

900-625 Howe Street Vancouver, B.C., Canada V6C 2T6 Telephone (604) 684-5887

1.0G NO: 1109	RD.
ACTION:	
79 p	
FILE (.O:	

FILMED

GEOLOGICAL AND GEOCHEMICAL REPORT OF THE 1988 FIELD ACTIVITIES FOR THE ARGO-LANGARA PROPERTY (Clinton Mining Division)

> NTS: 92 N/7, N/10 Latitude 51⁰29'N Longitude 124⁰36'W

for: CANADA ORIENT RESOURCES INC. and EQUINOX RESOURCES LTD.

GEOLOGICAL BRANCH ASSESSMENT REPORT

-

-

-

and the second second second

ŀ.

TABLE OF CONTENTS

		Page
		1
	SUMMARY	
1.	INTRODUCTION	1 /
2.	LOCATION AND ACCESS	1 /
з.	CLAIM DESCRIPTION	3 🖉
4.	PHYSIOGRAPHY AND CLIMATE	5,
5.	PREVIOUS WORK	6 /
6.	RECENT WORK	8 /
-7.	GENERAL GEOLOGY	9 /
8.	PROPERTY GEOLOGY	12 🍃
9.	SOIL SAMPLING GEOCHEMISTRY	14 /
10.	ROCK SAMPLING RESULTS	15 /
11.	DISCUSSION	1.8 /
12.	CONCLUSION AND RECOMMENDATIONS	19/
13.	REFERENCES	22 /
14.	STATEMENT OF QUALIFICATIONS	23 /

APPENDICES

APPENDIX	I	Statement of Costs			
APPENDIX	II	Soil	Sample	Geochemical	Results
APPENDIX	III	Rock	Sample	Geochemical	Results

LIST OF TABLES

TABLE 1	Claims description	3 /
TABLE 2	Rock sample results from 1987 sampling	7 /
TABLE 3	Average geochemical metals in and	
	out of the silicified and sulphidized	
	contact zone from the 1987 soil lines	8 ,
TABLE 4	Average stream sample results from 1987	
	sampling	87
TABLE 5	Legend of the 1:125,000 geology map taken	
	from GSC Open File 1163	11,
TABLE 6	Rock sampling assay results	15,

FIGURES

Location of property	2_/
Claim map (NTS 92N/7, 1:50,000)	4
General geology, GSC Open File 1163	10 /
Local geology	pocket
AU geochemical contour map	pocket
AG geochemical contour map	pocket
AS geochemical contour map	pocket
Soil Geochemistry for AU, AG, and AS	pocket
Zones of high anomalous Au & Ag	,
as indicated by soil geochemistry	pochet / p21
	Claim map (NTS 92N/7, 1:50,000) General geology, GSC Open File 1163 Local geology AU geochemical contour map AG geochemical contour map AS geochemical contour map Soil Geochemistry for AU, AG, and AS Zones of high anomalous Au & Ag

SUMMARY

This report summarizes results of a 1988 exploration programme over the Argo-Langara property on behalf of Equinox Resources Ltd. and Canada Orient Resources Ltd. The Argo-Langara property is located on the eastern limit of the Coast Plutonic Complex. At this point, quartz diorite intrudes sedimentary rocks of the Tyaughton Trough. Gold and silver bearing epithermal quartz veins occur in silicified-sulphidized sediments at the quartz diorite contact.

The property consists of 3 metric claims and 10 reverted crown granted claims, the metric claims overlapping the crown grants. The combined area of the claims is approximately 1,550 hectares.

Over 56 km of grid lines were established followed by detailed mapping, VLF and magnetometer geophysical surveys, and geochemical soil and rock sampling. A total of 1,470 soil samples and 97 rock samples were collected. Analysis were carried on by Acme Analytical Laboratories Ltd. for arsenic, antimony and copper by ICP method and for gold and silver by fire assay preconcentration pellets.

Three zones of highly anomalous gold and silver values were located by soil geochemistry. These zones each extend over a 300-450 meter distance revealing more than 300 ppm gold in soils. Rock sampling indicates that the anomalous gold and silver is mostly associated to NNW striking arsenopyrite and pyrite rich quartz veins occurring in silicified-sulphidized sediments within 200-300 m from the quartz diorite contact zone. The contact zone trends generally eastward across the property.

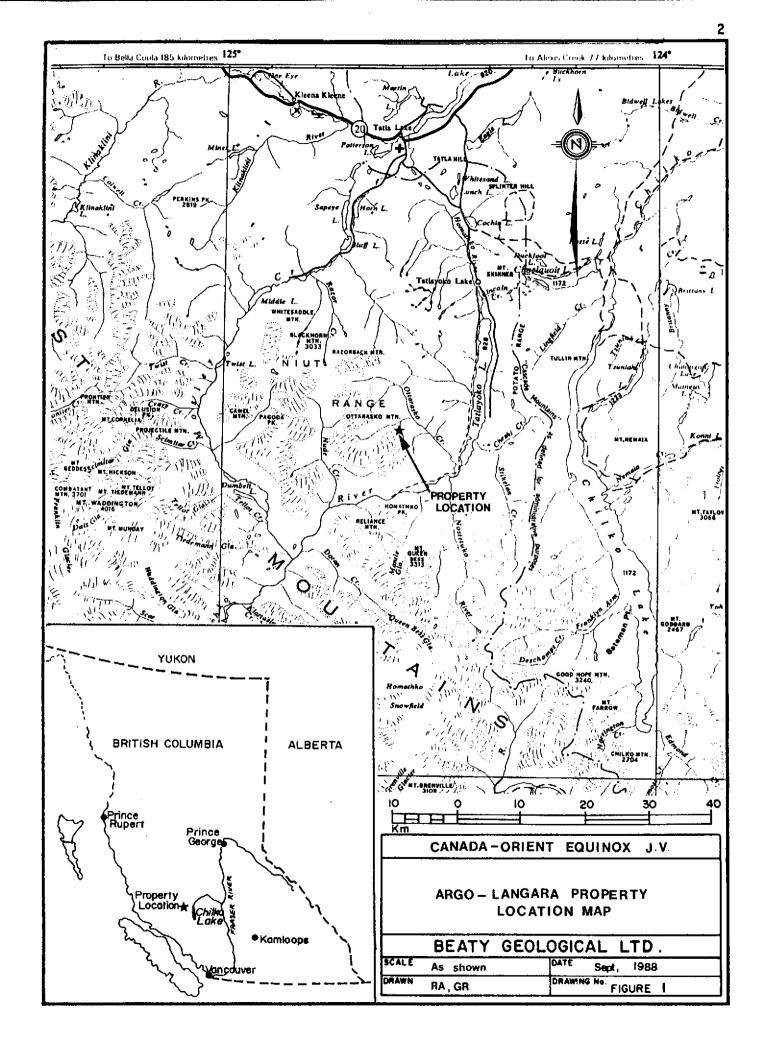
Recommendations are made to proceed with a follow-up program, concentrating on three target areas. Trenching should be done prior to drilling, following an east-west orientation along the contact to identify economic occurrences of the mineralized quartz veins.

1. INTRODUCTION

The Argo-Langara property is part of the eastern contact between the Coast Plutonic Complex and sedimentary and volcanic strata of the Tyaughton Trough (part of the Intermontane Belt). This type of emplacement is one of interest for its epithermal gold and silver deposits.

Between 18 August and 13 September 1988, a geophysical and geological crew of Beaty Geological Ltd. and a geophysicist of Ashworth Exploration Ltd. were contracted by Canada Orient Resources Inc. and Equinox Resources Ltd. to complete geophysical and geochemical work and to produce a detailed geological map of the Argo-Langara property.

The 1988 exploration program was carried out following encouraging anomalous gold and silver values obtained from a preliminary 1987 field exploration.


Three locations have provided interesting anomalous gold values from the 1988 soil sampling program. The author recommends that those areas be trenched and chip sampled on an east-west direction immediately south of the quartz diorite contact, so as to intersect the north-south striking mineralized quartz veins that occur in the silicified and sulphidized siltstone unit.

2. LOCATION AND ACCESS

The property is located near Ottarasko Creek, 45 kilometres south of the small community of Tatla Lake which is about midway between Williams Lake and Bella Coola on BC Highway 20. British Columbia's highest point, Mount Waddington, elevation 4,016m, is 48 kilometres to the west; and the south end of Tatlayoko Lake is 11 kilometres to the southeast. Alternatively, the property is 270 kilometres north-northwesterly from Vancouver.

Presently, the only access to the property is by helicopter, the nearest base being that of White Saddle Air Services at the south end of Bluff Lake. Bluff Lake is 28 kilometres from the property, or about 15 minutes by helicopter one way. Bluff Lake is about one half hour by good gravel road from Tatla Lake, and Tatla Lake in turn is about three hours by good road, mostly paved, from Williams Lake.

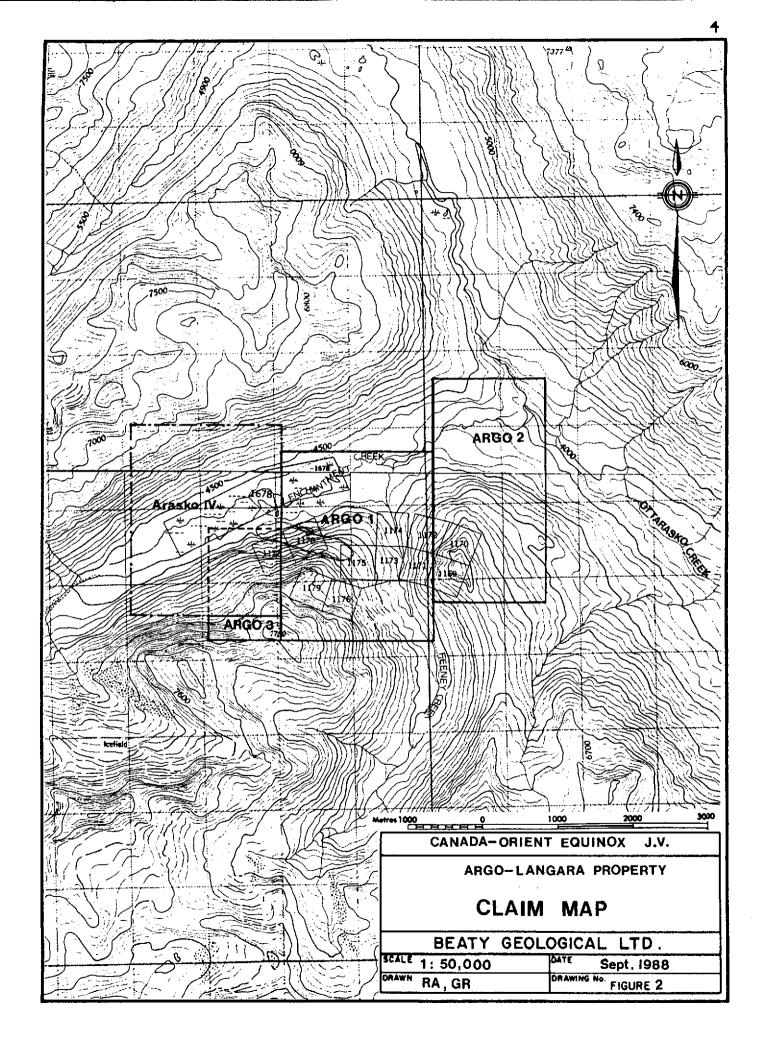
The main supply center for the area is Williams Lake, but small supplies may be obtained at Tatla Lake, or at the other small outpost communities along Highway 20.

Possible future vehicular access to the property might be from the south end of Tatlayoko Lake, a map distance of 14 kilometres but requiring a bridge across the Homathko river; or alternatively, from the west side of Tatlayoko Lake, westerly up Jamieson Creek and a tributary to the headwaters of Ottarasko Creek and then southerly to the property, a distance of about 30 kilometres.

3. CLAIM DESCRIPTION

The Argo-Langara property is part of the Clinton Mining Division of British Columbia.

The property consists of three large metric claims, Argo 1, 2 and 3, acquired by Equinox Resources Ltd. in May of 1987 (Table 1) and one 20 unit metre claim, Arasko IV owned by C. Ashworth. These metric claims overstake 10 reverted crown granted claims owned by Clive Ashworth of 744 West Hastings St., Vancouver, BC and one reverted crown granted claim (Lot No. 1176) owned by John L. Deleen from Vancouver, BC.


An agreement dated from 27 July 1987 and amended on 4 August 1987 gave Canada Orient Resources the right to acquire 50% joint venture interest in the three Argo metric claims. In addition, Canada Orient Resources and Equinox Resources obtained the right to acquire 100% interest, each getting 50% by joint venture, in the 10 reverted crown grants owned by Clive Ashworth following an agreement that would give the latter party the right to retain 3% net smelter return.

Detail of the claims are provided in Table 1 below:

TABLE 1: Claims Description

Metric

<u>Claim</u>	Record <u>Number</u>	<u>Units</u>	Date	Owner
Argo 1	2197	20	15 May 87	Equinox Resources
Argo 2	2198	- 16 18 RA.	15 May 87	Equinox Resources
Argo 3	2317	6	12 Aug 87	Equinox Resources
Arasko IV	2333	20	6 Aug 87	C. Ashworth

Reverted Crown Grants

<u>Claim</u>	Lot <u>No.</u>	-	cord No. <u>d Date</u>	Area (ha)	<u>Owner</u>
Argo	1177	2167	20 Mar 87	20.90	Clive Ashworth
Federal	1179	2168	20 Mar 87	20.71	Clive Ashworth
Langara 1	1169	2169	20 Mar 87	20.90	Clive Ashworth
Langara 2	1170	2170	20 Mar 87	20.90	Clive Ashworth
Langara 3	1171	2171	20 Mar 87	17.53	Clive Ashworth
Langara 4	1172	2172	20 Mar 87	19.99	Clive Ashworth
Langara 5	1173	2173	20 Mar 87	16.35	Clive Ashworth
Langara 6	1174	2174	20 Mar 87	20.19	Clive Ashworth
Langara 7	1175	2175	20 Mar 87	20.74	Clive Ashworth
Mary	1178	2176	20 Mar 87	20.90	Clive Ashworth

4. PHYSIOGRAPHY AND CLIMATE

The property is part of the eastern margin of the Pacific Ranges of Coast Mountains.

The deep valleys, surrounded by large scree slopes and straight cliff faces with sharp peaks depict the strong influence of the once highly active alpine glaciation. The highly jointed sedimentary rocks along with underground water seepage often activate rock avalanches along the steep cliff faces. Exposed bedrock occurs mostly above tree line where access is limited.

Timberline rarely exceeds 1,825m in elevation. Slightly older scree slopes are covered with a thick vegetation of alpine fir and alders while the more recent or still active talus slopes are bare except for the rare presence of highly dispersed white pine. Valley bottoms are still considerably forested with mixed fir, pine, and spruce with the presence of large meadows.

Two major drainage systems occur on the property. The small Feeney Creek runs from south to north into the larger Enchantment Creek. The latter flows west to east joining the Ottarasko drainage system outside the property. Feeney Creek separates the 1988 grid in half, at crossline 200E approximately.

The climate of the area can be considered moderate. Snow comes to the area usually before November and remains until May. Summer temperatures in the mountains are characterized by warm days and cool nights. Frequent rains of short duration can be expected during the spring and fall months, but The annual recorded year round precipitation is low.

5. PREVIOUS WORK

The Argo-Langara showings were discovered in 1911 (O'Grady, 1935) by J.I. Feeney. Horse trails from the south end of Tatlayoko Lake, 14 kilometres distant, were made, and cabins were constructed on the east side of Clearwater Creek at 1,460m elevation. The main period of prospecting, mainly on the Langara claims but also on the Argo and Standard, was during 1933-1935.

The Langara Workings, (Plate 2) two short adits at elevation 1,760m and 1,790m on steep bluffs among talus, are described by O'Grady (1935) as being along quartz veins in fractures, striking 330° E and dipping 50° to 70° SW, in diorite near a contact with silicified argillaceous rock.

O'Grady's work was concentrated around the two adits on the Langara reverted claims with a few other samples taken on the Mary and possibly the Argo reverted crown grants. O'Grady mentions from his results that the pronounced oxidation (pyritization) extending for a considerable distance and because of the wide spread and uniform mineralization found with limited prospecting, the possibilities still existed for an extensive discovery of minable mineral concentrations.

Part of the Argo-Langara property was also owned by Canex Placer Ltd. in 1974. Short term prospecting efforts for gold, silver and copper mineralization were reported. Work was limited to trenching on the Langara 2 claim. Some VLF electromagnetic surveys looking for massive sulphides may have been completed on the property, but locating the area on which the geophysics was done became impossible and therefore permission by the successor company, Placer Development, to review the file, was not granted (Lammle, 1987).

In 1987, Equinox Resources staked the Argo 1, 2 and 3 metric claims and C.A.R. Lammle, P.Eng. of Windward Exploration Services Ltd. and R.R. Culbert, PhD., P.Eng., and M. Tan, both of Beaty Geological Ltd., were commissioned to do preliminary prospecting and to evaluate the potential of the property.

Two geochemical soil lines were completed with samples taken at 50m intervals, rock chip samples were taken predominantly from the Langara adits and surrounding trenches and a few grab samples were collected on the Argo and Standard reverted claims. See Figure 4 for the reverted claim locations. Additional stream samples were taken in the lower section of Feeney Creek (formerly called Clearwater Creek by Lammle in his 1987 report), at the headwaters of Feeney Creek and in rivulets north and down slope from Mary claim.

Results from sample assays proved very encouraging and assays from chip sampling the adits correlated very well with O'Grady's 1935 results (Lammle, 1987). Generalized results from sampling are

tabulated below. All assays were done by Acme Analytical Laboratories Ltd., Vancouver.

TABLE 2: Rock Sample Results from 1987 Sampling

A. Chip samples from the Langara Adits

Wt Average	Width (m)	Au oz/T	Ag oz/T	Arsenic
over length of 40m for No.2 adit from 6 chip samples	0.79	0.18	2.11	1.6
over a length of 6m for No. 1 adit from 4 chip samples	0.84	0.17	3.3	3.34

B. Grab samples from Langara adit dumps

	Au (oz/T)	<u>Aq (oz/T)</u>	Arsenic (%)
Average of 5 grab samples from No. 2 adit	0.26	2.21	1.6

C. Grab samples from trench near No. 1 adit

	Au (oz/T)	Ag (oz/T)	Arsenic (%)
Average of 2 samples	0.29	7.89	0.61

Lammle and Culbert 1987, recognized the same silicified and sulphidized zone, produced in the siltstone south of the contact with quartz diorite, as was noted by O'Grady in his 1935 report. Subsequently, Lammle and Culbert noticed that soil sampling results correlate with the limits of this zone. The results firmly indicate anomalous gold and silver values within the limits of the silicified and sulphidized zone as shown in the lower tabulated average values for each of two soil lines.

7

TABLE 3Average geochemical metals in and out of the silicifiedand sulphidized contact zone from 1987 soil lines

Lammle soil line	Au (oz/T)	Ag (oz/T)	Arsenic (%)
Average in contact zone Average off contact zone	170 27	0.4	715 202
Average off contact zone	Z 1	0.2	202
Culbert soil line	Au (ppb)	Ag (ppm)	As (ppm)
Average in contact zone Average off contact zone	279 16	2.6 0.2	1,448 221

Stream sampling values produce lower gold, silver and arsenic values than soil sampling but confirmed the anomalous contrast between the silicified and sulphidized contact zone of the property and the district background value produced by samples away from the property. Stream sample from the rivulets north of Mary claim and samples collected from lower Feeney Creek are found down slope from the silicified and sulphidized zone, and give an average mineralization 7 to 9 times greater than back ground samples collected outside the property at the headwaters of Feeney Creek. See Table 4 below for the results.

TABLE 4: Average stream sample results from 1987 sampling

Area	Au (ppb)	Ag (ppm)	As (ppm)
North of Mary claim	53	0.4	613
Lower Feeney Creek	41	0.4	292
Feeney Creek headwaters	6	0.2	67

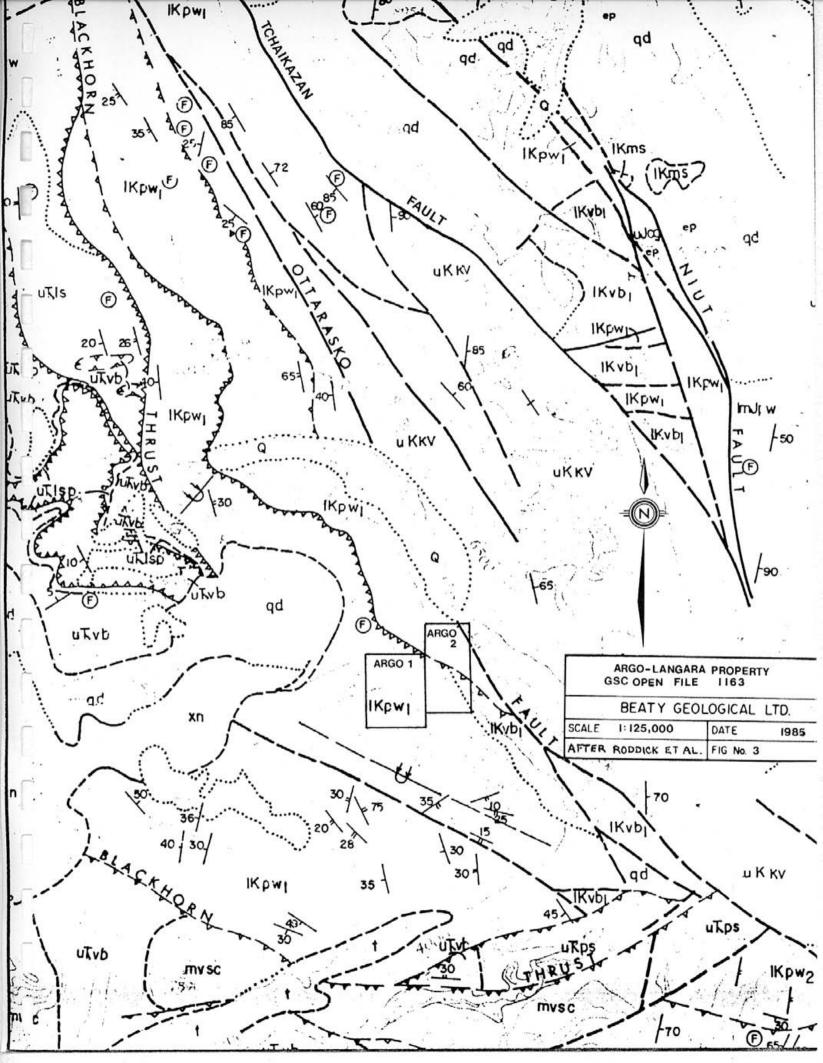
6. RECENT WORK

Early in August of 1988, preparations were made to further explore the Argo-Langara property.

