LOG NO: 110	RD.
ACTION:	
FILE NO:	······································

DIAMOND DRILL REPORT on the AJAX C.G. Lot No. 4710 AJAX PROJECT

Kamloop Mining Division NTS 921/9W

Latitude: 50 35'N Longitude: 120 30'W

AFTON OPERATING CORPORATION P.O. BOX 937 Kamloops, B.C. V2C 5N4

FILMED

By Lorne A. Bond Senior Geologist

Kamloops, B.C.

.....

.

.

.

.

.

.

.

.

October 6, 1988

GROLOGICAL BRANCH ABSDERMENT REPORT

Al and a second second

TABLE OF CONTENTS

•

.

۰.

٠

.

-

,

~

.

,

4

,

- -

1.	INTRODUC	CTIC	ON .	•	• •		•	٠	•	•	٠	•	٠	•	•	•	•	٠	٠	•	•	•	•	•	1
2.	PROPERTY	Y DE	SCRI	PT:	ION		•				•	•	•						•					•	4
з.	HISTORY	ANE) PRE	VIC	ous	WC	RK		•		•		٠	•	•	•			•	•	•		•	•	5
4.	CURRENT	PRO	GRAM	1.				•	•	•		•	•.	•			•				•	•	•	•	7
5.	RESULTS	OF	THE	PRO	DGRI	AM		•		•				•		•			•		•	•	•		10
REF	ERENCES	•	• •	•	• •			•		•		•					•		•			•	•		14
STA	TEMENT C	OF C	OSTS	5.	•••	•	•	•	•	•	•	•		•	•	•	•	•		•	•	•	•	•	15
STA	TEMENT C	OF Q)UALI	FIC	CAT	ION	IS		•	•	•	•	•	•	•	•	•		•	•	•	·	•		16
APF	PENDIX .		• •	•						•		•			•										18

LIST OF FIGURES

Figure	1.	Index and	Location 1	Map					•	•	•				3
Figure	2.	Drillhole	Location 1	Map	• •										9
Figure	з.	West Zone	Geology -	870	E1	eva	ati	on						•	12
Figure	4.	Section 8.	.5W - West	Zon	е.		•						•	•	13

1. INTRODUCTION

The Ajax property is located some ten kilometers southeast of the Afton minesite, and south of the City of Kamloops (Fig.1A). It is located in the Kamloops Mining Division at latitude 50 35'N and longitude 120 25'W on NTS Map 92I/9W. The property consists of eight crown grants, fifty-two located claims with seventy-four units, and the base metal rights on thirty-one parcels. Total surface area of the mineral claims amounts to some 1,600 hectares (Fig.1).

Much of the area is occupied by rolling grassland with timber only on the higher slopes. Relief is generally moderate with elevations between 800 and 1,100 metres above sea level. Extensive glacial action has created a topography of low rolling hills with local deep accumulations of glacial till on the southeast flanks of larger rock outcroppings.

The low annual precipitation level is reflected in the flora of the area. Bunchgrass, sagebrush, and cacti are abundant on the lower grassy slopes being joined by stands of ponderosa pine at higher elevations. Water is abundant in the spring in numerous small saline ponds and sloughs. However, year-round fresh water is restricted to the Jacko Lake and Edith Lake drainage systems and these sources are heavily committed to irrigation use.

Ranching is currently the predominant land use. Most of the surface rights are privately owned with grazing leases granted on much of the outstanding crown land. The area is close to all forms of infrastructure and is served by a network of roads including the all-weather gravel Goose Lake Road, which traverses the property.

.

.

During the period February 18-21,1988, a diamond drill hole with a total length of 236.2 metres was drilled on the Ajax C.G. to test for the extension of ore grade mineralization below reserves established by previous drilling programs.

2. PROPERTY DESCRIPTION

-

.....

.....

