\bigcirc		
District G	eologist, Prince George	Off Confidential: 89.08.12
ASSESSMENT	REPORT 17988 MINING DIV	'ISION: Omineca
PROPERTY: LOCATION:	Heath LAT 55 17 00 LONG 1 UTM 10 6128212 363444 NTS 093N06E	.25 09 00
CLAIM(S): OPERATOR(S AUTHOR(S): REPORT YEA	Heath 1 Campbell, C.J. Campbell, C.J. R: 1988, 29 Pages	
SEARCHED F GEOLOGICAL	S OR: Gold,Silver,Copper,Lead,Zin	IC
SUMMARY:	The Heath claim is underla Batholith, which have been intr porphyry. Massive sulphide ler copper, 1.2 grams per tonne gol 1.5 metres, strike north-south	in by diorite and gabbro of the Hogem uded by syenite and quartz-feldspar uses, containing up to 6.4 per cent d and 27 grams per tonne silver across and dip steeply to the east.
work Done :	Geochemical ROCK 2 sample(s) ;ME SOIL 75 sample(s) :ME	
OFILE:	Map(s) - 1; Scale(s) - 1:48 093N 071,093N 072	300

ſ

	Contraction of the local division of the loc
LOG NO: 115	RD.
ACTION:	
7.9 .0.	
FILE NO:	

PRELIMINARY SOIL GEOCHEMICAL REPORT OF THE HEATH #1 MINERAL CLAIM

OMINECA MINING DIVISION

NT8 93N/6

Lat 55 17 'N, Long 125 09' W

M.R. # _______\$_____ VANCOUVER, B.C.

SUB-RECORDER

RECEIVED

NOV 9 1988

FILMED

Owner & Operator:

Author:

1

Colin Campbell

Colin Campbell

NOVEMBER 6, 1988

GEOLOGICAL BRANCH ASSESSMENT REPORT

TABLE OF CONTENTS

۰,

 $\left(\right)$

C

1.0 Summary	1 /
2.0 Introduction	2,
2.1 Claim Status	2/
2.2 Topography and Vegetation	2/
2.3 Geology	5
2.4 Previous Work	6́,
3.0 Geochemical Survey	7,
3.1 Field Methods	8 /
3.2 Analytical Methods	87
3.3 Results and Interpretation	91
3.4 Recomendations	97
Bibliography	17 🏒
Appendix A Statement of Qualification	18/
Appendix B Statememt of Expenditures	19/
Appendix C Analytical Certificates	20/
Illustrations	
Figure 1 Location on Map of B.C	3/
Figure 2 Location Map of Claim	4/
Figure 3a Contoured Au Results	10/
Figure 3b Contoured Cu Results	11/
Figure 4a Contoured Au Results	12/
Figure 4b Contoured Cu Results	13/
Figure 5a Contoured Au Results	14 7
Figure 5b Contoured Cu Results	15/
Figure 6 Profile of Test Pit	16/
Figure 7 Composite Index	Pocket/

<u>PAGE</u>

1.0 SUMMARY

The Heath #1 mineral claim, consisting of 16 units, is located 105 kilometres northwest of Fort St. James in the Omineca Mining District.

The Heath claim is underlain by diorite and gabbros of the Hogem batholith which have been intruded by syenite and quartz-feldspar porphyry.

Massive sulphide lenses on the Heath property assay up to 6.4% Cu, 1.2 grams per tonne Au, and 27 grams per tonne Ag across 1.5 metres.

This report covers a preliminary geochemical soil and rock survey conducted during August of 1988. Seventy-five soil and two rock samples were taken and analyzed for gold and multi elements.

Most of the soil samples were found to be anomalous in copper, two areas are anomalous in gold and silver; other samples were anomalous in arsenic, barium, cadmium, manganese, lead and zinc.

Further work is recommended.

2.0 INTRODUCTION

The Heath #1 Mineral Claim, consisting of 16 units, is located 105 kilometres northwest of Ft. St. James on the southwest flank of the Nation Mountain in the Omineca Mining Division.