A camp was established near a small meadow at 275m south of Enchantment Creek and 325m west of Feeney Creek. Three line cutters of Van Alphin Exploration in Smithers, BC were contracted by Beaty Geological Ltd. to cut a 3 kilometre east-west metric baseline, running through camp at $050^{\circ}W$. An additional cutting of three extra lines, 500S, 1500S and 000E were done for locating the crosslines. The grid is shown on the geological map, Figure 4, with the baseline running at 070° and the crosslines taking direction 160° using declination $25^{\circ}30'$. Crosslines were slope chained and flagged at 50m intervals between the baseline (000S)

and line 500S. Between 500S and 1800S the crosslines were chained at 20m intervals. A total of 9 kilometres of line was cut and pegs put at 50m intervals while approximately 45 kilometres of crosslines were slope chained.

Geophysical work consisted of running magnetometer and VLF surveys following the grid. VLF was completed over the entire grid while a magnetometer survey was completed over 2/3 of the grid. Soil sampling geochemistry was completed following the grid. Most of the grid was covered except for one large area which was partly inaccessible, and partly covered with bedrock and steep talus chutes. A total of 1,470 soil samples were collected over 23 man days of work.


Prospecting was completed simultaneously with detailed geological mapping. Ninety-seven grab samples were taken over a period of 17 days. No chip sampling was done because of poor rock exposure.

7. GENERAL GEOLOGY

The general geology of this eastern part of the Coast Mountains has been compiled by the Geological Survey of Canada (GSC), and published as Open File 1163 at a scale of 1:125,000 (Roddick and al, 1985) (Figure 3; and Table 6 for map legend). No detailed geology of the subject property and of its immediate surroundings has ever been published. The general geology discussed here is a brief review of the geology described in the GSC Open File 1163.

The Argo-Langara property is part of an extensive northwest trending basin of sedimentary and volcanic rocks along the eastern margin of the Coast Plutonic Complex. These Middle Jurassic to Upper Cretaceous rocks were deposited in the Tyaughton Trough, a narrow northwest trending depositional basin that evolved from marine to continental conditions with much disruption during the uplift of the Coast Mountains in mid-Cretaceous time. They were intruded at that time by quartz diorite and related rocks of the Coast Plutonic Complex, and by porphyritic granitic stocks of late Cretaceous and Eocene age; they were displaced by strong thrust faults and by long transcurrent faults. Eventually, they were overlain unconformably by Eocence volcanic and sedimentary rocks and by extensive flows of Miocene plateau basalt.

The principal transcurrent faults are the northwest trending subparallel Yalakom and Tchaikazan Faults. Right lateral displacement of 175 kilometres along the Tchaikazan has been inferred. There is much additional strong faulting in areas between these major faults. Another fault indicated in GSC Open File 1163, the Ottarasko fault, might actually be non-existent (Woodsworth, pers. comm., 1988). No direct movement or displacement related to this fault has ever been proven to exist.

VOLCANIC AND SEDIMENTARY RUCKS	PLUTONIC AND METAMORPHIC ROCKS (AGE UNCERTAIN)
QUATERNARY	COAST PLUTONIC COMPLEX
PLEISTOCENE AND RECENT	
Q TILL. GAAVEL, SAND, AND ALLUVIUM	gn GRANITE ; gng: GRANITE AND GRANDOLORITE
TERTIARY UPPER MIDCENE. PLIOCENE. AND (?) YOUNGER	The shall be a
UTV VESICULAR BASALT AND ANDESITE FLOWS, TELATED	GAANODIORITE;
UTVD:VOLCANIC BRECCIA	91 .GRAHODIORITE AND TONALITE: 900: APLITIC GRANODIORITE
PALEOCENE (?), EOCENE AND OLIGOCENE (?)	A CONTRACTOR OF A CONTRACTOR O
ITYT DALITE. ANYOLITE PORPHYRY	T TONALITE :
CRETACEOUS	tgd: TONALITE AND GUARTE DIGRITE: Tg: TONALITE AND GRANDDIGRITE
CENDMARIAN AND (?) YOUNGER KIHGSVALE GROUP	
UKKY DIVISION B: ANDESITIC AND BASALTIC BRECCIA	qd QuANTZ DIORITES
AND TUFF	Qdd. QUARTE DIGRITE AND DIGRITES
KKpw DIVISION A: SILTSTONE, GREYHACKE, AND CONGLONERATE	QM dop: AFLITIC DUARTZ HONZODIORITE;
ALBIAN	IKgd QUARTZ DIORITE DATED BY K-AR
JACKASS HOUNTAIN GROUP	
GREYMACKE, SILTSTONE, AND CONGLONERATE	DIONITE , DIONITE AND QUANTE DIONITE ,
TAYLOR CREEK GROUP	DU: DIONITE AND GABBRO
KTC SHALE, SILTSTONE, GREYMACKE AND PEBBLE CONGLOHERATE	2
ROCES ON THE SOUTHHEST SIDE OF TYAUGHTON TROUGH	CENTRAL GREISS COMPLEX (XH, XNS, XND, XNF, XAG, NSC, NSCA, NB, N4, NL, SCN, SCOU, XLS, SCMU, KK
CRETACEOUS	X D GRANITOID GHEISSZ
HAUTERIVIAN AND (?) YOUNGER	XI ST SILICEOUS GRANITOID GHEISS AND/ON DIGRITIC COMPLEX:
KV62 REDDISH TO PURPLISH ANDESITIC BRECCIA AND TUFF	XIT TO GRANITOID GHEISS WITH FLUIDAL STRUCTURES/ XOQ: AGMATITIC COMPLEX
(DW 2) SILTSTONE, GREYWACKE, CONGLOMERATE, BRECCIA, QUARTE SANDSTONE, AND LINESTONE	4/HC TA ROTA STREAM THE SCHOOL STREAM
CVD I ANDESITIC AND BASALTIC BRECCIA AND TUFFI	DSC GHEISS AND SCHIST
MINOR SHALE, GREYWACKE, AND CONGLONERATE, Krissmetasediments and highatite	DISCO CHEISS, SCHIST AND AMPHIBOLITE;
OW I SILTSTONE. GREYMACKE. AND CONGLOMERATE	D C RUSTY GHEISS; D K: stockwork;
n provinsi na na seconda e provinsi na seconda de la se La seconda de la seconda de	S CR: SCHIST AND GHEISS
ROCKS ON THE BORTH AND EAST SIDES OF TRAUGHTON TROUGH	
BERRIASIAN TO BARREMIAN	SCQU SCHIST AND QUARTZITE: SCTW: SCHIST AND METAVOLCANIC ROCK
RELAY NOUNTAIN GROUP	
(RM AREDE. CONCLOMERATE, GREYWACKE, SILTSTONE, COQUINDID LIMESTONE	XIS CRYSTALLINE LINESTONE: SK:SKARN
JURASSIC AND CRETACEOUS	
OXFORDIAN TO BERRIASIAN	TP ROVOLITE PORPHYRY
Kpw SILTSTONE, GREYWACKE, CONGLONERATE, AND ARKOSE	TTS PELITIC METASEDIMENTS
JURASSIC KIMMERIDGIAN OR TITHONIAN	
JCQ CONGLOMERATE, SHALE, ARROSE, GREYNACKE, AND TUPP	TH V METAVOLCANEC ROCK:
JURASSIC	OTTLAMPHIBOLITE
HETTANGIAN (?). SINEMURIAN. BAJOCIAN. AND CALLOVIAN	AUSTY, RHYOLITIC FELOSPAR-JUARTZ PORPHYRY DYRE SMARN
JDW SILTSTONE, SHALE, GREYWACKE, GRIT, AND CONGLOMERATE	SAMBOL'S
BAJOCIAN AND (?) CALLOVIAN	GEOLOGICAL HOUNDARY (DEFINED. APPROXIMATE. ASSUMED)
TUFF AND VOLCANIC BRECCIAS MINOR CONGLOMERATE	BEDDING, TOPS KNOWN (INCLINED, VERISCAL, OVERTURNED, DIP UNKNOWN) - y y y y
TRIASSIC	SCHISTORITY, CHOISSORITY (HOHISONTAL, INCLINED, VERTICAL) ++- + +
UPPER NORIAN	FAULT (DEFINED, APPROXIMATE, ASSUMED; (SOLID CIRCLE INDICATES COMMINMON SIDE, ARTOMS INDICATE
TO SHALE, SILTSTONE, GREYMACKE, CONGLOMERATE, VOLCANIC BRECCIA, AND TUFF;	RELATIVE ROVENENT)
UNCO CONGLOMERATE. LIMESTONE AND GREYMACKE	ANTICLINE (DEFINED, APPROXIMATE, ASSUMED AN A A A A A A A A A A A A A A A A A A
KIS LIMESTONE, SHALE, AND GREYWACKE:	SYNCLINE (DEFINED, APPENXIMATE: APRON INDICATES DIRECTION OF PLUNCE)
NORTAN	ANTICLINE AND SYNCLINE (OVERTURNED)
TYW BASALT, ANDESITE, GREYMACKE, SILTSTONE, AND CONGLOMERATE	K-AR AGE DETERMINATION +6K67
CARNIAN (?) AND LOWER NORIAN	BIOTITE - 6 HORNBLENDE - 6
CARRIAN (7) AND COMER NORTHIN	CHLORITE - c1 EPIDOTE - +p SPHENE - 10 GARNET - Ga
HINOR SHALY LIMESTONE	
UNSCHAINLY PHYLLITE AND GARHETIFEROUS SCHIST	GEOLOGY BY
CARNIAN	J.A. ROBDICK AND N.V. HUTCHISON 1967
	N.W. TIPPER 1967
ISP LINESTONE, SHALE, GREYWACKE, TUFF AND VOLCANIC BRECCIA	J.A. RODOICK AND G.J. WOODSWONTH 1975. 1979
VOLCANIC BRECCIA	
VOLCANIC RRECCIA	
VOLCANIC BRECCIA KVD DARK GREEN ANDESITIC ARECCIA, TUFF AND FLOWS:	J.A. Rocolck and G.J. Woodsmonth 1976. 1979

ż

BASE-MAP FROM 1/250.000 SCALE MAP PRODUCED BY THE SURVEYS AND MAPPING BRANCH. 1959

APPROXIMATE MAGNETIC DECLINATION 1958. 24012'EAST. DECREASING 3.1'

The Tchaikazan Fault which runs along the front of the Coast Mountains, appears to be the northwest extension of the economically important fault system at the formerly producing Bralorne and Pioneer Mines which collectively produced 4,003,000 oz of gold from 8,006,000 tons of ore with Au/Ag ratio of 5.2. A strong, range front fault such as the Tchaikazan can create permeable conduits for convecting hot water heated by nearby intrusive rocks, and if these waters contained dissolved metals, portions of such faults or areas nearby could have become centers of deposition of sulphides and other minerals (Lammle, 1987).

A large number of mineral showings occur in rocks of the Tyaughton Trough where affected by intrusions. Some have mesothermal and others epithermal characteristics. Many of these are in the portion of the trough northwest from Bralorne and in the Taseko District. Fewer of these showings are known in the less accessible areas further to the northwest in the Chilko, Tatlayoko and Bluff Lakes areas and beyond towards Perkins Peak. The known showings are generally precious metals with some epithermal characteristics and associated mercury, arsenic and sometimes antimony.

The better known showings are the Alexis property, 29 kilometres southeast from Argo-Langara; the Morris Mine 15 kilometres to the southeast; Blackhorn 17 kilometres to the northwest; and Perkins Peak 50 kilometres to the northwest. Prominent geological properties common to these are silicification, features pyritization, faulting and quartz veining in Tyaughton Trough sedimentary and volcanic strata near intrusions; and gold-silver mineralization associated with arsenic and sometimes with antimony, mercury and other base metals. It can be concluded that good exploration potential for precious metals exist along the Tchaikazan fault and along other faults similar or related to it.

8. PROPERTY GEOLOGY

The Argo-Langara property is a portion of the western margin of the Tyaughton Trough at the eastern contact of the Coast Plutonic Tyaughton strata are late Triassic marine volcanic Complex. units, and early Cretaceous sedimentary rocks which are likely transitional in depositional origin between marine and The older volcanic rocks, mostly dark green continental. andesitic breccias, tuffs and flows with some impure limestone, shale and greywacke, have been thrust over the sedimentary strata which consists of fine grained sandstone, siltstone, greywacke and conglomerate. These older volcanic rocks were not detected on the property during the 1988 mapping program but GSC Open File 1163, Figure 3, shows them to be very near and in the property boundary to the east. Intrusive rocks, mainly quartz diorite on the property, are probably mid-Cretaceous (Roddick et al., 1985).

The major body of quartz diorite (Unit 2, on Figure 4) possibly extends from the west covering a large part of the western portion

of the property at the Argo and Mary reverted crown grants, thus intruding the local sedimentary units of the Tyaughton (Unit 3, on Figure 4). The western section of the property reveals complex contact zones with thin units of siltstone, fine grained sandstone and greywacke trapped inside several dyke-like arms advancing east from the major body of the intrusion. Contact zones between quartz diorite and sedimentary units strike NW-SE on the west side of the property (on Argo 1 metric claim) while to the east, on the Argo 2 metric claim, the dykes are thinner revealing E-W and ENE-WSW striking contacts. Tyaughton sedimentary rocks cover most of the area on the eastern section of the grid. Occurrence of quartz diorite in the same area is restricted to the vicinity of the Langara Adits where some of the best mineralization occurs.

The area enclosed between crosslines 300W and 700E and from the baseline to 900S lacks exposed bedrock (Figure 4). The strong contrast in geology between the rock units to the west and the sediments to the east of the grid, prevents any extrapolation of the geological contacts through the subject barren area. Subsequently, the contrast in geology may either be explained by the pinching out of the quartz diorite intrusive, by the presence of a fault, or by the change in strike of the quartz diorite dykes from a southwest direction to a new northwest orientation. Furthermore, an attempt to project the geological contacts with the help of geophysical interpretation proved irrelevant because of the poor contrasts observed in the geophysical results.

Tyaughton conglomerates are very limited on the property, outcroping only on lines 400W and 500W between 1550S and 1650S, away from the mineralized area. A younger, well crystallized feldspar-hornblende porphyry dyke (Unit 1, on Figure 4) crosscuts sedimentary units at 330° . The dyke is approximately 20m wide on line 500W and 1620S; no associated mineralization was observed.

A large silicified and sulphidized zone occurs south of the southernmost extension of the quartz diorite. This zone transects the property E-W averaging a width of approximately 200 metres. The silicified zone contains pervasive traces of fine grained disseminated pyrite and arsenopyrite, sometimes very difficult to view in hand specimen. This zone is the focus of interest for mineralization on the property.

Major structural features on the property are represented by consistent jointing occurring from $N5^{\circ}W$ to $N15^{\circ}W$ and dipping from $55^{\circ}E$ to 90° and from 90° to $65^{\circ}W$. Two secondary sets of joints were measured, one striking from $N70^{\circ}W$ to $N80^{\circ}E$ and dipping at 90° and $20^{\circ}S$, the second striking from $N50^{\circ}W$ to $N60^{\circ}W$ and dipping at $60^{\circ}NE$.

Various local folding orientation were observed in the sediments, affecting bedding and foliation orientations. Only small recumbent and inclined isoclinal folds were noted, producing shallow plunging fold axis trending from S to SE.

Bedding is usually very poor, recorded at N40^oE and dipping from 25° to $30^{\circ}SE$. Foliation measurements are very inconsistent possibly due to folding. Dominant foliation is from N70^oW to N40^oW dipping between $35^{\circ}SW$ and $40^{\circ}SW$. Otherwise no major geological displacement seems to have affected the property.

Veining consistently reflects jointing orientation. Quartz veining occurs in two major directions and expresses a pervasive distribution throughout the property, crosscutting both the Tyaughton sediments and the quartz diorite intrusives. Quartz veining observed parallel to the contact zones poorly mineralized while quartz veining which parallels the striking orientation of the major set of joints from N5°W to N15°W, reveals considerable amounts of arsenopyrite and pyrite, less often chalcopyrite and rarely malachite. These NW-SE oriented quartz veins are only found to be strongly mineralized inside the aforementioned 200m wide silicified sulphidized zone.

Calcium carbonate veining is extremely restricted and only found northwest of the Langara adits on lines 400E and 500E between 800S and 900S. The calcium carbonate veinlets are very thin, from 3-6mm wide and do not show any related mineralization.

9. SOIL SAMPLING GEOCHEMISTRY: (Analysis by Acme Analytical Ltd.

The 1988 soil sampling program generated 1,470 soil samples. The entire grid was covered except for one major area, neglected because of its inaccessibility and presence of bedrock, and steep talus chutes.

Geochemical results from soil sampling are given on Figure 8 and also in Appendix I. Gold, silver and arsenic are listed in this particular order at the sample location on the grid. Subsequently, individual isogram maps were compiled from the results, for each of gold, silver and arsenic (Figures 5, 6 and 7).

All 3 isogram maps of gold, silver and arsenic, are a very close mimic of one another, indicating a strong relation in the mode of deposition for these elements. Only lower anomalous silver values produce small but negligible discrepancies to the gold and arsenic contour lines.

Isogram maps of the soil geochemistry indicate 3 major zones of interest where high anomalous gold values exceed 300 ppb and anomalous silver values exceed 1 ppm. These areas are shown on Figure 9.

Brown soil samples were taken with soil sampling shoulds from the "B" horizon at about 15 cm depth.

10. ROCK SAMPLING RESULTS

During the 1988 prospecting program, 97 grab samples were collected over the total grid area. Results of analysis from Acme Analytical Ltd. indicate very high related gold, silver and arsenic values associated with mineralized quartz veins striking from N5°W to N15°W (parallel to dominant jointing). Veining is usually very thin, often ranging between 4 and 7cm wide. The extension and density of veining is yet unknown but analytical results indicate that quartz veins are very poorly mineralized outside the 200-300m wide silicified contact zone. Another comparison was made involving samples collected in the silicified sulphidized zone. Grab samples collected in the mineralized veins and at 20-30cm away from the veins indicate very strong contrasting gold, silver and arsenic values.

Rock sample results are tabulated below (Table 6) under 5 different categories, giving a better view of the location of occurrence of the mineralization. To locate the samples refer to the geology map, Figure 4.

TABLE 6

A.	Sample collected from a	mineralized qua	artz veins	occurring in
	the silicified-sulphidi	zed contact zo:	ne	

Sample				
Number	Width	Au (ppb)	Ag (ppm)	As (ppm)
C 19002	unknown	2785	1.0	58225
C 19002	4 cm	19205	9.8	99999
C 19005	float boulder	12750	9.5	99999
C 19006	float boulder	4065	2.8	99999
C 19007	unknown location	5510	85.0	99999
C 19008	15 cm	6750	10.4	30845
C 19909	1 cm	33	0.1	72
C 19011	unknown	26750	39.5	99999
C 19013	20 cm	3720	7.2	23916
C 19013	20 Cm	5720	7.2	20010
C 19014	2 cm	270	0.9	5376
C 19015	float sample	830	99.9	4910
C 19016	0.3 cm	13	0.3	17
C 19017	4.5 cm	7650	1.2	99999
C 19023	4 cm	1580	3.6	29
C 19023		1000	5.0	23
C 19057	3 cm	14	1.2	714
C 19062	1 cm	355	0.1	98

....

C 19072	4 cm	310	0.7	161
C 19074	11 cm	12	0.1	18
C 19080	1 cm	21	1.8	26
C 19082	1 cm	95	10.3	30
C 19083	6 cm	1875	2.0	56253
C 19084	6 cm	5210	7.5	54270
C 19090	4 cm	7805	17.2	56258
C 19096	3 cm (in boulder)	805	1.5	13505
C 19097	4 cm	7240	15.6	54510
Average of				
25 samples	5.0 cm	4626	13.2	38369
		(0.147	(0.420	
		oz/T)	oz/T)	

B. Samples of poorly mineralized siltstone and sandstone taken in the silicified-sulphidized contact zone

Sample Number Au (ppb) Ag	(ppm)	As (ppm)
C 19001 2	0.2	2
C 19003 15	0.2	294
C 19010 34	0.3	585
C 19012 29	0.1	255
C 19018 30	0.1	707
C 19022 3	0.1	41
C 19042 1	0.1	2
C 19043 2	0.1	12
C 19056 1	0.1	13
C 19059 1	0.1	21
C 19060 1	0.1	40
C 19063 3	0.1	9
C 19064 2	0.1	13
C 19065 1	0.2	5
C 19066 1	0.1	3
C 19068 1	0.1	18
C 19070 16	0.1	8
C 19071 2	0.3	2
C 19073 1	0.1	6
C 19075 4	0.4	2
C 19076 9	0.1	2
C 19077 3	0.1	2
C 19081 4	0.4	15
C 19085 26	0.3	255
C 19086 98	1.8	83
C 19087 25	0.7	32
C 19088 8	0.4	24
C 19091 28	0.6	3441
C 19094 2	0.2	54

16

and the second sec

e · · ·

C 19095	15	0.3	32
Average of 30 samples	12	0.3	199

C. Samples of slightly mineralized quartz diorite

Sample Number	Au (ppb)	Ag (ppm)	As (ppm)
			_
C 19050	1	0.1	13
C 19051	12	0.2	14
C 19052	4	0.3	158
C 19055	1	0.3	48
C 19061	5	0.1	9
C 19069	8	0.1	19
C 19089	21	0.3	600
Average of 7			
Samples	7	0.2	123

D. Samples of quartz diorite bearing thin mineralized quartz veinlets

Sample Number	Au (ppb)	Ag (ppm)	As (ppm)
C 19019	98	0.3	2488
C 19053	124	0.7	3388
C 19054	28	0.1	524
C 19078	2	0.3	2
C 19079	21	3.2	500
C 19092	380	0.2	1535
C 19093	9	1.1	380
Average of 7			
samples	95	0.8	1260
	(0.003 oz/T)	(0.025 oz/T)	

E. Samples of weakly mineralized sediments outside the silicified contact zone

Sample Number	Au (ppb)	Ag (ppm)	As (ppm)
C 19020	7	0.1	94
C 19021	2	0.1	36
C 19024	1	0.1	2
C 19025	1	0.1	6

17

C 19026	2	0.1	137
C 19027	1	0.1	2
C 19028	1	0.1	14
C 19029	1	0.1	6
C 19030	1	0.1	3
C 19031	1	0.1	13
C 19032	1	0.1	2
C 19033	1	0.1	54
C 19034	1	0.1	7
C 19035	2	0.1	8
C 19036	1	0.1	15
C 19037	1	0.1	19
C 19038	1	0.1	6
C 19039	2	0.2	4
C 19040	1	0.1	2
C 19041	9	0.1	53
C 19044	1	0.1	17
C 19045	1	0.1	35
C 19046	1	0.1	12
C 19047	3	0.1	48
C 19048	9	0.1	32
C 19049	2	0.1	46
C 19058	10	0.1	6
C 19067	2	0.1	2
Average of			
28 samples	2	0.1	24

The above results indicate good anomalous gold and silver values associated with NW striking quartz veins occurring in the silicified-sulphidized sediments of the contact zone (Table 6A). Values from 25 samples of these mineralized quartz veins are very erratic, with gold varying from 12 to 26,750 ppb. This produces an average of 4,626 ppb gold which does not turly reflect the mineralization of the quartz veins. The average gold value in the quartz veins should probably lie around 1,000 ppb by eliminating unusual high values from samples C 19004 and C 19011.

