
88YROQ	1	21.7	24	3	2	2	225	21	
	1	16.1	1482	1	2	1	169	18	
88MR007	1	47.4	79	2	2	1	154	8	
8848008	1	23.5	273	1	2	1	160	7	
884R009	1	21.3	333	1	2	2	206	460	
88 HRO 0	1	15.6	54	3	2	2	185	625	
884R911	1	15.4	19	3	2	2	196	10	
8848012	1	37.8	416	1	1	1	109	690	
89\%R013	1	21.0	55	2	1	1	151	35	
884R014	1	20.7	33	3	2	2	162	21	
88MR015	1	16.2	15	4	2	2	198	10	
B8MR416	1	18.9	16	4	2	2	164	7	
88 krO 17	1	17.7	14	4	2	2	191	10	
88nR018	1	15.6	78	3	2	2	157	304	
8848019	1	18.7	17	3	2	2	217	11	
98*R020	1	17.6	14	3	3	2	217	4	,
88\%R021	1	14.9	14	2	1	3	399	12	
884R022	1	20.8	36	2	2	3	331	197	
$88 \mathrm{KRO25}$	1	14.7	591	1	2	1	157	1840	
8BMR024	1	14.5	5212	1	2	1	187	1100	
88.16025	1	42.9	108	1	2	1	155	485	
$88 \mathrm{Mr026}$	1	20.6	147	2	2	2	154	325	
8848027	1	21.6	87	3	6	2	206	158	
88\%RUV8	1	16.0	16	3	2	2	231	4	
88HRO29	1	17.3	16	3	2	2	177	2	
$88 \times \mathrm{Ra30}$	1	19.9	24	3	2	2	219	6	.
88 \#R03 3	1	26.4	42	3	2	1	141	5	
884R032	1	18.5	14	3	2	2	172	4	
88*R033	1	18.4	46	3	2	2	204	2	
884R034	1	14.9	15	4	2	2	195	1	
884 PR 035	1	27.0	23	3	1	1	12.	6	.
884 K 036	1	16.1	13	3	2	2	230	1	
884R037	1	15.2	19	3	2	2	204	496	
88\%ROU38	1	15.5	19	3	2	2	165	125	
884R039	1	22.4	22	3	2	13	87	14	
884P040	1	16,8	38	3	2	2	175	1000	
$884 \mathrm{R045}$	1	36.6	43	2	2	1	118	17	
884R042	1	25.7	39	2	2	1	99	7	
88HF043	1	17.1	17	3	2	2	196	187	
88\%R044	1	27.8	39	3	2	1	99	10	
88kR045	1	14.1	13	3	2	1	127	6	b
88MR046	1	14.9	15	3	2	2	187	1300	
884R047	1	37.5	38	2	2	1	109	22	
88kR048	1	15.3	96	3	2	2	189	21	
88\%R049	1	14.9	13	4	2	2	211	8	
88KR050	1	93.9	109	1	1	1	136	6	.
88HRO51	1	25.7	$13!$	1	1	1	93	20	
88\%RO52	1	22.2	13655	1	1	1	141	2150	
88\%9053	1	31.8	248	1	1	1	86	36	
88\%R054	1	26.5	120	1	1	1	113	20	
88HR055	1	25.2	35	2	1	2	167	6	b
88 Hm 056	1	21.9	28	3	1	2	170	4	+
884RR057	1	23.6	22	3	2	2	224	10	
884R058	1	25.6	27	3	2	2	\$56	2	2
88MR059	1	39.8	51	2	2	1	115	7	
8849669	1	28.1	42	3	2	1	115	5	5-------

HMES AAS TOZ AERT
ACTSBIT PAEE : DF

Wame ${ }^{\text {a }}$	46	AL	As	B	8	BE	E	CA	CD	6	0	FE,
83040	1.3	156	40	2	48	. 6	12	731	2.3	7	19	18449
984\%62	1.8	2950	49	1	44	. 4	12	250	3.2		19	7600
80YRits	1.5	4890	67	3	67	. 4	11	610	2.6	6	27	18790
8845064	1.7	8950	55	5	44	. 3	10	320	. 9	3	59	57190
86Mrob	2.9	4480	5	1	31	5	12	300	2.5	3	36	12920
88.905	1.7	550	60	2	4	. 4	12	229	2.3	5	13	$1400{ }^{\circ}$
830407	2.3	630	75	1	6	.3	15	650	3.5	,	31	7830
88.504	2.0	1440	1202	2	5	. 4	12	640	2.1	4	77	:9720
38\%R06	1.3	18470	13	5	26	.	11	$44^{4} 40$	2.7	3	397	42870
884009	2.6	1490	5	6	14	. 3	15	250	2.9	1	102	13040
88\%高	25.6	356	bsb	2	12	5	\%	1770	5.3	1	3	16296
$88 . \mathrm{mb7}$	22.3	12350	3027	6	145	. 9	6	1920	12.9	8	54	37620
884905	11.3	9450	66 ?	\bigcirc	69	. 5	9	3420	9.7	${ }^{1}$	19	23000
88.5074	2.7	1950	98	1	8	. 4	12	350	3.6	3	39	15770
	9.0	9870	1523	4	57	. 5	11	1690	31	4	75	2520
8597075	29.5	10280	240	5	46	.6	11	120	3.4	4	129	- 355
Banfoil	265.7	6190	51225	8	64	.3	4	1990	81.3	29	896	93990
88\% $0^{\text {073 }}$	12.0	4850	2987	2	50	. 5	12	850	. 1	5	69	15830
88YR079	2.0	2122	1302	7	153	. 7	10	5320	2.4	11	57	4230
889500^{0}	30.5	3180	1044	2	28	. 5	13	670	14:7	6	132	21309
	5.4	5720	59	2	47	. 5	13	B6	4.9	5	71	12 E 70
Bumper	4.2	2379	527	1	24	. 4	15	250	2.6	1	58	10190
8840085	3.3	2790	392	1	28	. 4	12	330	4.4	4	b:	7830
geptus 4	. 5	27590	49	6	177	. 6	10	5960	3.7	13	106	40430
8898095	14.	5570	1249	2	50	. 4	12	870	7.4	3	136	13370
	. 5	27700	84	7	109	. 8	10	720	1.2	13	82	45090
68W\%u7	35.8	380	7054	2	31	. 5	12	780	2.2	5	73	14860
89\%9003	5.3	9190	2060		71	. 5	12	1029	1.9	4	97	24650
884 mc 89	19.7	11180	9994	5	96	. 6	12	1340	14.0	6	129	37270
88×800	27.5	1760	709	3	18	.4	10	300	21	3	283	7190
88.409	2.3	896	437	2	86	. 5	13	310	1.6	7	46	15610
8845097	. 5	17140	204	5	61	. 8	8	27660	1.1	9	50	34920
88\% 6095	12.4	9520	169	4	64	. 5	18	1650	1.8	3	52	20870
964509 4	17.3	5010	6857	3	50	. 5	13	1000	8.6	3	36	15680
BETPO95	23.3	3470	12651	2	39	. 5	12	410	19.5	3	115	18370
8849	6.5	4510	3238	2	48	. 5	15	820	4.8	1	100	12190
88Mr097	4.3	3210	1739	,	24	. 5	11	440	2.0	1	35	10430
	2.2	5540	196	2	37	. 5	11	750	2.8	7	71	14900
80\%F\|099	2.7	7520	1286	1	25	. 4	12	2660	1.3	4	39	14510
88Mtom	2.4	9610	2313	1	20	.4	11	4690	1.8	4.	39	15730
	11.1	4850	1001	2	28	. 5	11	1470	4.9	3	44	14950
82MH102	6.6	4970	743	,	22	. 5	12	570	5.2	4	57	14470
88\%atio	3.8	10240	762	3	42	. 4	,	2390	8.7	3	54	20320
88!nie4	. 5	24580	1932	6	174	. 5	11	30250	3.8	15	6	44020
88MR105.	3.1	10740	1903	2	32	. 5	11	2670	. 6	5	51	-21970
	1.8	18420	439	6	96	.	12	25619	2.4	10	37	34470
$88 \times \mathrm{R} 107$	9.8	10550	1234	3	54	. 5	12	3110	7.7	5	36	15970
88MR108	11.5	12550	4883	4	37	. 5	14	5390	4.3	3	144	25890
88×5109	1.2	25790	446	4	53	. 5	11	12630	. 7	5	41	18070
88MP110	1.3	25130	536	,	43	. 7	11	13050	2.2	4.	45	14550

	-	I	\%	隹	*	NA	M	P	$\stackrel{\rightharpoonup}{8}$	5\%	$9 ?$	H
884.at	1920	57	420	342	9	620	22	301	13	9	9	I
8exemi 2	:420	54	1960)	171	14	480	16	210	13	12	9	1
88.5063	1980	53	2149	78	170	620	16	450	19	8	12	1
883 moc 4	1780	56	6920	196	8	500	8	310	12	2	9	2
884P6E5	1770	57	250	115	15	500	16	409	14	12	9	1
$88 \mathrm{KC05}$	1910	56	2150	13	18	490	16	310	12	10	8	1
88M0t ${ }^{\text {a }}$	1120	5	150	108	12	490	19	150	10	14	9	1
dintots	1140	55	2120	77	41	460	15	320	11	16	8	1
88 mab ?	2200	57	7220	269	10	1570	9	310	13	$!$	31	1
884 MOTO	1212	54	1780	76	503	470	14	160	11	11	9	1
-82wn7 7	1340	54	7070	$4{ }^{6}$	14	470	13	270	2267	16	11	1
88:49072	2060	58	17940	1550	15	480	6	590	3607	3	13	i
8049075	2500	58	9070	573	9	520	14	920	1561	1	14	1
884n074	1190	54	3200	277	10	510	17	180	92	10	9	1
8899975	2640	$5{ }^{6}$	5060	456	11	520	14	+1120	125	14	13	1
-8847076	2540	58	5680	45	12	520	13	870	122	19	17	1
88 mav 7	3160	95	1810	66	9	510	8	420	604	236	17	2
88×5078	2240	56	2640	252	10	510	17	420	68	26	10	1
88 MR 079	2930	59	10810	1098	7	640	10	1540	26	6	25	1
88M030	1670	57	2390	194	10	510	16	300	605	86	19	1
88,	2041	57	3450	29%	10	510	21	450	24	12	9	1
88 RR082	1630	55	176	48	9	500	18	220	35	18	11	1
884908.	1650	54	1020	177	9	490	18	270	86	16	9	1
88 mbn 64	2489	61	11070	803	6	1100	14	1530	16	1	26	1
-8EM5095	2020	56	2800	139	12	510	15	520	906	151	10	1
	3150	64	12930	956	8	150	10	-1570	17	1	-26	1
8845087	1670	58	2110	± 74	12	510	18	290	751	38	18	1
8amp088	2780	58	2490	177	20	530	15	750	1805	12	12	1
B3HEVS9	2890	56	2850	183	64	540	14	950	4870	1	77	1
88MR090	140	54	1810	144	11	470	17	170	305	33	9	$\underline{1}$
885R091	2700	59	3240	25	9	530	19	720	30	11	12	2
88×9092	2850	59	9680	910	8	460	9	1250	16	2	41	2
$38 \mathrm{MRO93}$	250	62	3670	115	9	510	12	790	29	14	10	1
88\%6494	2400	57	1950	101	9	520	16	460	404	23	13	1
B8MR095	2070	56	1789	63	1)	510	15	351	558	28	15	1
-88409\%	2260	57	2130	54	10	500	13	580	1125	72	-12	1
SEM037	1570	55	2330	177	9	470	16	250	152	14	10	1
88×1098	1720	59	2810	518	8	520	15	420	28	11	9	1
$88 \mathrm{mRo99}$	1540	58	3450	301	13	500	15	280	48	13	15	1
88MR109	1430	57	3069	304	9	510	15	200	32	16	24	1
80MR101	1690	58	3600	448	11	490	14	390	512	15	11	1
884R102	1510	58	3750	344	14	480	15	250	417	11	10	1
88:1R103	1930	57	5160	565	10	480	14	470	239	5	31	1
88MR104	8340	60	14250	1097	6	800	6	1430	12	1	26	2
88MR105	1870	58	5850	538	12	510	13	350	45	15	15	1
89\%R:06	4920	61	10620	675	9	530	11	1250	50	5	10	1
88, ${ }^{\text {¢ }} 107$	2720	58	4720	394	14	510	13	600	466	12	15	1
88MRID8	1930	56	2600	110	22	520	12	260	316	17	30	2
88MR109	2740	56	4420	369	10	540	13	590	41	9	62	1
88MR1t0	2370	55	4370	410	8	540	13	540	66	9	33	1

MNEEM LABE ICE AEPNTT
(ACTAFII) PAGE 3 OF 3

ionpaly: zmexa zesp.
MIN-EX LABS IDP REPOT
(ACTEFA) PGEE 1 QE 3
PGOECT HE MSTY P.0.2090

FILE NG: $3-2345: 1+2$
ATENTX: L SAEEEVE CROKES

datempm	A 6	A-	A $\overline{\text { a }}$	8	BA	3E	8	Ca	Ci	co	d	FE
$65+00588+100 \mathrm{~N}$. 6	14959	45	1	55	. 9	16	1860	2.6	-	25	-350
$66+00698+254$	1.5	2660	66	1	53	5	15	730	4.3	1	35	2599
66+0. $298+564$. 3	(554)	26	1	37	. 8	17	1050	1.9	4	6	5766.)
66+60598+754	. 8	12880	37	1	49	. 9	15	809	2.9	4	13	42940
- $68+0969+000$. 5	1350	40	1	54	. 7	16	:970	3.2	5	27	35140
$66+10999+254$. 9	17040	5	1	42	. 8	15	970	2.6	4	33	27570
66+00698+50才	1.3	7040	48	1	30	. 6	14	930	3.2	1	33	12040
$66+90639+7518$. 4	13570	41	1	34	. 8	16	970	2.5	2	13	33760
66+00E100+00\%	. 5	9840	33	1	47	. 6	14	560	2.8	2	24	20170
-6t+09109+25x	. 6	14440	41	14	41	8	17	860	2.9	3	23	32680
$66+00600+504$. 6	14610	40	1	44	1.0	15	740	2.3	2	12	5589
66+60E $600+751$. 2	33600	i	1	93	2.4	1	2490	3.3	62	72	47740
66+006101+00s	. 9	7050	53	1	40	. 6	15	1410	3.9	3	2 b	17490
$60+606061+25 \mathrm{~N}$. 2	15110	21	2	93	1.0	16	1000	2.9	6	8	55980
-66+09E101+50N	. 3	. 30120	34	1	45	1.4	-14	. 1040	1.8	6	24	40550
-66+0020047 7 EN	.	2275	12	1	68	1.3	8	1561	1.9	37	21	-45080
$66+006102+004$. 1	17790	41	1	45	. 9	16	- 940	. 5		10	71280
66+005102+25)	. 2	20319	120	1	74	1.2	11	1760	1, 6	10	11	86606
$36+00 E^{102}+50 \mathrm{~N}$	1.6	2060	62	,	64	. 5	14	4140	4.5	2	30	2640
6 $6+00562+754$	1.1	2890	62	1	90	.4	14	2350	4.5	1	36	2169
	. 4	17160	50	1	47	8	14	597	2.2	2	24	42319
$66+000^{603}+2505$. 1	29310	59	1	69	1.4	7	2850	2.7	42	50	31830
66+00E103550\%	L.1	6870	64	,	25	. 6	16	610	3.2		24	10690
$65+0.00195+75 N$	1.5	15220	51	1	39	. 8	15	1100	3.0	:	46	16800
-66+96104+0\%	1.2	18298	51	1	54	1.1	17	970	3.1	5	12	39700
-66+006E $04+25 \mathrm{~N}$	1.4	12160	42	1	44	. 9	18	1490	-3.0	5	15	27790
$66+10 \mathrm{CLO4}+50 \mathrm{~N}$	1.0	17120	54	1	56	. 9	19	950	2.7	5	16	23560
$66+0$ E.04475	. 8	21269	40	1	79	. 9	15	910	2.6	3	14	29690
86+00E105+00x	. 7	24950	30	1	80	1.0	15	1440	2.7	4	17	28070
66tyet $05+25$	1.2	23030	41	1	55	. 9	15	850	2.3	3	34	14050
66+mederstix	1.4	12560	55	1	44	. 8	19	1760	3.4	5	18	31540°
	1.3	7590	64	1	54	. 8	16	890	4.7	2	28	13040
66+0\% 206400 N	. 5	28650	39	4	81	1.3	16	970	1.8		15	55940
66+0, $106+25 \%$. 6	21620	49	1	47	1.1	14	680	2.8	6	30	43630
66+09E $06+590$. 6	17450	32	1	50	. 8	18	810	2.5	5	9	52550
	. 5	23535	44	3	35	1.1	17	540	1.6	4	7	$785{ }^{\circ}$
$62+000^{107+006}$. 5	18270	43	2	22	. 9	15	760	2.8	1	6	70370
$66+00107+254$. 8	12130	49	$!$	25	. 8	17	530	2.7	2	10	29150
66+095:07+50N	. 6	18369	152	2	29	. 9	15	440	1.9	2	10	60920
66+09E107+759	1,6	6610	65	1	.60	. 5	17	390	4.0	2	29	9410
	-1.)	14750	46	-	29	B	17	420	2.6	4	-8	35820°
$66+005108+25 \mathrm{~N}$. 8	26330	72	1	68	1.8	15	740	2.7	17	58	28240
$66+00 \mathrm{E} 108+50 \mathrm{~N}$. 1	27330	81	1	82	1.5	12	3830	2.6	15	28	47790
66+1) 0 E108 7 75N	. 1	32860	65	2	122	1.5	12	1110	. 9	26	27	49450
66+00E $109+00 \mathrm{~N}$. 9	10230	40	1	73	1	12	19090	7.5	3	31	13030
66+00E! $09+25 \mathrm{~F}$. 5	27970	42	2	53	1.1	11	940	2.2	12	-54	49770°
$66+005109+50 \mathrm{H}$.6	27400	43	2	61	1.0	13	870	2.1	5	52	46950
66+001509+753	. 7	31570	47	4	78	1.2	15	590	1.2	10	40	45870
$66+00 \mathrm{E} 130+00 \mathrm{~N}$. 1	24460	36	3	54	1.2	11	650	1.9	9	15	50040
$66+005110+25 N$. 5	19370	37.	2	71	1.2	14	820	2.1	6	9	55940
-66+00E10 0 +50	. 3	21760	49	2	51	1.1	13	490	2.0	9	-34	56559
$66+00 \mathrm{E} 110+75 \mathrm{~N}$. 2	28970	71	2	95	1.4	12	540	1.0	11	30	56350
$66+00 \mathrm{E} 111+00 \mathrm{~N}$. 3	26920	68	3	49	1.2	13	370	. 6	,		72950
$66+00811+25 \mathrm{~N}$. 1	18050	37	3	67	1.1	9	560	1.6	5	11	74320
. $66+005111+50 \mathrm{~N}$. 6	11000	58	1	41	8	13	770	2.9	1	12	47100
$66+008111+75 N$. 5	20070	55	3	49	1.0	12	720	2.2	3	10	68160
166+005112+00k	.4	14700	30	3	22	1.3	. 15	480	1.9	3	6	80990
$66+00) E 112+251$.1	18900	34	3	66	1.0	12	1010	1.8	6	9	53240
$66+00 \mathrm{E} 12 \mathrm{t} 5 \mathrm{~N}$.1	16670	15	2	99	. 9	9	2430	2.3	5	9	47510
66+0¢E112+75\%	. 2	12120	45	2	38	7	17	710	2.6	3	15	35640