Access to the property is by float plane to the northwest end of Tchentlo Lake thence by a short trail to the showing. An all weather gravel road gives good access to within 2.4 kilometres of the northwest corner of the Heath property; this last portion of the road has, to date, not been constructed, however, the route is mainly through Jackpine flat and crosses one medium and two small streams.

During August of 1988 seventy-five soil samples and two rock samples were taken to help determine the extent of previously known copper-gold minerialization of up to 6.4% Cu, .04 opt Au and .8 opt Ag across 1.5 metres.

2.1 CLAIM STATUS

Claim NameRecord ## UnitsExpiry DateHeath #1867916August 13, 1991

The Heath #1 Mineral Claim is owned and operated by Colin Campbell.

2.2 TOPOGRAPHY and VEGETATION

The Heath #1 mineral claim covers a portion of the southwest flank of the Nation Mountain with elevations ranging from 950 to 1550 metres (Figure 2). Vegetation consists mainly of open Jackpine and poplar but in low areas spruce, balsam and alder can be dense.

-4-

(

2.3 GEOLOGY

The Heath property is situated in the Omineca Tectonic Belt of the Canadian Cordillera and lies along the southwest edge of the Hogem batholith. The Hogem batholith is a composite intrusion ranging in composition from syncite to granite.

The intrusive rocks are in contact with Takla volcanics and/or Cache Creek sediments along the southwest part of the property; their contact is likely a splay off the Pinchi fault.

Near the center of Heath #1 the diorites and gabbros of the batholith have been intruded by syenite and quartz-felspar porphyry.

Livgard (1971) has mapped two wide fracture zones which intersect near the center of Heath #1, here we have an extensive area of "oxidation" and "propylitic" alteration; these areas are generally recessive and consist of a mixture of carbonate altered syenite and felsic sulphide and manganese rich rocks. Both Ag-Pb-Zn-Au veins, one of which assayed .04 opt Au, 6.5 opt Ag, 5.48% Pb, 2.7% Zn and .34% Cu across 1.22 metres of vein and gouge material, and massive chalcopyrite and pyrite, one of which, sampled across 1.52 metres, assayed 6.4% Cu, .04 opt Au, and .8 opt Ag, occur in this altered and oxidized central area near the baseline and line 16+00N. While most of the massive sulphide lenses strike north west, the Ag-Pb-Zn-Au minerialization occurs in an east-west structure.

A "possible" breccia pipe, containing chalcopyrite and malachite (Garnett J.A., 1978) is on the Heath property and has been examined by the author.

-5-

2.4 PREVIOUS WORK

The minerialization on the Heath property was discovered by Colin Campbell in 1968 following a silt geochemical survey. Several hand trenches were blasted by Campbell exposing massive sulphide miner alization near the center of Heath #1.

In the Spring of 1969 Amax Exploration ran soil lines 800' apart and took samples at 200' intervals outlining a large 1950 metres by 2440 metre Cu soil geochem anomaly (Allan et al. 1969).

Later in 1969 the property was optioned to Senate Mining and Exploration Ltd. Senate conducted a minor trenching program, a topographic survey, geological mapping, and a ground magnetometer survey; Crest Laboratories was retained to confirm the results of the Amax soil survey closing the copper soil anomaly to the north. Crest ran two soil lines and located a mercury in soil anomaly (Inglis, 1970).

Senate, after experiencing financial and regulatory problems, returned the property to Campbell in 1972. Campbell then did further hand trenching locating new mineralization and promptly optioned the property to Nation Lake Mines Ltd.. Nation Lake retained McPhar Geophysics who conducted an I.P. survey which indicates a central anomaly "A" at least 305 metres by 610 metres and seven other linear anomalies. (See composite map Figure 7)

3.0 GEOCHEMICAL SURVEY

This survey was conducted during August of 1988 to check for gold and silver in two areas of known mineralization and to check I.P. anomaly Zone "D". Seventy five soil and two rock samples were taken and analyzed for gold and for multi-elements by ICAP.