Similar quartz veining, which occurs in the aforementioned silicified-sulphidized zone, also appear in the quartz diorite. These quartz veins have the same orientation and indicate much lower but still respectable anomalous gold and silver values (Table 6D). The average of 7 samples indicate 95 ppb gold and 0.8 ppm silver.

Otherwise, sedimentary rocks obtained from the silicifiedsulphidized contact zone and other samples of weakly mineralized quartz diorite (Tables 6B and 6C) do not give highly anomalous values. Their gold and silver values are, however, still anomalous, revealing average values 2 to 6 times that of the background unsilicified sediments shown in Table 6E.

11. DISCUSSION

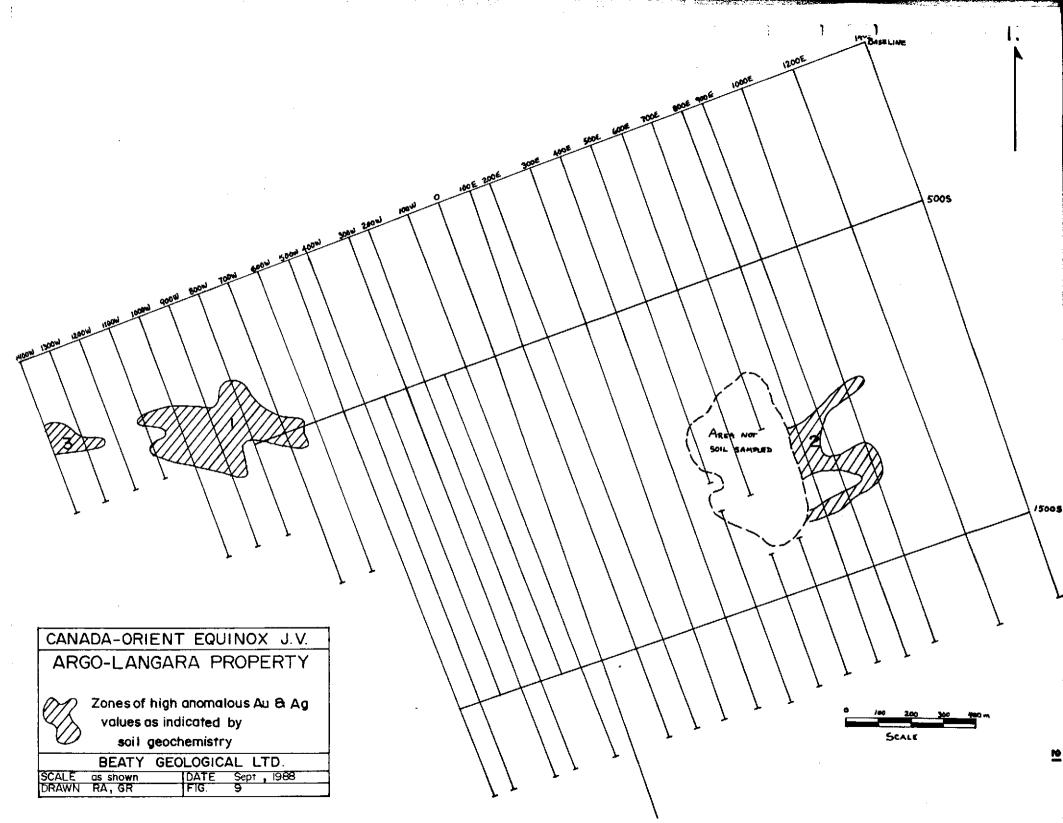
Soil sampling geochemistry does confirm anomalous gold and silver values near the quartz diorite contact zones. Additional rock sampling firmly indicates the best mineralization to be associated with the NW striking quartz veins present in the silicifiedsulphidized sediments at the quartz diorite contact.

Field observations of the mineralized quartz veins indicate that individual veins are too small for economic tonnages on the Argo-Langara property, but the possibility of finding an area with densely grouped veins of the same type within the silicifiedsulphidized zone of the property should not be neglected.

To be able to follow the mineralization (mineralized quartz veins), it is important to determine the approximate boundaries of the silicified-sulphidized zone. This presents great difficulties in the Argo-Langara property. The centre of the grid falls in the Feeney Creek Valley which is covered by a thick layer of glacial deposits. The thick overburden masks the anomalous gold and silver values that appeared in shallow soils to the east and west of the grid along the quartz diorite contact, thus preventing the extrapolation of the mineralized silicified zone in the centre of the grid. In addition, the lack of outcrop in the Feeney Creek Valley and the strong geological contrast between the east and west sides of the grid also prevents any projection of the contact zone through the subject grid centre.

Three areas of interest were identified for possible gold and silver deposits on the Argo-Langara property. Two of these zones are located on the west side of the grid, between crosslines 600W and 1400W. The other location is upslope from the original Langara adits (see Figure 9). These zones were established from geochemistry indicating highly anomalous soil gold values exceeding 300 ppb, with small sections of these zones producting Zones 1 and 2 on Figure 9 indicate consistent >3 ppm silver. anomalous soil mineralization over large areas (250-400 m wide). These 2 zones could be the source of extensive stockwork quartz veining. Furthermore, there is the possibility that Zone 1 may be larger, extending its limits to the east towards Feeney Creek. Nonetheless, the aforementioned thick glacial deposits overlying bedrock between lines 500W and 600E probably mask the geochemistry of the soils to the east of Zone 1, therefore preventing the extension of this zone.

12. CONCLUSION AND RECOMMENDATIONS


Mineralization was determined to be associated with steeply dipping NW oriented quartz veins occurring in the silicified-sulphidized sediments at the quartz diorite contact zone.

The best gold value obtained from rock sample #C 19011, was taken from a small trench at 200m due west of the Langara adits (on

Langara reverted crown grant). The sample produced 26,750 ppb gold and 39.5 ppm silver in a 50-60cm wide gossan with thin mineralized quartz veins. Several locations indicated singular high anomalous gold values for soil geochemistry but only 3 zones revealed greater consistency in the gold and silver distribution, producing large zones giving soil geochemical values >300 ppb gold. These 3 zones are shown on Figure 9 and are part of the proposed areas to be considered for future work.

The author suggests that trenching be done in the 3 locations shown in Figure 9, prior to diamond drilling, to try and locate zones with high densities of mineralized quartz veins. Trenching should be done east-west near the quartz diorite contact in order to intersect mineralization.

Encouraging trenching results could be followed by drilling in a 70° and 250° direction to crosscut mineralized quartz veins, instead of crossing the quartz diorite contact. Drilling should be restrained to the vicinity of the contact.

13. <u>REFERENCES</u>

....

- Lammle, A.R., 1987, unpublished geological report, Argo-Langara Property, Clinton Mining Division, Windward Exploration Services Ltd., BC, 24p and 2 plates.
- O'Grady, B.T., 1935, 1933, BC Minister of Mines Annual Reports, pp F33-35, PP F33.
- Roddick, J.A., Tipper, H.W., and others, 1985, Geology, Mount Waddington, 92N, G.S.C. Open File 1163, map and marginal notes.
- Pantelayev, A., 1985, A Canadian Model for Epithermal Gold-Silver Deposits, Geoscience Canada, V13, n2, pp 101-111.

14. STATEMENT OF QUALIFICATIONS

I, Rene Albert, hereby certify that:

- 1. I am a practicing geologist employed by Beaty Geological Ltd. with offices at 900-625 Howe Street, Vancouver, B.C.
- I am a graduate of the University of Ottawa in geology (B.Sc., 1984)
- 3. I have practiced geology in Canada since 1980 while employed by Gulf Minerals Canada Ltd., the Geological Survey of Canada, Durham Resources Ltd., Prospecting Geophysics Ltd., Canico (Inco Gold Ltd.) and Beaty Geological Ltd.
- 4. I have adjointly supervised the work carried out, and the observations and opinions expressed in this report are based on my personal examination of the subject property and on a review of available data and reports.
- 5. I have no interest, direct or indirect, in the property or in the securities of Equinox Resources Ltd. or Canada Orient Resources Inc.
- 6. I hereby grant Canada Orient Resources Inc. and Equinox Resources Ltd. permission to use this report for their corporate and regulatory requirements.

Dated at Vancouver, British Columbia, this 24th day of October, 1988

Rene Albert, B.Sc.

ì

.... -

APPENDIX I

1988 Statement of Costs

۰.

.

~

1988 Statement of Costs

Labour:	
4 geologists 29.25 man days @ \$275.00	\$ 8,043.75
1 geologist 54 days @ \$175.00	9,450.00
1 geophysicist 37.5 days @ \$275.00	10,312.50
1 technician 25 days @ \$155.00	3,875.00
1 technician 8 days @ \$140.00	1,120.00
1 technician 3.5 days @ \$120.00	420.00
1 cook 25 days @ \$130.00	3,276.00
25% contract expenses (UIC, CPP, WCB)	9,124.31
23% conclact expenses (oic, cpr, wcb)	9,124.31
Transportation:	
Airfares	1,601.60
Bus	105.00
Taxi	149.30
Helicopter	11,322.06
Vehicle rentals	3,633.88
Parking	43.50
Traveling Expenses:	
Hotel/motel accommodations	277 00
· · · · · · · · · · · · · · · · · · ·	277.00
Meals	339.26
Fuel:	
Gasoline	295.31
Propane	343.44
riopane	343.44
Supplies:	
Field Supplies	5,014.78
Office Supplies (including maps & blueprints)	384.87
Groceries	2,941.95
010001100	2,941.95
Contracted Services:	
Van Alphen Linecutters	11,150.00
Ashworth Exploration; Geophysical Technician	•
and Equipment	10,645.00
Camp Construction (S. Whitehead Hand Built	
Log Homes Ltd.)	3,000.00
Camp Cook Services (E. Whitehead)	945.00
Radio Programming (Spilsbury)	146.50
Radio Flogrammaning (oprisoury)	140.50
Equipment Rentals:	
Chainsaw	197.63
Pentax transit, tripod and rod	65.72
EDA Geophysical Equipment	2,012.92
Radios (SBX-11 and handheld)	
	1,250.00
Computers Generator	3,800.00
Generator	1,400.00

×

Geochemical Analysis:	
Rock Samples	1,298.75
Soil Samples	10,013.80
•	
Shipment of Equipment:	769.89
Telephone:	315.21
-	
Report Preparation:	
(Composition, drafting, printing)	6,818.18
	·
Photocopies:	56.20
-	
Secretarial:	60.00
Accounting:	95.00
Miscellaneous:	
(Postage, Mining Recorder fees, Material repairs,	
etc.)	<u> 196.82</u>
Subtotal	125,966.38
10% Overhead	12,596.64
TOTAL	\$ <u>138,563.02</u>

- -

÷

....

.....

APPENDIX II

Soil Sample Geochemical Results

802 P01 SEP 2 1988 ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 .S.ept.10/88 PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED:

GEOCHEMICAL ANALYSIS CERTIFICATE

ACME LABS

SEP 10 '88 15:15

THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: P1-P10 SOIL P11 ROCK AU* ANALYSIS BY ACID LEACH/AA FROM 10 GN SAMPLE.

ASSAVER: M.A.M. D. TOYE OR C. LEONG, CERTIFIED B.C. ASSAYERS 7 BEATY GEOLOGICAL LTD. PROJECT JOB 186 FILE # 88-4195 Page 1

SAMPLE#	Cu	Ag	As	Sb	Au*
	PPM	PPM	PPM	PPM	PPB
L6+00W 0+00BL	99	.1	2235	14	163
L6+00W 0+50S	217	.3	2584	19	250
L6+00W 1+00S	116	.1	783	7	142
L6+00W 1+50S	144	.1	989	7	860
L6+00W 2+00S	109	.1	283	3	211
L6+00W 2+50S L6+00W 3+00S L6+00W 3+50S L6+00W 4+00S L6+00W 4+50S	86 111 332 94 153	. 2 . 2 . 4 . 3 . 4	802 883 722 654 1938	2 2 2 3	515 545 1285 209 139
L6+00W 5+00S	65	.2	1142	15	235
L5+00W 0+00BL	24	.1	127	2	34
L5+00W 0+50S	85	.2	470	10	112
L5+00W 1+00S	209	.2	1453	15	29
L5+00W 1+50S	86	.2	452	2	82
L5+00W 2+00S L5+00W 2+50S L5+00W 3+00S L5+00W 3+50S L5+00W 4+00S	160 119 82 47 54	.1 .1 .1 .1	859 690 284 319 365	2 16 2 2 7	18 29 68 72 113
L5+00W 4+50S	111	.2	436	2	82
L5+00W 5+00S	61	.1	1909	2	201
L4+00W 0+00BL	75	.3	402	2	28
L4+00W 0+50S	182	.1	805	2	32
L4+00W 1+00S	240	.3	1155	4	22
L4+00W 1+50S L4+00W 2+00S L4+00W 2+50S L4+00W 3+00S L4+00W 3+50S	663 113 55 80 45	.1 .2 .1 .1	1727 1044 877 455 169	2 2 2 2 2	71 26 10 45 131
L4+00W 4+00S L4+00W 4+50S L4+00W 5+00S L3+00W 0+00BL L3+00W 0+50S	47 65 167 82 33	.1 .1 .3 .2 .1	484 528 150	2 2 2 2 2	265 96 215 18 3
L3+00W 1+00S	85	.3	238	2	11
STD C/AU-S	62	7.1	42	16	52

SEP 10 '88 15:15 ACME LABS

802 P02

....

SAMPLE#	Cu	Ag	As	Sb	Au*
	PPM	PPM	PPM	PPM	PPB
L3+00W 1+50S	180	.1	527	2	21
L3+00W 2+00S	255	1.2	428	2	33
L3+00W 2+50S	222	.3	955	2	126
L3+00W 3+00S	57	.1	277	2	22
L3+00W 3+50S	43	.1	159	2	190
L3+00W 4+00S L3+00W 4+50S L3+0CW 5+00S L2+00W 0+00BL L2+00W 0+50S	50 51 75 60 48	.1 .1 .2 .1	156 142 348 298 43	2 2 2 2 2	24 23 56 4 11
L2+00W 1+00S	33	.1	148	2	5
L2+00W 1+50S	52	.3	532	2	280
L2+00W 2+00S	104	.1	535	2	13
L2+00W 2+50S	531	.3	1005	2	88
L2+00W 3+00S	52	.2	504	2	19
L2+00W 3+50S	60	.2	294	2	117
L2+00W 4+00S	61	.2	151	2	58
L2+00W 4+50S	99	.3	141	8	43
L2+00W 5+00S	146	.1	218	2	147
L2+00W 5+20S	40	.1	150	2	120
L2+00W 5+40S	28	.1	118	2	36
L2+00W 5+60S	120	.2	298	6	220
L2+00W 5+80S	51	.1	167	2	57
L2+00W 6+00S	241	1.0	1042	10	1215
L2+00W 6+20S	22	.1	107	2	51
L2+00W 6+40S L2+00W 6+60S L2+00W 6+80S L2+00W 7+00S L2+00W 7+20S	13 13 25 30 29	.1 .1 .1 .1 .1	30 26 129 98 151	2 2 2 2 2 2	40 16 14 10 18
L2+00W 7+40S	15	.1	95	2	21
L2+00W 7+60S	21	.1	96	2	12
L2+00W 7+80S	41	.1	112	2	4
L2+00W 8+00S	29	.1	90	2	11
L2+00W 8+20S	32	.1	106	2	8
L2+00W 8+40S	19-	.2	53	2	13
STD C/AU-S	62	7.2	40	18	53

SEP 10 '88 15:16 ACME LABS

4

والمستحد والمتحدث والمتحد والمتحد والمستحد والمستحد والمستحد والمستحد والمستحد والمستحد والمستحد والمستحد والم

802 P03

. .

···· ·· -----

BEATY GEOLOGICAL LTD. PROJECT JOB 186 FILE # 88-4195 Page 3

SAMPLE #	Cu	Ag	As	Sb	Au*
	PPM	PPM	PPM	PPM	PPB
L2+00W 3+60S	40	.2	111	2	1
L2+00W 8+80S	35	.2	182	7	15
L2+00W 9+00S	50	.1	151	2	21
L2+00W 9+20S	45	.2	98	2	55
L2+00W 9+40S	73	.1	327	4	20
L2+00W 9+60S L2+00W 9+80S L2+00W 10+00S L2+00W 10+20S L2+00W 10+40S	56 40 39 50 16	.1 .1 .1 .1	90 155 181 250 69	3 2 4 2	21 245 56 19 22
L2+00W 10+60S L2+00W 10+80S L2+00W 11+00S L2+00W 11+20S L2+00W 11+40S	51 46 62 65 18	.1 .1 .3 .1	287 223 639 418 55	3 7 14 11 2	19 48 119 390 22
L2+00W 11+60S L2+00W 11+80S L2+00W 12+00S L2+00W 12+20S L2+00W 12+40S	30 55 50 38 48	.1 .1 .1 .2	116 212 215 122 139	2 9 7 3 2	16 43 53 12 137
L2+00W 12+60S	24	.1	107	4	10
L2+00W 12+80S	43	.1	134	2	43
L2+00W 13+00S	69	.2	382	6	48
L2+00W 13+20S	61	.2	448	2	51
L2+00W 13+40S	49	.1	359	2	265
L2+00W 13+60S	43	.2	469	2	350
L2+00W 13+80S	30	.1	127	3	49
L2+00W 14+00S	46	.1	111	2	73
L2+00W 14+20S P	41	.1	55	2	1
L2+00W 14+40S	41	.1	50	2	18
L2+00W 14+60S L2+00W 14+80S L2+00W 15+00S L2+00W 15+20S L2+00W 15+40S	48 35 16 22 24	.1 .1 .2 .2	58 57 38 75 65	2 2 2 2 2 2	30 19 36 17 25
L2+00W 15+60S	15	.2	43	2	14
STD C/AU-S	62	7.0	41	17	52

and the second se

_.__...

SAMPLE;	#	Cu PPM	Ag PPM	As PPM	SD PPM	Au* PPB
L2+00W L2+00W L2+00W L2+00W L2+00W	16+00S 16+20S 16 + 40S	31 14 28 54 40	.1 .1 .3 .2	122 71 27 436 233	4 2 3 2	285 41 32 21 22
L2+00W L2+00W L2+00W L2+00W L2+00W	17+20S	15 23 9 11 18	.1 .1 .1 .2	81 63 10 44 54	3 3 2 2 2	44 18 1 1 17
L2+00W L2+00W L1+50W L1+50W L1+50W	18+00S	18 34 69 97 4 6	.1 .1 .2 .2 .1	16 125 162 197 163	3 4 9 8 4	1 29 103 55 52
L1+50W L1+50W L1+50W L1+50W L1+50W	6+205	32 82 35 24 17	.1 .2 .1 .1	133 267 141 103 77	2 6 5 3 4	47 88 126 13 25
L1+50W L1+50W L1+50W L1+50W L1+50W		25 31 23 26 20	.1 .1 .2 .1 .1	63 110 85 68 23	2 5 4 3 2	5 7 10 19 3
L1+50W L1+50W L1+50W L1+50W L1+50W		50 51 32 39 34	.1 .2 .1 .1 .2	153 167 95 146 82	11 6 4 7 , 6	22 25 16 3 3
L1+50W L1+50W L1+50W L1+50W L1+50W	8+80S 9+00S 9+20S	45 29 64 51 53	.1 .2 .1 .1	107 56 121 136 103	4 5 6 5 4	8 5 18 15 6
L1+50W STD C/F		38 59	.3 7.0	158 41	9 17	4 52

1

. . .