COMENAY: SROOMA SRRP.
(ACT:FJI) PAEE 2 JI 3
PROEE NO: MISTY FR 0,8090

FiLE Mi: $8-12475 / \mathrm{PI}+2$ ATENTON: SALEENG CROOKR

- Maxay pay	k	LI	H6	納	M	NA	-1	P	PB	S8	SR	TH
66tom93+6in	1510	5!	5270	248	11	600	19	750	9	6	20	1
$66+60898+25 N$	1480	52	2130	60	10	700	21	890	9	14	28	1
66+00E78+50N	1480	51	5320	341	14	570	13	780	10	2	14	1
66+00298+75N	1530	53	3850	639	11	57%	14	1630	12	3	15	1
66+00c99+00N	1500	49	5290	248	13	580	19	990	8	3	18	1
66+00c39+25id	1610	51	4790	174	14	570	19	679	11	8	14	1
$68+00679+50 \mathrm{~N}$	1440	47	210	82	12	570	17	1030	7	9	14	1
$66+00899+750$	1350	50	4260	141	15	50	16	770	b	5	14	1
66+00E:00+00 ${ }^{4}$	1410	49	2510	91	14	550	16	690	7	6	13	1
66+005 $100+25$	1500	49	3110	$14!$	17	620	17	880	18	6	15	1
$36+006100+504$	1570	50	330	212	16	610	14	1180	9	4	14	1
66+065 $000+753$	1730	61	10540	6030	45	570	27	1290	35	3	20	1
$66+605.01+04{ }^{4}$	1470	50	2350	152	25	570	21	700	12	10	17	1
	1600	50	3580	95.	19	570	12	950	10	1	16	1
86+60501+50N	1730	53	4720	545	26	860	17	1000	8	3	11	1
$66+60201+74$	1600	57	5580	3257	38	580	19	1470	28	1	15	1
$66+0 \mathrm{CECO} 2+\mathrm{OON}$	1560	52	4280	236	25	560	12	1040	9	1	14	3
$68+605102+25 x$	1510	49	2440	773	49	570	4	1660	16	1	17	1
66+065102+50 ${ }^{6}$	1470	49	2060	55	10	570	20	620	8	13	26	1
66+065:02+75	(154)	48	2100	79	9	580	19	959	9	12	27	-
$66+000^{03}+00 \mathrm{~S}$	1470	52	3920	124	12	560	22	760	11	5	14	1
$66+205103+25 x$	1620	58	6780	3693	35	590	30	1410	21	1	18	1
$66+0 \hat{0}$ [03 +50 A	1350	49	2710	117	20	560	19	400	9	10	13	1
$66+065103+75 \mathrm{~N}$	1700	48	1910	92	14	550	18	2030	6	8	14	1
66+100 $04+000$	1680	53	3710	315	31	580	17	100	10	8	17	1
$66+905104+25 \mathrm{~N}$	1640	52	2610	187	13	610	17	790	11	11	17	1
66+005:04+500	1740	52	3410	135	17	610	20	710	12	10	15	1
66+002104+75N	1670	69	9410	292	13	590	31	450	11	7	15	1
66+005:05+008	1620	70	10920	386	12	560	33	680	10	4	15	1
$66+00^{2} 105+25 \mathrm{~N}$	1490	6	6750	295	11	570	27	1169	9	7	13	1
66+002 $105+504$	1720	53	3390	178	21	590	19	930	14	12	17	1
$66+60105+75015$	1620	52	2980	105	10	569	24	1120	12	13	20	1
$60+005106+004$	1920	71	10000	55.3	11	600	30	780	11	2	15	1
66+00E105+25\%	1560	63	7570	295	13	570	28	850	12	7	12	1
$66+005106+50 \mathrm{~N}$	1490	52	5750	250	18	560	17	1019	6	5	14	2
$66+105106+75$	1550	60	6190	276	15	560	15	1340	16	5	12	5
66+00E! $07+00 \mathrm{~N}$	1410	54	4270	180	18	530	13	910	8	3	13	2
$68+005107+25 \mathrm{~N}$	1540	50	2800	309	15	580	16	1470	15	10	13	1
66+00E $507+50 \mathrm{~N}$	1430	5	3530	221	63	550	9	960	13	4	11	1
66+006107+75	1500	52	2300	50	12	600	18	1350	9	14	16	1
$66+00 E 108+004$	1470	53	3160	140	12	580	16	960	11	10	12	2
66+00E108+25	1570	60	6750	441	24	590	42	1640	13	6	13	1
$66+005108+50 \%$	1770	71	9430	1057	38	590	34	1910	12	1	22	1
664005108+751	1770	78	10790	1487	35	590	54	2030	14	1	17	1
66+00E $109+00 \mathrm{~K}$	1660	53	4749	304	59	590	27	2320	8	6	56	-
$66+00 E 109+25 \mathrm{~N}$	1520	71	9190	563	18	560	33	1530	8	1	13	1
66+00E109+504	1530	68	8030	279	14	560	28	1490	8	3	13	1
66+00E109+75N	1710	70	8500	433	10	590	44	1360	6	5	14	2
$66+00 \mathrm{E} 110+00 \mathrm{H}$	1730	65	7000	1520	13	580	25	2830	13	1	14	2
$66+005110+258$	1600	54	4090	797	13	570	14	1610	13	3	13	1
$66+00 \mathrm{E} 110+50 \mathrm{~N}$	150	86	8200	556	12	550	38	1840	13	2	14	1
$66+005110+75 \mathrm{~N}$	1560	70	8210	583	10	560	41	2050	7	1	13	1
$66+00 \mathrm{E} 111+00 \mathrm{H}$	1550	67	7390	508	15	550	25	1970	20	2	$1!$	1
$66+00 E 111+25 N$	1480	53	3950	861	11	540	14	2880	11	1	13	1
$66+008111+500 \mathrm{~N}$	1510	52	4010	136	11	560	16	1720	6	6	13	1
66-00E111+75N	1560	54	3680	881	9	590	14	1940	11	2	14	1
$66+005112+00 \mathrm{~N}$	1630	52	3580	975	14	630	6	1510	11	3	11	1
$66+00 \mathrm{E} 12 \mathrm{~L}+35 \mathrm{~N}$	1660	53	4210	1575	12	610	12	1810	12	1	16	1
$66+005112+50 \mathrm{~N}$	1860	56	5640	2461	10	660	15	2140	13	1	25	1
$66+005112+75 N$	1490	50	2650	156	10	530	16	1040	11	8	14	2

COWPAYY: ZORONA CORF.
MHEEN LASS ICP REPDRT
705 WES IETA ST., NOTH VALCOHER, B.C. VTH $1 T 2$
(ACT:TBI) PAEE I DF 3 FILE NE: 8-13475/P34 PRCDET: 210: MTSY P. 8.8090 ATIENIOH: SALECN/G CROWKER

WALPE IN PR	A	AL	AS	B	8	BE	BI	CA	CD	Cl	C	FE
$68+005105000$. 3	21670	40	3	5	. 8	15	1740	1.6	4	8	59010
60 + 00E113+25in	1.2	3100	60	19	72	. 6	14	1400	4.4	1	28	5500
$67+00 \mathrm{c} 98+00 \mathrm{~N}$	1.3	4860	56	1	43	. 5	16	1750	3.9	2	32	5190
$67+00578+25 N$	1.4	6580	59	1	49	. 6	20	1520	3.9	5	25	14030
67+40E98+50N	1.6	10270	69	1	64	. 8	18	1820	3.2	4	38	13970
67+00278+75	1.4	5320	65	1	54	5	16	1910	3.5	2	35	9290
67+005c9 +i0n	1.6	2080	64	1	35	. 4	15	1050	4.6	1	37	1830
$67+00539+25 \mathrm{~N}$. 6	20906	40	2	60	. 9	15	970	2.6	5	26	$48: 90$
$67+00690+50 \mathrm{~N}$. 7	9550	37	1	45	. 6	14	730	3.1	1	18	30770
67+60979+754	1.3	640	63	1	38	. 6	16	559	3.5	2	26	15220
$67+00 E 100+60 \mathrm{~N}$. 6	19380	50	3	44	1.0	17	1070	2.3	5	15	64740
	2.6	11150	62	1	46	. 6	16	890	3.1	3	25	25300
67+1905100+504	1.5	5340	64	1	31	. 7	15	610	3.3	3	33	15600
67+005200+75N	. 5	21400	36	4	43	. 9	18	810	. 8	2	8	80640
67+00E101+09世	.7	12360	40	1	56	. 9	15	800	2.3	3	25	35640
67+002101+2シN	1.0	11020	45	1	60	. 5	17	1949	3.7	5	38	22969
$67+005101+50 \mathrm{R}$. 3	46870	24	1	31	2.1	8	990	1.5	51	122	14390
$67+005101+754$. 9	13050	39	1	58	. 7	19	2300	2.6	6	29	35560
67+506102+00	1.8	1950	68	1	14	. 4	16	390	4.2	2	25	9910
$67+005102 \pm 25 \mathrm{~N}$	1.2	3400	71	1	39	. 7	14	4990	51.1	1	27	17120
67+605 $102+504$. 4	24.90	73	1	5	1.3	15	2049	2.3	9	37	41300
$67+005102+75 \mathrm{~N}$. 1	26410	53	1	74	1.6	1	3610	4.3	63	57	36550
$67+005103+00 \mathrm{~N}$. 8	12600	51	1	43	. 5	15	1270	3.4	5	30	2754)
67+605103 +25 N	. 3	22750	29	2	55	. 9	13	800	1.4	3	8	51190
67+09E103+50N	. 5	24550	42	2	58	. 8	15	920	1.4	4	17	35760
67+005103+75.	. 9	20380	40	2	58	. 8	16	960	2.0	3	11	47930
67+002:04+00N	. 7	20940	50	2	48	. 6	16	990	2.0	5	24	23700
67+005104+25*	.7	20280	34	2	81	1.0	15	1290	2.4	6	18	49710
67-06E104+50N	. 8	17536	62	2	37	. 9	13	750	2.3	3	21	45180
67+00E:04475N	\pm	21310	40	2	11	-9	16	600	2.0	3	11	51680
$67+00 E 105+804$. 5	18010	50	1	62	. 9	15	2710	2.4	-	15	45020
$67+005105+250$. 2	19230	31	1	60	1.0	14	870	2.4	5	7	57910
67+00E105+50N	. 2	21710	8	1	128	1.1	8	250	3.9	23	24	34440
67+00E105+75R	.2	30990	4	1	71	1.5	3	2530	3.3	90	37	26820
67+09506+00N	1	28010	10	1	64	1.1	2	1770	3.3	78	19	30790
$67+005106+25 \mathrm{~K}$. 6	$25: 20$	58	1	29	. 7	14	720	2.1	9	42	19590
$67+605106+50 \mathrm{~N}$. 7	15890	43	1	50	.6	15	690	2.3	6	20	24380
67+00E106+75N	. 8	12430	49	1	33	. 6	15	760	3.4	5	26	21980
$67+005107+000 \mathrm{~N}$.9	3580	58	!	74	. 6	15	1420	3.7	1	28	2580
67+008 $0707+25 \mathrm{~N}$	4	20000	58	1	33	. 7	16	570	2.1	2	7	39820
$67+00 \mathrm{E} 107+50 \mathrm{~N}$	1.2	13700	65	1	39	. 6	16	700	3.2	2	20	13310
$67+005107+75 \mathrm{~N}$	1.1	5520	52	1	21	.5	16	430	3.7	2	25	6490
$67+005108+00 \mathrm{~N}$. 8	13000	60	1	39	. 7	16	630	3.5	4	31	28490
67+00E108+25N	. 5	34380	122	1	41	. 9	14	630	. 7	3	33	43880
67+00E108+50\%	. 7	16960	31	1	29	8	18	640	2.4	7	7	44990
67+00E!08+75N	. 2	29500	95	1	68	1.1	12	680	9	6	26	57210
67+00E109 +00 K	. 8	11640	43	1	66	. 5	16	1410	2.8	2	21	28090
$67+00 \mathrm{E} 109+25 \mathrm{~N}$. 1	22200	12	1	85	. 8	9	570	1.8	16	12	44540
67+00E109+50K	. 6	11050	36	1	41	. 5	13	700	3.4	8	21	28090
67+00 $7097+75 \mathrm{~N}$. 7	12710	41	1	89	8	15	1380	2.5	5	21	29130
67+00E110+00N	. 1	16270	9	1	60	. 8	8	450	2.6	9	15	36000
67+00E110+25 5	. 5	14070	36	1	32	. 6	14	740	2.7	4	21	32720
67+005:10+50k	. 5	37600	32	3	33	1.0	15	460	. 4	3	20	47410
$67+005110+754$. 1	23960	2	1	69	. 8	6	1070	1.6	10	26	46790
$67+00 \mathrm{E} 111+0014$	1	24750	44	3	82	8	12	460	. 4	2	10	77780
$67+005111+2510$	1.1	11640	48	1	37	. 8	15	340	2.5	1	7	45890
67+00E111+75N	.1	15420	34	1	35	.7	12	290	1.6	1	8	65950
67+00E112+00N	. 1	24530	15	1	73	. 9	5	420	2.7	18	50	45120
$67+005112+250$. 1	20720	31	2	36	. 5	15	620	1.2	2	9	63970
$67+005112+509$. 5	15010	39	1	44	\pm	14	710	2.2	3	18	22130

COMPNY: CERGNA GORP.
MIN-CX LAES ICP AEPMT
PROECT MO: MISTY P. 0.8090

(ACT:F3i) Page 2 of 3 ATEMIN: SAEEENG CROOEE
 (Wgl IES in PPM $66+00 E 113+25 \mathrm{~N}$
$67+00598+00 \mathrm{M}$
$67+00598+25 y$
$+$

67+09999+754	1500	53	2299	84	11	600	17	710	8	13		
$67+00100+00 \mathrm{C}$	1699	59	5820	$3{ }^{3} 8$	15	620	15	112	15	13	14	$\frac{1}{2}$
$67+605100-15 N$	1550	54	2630	94	15	600	19	750	12	11	15	2
$67+006500+50 \mathrm{~N}$	1620	54	2050	81	14	6.50	20	720	8	1	15	
$67+00 \mathrm{E}$: $00+75 \mathrm{~N}$	1710	56	4970	393	15	640	日	㖪	7		15	
67+005101+009	1510	57	3440	240	13	620	5	980	17	d	14	1
67+00E101+25	170	50	3600	193	20	570	-15	$94 \hat{0}$	$\underline{1}$	8	17	
$67+000$ iot +50 N	1460	53	3290	2478	30	580	2	1850	8	8	20	1
67+00E101 7 75	1740	51	3430	248	31	630	18	1110		1	12	1
$67+005102+0014$	1460	58	1820	30	21	590	19	30	1	6	22	1
67+099102 +254	1400	49	1720	32	24	650	13	1020	.	16	11	1
67+00E102+504	1520	58	7600	519	61	598	20	-930	14	12	19	
$67+00 E 102+75 \mathrm{E}$	1870	56	7950	5560	47	640	17	1540	42	1	18	
67+60E $103+00 \mathrm{~N}$	1470	50	4280	237	13	580	17	850	9	7	16	
$67+00 E 103+25 N$	1540	54	4650	255	10	550	17	970	14		18	
67+005103+504	1510	54	4150	151	12	590	22	820	14	2	15	1
$67+605103+75 \mathrm{~N}$	1570	52	3560	167	12	-620	14	1090	10	5	14	
$67+00 \mathrm{E} 104+00 \mathrm{~N}$	1580	53	3390	115	15	590	24	640	10	9	15	!
$67+005104+25 \mathrm{~N}$	1598	60	7350	295	11	598	25	830	8	4	17	
$67+005104+50 \mathrm{~N}$	1480	55	5580	171	14	560	20	1110	8	5	17	2
6700E104+75\%	1470	51	2890	179	16	590	15	930	10	5	12	2
$67+105105+001$	1630	59	6040	240	17	599	22	820	-	-5	- 18	2
$67+00 E 105+25 \mathrm{~N}$	1730	57	4530	1077	20	610	14	2180	10	1	5	
$67+006105+50 \mathrm{~N}$	2010	59	7720	3571	19	650	24	1829	25	1	25	
$67+001105+75 \mathrm{~N}$	1939	58	7080	6822	24	730	26	2410	102	2	46	
67+00E $106+000$	1790	53	7240	7004	25	620	23	1420	27	1	23	
$67+005106+2 \mathrm{SN}$	160	57	4810	306	21	630	23	1420	11	-	-	
$67+0010106+50 \mathrm{~N}$	1580	54	4030	207	24	580	18	680	10	8	15	
$67+006106+750$	1580	55	4430	\$50	16	600	23	770	,	10	14	1
67+00E.107+003	1660	49	1820	50	12	630	21	860	7	12	${ }_{2}$	1
$67+005107+25 \mathrm{~F}$	1460	56	4830	136	26	570	16	560	9	7	13	2
$67+008107+501$	1600	60	4340	101	19	610	21	640	16	13	13	2
$67+005107+75 \mathrm{~F}$	1510	52	2050	50	16	560	19	350	?	13	12	1
$67+00 \mathrm{E} 108+00 \mathrm{~N}$	1580	52	4570	158	37	610	18	690	6	8	14	1
$67+00 E 108+25 \mathrm{~N}$	1520	60	5890	422	25	610	19	1400	13	4	13	1
$67+005108+50 \mathrm{~N}$	1690	55	7090	335	19	610	14	910	,	8	12	1
$67+005108+75 \mathrm{~N}$	1800	66	8720	419	58	600	30	920	14	2	14	-
$67+008109+00 \mathrm{~N}$	1540	53	3610	255	14	590	16	2070	10	8	21	1
$67+06 E!09+25 \mathrm{~N}$	1580	55	5290	1962	14	610	17	1710	10	1	14	1
67+00E109+50\%	1850	55	4520	1189	13	610	20	1670	20	4	14	;
$67+006109+75 N$	1640	54	5600	292	12	580	20	980	,	8	22	1
$67+008110+000$	1530	53	3660	3065	14	586	16	1370	16	1	14	1
$67+005110+25 \mathrm{~N}$	1640	52	4720	357	13	600	0	1370	6	5	14	1
$67+00 E 110+50 \mathrm{~N}$	1450	54	4060	288	12	600	17	1090	10	3	10	i
$67+00 \mathrm{E} 110+75 \mathrm{~N}$	1660	61	6110	2757	11	550	33	3000	12	1	14	1
$67+005111+000$	1470	61	5700	264	13	580	33	1570	9	1	1 i	1
$67+00 E 111+25 \mathrm{~N}$	1440	52	2370	139	13	580	4	199	12	9	11	1
$67+00 E 111+75 \mathrm{~N}$	1490	52	3170	234	16	570	5	1120		3	11	1
$67+005112+00 \mathrm{~N}$	1580	55	5630	3707	22	590	5	2800	20	1	12	1
67+00E112+25N	1460	53	3870	255	10	540	2	1110	12	2	12	1
67+005:122+50\%	1570	49	3590	173	10	580	0	780	6	5	13	;

COMgANY: CONOVA CORF.

(ACT:F31) PAgE 3 OF 3 FLE NO: 8-13475/F3+4
 -660

COKFANY：IJROLA CORP．
MN－EN LABS ICF REFOTT
〈ACT：FO！P PAEE：OF J PEOETH：WSTY F． 0.8090

TOS WSS ：5TA ST．，NCRTH VANCONER，B．C．VTM ITL

	A	AI，	A	8	EAA	BE	－${ }^{\text {－}}$	CA	C0	［0］	CiU	FE
$67+006112+75$	1.0	1296）	49	！	41	． 7	15	259	5.7	2	25	16780
$67+0 \mathrm{ct}$［： $5+00 \mathrm{~N}$	1.0	22650	50	$!$	56	． 6	18	800	2.0	3	24	15290
68＋00E88 +3020	1.0	8500	51	1	46	． 7	16	1100	3.3	5	29	16340
68＋00E98 +25 N	1.0	34440	50	2	31	1.0	15	Bu0	． 7	2	40	21100
$69+000^{2} 8+500 \times$	12	6750	57	1	23.	． 5	14	1270	3.8	2	30	7560
68＋00E98975	． 8	14230	48	1	47	． 6	14	3609	3.2	2	20	14080
$68+10$ E多 +00 N	． 2	26980	33	1	70	． 8	19	1390	1.2	b	12	50370
$68+10$ Cg99＋25．	． 3	32990	＊ 5	\pm	113	1.0	18	1730	1.6	11	15	49540
68＋0．E989 +50 N	． 6	17320	48	．	70	． 8	14	1010	2.4	4	25	31320
68＋10） $599+7$ EN	1	42750	19	2	60	1.1	12	1170	1	26	30	28649
$6 \mathrm{ab+6E100+60N}$	． 1	27950	12	3	59	． 5	16	2200	2.1	11	－	66180
$68+00 \mathrm{E} \cdot 60+25$	． 2	20770	17	，	88	． 7	18	1820	2.9	7	9	51660
$69+905100+50 \%$	1.2	9760	48	1	97	． 6	17	2550	3.7	4	21	15100
68＋09E：00 +75 x	． 1	34760		3	225	1.1	15	4070	2.5	17		54740
68＋09E $0101+008$	． 3	32450	30	2	± 00	1.0	15	1610	1.8	14	32	30650
$68+00 \mathrm{E}=01+2 \mathrm{EN}$	． 2	33270	22	3	147	1.4	15	2956	1.2	14	13	56270
68＋0GEST！ 5 EN	．！	36720	23	2	105	1.1	15	2650	2.2	22	81	33230
69＋00E101＋754	． 4	37329	48	3	106	1.0	18	2560	． 9	9	78	43880
$68+00 \mathrm{Ca}_{2}+00 \mathrm{~N}$	． 1	33810	32	2	155	1.1	16	2770	1.9	11	62	48090
68＋0CE102＋25N	2	35160	17	！	106	． 9	16	1990	1.3	11	63	49060
68＋00E $022+50 \mathrm{~N}$	1	37160	22	3	ii1	1.1	16	1960	1.4	12	65	51650
$68+100102+7 \mathrm{~N}$	． 3	27870	23	2	154	1.2	17	1910	2.7	10	80	55300
$68+005103+00 \mathrm{~N}$	． 4	23790	25	2	101	． 7	17	2150	1.7	$1!$	65	50710
$68+008108+25 \mathrm{~N}$	． 2	32600	21	2	110	1.1	15	2180	1.0	14	60	46000
68＋96： $03+50 \mathrm{~N}$	2	25980	33	3	105	9	15	1960	1.8	．16	34	41730
$68+0010103+75 \mathrm{~N}$	－	14670	41	1	85	． 8	L5	900	2.7	3	17	31140
$68+00 \mathrm{E}$ 104＋00 ${ }^{\text {a }}$	． 4	18750	47	2	56	.8	16	650	2.4	4	9	50790
68＋00E！04＋2－N1	． 8	13000	52		40	． 6	15	1210	3.0	3	15	32090
$68+00 \mathrm{E} 104+50 \mathrm{C}$	． 3	25400	40	2	67	． 9	16	730	1.3	4	8	51550
$68+005104+75 \mathrm{~N}$	9	15920	48	1	67	8	17	700	2.8	6	14	30910
$68+00105+1094$	1.4	14010	$7{ }^{1}$	－	3	．	5	126	3.6	3	－ 3	16010
$68+0$ CE105 +25 N	． 9	1683）	130	1	74	． 8	16	1280	3.3	4	50	41130
$6 \mathrm{6}+100 \mathrm{C} 1055+504$	1.4	4070	57	1	22	． 4	$1{ }^{16}$	450	4.2	2	25	4690
6日 $+00 \mathrm{ELO5}+7 \mathrm{NK}$	． 4	35270	42	2	67	1.2	17	1040	1.2	9	26	54300
$69+(0) E 106+5004$	＋	21340	47	1	54	1.0	15	1240	2.6	7	31	21890
$6 \mathrm{a}+00 \mathrm{CE} 106+25 \mathrm{~N}$	．${ }^{\text {a }}$	25140	50	1	46	． 9	16	910	2.0	5	19	40230
$69+000106+50 \%$	． 8	22790	$5 \hat{3}$	2	29	． 7	16	940	2.4	11	21	34800
$68+008106+75 \mathrm{~N}$	． 4	26140	38	2	41	． 8	15	690	1.6	9	22	51240
$68+00 E 107+00 \mathrm{~N}$	． 7	20110	114	1	33	． 8	14	590	1.8		23	41720
$68+60 E+07+25 N$	1.2	11400	54	1	57	． 7	15	700	3.2	2	27	19830
$68+00 \mathrm{E}=37 \mathrm{~F}+50 \mathrm{~N}$	． 5	20280	66	2	36	． 8	14	600	2.5	\％	26	39350
$68+00 E 107+75 \mathrm{~K}$	1.2	26780	54	1	13	． 7	15	520	2.5	4	64	3300
$68+005108+00 \mathrm{~N}$	1.0	13600	50	1	27	． 8	17	500	2.9	3	17	33210
$68+00 \mathrm{E} 108+25 \mathrm{~N}$	． 6	20870	54	1	30	． 9	16	610	2.8		17	46440
－68＋COE $108+50 \mathrm{~N}$	． 8	16100	41	1	27	． 7	16	740	2.8	3	25	43190
$6 \mathrm{~B}+00 \mathrm{O} 10 \mathrm{O}+75 \mathrm{~N}$	． 1	21586	21	1	63	8	12	2640	2.3	10	13	43750
68＋00E109＋00N	． 1	17280	22	1	50	1.5	12	2090	3.1	17	23	34080
$68+005109+25 \mathrm{~N}$	． 2	32790	264	1	73	2.2	7	2470	2.6	43	88	31960
69＋00E109＋50N	． 8	18060	43	1	45	1.1	18	1090	2.4	5	8	41100
68＋008109＋75	9	18580	40	1	45	． 7	15	760	2.8	6	31	26300
$68+008110+00 \mathrm{~N}$	． 6	15650	46	1	67	． 5	14	920	2.3	1	14	33920
$68+00 E 110+25 \mathrm{~N}$	． 3	27520	142	2	37	1.4	13	900	1.5	16	21	46730
$68+006110+50 \mathrm{~N}$	． 1	17600	22	，	51	． 6	13	770	2.1	6	14	45330
$68+006110+75 \mathrm{~K}$	． 1	41360	22		50	． 8	14	870	． 2	6	51	53880
$68+005111+004$	． 7	18090	28	1	19	． 8	15	540	2.0	1	8	58100
$68+005111+25 \mathrm{~N}$	4	18630	56	1	25	． 5	17	1040	2.1	7	7	39590
$68+00 \mathrm{E} 111+50 \mathrm{~N}$	． 8	16610	37	1	23	． 6	14	550	2.8	3	17	28580
$68+008111+75 \mathrm{~N}$	1.6	9190	51	1	20	． 5	20	370	3.9	3	26	4650
68＋00E112＋00N	． 6	25580	29	1	31	． 6	15	600	1.6	5	16	34490
68＋00E $112+25 \mathrm{~N}$	1	25280	23	2	28	． 8	14	790	1.6	3	8	19200