All soil samples taken were from the B and/or C horizon and could be classified as normal immature soils typical of this region.

The control grid on the Heath property is in feet, the present survey was tied to this grid as was the Legal Corner Post. The present sample sites were tied to the grid by pace meter and Silva compass. The results of the present survey are plotted on Figures 3, 4, & 5.

A soil profile was taken where nodules of galena were found in an old pit. (Figure 6)

3.1 FIELD METHODS

A. Soil Survey

A mattock was used to sample the first available mineral soil horizon usually at a depth of less than six inches. These samples, typically a mixture of B and C horizons, were stored in 4"x 6" Kraft paper bags. Notes were kept on standard soil sheets to aid in interpretation of the results. Sample location was controlled by pace meter and compass grid lines. Location of each soil sample is noted on the geochemical certificates for gold appearing in Appendix C of this report.

B. Rock Survey

A rock hammer was used to obtain approximately five pounds of rock chips over a one metre width; samples were stored in plastic bags.

Sample HE162R - consisted of oxidized felsic rock with micro fractures and manganese coating.

Sample HE171R - consisted of brown syenite (?) with calcite veinlets and approximately 3% pyrite.

3.2 ANALYTICAL METHODS

All samples were analyzed by Vangeochem Lab Limited of 1988 Triump Street, Vancouver, B.C.

Analytical methods are included in Appendix C.

3.3 RESULTS AND INTERPRETATION

The results are plotted on Figures 3, 4, & 5. Gold ranged from n.d. to 1035 ppb, silver from .1 to >100 ppm, and copper from 38 to 32,012 ppm. Besides gold, silver and copper soils were anomalous in arsenic (up to 940 ppm), barium (up to 1271 ppm), cadmium (up to 114.1 ppm), manganese, lead, antimony and zinc.

I.P. Zone "D" was found to have a coincident copper (up to 1828 ppm) and silver (up to .8 ppm) anomaly.

3.4 RECOMMENDATIONS

The known copper soil anomaly on the Heath property should be resampled at a closer sample density, possibly along lines 100 metres apart with sample sites at 25 meter intervals.

An E.M. survey should be conducted over the same grid to give a better indication of structure and to establish control on the location of massive sulphide lenses indicated by the I.P. survey. Any combination of copper, gold or silver anomalies and I.P. anomalies or E.M. anomalies should be trenched with an excavator.

Colin Campbell

-10-

-11-

-13-

Å. ₩

-14-

2 B

 $\left(\right)$

-15-

C

 \bigcirc

 \bigcirc

-16-

Figure 6.

BIBLIOGRAPHY

Allan, J.F., Dummett, M.T., (1969): <u>Heath Cu Prospect</u>. August 1969 B.C. Ministry of Mines Assessment Report #01965

Garnett, J.A., (1978): <u>Geology and Mineral Occurrences of the</u> <u>Southern Hogem Batholith</u>. B.C. Ministry of Mines and Petroleum Resources, Bulletin #70. p.64

Hallof, P.G., Mullan, A.W., (1973): <u>Induced Polarization Survey on</u> <u>CAT & Heath Claims</u>. B.C. Ministry of Mines Assessment Report #04672

Inglis, W.L., (1970): <u>Soil Geochemical Survey of N.S. & Heath Claims</u>. B.C. Ministry of Mines Assessment Report #02799

Livgard, Egil, (1971): <u>Geology of the Heath & N.S. Claims</u>. B.C. Ministry of Mines Assessment Report #03200

APPENDIX A

STATEMENT OF QUALIFICATION

I, Colin Campbell, of the Town of Courtenay, in the Province of British Columbia, do hereby state that:

- 1. I am a Geologist.
- I graduated from the University of British Columbia in 1966 with a B.Sc. Degree in Honours Geology.
- 3. I have worked steadily in mining exploration in British Columbia and Yukon Territory from 1966 to 1973; intermittently from 1974 to 1983 and steadily from January 1984 to the present.
- 4. I personally carried out, or supervised, the Geochemical Survey on the Heath #1 Claim.
- 5. I own the Heath #1 Mineral Claim.