SAMPLE#	Cu	Ag	As	SD	Au*
	PPM	PPM	PPM	PPM	PPB
L1+50W 9+80S L1+50W 10+00S L1+50W 10+20S L1+50W 10+40S L1+50W 10+60S	46 46 57 74 46	.2 .1 .2 .3	132 176 222 428 229	2 2 2 2 3	610 24 9 43 16
L1+50W 10+80S	147	.7	448	2	4
L1+50W 11+00S	41	.4	193	2	87
L1+50W 11+20S	52	.1	279	2	61
L1+50W 11+40S	55	.1	299	2	42
L1+50W 11+60S	7	.1	25	2	1
L1+50W 11+80S	58	.1	241	3	27
L1+50W 12+00S	42	.2	87	2	8
L1+50W 12+20S	50	.1	168	3	19
L1+50W 12+40S	25	.1	86	2	24
L1+50W 12+60S	59	.1	382	2	50
L1+50W 12+80S L1+50W 13+00S L1+50W 13+20S L1+50W 13+40S L1+50W 13+60S	45 48 39 50 50	.1 .1 .1 .1	153 113 124 204 393	2 2 2 2 2	33 46 231 62 71
L1+50W 13+80S L1+50W 14+00S L1+50W 14+20S L1+50W 14+40S L1+50W 14+60S	41 35 28 33 23	.1 .1 .1 .1	170 109 51 62 35	2 2 2 2 2	66 19 9 7 18
L1+50W 14+80S L1+50W 15+00S L1+00W 0+00BL L1+00W 0+50S L1+00W 1+00S	34 22 84 16 28	.1 .1 .3 .1	52 61 181 15 44	2 2 2 2 2	86 19 6 1 2
L1+00W 1+50S	54	.3	319	2	13
L1+00W 2+00S	50	.1	486	2	7
L1+00W 2+50S	40	.2	233	2	1
L1+00W 3+00S	105	.8	272	2	5
L1+00W 3+50S	28	.2	179	7	7
L1+00W 4+00S	81	.5	280	10	193
STD C/AU-S	63	7.1	39	17	52

SEP 10	' 88	15:18	ACME	LABS

802 P07

SAMPLE#	Cu PPM	Ag PPM	As PPM	Sb PPM	Au* PPB
L1+00W 4+50S L1+00W 5+00S L1+00W 5+20S L1+00W 5+40S L1+00W 5+60S	60 59 53 22 40	.3 .1 .1 .2	194 153 131 56 134	2 2 13 2 2	63 49 127 16 20
L1+00W 5+80S L1+00W 6+00S L1+00W 6+20S L1+00W 6+40S L1+00W 6+40SA	79 29 22 28 6	.1 .1 .1 .1	224 76 106 110 113	7 2 2 2 2	71 41 17 41 4
L1+00W 6+60S L1+00W 6+80S L1+00W 7+003 L1+00W 7+20S L1+00W 7+40S	24 19 23 42 40	.1 .2 .1 .1 .1	59 72 57 76 68	2 2 2 2 2	26 32 120 31 7
L1+00W 7+60S L1+00W 7+80S L1+00W 8+00S L1+00W 8+20S L1+00W 8+40S	42 53 38 63 67	.1 .1 .1 .6	139 146 94 95 113	2 5 2 6	3 14 15 10 7
I.1+00W 8+60S L1+00W 8+80S L1+00W 9+00S L1+00W 9+20S L1+00W 9+40S	19 34 35 38 36	.1 .2 .1 .1	50 82 82 80 115	2 2 2 2 2	6 12 37 26 440
L1+00W 9+60S L1+00W 9+80S L1+00W 10+00S L1+00W 10+20S L1+00W 10+40S	52 34 24 29 34	.1 .1 .1 .1	156 77 28 34 120	2 2 2 2 2	21 6 4 10 22
L1+00W 10+60S L1+00W 10+80S L1+00W 11+00S L1+00W 11+20S L1+00W 11+40S	53 29 28 60 31	.1 .3 .2 .1 .1	152 148 169 323 2351	2 2 7 7 7	53 21 53 72 32
L1+00W 11+60S STD C/AU-S	50 60	.3 7.0	723 44	6 18	280 49

SAMPLE#	Cu	Ag	As	Sb	Au*
	PPM	PPM	PPM	PPM	PPB
L1+00W 12+00S L1+00W 12+20S L1+00W 12+40S L1+00W 12+60S L1+00W 12+80S	43 51 48 65 96	.2 .1 .3 .3	128 202 175 304 367	2 2 3 3	30 19 124 95 55
L1+00W 13+00S	37	.2	203	2	37
L1+00W 13+20S	27	.1	97	3	26
L1+00W 13+40S	23	.1	67	2	23
L1+00W 13+60S	29	.1	54	2	28
L1+00W 13+80S	42	.3	97	2	130
L1+00W 14+00S L1+00W 14+20S L1+00W 14+40S L1+00W 14+60S L1+00W 15+20S	32 43 67 42 21	.1 .6 .3 .3	23 114 88 130 97	2 2 2 8 2	5 24 20 40 26
L1+00W 15+40S P	25	.8	36	2	33
L1+00W 15+60S P	13	.1	14	2	1
L1+00W 16+00S P	13	.1	118	2	1
L1+00W 16+20S P	5	.1	85	2	1
L1+00W 16+50S P	16	.2	45	2	1
L1+00W 16+80S P L1+00W 17+00S P L1+00W 17+20S P L1+00W 17+60S P L1+00W 17+80S P	38 12 20 24 14	.1 .1 .1 .2 .1	671 44 51 164 11	2 2 2 2 2 2	1 9 20 1
L1+00W 18+00S	39	.5	90	2	1
L0+00 0+00	26	.3	80	3	26
L0+00 1+50S	8	.1	39	2	6
L0+00 2+00S	103	.1	987	12	3
L0+00 2+50S	136	.2	757	19	20
L0+00 3+00S	185	.4	1779	3	8
L0+00 3+50S	88	.4	239	2	61
L0+00 4+00S	65	.3	170	2	124
L0+00 4+50S	52	.1	130	2	122
L0+00 5+00S	43	.1	204	3	152
L0+00 5+50S	49	.6	115	2	12
STD C/AU-S	60	6.9	42	17	48

P- PULVERIZED

SAMPLE#	Cu PPM	Ag PPM	As PPM	Sb PPM	Au* PPB
L0+00 6+00S	37	. 1	66	2	21
L0+00 6+50S	43	.1	70	2	9
L0+00 7+00S	28	. 1	39	2	16
L0+00 7+50S	64	. 1	137	2	24
L0+00 8+00S	41	. 2	38	2	4
L0+00 8+50S	28	. 1	23	2	1
L0+00 9+00S	36	.1	116	2	2
L0+00 9+50S	38	.1	119	2	1 2
L0+00 10+00S	44	. 2	140	2	
L0+00 10+50S	38	. 1	159	2	26
L0+00 11+00S	29	. 1	67	2	3
L0+00 11+50S	49	. 2	245	2	15
L0+00 12+00S	33	. 1	527	2	3
L0+00 12+50S	37	. 1	96	2	13
L0+00 13+00S	65	.2	180	2	56
L0+00 13+50S	55	. 1	71	2	15
L0+00 14+00S	30	. 2	48	3	30
L0+00 14+50S	37	.1	42	2	1
L0+00 15+00s	46	.1	58	3	1
L0+00 15+50S	50	• 5	42	3	17
L0+00 16+00S	27	. 1	43	2	245
L0+00 16+50S	43	.1	65	2	12
L0+00 17+00S	42	. 1	767	2	4
L0+00 17+50S	41	.1	60	2 2	8
L0+00 18+00S	40	. 1	51	2	1
L1+00E 0+00	13	. 1	37	2	72
L1+00E 0+50S	26	.1	92	3	15
L1+00E 1+00S	329	.1	1030	3	16
L1+00E 1+50S	22	.1	68	2	4
L1+00E 2+00S	27	.1	73	. 3	5
L1+00E 2+50S	112	.3	251	2	22
L1+00E 3+00S	30	.1	58	2	5
L1+00E 3+50S	31	.1	61	2	9
L1+00E 4+00S	21	.1	96	3	95
L1+00E 4+50S	15	.1	31	2	11
L1+00E 5+00S	13	.3	58	2	20
STD C/AU-S	62	7.4	43	17	51

SEP 10 '88 15:20 ACME LABS

1

~ ·

.

802 P10

L1+00E5+20S31.2 74 27L1+00E5+40S31.393214L1+00E5+60S25.17027L1+00E5+60S32.155220L1+00E6+60S33.35221L1+00E6+60S29.22821L1+00E6+60S29.22821L1+00E6+60S29.22821L1+00E7+20S37.24521L1+00E7+40S42.154211L1+00E7+40S42.15421L1+00E7+40S53.212752L1+00E7+60S30.140212L1+00E8+40S16.140212L1+00E8+40S16.140212L1+00E8+40S36.118232L1+00E8+40S26.115928L1+00E9+40S27.2125261L1+00E9+40S42.1134213L1+00E10+40S35.2304227L1+00E10+40S35.2304227L1+00E10+40S35.2304227L1+	SAMPLE#	Cu PPM	Ag PPM	As PPM	Sb PPM	Au* PPB
L1+00E5+60S25.17027L1+00E5+80S32.155220L1+00E6+00S33.35221L1+00E6+40S43.23021L1+00E6+60S29.22821L1+00E6+60S29.22821L1+00E6+80S31.12726L1+00E7+20S37.24521L1+00E7+20S37.24521L1+00E7+20S30.140215L1+00E7+80S53.212752L1+00E8+00S57.2119339L1+00E8+40S16.140212L1+00E8+60S36.313636L1+00E8+80S36.118232L1+00E9+00S29.295231L1+00E9+60S28.1108215L1+00E10+00S47.11403119L1+00E10+00S47.11403119L1+00E10+00S47.11403119L1+00E10+00S47.11403119L1+00E10+00S47.11403119						
L1+00E $5+80S$ 32 $.1$ 55 2 20 $L1+00E$ $6+00S$ 33 $.3$ 52 2 1 $L1+00E$ $6+00S$ 43 $.2$ 30 2 1 $L1+00E$ $6+40S$ 43 $.2$ 30 2 1 $L1+00E$ $6+60S$ 29 $.2$ 28 2 1 $L1+00E$ $6+60S$ 29 $.2$ 28 2 1 $L1+00E$ $6+80S$ 31 $.1$ 27 2 6 $L1+00E$ $7+40S$ 42 $.1$ 54 2 11 $L1+00E$ $7+40S$ 42 $.1$ 54 2 11 $L1+00E$ $7+60S$ 30 $.1$ 40 2 15 $L1+00E$ $7+60S$ 30 $.1$ 40 2 15 $L1+00E$ $8+00S$ 57 $.2$ 119 3 39 $L1+00E$ $8+00S$ 16 $.1$ 40 2 12 $L1+00E$ $8+00S$ 36 $.1$ 182 3 2 $L1+00E$ $8+00S$ 36 $.1$ 182 3 2 $L1+00E$ $8+00S$ 26 $.1$ 159 2 8 $L1+00E$ $9+00S$ 29 $.2$ 95 2 31 $L1+00E$ $9+00S$ 26 $.1$ 159 2 8 $L1+00E$ $9+00S$ 26 $.1$ 159 2 8 $L1+00E$ $9+$						
L1+00E6+00S33.3 52 21L1+00E6+40S17.112226L1+00E6+60S29.22821L1+00E6+80S31.12726L1+00E7+00S24.22021L1+00E7+20S37.24521L1+00E7+40S42.154211L1+00E7+60S30.140215L1+00E7+80S53.212752L1+00E8+00S57.2119339L1+00E8+00S56.16221L1+00E8+60S36.313636L1+00E8+60S36.118232L1+00E9+00S29.295231L1+00E9+00S28.115928L1+00E9+60S28.112831L1+00E9+60S28.1134213L1+00E10+00S47.11403119L1+00E10+60S17.3322319L1+00E10+60S17.3322319L1+00E10+60S17.3322319L1+00E10+60S17.3322319						
L1+00E $6+20S$ 17 $.1$ 12 2 26 L1+00E $6+40S$ 43 $.2$ 30 2 1 L1+00E $6+80S$ 29 $.2$ 28 2 1 L1+00E $6+80S$ 31 $.1$ 27 26 L1+00E $7+00S$ 24 $.2$ 20 2 1 L1+00E $7+20S$ 37 $.2$ 45 2 1 L1+00E $7+40S$ 42 $.1$ 54 2 11 L1+00E $7+40S$ 42 $.1$ 54 2 15 L1+00E $7+40S$ 53 22 127 5 2 L1+00E $8+00S$ 57 $.2$ 119 39 L1+00E $8+00S$ 36 $.1$ 40 2 12 L1+00E $8+40S$ 16 $.1$ 40 2 12 L1+00E $8+40S$ 36 $.1$ 182 3 2 L1+00E $8+40S$ 36 $.1$ 182 3 2 L1+00E $9+40S$ 42 $.1$ 128 31 11 L1+00E $10+40S$ 35 $.2$ 304 2 27 L1+00E $10+40S$ 35 $.2$ 304 <t< td=""><td></td><td></td><td></td><td></td><td>2</td><td></td></t<>					2	
L1+00E $6+40S$ 43.23021L1+00E $6+60S$ 29.22821L1+00E $7+00S$ 24.22021L1+00E $7+00S$ 24.22021L1+00E $7+00S$ 24.22021L1+00E $7+00S$ 24.22021L1+00E $7+40S$ 42.15421L1+00E $7+60S$ 30.140215L1+00E $7+80S$ 53.212752L1+00E $8+00S$ 57.2119339L1+00E $8+00S$ 56.140212L1+00E $8+40S$ 16.140212L1+00E $8+40S$ 16.140212L1+00E $8+40S$ 36.313636L1+00E $8+40S$ 36.118232L1+00E $9+00S$ 29.295231L1+00E $9+40S$ 42.112831L1+00E $9+20S$ 26.115928L1+00E $9+40S$ 42.112831L1+00E $9+80S$ 57.2125261L1+00E $10+40S$ 35.2 304 227L1+00E $10+40S$ 35.2 3	71400E 84002	55		22	2	1
L1+00E $6+40S$ 43.23021L1+00E $6+60S$ 29.22821L1+00E $6+80S$ 31.12726L1+00E $7+00S$ 24.22021L1+00E $7+20S$ 37.24521L1+00E $7+40S$ 42.154211L1+00E $7+40S$ 42.154211L1+00E $7+60S$ 30.140215L1+00E $7+80S$ 53.212752L1+00E $8+00S$ 57.2119339L1+00E $8+00S$ 57.2119339L1+00E $8+60S$ 36.313636L1+00E $8+60S$ 36.313636L1+00E $8+60S$ 36.118232L1+00E $9+00S$ 29.295231L1+00E $9+60S$ 28.1108215L1+00E $10+00S$ 47.11403119L1+00E $10+40S$ 35.2 304 227L1+00E $10+40S$ 35.2 304 227L1+00E $10+40S$ 35.2 304 227L1+00E $10+40S$ 35 .1 353 43L1+00E $10+40S$ 53 <	L1+00E 6+20S	17	.1	12	2	26
L1+00E $6+80S$ 31 $.1$ 27 2 6 L1+00E $7+00S$ 24 $.2$ 20 2 1 L1+00E $7+20S$ 37 $.2$ 45 2 1 L1+00E $7+40S$ 42 $.1$ 54 2 11 L1+00E $7+60S$ 30 $.1$ 40 2 15 L1+00E $7+80S$ 53 $.2$ 127 5 2 L1+00E $8+00S$ 57 $.2$ 119 3 39 L1+00E $8+00S$ 25 $.1$ 62 2 1 L1+00E $8+60S$ 36 $.1$ 40 2 12 L1+00E $8+60S$ 36 $.1$ 162 2 1 L1+00E $8+60S$ 36 $.1$ 182 3 2 L1+00E $9+60S$ 26 $.1$ 159 2 8 L1+00E $9+40S$ 42 $.1$ 128 3 1 L1+00E $9+40S$ 42 $.1$ 128 3 1 L1+00E $9+40S$ 42 $.1$ 128 3 1 L1+00E $10+40S$ 35 $.2$ 304 2 27 L1+00E $10+40S$ 35 $.2$ 304 2 27 L1+00E $10+40S$ 35 $.2$ 304 2 27 L1+00E $10+60S$ 17 $.3$ 322 3 19 L1+00E $10+60S$ 37 $.1$		43	.2	30	2	1
L1+00E $6+80S$ 31 $.1$ 27 2 6 L1+00E $7+00S$ 24 $.2$ 20 2 1 L1+00E $7+20S$ 37 $.2$ 45 2 1 L1+00E $7+40S$ 42 $.1$ 54 2 11 L1+00E $7+60S$ 30 $.1$ 40 2 15 L1+00E $7+80S$ 53 $.2$ 127 5 2 L1+00E $8+00S$ 57 $.2$ 119 3 39 L1+00E $8+00S$ 25 $.1$ 62 2 1 L1+00E $8+60S$ 36 $.1$ 40 2 12 L1+00E $8+60S$ 36 $.1$ 162 2 1 L1+00E $8+60S$ 36 $.1$ 182 3 2 L1+00E $9+60S$ 26 $.1$ 159 2 8 L1+00E $9+40S$ 42 $.1$ 128 3 1 L1+00E $9+40S$ 42 $.1$ 128 3 1 L1+00E $9+40S$ 42 $.1$ 128 3 1 L1+00E $10+40S$ 35 $.2$ 304 2 27 L1+00E $10+40S$ 35 $.2$ 304 2 27 L1+00E $10+40S$ 35 $.2$ 304 2 27 L1+00E $10+60S$ 17 $.3$ 322 3 19 L1+00E $10+60S$ 37 $.1$	L1+00E 6+60S	29	. 2	28	2	1
L1+00E7+20S37.24521L1+00E7+40S42.154211L1+00E7+60S30.140215L1+00E7+80S53.212752L1+00E8+00S57.2119339L1+00E8+20S25.16221L1+00E8+40S16.140212L1+00E8+40S16.140212L1+00E8+60S36.313636L1+00E8+80S36.118232L1+00E9+00S29.295231L1+00E9+20S26.115928L1+00E9+40S42.112831L1+00E9+60S28.1108215L1+00E10+20S40.1134213L1+00E10+20S40.1134213L1+00E10+40S53.135343L1+00E10+40S53.135343L1+00E11+40S118.2401914L1+00E11+40S118.29822L1+00E12+00S65.31922L1+00E12+40S42.146228 <t< td=""><td>L1+00E 6+80S</td><td>31</td><td>.1</td><td>27</td><td>2</td><td>6</td></t<>	L1+00E 6+80S	31	.1	27	2	6
L1+00E7+40S42.154211L1+00E7+60S30.140215L1+00E7+80S53.212752L1+00E8+00S57.2119339L1+00E8+20S25.16221L1+00E8+40S16.140212L1+00E8+60S36.313636L1+00E8+60S36.118232L1+00E9+00S29.295231L1+00E9+40S42.112831L1+00E9+40S42.1108215L1+00E9+60S28.1108215L1+00E9+80S57.2125261L1+00E10+00S47.11403119L1+00E10+20S40.1134213L1+00E10+60S17.3322319L1+00E10+60S17.3322319L1+00E11+60S63.29822L1+00E11+60S63.29822L1+00E11+60S65.31922L1+00E12+60S42.146228L1+00E12+40S42.146228 <td>L1+00E 7+00S</td> <td>24</td> <td>. 2</td> <td>20</td> <td>2</td> <td>1</td>	L1+00E 7+00S	24	. 2	20	2	1
L1+00E7+40S42.154211L1+00E7+60S30.140215L1+00E7+80S53.212752L1+00E8+00S57.2119339L1+00E8+20S25.16221L1+00E8+20S25.16221L1+00E8+40S16.140212L1+00E8+60S36.313636L1+00E8+80S36.118232L1+00E9+00S29.295231L1+00E9+40S42.112831L1+00E9+40S42.112831L1+00E9+60S28.1108215L1+00E9+80S57.2125261L1+00E10+00S47.11403119L1+00E10+20S40.1134213L1+00E10+40S35.2304227L1+00E10+60S17.3322319L1+00E10+60S53.135343L1+00E11+60S63.29822L1+00E11+60S65.31922L1+00E12+40S42.146228<	L1+00E 7+20S	37	. 2	45	2	1
L1+00E7+60S30.140215L1+00E7+80S53.212752L1+00E8+00S57.2119339L1+00E8+20S25.16221L1+00E8+40S16.140212L1+00E8+60S36.313636L1+00E8+80S36.118232L1+00E9+00S29.295231L1+00E9+20S26.115928L1+00E9+40S42.112831L1+00E9+60S28.1108215L1+00E9+60S28.1108215L1+00E10+00S47.11403119L1+00E10+00S47.1134213L1+00E10+40S35.2304227L1+00E10+60S17.3322319L1+00E10+80S53.135343L1+00E11+40S118.2401914L1+00E11+80S37.13529L1+00E12+00S65.31922L1+00E12+40S42.146228L1+00E12+40S42.151316<	L1+00E 7+40S	42		54	2	
L1+00E7+80S53.2 127 52L1+00E8+00S57.2119339L1+00E8+20S25.1 62 21L1+00E8+40S16.140212L1+00E8+60S36.313636L1+00E8+60S36.118232L1+00E9+20S29.295231L1+00E9+20S26.115928L1+00E9+40S42.112831L1+00E9+40S42.112831L1+00E9+60S28.1108215L1+00E10+00S47.11403119L1+00E10+00S47.1134213L1+00E10+40S35.2304227L1+00E10+40S35.2304227L1+00E10+60S17.3322319L1+00E11+60S63.29822L1+00E11+60S63.29822L1+00E11+60S63.29822L1+00E11+60S65.31922L1+00E12+40S42.146228L1+00E12+40S42.151316	L1+00E 7+60S	30	. 1	40		
L1+00E $8+00S$ 57 .2 119 3 39 L1+00E $8+20S$ 25 .1 62 2 1 L1+00E $8+40S$ 16 .1 40 2 12 L1+00E $8+60S$ 36 .3 136 3 6 L1+00E $8+80S$ 36 .1 182 3 2 L1+00E $9+00S$ 29 .2 95 2 31 L1+00E $9+20S$ 26 .1 159 2 8 L1+00E $9+20S$ 26 .1 159 2 8 L1+00E $9+20S$ 26 .1 159 2 8 L1+00E $9+40S$ 42 .1 128 3 1 L1+00E $9+60S$ 28 .1 108 2 15 L1+00E $10+00S$ 47 .1 140 3 119 L1+00E $10+20S$ 40 .1 134 2 13 L1+00E $10+20S$ 40 .1 134 2 13 L1+00E $10+40S$ 35 .2 304 2 27 L1+00E $10+40S$ 53 .1 353 4 3 L1+00E $11+40S$ 118 .2 401 9 14 L1+00E $11+60S$ 63 .2 98 2 2 L1+00E $11+80S$ 37 .1 35 2 9 L1+00E $12+40S$ 42 .1 46 2	L1+00E 7+80S	53	. 2	127		2
L1+00E 8+40S 16 .1 40 2 12 L1+00E 8+60S 36 .3 136 3 6 L1+00E 8+80S 36 .1 182 3 2 L1+00E 9+00S 29 .2 95 2 31 L1+00E 9+00S 29 .2 95 2 31 L1+00E 9+00S 28 .1 159 2 8 L1+00E 9+40S 42 .1 128 3 1 L1+00E 9+60S 28 .1 108 2 15 L1+00E 9+60S 28 .1 108 2 15 L1+00E 9+80S 57 .2 1252 6 1 L1+00E 10+60S 47 .1 140 3 119 L1+00E 10+40S 35 .2 304 2 27 L1+00E 10+60S 17 .3 322 3 19 L1+00E 11+40S <t< td=""><td>L1+00E 8+00S</td><td>57</td><td>. 2</td><td>119</td><td></td><td>39</td></t<>	L1+00E 8+00S	57	. 2	119		39
L1+00E 8+40S 16 .1 40 2 12 L1+00E 8+60S 36 .3 136 3 6 L1+00E 8+80S 36 .1 182 3 2 L1+00E 9+00S 29 .2 95 2 31 L1+00E 9+00S 29 .2 95 2 31 L1+00E 9+00S 29 .2 95 2 31 L1+00E 9+20S 26 .1 159 2 8 L1+00E 9+40S 42 .1 128 3 1 L1+00E 9+60S 28 .1 108 2 15 L1+00E 9+80S 57 .2 1252 6 1 L1+00E 10+60S 47 .1 140 3 119 L1+00E 10+40S 35 .2 304 2 27 L1+00E 10+60S 17 .3 322 3 19 L1+00E 11+40S <td< td=""><td>L1+00E 8+20S</td><td>25</td><td>.1</td><td>62</td><td>2</td><td>1</td></td<>	L1+00E 8+20S	25	.1	62	2	1
L1+00E 8+60S 36 .3 136 3 6 L1+00E 8+80S 36 .1 182 3 2 L1+00E 9+00S 29 .2 95 2 31 L1+00E 9+00S 29 .2 95 2 31 L1+00E 9+20S 26 .1 159 2 8 L1+00E 9+40S 42 .1 128 3 1 L1+00E 9+60S 28 .1 108 2 15 L1+00E 9+60S 57 .2 1252 6 1 L1+00E 10+00S 47 .1 140 3 119 L1+00E 10+20S 40 .1 134 2 13 L1+00E 10+40S 35 .2 304 2 27 L1+00E 10+80S 53 .1 353 4 3 L1+00E 11+40S 118 .2 98 2 2 L1+00E 11+80S <		16				
L1+00E 8+80S 36 .1 182 3 2 L1+00E 9+00S 29 .2 95 2 31 L1+00E 9+20S 26 .1 159 2 8 L1+00E 9+40S 42 .1 128 3 1 L1+00E 9+40S 42 .1 128 3 1 L1+00E 9+60S 28 .1 108 2 15 L1+00E 9+60S 57 .2 1252 6 1 L1+00E 10+00S 47 .1 140 3 119 L1+00E 10+20S 40 .1 134 2 13 L1+00E 10+40S 35 .2 304 2 27 L1+00E 10+80S 53 .1 353 4 3 L1+00E 10+80S 53 .1 353 4 3 L1+00E 11+60S 63 .2 98 2 2 L1+00E 11+80S <					3	
L1+00E9+00S29.295231L1+00E9+20S26.115928L1+00E9+40S42.112831L1+00E9+60S28.1108215L1+00E9+80S57.2125261L1+00E10+00S47.11403119L1+00E10+20S40.1134213L1+00E10+40S35.2304227L1+00E10+60S17.3322319L1+00E10+80S53.135343L1+00E11+40S118.2401914L1+00E11+60S63.29822L1+00E11+80S37.13529L1+00E12+20S65.31922L1+00E12+20S36.151213L1+00E12+40S42.146228L1+00E12+40S42.151316					3	
L1+00E $9+40S$ 42 $.1$ 128 3 1 L1+00E $9+60S$ 28 $.1$ 108 2 15 L1+00E $9+80S$ 57 $.2$ 1252 6 1 L1+00E $10+00S$ 47 $.1$ 140 3 119 L1+00E $10+20S$ 40 $.1$ 134 2 13 L1+00E $10+20S$ 40 $.1$ 134 2 13 L1+00E $10+40S$ 35 $.2$ 304 2 27 L1+00E $10+60S$ 17 $.3$ 322 3 19 L1+00E $10+60S$ 17 $.3$ 322 3 19 L1+00E $10+80S$ 53 $.1$ 353 4 3 L1+00E $11+40S$ 118 $.2$ 401 9 14 L1+00E $11+60S$ 63 $.2$ 98 2 2 L1+00E $11+80S$ 37 $.1$ 35 2 9 L1+00E $12+20S$ 36 $.1$ 51 2 13 L1+00E $12+40S$ 42 $.1$ 46 2 28 L1+00E $12+60S$ 45 $.1$ 51 3 16						
L1+00E $9+40S$ 42 $.1$ 128 3 1 L1+00E $9+60S$ 28 $.1$ 108 2 15 L1+00E $9+80S$ 57 $.2$ 1252 6 1 L1+00E $10+00S$ 47 $.1$ 140 3 119 L1+00E $10+20S$ 40 $.1$ 134 2 13 L1+00E $10+20S$ 40 $.1$ 134 2 13 L1+00E $10+40S$ 35 $.2$ 304 2 27 L1+00E $10+60S$ 17 $.3$ 322 3 19 L1+00E $10+60S$ 17 $.3$ 322 3 19 L1+00E $10+80S$ 53 $.1$ 353 4 3 L1+00E $11+40S$ 118 $.2$ 401 9 14 L1+00E $11+60S$ 63 $.2$ 98 2 2 L1+00E $11+80S$ 37 $.1$ 35 2 9 L1+00E $12+20S$ 36 $.1$ 51 2 13 L1+00E $12+40S$ 42 $.1$ 46 2 28 L1+00E $12+60S$ 45 $.1$ 51 3 16	L1+00E 9+20S	26	.1	159	2	8
L1+00E 9+60S 28 .1 108 2 15 L1+00E 9+80S 57 .2 1252 6 1 L1+00E 10+00S 47 .1 140 3 119 L1+00E 10+00S 47 .1 140 3 119 L1+00E 10+20S 40 .1 134 2 13 L1+00E 10+40S 35 .2 304 2 27 L1+00E 10+60S 17 .3 322 3 19 L1+00E 10+80S 53 .1 353 4 3 L1+00E 11+40S 118 .2 401 9 14 L1+00E 11+60S 63 .2 98 2 2 L1+00E 11+80S 37 .1 35 2 9 L1+00E 12+00S 65 .3 19 2 2 L1+00E 12+20S 36 .1 51 2 13 L1+00E 12+40S	L1+00E 9+40S	42			3	
L1+00E 10+00S 47 .1 140 3 119 L1+00E 10+20S 40 .1 134 2 13 L1+00E 10+40S 35 .2 304 2 27 L1+00E 10+60S 17 .3 322 3 19 L1+00E 10+60S 17 .3 322 3 19 L1+00E 10+80S 53 .1 353 4 3 L1+00E 11+40S 118 .2 401 9 14 L1+00E 11+60S 63 .2 98 2 2 L1+00E 11+80S 37 .1 35 2 9 L1+00E 12+00S 65 .3 19 2 2 L1+00E 12+20S 36 .1 51 2 13 L1+00E 12+40S 42 .1 46 2 28 L1+00E 12+60S 45 .1 51 3 16	L1+00E 9+60S	28	.1	108	2	15
L1+00E 10+20S 40 .1 134 2 13 L1+00E 10+40S 35 .2 304 2 27 L1+00E 10+60S 17 .3 322 3 19 L1+00E 10+60S 17 .3 322 3 19 L1+00E 10+80S 53 .1 353 4 3 L1+00E 11+40S 118 .2 401 9 14 L1+00E 11+60S 63 .2 98 2 2 L1+00E 11+80S 37 .1 35 2 9 L1+00E 12+00S 65 .3 19 2 2 L1+00E 12+20S 36 .1 51 2 13 L1+00E 12+40S 42 .1 46 2 28 L1+00E 12+60S 45 .1 51 3 16	L1+00E 9+80S	57	. 2	1252	6	1
L1+00E 10+40S 35 .2 304 2 27 L1+00E 10+60S 17 .3 322 3 19 L1+00E 10+80S 53 .1 353 4 3 L1+00E 10+80S 53 .1 353 4 3 L1+00E 11+40S 118 .2 401 9 14 L1+00E 11+60S 63 .2 98 2 2 L1+00E 11+80S 37 .1 35 2 9 L1+00E 12+00S 65 .3 19 2 2 L1+00E 12+20S 36 .1 51 2 13 L1+00E 12+40S 42 .1 46 2 28 L1+00E 12+60S 45 .1 51 3 16	L1+00E 10+00S	47	. 1	140	3	119
L1+00E 10+40S 35 .2 304 2 27 L1+00E 10+60S 17 .3 322 3 19 L1+00E 10+80S 53 .1 353 4 3 L1+00E 10+80S 53 .1 353 4 3 L1+00E 11+40S 118 .2 401 9 14 L1+00E 11+60S 63 .2 98 2 2 L1+00E 11+80S 37 .1 35 2 9 L1+00E 12+00S 65 .3 19 2 2 L1+00E 12+20S 36 .1 51 2 13 L1+00E 12+40S 42 .1 46 2 28 L1+00E 12+60S 45 .1 51 3 16	L1+00E 10+20S	40	.1	134	2	13
L1+00E 10+60S 17 .3 322 3 19 L1+00E 10+80S 53 .1 353 4 3 L1+00E 11+40S 118 .2 401 9 14 L1+00E 11+60S 63 .2 98 2 2 L1+00E 11+80S 37 .1 35 2 9 L1+00E 11+80S 37 .1 35 2 9 L1+00E 12+00S 65 .3 19 2 2 L1+00E 12+20S 36 .1 51 2 13 L1+00E 12+40S 42 .1 46 2 28 L1+00E 12+60S 45 .1 51 3 16		35				
L1+00E 10+80S 53 .1 353 4 3 L1+00E 11+40S 118 .2 401 9 14 L1+00E 11+60S 63 .2 98 2 2 L1+00E 11+80S 37 .1 35 2 9 L1+00E 12+00S 65 .3 19 2 2 L1+00E 12+20S 36 .1 51 2 13 L1+00E 12+40S 42 .1 46 2 28 L1+00E 12+60S 45 .1 51 3 16	L1+00E 10+60S					
L1+00E 11+40S 118 .2 401 9 14 L1+00E 11+60S 63 .2 98 2 2 L1+00E 11+80S 37 .1 35 2 9 L1+00E 12+00S 65 .3 19 2 2 L1+00E 12+20S 36 .1 51 2 13 L1+00E 12+40S 42 .1 46 2 28 L1+00E 12+60S 45 .1 51 3 16	L1+00E 10+80S	53			4	
L1+00E 12+00S 65 .3 19 2 2 L1+00E 12+20S 36 .1 51 2 13 L1+00E 12+40S 42 .1 46 2 28 L1+00E 12+60S 45 .1 51 3 16						
L1+00E 12+00S 65 .3 19 2 2 L1+00E 12+20S 36 .1 51 2 13 L1+00E 12+40S 42 .1 46 2 28 L1+00E 12+60S 45 .1 51 3 16	L1+00E 11+60S	63	. 2	98	2	2
L1+00E 12+00S 65 .3 19 2 2 L1+00E 12+20S 36 .1 51 2 13 L1+00E 12+40S 42 .1 46 2 28 L1+00E 12+60S 45 .1 51 3 16					2	
L1+00E 12+20S 36 .1 51 2 13 L1+00E 12+40S 42 .1 46 2 28 L1+00E 12+60S 45 .1 51 3 16			.3		2	2
L1+00E 12+40S 42 .1 46 2 28 L1+00E 12+60S 45 .1 51 3 16						
					2	
	L1+00E 12+60S	45	.1	51	3	16
	STD C/AU-S	61	6.9	45	16	53