	,	-	-	浐	-	NA	Ni	P	F	38	Sip	H
$67+0$ E1:3+754	1640	5	38.0	104	10	6.0	$2!$	10.0	9	11	16	1
$67+005113+00 N$	1620	57	3311	163	11	640	20	670	11	10	15	1
$68+00598+00 \mathrm{~N}$	1500	53	3280	137	14	610	21	610	7	11	17	1
58+00c99+25N	1570	52	2390	95	10	610	19	2610	8	7	13	1
68+00978+568	1440	50	2000	50	10	641)	1B	114i)	7	12	14	1
	1616	50	2480	75	9	6.0	17	1220	9	8	19	1
68+50E99+60N	1840	58	6490	367	13	570	1.3	590	10	5	16	2
$68+100899+55 \mathrm{~N}$	2600	67	11240	479	10	650	20	820	13	3	19	1
68+00699+50N	1770	55	5710	253	10	600	19	1260	8	6	17	1
68+90999+75	1920	54	5090	2392	11	600	18	189	11	,	15	1
-69+60200 200 N	2080	- ${ }^{5}$	9850	786	11	6.0	13	90	7	1	21	1
$68+005100+25 N$	1700	49	6360	284	10	580	13	910	15	1	27	1
69+006100+50\%	1960	50	3620	206	10	640	17	1140	9	9	25	1
68+00E:00, 75 N	3670	55	13190	1950	10	660	15	1540	34	2	32	2
-68+00E101+00N	2320	59	7960	953	12	640	24	1980	11	3	17	1
	280	60	1000	132	11	650	19	156	9	4	25	3
68+00E:01+50N	2510	56	8900	1422	19	650	20	1880	15	1	21	1
68+100E101+75N	$25: 0$	55	11440	640	19	660	12	1130	16	2	23	1
68+00E $02+00 \mathrm{~N}$	2490	56	9630	946	2 B	600	14	1200	12	1	23	,
68+005102+25N	2440	59	9780	817	23	600	18	840	11	1	19	1
	2570	59	9949	85	24	610	17	900	11	1	19	I-
$68+005102+75 N$	2580	59	10670	656	26	670	18	1100	15	1	20	1
68+00E103+ 60 N	2320	59	9270	652	15	620	15	980	7	3	21	1
68+00E:03+25N	2070	59	10670	978	13	610	19	1170	12	1	25	,
68+60E 0105	2440	55	9030	1050	22	63	14	890	12	1	17	1
-68+002030 +75 N	1570	51	3360	243	11	580	16	1090	11	日	20	1
68+0CE104+00N	1540	56	5220	262	11	560	20	910	7	5	14	1
$69+30504+25 N$	1790	50	3850	207	17	680	13	1030	11	7	15	1
$68+006104+50 \mathrm{~N}$	1840	62	6620	240	12	570	24	810	13	5	13	2
68+068:04+75	1730	53	4420	149	18	570	18	630	12	9	14	1
-68+00:05+00	1730	53	4020	122	16	600	19	1520	7	11	15	1
68+006105 25 N	2080	54	7290	215	24	660	11	890	9	7	18	2
68+005:05+50N	1600	53	2450	62	10	590	19	440	5	15	15	1
	1870	58	7830	490	34	630	19	990	14	1	13	1
68+00E:06+100	1820	54	2850	183	29	600	19	1040	7	9	16	1
-68+00E:06+25N	1890	59	5160	237	54	640	20	1020	7	9	15	1
$68+00 \mathrm{E} 106+50 \mathrm{~N}$	1670	57	4090	457	31	670	14	1140	10	10	13	1
68+00E106+75N	1820	61	8510	601	42	600	22	1190	13	2	12	1
68+00E107+00N	1720	62	7250	541	63	600	20	750	11	7	12	1
$88+005107+25 \mathrm{~N}$	1650	53	2960	169	22	610	17	990	7	10	14	1
68+006107+50N	1750	57	6410	286	62	590	20	780	5	6	13	1
$6 \mathrm{~B}+0 \mathrm{CE} 07+75 \mathrm{~N}$	1390	51	2000	43	11	640	20	1920	6	10	10	1
$68+005108+00 \mathrm{~N}$	1640	55	3410	214	29	590	15	790	10	10	13	1
68+00E $108+25 \mathrm{~N}$	1660	56	5990	384	33	590	17	970	9	7	15	1
68+005108+50N	1710	53	4020	263	20	620	12	1270	12	7	14	1
-68+00108+7 ${ }^{\text {N }}$	1780	56	8450	1209	51	630	18	1330	9	1	19	1
$68+00 E 109+00 \mathrm{~N}$	1610	54	5590	1606	57	580	18	1020	16	1	18	1
$68+00 \leq 109+25 \mathrm{~N}$	1930	54	5180	3369	68	640	22	1680	17	1	19	1
6B+00E:09+50N	1760	53	4200	463	87	670	11	1140	12	9	15	,
68+00E $109+75 \mathrm{jk}$	1620	55	6330	377	19	600	18	1150	6	8	20	1
-69+00E $110+00 \mathrm{~N}$	1650	54	7310	757	27	590	19	1750	8	4	10	-
$68+00 E 110+25 \mathrm{~N}$	1610	56	5970	1262	95	620	16	1210	16	2	13	1
$68+00 E 110+50 \mathrm{~N}$	1600	50	5270	699	24	550	12	1020	6	1	14	1
68+00E:10+75N	1600	52	8050	266	35	550	15	1010	11	1	13	1
$68+00 \mathrm{E} 111+00 \mathrm{~N}$	1480	49	2360	389	50	660	6	840	10	9	11	1
-68+00E111+25N	1520	52	7610	314	24	580	16	1100	11	5	12	1
$68+00 E 111+50 \mathrm{~N}$	1400	51	4160	148	10	530	16	1350	8	8	11	1
$68+005111+75 N$	1440	51	1890	32	10	570	17	690	11	14	12	1
68+00E112+CON	1460	51	5840	216	8	540	16	770	11	5	11	1
6B+00E: $27+25 \mathrm{~N}$	$15!0$	19	4270	384	9	560	11	2360	12	1	12	1

-ivaticc in m	A5	A-	A5	B	A	BE	II	CA	CD	Co	cu	FE
-68+10 $0 \cdot 12+50 \mathrm{~N}$. 9	7540	36	-	$2{ }^{9}$.6	19	390	3.6	6	25	1175
$68+065: 12+75.5$. 5	20580	28	1	40	. 7	15	790	2.1	4	3	30610
$69+008115+100 \mathrm{~N}$. 7	15740	36		26	. 6	15	600	2.8	5	13	25450
$68+00 E: 13+25 \mathrm{~N}$. 6	19220	19	1	33	. 8	18	920	2.9	9	12	34870
-68+095:13+50N	1.3	11790	56	1	29	-6	15	910	3.1	3	32	10990
	. 1	25480	17	2	36	. 9	14	1040)	1.2	10	13	53410
68+00E:14+004	. 6	19430	41	1	36	. 6	14	740	2.1	7	21	31630
69+00898+009	1.0	9230	56	1	5	. 4	14	116i	3.1	2	34	12890
69400ETS+EEN	. 7	12230	54	1	30	. 7	3	970	2.8	2	26	26790
$69+96 E 99+50 \mathrm{~N}$	1.2	3700	56	1	49	. 4	15	1610	3.7	2	34	5110
-69+00E98975	1.2	24270	56	1	35	.7	16	670	2.5	2	4	9678
$69+00599+0.0 \mathrm{~K}$	1.2	25700	58	1	21	. 6	16	650	2.9	1	42	2070
$69+60599+25 \mathrm{~N}$. 1	28250	18	2	75	1.0	11	1290	3.1	40	27	29540
$69+06899+5014$	1.0	7870	59	1	39	$\times 4$	14	1600	3.7	4	31	15500
69+60E99+75N	. 9	85.2	35	1	73	. 5	15	1290	3.8	4	29	14160
-39+001000+00-N	. 5	15000	33	I	42	. ${ }^{-1}$	15	940	3.2	9	35	27909
$69+005100+25 \mathrm{~N}$.9	8560	51	1	63	. 6	14	2090	3.4	4	25	12090
69+00E:00+50\%	1.1	14690	35	1	33	. 7	16	700	3.5	8	17	30240
69+00E100+75N	. 6	21560	39	2	43	. 9	18	950	2.0	b	10	47500
69+1)EPIten	. 1	34780	16	2	75	1.1	12	1530	2.6	56	9	45970
	. 2	31870	96	-	82	. 7	15	2990	1.7	11	12	43790
69+006:01+50\%	. 3	30140	59	1	77	1.0	15	2550	2.7	17	27	40750
69+00E101 7 75	5	22910	49	1	69	. 9	18	2570	2.2	6	9	36780
68+00E102+00N	. 1	31550	23	2	122	. 7	16	2599	2.3	23	40	49730
69+00E102+25N	4	25800	29	2	134	9	18	2909	2.1	8	57	$4{ }^{4} 40$
-69+100102 $2+50 \mathrm{M}$. 6	27090	51	5	83	. 9	19	1880	1.9	-	29	44520
69+00E:02+75N	. 2	40020	3	4	228	1.0	20	3030	. 9	8	35	63870
$69+000103+0004$.4	25150	23	1	100	. 9	21	2710	1.7	10	9	47080
$69+00 E: 93+25 \mathrm{~N}$. 1	33440	13	2	81	1.1	15	1750	1.8	14	20	50690
69+00E03+50N	2	35790	25	1	$9:$	1.1	4	2770	2.7	125	85	3550
69+00E 0 O +759	. 8	25550	43	1	50	1.2	15	1380	2.4	5	64	22289
$69+008.04+00 \mathrm{~N}$. 5	15850	44	1	88	. 8	15	1040	2.7	4	24	43850
69+006104+25w	. 3	17940	64	1	4.3	. 8	15	470	1.7	4	17	53010
$69+00 E 104+50 \mathrm{~N}$. 2	27200	35	1	62	1.0	13	780	1.9	15	55	41130
69+001204+75	2	247\%	28	1	45	9	12	420	1.6	8	7	58649
	. 1	34050	59	2-	94	1.1	12	446	1.0	10	25	65720
$69+00 \mathrm{E}$ 105 +25 N	1.1	17920	59	1	25	. 8	15	800	2.0	3	19	30030
$69+00 \mathrm{E} 105+50 \mathrm{~N}$	1.7	21140	82	1	34	. 9	16	1550	3.2		98	9880
$69+005105+75 \mathrm{~N}$. 8	19970	78	1	42	. 6	16	600	2.9	3	19	40600
69+02e:09+00N	1	23770	14	2	38	-	9	512	2.3	39	21	41790
-69+00E106+25N	. 1	25676	20	1	39	. 9	14	550	1.2	7	7	52940
$69+00 \mathrm{E} 106+50 \mathrm{~N}$. 2	22530	31	1	30	. 8	11	620	2.3	9	23	45610
$69+1008106+75 N$. 5	18250	67	1	26	. 8	16	570	2.3	,	11	48050
69+00E107+00N	. 7	25340	147	1	40	. 7	17	1010	2.4	5	12	38200
699+00kt27 +25 N	1.3	28930.	50	1	10	. 6	15	380	. 9	1	42	35250
-69+00E107750N	1.1	14720	47	1	19	. 6	15	620	2.4	1	37	23860
$69+00 E 107775 \mathrm{~N}$. 6	20500	28	,	29	. 8	15	1780	2.2	4	32	27810
$69+00 E 108+00 \mathrm{~N}$	1.2	15310	57	1	14	. 6	15	370	2.8	1	40	2650
69+00E:08+25K	. 2	20290	53	1	27	. 6	12	290	1.5	5	17	63390
69+00E108+50N	1	24040	1	1	53	. 5	8	780	1.9	12	23	39710
69+00E108+75N	1.0	-346.30	40	1	12	. 8	14	520	1.2	1	81	8000
$68+00 \mathrm{E} 199+60 \mathrm{~N}$. 7	12520	31	1	57	. 7	15	850	2.8	5	21	21500
$69+00 \mathrm{E} 109+25 \mathrm{~N}$	1.1	8950	42	1	30	. 6	18	590	3.2		21	11140
$69+00 \mathrm{E}$ 109+50N	1.0	20930	43	1	18	1.0	19	490	1.3	3	,	31910
69+00E109+75N	1.4	18550	52	1	22	. 9	19	500	2.7	3	15	23650
69+00E110+60N	. 1	9780	10	1	162	. 8	6	2550	3.4	15	20	23370
69+00E110+25N	1.4	4150	53	1	21	.6	14	560	3.7	1	24	4130
69+00E110+50N	1.2	4300	47	1	20	. 5	14	640	3.7		22	6270
$69+00 E 110+75 \mathrm{~N}$	1.2	9390	41	1	46	. 5	15	880	3.4	3	30	12040
$69+00 \mathrm{E} 111+00 \mathrm{~N}$	1.3	2900	61	1	21	. 4	15	950	4.1		27.	4020

COMPANY: CJSONA CDRP.
(ACT: FJH) FGGE 2 OF 3

FILE WO: $8-1347 \mathrm{~S} / \mathrm{P7}+8$

(604)929-56:4 OR (6141998-4524 : TYPE SOI: EEOCHEM \& DATE:SEPTEMEER 8, 1988

TVALUE		II	1	M	M	NA	M		PB	58	S	-
68+002:12+50N	140	49	360	948	10	560	17	69.	17	6	19	1
68+0CE112+75N	$15!0$	49	5400	168	9	50	15	890	9	4	12	1
68+00213-40N	1470	50	4290	214	11	560	16	570	10	6	14	1
$68+000.15+25 N$	1580	52	6690	21.	19	600	18	740	13	6	13	1
68+605113+50N	1670	52	2439	121	15	650	19	1270	12	13	16	1
-69+06E	1580	54	7080	1085	9	600	15	1560	10	1	12	1
68+00E!14+00N	1470	54	7770	510	9	610	19	1150	7	4	15	1
$69+00 E 98+00 \mathrm{~N}$	1670	49	2490	94	11	620	18	1260	9	9	15	1
69+00698+25N	1450	48	2920	108	12	610	18	1130	10	7	14	1
-67+00598+50N	1360	49	2220	57	10	610	20	590	7	13	18	1
-69+100698+75N	139	5	173	23	10	600	20	25%	7	11	14	1
69+00599+004	1321	49	1650	22	9	580	20	2190	b	12	12	,
69+100699+25.	205)	5	6750	2107	11	600	19	1960)	20	1	17	1
69+00295-50N	1500	49	3190	:36	10	580	19	950	6	9	18	1
-69+00899+75	2060	49	4230	176	9	580	19	740	7	7	13	1
-69+00E100 000 N	1740	51	8780	368	12	580	15	1100	12	7	12	1
$69+005100+25 N$	1620	50	4280	123	10	600	20	1100	b	10	21	1
$69+00 \mathrm{E} 100+50 \mathrm{~N}$	1520	54	9940	116	9	580	19	500	10	9	13	1
$67+605100+75 \mathrm{~N}$	1700	54	4500	472	12	620	13	830	8	b	14	2
69+005101+00N	2310	54	7930	1861	10	810	14	980	21	1	18	1
69+00E101+25N	210	$5{ }^{\overline{3}}$	7000	944	4	850	14	1044)	16	1	25	1
69+0, ${ }^{2} \mathrm{COL}+50 \mathrm{~N}$	2420	51	6460	1062	11	600	10	1240	9	1	26	1
69+00E $501+75 \mathrm{~N}$	2210	51	6290	353	14	610	11	1000	10	4	37	2
$69+005102+09 \mathrm{~N}$	3090	52	15229	1260	11	610	14	960	9	1	26	1
-69+005:09+25N	2600	54	9210	693	24	760	9	1110	11	3	27	1
$69+00 E 102+50 \mathrm{~N}$	2480	52	5520	322	17	620	10	1710	12	3	22	1
69+00E102+75N	3530	52	13430	690	19	620	4	1060	13	1	19	2
69+00E $103+00 \mathrm{~N}$	2420	$5!$	8640	503	21	620	9	640	6	2	21	2
69+06E103+25	2300	54	9550	1099	31	600	14	890	9	1	18	1
$69+005103+509$	2220	53	7920	4517	44	640	18	1300	$2!$	1	27	,
69+002503+75N	1720	51	4320	149	19	590	14	770	7	7	13	1
$69+00 E 104+004$	1870	52	4730	163	15	580	13	950	11	5	31	1
$69+005104+250$	1441)	58	5790	209	15	540	22	550	11	5	12	3
69+00E: $04+50 \mathrm{~N}$	1590	68	9800	525	12	540	46	840	11	1	14	1
69+005104+75	1500	63	7580	598	15	530	24	770	6	1	11	1
-69+00505+00:1	1900	66	10160	513	36	570	42	680	13	1	12	1
$69+00105+25 \mathrm{~N}$	1490	55	4200	115	33	580	18	730	7	9	13	1
$69+005105+50 \mathrm{~N}$	18.0	54	3980	101	14	640	21	1340	20	11	15	1
$67+005105+75 N$	1550	54	4590	183	27	560	17	900	10	b	14	2
-69+005106+00N	1610	57	7900	2539	40	570	27	1020	9	1	12	1
-69+005 06025 N	1540	54	4520	786	19	560	13	1360	7	1	13	1
69+00E106+50N	1610	57	7720	736	38	550	20	1570	10	1	13	1
69+00E:06+75N	1580	54	4750	570	59	570	15	950	9	4	13	1
69+005107+00N	1930	54	7410	206	18	560	14	$1: 50$	9	5	29	1
-69+00E107+25N	1370	50	1950	32	15	550	13	2100	8	6	11	1
-69+00E107+50N	1570	51	3330	121	24	540	14	2070	9	B	21	1
$69+100107+75 \mathrm{~N}$	1690	53	7340	203	30	550	20	1020	11	5	34	1
$69+005108+00 \mathrm{~N}$	1380	50	1640	19	10	550	20	1490	8	12	11	1
69+00E108+25N	1340	59	7320	340	16	510	20	600	10	1	12	1
-69+00E $108+50 \mathrm{~N}$	150	52	6710	2514	16	550	19	1140	10	1	16	1
-69+005108 +75 N	1390	48	2100	71	11	530	20	2910	6	5	10	I
69+00E109+00N	1840	50	6850	199	12	54.	20	850	10	6	14	1
69+00E109+25N	1440	51	4190	82	15	540	22	410	10	11	14	1
69+00E109+50N	1510	51	2400	131	14	610	12	710	20	11	11	1
69+00E109+75N	1650	55	3390	114	20	670	19	590	18	13	12	1
$69+00 \mathrm{E} 110+00 \mathrm{~N}$	1760	47	4420	3313	15	540	23	2530	15	1	24	1
$69+005110+25 \mathrm{~N}$	1400	49	2140	61	11	560	18	550	6	14	13	1
$69+00 E 110+50 \mathrm{H}$	1390	49	1960	74	13	540	17	450	7	12	12	1
69+00E110475	1450)	49	2540	188	27	550	16	750	B	9	15	1
69+00E119+00N	1460	50	1760	74	18	570	19	710	6	13	13	1