sh formale

Colin J. Campbell

APPENDIX B

STATEMENT OF EXPENDITURES - HEATH #1

WAGES Colin Campbell Field August 8,9 & 10 (.5 day), 1988 Report August 11, 1988 3.5 days @ \$250 / day 875.00 Grant Gordon 3 days @ \$150 / day 450.00 Field August 8,9 & 10, 1988 1325.00 \$1325.00 TRANSPORTATION C-180 Aircraft Courtenay-Vanderhoof 2.5 hrs Vanderhoof-Tchentlo .8 hrs .9 hrs Tchentlo-Vanderhoof 4.2 hrs. @ \$125 / hr. 525.00 \$525.50 GEOCHEMICAL ANALYSIS 75 soil samples @ 15.00 / sample 1125.00 2 rock samples @ 17.00 / sample 34.00 1159.00 \$1159.00 FOOD AND LODGING 6.5 days @ \$50.00 / day 325.00 \$325.00 DRAFTING AND PRINTING 300.00 \$300.00 FIELD SUPPLIES 100.00 \$100.00 TOTAL \$3734.00 PAC \$1100.00

\$4834.00

Col Janke

COLIN CAMPBELL

nd = none detected : -- = not analysed

VANGEOCHEM LAB LIMITED MAIN OFFICE AND LABORATORY i 1980 Triumph Street Vancouver, B.C. V5L 1K5 (604)251-5656 FAX:254-5717

(604) 251-5656

REPORT NUMBER: 08	0958 GA	JOB	NUMBER:	880958	COLIN CAMPI	ELL EX	XPLORATION	PAGE	1	OF	2
SAMPLE #		Au									
		ppb									
HE-101L1+00S	1+00W	75									
HE-102	0+70W	1030									
HE-103	0+50W	nd									
HE-104 L 2+005	0+80W	20									
HE-105	0+50W	15									
HF-105	0.1.2.053	5									
HE-107 - 0 - 500	0+30W	J E									
HE-109	0+50W	L D									
HE-109	0+25W	20									
NG-110 - 0 - MO-	В.Ц.	10									
L0+50S	1+100	40					•				
HE-111	0+80W	85									
HE-112	0+45W	15									
HE-113 LO+00	1+30W	15									
HE-114	0+90W	45									
HE-115	0+60W	10									
HE-116 T. 16+001	JBT.	25									
HF-117	0±50F	05									
HE-119	1+005	7J 770									
UC_110		210									
HE-120	2+00E	2V 15									
HE-121 L16+001	10+50W	115									
HE-122	1+00W	5									
HE-123	1+50W	nd									
HE-124	2+00W	10									
HE-125 L16+501	N B.L.	10									
HE-126 L17+001	N B.L.	15									
HE-127	0+50E	5									
HE-128	1+00E	15									
HE-129	1+50E	15									
HE-130	2+00E	15									
HE-131	2+50E	10									
HE-132 T. 1 7+00M	10+50W	15									
HE-133	1+000	ы. Б.									
HE-134	112004	011 ادر									
HE-135	2+000	110 15									
	21001	13									
HE-136 L15+501	N B.L.	10									
HE-137 L15+001	N B.L.	nd									
HE-138	0+50E	10									
HE-139	1+00E	10									
DETECTION LIMIT		5									

is = insufficient sample

.

VANGEOCHEM LAB LIMITED

HAIN OFFICE AND LABORATORY 1908 Triumph Street Vancouver, B.C. V5L 175 (604)251-5656 FAX:254-5717