. .. .

. . . .

A. 3

SAMPLE#	Cu	Ag	As	SD	Au*
	PPM	PPM	PPM	PPM	PPB
L1+00E 12+80S	74	.1	291	3	26
L1+00E 13+00S	28	.1	34	2	1
L1+00E 13+20S	22	.1	54	2	7
L1+00E 13+40S	17	.1	37	2	5
L1+00E 13+60S	43	.1	46	2	2
L1+00E 13+80S L1+00E 14+00S L1+00E 14+20S L1+00E 14+40S L1+00E 14 60S	39 29 23 43 25	.1 .2 .1 .1 .1	43 17 15 66 35	2 2 2 2 2	18 1 6 4
L1+00F 14+80S L1+00E 15+00S L1+00E 15+20S L1+00E 15+40S L1+00E 15+60S	50 44 17 43 45	.2 .1 .1 .1 .2	75 71 31 68 74	2 2 2 2 2	1 1 2 1
L1+00E 15+80S	31	.1	52	2	3
L1+00E 16+00S	32	.1	27	2	2
L1+00E 16+20S	51	.2	43	3	6
L1+00E 16+40S	25	.1	67	2	7
L1+00E 16+60S	21	.1	42	2	5
L1+00E 16+80S L1+00E 17+00S L1+00E 17+20S L1+00E 17+40S L1+00E 17+60S	15 28 39 37 36	.1 .1 .1 .1	31 67 63 64 58	2 2 2 3	10 23 6 4 7
L1+00E 17+80S	40	.3	56	3	2
L1+00E 18+00S	39	.6	57	2	2
STD C/AU-S	63	7.3	43	18	52

والانفاد المالين و

.

.

ACME ANALYTICAL LABORATORIES LID. 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED: $\sqrt{22}$

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAN SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR OME HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MM FE SE CA P LA CR MG BA TI B W AND LIMITED FOR MA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: SOIL AU* AMALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

BEATY GEOLOGICAL LTD. PROJECT JOB 186 FILE # 88-4603 Page 1

SAMPLE#	Ag	As	Au*
	PPM	PPM	PPB
L12+00W 0+50S L12+00W 1+00S L12+00W 1+50S L12+00W 2+00S L12+00W 2+50S	.1 .1 .1 .3	282 2650 5135 1336 1509	14 177 440 191 128
L12+00W 3+00S L12+00W 3+50S L12+00W 4+00S L11+00W 0+00S L11+00W 0+50S	.1 .1 .6 1.0	2803 699 381 459 744	210 235 49 530 280
L11+00W 1+00S	.1	740	590
L11+00W 1+50S	.6	534	74
L11+00W 2+00S	.1	196	56
L11+00W 2+50S	.2	386	81
L11+00W 3+00S	.6	985	305
L11+00W 3+50S	.2	181	76
L11+00W 4+00S	5.1	17589	3420
L10+00W 1+00S	.1	1014	165
L10+00W 1+50S	.3	2081	410
L10+00W 2+00S	.1	454	113
L10+00W 2+50S	.1	219	61
L10+00W 3+00S	.2	1366	550
L10+00W 4+00S	.3	5293	405
L10+00W 4+50S	.1	1690	450
L10+00W 5+00S	.1	1868	280
L10+00W 5+40S	.1	1808	240
L10+00W 5+60S	.3	1845	1850
L10+00W 5+80S	.7	1902	830
L10+00W 6+00S	.1	2580	290
L10+00W 6+20S	.1	1183	210
L10+00W 6+40S	.5	746	117
L10+00W 6+60S	.8	798	164
L10+00W 6+80S	.3	1339	280
L10+00W 7+00S	.8	482	540
L10+00W 7+20S	.3	556	71
L10+00W 7+40S	.3	769	350
STD C/AU-S	7.1	42	53

.

... --

...

,

SAMPLE#	Ag	As	Au*
	PPM	PPM	PPB
L10+00W 7+60S L10+00W 7+80S L10+00W 8+00S L9+00W 0+00S L9+00W 0+50S	.1 .1 .3 .4	238 282 360 722 881	39 41 81 62 270
L9+00W 1+00S	.2	563	88
L9+00W 1+50S	.1	2146	37
L9+00W 2+00S	.1	466	88
L9+00W 2+50S	.4	1501	260
L9+00W 3+00S	.2	1184	185
L9+00W 3+50S	.3	3865	440
L9+00W 4+00S	.1	398	250
L9+00W 4+50S	.1	924	230
L9+00W 5+00S	.1	4403	62
L9+00W 5+20S	.2	8859	450
L9+00W 5+40S	.2	4670	111
L9+00W 5+60S	.6	416	460
L9+00W 5+80S	1.1	335	139
L9+00W 6+00S	.3	368	345
L9+00W 6+20S	.4	441	79
L9+00W 6+40S	.7	234	206
L9+00W 6+60S	.1	442	59
L9+00W 6+80S	.2	906	48
L9+00W 7+00S	.1	552	179
L9+00W 7+20S	.3	301	24
L9+00W 7+40S	.2	211	98
L9+00W 7+60S	.1	182	46
L9+00W 7+80S	.3	108	21
L9+00W 8+00S	.1	122	8
L8+00W 0+00S	.2	734	26
L8+00W 0+50S	.1	506	32
L8+00W 1+00S	.1	171	355
L8+00W 1+50S	.1	506	142
L8+00W 2+00S	.1	1542	1205
L8+00W 2+50S	.2	1090	99
L8+00W 3+00S	.5	968	1020
STD C/AU-S	7.0	41	51

~ ·

CAD	цтр.	1 100 201	÷ • 2		
SAI	MPLE#	ŧ	Ag PPM	AS PPM	Au* PPB
L8-	+00W	3+505	. 4	1029	640
L8-	FOOW	4+005	. 2	2462	435
L 8-	+00W	4+505	2.1	9222	2250
L8-	F00W	5+005	.1	986	91
L 8-	+00W	5+205	.1	470	245
	FOOM	5+40S	.1	259	43
	+00W	5+605	. 2	227	54
	HOOW	5+805	.3	177	49 44
	+00W	6+00S	.1	164	
г8-	+00W	6+205	.1	294	31
L8-	+00W	6+40S	. 1	148	26
L8-	+00W	6+60S	.1	137	71
L 8-	+00W		. 1	110	116
	+00W	7+005	. 1	168	33
L 8-	+00W	7+205	.1	151	32
L 8-	+00W	7+405	.1	305	36
L 8-	+00W	7+60S	.1	146	41
L 8·	+00W	7+805	.1	299	39
L 8-	+00W	8+005	.1	175	210
L7·	+00W	0+50\$.1	824	28
L7 -	+00W	1+00S	.1	1017	114
L7-	+00W	1+505	.3	363	215
L7-	W00+	2+005	.1	888	107
	+00W	2+50\$.1	692	91
L7-	+00W	3+005	.1	2239	156
	+00W		.1	3544	270
	+00W	4+00S	.1	2828	215
	+00W	4+50S	. 9	4119	1090
		5+00S	.1	1977	1260
L7·	+00W	5+205	. 2	491	325
		5+40S	.1		56
		5+605	.1		46
		5+805	.1		26
		6+00S	.1		23
1.1	+00W	6+205	.1	94	89
		6+40S	.1		71
ST	D C/1	AU-S	6.5	44	47

دېږېد هر د مې و مړ د دغه د د د د د د

يجيحا مرما ماتجا منتجا بالاستيانية إلم

برجده ويعوسه ويقصون محاد والمالد المارو المالد أم

....

· -

.

- ,

SAMPLE#	Ag PPM	As PPM	Au* PPB
L7+00W 6+60S	. 2	86	30
L7+00W 6+80S	.1	118	4
L7+00W 7+00S	.3	108	74
L7+00W 7+20S	.3	125	80
L7+00W 7+40S	.1	48	24
D/100W /1400	• •		
L7+00W 7+60S	. 2	97	93
L7+00W 7+80S	. 1	117	26
L7+00W 8+00S	.3	65	43
L7+00W 8+205	. 2	116	29
L7+00W 8+40S	.1	111	62
L7+00W 8+60S	. 1	125	55
L7+00W 8+80S	. 4	97	44
L7+00W 9+00S	. 2	79	7
L7+00W 9+20S	. 3	109	525
L7+00W 9+40S	. 1	91	23
L7+00W 9+60S	.1	78	31
L7+00W 9+80S	.1	27	63
L7+00W 10+00S	.1	89	28
L6+00W 5+20S	. 5	488	108
L6+00W 5+40S	.1	425	132
L6+00W 5+60S	. 4	438	225
L6+00W 5+80S	.2	240	55
L6+00W 6+00S	.1	124	29
L6+00W 6+20S	.1	1071	73
L6+00W 6+40S	.1	1707	56
t C + 0.011 C + C 0.0	•	100	32
L6+00W 6+60S	.2	129 146	8
L6+00W 6+80S	.4		
L6+00W 7+00S	.1	206	16
L6+00W 7+20S	.1	197	101
L6+00W 7+40S	. 1	74	14
L6+00W 7+60S	.1	102	15
L6+00W 7+80S	.1	138	24
L6+00W 8+00S	.1	59	28
L6+00W 8+20S	.1	101	202
L6+00W 8+40S	.1	47	18
GUETO MUUTUL	• •	7,1	10
L6+00W 8+60S	.1	63	45
STD C/AU-S	7.0	40	51
-			

and a second product of the second second

1

.

SAMPLE#	Ag PPM	As Ppm	Au* PPB
L6+00W 8+80		59	29
L6+00W 9+008		82	16
L6+00W 9+20		92	7
L6+00W 9+408		37	17
L6+00W 9+60	5.3	91	11
L6+00W 9+808		94	14
L6+00W 10+0		105	22
L5+00W 5+208		489	92
L5+00W 5+40		2591	49
L5+00W 5+608	5.1	4962	5
L5+00W 5+80		146	21
L5+00W 6+00	5. <u>3</u>	138	23
L5+00W 6+20		149	22
L5+00W 6+408		119	22
L5+00W 6+60:	s.3	108	41
L5+00W 6+80		92	28
L5+00W 7+00		22	71
L5+00W 7+208		69	21
L5+00W 7+40		58	5
L5+00W 7+60	5.1	129	11
L5+00W 7+80		117	148
L5+00W 8+00		67	530
L5+00W 8+20		84	470
L5+00W 8+40		62	5
L5+00W 8+60	5.1	91	14
L5+00W 8+80		70	101
L5+00W 9+00		49	13
L5+00W 9+208		93	7
L5+00W 9+40		58	29
12+00W 9+608	5.1	55	15
L5+00W 9+80		67	2
L5+00W 10+00)S .1	74	3
L5+00W 10+20	0s .3	71	14
L5+00W 10+40		283	77
L5+00W 10+6	0S .1	204	77
L5+00W 10+80		146	52
STD C/AU-S	7.0	39	49

· · · ·

· · · · · · · · · · · · · · · ·

• •

. . . .