Comsan: Donata sorp.
PGOET ME WICTY P, 0.2000
MHEN:ARS ICF REPORT

ATEETISN: SALEEN/S.ERODER

		H.	AS	B	明	BE	B	C	C	C0	[F-
	2.3	9750	150	1	37	. 5	15	1250	3.4	${ }_{5}$	5	13760
$67+006: 11+509$	1.3	7710	74	1	26	. 3	16	570	3.4	2	38	10500
$69+008111+75 \mathrm{~N}$	1.1	12690	58	1	25	. 4	18	730	3.5	3	3	20880
69+00EA12+00	1.3	11980	45	1	43	.6	18	1499	3.2	5	24	12820
$69+095112+25.4$	2	13530	1	1	45	. 6	9	810	2.5	24	11	43780
	1.2	920	31	1	39	. 5	17	1036	3.1	4	20	9270^{-1}
69+66E112+754	1. ${ }^{2}$	7810	48	1	33	. 5	16	580	3.4	2	22	8820
$39+005113+096$	1.2	10130	50	1	4.5	. 4	18	770	3.3	3	18	i3450
$68+602133+2515$	1.2	9850	51	1	24	. 5	17	360	3.1	3	24	15570
69+00E:1J+50\%	1.1	14450	52	1	79	. 7	16	590	2.9	4	19	16930
$67+606159595$	1.2	-1标40	5	1	47	. 6	16	930	3. 3	4	19	18170
	. 5	12270	31	1	42	. 5	14	950	3.0	8	14	27550
70+005 $58+000$	1.5	4580	69	1	49	5	16	1110	3.5	2	38	234)
70+00cse +250	1.2	4360	69	1	42	. 4	16	1750	3.7	3	28	10940
$70+00078+504$. 3	$2: 710$	48	1	67	. 7	14	2560	2.8	11	21	38420
$70+100598+76 \mathrm{~N}$	1.4	4010	77	1	34	. 4	15	6150	3.9	2	39	7260
$70+00599+004$. 9	12800	274	1	41	. 5	15	2550)	2.5	4	21	27930
$70+00 \mathrm{E} 97+25 i$. 7	$2: 120$	815	2	67	. 6	19	95\%0	1.8	8	9	51060
70+60099+50)	1.0	15870	241	1	74	. 5	18	3590	3.5	6	is	27160
70+00E99+75\%	1.0	15730	191	1	57	1.0	13	6840	3.9	11	35	9390
$70+00600+60 N$. 1	35700	263	3	116	. 8	14	4510	9	-	9	49180^{-1}
$70+605100+25 \mathrm{~N}$. 8	12450	99	1	66	. 6	20	580	2.2	5	9	41580
	1.4	6700	58	1	26	. 5	18	1860	3.8	4	25	8040
70+00E106775	1.3	6540	50	1	24	. 6	14	980	3.7	2	36	7080
70+00ctol +004	1.6	7430	59	1	34	. 5	17	2450	4. 2	3	28	4990
	1.0	12700	85	20	561	. 6	14	4740	3.3	3	29	$1965{ }^{\circ}$
	. 6	18870	55	3	27	1.0	19	570	1.3	4	6	61590
$70+00 E 101+75 \mathrm{~N}$. 6	25530	54	3	87	1.9	18	1350	1.4	8	13	58:70
70000E102+00N	. 6	29940	59	2	37	. 9	15	690	1.3	4	10	44380
$70+09602^{2}+25 \mathrm{~N}$	1.6	2880	70	1	58	4	14	730	3.9	1	28	2920
	. 6	6470	$3{ }^{1}$	-	61	. 6	18	910	4.3	4	22	10770°
70+60E102+75	. 2	24810	64	1	39	. 8	15	800	1.8	,	8	42380
70+60E203+60:	. 2	22420	144	1	52	. 9	15	850	2.1	7	12	50560
$70+6 \mathrm{CLO}+25 \mathrm{~N}$. 3	29550	87	1	27	. 6	13	570	1.1	4	25	26620
$70+00 \mathrm{E}$ 93+50N	1	39240	24	3	163	1.2	17	2529	1.1	9	34	67730
	3	31870	24	1	38	. 8	15	710	1.6	4	-36	24830
70+0)E104+004	. 2	26790	37	1	$3!$	1.1	14	450	. 9		23	55270
70+00E: $04+25 \mathrm{~N}$. 3	42310	46	2	26	1.0	16	450	.6	2	28	39130
$70+608104+50 \mathrm{~N}$. 4	25:90	54	1	28	. 8	18	690	1.7	5	20	39400
70+00EE04+75	. 4	26900	47	1	49	. 9	17	530	2.8	7	27	24670
$70+008105+004$. 6	21050	41	1	37	. 7	16	670	2.9	4	27	26970^{-}
$70+100105+25 \mathrm{~N}$. 7	38820	43	6	10	. 8	15	500	1.1	2	75	3130
70+00E105+504	. 3	15880	35	,	27	. 6	14	510	3.0	,	20	31160
$70+005105+75 \mathrm{~N}$. 1	54790	10	2	152	1.3	21	2740	. 2	10	155	74540
$70+00 \mathrm{E}^{106+00 N}$	3	21930	199	1	40	. 6	17	1070	2.2	3	24	36810
$70+00106+25 \mathrm{~N}$.6	22.50°	30	I	35	1.2	23	1320	2.4	9	19	29070
$70+00 \mathrm{ELOb}+50 \mathrm{~N}$. 4	22400	36	6	26	. 9	16	790	2.1		27	36410
$70+006106+75 \mathrm{~N}$. 5	27980	39	1	12	.7	14	470	1.7	1	82	6820
70+00E107+00	. 2	23930	35	1	24	. 8	16	540	1.9	4	21	49400
70+00E107+25:	. 2	24040	62	1	42	. 5	14	1180	2.5	5	58	33440
$70+006107+506$. 2	24630	29	I	51	. 8	13	1030	1.7	4	69	414990°
$70+00 E 108+25 \mathrm{~K}$. 4	25860	51	1	26	. 7	14	3250	1.9	,	80	41210
70+00Et08+75	. 3	24190	62	1	30	. 8	16	890	1.3	3	13	49190
$70+005109+00 \mathrm{~N}$. 1	25800	1	2	16	. 5	12	740	1.3	1	35	93330
70+00E109+25	. 6	13570	44	1	24	. 5	15	700	3.1	2	23	15310
$70+006109+59$.6	3330	51	I	40	. 4	15	1700	4.4	1	29	3880°
70000E109+75	. 2	40300	38	1	32	. 6	16	680	. 2	3	34	31400
$70+005110+008$. 2	19800	36	1	27	. 7	15	610	1.9	5	15	46790
70+00E $110+25 \%$.1	13970	35	1	61	. 6	12	1220	2.4	14	19	44380
$70+06 \mathrm{E} 120+50 \mathrm{~N}$	2	6960	47	1	44	. 5	16	. 630	3.2	,	33	22280

（ACT：FJ）fage 2 QF 3

－Whaten ${ }^{\text {Pm }}$	K	Ii	湤	㬉	10	M	1	，	\％	S	5	Tili
－69＋bedita	1410	51	3210	88	41	60	2	1150	－	12	17	1
69＋0001：12＋50）	1470	$5!$	1980	39	61	520	18	990	8	11	14	1
$69+0 \mathrm{EE} 112+750$	1610	50	370	79	123	580	17	1030	12	9	14	1
$69+66112+006$	1850	53	4770	172	18	750	17	1210	12	11	19	1
69＋0，${ }^{\text {a }} 112+258$	1790	54	3370	4642	60	620	16	2850	27	\pm	1t	1
69＋005112＋504	1790	5	2701	279	17	600	13	156）	15	11	17	1
	1500	50	2280	104	11	570	17	1060	9	12	13	，
$69+00 E 115+504$	1540	52	3340	99	12	530	17	520	8	11	15	1
69＋60E153＋250	1540	52	250	96	14	600	12	6 行	9	11	13	1
69＋00E 13 ± 04	1559	5	4380	174	19	606	19	650	13	11	15	1
－69＋06115＋5．9	1690	54	440	169	11	6－0	17	976	12	11	13	1
$69+65114-604$	1710	53	2920	1687	11	650	16	1330	27	2	16	1
70＋60E98＋60N	1500	53	1870	63	9	660	20	919	6	16	15	1
70＋0697825	150	50	1960	87	17	660	19	600	9	14	17	1
70t00889504	175	57	B280	597	16	570	21	1000	11	2	10	1
	1600	51	2780	107	14	620	19	829	19	12	18	－
70＋00EC9＋004	1620	51	4310	165	18	600	25	1180	14	8	17	1
70＋10） $99+25 \mathrm{~S}$	172	56	7170	474	11	660	10	1070	26	3	24	1
70－60E99＋50\％	2210	5.	4010	374	16	610	16	1210	29	9	26	1
70＋60 $79+750$	150	53	2400	974	12	610	18	1650	17	8	21	1
$70+0051004008$	2720	54	8320	$114!$	14	620	12	1240	11	1	20	－
70＋00E $000+25 \mathrm{~N}$	1790	52	440	167	15	590	11	880	17	7	14	1
	1540	52	3110	180	10	580	22	370	13	12	17	1
704006 $600+75 \mathrm{~F}$	1570	50	2650	8 ？	9	569	21	1060	7	11	12	1
70＋60 $502+00 \mathrm{~d}$	150	52	2910	169	$11)$	579	24	450	9	14	17	－
$70+006101+253$	1760	52	4530	179	10	630	14	1310	9	9	37	1
$70+00 \mathrm{c} 20150 \mathrm{~N}$	［750）	53	2680	522	16	840	7	840	21	10	12	1
$70+60101+75$	2130	57	8750	46	10	600	17	930	14	3	17	1
$70+65^{2}+600$	161\％	50	36	321	10	580	11	1740	14	3	13	1
70＋08：02＋35	1596	48	1340	30	19	630	18	840	7	13	17	－
70700E $02+506$	1790	51	3650	72	10	50	17	500	7	11	11	1
70＋605：02＋75N	1580	52	55^{560}	184	12	576	$1!$	740	9	4	13	1
	1740	59	8560	35.	13	570	22	720	10	2	14	．
$70+005.03+254$	140	50	3500	219	11	550	17	16.0	1！	6	12	，
$70+006505+c 08$	3960	54	17840	1154	17	580	3	780	16	1	38	1
$70+001035+755$	1770	52	5470	25	12	570	16	1570	8	3	12	－
70＋00E $04+004$	1490	58	6500	557	16	580	20	790	9	2	13	2
$70 \div 008.04+2500$	1410	54	3550	219	14	590	15	990	14	7	11	1
$70+0$ E $54+508$	1500	5	5100	285	29	576	17	680	7	7	14	1
700005 $04+75 \mathrm{~d}$	1750	59	7820	239	14	610	24	600	12	8	12	1
70＋60E105＋00N	1720	5	4880	163	27	620	29	1120	11	8	13	1
$70+005105+251$	1390	50	1920	34	10	610	18	1490	11	11	10	1
707005105＋500	1570	47	2630	99	19	540	11	730	8	5	13	1
70＋00E105 7 75	4130	53	27720	871	54	720	8	1010	14	1	14	1
$70+605106+00 N$	1660	52	4700	136	93	590	14	780	11	6	17	－
$70+005106+25 \mathrm{~N}$	1510	52	6660	166	59	650	16	640	15	7	13	1
70＋002：06＋50k	1560	51	4980	268	27	610	19	990	8	4	12	1
70＋00E106＋75N	1410	45	1790	36	12	540	19	2390	8	5	11	1
70＋60E107＋00N	1540	51	5570	328	22	580	15	640	7	5	12	2
$70+1005107+25 \mathrm{~N}$	1540	53	8340	242	26	550	16	1040	8	4	26	1
70＋00E107＋50N	1800	51	9000	157	130	560	18	1420	9	3	32	2
$70+00 \pm 108+25 N$	1590	53	5350	124	148	590	11	1780	13	5	29	1
$70+00 \mathrm{E} 108+75 \mathrm{~N}$	1470	51	4360	334	18	580	12	830	13	6	15	2
$70+00 \mathrm{E} 109+00 \mathrm{~N}$	1490	51	11340	750	40	530	1	1700	14	5	12	1
$70+00 \mathrm{E} 109+25 \mathrm{~N}$	1690	50	3570	99	21	580	19	1250	13	8	14	1
70＋005109＋50N	1680	48	2370	112	11	590	20	800	7	12	16	1
70＋00E109＋75k	1360	51	4100	260	12	570	17	1170	10	5	12	1
$70+100 \mathrm{E} 110+00 \mathrm{~N}$	1680	53	5240	656	29	570	14	1520	10	3	13	1
70＋000 $110+25 N$	1680	50	4370	1644	42	550	17	1130	8	1	19	1
$70+005110+501$	1470	50	2390）	487	29	550	19	660	6	8	16	1

COMPany: EDON:A COKF.
MSH-EN LARG IC? REPGRT
(ALT:FJ!) PAGE : JF PRBECT Nif: MTSTY 0.0 .8090

705 WES 15:H Si., NORTH WMCOUER, E.C. VTM 172

(6)4) 700-58:4 0R (604)383-4544 Y乡E

(\%ase	Äb	ALL	Aิ3	b	EA	\% ${ }^{-1}$	EI	CA	E	Co	C	FE
-70+60. $19+75$	1.2	36	57	1	93	. 3	15	2450	4.0	1	35	4370
70+atc: $11+00 \%$	1.9	5050	52	1	44	. 5	16	1800	4.1	2	31	4780
	1.4	9790	40	1	67	. 6	19	2240	3.7	6	9%	18920
$70+008111+50 \mathrm{~N}$. 2	23080	68	1	5	. 6	15	1200	1.7	9	41	46640
70+00 $111+754$	\%	1560	$3{ }^{3}$		28	. 8	17	84)	2.5	2	9	4745)
-70+00E: $2+000$. 2	20590	54	1	29	, 7	16	B10	1.6	2	11	68720
$7(1+00 E 112+254$	1.3	3480	56	.	75	. 5	16	3660	4.1	1	31	2590
$70+006112+504$	1.3	9199	54	1	24	.6	16	680	3.3	1	34	3070
$70+00512+75 N$	1.3	11780	59	1	16	. 7	18	440	2.9	2	30	4730
75+000 $13+694$	1.3	9090	47		20	. 5	20	510	3.6	4	25	7860
-70+002020 5	1.4	6049	57	1	37	. 6	16	750	4.0	!	30	420
	. 9	6590	39	!	17	. 5	15	660	J. 5	3	17	16800
70+0) $5113+750$	1.4	500	43	1	37	. 3	15	550	4.0	1	29	4392
	. 4	19563	27	t	36	.6	10	800	2.8	9	17	31390
$71+006004$	111	10489	${ }_{5}$	1	37	. 6	14	1000	3. 3	1	34	830
$71+00 E 00+2 \mathrm{Na}$	1.4	- 2150	52	1	14	. 5	17	105	3.7	1	26	240
71+00E10n+50.4	1.2	5590	47	1	36	. 4	16	570	3.3	2	$2!$	9050
$71+008160+75 N$	1.3	8560	$5{ }_{5}$	1	29	. 5	15	1090	3.7	1	36	6840
T1+00E101+00N	1.0	11020	42	,	28	. 5	16	490	3.5	2	25	9390
71+60E101+25	. 8	21780	150	1	50	. 9	14	1050	1.8	5	13	39120
$77+0010+500$. 1	2530	67	2	47	. 9	14	870	1.8	9	13	45980
$74+1008101+7 \mathrm{EN}$	1.3	37120	59	2	15	. 8	15	520	. 9	2	52	8890
71+00E102+00\%	1.0	25170	58	1	21	. 9	15	820	2.2	4	40	15990
$72+0060^{2}+2 \mathrm{Ek}$	1.2	13130	5.	1	30	.6	17	560	3.0	3	29	11490
31+052192+50N	. 6	27680	28	3	49	8	19	750	1.4	9	日	45010
	1.2	35560	52	1	15	.9	16	510	1.2	2	5	7550
$71+005105+00 \mathrm{~N}$. 2	30950	23	2	49	. 9	13	780	1.7	18	21	46560
$71+00 \mathrm{E}+0 \mathrm{E}+25 \mathrm{~N}$. 1	30060	23	2	36	1.3	13	809	1.6	35	20	42883
74002:05+50n	. 3	24570	44	$!$	40	. 9	14	590	2.1	8	22	46280
$75+10503+75$. 8	18870	37	1	29	1.4	15	660	2.4	4	9	-4350
$71+0.654+500$. 7	17100	30	1	57	. 9	14	4350	-2.5	5	10	4250
71-0¢E:04+25	. 8	9180	36	1	28	. 7	15	660	3.3	4	24	18380
$71+100 \mathrm{c} 54+50 \mathrm{y}$. 5	8710	5	1	16	. 8	17	639	3.5	2	7	55080
$71+005104+752$.3	17780	58	1	T1	. 8	15	610	2.9	7	25	35090
71+09E105 +000 N	. 1	30120	51	1	20	1.2	13	730	1.4	11	25	45890
$71+0 \mathrm{E}$ 25+2 ${ }^{\text {2 }}$.2	40470	70	2	25	1.2	16	690	. 3	9	30	45590
$71+06 E 00^{2}+504$	1.0	24960	53	2	33	1.2	20	1030	2.2	8	24	25330
$71+005105+75.4$. 4	19220	44	1	25	. 7	18	700	2.0	7	8	48870
7!+00E $56+304$. 7	25980	99	1	37	1.0	20	1543	1.6	8	34	24580
$71+00506+25$. 5	31189	411	1	43	1.0	14	1050	1.2	B	45	45690
$71+00 \mathrm{E}=10 \mathrm{~S}+50 \mathrm{~N}$. 1	22750	167	2	32	.7	15	510	2.1	9	13	80290
$71+10 \mathrm{E} 106+75 \mathrm{~N}$	1.2	10140	68	1	17	. 5	20	1240	2.8	4	27	14300
$71+005107+00 \mathrm{~N}$. 9	13970	233	1	25	. 5	18	450	3.2	4	15	22390
$71+00 E 107+2$ 5N	. 8	19940	74	1	25	. 7	15	530	2.4	3	50	12240
$71+00 \mathrm{E} 107+50 \mathrm{M}$	1.0	8810	40	1	17	. 5	15	500	3.8	2	28	8210
71+00E107+75 ${ }^{\text {N }}$	1.0	6210	40^{-1}	1	9	. 4	15	280	3. ${ }^{\text {a }}$	1	32	4150
71+00E108+00N	.6	17960	89	1	22	. 6	17	590	2.5	5	22	29380
$71+00 \mathrm{E} 108+25 \mathrm{~N}$. 9	15660	37	1	14	. 6	17	720	3.5	6	24	20040
$71+005108+50 \mathrm{~N}$	1.3	14000	49	1	10	. 5	15	490	3.0	4.	27	21200
$71+005108+75 N$. 7	19670	15	1	30	.?	28	1210	2.6	13	13	32580
$71+1005109+00 \mathrm{~N}$	1.0	15760	698	1	102	. 6	24	1170	2.5	9	25	23310
$71+00 \mathrm{E} 109+2 \mathrm{EN}$. 3	26940	76	1	36	. 7	16	1420	1.1	9	121	53880
$71+00 \mathrm{E}$ 299+50N	. 3	32850	39	1	25	. 9	15	640	1.2	3	26	47750
$71+006109+75 \mathrm{~N}$. 3	41.300	54	1	33	. 8	16	670	. 1	5	56	31570
$71+006110+00 \mathrm{~N}$. 6	12940	41	1	35	. 4	17	980	2.4	4	7	43710
$71+005110+25 N$. 9	3020	42	1	34	. 5	16	880	3.6	4	22	12560°
$71+00 \mathrm{E} 110+50 \mathrm{~N}$. 1	14970	B	1	111	. 7	1	1400	2.4	12	18	43240
$71+005110+75 \mathrm{~N}$	1.2	4240	63	1	25	. 5	15	1090	3.6	2	$3!$	4180
$71+00 E: 11+00 \mathrm{~N}$. 1	25980	96	1	50	. 6	10	650	1.4	12	49	50610
$71+005111+25 N$	1.1	3890	$6{ }^{\text {6 }}$	1	29	. 4	16	1849	3.6	1	33	5450