BRANCH OFFICE 1630 PANDORA ST VANCOUVER, B.C. V5E 1L6 (604) 251-5656

REPORT	NUMBER: 880958 GA	JOB	NUMBER:	880958	COLIN CAMPB	ELL	L EXPLORATION	PAGE	2	ÛF	2
SANPLE		Au									
		ppb									
HE-140	L15+00N1+50E	10									
HE-141	2+00E	20									
HE-142	L15+00N0+50W	5									
HE-143	1+00W	15									
HE-144	1+50W	20									
HE-145	2+00W	5									
HE-146	L24+00N19+00E	5 1 O									
HE-147	20+008	E 10		•							
HE-148	21+00E	c 15									
HE~149	22+00E	<u>;</u> 20									
110 104							•				
115-120	23+00E	<u>;</u> 20									
HE-101	24+008	c 15									
NC 102	25+001	C 10									
NC-199	L25+00E23+00N	120									
NC-134	L22+00N25+00E	515									
HF-155	241005	- 20									
HE-156	24+001	520									
HE-157	23+001	52V 200									
HE-158	20+00	ንደላ የ ገበ									
HE-159	Profile	35									
	1201110										
HE-160	Profile	30									
HE-161	Profile #	305									
HE~162	L14+50N B.L.	5									
HE-163	L14+00N B.L.	10									
HE-164	0+50E	15									
UC165											
NC-155 UC-100	1+00E	10									
NC-100 NC-167	1+50E	40									
HE-169	2+00E	10									
HF-169	2+50E	3									
	3+008	10									
HE-170	L13+50N3+00F	20									
HE-171	L14+00N0+50W	20									
HE-172	1+00W	20									
HE-173	1+50W	25									
HE-174	2+00W	20						-			
	2.004										
HE-175	2+50W	25									

DETECTION LINIT 5 nd = none detected _____ = not analysed

.

is = insufficient sample

.

VANGFOCHEM LAB LIMITED

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. V5L 1K5 (604)251-5656 FAX:254-5717

JOB NUMBER: 880957

Au

BRANCH OFFICE 1630 PANDORA ST VANCOUVER, B C. V5L 1L6 (604) 251-5656

REPORT NUNBER: 880957 GA

COLIN CAMPBELL

PAGE 1 OF 1

SAMPLE #

ppb HE-162R Profile nd

HE-171RL13+50N 3+00E nd

DETECTION LIMIT 5 nd = none detected .-- = not analysed is = insufficient sample VANGEOCHEN LAB LIMITED

ال

MAIN DFFICE: 1988 TRIUMPH STREET, VANCDUVER B.C. V5L 1K5 PH: (604)251-5656 TELEX:04-352578 BRANCH DFFICE: 1630 PANDDRA STREET. VANCDUVER B.C. V5L 1L6 PH: (604)251-7282 FAX: (604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 GRAM SAMPLE IS DIGESTED WITH 5 ML OF 3:1:3 HCL TO KNOB TO H2O AT 95 DEG. C FOR 90 MINUTES AND IS DILUTED TO IO ML WITH WATER. This leach is partial for SW,MW,FF,CA,P,CP,HG,PB,PD,AU,MA,Y,W,PT AND SR. AU AND PD DETECTION IS 3 PPM. Is= insufficient sample, ND= not detected, -= NOT AMALYZED

COMPANY: C ATTENTION: PROJECT: HI	ULIN MR.	COLI	BELL N CAP	PBEL	ų		КРН	EPOR OB#: NVOIC	8809 8803	6095 57 8809	17PA 57NA													NAL	,sī	12	And and	. 1
																					PAG	E 1 0F	-				\geq	
SANPLE NAKE	AG PPH	4 H	AS PPR	NN PPH	BA PPM	BI PPM	ЧC	EPI CD	8	S L	3 E	27	H H	<u>ب</u> ر مر	N KO	ч ¥ ч	NI PPR	а. н	8d Bdd	5 H.	PPN PPN	PPH SB	NS NG	SS Hdd	n Hdd	H H	> × ₽	
HE-162R HE-1718	2.5 1.8	×.	38 36	<u>9</u> 9	266 76	5 5	.25 2.33	14. I 14. I	5 5 55	13	519 8 110 12	5	t0 10	145 119	33	* 8	4	6.19	2168 849	22	99	<u>9</u> 9		11 66	29	문문	2887 903	
DETECTION LINIT		-01	ы	en	**	ę	10.	-		***	-	. 10.	. 10	10	-	.0	1	.01	2	3	ŝ	2	2	1	ŝ	m		

ANOMALOUS RESULTS: FURTHER ANALYSES BY ALTERNATE METHODS SUGGESTED

-23-

 \sim

۰.