SAMPLE#	Ag PPM	AS PPM	Au* PPB
L5+00W 11+00S	. 4	150	22
L5+00W 11+20S	.3	170	94
L5+00W 11+40S	. 3	154	42
L5+00W 11+60S	. 4	146	14
L5+00W 11+80S	.3	136	12
L5+00W 12+00S	.1	277	395
L5+00W 12+20S	.1	96	20
L5+00W 12+40S	.3	78	22
L5+00W 12+60S	.3	106	40
L5+00W 12+80S	.2	126	36
L5+00W 13+00S	.3	267	108
L5+00W 13+20S	.1	653	635
L5+00W 13+40S	.1	1244	465
L5+00W 13+60S	. 2	214	47
L5+00W 13+80S	.1	150	245
L5+00W 14+80S	.1	131	120
L5+00W 15+00S	.1	136	935
L5+00W 15+20S	.5	365	42
L5+00W 15+40S	.1	91	23
L5+00W 15+60S	.1	80	62
L5+00W 15+80S	.1	106	12
L5+00W 16+00S	.1	101	15
L5+00W 16+20S	.1	102	65
15+00W 16+40S	.1	79	25
L5+00W 16+60S	.1	124	119
L5+00W 16+80S	.1	115	40
L5+00W 17+00S	.1	142	47
L5+00W 17+20S	.1	146	315
L5+00W 17+40S	.1	74	76
L5+00W 17+60S	.1	91	37
L5+00W 17+80S	.1	102	41
L5+00W 18+00S	.1	72	12
L4+00W 5+20S	.1	146	37
L4+00W 5+40S	.1	147	18
L4+00W 5+60S	.3	143	50
L4+00W 5+80S	. 4	146	39
STD C/AU-S	6.7	41	49

÷

SAMPLE#	Ag	As	Au*
	PPM	PPM	PPB
L4+00W 6+00S	.2	115	104
L4+00W 6+20S	.6	115	35
L4+00W 6+40S	.3	119	8
L4+00W 6+60S	.3	130	8
L4+00W 6+80S	.1	67	17
L4+00W 7+00S	.2	66	290
L4+00W 7+20S	.2	67	51
L4+00W 7+40S	.1	65	16
L4+00W 7+60S	.3	93	15
L4+00W 7+80S	.1	86	7
L4+00W 8+00S	.2	90	105
L4+00W 8+20S	.1	93	54
L4+00W 8+40S	.1	65	13
L4+00W 8+60S	.2	99	97
L4+00W 8+80S	.1	70	15
L4+00W 9+00S	.1	51	5
L4+00W 9+20S	.2	86	25
L4+00W 9+40S	.3	97	17
L4+00W 9+60S	.3	18	13
L4+00W 9+80S	.3	116	10
L4+00W 10+00S L4+00W 10+20S L4+00W 10+40S L4+00W 10+60S L4+00W 10+80S	.1 .1 .1 .1	81 83 117 64 93	14 16 31 44 74
L4+00W 11+00S	.3	71	15
L4+00W 11+20S	.2	132	220
L4+00W 11+40S	.1	160	95
L4+00W 11+60S	.2	204	75
L4+00W 11+80S	.1	80	16
L4+00W 12+00S	.1	231	32
L4+00W 12+20S	.2	295	34
L4+00W 12+40S	.1	177	29
L4+00W 12+60S	.3	1323	38
L4+00W 12+80S	.4	210	320
L4+00W 13+00S	.1	195	78
STD C/AU-S	7.3	38	52

.1

.

.....

وج ومديد المتحجين المراجا

بالمناهدية والمراجع

SAMPLE#	Ag	As	Au*
	PPM	PPM	PPB
L4+00W 13+20S	.1	132	24
L4+00W 13+40S	.3	847	155
L4+00W 13+60S	.2	412	191
L4+00W 13+80S	.2	537	173
L4+00W 14+20S	.1	139	36
L4+00W 14+40W	.2	46	9
L4+00W 14+60W	.3	71	33
L4+00W 14+80W	.2	70	38
L4+00W 15+00W	.3	40	76
L4+00W 15+20W	.1	41	8
L4+00W 15+40W	.1	44	51
L4+00W 15+60W	1.1	43	12
L4+00W 15+80W	.1	54	153
L4+00W 16+00W	.2	90	29
L4+00W 16+20W	.1	107	28
L4+00W 16+40W L4+00W 16+60W L4+00W 16+80W L4+00W 17+00W L4+00W 17+20W	.1 .2 .1 .1	126 79 65 66 100	29 35 22 17 29
L4+00W 17+40W L4+00W 17+60W L4+00W 17+80W L4+00W 18+00W L3+50W 5+00S	.1 .2 .1 .2	102 56 105 101 613	23 29 21 49 151
L3+50W 5+20S L3+50W 5+40S L3+50W 5+60S L3+50W 5+80S L3+50W 6+00S	.1 .1 .1 .1	183 176 146 423 278	81 61 57 46 30
L3+50W 6+20S	5.9	264	114
L3+50W 6+40S	.1	119	26
L3+50W 6+60S	.1	38	15
L3+50W 6+80S	.1	78	8
L3+50W 7+00S	.2	104	36
L3+50W 7+20S	.4	169	36
STD C/AU-S	7.1	41	47

.

.....

.

1

SAMPLE#	Ag	As	Au*
	PPM	PPM	PPB
L3+50W 7+40S	.4	128	30
L3+50W 7+60S	.3	121	35
L3+50W 7+80S	.2	77	13
L3+50W 8+00S	.2	55	15
L3+50W 8+20S	.4	62	93
L3+50W 8+40S	.3	145	18
L3+50W 8+60S	.1	215	78
L3+50W 8+80S	.2	106	7
L3+50W 9+00S	.3	104	3
L3+50W 9+20S	.1	76	13
L3+50W 9+40S	.1	209	11
L3+50W 9+60S	.1	226	37
L3+50W 9+80S	.1	432	58
L3+50W 10+00S	.1	505	83
L3+50W 10+20S	.1	163	16
L3+50W 10+40S	.1	243	46
L3+50W 10+60S	.1	269	360
L3+50W 10+80S	.3	259	72
L3+50W 11+00S	.1	114	9
L3+50W 11+20S	.1	119	4
L3+50W 11+40S L3+50W 11+60S L3+50W 11+80S L3+50W 12+00S L3+50W 12+20S	.1 .1 .1 .1	120 216 96 147 154	92 53 41 48 28
L3+50W 12+40S L3+50W 12+60S L3+50W 12+80S L3+50W 13+00S L3+50W 13+20S	.1 .1 .2 .1	175 64 59 138 316	48 38 19 460 168
L3+50W 13+40S	.1	397	115
L3+50W 13+60S	.3	164	74
L3+50W 13+80S	.1	923	370
L3+50W 14+00S	.3	120	62
L3+50W 14+20S	.1	55	13
L3+50W 14+40S	.4	23	2
STD C/AU-S	7.0	41	53

.

s star a ser en ser

• • • •

SAMPLE#	Ag PPM	As PPM	Au* PPB
L3+50W 14+60S	.1	31	5
L3+50W 14+80S	.1	58	62
L3+50W 15+00S	.1	36	24
L3+00W 5+20S	.1	103	142
L3+00W 5+40S	.1	74	8
L3+00W 5+60S	. 4	267	122
L3+00W 5+80S	. 4	56	46
L3+00W 6+00S	.1	72	52
L3+00W 6+20S	.1	224	40
L3+00W 6+40S	.1	112	61
L3+00W 6+60S	.1	114	16
L3+00W 6+80S	.2	354	72
L3+00W 7+00S	.1	80	40
L3+00W 7+20S	.1	85	10
L3+00W 7+40S	.1	261	154
L3+00W 7+60S	.1	176	58
L3+00W 7+80S	.1	138	47
L3+00W 8+00S	.3	77	34
L3+00W 8+20S	.1	100	255
L3+00W 8+40S	.1	94	62
L3+00W 8+60S	. 2	215	112
L3+00W 8+80S	.1	89	43
L3+00W 9+00S	.1	167	39
L3+00W 9+20S	.1	159	22
L3+00W 9+40S	.1	178	15
L3+00W 9+60S	.1	326	26
L3+00W 9+80S	.1	293	41
L3+00W 10+00S	.3	395	67
L3+00W 10+20S	.1	231	83
L3+00W 10+40S	.3	281	38
L3+00W 10+60S	. 2	187	34
L3+00W 10+80S	.1	614	45
L3+00W 11+00S	.1	530	
L3+00W 11+20S	.1	130	18
L3+00W 11+40S	.1	171	61
L3+00W 11+60S	.3	177	40
STD C/AU-S	7.1	40	47

· · · · · · ·

SAMPLE	ŧ	Ag PPM	As PPM	Au* PPB
L3+00W L3+00W	11+80S 12+00S 12+20S 12+40S 12+60S	.2 .1 .1 .1 .1	145 131 71 96 100	29 32 9 15 13
L3+00W L3+00W L3+00W L3+00W L3+00W	13+00S 13+20S 13+40S	.1 .1 .1 .1	217 227 395 340 250	80 47 55 86 117
L3+00W	14+20S 14+40S	.1 .1 .1 .1	229 115 46 67 62	45 5 33 12 10
L3+00W L3+00W L3+00W L3+00W L3+00W	15+00S 15+20S 15+40S	.1 .1 .1 .2	51 16 21 61 42	18 22 4 26 15
L3+00W L3+00W L3+00W L3+00W L3+00W	16+00S 16+20S 16+40S	.1 .1 .1 .1	35 29 46 32 51	24 18 9 26 8
L3+00W L3+00W L3+00W L3+00W L3+00W	17+00S 17+20S 17+40S	.1 .2 .1 .2 .1	46 87 11 34 40	36 25 6 17 9
	17+80S 18+00S AU-S	.3 .2 6.6	45 88 42	7 4 52

.

. . .

2.

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: SEP 19 1988 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED: Sept. 23/88

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SE CA P LA CR MG BA TI B W AND LIMITED FOR MA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPK. - SAMPLE TYPE: SOIL AU* AMALTSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

SAMPLE#	Ag	As	Au*
	PPM	PPM	PPB
L3E 0+00S	.2	115	14
L3E 0+50S	.1	116	56
L3E 1+00S	.1	30	10
L3E 1+50S	.1	167	31
L3E 2+50S	.1	26	16
L3E 3+00S L3E 3+50S L3E 4+00S L3E 4+50S L3E 5+00S	.1 .1 .2 .1	30 16 86 308 40	59 15 4 21 5
L3E 5+20S L3E 5+40S L3E 5+60S L3E 5+80S L3E 6+00S	.1 .1 .1 .1	37 111 147 124 88	18 15 12 42 8
L3E 6+20S L3E 6+40S L3E 6+60S L3E 6+80S L3E 7+00S	.3 .3 .1 .2	147 107 87 36 55	10 17 26 3 146
L3E 7+20S	.3	76	15
L3E 7+40S	.2	183	11
L3E 7+60S	.2	107	25
L3E 7+80S	.2	108	14
L3E 8+00S	.1	137	19
L3E 8+20S	.1	152	27
L3E 8+40S	.3	492	10
L3E 8+60S	.1	118	96
L3E 8+80S	.5	1103	46
L3E 9+20S	5.3	5468	530
L4E 0+00S L4E 0+50S L4E 1+50S L4E 2+00S L4E 2+50S	.1 .1 .9 .1	63 21 22 133 47	25 16 7 6 4
L4E 3+00S	.1	35	13
STD C/AU-S	6.9	42	51

1

.•

SAMPLE#	Ag PPM	As PPM	Au* PPB
L4E 3+50S	.1	50	6
L4E 4+00S	.1	43	29
L4E 4+50S	.1	62	8
L4E 5+00S	. 2	284	7
L4E 5+20S	.1	117	4
L4E 5+40S	.2	331	3
L4E 5+60S	. 1	120	5
L4E 5+80S	.2	74	5
L4E 6+00S	. 1	25	30
L4E 6+20S	.1	62	48
L4E 6+40S	.1	168	27
L4E 6+60S	.1	33	25
L4E 6+80S	.1	47	10
L4E 7+00S	. 2	36	16
L4E 7+20S	.1	37	11
L4E 7+40S	.1	61	4
L4E 7+60S	.1	77	4
L4E 7+80S	.2	43	3
L4E 8+20S	.1	81	7
L4E 8+40S	.1	49	52
L4E 8+60S	.1	82	16
L4E 8+80S	.1	65	11
L4E 9+00S	.1	72	9
L4E 10+00S	.1	36	1
L4E 10+20S	9.1	4455	1575
L4E 10+60S	1.1	747	345
L4E 10+80S	5.3	2480	2335
L4E 11+00S	5.0	3098	1185
L4E 11+20S	2.4	1864	315
L4E 11+40S	1.8	1829	365
L4E 12+20S	2.8	4791	795
L4E 12+40S	.9	3170	325
L4E 12+80S	.1	197	24
L4E 13+00S	.1	130	17
L4E 13+20S	. 4	106	11
L4E 13+40S	.1	144	56
STD C/AU-S	7.0	40	52

(

· ---

. .

SAMPLE#	Ag	As	Au*
	PPM	PPM	PPB
L4E 13+60S	.1	129	15
L4E 14+00S	.1	107	29
L4E 14+20S	.2	245	16
L4E 14+80S	.1	116	109
L4E 15+00S	.1	137	23
L4E 15+20S L4E 15+40S L4E 15+60S L4E 15+80S L4E 15+80S	.3 .3 .1 .1	105 93 91 130 71	10 18 45 14 16
L4E 16+20S	.2	68	14
L4E 16+40S	.1	97	7
L4E 16+60S	.1	66	11
L4E 16+80S	.1	95	5
L4E 17+00S	.2	100	21
L4E 17+20S	.2	99	11
L4E 17+40S	.2	77	27
L4E 17+60S	.1	30	23
L4E 17+80S	.1	46	1
L4E 18+00S	.1	36	1
L5E 0+00S	.2	43	5
L5E 0+50S	.1	36	3
L5E 1+00S	.2	98	18
L5E 1+50S	.1	20	5
L5E 2+00S	.1	19	1
L5E 2+50S	.4	35	1
L5E 3+00S	.1	25	5
L5E 3+50S	.2	16	3
L5E 4+00S	.2	12	2
L5E 4+50S	.1	27	1
L5E 5+00S	.3	46	6
L5E 5+20S	.2	40	18
L5E 5+40S	.1	39	9
L5E 5+60S	.1	33	20
L5E 5+80S	.1	48	5
L5E 6+00S	.3	125	7
STD C/AU-S	7.1	41	52

-

÷

p --

f

.

SAMPLE	;#	Ag PPM	As PPM	Au* PPB
L5E 6+	205	. 2	44	12
L5E 6+		.1	169	5
L5E 6+		.3	116	54
L5E 6+		.2	41	6
L5E 7+		. 2	87	39
	205	.3	59	3
L5E 7+		.2	58	18
L5E 7+		.1	51	3
L5E 7+		. 2	60	34
L5E 8+	.00S	. 4	242	64
L5E 8+		.3	243	109
L5E 8+		.3	155	28
L5E 84		.1	110	15
L5E 10		7.6		510
L5E 11	L+00S	7.7	3820	520
	005	.1	59	17
L6E 0+		.1	15	1
L6E 1+		.2	7	3
L6E 1+		.1	22	5
L6E 2+	-00S	.1	17	1
L6E 24		.2	10	1
	-00S	.1	13	4
L6E 34		.1	12	1
	·00S	.2	18	1
L6E 4+	-50S	. 2	24	1
L6E 5+		.2	14	4
L6E 5+		.3	20	1
	40S	.2	32	8
	-60S	.1	47	4
L6E 5+	·80S	.1	26	5
L6E 6+		.1	27	310
L6E 6+		.1	38	2
L6E 6+		.1	35	5
L6E 6+		.1	45	1
L6E 64	-805	. 2	65 .	9
L6E 7+	-00S	.1	45	2
STD C/		7.3	39	51
· /	-			

r1

:

. "...

.

,...

- .

SAMPLE#	Ag	As	Au*
	PPM	PPM	PPB
L6E 7+20S	.2	89	4
L6E 7+40S	.4	155	13
L6E 7+60S	.6	392	36
L6E 7+80S	.2	184	16
L6E 8+00S	.5	536	49
L6E 8+20S L6E 8+40S L7E 0+00S L7E 0+50S L7E 1+00S	.1 .2 .1 .1	184 183 10 33 33	24 16 3 4 9
L7E 1+50S L7E 2+00S L7E 3+00S L7E 3+50S L7E 4+00S	.1 .1 .1 .1	22 31 22 124 242	8 8 3 5 1
L7E 4+50S	.1	31	2
L7E 5+00S	.1	24	5
L7E 5+20S	.2	49	72
L7E 5+40S	.1	43	4
L7E 5+60S	.1	57	2
L7E 5+80S L7E 6+00S L7E 6+20S L7E 6+40S L7E 6+60S	.1 .1 .1 .1	85 62 33 40 51	6 10 7 31 1
L7E 6+80S	.1	79	9
L7E 7+00S	.1	133	17
L7E 7+20S	.2	338	91
L7E 7+40S	.2	258	24
L7E 7+60S	.1	282	22
L7E 7+80S L7E 8+00S L10E 15+20S L10E 15+40S L10E 15+60S	.1 .1 .1 .1	461 263 119 123 111	46 22 1 13
L10E 15+80S	.1	70	4
STD C/AU-S	7.4	42	52

.

-

SAMPLE#	Ag	As	Au*
	PPM	PPM	PPB
L10E 16+00S	.1	64	5
L10E 16+20S	.3	55	11
L10E 16+40S	.1	59	5
L10E 16+60S	.1	55	2
L10E 16+80S	.3	49	10
L10E 17+00S	.2	69	8
L10E 17+20S	.1	45	4
L10E 17+40S	.1	40	1
L10E 17+80S	.1	26	2
L10E 18+00S	.1	34	5
L10E 5+40S L12E 12+80S L12E 13+00S L12E 13+20S L12E 13+40S	.3 .2 .3 .2	86 258 300 332 243	11 68 23 62 31
L12E 13+60S	.3	753	63
L12E 13+80S	.9	925	108
L12E 14+00S	.5	590	59
L12E 14+20S	.3	187	65
L12E 14+40S	.1	323	14
L12E 14+60S	.1	215	51
L12E 14+80S	.2	481	54
L12E 15+00S	.5	550	188
L12E 15+20S	.1	195	33
L12E 15+40S	.3	590	19
L12E 15+60S L12E 15+80S L12E 16+00S L12E 16+20S L12E 16+40S	.1 .1 .1 .1	202 224 269 244 154	30 21 8 14 16
L12E 16+60S	.1	88	12
L12E 16+80S	.1	169	14
L12E 17+00S	.3	53	15
L12E 17+20S	.1	102	19
L12E 17+40S	.1	245	11
L12E 17+60S	.1	405	47
STD C/AU-S	7.4	41	52

. .

÷

....

SAMPLE#	Ag PPM	As PPM	Au* PPB
L12E 1760S A	. 2	36	2
L12E 1780S	.1	351	8
L12E 1800S	.3	379	24

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: SEP 19 1988 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED: $\frac{9t}{25}$

i

1

A STATE OF A STATE

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3NL 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 NL WITH WATER. THIS LEACH IS PARTIAL FOR NH FE SE CA P LA CE NG BA TI B W AND LIMITED FOR WA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: SOIL -80 MESH AU* AWALYSIS BY ACID LEACH/AA FROM 10 GN SAMPLE. P - Fulverised.

SAMPLE#	Ag	As	Au*
	PPM	PPM	PPB
L14W 0+50S	.1	62	17
L14W 1+00S	.2	72	46
L14W 1+50S	.1	173	25
L14W 2+00S	.5	1198	1210
L14W 2+50S	1.0	669	1480
L14W 3+00S L14W 3+50S L14W 4+00S L13W 2+00S L13W 2+50S	.1 .2 1.1 2.5	62 59 99 1116 1593	91 37 31 93 138
L13W 3+00S	4.7	7692	360
L13W 3+50S	.3	430	52
L13W 4+00S	.1	103	46
L13W 4+50S	.1	91	23
L2E 0+00S	.3	114	6
L2E 0+50S	.4	660	19
L2E 1+00S	.5	79	17
L2E 1+50S	.3	82	136
L2E 2+00S	.2	120	21
L2E 2+50S	.3	85	7
L2E 3+00S	.1	66	9
L2E 3+50S	.5	125	15
L2E 4+00S	.2	222	76
L2E 4+50S	.3	61	21
L2E 5+00S	.2	108	44
L2E 5+20E	. 2	58	28
L2E 5+40E	. 2	87	43
L2E 5+60E	. 2	119	26
L2E 5+80E	. 2	52	12
L2E 6+00E	. 4	96	20
L2E 6+20E	.1	21	57
L2E 6+40E	.4	41	15
L2E 6+60E	.4	163	12
L2E 6+80E	.2	71	14
L2E 7+00E	.1	48	6
L2E 7+20E	.2	65	32
STD C/AU-S	7.5	43	53

.