(Vaides in PM	K	1	\%6	-	M	d	Wi	?	Pr	5 B	3	TH
70+10E! $10+75$	175)	$5)$	270	它	11	6	20	1640	11	12	25	1
$70+605111+00 \mathrm{~N}$	1520	56	2050	65	15	58%	20	800	11	12	22	1
70+00E1:1+25	22.3	52	6390	195	12	620	17	870	10	8	17	1
70+6E1:12+50N	1710	52	7170	795	16	569	16	1040	8	1	99	1
$70+00 \mathrm{E} 111+75 \mathrm{~N}$	1680	52	3920	482	20	670	8	1760	13	8	13	1
$70+108112+004$	1420	50	4 C (197	19	560	8	1050	17	4	24	2
70+0eE112+254	1680	51	2290	50	9	600	19	930	11	14	31	1
70+00c:22+ Fin	157\%	50	1820	32	10	560	21	1950	11	12	14	1
$70+6 \mathrm{E}$ 112+75	1540	52	2446	46	14	570	19	1200	17	14	13	1
70+00e $115+009$	1549	52	2639	45	11	570	19	810	15	13	14	1
70+00E:13+25	1500	52	2320	44	10	576	20	1330	12	13	15	1
700+00E1!3+503	1450	51	2940	112	10	560	14	650	10	10	13	1
$70+005113+751$	1570)	50	2520	130	9	620	19	770	8	12	18	$!$
70000:14+003	1570	51	7835	211	11	560	$2!$	580	11	4	18	1
$71+00100+000$	1699	50	2050	40	9	610	17	2330	7	10	14	1
$71+005100+25$	1360	53	170	5	10	580	17	320	8	15	12	1
71-00E:00+50N	1740	51	3510	70	9	550	19	690	7	13	11	1
$71+005100+750$	1670	50	1900	38	9	610	17	1570	12	12	13	1
$71+005101+00 \mathrm{~N}$	1550	51	3080	50	10	560	18	990	10	12	12	1
$71+00501+25 \mathrm{~N}$	1970	53	5360	289	11	600	13	1240	50	5	13	1
7!+006:01+50m	1770	55	750	911	15	590	18	1100	16	1	14	1
71+00E:01+754	1490	50	2540	82	9	610	19	3000	13	9	11	1
71+00E102+00N	1600	$5!$	2799	155	10	850	16	2430	11	10	14	1
$71+006102+25 \mathrm{~N}$	1900	51	3570	104	10	570	13	1260	11	10	12	1
$7!+005102+504$	1800	5.3	659	355	10	600	13	990	7	5	13	1
$71+006102+751$	1470	51	2230	52	9	620	20	2170	8	10	11	1
71+006.103+000	1710	56	7849	1541	12	590	19	1180	8	1	14	1
71+005103+25.	1590	53	6519	125:	14	610	19	990	20	1	12	1
$71+8 \mathrm{E}=0 \mathrm{C}+50 \mathrm{~N}$	1640	58	9090	429	15	500	22	850	8	3	12	1
$71+008103+754$	1620	52	430	520	15	640	14	1020	14	7	12	1
$71+005104+00 \mathrm{~N}$	1630	51	7900	382	13	540	18	950	10	5	15	1
	154it	49	4510	111	15	540	20	640	8	9	13	1
71+005104+50N	1590	48	2070	252	30	720	5	870	22	11	12	1
$71+006104+75 \mathrm{~N}$	1680	51	6550	368	23	550	17	560	7	5	13	1
$71+005105+000$	1510	50	3910	1045	16	590	11	850	19	3	11	1
$71+005105+25 \mathrm{~N}$	1430	52	5170	461	17	560	15	940	13	5	12	1
$71+06 E 105+50 \mathrm{~N}$!540	53	6380	236	11	610	20	890	15	9	12	1
71+00E105+75N	1520	51	4640	56:	24	580	12	560	13	7	13	1
71+00E $106+00 \mathrm{~N}$	1540	56	8076	232	13	579	25	800	12	8	18	1
$71+008105+25 \mathrm{~N}$	1630	53	5990	358	115	570	16	1280	20	4	20	1
$71+008106+50 \mathrm{~N}$	1500	54	6210	915	25	530	17	670	14	1	12	1
$71+00 \mathrm{E} 106+75 \mathrm{~N}$	1430	49	1760	108	21	550	20	760	13	10	14	1
71+00E $007+0010$	1630	49	4940	152	12	530	19	480	10	8	12	!
$71+00 \mathrm{E} 107+25 \mathrm{~N}$	1510	51	4730	114	9	560	21	1130	13	8	14	1
71+068107+500	1380	47	3460	60	12	530	18	800	8	9	11	1
$71+006107+75 \mathrm{~N}$	1270	48	2100	36	9	530	18	820	7	11	10	1
$71+00 \mathrm{EL} 08+00 \mathrm{~N}$	1480	51	4350	147	30	550	16	650	8	8	15	1
$71+005108+25 \mathrm{~N}$	1380	51	6910	163	16	570	25	760	17	7	12	1
$71+005108+50 \mathrm{H}$	1460	49	4270	210	17	550	18	1110	15	8	12	1
$71+00 E 108+75 \mathrm{~N}$	1460	49	8370	263	11	600	19	600	26	4	15	1
$71+00 \mathrm{E} 109+100 \mathrm{~N}$	2290	49	6330	147	10	590	19	920	64	9	14	1
$71+005109+25 N$	1580	54	8560	365	17	570	24	760	7	2	17	1
$71+005109+50 \mathrm{H}$	1500	49	3940	383	20	570	12	1210	12	3	12	2
71+00E:09+75N	1420	53	4710	313	18	560	17	1080	14	5	13	1
$71+00 \mathrm{E} 110+00 \mathrm{~N}$	1680	49	3970	401	26	560	12	1090	11	6	14	1
$71+00 \mathrm{E} 110+25 \mathrm{~N}$	1500	48	2180	247	16	550	18	550	7	10	14	1
$75+005110+50 \mathrm{~N}$	1680	47	3830	6186	23	540	19	2090	22	1	18	1
$71+005110475 \mathrm{~N}$	1420	47	176)	92	13	570	19	520	7	11	19	1
$71+005111+00 \mathrm{~N}$	1460	49	3940	1346	31	550	14	1820	11	1	20	1
-71+00E11 +25 N	1410	48	1740	59	16	570	19	630	7	13	18	1

(ACT:FSD) PAEE : DF 3

Walyamp	${ }_{\text {An }}$	Ai	A	8	bA	HE	B1	CA	0	C0	CU	\%
	1.0	11910	84	1	29	. 5	16	910	3.7	4	41	27450
	. 9	7960	92	1	27	. 5	14	810	3.6	2	3	18570
$71+005112+004$. 5	15720	256	1	35	. 4	16	1020	2.6	4	26	33770
7+06E112+25k	1.0	21700	72	1	15	. 5	16	550	2.0	1	48	25650
-71+1025112+591	1.0	1500	14.	1	19	. 5	19	699	2.7	4	38	29850
	. 6	23550	119	2	26	. 7	17	1950	1.4	13	96	43450
$71+00 \leq 15+00 \mathrm{~N}$. 5	35140	970	3	61	. 8	15	3090	1.4	18	142	42640
$71+00515+50 \mathrm{~N}$	1.0	3570	76	1	19	. 4	19	1120	3.1	5	64	23670
7i+DOE11-73it	1.0	16250	37	1	32	.6	17	1080	3.5	9	28	24120
-71+b0E114+003	2	2900	37	2	38	9	16	980	1.4	9	33	52 c 9
$72+10898+00 N$. 4	$186: 0$	120	1	81	. 5	13	18.0	2.5	4	37	31060
72+60E98+25N	.1	58229	1008	3	50	1.1	10	2600	. 5	47	29	29590)
72+00E88+50N	. 1	50200	101	3	76	1.0	11	1700	1.5	21	35	44500
72+00E98+75N	. 1	49780	202	3	79	1.0	17	1500	. 7	12	47	44480
7200099+00N	5	30420	177	2	45	. 9	17	920	1.3	4	18	40100
$72+00 \mathrm{C} 99+25 \mathrm{k}$	1.1	4830	57	1	49	. 5	16	1610	3.7	2	34	6730
72+00299+50N	. 3	13650	67	1	77	. 6	19	1070	3.1	7	15	24000
72+00E39775 ${ }^{\text {d }}$	1.2	7540	62	1	41	. 6	16	2330	3.5	2	32	4880
72+005100 +00 E	1.1	9220	67	1	40	. 7	14	2510	4.0	3	30	7110
-72+00E $00+254$	1	29790	131	2	39	. 9	14	1990	1.4	7	7	60260
72+00E00+504	. 2	24430	129	2	48	.7	17	790	1.7	6	10	5076
72+005 $200+75 \mathrm{~N}$. 8	12820	74	1	42	. 6	16	790	2.5	3	22	20260
72+005101+00N	. 3	24630	74	1	51	. 7	17	970	2.8	7	8	56020
72+00E10: +2 EN	. 1	30950	239	1	46	1.2	13	890	1.6	32	17	45500
-72+008 $01+508$	1	48360	1603	3	66	2.1	14	2830	. 3	29	42	47010
72+00101+75N	. 1	68830	1189	4	27	1.1	15	1050	1.4	13	22	28420
72+60E102+00N	.1	32.349	137	2	100	. 9	6	760	2.1	25	9	44490
$72+006102+2 \mathrm{~N}$. 2	44950	129	J	126	1.1	19	810	. 7	12	7	70570
72+1)EES2+50N	. 1	27820	195	2	39	. B	14	829	1.5	22	?	70230
$72+00102+75$. 4	24390	76	1	31	6	17	689	1.0	3	17	50590
72+005103+004	. 8	27240	108	!	22	. 9	16	1050	1.7	5	32	22140
$72+805103+254$.4	27880	52	2	44	. 7	13	610	1.5	6	9	557.50
72+002103+50\%	. 1	29470	21	3	43	. 7	14	610	. 9	9	6	64190
72+005030735	1.0	14670	48	1	33	.6	15	1170	2.5	2	28	14560
$78+095106+25 \mathrm{~N}$	3	16850	44	1	36	. 5	17	1260	2.7	5	7	52650
78+00E $097+75 \mathrm{~N}$. 5	21800	179	1	33	. 7	15	1360	2.6	6	48	41580
$79+005108+00 N$.6	16330	333	1	29	. 6	15	800	2.8	4	24	38080
$80+005!05+50 \mathrm{~N}$. 6	24540	60	1	30	.7	16	1790	2.5	5	28	43570
$80+00 E T O 8+608$	1.3	12800	90	1	36	. 6	15	980	3.0	2	28	19770
$80+08515+50 \mathrm{~d}$	2	2560	210	3	51	. 7	15	1320	1.1	9	59	71970
$81+00 \mathrm{E} 09+00 \mathrm{~N}$. 7	10510	61	1	25	. 4	14	460	3.2	3	24	22740
$84+00 \mathrm{E} 968+254$	1.2	12650	52	1	35	. 5	14	370	2.9	2	28	23920
$84+008097+50 \mathrm{~N}$. 7	11760	46	1	61	.7	16	910	3.4	3	19	23250
$84+005102+75 \mathrm{~N}$.1	19310	921	2	42	. 8	9	1270	3.3	16	8	53170
$84+005103+00 \mathrm{~N}$	3	20690	424	2	55	. 9	4	900	3.2	20	11	42930
$84+00103+75 N$. 1	18770	86	1	45	. 6	10	1520	2.1	10	9	39660

Wactiver	K	I	4	M	10	W	N	\bar{F}	9	S	5 R	Ti
71＋00611＋50	1450	51	5	134	18	540	15	600	7	9	15	1
74＋005： $51+75$	1460	49	2720	129	17	550	17	1350	7	10	16	1
7！＋005：12＋00N	1480	50	52.5	355	35	550	19	1350	12	5	29	1
	139	49	2340	56	13	580	15	$\bigcirc 210$	8	9	12	1
71＋00c $0+2 \times 50$	1720	51	2800	175	51	679	16	1170	11	12	13	1
$71+0 \mathrm{E} 122+754$	1510	53	59.6	be	25	6.0	26	1340	12	4	19	1
7i＋0起 $15+00 \mathrm{k}$	1570	54	9420	498	21	620	37	80	12	5	89	1
71＋00E13＋504	1430	50	2579	187	20	560	19	950	13	9	18	1
71＋60：13＋75N	1620	51	7776	226	！！	580	21	849	9	7	14	1
71＋09514＋00	$\underline{1519}$	55	11190	418	12	550	$2!$	710	6	1	18	1
	150	48	450	305	10	6	15	1410	12	4	40	－
72＋6E98953	1650	4 ${ }^{8}$	4130	2475	22	530	16	3120	$1!$	1	17	1
72＋00E735－50	1060	51	5976	2158	11	600	12	1530	13	5	24	1
72＋00E5月75	1800	54	6560	697	9	630	10	1310	11	1	35	1
72＋mE99＋的而	1550	52	3890	207	11	600	11	1510	11	6	16	1
	170	50	2510	b7	10	650	19	680	\％	13	19	－
72＋00679＋50N	1870	51	7520	291	10	570	19	500	11	7	30	1
72＋00E99＋75．．	1519	50	1760	35	10	680	18	1100	6	12	18	1
72＋605 $00+004$	1910	48	2530	99	10	620	19	1760	9	10	16	1
72＋005 $00+25 \mathrm{~N}$	179	56	7760	445	15	590	15	1140	11	1	15	1
72＋motevisin	170	59	3970	30.	11	550	21	50	13	1	15	2
72＋00：00＋75\％	1670	52	4420	153	12	570	26	750	12	8	14	1
72＋005101＋004	1790	58	8819	363	13	550	19	670	5	4	15	1
72＋06101＋25	1710	63	9780	1658	15	620	29	840	10	1	14	1
$72+0 \mathrm{c} 01+5 \mathrm{~N}$	1760	67	9410	1251	$1!$	620	52	880	15	1	17	1
72＋i0ter $01+75 \mathrm{~N}$	1670	51	4420	177	13	600	17	1890	14	1	13	－
72＋00c102＋0．04	2720	52	9510	4082	10	570	14	1500	20	3	27	1
$72+005102+2504$	450	$5{ }^{5}$	21430	802	7	660	17	510	16	3	12	1
	it60	51	7990	1627	22	550	9	850	17	4	14	1
72＋00602＋7	1510	50	555	106	15	550	14	990	7	5	12	1
$72+60 \mathrm{E} 03+6 \mathrm{CN}$	1550	50	3409	417	15	570	18	120	13	8	12	1
$72+6050$－ 5 5	1980	52	6520	546	13	570	11	1490	10	2	13	2
72＋90603 5 EN	1510	51	6570	104：	13	560	7	1230	10	1	13	1
72＋60．0－75	1640	49	2450	67	10	590	16	1490	10	9	18	1
$78+005105+253$	155）	51	5440	467	14	526	13	840	8	5	18	2
78＋60．09＋75	1590	54	8340	$3{ }^{3} 2$	26	590	20	930	8	5	17	－
79＋60E500＋00N	1610	$5!$	5000	250	20	570	19	940	17	7	14	．
$80+00205+50 \mathrm{~N}$	1510	52	6450	466	17	570	17	1080	13	5	18	1
20＋0， $108+004$	1620	52	4270	206	16	609	18	1640	10	10	16	1
$80+60 E: 12+504$	1759	56	8590	$5: 5$	12	610	26	1630	$2!$	2	25	1
	1560	47	2346	336	10	530	15	890	11	8	13	1
$84+000096+25 \mathrm{Na}$	1340	49	2840	100	9	540	16	990	12	7	13	1
$84+005097+50 \mathrm{~N}$	1480	50	3780	184	10	560	18	1460	26	9	22	1
84＋00E：02＋75N	1640	54	6670	2423	11	560	9	2050	211	1	14	1
$84+005103+004$	1670	52	5830	4210	10	570	15	2230	238	1	14	1
$84+00{ }^{\text {c }} 103+75 \mathrm{~N}$	1650	50	4440	1701	11	570	15	1360	24	1	24	1

COMPANY: CORONA CORPORATION
NIN-EX LABS ICP REPORT
(ACT:FJI) PAGE ! OF 3
PROJELS WO: MISTY E-88-13 0.0.8:51 705 UEST $15 T H 5 T .$, NORTH YANCOUVER, B.C. V7K 112 FLIE N0: 8-1417/P!+2 AITENTION: L. SALEXEN/G.CROZKER
$(604) 980-5814$ OR (604)988-4524 TYPE SOIL GEOCHEX : DATE:SEPTEKAER 16, 1988

WRLUES PMPM)	AE	A	As	-	BA	E	BI	CA	CD	CO	Ci	FE
678111+50H	. 1	15300	34	1	45	. 5	8	340	. 4	1	8	64130
72E11! +25 N	.1	33980	25	3	29	. 9	12	770	1.0	4	61	43800
72E111+50R	1.6	28950	90	2	50	.4	11	790	. 5	7	30	54210
72E111+75N20H	. 6	16270	104	1	30	. 4	10	650	.9	4	12	47420
72E!12+00N	1.0	1730	16	+	16	.3	10	850	1.7	4	11	17430
-72E $112+25 \mathrm{~N} 20 \mathrm{H}$	1.3	10980	8	1	30	. 4	12	580	. 8	4	22	7570
72E112+50k	1.0	13360	32	1	32	. 6	12	720	1.2	5	35	15270
725112475N20	.7	18570	96	1	37	. 5	11	1160	. 5	5	45	27130
72E113+00N20H	. 6	18190	101	1	44	. 7	12	930	. 6	8	33	37570
- $22[113+2 \mathrm{EN}$	1.5	17920	25	2	19	. 8	15	470	1.5	5	9	49300
-72E113+50N20n	. 5	25210	174	1	30	. 8	10	740	. 5	9	57	40210
72E113+75N20H	1.2	19520	60	2	56	. 5	17	980	. 5	13	8	39130
72E114+00N20H	1.7	11450	29	1	57	. 4	10	1310	. 7	2	35	7840
72+50E104+00N	. 5	21170	10	1	57	. 8	11	760	8.5	6	17	29630
22+508104+20N	1.8	11230	21	1	35	6	17	1580	1.0	7	12	17650
72+50E104+40N	. 8	30000	192	3	59	.7	16	570	.7	10	12	44130
72+50E104+60N20n	1.4	18040	24	1	20	.6	10	580	. 6	2	37	4820
$72+50 \mathrm{E} 104+80 \mathrm{~N} 20 \mathrm{H}$. 9	23380	10	2	107	1.0	16	990	1.3	9	10	47430
72+50E105+00N2OH	2.3	16120	20	1	24	. 6	10	550	. 4	2	118	11180
72+50]105+20k	3.3	37500	17	5	15	1.9	13	680	1.5	1	8	59120
-72+50E105+40K	. 6	29500	119	2	83	1.1	12	1670	1.8	15	139	44370
72+505105+60K	.6	27060	122	2	68	1.0	12	2000	. 8	12	119	43250
-72+50E105+80N	N/S											
72+505106+00N	. 4	21460	102	1	52	. 8	10	1640	. 5	9	55	42090
735111+50	. 2	22310	76	1	59	.6	7	830	1.5	13	56	50720
73E111+75N20n	4.8	11180	37	1	14	. 4	8	1360	.6	2	55	7240
73E112+00N20\%	1.0	13790	67	1	39	. 6	10	730	.7	3	62	22360
73E112+25 ${ }^{\text {d }}$. 5	19100	258	1	43	. 6	10	770	. 9	6	65	34370
$735112+50 \mathrm{~N} 20 \mathrm{M}$	1.1	9120	22	1	28	. 5	10	460	. 5	2	18	5890
73E112+75N20	1.3	7490	24	1	21	. 4	11	380	1.0	3	15	4980
73E113+00)	.7	17390	71	1	30	. 8	11	780	1.4	7	18	34270
73+505104*00H	. 2	29170	106	2	39	. 9	10	720	2.0	7	29	59090
$73+508104+2014$	1.0	5830	25	1	31	. 5	11	660	1.8	3	18	6680
73+50E104+40K	.6	25090	19	2	24	.9	12	600	. 6	6	8	60470
73+505104+604	. 7	17750	65	!	28	. 6	12	540	1.0	6	14	44780
730505104-80才	1.1	11010	14	1	24	.4	11	350	. 4	2	23	-8220
73+505105+00N	.1	21750	72	1	34	.7	11	700	. 4	8	34	41610
$73+50 E 105+20 \mathrm{M}$	1.1	32710	341	3	32	1.5	11	880	. 5	8	30	54060
$73+50 \mathrm{E}$ 105+40N	1.2	28520	45	4	27	1.1	13	750	. 5	5	30	51350
73+50E105+60	. 8	30890	23	3	37	1.0	12	800	. 4	7	42	46600
-73+50E105+80N	1.3	12780	25	1	21	.7	16	500	.6	5	8	37730
73+505106+00\%	. 7	27160	31	2	19	. 8	14	680	1.0	5	14	45850
74E112+25N	. 7	6900	17	1	33	. 5	10	1070	1.3	3	17	10140
74E112+50 ${ }^{\text {d }}$. 9	10060	24	1	28	. 5	11	670	1.5	3	12	10020
74E112+75N	1.5	3970	23	1	29	. 5	11	650	2.0	2	16	2880
74E113400	. 2	31360	161	3	34	. 8	10	650	2.0	5	21	54440
74E113+25N	. 6	15270	82	1	57	.6	9	640	1.0	2	37	36690
74E113+50N	1.0	2560	$3!$	1	22	. 4	11	440	2.3	2	16	5100
74E113 75 F	.2	51080	2335	4	28	. 6	10	1180	5.4	4	24	67580
74E114+00N	. 2	24320	618	2	43	. 8	10	2280	$2 .!$	14	54	53130
-74+50E103+00N	. 2	27980	36	2	47	. 8	10	990	. 6	8	12	53970
$74+50 \mathrm{E}$ 103+20N	. 1	24840	38	2	42	. 7	10	670	2.0	4	8	72570
74+50E103+40 N	1.0	19240	39	1	35	. 8	13	1000	1.2	8	9	41130
$74+50 \mathrm{E} 103+60 \mathrm{~N}$	3.1	34390	59	2	19	. 9	10	500	. 5	6	49	41130
74+50E103+804	. 4	23290	33	5	13	. 8	11	440	1.4	2	10	82640
74+50104+00N	. 3	15510	26	1	24	.6	12	770	1.3	5	7	47410°
74+50E104+20N	. 5	24270	70	1	\$2	. 9	11	. 1620	. 7	9	55	33850
74750E104+401	. 1	20780	50	2	35	. 7	6	520	1.8	12	7	52150
$74+505104+60 \mathrm{H}$. 2	24810	57	1	30	. 8	9	470	1.6	13	31	38040
$34+50 \mathrm{E} 104+804$	1.1	19070	32	1	18	. 1	10	400	-8	3	34	9860

project ko：MISTY E－88－13 0．0．8151 705 yest 15Th ST．，north vancowive，b．c．V7h 172
FILE Mi：8－1417／Pi＋2