-

٣

e

*

r

The property designated as the Ajax-Neptune Claim Group consists of the following:

Claim Name	Record No.	Expiry Date
Ajax 6 (8 units)	1886	24 May, 1999
Ajax 7 Fr.	1887	24 May, 1999
Ajax Fr.	119141	25 May, 2000
Ajax 100 (4 units)	6047	15 Jan. 1999
Ajax 200 (10 units)	6048	15 Jan. 1999
Ajax 900 Fr.	6054	15 Jan. 1999
Ajax 1000 Fr.	6248	7 Jun. 1999
Fox 11 Fr.	41941	16 Apr. 1999
Fox 12 Fr.	41942	16 Apr, 1999
Clover 1 (4 units)	979	10 Aug, 1999
Jacko 4	13932	2 Sep, 2000
Jacko 6 Fr.	13934	2 Sep, 2000
Pam 18-21	41336-39	22 Jan. 1999
Pam 24	41342	22 Jan, 1999
Map 2 Fr.	92948	6 Nov, 1999*
Edith 100 (15 units)	1802	9 Apr, 1999
Tyler 1-4	2297-2300	29 Nov, 1999*
Hump 100 (8 units)	1799	19 Apr, 1999
Sam 1 Fr.	2296	29 Nov. 1999*
Ajax C.G.	Lot 4710	
Neptune C.G.	Lot 4712	

* Note: Upon approval of assessment work described in this report and covered in a Statement of Exploration and Development submitted in October 1988.

3. HISTORY AND PREVIOUS WORK

,

.

Exploration activity in the Iron Mask area is first noted in government reports in 1896, when over two hundred claims were recorded. By 1900, underground work had been done on several properties in the area including the Wheal Tamar claim. Trenching was carried out on the Ajax claim between 1904 and 1910 and additional underground development and sampling was done in the nineteen-twenties.

In 1929, the Consolidated Mining and Smelting Company trenched and sampled the area and drilled ten holes from surface. Berens River Mines Limited (Newmont) optioned the property in 1952 and drilled on a narrow high grade shear zone on the Monte Carlo claim.

In 1954, Cominco again optioned the four original crown grants together with adjacent crown grants and staked additional ground. Exploration work proceeded on an intermittent basis until 1980.

In 1980, under a joint venture agreement with E & B Explorations Limited, a major exploration program was initiated and continued through 1981. With these expenditures, E & B Explorations Limited acquired a thirty percent interest in the property. Results of the program indicated a large low grade deposit with open pit potential.

In 1986, an agreement was reached between Cominco, E & B Explorations, and Afton Operating Corporation under which Afton acquired controlling interest in the Ajax property in respect of certain expenditures and ultimately placing the property into production. During 1987, Afton carried out an extensive drilling and evaluation program.

The 1987 program is described in assessment report numbers 17198 and 17199. The net result of that program was the delineation of open pit reserves in two separate zones on the Ajax property. Open pit reserves of 20,200,000 tons at .47%Cu and .010 oz/t Au were outlined in the West Zone on the Ajax-Neptune Claim Group. On the Wheal Tamar Claim Group, 7,000,000 tons at .44% Cu and .010 oz/t Au were proven up in the East Zone.

4. CURRENT PROGRAM

.

The purpose of the 1988 drilling program on the Ajax-Neptune Claim Group was to test for the extension of ore grade mineralization beneath the open pit reserves outlined in the West Zone by previous work.

To that end, D.D.H. 88-1 was collared on Section 8.5W in the center of the West Zone and drilled under mineralization cut by D.D.H. 87-85 (Figure 2). The hole was drilled during the period February 18-21, 1988. Core size was NQ. Total length of the hole was 236.2 metres (775 feet). Copies of the geological log and assay results are included in the appendix.

Core from the program was transported to the Afton minesite for processing. All core was geologically logged. taken and Recovery and RQD measurements were the core photographed. Rock strength testing was performed on selected pieces of core from all rock types. The core was then split and one-half retained for core storage. The other half was bagged, generally in three metre samples, and sent to the property analytical lab for copper, gold, and silver assays. Some selective analyses for other elements were done as well. Afton personnel supervised the program, processed the core, and provided survey control in the field. All core from the program is stored at the Afton minesite. Connors Drilling Limited was the contractor for the drilling program.