SAMPLE#	Ag PPM	As PPM	Au* PPB
L2E 7+40S	. 1	65	5
L2E 7+60S	. 2	55	11
L2E 7+80S	.3	72	1
L2E 8+20S	. 2	321	11
L2E 8+40S	. 2	257	23
L2E 8+60S	. 2	139	13
L2E 8+805	.1	191	71
L2E 9+00S	. 2	67	21
L2E 9+20S	. 2	60	4
L2E 9+40S	. 2	108	11
L2E 9+60S	.5	283	47
L2E 9+80S	.3	543	60
L2E 10+00S	1.2	1332	143
L2E 10+20S	.8	723	91 87
L2E 10+40S	.5	801	87
L2E 10+60S	.3	875	24
L2E 11+00S	2.9	4661	625
L2E 11+20S	3.3	5681	655
L2E 11+40S	2.5	4247	535
L2E 12+20S	.5	293	19
L2E 12+40S	.5	243	16
L2E 12+60S	.5	151	8
L2E 12+80S	.3	123	17
L2E 13+00S	. 2	163	17
L2E 13+20S	.3	97	31
L2E 13+40S	.3	96	12
L2E 13+60S	.3	135	41
L2E 13+80S	.4	197	20
L2E 14+00S	.1	108	3
L2E 14+20S	.1	75	15
L2E 14+40S	.1	53	6
L2E 14+60S	.1	84	11
L2E 14+80S	.3	114	9
L2E 15+00S	.2	131 109	25 28
L2E 15+20S	• 1	103	20
L2E 15+40S	.1	79	9
STD C/AU-S	7.5	44	51

1.1.1

÷

10 01	υ.	FROOLCI	008	100	ETDE #	1
SAM	(PL)	5#	Ag PPM	As PPM		
L2E L2E L2E L2E L2E	$15 \\ 16 \\ 16$	5+60S 5+80S 5+00S 5+20S 5+40S	.2 .2 .1 .3 .1	85 125 68 62 96	16 1 5	
L2E L2E L2E L2E L2E	$16 \\ 17 \\ 17$	5+60S 5+80S 7+00S 7+20S 7+40S	.1 .3 .1 .3 .4	117 91 72 78 77	2 5 6	
L2E L2E L2E L3E L3E	17 18 10	7+60S 7+80S 8+00S 9+00S 9+20S	.3 .2 .1 8.8 8.6	88 80 66 5051 4913	2 1 545	
L3E L3E L3E L3E L3E	11 11 12	+405 +605 +805 +005 +205	3.0 1.7 3.0 1.9 1.4	4547 3203 4937 4133 2796	270 475 460	
L3E L3E L3E L3E L3E	12 12 13	+40S +60S +80S +00S +20S	.6 .5 .7 .6 .3	1303 2425 528 682 182	94	
L3E L3E L3E L3E L3E	13 14 14	+405 +605 +005 +205 +605	.6 .6 .4 .5 .2	165 232 142 85 146	12 14 21 1 25	
L3E L3E L3E L3E L3E	15 15 15	+805 +005 +205 +405 +605	.2 .3 .3 .5 .3	134 188 194 258 92	22 14 29 13 1	
		+80S AU-S	.5 7.5	112 42	4 51	

SAMPLE#	Ag PPM	As PPM	Au* PPB
L3E 16+00S	.1	89	8
L3E 16+20S	.1	159	42
L3E 16+40S	.1	100	7
L3E 16+60S	. 1	136	15
L3E 16+80S	.1	85	3
L3E 17+00S	. 2	122	15
L3E 17+205	.1	86	22
L3E 17+40S	.1	125	13
L3E 17+60S	.1	79	1
L3E 17+80S	.3	65	275
L3E 18+00S	.2 3.3	53	8
L5E 12+60S	2.2	3934	1095
L5E 12+80S L5E 13+00S		5317 7409	875 445
	2.4		
L5E 13+20S	1.1	1986	285
L5E 13+40S	.7	1536	225
L5E 13+60S	.3	516	40
L5E 14+40S	.3	247	104
L5E 14+60S	.2	333	11
L5E 14+80S	.3	204	12
L5E 15+00S	. 4	142	26
L5E 15+20S	.3	95	10
L5E 15+40S	.3	82	6
L5E 15+60S	. 2	141	21
L5E 15+80S	.2	152	13
L5E 16+00S	. 4	148	34
L5E 16+20S	.4	198	14
L5E 16+40S	.3	170	5
L5E 16+60S	.2	144	31
L5E 16+60S A	.2	106	8
L5E 16+80S	.3	89	1
L5E 17+00S	.2	72	10
L5E 17+20S	.1	92	5
L5E 17+40S	.4	112	1
L5E 17+60S	.1	143	1
L5E 17+80S	.3	190	3
STD C/AU-S	7.8	45	48

SAMPLE#	Ag PPM	As PPM	Au* PPB
L5E 18+00S	. 2	273	14
L6E 13+60S	. 4	1066	66
L6E 13+80S	.3	626	47
L6E 14+00S	.1	433	97
L6E 14+20S	.2	324	16
L6E 14+40S	.2	245	21
L6E 15+40S	.1	177	9
L6E 15+80S	.1	74	7
L6E 16+00S	.1	48	14
L6E 16+20S	.1	82	19
L6E 16+40S	.2	178	30
L6E 16+60S	. 2	95	28
L6E 16+80S	.3	126	16
L6E 17+00S	.3	80	7
L6E 17+20S	. 2	169	12
L6E 17+40S	. 1	105	9
L6E 17+60S	.3	107	18
L6E 17+80S	.3	106	20
L6E 18+00S	.5	116	25
L7E 13+40S	.9	3706	375
L7E 13+60S	.6	2388	260
L7E 13+80S	.8	4875	445
L7E 14+20S	.5	1263	20
L7E 14+60S	.2	794	62
L7E 14+80S	.1	317	4
L7E 15+00S	.1	167	5
L7E 16+00S	.1	58	3
L7E 16+20S	.2	150	10
L7E 16+40S	.1	93	28
L7E 16+60S	.2	68	3
L7E 16+80S	.2	143	2
L7E 17+00S	.2	141	5
L7E 17+20S	.2	80	25
L7E 17+40S	. 2	123	23
L7E 17+60S	.1	66	18
L7E 17+80S	.3	106	2
STD C/AU-S	7.6	45	53

SAMPLE#	Ag PPM	As PPM	Au* PPB
L7E 18+00S	.1	135	7
L8E 0+00S	. 9	57	10
L8E 0+50S	. 2	20	8
L8E 1+00S	. 2	9	1
L8E 1+50S	.1	21	9
L8E 2+00S	.1	46	1
L8E 2+50S P	.5	179	9
L8E 3+005	.1	29	4
L8E 3+50S	.1	25	3
L8E 4+00S	. 3	1036	81
L8E 4+50S	.1	61	1
L8E 5+00S	. 2	66	5
L8E 5+20S	.3	87	1
L8E 5+40S	.1	150	6 12
L8E 5+60S	.1	81	12
L8E 5+80S	. 1	54	1
L8E 6+00S	.1	62	4
L8E 6+20S	.1	57	6
L8E 6+40S	. 1	70	16
L8E 6+60S	.1	49	23
L8E 6+80S	. 3	56	5
L8E 7+00S	· 2	114	10
L8E 7+20S	. 2	111	11
L8E 7+40S	.3	205	24
L8E 7+60S	.3	85	21
L8E 7+80S	.4	206	42
L8E 8+00S	.6	280	32
L8E 8+20S	.5	313	39
L8E 8+40S	.6	264	83
L8E 8+60S	. 2	264	98
L8E 8+80S	.6	315	35
L8E 9+00S	.5	377	50
L8E 9+20S	.4 1.2	462	58
L8E 9+40S		787	78
L8E 9+60S	.9	847	103
L8E 10+00S	1.7	1531	225
STD C/AU-S	7.1	40	53

SAMPLE#	Ag PPM	As PPM	Au* PPB
L8E 10+20S	1.9	2004	285
L8E 10+40S	2.9	2862	475
L8E 10+60S	6.9	3376	545
L8E 10+80S	8.7	3075	775
L8E 11+00S	4.1	1836	375
L8E 11+20S	11.2	2810	645
L8E 11+40S	2.9	2723	325
L8E 11+60S	5.8	2518	355
L8E 11+80S	2.1	2180	265
L8E 12+00S	1.1	1058	132
L8E 12+20S	. 2	316	33
L8E 12+40S	. 9	2013	197
L8E 12+60S	1.7	2352	265
L8E 12+80S	2.7	2790	545
L8E 13+005	2.5	2933	455
L8E 13+20S	1.1	2115	245
L8E 13+40S	.6	1311	149
L8E 13+60S	.5	1077	98
L8E 13+80S	.4	1002	76
L8E 14+00S	. 4	745	53
L8E 14+20S	.1	701	107
L8E 14+40S	.1	548	22
L8E 14+60S	. 4	638	45
L8E 14+80S	.1	526	29
L8E 15+00S	.1	362	16
L8E 15+20S	.1	411	14
L8E 15+40S	.1	189	6
L8E 15+60S	.1	134	4
L8E 15+80S	.1	201	1
L8E 16+00S	.3	145	2
L8E 16+20S	. 4	147	1
L8E 16+40S	.1	153	2
L8E 16+60S	.1	155	1
L8E 16+80S	.1	94	7
L8E 17+00S	.1	123	4
L8E 17+205	.4	85	5
STD C/AU-S	7.2	40	52

	U • .	FRODECI	008	100	ЕТЛЕ	TT S
SAM	PLE	#	Ag PPM	A: PPi		
L8E L8E	17 17 18	+405 +605 +805 +005 005	.3 .1 .3 .1 .1	90 83 100 80 23	3 1) 5 1	34 2 7 5 5
L9E L9E L9E L9E L9E	1+ 2+(2+	00S 50S 00S 50S 00S	.2 .1 .1 .3 .1	26 22 19 55 338	2) 5	4 9 4 8 3
L9E L9E L9E L9E L9E	4+(4+) 5+(00S	.3 .2 .3 .3	128 444 11(43	11) 2	.2 .8 .8 .6 .0
L9E L9E L9E L9E L9E	5+(5+8 6+(30S	.4 .5 .3 .3 .3	61 47 83 230 135	7 3 1) 4	7 6 1 7 5
L9E L9E L9E L9E L9E	6+6 6+8 7+0	50 S	.4 .2 .2 .2 .2	98 93 89 91 149	1	2 4 8 9 7
L9E L9E L9E L9E L9E	7+6 7+8 8+0	50S 30S 00S	.4 .4 .5 .5 .7	77 63 190 188 248	1 2 3 2	4 8 6 3 3
L9E	8+8	505 305)05	.5 1.3 .6 .5 1.1	199 358 343 430 596	2 9 5	5 5 4 2
L9E STD	9+4 C/#	IOS AU-S	1.5 7.7	822 44		9 8

SAMPLE#	Ag	As	Au*
	PPM	PPM	PPB
	_		
L9E 9+60S	.7	1429	83
L9E 9+80S L9E 10+00S	2.6 23.0	2659 12718	265 835
L9E 10+20S	.9	977	146
L9E 10+40S	. 9	1039	61
101400	• 1	1000	01
L9E 10+60S	1.7	1287	138
L9E 10+80S	. 5	524	79
L9E 11+00S	.6	1163	151
L9E 11+20S	1.1	857	118
L9E 11+40S	1.5	1308	295
L9E 11+60S	2.0	1260	255
L9E 11+80S	.8	1031	395
L9E 12+00S	. 8	1302	149
L9E 12+20S	1.0	1590	163
L9E 12+40S	. 8	1608	315
L9E 12+60S	.6	1228	121
L9E 12+80S	.6	1049	168
L9E 13+00S	.3	701	78
L9E 13+20S	.5	644	335
L9E 13+40S	.5	712	125
L9E 13+60S	. 4	887	68
L9E 13+80S	.4	601	76
L9E 14+00S	.3	590	72
L9E 14+20S	. 4	465	43
L9E 14+40S	.3	306	121
L9E 14+60S	.2	270	53
L9E 14+80S	.3	350	2
L9E 15+00S	.2	337	23
L9E 15+20S	.1	316	16
L9E 15+40S	.1	297	10
L9E 15+60S	.3	. 268	9
L9E 15+80S	.2	168	5
L9E 16+00S	.3	89	12
L9E 16+20S	.1	96	10
L9E 16+40S	.3	108	325
	_	:	_
L9E 16+60S	. 2	89	9
STD C/AU-S	7.4	43	52

ï

() } }

SAMPLE#	Ag	As	Au*
	PPM	PPM	PPB
L9E 16+80S	.1	51	3
L9E 17+00S	.1	55	14
L9E 17+20S	.1	43	6
L9E 17+40S	.3	53	1
L9E 17+60S	.1	76	1
L9E 17+80S L9E 18+00S L10E 0+00S L10E 0+50S L10E 1+00S	.1 .1 .2 .1	41 82 46 33 41	1 8 7 4 1
L10E 1+50S L10E 2+00S L10E 2+50S L10E 3+00S L10E 3+50S	.1 .1 .1 .1	28 23 23 34 30	1 5 11 3 225
L10E 4+00S	.1	64	12
L10E 4+50S	.1	303	25
L10E 5+00S	.7	202	28
L10E 5+20S	.3	87	21
L10E 5+60S	.2	47	13
L10E 5+80S	.1	83	3
L10E 6+00S	.1	84	44
L10E 6+20S	.2	55	14
L10E 6+40S	.3	112	56
L10E 6+60S	.1	149	154
L10E 6+80S	.2	203	65
L10E 7+00S	.7	980	76
L10E 7+20S	.4	398	275
L10E 7+40S	.1	110	12
L10E 7+60S	.3	130	25
L10E 8+00S	.2	428	79
L10E 8+40S	1.9	1243	225
L10E 8+60S	.4	252	27
L10E 8+80S	.3	266	50
L10E 9+00S	.3	299	62
L10E 9+20S	.2	254	64
STD C/AU-S	7.6	42	47

SAMPLE#	Ag PPM	As PPM	Au* PPB
L10E 9+405	. 4	868	55
L10E 9+60S	.6	648	1055
L10E 9+80S	1.7	502	132
L10E 10+005	1.4	615	135
L10E 10+20S	. 6	609	84
L10E 10+40S	.6	654	113
L10E 10+60S	.6	526	128
L10E 10+80S	.7	491	69
L10E 11+00S	.8	827	105
L10E 11+20S	1.1	899	107
L10E 11+40S	1.8	1738	350
L10E 11+60S	2.3	2185	445
L10E 11+80S	1.1	1464	230
L10E 12+00S	1.0	1083	245
L10E 12+20S	3.7	2745	400
L10E 12+40S	2.4	1446	285
L10E 12+60S	2.0	1403	275
L10E 12+80S	.8	849	240
L10E 13+00S	.6	679	124
L10E 13+20S	.4	565	54
L10E 13+40S	. 4	522	81
L10E 13+60S	.3	612	59
L10E 13+80S	.3	518	103
L10E 14+00S	. 2	554	56
L10E 14+20S	. 2	637	62
L10E 14+40S	.1	337	47
L10E 14+60S	. 2	229	24
L10E 14+80S	.1	266	16
L10E 15+00S	. 2	401	12
L12E 0+00S	.1	25	7
L12E 0+50S	.1	35	4
L12E 1+00S	.1	21	5
L12E 1+50S	. 2	17	6
L12E 2+00S	.1	33	4
L12E 2+50S	.1	46	2
L12E 3+00S	. 2	34	3
STD C/AU-S	7.2	41	49

SAMPLE#	Ag PPM	AS PPM	Au* PPB
L12E 3+50S	.1	39	11
L12E 4+00S	.1	21	6
L12E 4+50S	.2	31	9
L12E 5+00S	.1	26	5
L12E 5+20S	.1	35	6
L12E 5+40S	.1	48	8
L12E 5+60S	.1	54	4
L12E 5+80S	.1	61	57
L12E 6+00S	.1	63	18
L12E 6+20S	.1	280	40
L12E 6+40S	.1	169	47
L12E 6+60S	.1	107	17
L12E 6+80S	.1	128	18
L12E 7+00S	. 1	149	28
L12E 7+20S	.1	208	21
L12E 7+40S	.6	454	55
L12E 7+60S	.1	237	41
L12E 7+80S	.1	106	62
L12E 8+00S	1.3	354	53
L12E 8+20S	.1	175	58
L12E 8+40S	. 2	293	31
L12E 8+60S	.2	428	37
L12E 8+80S	.2	497	81
L12E 9+00S	.7	185	27
L12E 9+20S	1.8	1327	121
L12E 9+40S	.4	881	265
L12E 9+60S	.8	381	37
L12E 9+80S	.9	534	41
L12E 10+00S	. 2	215	20
L12E 10+20S	.2	242	27
L12E 10+40S	.3	222	46
L12E 10+60S	.6	318	29
L12E 10+80S	.6	299	38
L12E 11+00S	.8	326	41
L12E 11+20S	. 5	387	105
L12E 11+40S	1.1	581	57
STD C/AU-S	7.2	41	53

SAMPLE#	Ag	As	Au*
	PPM	PPM	PPB
L12E 11+60S	.4	419	40
L12E 11+80S	.5	206	16
L12E 12+00S	.4	161	54
L12E 12+20S	.9	311	33
L12E 12+40S	.7	405	21
L12E 12+60S L14E 0+00S L14E 0+50S L14E 1+00S L14E 1+50S	1.0 .1 .3 .1	323 63 56 57 55	30 1 95 6
L14E 2+00S L14E 2+50S L14E 3+00S L14E 3+50S L14E 4+00S	.1 .1 .1 .1	35 34 35 37 21	1 49 31 2 1
L14E 4+50S L14E 5+00S L14E 5+20S L14E 5+40S L14E 5+60S	.1 .1 .2 .1	33 35 23 209 160	1 1 6 1 7
L14E 5+80S L14E 6+00S L14E 6+20S L14E 6+40S L14E 6+60S	.3 .1 .3 .2 .2	170 128 508 488 487	4 5 5 3
L14E 6+80S	.2	517	13
L14E 7+00S	.3	71	11
L14E 7+20S	.2	47	12
L14E 7+40S	.1	40	1
L14E 7+60S	.2	45	8
L14E 7+80S	.1	47	35
L14E 8+00S	.1	47	37
L14E 8+20S	.3	60	13
L14E 8+40S	.2	65	11
L14E 8+60S	.1	57	50
L14E 8+80S	.2	101	154
STD C/AU-S	7.0	39	49

.

-

....

*****----

SAMPLE#	Ag	As	Au*
	PPM	PPM	PPB
L14E 9+00S	.3	107	22
L14E 9+20S	.2	109	15
L14E 9+40S	.3	113	17
L14E 9+60S	.2	103	12
L14E 9+80S	.3	247	59
L14E 10+00S L14E 10+20S L14E 10+40S L14E 10+60S L14E 10+80S	1.0 1.0 .5 .4	89 84 86 218 118	42 22 20 42 10
L14E 11+00S	.5	133	13
L14E 11+20S	.8	140	29
L14E 11+40S	.8	134	10
L14E 11+60S	.6	136	54
L14E 11+80S	.7	129	21
L14E 12+00S L14E 12+20S L14E 12+40S L14E 12+60S L14E 12+80S	.6 .7 .9 .9	179 196 179 186 196	13 13 30 13 17
L14E 13+40S	.4	58	4
L14E 13+60S	.5	53	1
L14E 13+80S	.4	99	11
L14E 14+00S	.7	106	7
L14E 14+20S	.2	42	21
L14E 14+40S	.1	30	30
L14E 15+40S	.4	186	4
L14E 15+60S	.3	195	5
L14E 15+80S	.4	195	15
L14E 16+00S	.4	192	4
L14E 16+20S	.3	182	45
L14E 16+40S	.2	198	11
L14E 16+60S	.5	716	6
L14E 16+80S	.2	304	14
L14E 17+00S	.3	282	9
L14E 17+20S	.5	271	37
STD C/AU-S	7.2	43	52

SAMPLE#	Ag	As	Au*
	PPM	PPM	PPB
L14E 17+40S	.2	211	17
L14E 17+60S	.2	183	19
L14E 17+80S	.3	203	40
L14E 18+00S	.2	226	18

BEATY GEOLOGICAL LTD.

•

APPENDIX III

Rock Sample Geochemical Results

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: AUG 29 1988 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED: AUg 29 1988

TOT LOO

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAN SAMPLE IS DIGESTED WITH 3NL 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA X AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: ROCK AU*_AMALTSIS BY ACID LEACH/AA FROM 10 GR SAMPLE.

BEATY GEOLOGICAL LTD. PROJECT JOB-186 FILE # 88-4005

SAMPLE#	Cu PPM	Ag PPM	As PPM	SD PPM	Au* PPB
C 19001	215	. 2	2	з	2
C 19002	432	1.0	58225	13	2785
C 19003	42	.2	294	4	15
C 19004	1650	9,8	99999	85	19205
C 19005	3071	9.5	99999	61	12750
C 19006	1322	2.8	99999	71	4065
C 19007	4086	85.0	99999	322	5510
STD C/AU-R	60	7.7	38	18	515

- ASSAY REQUIRED FOR CORRECT RESUL . for A=>10,000 prm

SEP 10 '88 15:21

ACME LABS

802 P12

د م

BEATY GEOLOGICAL LTD. PROJECT JOB 186 FILE # 88-4195 Page 11

SAMPLE#	Cu	Ag	AS	Sb	Au*
	PPM	PPM	PPM	PPM	PPB
C19008	243	10.4	30845 -	15	6750
C19009	23	.1	72	6	33
C19010	140	.3	585	2	34
C19011	2303	39.5	99999 -	274	26750
C19012	59	.1	255	2	29
C19013	42	7.2	23916/	38	3720
C19014	454	.9	5376	7	270
C19015	23510√	99.9'	4910	22	830
C19016	69	.3	17	2	13
C19017	82	1.2	999999/	537	7650
C19018	34	.1	707	2	30
C19019	32	.3	2488	6	98
C19020	79	.1	94	2	7
C19021	153	.1	36	2	2
C19022	96	.1	41	2	3
C19023	1391	3.6	29	4	1580
STD C/AU-R	57	6.7	40	17	520

-ASSAY REQUIRED FOR CORRECT RESULT -

· ·

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: SEP 19 1988 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED: Sept. 22./.88.