（yalus in ppil	K	II	${ }_{6}$	W	40	M	Ni	－	PB	SB	S8	楊
672111＋50\％	660	40	2130	191	7	30	5	1520	19	4	3	1
72E11！+25 N	800	39	2720	316	57	180	3	960	16	4	6	$!$
72E111＋50N	740	40	6210	358	25	140	8	960	13	5	9	1
72E111＋75N20	670	37	3250	223	26	140		800	10	5	7	1
$72 \mathrm{EL12+00K}$	420	35	400	37	11	190	5	190	9	5	11	1
$72 \mathrm{EL12}+25 \mathrm{~N} 2 \mathrm{OH}$	590	35	1220	74	14	130	10	300	10	3	9	
72E112＋50H	810	38	3840	215	33	140	13	890	21	2	9	1
72E112＋75N20H	710	38	4210	294	37	140	10	1180	17	5	10	1
72E113＋00N20	860	41	7990	318	25	140	9	650	19	5	11	1
$72 \mathrm{E} 113+25 \mathrm{~N}$	670	36	1250	579	60	230	5	529	22	2	6	1
－726113＋50920n	630	42	7350	475	40	110	9	650	22		10	1
72E113＋754204	1150	40	10230	298	26	170	17	460	21	1	to	t
72E144＋00N2OK	670	36	2550	126	7	150	12	1730	12	3	11	1
72＋505104＋00N	1080	39	5910	311	3	140	7	1050	14	3	7	1
$72+50 \mathrm{E}$ 104＋20N	860	36	2420	157	7	130	8	629	21	3	14	1
$72+508104+40 \mathrm{~N}$	1850	40	6180	414	6	130	4	520	25	5	16	I
72＋50E104＋60N20M	800	35	770	43	4	200	12	2780	13	$!$	5	1
72＋50E104＋80\％ 20 H	2010	41	10840	492	12	130	5	470	23	5	11	1
72＋50E 050500320 K	570	36	1210	83	6	160	9	1200	15	2	7	1
$72+50 \mathrm{E} 105+2$ ON	1120	39	1030	44	11	960	6	620	22	9	1	2
$72+50 \mathrm{E}$ 105＋40 ${ }^{\text {N }}$	1300	45	9400	488	18	210	22	980	26	4	12	－
72＋50E105＋60N	1130	44	8480	445	20	200	18	1030	20	4	13	！
${ }^{7} 72+50 E 105+80 \mathrm{~N}$	H／S											
72＋508106＋00以	1110	44	9530	470	16	150	16	870	17	6	10	，
73E111 5 59	760	38.	3269	816	50	140	4	1550	16	3	8	1
$73 \mathrm{ELII}+75 \mathrm{~F} 2 \mathrm{Ma}$	610	35	690	55	19	180	10	2360	14	2	6	！
73512＋00N204	630	36	2210	96	44	150	16	1150	12	2	12	1
73E112＋25N	640	39	2800	395	79	140	6	890	23	4	9	1
735112＋50N2OM	600	35	740	52	15	150	12	440	10	5	16	1
73E112＋75620\％	710	35.	960	74	17.	150	8	590	13	5	9	$!$
	630	41	7310	314	28	130	II	560	19	5	11	1
$73+505104+00 \mathrm{~N}$	690	42	7010	339	19	110	7	650	14	3	6	
73＋50E104＋20K	620	35	960	52	9	130	10	370	10	5	9	1
73＋50E104＋40N	770	43	4860	520	9	190	7	740	29	5	5	1
$73+50 \mathrm{E}$ 104＋60N	620.	37	3500	44	32	120	3	660	20	3	6	1
$73+50 \mathrm{E} 104+80 \mathrm{~N}$	530	36	1780	34	13	140	10	560	12	3	7	1
$73+505105+00 \mathrm{~N}$	640	41	6960	363	29	110	11	360	17	6	7	1
73＋50E105＋20N	900	42	5050	550	23	240	6	650	22	5	5	，
$73+505105+40 \mathrm{~N}$	840	41	4120	257	32	240	5	700	22	7	5	1
$73+50 E 105+604$	860	44	5760	31	27	200	14	900	17	，	6	1
73＋50E105＋80N	660	36	1250	260	38	180	3	670	26		6	1
$73+505106+004$	630	38	4380	221	32	170	4	740	21	6	3	1
74E112＋25\％	620	36	3390	237	7	170	13	550	10	4	10	1
74E112＋50N	540	36	2290	109	16	120	11	310	13	3	10	1
24E12＋75N	590	36.	1100	74	6	130	11	260	7	5	11	1
74E113＋00N	510	40	4850	264	11	120	6	1180	14	3	6	1
$745113+25 \mathrm{~N}$	590	39	4030	215	136	150	3	1200	16	8	47	1
74E1 $13+50 \mathrm{C}$	550	35	570	79	15	120	10	210	8	7	10	1
74E113＋75N	560	41	4690	296	18	120	5	． 1420	20	7	8	1
74E14＋00N	850	50	9980	544	75	160	19	700	10	1	14	1
$74+5061035+00017$	790	43	7520	442	－	140	5	650	14	3	9	－
74＋50E103＋20H	680	41	5440	296	11	130	3	860	16	，	6	1
$74+508103+40 \mathrm{~N}$	810	40	4910	461	25	140	6	690	25	4	9	1
$74+50 \mathrm{E}$ 103＋60	580	39	3350	328	11	140	7	1270	18	2	3	1
$74+505103+80 \%$	830	38	1890	607	36	290	6	700	20	6	2	1
7440E104＋00k	820	－ 7	2270	654	33	150	5	780	19	5	7	1
$74+505104+20 \mathrm{~N}$	970	44	9200	399	12	150	17	940	20		8	1
$74+50 \mathrm{E}$ 104＋40才	780	40	5220	2078	54	120	6	1000	23	5		1
74＋50E104＋60\％	650	41	5850	520	26	120	10	890	19	2	4	1
$74+50 \mathrm{E}$ O4＋80N	540	36	1170	$11:$	10	120	$1!$	1340	9	2	5	！

COMPANY: CORONA CORPBRATIOA
MIN-EN LABS ICP GEPORT
PROJECT MO: MISTY E-88-13 0.0.8151 705 WEST 15TH ST., WORTH WANCOUYER, B.C. V7M 172
(ACT:F31) PAEE J OF 3
FTLE NO: :-1417/P1+2 AITENION: L.SAEEKEW/б. CROQKER

(VGETES ISPM)	4-	II	6A	S*	1	C8	A $40-9 \mathrm{PPB}$	
	183.3	50	1	1	1	32	1	
72E!1! +25 H	197.7	51	2	4	1	38	3	
72E111+50\%	178.8	50	1	1	1	33	2	
72E111775N20n	195.6	26	1	2	1	26	5	
	1 29.7	6	1	2	2	15	2	
72E! $12+25 \mathrm{~N} 20 \mathrm{M}$	1 4.8	14	1	3	2	19	2	
72E122+50\%	149.4	32	2	3	2	25	1	
72E112+75N20n	162.5	36	1	3	1	29	1	
72E113+00\%20M	197.7	59	!	3	2	32	,	
I2E1! $3+25 \mathrm{~N}$	1 114.1	34	3	8	2	25	1	
72E113+50N20K	176.0	70	1	1	2	30	2	
72E113775N20K	1118.8	52	2	3	4	55	3	
72E14+00N2OM	$1 \quad 19.2$	25	1	3	2	17	1	
72+50E104+0.0N	151.5	46	1	!	2	20	1	
72+50E104+20K	$1 \quad 79.8$	2	1	5	2	22	3	
72+50E104+40H	188.4	53	1	3	3	24	1	
72+50E104+60N2OH	19.5	21	1	3	1	16	1	
72+50E104+80N20号	1139.1	72	2	3	3	33	2	
72+50E105+00N2OM	129.8	16	1	2	1	21	4	
-72+50E105+204	1	64	2	5	1	22	2	
72+50E $105+4$ M	1.63 .0	118	1	2	1	33	3	
$72+50 \mathrm{E} 105+60 \mathrm{~N}$	162.6	99	1	2	1	32	1	
${ }^{2} 72+50 E 105+80 \mathrm{~K}$								
72+50E106+00\%	158.4	83	1	2	2	32	31	
	1 65.4	46	1	2	2	24	1	
735111+75M20M	19.2	18	1	5	1	14	1	
73E112+00N2OM	1 28.1	24	1	2	2	21	4	
73E112+25K	161.2	28	1	2	1	23	3	
735112+50N20M	125.7	12	1	2	2	17	2	
73E $12+35 \mathrm{~N} 2 \mathrm{OH}$	2.21 .8	13	1	3	2	17	1	
73E113+00N	1.6 .4	58	1	1	2	26	1	
73+505104+00	178.2	63	1	$!$	1	31	Ј	
73+50E104+20K	224.3	16	1	3	2	17	2	
73+50E104+40K	$1 \quad 62.6$	66	2	J	2	34	12	
73+50E104+60N	1--81.7	42	1	2	1	26	6	
$73+505104+801$	$1-35$	17	1	3	2	19	2	
73+50E105+00K	172.8	240	1	2	29	28	3	
73+505105+203	147.4	71	2	3	1	28	1	
73+50E105+404	148.8	53	2	4	1	29	4	
23+505105 6 60	1 - 53.8	65	1	3.	2	36	3	
$73+505105+80 \mathrm{~N}$	1100.8	38	3	8	2	22	2	
73+50E106+00N	188.0	43	3	5	1	32	6	
74E112+25*	133.9	39	1	4	2	23	7	
74E122+50\%	146.2	18	2	3	2	20	2	
74E112+75N	7.14 .7	14	1	3	2	15	5	
$746113+00 \mathrm{~N}$	70.1	4	1	3	1	28	3	
74E1.13+25N	157.3	36	1	2	1	21	1	
74E113+50\%	$6 \quad 13.7$	12	1	J	2	15	2	
74E113+75K	165.4	51	1	1	1	31	6	
$74 \mathrm{EL1} 4+00 \mathrm{~N}$	1.71 .9	110	1	1	2	36	3	
$74+50 \mathrm{E} 103+00 \mathrm{~N}$	187.7	68	1	2	2	31	1	
74+50E103+20N	1114.6	51	,	1	1	31	2	
$74+50 E 103+40 \mathrm{~K}$	188.9	47	1	3	1	30	1	
$74+50 \mathrm{E} 103+60 \mathrm{~K}$	132.8	41	1	3	1	27	1	
$74+50$ E103+809	1 - 34.5	54	3	5	1	23	1	
$74+5010104+00 \mathrm{H}$	178.7	42	2	5	1	24	j	
74+50E104+20N	160.3	81	1	2	1	30	7	
$74+50 \mathrm{EL} 104+40 \mathrm{H}$	179.2	60	1	3	1	30	6	
$74+508104+60 \mathrm{~K}$	134.3	59	1	3	1	27	17	
74+506104480\%	$1 . .15 .8$	23	1	$?$	1	17	20	

Whucs in pa	A 4	AT	As	8	BA	$\bar{B} \bar{C}$	B!	CA	60	Co	Cu	FE
	.	24600	bl	2	50	. 8	6	640	1.7	39	35	41260
77+50E107+60\%	. 5	8560	23	.	25	. 4	10	560	1.1	3	12	12700
77+50E107+80k20H	. 3	16600	19	1	19	. 4	10	630	. 9	5	19	33730
77+50E108+00 ${ }^{2} 2 \mathrm{OH}$	1.3	7820	11	1	20	. 2	15	450	. 9	5	15	9880
77+50E108+20N	. 2	24040	38	1	37	. 6	10	650	. 7	5	14	32610
	.7	13750	20	1	22	. 5	11	500	. 6	4	20	19440
$77+50 \mathrm{E} 108+6 \mathrm{H} 2 \mathrm{OH}$	2.0	7390	20	1	19	. 4	11	510	1.8	3	14	10840
77+50E108+80H	. 4	24840	68	1	25	. 9	10	860	1.1	7	49	47730
$77+50 \mathrm{E} 109+00 \mathrm{~N}$. 7	23690	43	1	33	. 8	12	920	1.0	5	27	36560
-77+50E109+204	1	28310	115	3	45	. 6	9	1180	17	19	101	57300
-77+505109+401	3	24520	74	I	35	. 9	10	1450	. 7	9	52	40470
$77+505109+603$. 7	19920	58	1	25	. 6	11	730	1.1	6	32	25440
$77+50 \mathrm{E}$ 109+80K	. 3	24300	84	2	27	. 8	13	1290	1.7	8	25	45960
77+50E110+00N20N	1.0	20090	24	1	12	. 5	10	580	. 9	2	53	19540
77+50E110+20N	. 1	22250	132	2	37	. 7	9	850	1.3	7	39	53250
77+50E110+40N	1.2	34270	188	4	13	1.2	12	560	1.9	1	10	71440
77+505110+60 ${ }^{\text {H }}$. 9	15530	126	1	26	. 6	10	680	1.3	3	13	33650
78+50E106+00木	. 3	38650	87	4	32	1.0	11	980	.7	6	26	46670
78+50E106+20N	1.2	12550	52	.	27	. 5	12	1030	. 5	4	11	16380
$78+50 \mathrm{E} 106+40 \mathrm{M} 2 \mathrm{OH}$. 9	9650	73	1	28	4	13	990	1.1	5	10	17190
$78+50 \mathrm{E} 106+6$ ON20\%	. 9	24660	31	1	20	.7	10	670	. 8	4	30	21360
78+50E106+80N20n	. 5	23840	39	$!$	22	1.0	9	810	. 7	8	21	34020
78+50E107+00N	. 1	7100	11	1	22	. 6	6	6040	1.1	16	9	30670
78+50E107+20N	. 2	19740	23	1	32	. 5	9	700	1.4	3	9	56190
-78+50E107+40\%	. 7	8060	36	1	28	. 6	10	1410	8	,	23	18170
$78+50 \mathrm{E}$ 107+60к20n7	. 6	6260	26	1	25	. 4	9	1350	1.0		15	17610
78450E107+80N	1.1	8330	18	1	28	. 5	11	1530	1.9	5	22	16480
78+50E108+00N20K	1.5	14060	49	!	24	. 6	12	1060	. 8	5	10	23960
$78+50 \mathrm{EL} 108+20 \mathrm{~N} 20 \mathrm{n}$	1.4	9400	36	,	22	. 4	10	990	1.0	3	21	7140
$78+50 \mathrm{E} 108+40 \mathrm{~N}$. 8	10030	42	1	30	. 5	12	650	. 9	5	12	15530
$78+50 \mathrm{E}$ - $08+60 \mathrm{M} 20 \mathrm{~A}$. 3	17210	26	1	18	. 6	10	480	. 6		22	23500
$78+505108+80 \mathrm{~N}$. 5	5600	27	!	22	. 5	9	670	. 5	4	22	16930
78+50E109+00N	. 1	10140	80	!	20	. 5	10	610	1.4	3	13	33680
$79+508105+00 \mathrm{~N}$. 1	21820	44	1	35	. 7	10	1870	1.4	9	24	41080
79+505105+20N	3	24430	28	3	25	. 8	11	840	. 7	5	9	50360
$79+50 \mathrm{E} 105+40 \mathrm{~K} 2 \mathrm{Oh}$. 2	14670	38	!	22	.7	10	790	4	6		36500^{-}
$79+50 \mathrm{E} 105+6$ ON2OH	. 6	24770	17	1	19	. 6	10	540	. 8	4	19	28300
$79+50 \mathrm{ES} 105+80 \mathrm{~N} 2 \mathrm{OH}$. 8	20340	20	1	18	. 6	11	550	1.0	3	15	27390
79+505106+00 1	. 2	29320	60	2	47	. 9	9	1190	1.6	9	56	4470
79+50E106+204	. 1	22880	50	1	31	:	10	1390	1.2	8	31	44770
$79+505106+4010$	1	22010	85	I	33	. 9	10	2120	1.1	-	30	$4332{ }^{\circ}$
79+50E106+60N	. 2	29800	146	2	53	. 6	10	1400	. 5	11	87	49170
$79+50 E 106+8041$. 2	27850	151	2	56	. 8	9	1530	1.2	17	108	45700
$79+505107+00 \mathrm{~N}$. 3	24330	149	$!$	39	. 9	11	1420	1.2	10	65	43240
$79+50 \mathrm{E} 107+20 \mathrm{~N}$. 9	17950	64	1	35	2	10	920	3	3	17	18970
$79+501107+60 \mathrm{~K} 20 \mathrm{M}$. 1	9210	27	1	37	.7	5	1240	. 9	14	32	31090
79+502107+604	2.0	8670	109	1	34	. 4	10	960	1.1	1	14	21760
$79+50 \mathrm{E} 107+80 \mathrm{~N} 20 \mathrm{H}$	1.3	6170	22	1	28	. 5	9	1070	1.4	,	17	10150
$79+505108+004$. 3	21290	89	1	36	. 6	9	660	1.4	\checkmark	31	49000
84+50E101+0082OH	?	19190	56	1	31	. 8	9	860	. 6	9	10	43600
$84+50 \mathrm{E} 101+20 \mathrm{M} 2 \mathrm{OH}$. 9	16860	30	1	24	. 4	10	750	. 8		1.	24600°
$84+50 \mathrm{E} 101+40 \mathrm{M}$. 5	20150	33	,	32	. 5	13	1060	1.0	6	8	46250
84+50EE101 +60 N	. 3	24580	19	1	33	. 6	11	770	. 7	7	-	41250
$84+50 \mathrm{E} 103+80 \mathrm{~N}$	1.2	29950	$1!$	1	15	. 5	,	500	. 3	2	12	27380
84+50EE02+004	2	21850	4	1	36	. 7		780	9	17	9	53510
$84+50 \mathrm{E} 102+20 \mathrm{~F}$	1.3	8360	19	1	38	. 4	14	1210	7	6	13	14470°
$84+50 \mathrm{E} 102+40 \mathrm{~N}$	2.2	22450	71	1	26	. 6	9	640	. 7	6	9	38610
$84+50 \mathrm{EE}$ O2+60N	5.4	19710	82	$!$	22	. 8	11	1510	1.4	8	11	50250
$84+50 \mathrm{EL} 122+80 \mathrm{~N}$. 1	19250	49	1	25	. 5	,	470	1.2	8	8	47230
$84+505103+00 \mathrm{~K}$	1	17810	49	$!$	29	. 4	9	570	1.3		-	53780

COKPANY: CORONA CORPORATION
MHEER LABS ICP REPORT
(ACT:F3I) PAEE 2 OF 3
PROUETT HO: MISTY E-88-13 0.0.8151 705 WEST I5TH ST., NORTH YANCOUVER, B.C. V7M 172
FILE NO: 8-1417/P3+4 ATTEMIION: L. SALEKEN/F:CROOKER
(604)980-5844 OR 604)988-4524 :TYPE SOLL GEOCHEX : DATE:SEPTEKBER 16: 1988