In the lab, core samples were crushed in two stages utilizing a jaw crusher and a cone crusher. Sample volume was reduced to 250 grams using a Jones riffle. This smaller sample was then pulverized. Reject material from the splitter was bagged, labelled and stored.

Assays for copper were performed by dissolution followed by atomic absorption spectrophotometry analysis. Gold assays were performed by fire assaying with atomic absorption analysis of the resultant bead in a methyl isobutyl ketone medium. Silver assays were carried out by acid dissolution followed by atomic absorption spectrophotometry analysis.

Geological, assay and survey data from the program were stored on computer files using an in-house HP9000 Series computer and Geomin software. This data base was then available for computer generated plans and sections, statistical analyses, compositing, ore reserve modelling and pit optimizations.

5. RESULTS OF THE PROGRAM

The geology of the Ajax property and the West Zone are extensively described in Assessment Report No. 17199 submitted by Afton Operating Corporation.

Ajax property mineralization is hosted by intrusive units of the Triassic Iron Mask Batholith. The Sugarloaf Diorite unit is a younger intrusive phase of the batholith and is directly associated with emplacement of copper mineralization on the Ajax property.

In the Ajax West Zone, a linear body of Sugarloaf Diorite, with a northwest-southeast axis and steep southerly dip, has been emplaced along the contact between Nicola Volcanics and Hybrid Diorite (Figure 3). The Sugarloaf unit has stoped out and assimilated substantial areas of Hybrid Diorite creating a contact area with undulating embayment features. Hydrothermal solutions associated with the Sugarloaf intrusive have extensively altered both the host diorite and the bounding Hybrid Diorite. Both the Sugarloaf Diorite and fractured and altered sections of Hybrid Diorite are hosts for ore grade chalcopyrite mineralization. Drillhole 88-1 was collared to the south of the ore zone and drilled north easterly from hanging wall to footwall (Figure 4). The first 100 metres of the hole cut basaltic rocks and short sections of more andesitic volcanics which constitute the south contact or hanging wall of the intrusive units. Minor alteration and trace sulphides were noted in these rocks. The remainder of the hole was completed in varieties of the Sugarloaf Diorite or albitized equivalents.

The main mineralized zone was encountered at 119 metres down the hole. The host rock unit is an intensely albitized and brecciated Sugarloaf Diorite to 204 metres succeeded by fresher, less altered diorite to the end of the hole. Significant chalcopyrite mineralization was present from 119 metres to 212 metres. It was concluded that a mineralized, albitized and brecciated zone exists to depth under the center section of the West Zone.

¢

•

•

.

.

¢

REFERENCES

1

.

- Armstrong, W.P. (1973): Geology of the Ajax-Monte Carlo Property. Unpublished M.Sc. Thesis, University of British Columbia.
- Bond, L.A. (1988): Assessment Report No. 17199. Diamond Drilling Report on the Ajax C.G. and Neptune C.G., Ajax Project, Afton Operating Corporation.
- Butrenchuk, S.B. (1981): 1981 Interim Report, Ajax-Monte Carlo Property, Iron Mask Project. Unpublished Report for Cominco Ltd.
- Carr, J.M. (1956): Deposits Associated with the Eastern Part of the Iron Mask Batholith near Kamloops, Minister of Mines, B.C. Ann. Report, 1956, pp 47-69.
- Carr, J.M. and Reed, A.J. (1976): Afton: A Supergene Copper Deposit, C.I.M.M. Special Volume 15, pp 376-387.
- Cockfield, W.E. (1948): Geology and Mineral Deposits of Nicola Map - Area, British Columbia, Geol. Survey, Canada Mem. 249.
- Northcote, R.E. (1974): Geology of Northwest Half of Iron Mask Batholith, B.C. Dept. of Mines and Pet. Res.; Geological Fieldwork, 1974, pp 22-26.
- Preto, V.A. (1968): Geology of the Eastern Part of the Iron Mask Batholith, B.C. Ministry of Mines and Pet. Res., Ann. Rept. 1967, pp 137-147.