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SE CA P LA CE MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: ROCK AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

ASSAYER: D. TOYE OR C. LEONG, CERTIFIED B.C. ASSAYERS

BEATY GEOLOGICAL LTD. PROJECT 186 FILE # 88-4576

SAMPLE#	Cu PPM	Ag PPM	As PPM	Sb PPM	Au* PPB
C 19024 C 19025 C 19026 C 19027 C 19028	23 21 36 57 43	.1 .1 .1 .1 .1	2 6 137 2 14	2 3 2 3 4	1 1 2 1 1
C 19029 C 19030 C 19031 C 19032 C 19033	24 29 26 47 80	.1 .1 .1 .1	6 3 13 2 54	2 3 2 3 2	1 1 1 1
C 19034 C 19035 C 19036 C 19037 C 19038	26 37 17 24 39	.1 .1 .1 .1	7 8 15 19 6	4 4 5 2 2	1 2 1 1 1
C 19039 C 19040 C 19041 C 19042 C 19043	24 40 29 34 116	.2 .1 .1 .1 .1	4 2 53 2 12	3 2 2 4 252	2 1 9 1 2
C 19044 C 19045 C 19046 C 19047 C 19048	82 58 70 76 83	.1 .1 .1 .1	17 35 12 48 32	3 2 2 3 2	1 1 3 9
C 19049 C 19050 C 19051 C 19052 C 19053	30 159 132 124 47	.1 .1 .3 .7	46 13 14 158 3388	7 9 2 13 45	2 1 12 4 124
C 19054 C 19055 C 19056 C 19057 STD C/AU-R	55 42 21 589 57	.1 .3 .1 1.2 6.9	524 48 13 714 41	3 5 3 8 16	28 1 14 530

GEOCHEMICAL ANALYSIS CERTIFICATE

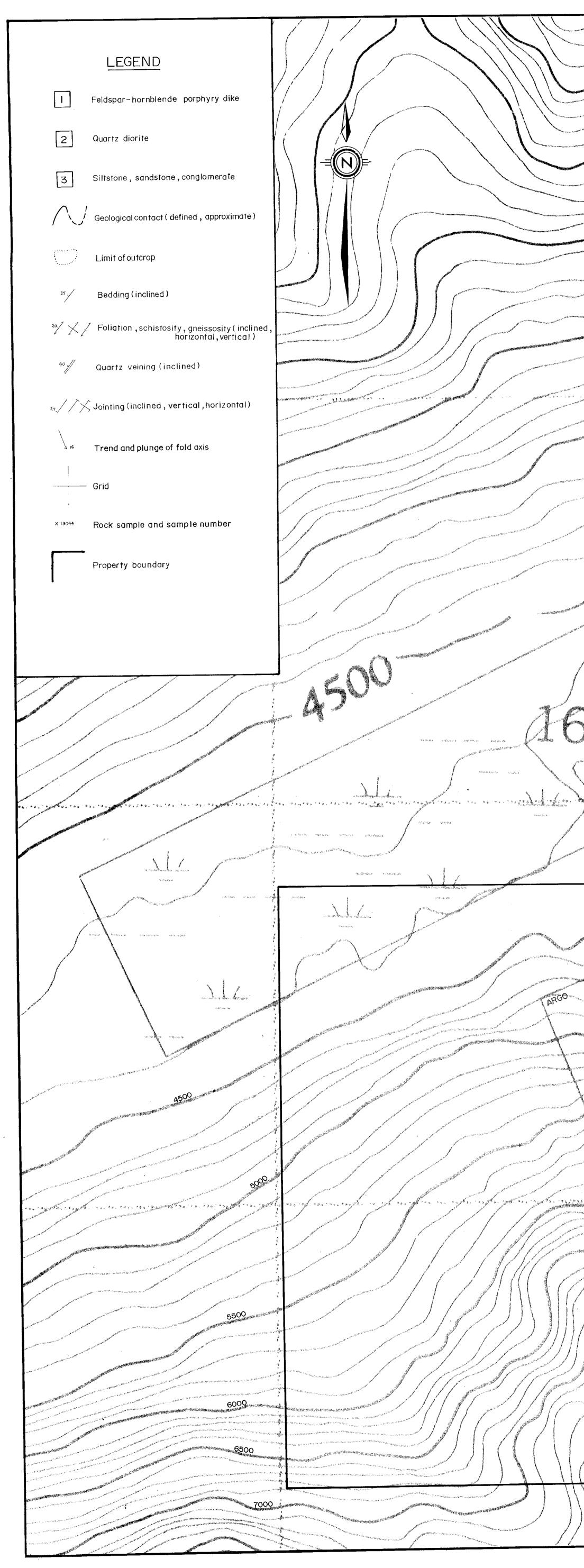
ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2G AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MM FE SE CA P LA CE MG BA TI B W AND LIMITED FOR MA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: ROCK AU*_ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

BEATY GEOLOGICAL LTD. PROJECT 186 FILE # 88-4577

SAMPLE#	Cu PPM	Ag PPM	AS PPM	Sb PPM	Au* PPB
C 19058	42	.1	6	2	10
C 19059	70	.1	21	2	1
C 19060	18	.1	40	2	1
C 19061	93	.1	9	3	5
C 19062	84	. 1	98	8	355
C 19063	117	.1	9	2	3
C 19064	57	.1	13	5	2
C 19065	76	.2	5	2	1
C 19066	50	.1	3	2	1
C 19067	25	.1	2	2	2
C 19068	21	.1	18	3	1
C 19069	34	.1	19	5	8
C 19070	139	,1	8	2	16
C 19071	35	.3	2	3	2
C 19072	100	.7	161	2	310
C 19073	90	.1	6	4	1
C 19074	171	.1	18	6	12
C 19075	53	. 4	2	3	4
STD C/AU-R	61	7.2	45	18	475

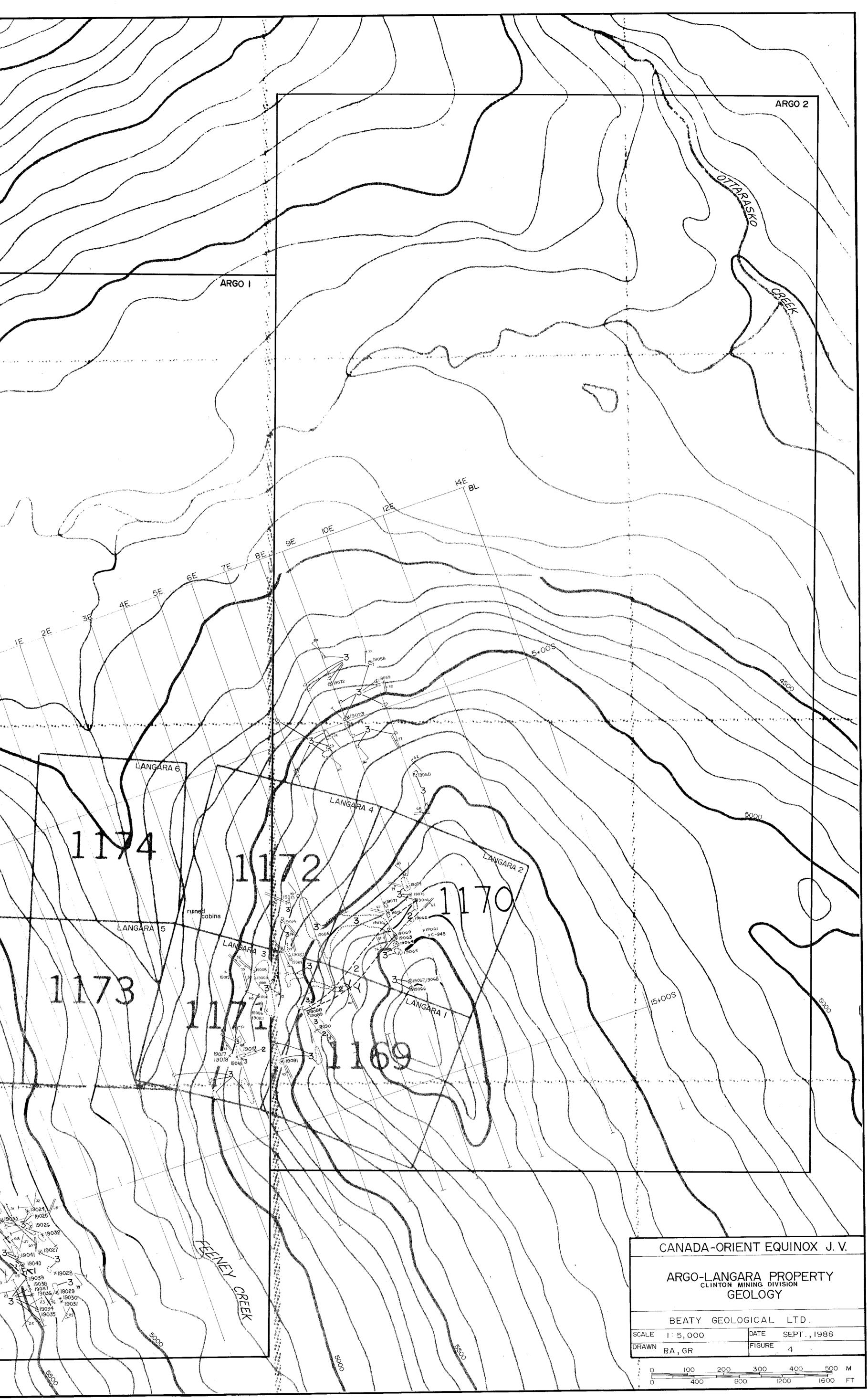
ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: SEP 19 1988 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED: $\frac{22}{80}$

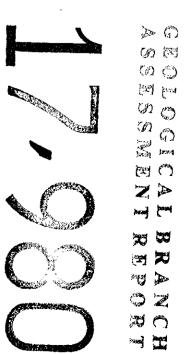
GEOCHEMICAL ANALYSIS CERTIFICATE


ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MM FE SR CA P LA CR MG BA TI B W AND LIMITED FOR WA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: ROCK AU*_ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

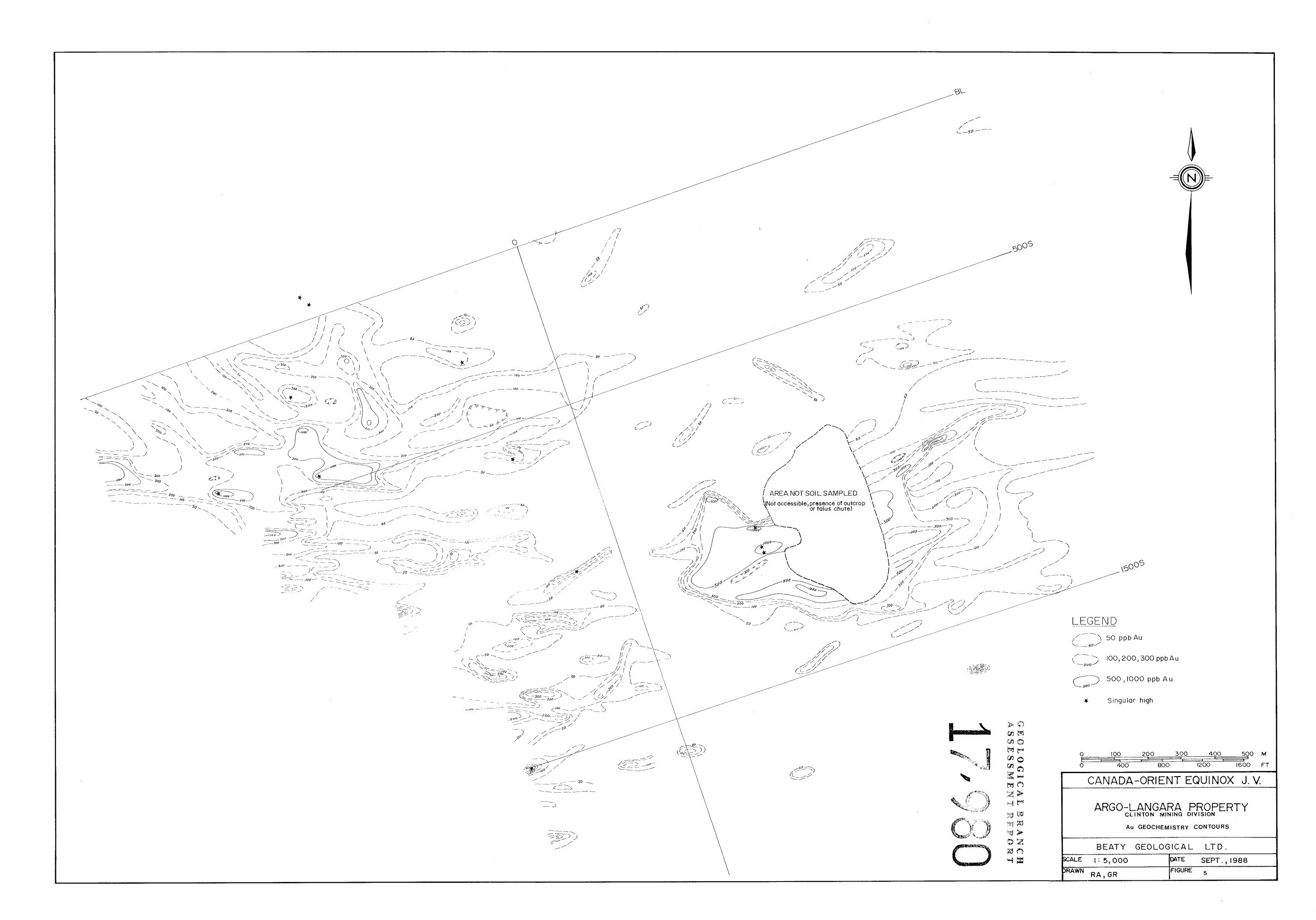
BEATY GEOLOGICAL LTD. PROJECT 186 FILE # 88-4578

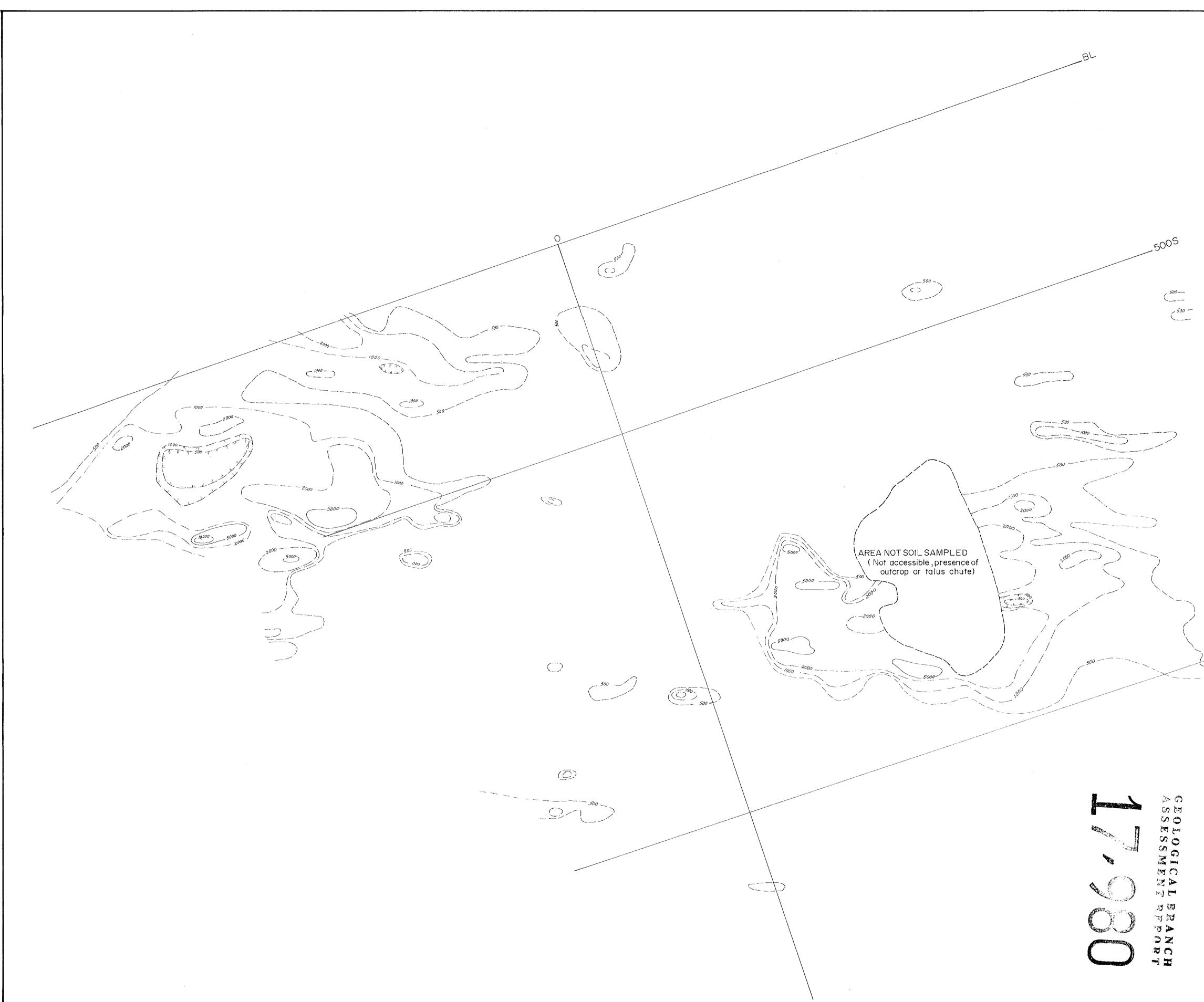
SAMPLE#	Cu	Ag	AS	SD	Au*
	PPM	PPM	PPM	PPM	PPB
C 19076 C 19077 C 19078 C 19079 C 19080	128 42 202 669 939	.1 .3 3.2 1.8	2 2 500 26	2 4 2 136 2	9 3 2 21 21
C 19081	231	.4	15	7	4
C 19082	4631	10.3	30	6	95
C 19083	126	2.0	56263	44	1875
C 19084	261	7.5	54270	38	5210
C 19085	130	.3	255	2	26
C 19086	232	1.8	83	7	98
C 19087	226	.7	32	3	25
C 19088	163	.4	24	2	8
C 19089	348	.3	600	2	21
C 19090	2864	17.2	56258	245	7805
C 19091	80	.6	3441	2	28
C 19092	46	.2	1535	30	380
C 19093	339	1.1	380	79	9
C 19094	154	.2	54	4	2
C 19095	115	.3	32	3	15
C 19096	339	1.5	13505	12	805
C 19097	43 02	15.6	54510	39	7240
STD C/AU-R	60	7.3	40	17	470


- ASSAY REQUIRED FOR CORRECT RESULT for As>10,000 ppm

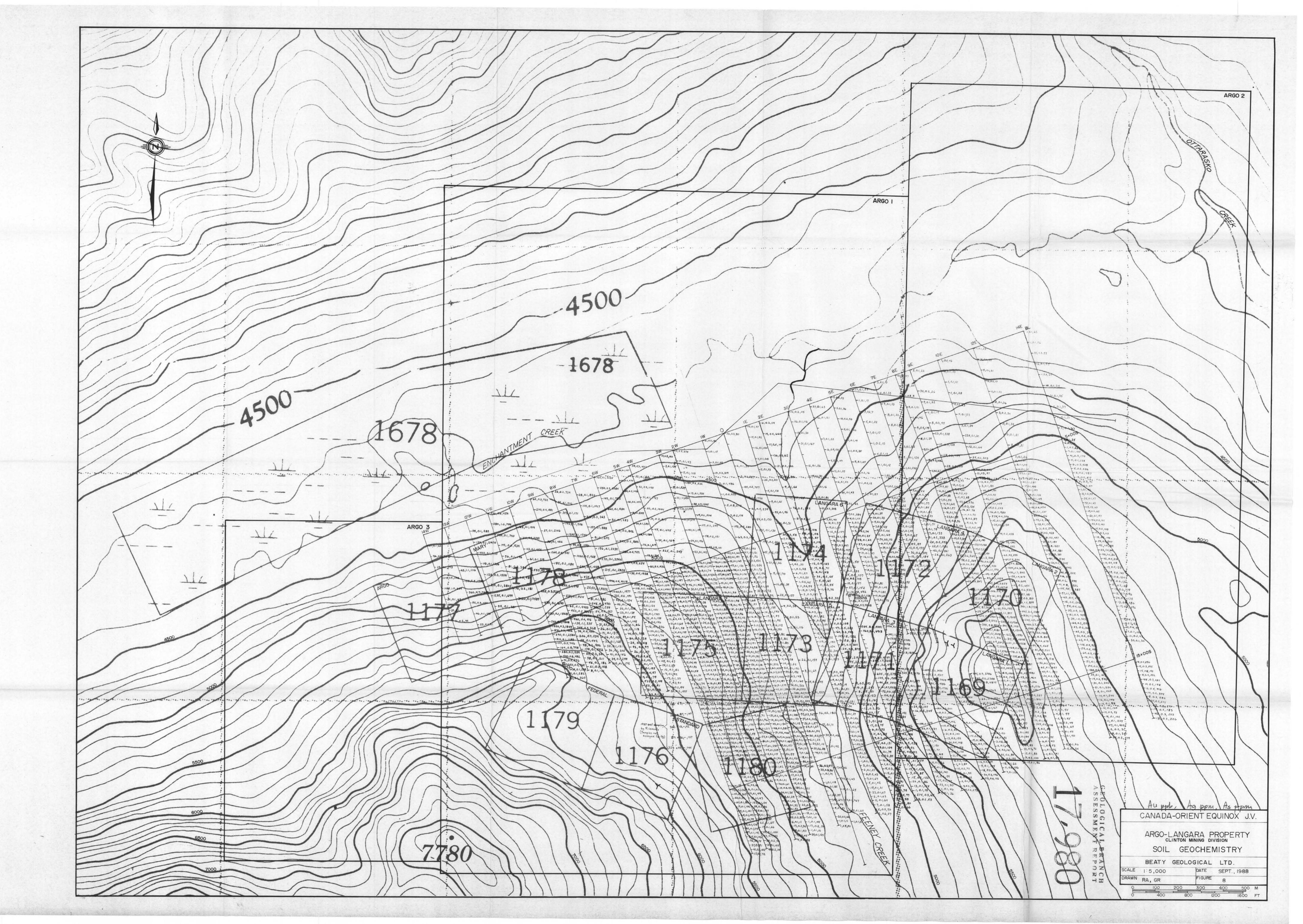


4 **N**


. \$ \$. 4 * * 1000 and rendered and a series 1678 manda and a strange water water in a second the second the second the second terms and the second terms and the second terms and terms <72ARGO 3 5 3 1179 ANDARD 02 76 19042 19043 18 3 221 31 51 51 19024, 55 19025 80 5119033 3 19026 19026 19026 and when 3 × 19001, 19002 3 × 19005, 19006 × 19003 68 27 19041 , 👘 T8(


•

(例) (門) $(\mathfrak{d}) \oplus (\mathfrak{d})$ ZÞ head freed 25 20 🛃 ズ 19 De ٢ ٢ N C N H



Λ
1500S
LEGEND
500 ppm As
1000,2000 ppm As
5000, 10,000 ppm As
0 100 200 300 400 500 M 0 400 800 1200 1600 FT
CANADA-ORIENT EQUINOX J.V.
ARGO-LANGARA PROPERTY
As GEOCHEMISTRY CONTOURS
BEATY GEOLOGICAL LTD.
CALE 1: 5,000 DATE SEPT., 1988

.