(VALUES IN PPM)	K	4	4	HiN	40	NA	M	P	PB	S	SR	ITh
$74+508105+00 \mathrm{~N}$	750	42	5230	2302	16	130	10	1360	26	4	5	1
$77+505107+60 \mathrm{H}$	610	36	2190	104	12	130	11	500	11	3	12	1
77+50E107+80 ${ }^{\text {20, }}$	540	39	4280	212	19	120	12	900	11	3	7	1
77+50E108+00N2OK	650	35	940	102	19	140	9	800	17	4	8	1
37+50E108 204	620	40	3980	304	13	130	11	760	13	3	7	1
77750E108+40k 27 M	740	36	2000	155	15	160	11	1250	15	4	7	1
$77+508108+60 \mathrm{~N} 2 \mathrm{OH}$	730	36	2070	130	9	130	15	730	12	3	8	1
77+50E108+80N	750	44	7080	335	28	170	15	940	17	4	8	1
77+50E109+00N	910	42	4840	215	21	230	9	1440	18	4	7	1
$77+50 \mathrm{E} 10942 \mathrm{ON}$	790	46	9240	648	37	-160	35	1130	16	3	11	1
	780	44	7100	430	22	160	26	1350	20	2	10	1
77+50E109+60 ${ }^{\text {a }}$	670	41	4850	207	28	160	15	730	17	4	8	1
$77+50 \mathrm{E} 109+80 \mathrm{~N}$	770	42	5150	348	34	150	13	980	18	3	6	1
77+50E110+00N20n	580	37	1580	46	19	140	8	1380	11	3	5	1
$77+505110+201$	750	43	7450	372	43	160	15	940	24	5	11	1
$77+5081104006$	840	38	1850	206	34	380	4	830	22	8	2	?
$77+506110+60 \%$	700	38	2600	188	35	140	8	1010	15	5	11	1
78+50E106+00K	780	43	5300	322	13	150	8	1000	22	3	9	1
78+50E108 2 20N	880	38	2750	197	11	130	12	730	34	3	11	1
$78+505106+40 \mathrm{~N} 20 \mathrm{M}$	790	37	1920	266	11	-150	9	800	25	3	11	1
$78+505106+60 \times 20 \mathrm{C}$	930	39	2450	255	12	150	10	2420	45		5	1
78+50E106+80N20H	1060	40	3570	470	12	180	10	1910	72	J	7	1
$78+50 \mathrm{E} 107+00 \mathrm{H}$	560	35	1770	4694	12	110	4	1010	40	2	4	1
78+50E107+20 K	600	39	3760	513	19	120	6	1160	13		7	1
78+50E107+40N	330	36	1670	315	17	160	8	1090	22	5	12	1
	610	- 3	1700	59	18	110	9	1030	19	3	9	1
78+50E107+80H	700	37	4900	210	13	170	10	470	15	4	12	1
$78+505108+00 \mathrm{~N} 204$	750	37	2600	242	27	150	8	1170	28	4	9	:
78+50E108+20N20n	740	35	970	64	9	140	12	2280	15]	7	1
$78+505108404$	760	36	1680	311	14	120	11	850	20	4	12	1
$78+50 \mathrm{E}$ 108+60N 20 H	670	39	3170	160	8	120	10	950	15	5	5	i
78+50E108+80\%	610	35	930	268	17	120	9	550	13	3	8	1
$78+50 \mathrm{E} 109+00 \mathrm{~N}$	620	36	2210	314	25	120	5	950	14	3	9	2
$79+508105+00 \mathrm{~N}$	870	44	8040	503	8	180	16	1040	24	4	12	1
79+50E105+20N	970	40	3640	500	8	230	6	1040	24	5	7	1
$79+50 \mathrm{E} 105740 \mathrm{M} 20 \mathrm{O}$	790	39	4170	461	14	140	9	1060	15	-	9	1
$79+508105+60 \mathrm{~N} 20 \mathrm{~K}$	880	38	2900	122	8	140	10	1930	15	2	3	1
79+50E105+80N201	700	38	2240	170	10	150	8	1050	19		5	1
$79+50$ E106+00N	910	45	8750	471	14	180	26	730	17	3	9	1
79+50E106+20N	880	44	8430	483	10	160	18	910	17	3	7	1
$79+50 E 106+4018$	840	45	8600	503	9	160	23	1090	24	-	7	2
$79+50 E 106+60 \mathrm{H}$	1110	46	8790	490	17	210	31	1070	23	2	9	1
79+50E106+80\%	920	46	9560	589	11	170	42	790	29	3	10	2
78+50E107+00	930	46	8440	447	13	230	27	900	37	4	9	1
79+50E107+20N	940	41	3970	168	12	160	12	880	26	3	9	1
	880	37	2570	248	13	180	7	2300	26	3	7	I
79+505107+60N	690	36	1350	81	12	140	8	1030	12	3	11	1
$79+50 \mathrm{E} 107+80 \mathrm{~N} 2 \mathrm{OH}$	640	36	2200	132	7	140	9	480	6	4	15	1
$79+508108+00 \mathrm{~N}$	730	43	6380	351	22	150	4	670	16		13	1
. $84+50 \mathrm{E}$ 101+00420M	910	39	3910	887.	11	150	5	1190	55	4	8	1
	840	37	2670	488	10	170	7	1620	20	4	7	1
84+50E101+4914	950	40	4060	519	8	170	6	620	28	5	9	,
84+50E101+60K	860	42	6180	392	10	150	10	630	21	2	6	1
$84+50 E 101+80 \mathrm{~N}$	620	37	1520	165	3	130	5	2560	11	5	2	1
- $8+50 \mathrm{E} 102+004$	810	40	4030	2526	3	130	4	1790	47	4	9	2
-84+50E102 $2+20 \mathrm{M}$	750	36	1220	145	6	150	9	560	$3{ }^{3}$	3	11	1
$84+505102+40 \mathrm{~K}$	700	39	3350	459	7	130	4	1260	34	3	5	!
$84+50 \mathrm{ELO2}+60 \mathrm{H}$	720	43	6350	965	22	140	5	880	469	7	7	,
$84+50 \mathrm{E} 102+80 \mathrm{~N}$	470	40	5780	633	7	100	6	370	23	4	6	2
84+50E103+00N	520	39	5080	418	7	110	4	850	20	4	6	2

MIN-EH LABS ICP REPORT
PROJECT NO: HISTY E-88-13 0.0.815! ATIENTION: L.SALEXEN/5:CROOKER

COMPANY: CDRONA CGRPORATIOH
MIN-EN LABS ICP REPGRT
PROBECT MO: MISTY E-88-13 0.0.8151 705 KEST 15TK ST., NORTH VANCOWUER, B.C. UTM IT2
(ACT:F3H) page ! bf J ATTENTION: L.SALEXEN/6.CROOKER.
(604)980-5814 界 (604988-4524 1 TYPE SOIL EEOCHEM

FILE KO: 8-1417/95+6

	A5	AI	AS	8	88	BE	bi	CA	C0	C	Cu	FE
-44+50E103+20N	. 2	19640	47	1	46	. 5	9	810	2.1	-	8	70070
$84+502103+40 \mathrm{~N}$. 6	28280	40	1	25	. 6	10	660	. 5	3	8	36120
84+50E103+604	. 2	13990	48	1	44	. 7	-	1060	. 8	6	8	42710
$84+50 E^{103}+80 \%$. 2	28130	36	2	61	. 9	6	1130	1.1	14	8	51060
$84+505104+004$	9	6750	25	1	80	. 2	12	1520	8	6	24	21750
$85+00 E 98+5011$. 4	13710	18	-	39	. 6	11	800	1.4	-	9	41170°
85+00E98+80N	. 4	18990	30	1	46	. 8	11	860	. 9	8	8	52750
85+00E99+00N	. 3	17940	38	1	42	. 9	10	900	. 5	9	8	52830
$85+00 E 99+201$	1.2	30900	54	3	98	. 9	11	880	1.6	12	28	66400
$85+00699+404$	4	12940	16	1	42	. 6	12	730	. 9	8	8	37000
$85+00 \mathrm{E} 99+60 \mathrm{~N}$	1.4	24630	22		22	1.2	11	550	1.2	-	8	55730
$85+00 E 99+80 \mathrm{H}$	1.3	37070	19	+	70	1.5	13	1080	. 9		7	48680
$85+005100+0011$	1.6	31030	7	3	25	1.2	11	770	. 5		9	42030
$85+00 E_{100+20 H}$	1.1	22200	30	.	45	. 8	13	1150	1.1	8	7	39660
$85+00 \mathrm{E}+00+40 \mathrm{~N}$. 6	33630	19	3	21	1.4	11	650	. 8	4	9	49040
$85+001100+60 \mathrm{~N}$. 6	25110	36	3	47	1.0	11	1550	1.0	-	9	52000^{-}
$85+008100+801$. 3	15920	23	1	68	. 7	7	1520	1.4	,	8	41340
$85+00 \mathrm{E} 101+00 \mathrm{~N}$. 4	15460	32	1	44	. 5	10	1320	. 6	-	9	30210
$85+00 \mathrm{E} 101+20 \mathrm{~N}$. 3	15070	35	1	43	. 5	9	1270	. 7	8	7	39410
$85+005101+40 \mathrm{~N}$	1.2	31710	28	2	25	. 7	10	600	6	4	29	20630
$85+008101+60 \mathrm{M}$. 5	17630	$3{ }^{3}$	I	39	.7	12	1120	. 6	-	9	44910^{-}
$85+008101+80 \mathrm{~K}$. 6	12100	42	,	36	. 6	13	1470	1.3	8	7	36180
$85+008102+00 \mathrm{~N}$	1.8	14210	37	1	32	. 5	10	740	. 5	4	18	15880
$85+00 \mathrm{E} 102+20 \mathrm{H}$	1.0	10500	45	1	26	. 6	10	1000	. 7	J	10	17290
- $65+00 \mathrm{E}$ 102 +40 K	.9	18460	50	1	49	. 5	9	980	.	6	8	57390
$85+00 \mathrm{E} 102+60 \mathrm{~N}$.6	16780	51	1	57	.9	7	1070	. 5	9	8	-47540
$85+002102+80 \mathrm{~N}$. 3	26120	82	2	53	. 9	10	2100	1.5	11	38	40430
$85+005103+00 \mathrm{H}$. 1	24250	89		40	. 5	8	1330	1.6	10	15	44660
$85+00 \mathrm{E}$ 103+20N	. 2	16250	111	1	53	. 7	8	1340	1.0	10	9	44610
-85+00E103+40	1	12630	62	1	61	. 8	5	1250	. 5	10	9	31650
8 - 107775	. 2	22230	207	1	-48	1.1	8	1950	1.9	12	8	42840°
$920101+50 N$. 4	32490	74	4	43	. 6	11	1110	. 7	7	11	77780
93E:01775k	. 8	22600	88	1	53	. 6	9	1160	. 8	7	,	\$7360
95Etit+00N	. 3	10390	75	1	57	.7	8	950	1.1	6	9	44510
.97E99+ ${ }^{\text {¢ }}$. 4	29030	139		60	. 8	6	980	- 9	22	64	. 45490

(VALUES IN PPM	K	L1	M	明	N0	NA	N!	?	PB	SB	SR	Th
-84+506 $103+200$	580	39	4450	234	6	120	4	800	13	-	6	2
$84+50 \mathrm{E} 103+40 \mathrm{~N}$	670	38	2970	145	5	150	7	3140	12	3	4	1
$84+50 \mathrm{E} 103+60 \mathrm{~N}$	730	38	3720	1175	7	140	4	1590	20	3	9	1
$84+50 \mathrm{E} 103+80 \mathrm{H}$	740	42	6030	2471	4	130	4	2030	23	5	11	1
$84750104+00 \mathrm{~K}$	680	35	1290	139	6	150	7	800	11	3	17	1
-85+00598+60	890	39	2960	905	10	140	7	990	22	4	8	-
$85+00 \mathrm{E} 98+80 \mathrm{H}$	1100	43	5390	730	9	150	8	1230	19	4	7	1
85+00E99+00	940	42	4590	1131	10	150	5	910	29	4	9	1
85+00E99+20N	1690	45	6280	792	11	210	10	800	33	3	7	2
85+00E99 4 40M	1060	37	2010	1061	20	170	4	640	25	5	8	1
B5+00E99+60H	950	39	2430	987	15	420	5	690	20	-	4	1
85+00E99+80N	1460	43	7030	589	9	300	5	850	17	5	7	1
$85+005100+00 \mathrm{~N}$	800	41	3580	459	10	260	5	1160	25	6	5	1
$85+00 \mathrm{E} 100+20 \mathrm{H}$	1090	41	5690	535	9	150	9	550	18	5	10	1
$85+00 \mathrm{E} 00+40 \mathrm{H}$	820	40	2880	654	7	330	4	780	24	6	5	$!$
$85+005100+60 \mathrm{H}$	1090	41	6340	607	7	220	5	760	23	5	10	2
$85+00 E 100+80 \mathrm{~N}$	980	39	4180	1330	11	170	4	1850	24	2	11	\pm
95+00E101+00	900	37	3020	513	9	150	7	1430	22	5	11	1
85+00E101+20K	900	38	3730	893	13	140	6	1230	24	4	11	1
-85400E101+40	620	37	2250	288	7	140	8	1740	10	3	4	1
$85+005101+60 \mathrm{~K}$	720	38	3190	633	8	130	3	810	21	4	7	1
$85+005101+80 \mathrm{~N}$	850	37	3230	654	12	130	7	730	17	2	13	1
$85+00 \mathrm{E} 102+00 \mathrm{~N}$	590	35	800	177	14	140	8	790	10	3	9	1
$85+00 \mathrm{E} 102+20 \mathrm{~N}$	620	36	2230	134	7	140	9	580	6	3	11	1
85+00E102+401	730	38	3830	560	9	140	3	1260	20	5	9	1
$85+001102+604$	830	39	4030	1695	10	140	5	1190	19	2	10	1
$85+00 \mathrm{E} 102+80 \mathrm{~F}$	910	44	7760	564	6	180	17	960	19	4	12	1
$85+005103+00 N$	730	41	6300	1087	4	150	12	2410	32	2	8	1
$85+1005103+20 \mathrm{~N}$	840	39	3280	1353	5	140	4	950	31	4	11	1
$85+005103+40 \mathrm{~N}$	990	39	4480	2846	6	150	7	2790	30	3	9	1
$895107+75 \mathrm{~N}$	970	48	7750	806	5	170	16	990	44	5	13	1
93E101+50N	880	46	8160	484	1	140	7	1130	34	3	6	1
93510! +75 A	950	41	5070	760	4	170	6	1100	84	4	10	1
95E101+00k	1030	38	2790	901	4	130	10	2160	35	3	10	1
97E99+75	1070	5	9470	1282	3	150	42	970	64	2	8	.

Appendix IV

ROCK SAMPLE DESCRIPTIONS

ROCK SAMPLE DESCRIPTIONS

Sample No .	$\begin{gathered} \text { Grid } \\ \text { Coord. } \end{gathered}$	Description
88-01	$\begin{array}{r} 10275 \mathrm{~N} \\ 8400 \mathrm{E} \end{array}$	-float, silicified, 2-3 mm rusty quartz veinlets $5 \mathrm{ppb} \mathrm{Au}, 0.5 \mathrm{ppm} \mathrm{Ag}$
88-02	$\begin{array}{r} 10725 \mathrm{~N} \\ 8100 \mathrm{E} \end{array}$	-float, vitreous quartz with rusty fractures $17 \mathrm{ppb} \mathrm{Au}, 2.0 \mathrm{ppm} \mathrm{Ag}$
88-03	$\begin{array}{r} 10760 \mathrm{~N} \\ 8085 \mathrm{E} \end{array}$	-float, vitreous quartz with rusty fractures $40 \mathrm{ppb} \mathrm{Au}, 1.8 \mathrm{ppm} \mathrm{Ag}$
88-04	$\begin{array}{r} 11000 \mathrm{~N} \\ 8100 \mathrm{E} \end{array}$	$-2-6 \mathrm{~cm}$ wide quartz veinlet, rusty boxworks $12 \mathrm{ppb} \mathrm{Au}, 1.8 \mathrm{ppm} \mathrm{Ag}$
88-05	$\begin{array}{r} 11225 \mathrm{~N} \\ 8100 \mathrm{E} \end{array}$	-float, white quartz, minor rustiness $21 \mathrm{ppb} \mathrm{Au}, 4.0 \mathrm{ppm} \mathrm{Ag}$
88-06	$\begin{array}{r} 10125 \mathrm{~N} \\ 8275 \mathrm{E} \end{array}$	-5 cm wide quartz vein, drusy cavities, 1\% ga, $18 \mathrm{ppb} \mathrm{Au}, 6.1 \mathrm{ppm} \mathrm{Ag}$
88-07	$\begin{array}{r} 10160 \mathrm{~N} \\ 6900 \mathrm{E} \end{array}$	-float, $2-3 \mathrm{~cm}$ wide white quartz veinlet in hbl diorite, $8 \mathrm{ppb} \mathrm{Au}, 1.2 \mathrm{ppm} \mathrm{Ag}$
88-08	$\begin{array}{r} 10175 \mathrm{~N} \\ 7850 \mathrm{E} \end{array}$	-grab, $1-4 \mathrm{~cm}$ wide quartz vein within 20 cm wide shear, $7 \mathrm{ppb} \mathrm{Au}, 3.6 \mathrm{ppm} \mathrm{Ag}$
88-09	$\begin{array}{r} 10225 \mathrm{~N} \\ 7850 \mathrm{E} \end{array}$	-grab, 1-5 cm wide quartz veinlets occur over $60 \mathrm{cms}, 460 \mathrm{ppb} \mathrm{Au}, 27.3 \mathrm{ppm} \mathrm{Ag}$
88-10	$\begin{array}{r} 10985 \mathrm{~N} \\ 7900 \mathrm{E} \end{array}$	-float, quartz, boxworks, $1 / 2$ \% py, fractures 625 ppb Au, 4.6 ppm Ag
88-11	$\begin{array}{r} 11225 \mathrm{~N} \\ 7900 \mathrm{E} \end{array}$	-15 cm chip, white quartz vein with rusty fractures, 10 ppb Au, 3.8 ppm Ag
88-12	$\begin{array}{r} 10200 \mathrm{~N} \\ 7810 \mathrm{E} \end{array}$	-grab, 20 cm wide quartz vein and breccia zone, $4-5 \% \mathrm{py}, 690 \mathrm{ppb} \mathrm{Au}, 10.7 \mathrm{ppm} \mathrm{Ag}$
88-13	$\begin{array}{r} 10500 \mathrm{~N} \\ 7860 \mathrm{E} \end{array}$	-grab, 20-30 cm wide quartz vein, minor boxworks, $35 \mathrm{ppb} \mathrm{Au}, 1.5 \mathrm{ppm} \mathrm{Ag}$
88-14	$\begin{array}{r} 10625 \mathrm{~N} \\ 7850 \mathrm{E} \end{array}$	-grab, 3-6 cm wide white quartz vein, $21 \mathrm{ppb} \mathrm{Au}, 1.5 \mathrm{ppm} \mathrm{Ag}$
88-15	$\begin{array}{r} 10975 \mathrm{~N} \\ 7800 \mathrm{E} \end{array}$	-float, minor boxworks, $10 \mathrm{ppb} \mathrm{Au}, 2.3 \mathrm{ppm} \mathrm{Ag}$
88-16	$\begin{array}{r} 11175 \mathrm{~N} \\ 7780 \mathrm{E} \end{array}$	-float, vitreous quartz, mo on fractures $7 \mathrm{ppb} \mathrm{Au}, 2.8 \mathrm{ppb} \mathrm{Ag}$

88-17	$\begin{array}{r} 11175 \mathrm{~N} \\ 7820 \mathrm{E} \end{array}$	-float, vitreous quartz, 5\% py $10 \mathrm{ppb} \mathrm{Au}, 2.3 \mathrm{ppm} \mathrm{Ag}$
88-18	$\begin{array}{r} 11375 \mathrm{~N} \\ 7700 \mathrm{E} \end{array}$	-float, fractured, rusty quartz, chloritic inclusions, $1 / 2 \% \mathrm{py}, 304 \mathrm{ppb} \mathrm{Au}, 2.0 \mathrm{ppm} \mathrm{Ag}$
88-19	$\begin{array}{r} 11325 \mathrm{~N} \\ 7550 \mathrm{E} \end{array}$	-10 cm chip, quartz vein, $3 / 4 \% \mathrm{mo}$, py , on fractures, $11 \mathrm{ppb} \mathrm{Au}, 2.6 \mathrm{ppm} \mathrm{Ag}$
88-20	$\begin{array}{r} 11325 \mathrm{~N} \\ 7550 \mathrm{E} \end{array}$	-12 cm chip, quartz vein, $3 / 2 \% \mathrm{mo}$, py , on fractures, $4 \mathrm{ppb} \mathrm{Au}, 2.2 \mathrm{ppm} \mathrm{Ag}$
88-21	$\begin{array}{r} 10550 \mathrm{~N} \\ 6900 \mathrm{E} \end{array}$	-float, white quartz, 1-2\% py on fractures, $12 \mathrm{ppb} \mathrm{Au}, 2.1 \mathrm{ppm} \mathrm{Ag}$
88-22	$\begin{array}{r} 11400 \mathrm{~N} \\ 6900 \mathrm{E} \end{array}$	-float, white quartz, 1\% py, minor boxworks $197 \mathrm{ppb} \mathrm{Au}, 16.0 \mathrm{ppm} \mathrm{Ag}$
88-23	$\begin{array}{r} 10300 \mathrm{~N} \\ 8400 \mathrm{E} \end{array}$	-float, quartz, rusty boxworks, 10\% py $1840 \mathrm{ppb} \mathrm{Au}, 7.2 \mathrm{ppm} \mathrm{Ag}$
88-24	$\begin{array}{r} 10300 \mathrm{~N} \\ 8400 \mathrm{E} \end{array}$	-float, quartz, rusty, 2-4\% ga 1100 ppb Au, 325.3 ppm Ag
88-25	$\begin{array}{r} 10575 \mathrm{~N} \\ 7050 \mathrm{E} \end{array}$	-20 cm chip, quartz, rusty boxworks, 5\% py on fractures, 485 ppb Au, 3.7 ppm Ag
88-26	$\begin{array}{r} 10575 \mathrm{~N} \\ 7050 \mathrm{E} \end{array}$	-25 cm chip, quartz, chloritic inclusions, up to 5\% py, $325 \mathrm{ppb} \mathrm{Au}, 4.0 \mathrm{ppm} \mathrm{Ag}$
88-27	$\begin{array}{r} 10575 \mathrm{~N} \\ 7050 \mathrm{E} \end{array}$	-18 cm chip, quartz, rusty fractures 158 ppb Au, 3.7 ppm Ag
88-28	$\begin{array}{r} 10550 \mathrm{~N} \\ 6900 \mathrm{E} \end{array}$	-12 cm chip, quartz, rusty fractures $4 \mathrm{ppb} \mathrm{Au}, 2.1 \mathrm{ppm} \mathrm{Ag}$
88-29	$\begin{array}{r} 10325 \mathrm{~N} \\ 6800 \mathrm{E} \end{array}$	```-float, quartz, fractured, rusty, 1% py 2 ppb Au, 2.5 ppm Ag```
88-30	$\begin{array}{r} 10925 \mathrm{~N} \\ 6625 \mathrm{E} \end{array}$	-float, rusty quartz, metased. inclusions $6 \mathrm{ppb} \mathrm{Au}, 2.0 \mathrm{ppm} \mathrm{Ag}$
88-31	$\begin{array}{r} 10950 \mathrm{~N} \\ 6635 \mathrm{E} \end{array}$	-float, quartz, rusty fractures $5 \mathrm{ppb} \mathrm{Au}, 2.2 \mathrm{ppm} \mathrm{Ag}$
88-32	$\begin{array}{r} 11065 \mathrm{~N} \\ 6700 \mathrm{E} \end{array}$	-float, quartz, metased. inclusions, rusty boxworks, $4 \mathrm{ppb} \mathrm{Au}, 2.5 \mathrm{ppm} \mathrm{Ag}$
88-33	$\begin{array}{r} 10150 \mathrm{~N} \\ 7640 \mathrm{E} \end{array}$	-float, quartz, rusty fractures, $2 \mathrm{ppb} \mathrm{Au}, 2.8 \mathrm{ppm} \mathrm{Ag}$
88-34	$\begin{array}{r} 10120 \mathrm{~N} \\ 7540 \mathrm{E} \end{array}$	-float, white quartz, rusty fractures, $1 \mathrm{ppb} \mathrm{Au}, 2.3 \mathrm{ppm} \mathrm{Ag}$