STATEMENT OF COSTS

....

٠

.

.

*

r

.

.

Assay Costs 71 samples assayed for Cu and Au @ \$13.60 ea. 965 Truck Rental 5 days @ \$25 per day 125 Core Boxes 40 boxes @ \$5.35 ea 214 Personnel L. Tsang, Exploration Geologist, logging core, supervision 5 days @ \$185 per day 925. S. Porter, core splitter 3 days @ \$115 per day 345. L. Bond, Senior Geologist program planning, report writing 2 days @ \$225 per day 450. TOTAL COST \$12,857.	Diamond Drilling Connors Drilling Limited	\$ 9,832.92
Truck Rental 5 days @ \$25 per day 125 Core Boxes 40 boxes @ \$5.35 ea 214 Personnel L. Tsang, Exploration Geologist, logging core, supervision 5 days @ \$185 per day 925. S. Porter, core splitter 3 days @ \$115 per day 345. L. Bond, Senior Geologist program planning, report writing 2 days @ \$225 per day 450. TOTAL COST \$12,857.	Assay Costs 71 samples assayed for Cu and Au @ \$13.60 ea.	965.60
Core Boxes 40 boxes @ \$5.35 ea Personnel L. Tsang, Exploration Geologist, logging core, supervision 5 days @ \$185 per day S. Porter, core splitter 3 days @ \$115 per day L. Bond, Senior Geologist program planning, report writing 2 days @ \$225 per day TOTAL COST \$12,857.	Truck Rental 5 days @ \$25 per day	125.00
Personnel L. Tsang, Exploration Geologist, logging core, supervision 5 days @ \$185 per day 925. S. Porter, core splitter 3 days @ \$115 per day 345. L. Bond, Senior Geologist program planning, report writing 2 days @ \$225 per day 450. TOTAL COST \$12,857.	Core Boxes 40 boxes @ \$5.35 ea	214.00
S. Porter, core splitter 3 days @ \$115 per day 345. L. Bond, Senior Geologist program planning, report writing 2 days @ \$225 per day 450. TOTAL COST \$12,857.	Personnel L. Tsang, Exploration Geologist, logging core, supervision 5 days @ \$185 per day	925.00
L. Bond, Senior Geologist program planning, report writing 2 days @ \$225 per day 450. TOTAL COST \$12,857.	S. Porter, core splitter 3 days @ \$115 per day	345.00
TOTAL COST \$12,857.	L. Bond, Senior Geologist program planning, report writing 2 days @ \$225 per day	450.00
	TOTAL COST	\$12,857.52

STATEMENT OF QUALIFICATIONS

I, Lorne Allan Bond, of the City of Kamloops, British Columbia do hereby certify that:

1. I am a qualified, practising Geologist.

.

- I am a graduate of Loyola College (University of Montreal), with a B.Sc. (1967) in Geotechnical Sciences.
- 3. I have practised my profession since 1967 while employed with Sherritt-Gordon Mines Ltd., Cominco Ltd., and Afton Operating Corporation.
- This report describes a diamond drilling program performed under my supervision from February 18 through February 21, 1988.

Lorne A. Bond Senior Geologist Afton Operating Corporation October 6, 1988

Low Her

I, Louis Hee-Choi Tsang, of the City of Kamloops, British Columbia do hereby certify that:

1. I am a qualified, practising geologist.

.

L

7

ø

.

- 2. I am a graduate of the University of British Columbia with a B.Sc. (1972) in Geology and Geophysics.
- 3. I have practised my profession since 1972 while employed with Granisle Copper Ltd., Highmont Operating Corporation and Afton Operating Corporation.
- 4. I have logged the drill core from the diamond drill holes in this program during the period February 18 through February 23, 1988.

Louis H.C. Tsang Exploration Geologist Afton Operating Corporation October 6, 1988 APPENDIX

×...

F

e

.

÷...

.

.

AJAX PROJECT

KEY TO GEOLOGICAL LOGS

Dist. - distance in feet Rec. - recovery in percent Rqd. - rock quality designation in percent

Cu grade - in percent Au grade - oz. per short ton Ag grade - oz. per short ton

ROCK

.

e

*

÷.

٠

,....

۰.

•

.

ė

.

.

ALBU - Albitized Unit	OVBN - Overburden
CHCR - Cherry Creek Unit	SUGL - Sugarloaf Unit
HYBR - Hybrid Unit	ULMF - Ultramafic Unit
NICL (NVOL)	VOLC - Volcanics
- Nicola Group Volcanics	

LITHOLOGY

ALBT	-	Albitite	MDIO -	-	Microdiorite
BREC	-	Breccia	MONZ	_	Monzonite
DIOR	-	Diorite	SYEN -	_	Syenite
DYKE	-	Dyke	TILL -	-	Till
HORN	—	Hornfels	VOLC -		Volcanics

KA - kaolinite

LM - limonite

QZ - quartz

MG - magnetite

PF - pink feldspar

A1 - A4 ALTERATION MINERALS

AB - albite CH - chlorite CL - calcite CY - clay EP - epidote GY - gypsum HM - hematite

<u>M1 - M5 ORE MINERALS</u>

AZ		azurite	CU	-	native copper
BN		bornite	MC	_	malachite
CC	—	chalcocite	MO		molybdenite
CP	-	chalcopyrite	PY	-	pyrite

BASIC DRILL DATA FOR HOLE : 88-01

• .

· ',

•

*

.

r

.