88-35	$\begin{array}{r} 10975 \mathrm{~N} \\ 7550 \mathrm{E} \end{array}$	-20 cm chip, white quartz, rusty fractures, $6 \mathrm{ppb} \mathrm{Au}, 2.0 \mathrm{ppm} \mathrm{Ag}$
88-36	$\begin{array}{r} 11325 \mathrm{~N} \\ 7550 \mathrm{E} \end{array}$	-float, white quartz, rusty fractures, $1 \mathrm{ppb} \mathrm{Au}, 2.0 \mathrm{ppm} \mathrm{Ag}$
88-37	$\begin{array}{r} 10700 \mathrm{~N} \\ 7225 \mathrm{E} \end{array}$	-float, white quartz, rusty fractures, 1\% py tr asp?, $496 \mathrm{ppb} \mathrm{Au}, 10.7 \mathrm{ppm} \mathrm{Ag}$
88-38	$\begin{array}{r} 10615 \mathrm{~N} \\ 7180 \mathrm{E} \end{array}$	-float, white quartz, 1\% py, tr ga?. $125 \mathrm{ppb} \mathrm{Au}, 2.3 \mathrm{ppm} \mathrm{Ag}$
88-39	$\begin{array}{r} 10550 \mathrm{~N} \\ 7200 \mathrm{E} \end{array}$	-grab, weakly silicified, rusty dyke, 1-2\% boxworks, $14 \mathrm{ppb} \mathrm{Au}, 2.2 \mathrm{ppm} \mathrm{Ag}$
88-40	$\begin{array}{r} 10935 \mathrm{~N} \\ 7315 \mathrm{E} \end{array}$	-20 cm chip, quartz \& rusty shear, asp, 1000 ppb Au, 3.8 ppm Ag
88-41	$\begin{array}{r} 11225 \mathrm{~N} \\ 7300 \mathrm{E} \end{array}$	-grab, silicified zone, up to 10\% py, tr ga $17 \mathrm{ppb} \mathrm{Au}, 4.9 \mathrm{ppm} \mathrm{Ag}$
88-42	$\begin{array}{r} 11225 \mathrm{~N} \\ 7300 \mathrm{E} \end{array}$	-1 m chip, silicified zone, minor boxworks, $7 \mathrm{ppb} A u, 1.7 \mathrm{ppm} \mathrm{Ag}$
88-43	$\begin{array}{r} 11310 \mathrm{~N} \\ 7165 \mathrm{E} \end{array}$	-grab, 4 cm white quartz vein, rusty fractures $187 \mathrm{ppb} \mathrm{Au}, 7.9 \mathrm{ppm} \mathrm{Ag}$
88-44	$\begin{array}{r} 11240 \mathrm{~N} \\ 7210 \mathrm{E} \end{array}$	-float, silicified, rusty fractures \& boxworks $10 \mathrm{ppb} \mathrm{Au}, 2.5 \mathrm{ppm} \mathrm{Ag}$
88-45	$\begin{array}{r} 11200 \mathrm{~N} \\ 7100 \mathrm{E} \end{array}$	-float, white quartz, rusty fractures, $6 \mathrm{ppb} \mathrm{Au}, 2.1 \mathrm{ppm} \mathrm{Ag}$
88-46	$\begin{array}{r} 11275 \mathrm{~N} \\ 7000 \mathrm{E} \end{array}$	-float, vitreous quartz, 1-2\% py, tr asp 1300 ppb Au, 2.3 ppm Ag
88-47	$\begin{array}{r} 11300 \mathrm{~N} \\ 7000 \mathrm{E} \end{array}$	-float, silicified, 1-2\% py, $22 \mathrm{ppb} \mathrm{Au}, 1.1 \mathrm{ppm} \mathrm{Ag}$
88-48	$\begin{array}{r} 10810 \mathrm{~N} \\ 9820 \mathrm{E} \end{array}$	-float, white quartz, minor boxworks, 1\% py, tr ga, $21 \mathrm{ppb} \mathrm{Au}, 3.0 \mathrm{ppm} \mathrm{Ag}$
88-49	$\begin{array}{r} 10175 \mathrm{~N} \\ 9400 \mathrm{E} \end{array}$	-float, white quartz, rusty fractures, $8 \mathrm{ppb} \mathrm{Au}, 2.8 \mathrm{ppm} \mathrm{Ag}$
88-50	$\begin{array}{r} 10225 \mathrm{~N} \\ 9340 \mathrm{E} \end{array}$	-fioat, grey metased, 5\% diss py, $6 \mathrm{ppb} \mathrm{Au}, 0.5 \mathrm{ppm} \mathrm{Ag}$
88-51	$\begin{array}{r} 10800 \mathrm{~N} \\ 8850 \mathrm{E} \end{array}$	-float, quartz stockwork, rusty intrusive, 4\% py, $20 \mathrm{ppb} \mathrm{Au}, 14.7 \mathrm{ppm} \mathrm{Ag}$
88-52	$\begin{array}{r} 10800 \mathrm{~N} \\ 8850 \mathrm{E} \end{array}$	-fioat, selected sample, stockwork, 1\% py 5-10\% ga \& sp, 2150 ppb Au, 947.9 ppm Ag

88-53	$\begin{array}{r} 10725 \mathrm{~N} \\ 8600 \mathrm{E} \end{array}$	-grab, rusty, pyritic, weakly silicified diorite, $36 \mathrm{ppb} \mathrm{Au}, 25.8 \mathrm{ppm} \mathrm{Ag}$
88-54	$\begin{array}{r} 10700 \mathrm{~N} \\ 8300 \mathrm{E} \end{array}$	-grab, rusty, weakly silicified diorite, 20 ppb Au, 12.5 ppm Ag
88-55	$\begin{array}{r} 11310 \mathrm{~N} \\ 6710 \mathrm{E} \end{array}$	-1.0 m chip, quartz stockwork, gf, $1 / 2 \% \mathrm{py}$, $6 \mathrm{ppb} \mathrm{Au}, 2.7 \mathrm{ppm} \mathrm{Ag}$
88-56	$\begin{array}{r} 11310 \mathrm{~N} \\ 6710 \mathrm{E} \end{array}$	-1.3 m chip, rusty quartz stociwork, gf, $4 \mathrm{ppb} \mathrm{Au}, 3.9 \mathrm{ppm} \mathrm{Ag}$
88-57	$\begin{array}{r} 11310 \mathrm{~N} \\ 6710 \mathrm{E} \end{array}$	-1.2 m chip, rusty quartz stockwork, gf, $10 \mathrm{ppb} \mathrm{Au}, 1.8 \mathrm{ppm} \mathrm{Ag}$
88-58	$\begin{array}{r} 11310 \mathrm{~N} \\ 6710 \mathrm{E} \end{array}$	-0.9 m chip, rusty quartz stockwork, minor gf $2 \mathrm{ppb} A u, 2.5 \mathrm{ppm} \mathrm{Ag}$
88-59	$\begin{array}{r} 11310 \mathrm{~N} \\ 6710 \mathrm{E} \end{array}$	-1.0 m chip, rusty quartz stockwork, $1 / 2 \mathrm{py}$. $7 \mathrm{ppb} \mathrm{Au}, 0.9 \mathrm{ppm} \mathrm{Ag}$
88-60	$\begin{array}{r} 11310 \mathrm{~N} \\ 6710 \mathrm{E} \end{array}$	-1.0 m chip, rusty quartz stockwork, $5 \mathrm{ppb} \mathrm{Au}, 1.7 \mathrm{ppm} \mathrm{Ag}$
88-61	$\begin{array}{r} 11310 \mathrm{~N} \\ 6710 \mathrm{E} \end{array}$	-1.3 m chip, rusty quartz stockwork, $6 \mathrm{ppb} \mathrm{Au}, 1.3 \mathrm{ppm} \mathrm{Ag}$
88-62	$\begin{array}{r} 11275 \mathrm{~N} \\ 6750 \mathrm{E} \end{array}$	-float, white quartz, 1-2\% rusty boxworks, $2 \mathrm{ppb} \mathrm{Au}, 1.8 \mathrm{ppm} \mathrm{Ag}$
88-63	$\begin{array}{r} 11250 \mathrm{~N} \\ 6745 \mathrm{E} \end{array}$	-float, quartz, 1-2\% py, tr mo, $1 \mathrm{ppb} \mathrm{Au}, 1.5 \mathrm{ppm} \mathrm{Ag}$
88-64	$\begin{array}{r} 11225 \mathrm{~N} \\ 6765 \mathrm{E} \end{array}$	-float, rusty, vuggy quartz, 15\% boxworks, $5 \mathrm{ppb} \mathrm{Au}, 1.7 \mathrm{ppm} \mathrm{Ag}$
88-65	$\begin{array}{r} 11160 \mathrm{~N} \\ 6720 \mathrm{E} \end{array}$	-float, quartz stockwork, 3\% boxworks, $2 \mathrm{ppb} \mathrm{Au}, 2.0 \mathrm{ppm} \mathrm{Ag}$
88-66	$\begin{array}{r} 11160 \mathrm{~N} \\ 6720 \mathrm{E} \end{array}$	-float, quartz, 1\% py, 2\% rusty boxworks, $1 \mathrm{ppb} \mathrm{Au}, 1.7 \mathrm{ppm} \mathrm{Ag}$
88-67	$\begin{array}{r} 10660 \mathrm{~N} \\ 7245 \mathrm{E} \end{array}$	-float, vitreous quartz, 2% boxworks, $4 \mathrm{ppb} \mathrm{Au}, 2.3 \mathrm{ppm} \mathrm{Ag}$
88-68	$\begin{array}{r} 10780 \mathrm{~N} \\ 7430 \mathrm{E} \end{array}$	-float, quartz, 5\% boxworks, 2\% py, 22 ppb Au, 2.0 ppm Ag
88-69	$\begin{array}{r} 10925 \mathrm{~N} \\ 7100 \mathrm{E} \end{array}$	-float, silicified, 10\% boxworks, $6 \mathrm{ppb} \mathrm{Au}, 1.3 \mathrm{ppm} \mathrm{Ag}$
88-70	$\begin{array}{r} 10825 \mathrm{~N} \\ 7080 \mathrm{E} \end{array}$	-grab, translucent quartz, 5\% boxworks, tr py $5 \mathrm{ppb} \mathrm{Au}, 2.6 \mathrm{ppm} \mathrm{Ag}$

88-71	$\begin{array}{r} 10600 \mathrm{~N} \\ 8415 \mathrm{E} \end{array}$	-.15 m chip, white quartz, $1 \% \mathrm{ga}$. 14 ppb Au, 25.6 pprag
88-72	$\begin{array}{r} 10600 \mathrm{~N} \\ 8415 \mathrm{E} \end{array}$	-.4 m chip, quartz \& rusty shear, 1\% ga, $610 \mathrm{ppb} \mathrm{Au}, 22.3 \mathrm{ppm} \mathrm{Ag}$
88-73	$\begin{array}{r} 10600 \mathrm{~N} \\ 8415 \mathrm{E} \end{array}$	-.2 m chip, quartz \& rusty shear, $1 / 2 \%$ ga, $158 \mathrm{ppb} \mathrm{Au}, 11.3 \mathrm{ppm} \mathrm{Ag}$
88-74	$\begin{array}{r} 10620 \mathrm{~N} \\ 7950 \mathrm{E} \end{array}$	-float, vitreous quartz, minor boxworks, $18 \mathrm{ppb} \mathrm{Au}, 2.7 \mathrm{ppm} \mathrm{Ag}$
88-75	Creek Vein	-.75 m chip, quartz $\mathrm{bx} \&$ clay alt wallrock, tr py, boxworks, $100 \mathrm{ppb} \mathrm{Au}, 8.0 \mathrm{ppm} \mathrm{Ag}$
88-76	Creek Vein	-.95 m chip, quartz \& quartz stockwork, mn stain, boxworks, 165 ppb Au, 29.6 ppm Ag
88-77	Creek Vein	-select, 2 cm shear \& quartz, $15 \% \mathrm{py}, 10 \% \mathrm{asp}$, tr cp, ga, 4200 ppb Au, 205.7 ppm Ag
88-78	Creek Vein	-1.05 m chip, quartz \& quartz bx, tr py, boxworks, 100 ppb Au, 12.0 ppm Ag
88-79	Creek Vein	-.75 m chip, weakiy altered wallrock, $41 \mathrm{ppb} \mathrm{Au}, 2.0 \mathrm{ppm} \mathrm{Ag}$
88-80	Creek Vein	-. 75 m chip, fractured quartz, grey sulphides, tr cp, $1 / 2 \mathrm{p}$ py, $1440 \mathrm{ppb} \mathrm{Au}, 30.5 \mathrm{ppm} \mathrm{Ag}$
88-81	Creek Vein	-. 5 m chip, weak quartz stockwork, $42 \mathrm{ppb} \mathrm{Au}, 5.4 \mathrm{ppm} \mathrm{Ag}$
88-82	Creek Vein	-.4 m chip, rusty, white, fractured quartz, tr py, boxworks, $17 \mathrm{ppb} \mathrm{Au}, 4.2 \mathrm{ppm}$ Ag
88-83	Creek Vein	-. 65 m chip, quartz \& quartz stockwork, rusty, boxworks, $20 \mathrm{ppb} \mathrm{Au}, 3.3 \mathrm{ppm} \mathrm{Ag}$
88-84	Creek Vein	-.85 m chip, rusty, altered wallrock, minor silicification, $3 \mathrm{ppb} \mathrm{Au}, 0.5 \mathrm{ppm} \mathrm{Ag}$
88-85	Creek Vein	-. 50 m chip, quartz, 2% rusty boxworks, tr ga 120 ppb Au, 14.1 ppm Ag
88-86	Creek Vein	-1.05 m chip, alterted wallrock, 2\% py, $8 \mathrm{ppb} \mathrm{Au}, 0.3 \mathrm{ppm} \mathrm{Ag}$
88-87	Creek Vein	-.5 m chip, quartz, rusty boxworks, tr ga, 1910 ppb Au, 33.8 ppm Ag
88-88	Creek Vein	-.55 m chip, fractured, crushed quartz, $/ 2 \mathrm{py}$, $222 \mathrm{ppb} \mathrm{Au}, 5.8 \mathrm{ppm} \mathrm{Ag}$

88-89	Creek Vein	-. 65 m chip, rusty, crushed quartz, 1\% ga, mal $2100 \mathrm{ppb} \mathrm{Au}, 19.7 \mathrm{ppm} \mathrm{Ag}$
88-90	Creek Vein	-grab, quartz \& quartz bx, 2\% py, tr cpy \& ga, 36 ppb Au, 27.3 ppm Ag
88-91	Creek Vein	-1.0 m chip, rusty quartz \& argillite, tr py, 61 ppb Au, 2.3 ppm Ag
88-92	Creek Vein	-1.0 m chip, quartz and argiliite, $1 \% \mathrm{py}$, 4 ppb Au, 0.5 ppm Ag
88-93	Creek Vein	-. 35 m chip, quartz, boxworks, minor py, $62 \mathrm{ppb} \mathrm{Au}, 12.4 \mathrm{ppm} \mathrm{Ag}$
88-94	Creek Vein	-1.0 m chip, fractured quartz, 1% py, asp, tr ga, $1650 \mathrm{ppb} \mathrm{Au}, 17.3 \mathrm{ppm} \mathrm{Ag}$
88-95	Creek Vein	-0.5 m chip, fractured quartz, boxworks, tr $\mathrm{sp}, \mathrm{ga}, 1 \% \mathrm{asp}, 2000 \mathrm{ppb} \mathrm{Au}, 23.3 \mathrm{ppm} \mathrm{Ag}$
88-96	Creek Vein	-0.6 m chip, quartz, boxworks, tr ga, 1\% py \& asp, $776 \mathrm{ppb} \mathrm{Au}, 60.5 \mathrm{ppm} \mathrm{Ag}$
88-97	Creek Vein	-0.5 m chip, vuggy, rusty quartz, $280 \mathrm{ppb} \mathrm{Au}, 4.3 \mathrm{ppm} \mathrm{Ag}$
88-98	Creek Vein	-0.2 m chip, quartz, rusty boxworks, $21 \mathrm{ppb} \mathrm{Au}, 2.2 \mathrm{ppm} \mathrm{Ag}$
88-99	Moss Vein	-1.2 m chip, quartz, rusty boxworks, $1 / 2 \% \mathrm{py}$, 410 ppb Au, 2.7 ppm Ag
88-100	Moss Vein	-1.2 m chip, quartz, rusty boxworks, tr py, 550 ppb Au, 2.4 ppm Ag
88-101	Moss Vein	-select sample, quartz, rusty boxworks, is py 3/2\% ga, $425 \mathrm{ppb} \mathrm{Au}, 11.1 \mathrm{ppm} \mathrm{Ag}$
88-102	Moss Vein	-0.75 m chip, quartz, rusty boxworks, tr py, $540 \mathrm{ppb} \mathrm{Au}, 6.6 \mathrm{ppm} \mathrm{Ag}$
88-103	Moss Vein	-0.75 m chip, quartz \& quartz bx, rusty boxworks 1/2\% py, 200 ppb Au, 3.8 ppm Ag
88-104	Moss Vein	-grab, acicular white sulphide?, 103 ppb Au, 0.5 ppm Ag
88-105	Moss Vein	-0.4 m chip, quartz with narrow shears, $1 / 2 \mathrm{py}$ 202 ppb Au, 3.1 ppm Ag
88-106	Moss Vein	-1.0 m chip, wallrock with minor quartz stockwork $65 \mathrm{ppb} \mathrm{Au}, 1.8 \mathrm{ppm} \mathrm{Ag}$

88-107	$\begin{aligned} & \text { Moss } \\ & \text { Vein } \end{aligned}$	-0.4 m chip, quartz, minor shearing, $540 \mathrm{ppb} \mathrm{Au}, 9.8 \mathrm{ppm} \mathrm{Ag}$
88-108	$\begin{aligned} & \text { Moss } \\ & \text { Vein } \end{aligned}$	-.22 m chip, quartz, rusty boxworks, 2% py, $1220 \mathrm{ppb} \mathrm{Au}, 11.5 \mathrm{ppm} \mathrm{Ag}$
88-109	Moss Vein	-cuttings from bx zone, $280 \mathrm{ppb} \mathrm{Au}, 1.2 \mathrm{ppm} \mathrm{Ag}$
88-110	Moss Vein	-0.75 m chip, quartz breccia, rusty boxworks, 1\% py, $205 \mathrm{ppb} \mathrm{Au}, 1.3 \mathrm{ppm} \mathrm{Ag}$

Appendix V

COST STATEMENT

COST STATEMENT

SALARIES

- Grant Crooker, GeologistJuly 16, 17, 21-23, 25-31,August 1-26, 1988
38 days $\$ 325 /$ day $\$ 12,350.00$
- John Green, Field Assistant
July 25-31, Aug. 1-21, 198828 days $\$ 200.00 /$ day 5.600 .00
- Lee Mollison, Field Assistant
July 25-31, Aug. 1-23, 1988
30 days $\$ 200.00 /$ day $6,000.00$
- Harold Smith, Field Assistant August 13-18, 1988
6 days $\$ 200.00 /$ day $1,200.00$
GEOPHYSICAL INTERPRETATION 975.00
MEALS and ACCOMMODATION
Meals
- Grant Crooker - 28 days $\$ 21.85 /$ day 611.80
- John Green - 28 days $\$ 21.85 /$ day 611.80
- Harold Smith - 6 days © $\$ 21.85 /$ day 131.10
- Lee Mollison - 28 days $\$ 21.85 /$ day 611.80
Hotel
- 10 days $\$ 80.30$ 803.00
Camp Rental
90 man days © $\$ 40.00 /$ day $3,600.00$
TRANSPORTATION
- Airfare, Terrace 557.37
- Taxi, parking, etc. 54.50
- Vehicle Rental (Ford 3/4 ton 4x4)
July 25-31, Aug. 1-21, 1988
28 days $\$ 60.00 /$ day 1.680.00
- Gasoline 335.00
- Helicopter(206B)
7.6 hours \$ 572.00/hour 4,347.20

EQUIPMENT RENTAL

- Magnetometer - Scintrex MP-2 July 25-31, Aug. 1-21, 1988 28 days \$ 25.00/day 700.00
- VLF EM - Geonics EM 16 July 24-31, Aug. 1-22, 1988 30 days $\$ 25.00 /$ day 750.00
- Jack Hammer and Steel 700.00
- Radio
75.00

SUPPLIES

- Hipchain thread, flagging, camp supplies, blasting supplies, etc. 1,436.36

FREIGHT
141.35

ANALYSIS

- 110 rock samples, 31 element ICP, Au-fire (6) $\$ 17.25 /$ sample
$1,897.50$
- 560 soil samples, 31 elementICP, Au-fire @ \$ 15.25/sample

DRAUGHTING
$8,540.00$
627.28

PREPARATION of REPORT

- Secretariai, reproduction, 663.94