-

and the second second

DIST AZIN DIP 0002 0 030 60 117.3030 59 227.1030 57

DIST	Rcv Rad	Reck	Lith	A1 A2	2 A3	A4	81	K2	M3	84	NS	Fcu	P1t	C.	Âu	Aq	Kġ	As	S
0003 22.1	65 17	DVBN DTCD	HEL M¥	CH CI									32088	. 803	.4043				
1105 29	65 33	PICR	ULKE	CH ČI									6400	.018	.0003				
5006 32	91 65	PICR	ULKE	ក្អា ព	-								10880	.007	.1003				
0087 35	53 15	PRCK CHC	UL MH	11 10 01	: CH									.U24 ANS	,000. 6003				
1000 30 1009 41	78 33	PICR	UL NF	EP CL	- vn									. 13	,0003				
0910 44	80 28	PICR	ULXI	AB CL	-		PY							.082	.0010				
8011 47	92 58	21CR		а а с	,		PY	CD					38464	. 878	,09]4 5867				
0012 30	100 33	2018	ULINF		ł		ρŶ	ŭ					14080	.837	.0\$71				
0014 56	100 28	PICR	ULHF	CI CI	İ		ΡŸ	Ĉ₽					13444	. 150	.0803				
0015 59	88 42	PICR					PY						7680	.008	,0003 8887				
6017 65	97 31	PIC2	ULING		ì		£ I						26400	.003	.0003				
0018 68	97 63	PICR	ULINF	ũ ũ	Í _		P۲						14560	.653	.0013				
0019 71	87 33	PICR	ULAF		18		CD.						12020	.0]]	,0707 1006				
421 77	70 4/ 98 33	SUC	MDIO		n ∟r ł		ČP	P¥					7948	.107	.0017				
0022 80	100 57	PICR	ULHE	CL CI	ł		_							, 928	.0003				
0023 83	93 75	PICR	ULAF		1		٥v	70					20320 0408	.021	2060. 2000				
8025 89	73 30 91 71	PICR	ULME		ì		ρÝ	U.					5120	. 023	.0905				
0026 92	100 82	PICR	ULINE	CL CI	ł		ΡŸ						24324	414	.0006				
0027 95	99 85	PICR	ULME		{		PT	ΒV					11840	.089	,0408 0076				
UU28 78 0029 191	60 D0 93 55	SHO	0102		, СЯ	PF	CP CP	şγ					2004	.673	.0867				
0030 104	92 62	SUCI	DTOR	Cũ. Ē	۶ ČH		PΥ	CP					7368	.167	.0014				
6031 197	97 62	NICO	VOLC		i Cl	QZ	C 2	PY					7689	.187	.0019				
0032 110 8033 113	42 37	NICO	VOLU	FP D			PY						4160	.173	.0015				
0034 116	88 47	NICO	VOLČ	AB CI	ičī	EP	CP	ΡY					16321	. 650	.0011				
1035 119	93 33	NICO	VOLC	AB CI	1 PF	FP	2	PY					14.08	.184	.0013				
9937 125	87 61	AL SU	AL ST	AB E	ΕΥ		ц СР	ρŶ					6480	.769	.0182				
0038 128	100 85	AL BU	ALBT	AB EI	? ĈĹ	ČŸ	ČP	₽Ŷ					9448	.561	.0131				
1137 131	93 62	ALBU	ALBI	AB EI	20	QZ	22	7Y					23840	,349	.0185				
0048 134 1841 137	73 /3	AL RU	AL BT	AR F	, u			PY					9120	1.48	.8246				
0842 140	100 90	ALBU	ALBT	AB EI	' Q		ĈΡ	PΫ					15680	.532	.1126				
6043 143	100 96	ALBU	AL BT	AB E	2 CL		SP CP	PT					1568	, 448 512	,0119 6170				
8845 149	97 78	AIR	AL BT	AB E	à		ö	FY					9768	.282	.0082				
0446 152	188 75	SUCL	ALBT	AB E	? ČL		CP	PY						.551	. 8132				
0047 155	100 62	SUGL	ALBT		20		02	PY						.308	.5684				
8449 161	110 52	AL BU	ALBT		័ដ		ö	ρŶ						.123	.0031				
0858 164	100 73	ALEU	ALBT	AB C	. <u>E</u> P		ĊP	PY						.159	.9816				
\$051 167	97 58	ALBU	ALBT		. 89 70		10	PT						.778	.6244				
8853 173	99 88	ALBU	ALST	ABC	Ē		СР СР	ρŶ					16640	.216	.1152				
0054 176	95 65	AL BU	ALBT	AB C	Ē		ĒP	PY					816	.511	.0145				
1056 182	H %	사이	AL BI		- F		Ř	PY					1440 8040	: 348	1459				
1057 185	83 44	SUGL	MÕIO	AB C	1 22		ČP	ŇÖ	PY				28960	851	.0156				
0058 19B	88 48	SUCL	MD10	AR C	. EP	CH	CP	PY	۸v				11368	. 535	.0076				
0037 171 8060 194	70 02 99 77	- 50GC	AI RT	AR C	. 77 FP	ξr	CP	PY	51				1956	.303 ∣1.92	.0477				
0061 197	160 73	SUC	MDIO	AB C	ĒP		ČP	PY					6560	1.20	.0169				
0862 200	100 92	SUGL	MOIO	AB CI	EP	PF	CP	PY					1440	.601	.0117				
8865 285 8864 286	97 25	SOFU ALBII	AURT	AB EI AR CI	' UL FP		CP CP	PY					1440 7698	1.53	,4495				
0065 209	93 93	SUGL	DICR	AB E	Ö Ö	CH	PY	ĊP					1760	.302	.8\$34				
0066 212	95 66	SUCE	DIOR	ABE	P CH	I CL	ΡY	ĈP					30240	.388	.0049				
0067 210 0068 218	76 75	5060		EF A	5 4 AR		PY	CP CP					10100	.845	,4410				
1067 221	180 93	SUG	NDIO	EP C		•	PY						16320	.086	.6010				
0070 224	98 93	SUCL	DIOR	EP Ö			PY		<u>.</u>				6240	.152	.0006				
VV/1 227 0072 230	YY 80	SUGL	0108	50 C	_ A8		PY	41	۳IJ				52800 Taria	180	.4948 8018				
0073 233	98 66	SUG	DIOR	A8 C	E EP		CP	PY					6408	.441	.0857				
0174 236.2	98 62	SUCL	DIOR	AB C	L EP		CP	PÝ					22568	.350	.0052				