~

.

ł

1

;

:

- -----

÷

VANGEOCHEM LAT LIMITED

 \bigcirc

V5L 1K5 PH: (604)251-5656 TELEX: 04-352578 . V5L 1L6 PH: (604)251-7282 FAX: (604)254-5717 MAIN OFFICE: 1988 TRIUMPH STREET, VANCOUVER B.C. VE BRANCH OFFICE: 1630 PANDORA STREET. VANCOUVER B.C.

ICAP GEOCHEMICAL ANALYSIS

WITH WATER 10 M. 2 DEG. C FOR 90 MINUTES AND IS DILUTED All and PD detection is 3 PPM. 5 GRAN SAMPLE IS DIGESTED WITH 5 ML OF 3:1:3 HCL TO HAD3 TO H20 AT 95 3 Leach is Partial For Sh,MN,FE,Ca,P,CR,MS,BA,PD,AL,MA,K,W.PT AND SR. Insufficient Sample, ND= NOT Detected, -= NOT AMALYZED A.5 THIS IS= I

-24-

	NZ	230	227 1913 2491 395 206	206 123 190 108	139 211 144 225	119 105 171 1509 1149	8104 592 263 263 205	342 169 381 381 230	282 185 210 123	1
	Hdd-	QN	99999	999999		99999	999999	<u> 2222</u>		m
	19 19 14	QX	<u>n 9 9 9 9 9</u>	999999	, 222222		999999	22222	22292	ŝ
	PPN	ž	¥ 65 11 88 12	88888	3 N N N N	44288	52 38 38 38	88248	*****	
	NS	Ŋ	8 Q - + 6	~900 g~	00000		N 44 5 4	0010 ¥ 01	202240	7
: OF 2	PPN PPN	윷	<u> </u>	999999	<u> </u>	****	1226 ND ND ND		22222	7
PAGE 2	PP#	Ŷ		99999		82222	오 앞 옷 옷 옷 옷		Q Q Q Q Q Q	'n
	64 844	9	<u> </u>	<u> </u>	2929 <u>9</u>	2222	***	99999	999999	ო
	85 Mr	¥	88388	87 월 월 월 월 87 월 월 87 월 월 87 월 87 월 87 월	\$K % % %	32 49 1826 1019	20629 298 64 78 78	85% ² 6	\$\$C\$88	7
	0. 14	5	88 50 F	11 22	113 06 08 08 16	11 20 20 20 20 20	66 36	22.25.25	00 00 05 00 05	.01
	NI Hay	32	222222	9 7 13 13 13 13	12 14 53 13	58 2 4 3	22 2 Z X	82228	82%25	1
	W X	5	53225	83 3 5 5 8	83 6 65	0.03 0.03 0.05	33 0 34	222222	888888 88888 88888	.01
	84 84	*	53-14-44-64	***	9044N	804F8	00.4 m œ N	2000 G	~**9*	
	NN	635	1759 684 7078 400 394	750 1745 762 1257 1121	624 738 2422 2195 358	494 419 749 1095 1071	5390 370 510 2788 1632	2255 716 752 1031 3336	2849 525 596 1479 726	1
	ä v	2,03	1.71 1.27 .87 .37	55 55 55	55 55 55 55		.42 .56 1.80 1.23	.51 1.33 2.38 1.18 1.69	1.33 88 88 84 84 85	10.
	× 14	.12	15 19 08	83555	28 5 E =	10 80 113	8 E E S E	13	51223 9	.01
	毘ぇ	7.81	8.18 3.92 4.15 4.55 3.96	5.18 3.82 8.23 4.15 4.77	4.81 3.65 3.94 5.95	3.93 3.71 5.94 6.41	10.04 4.67 4.95 3.44 6.87	7.81 4.77 4.77 6.59 4.25	5.15 5.66 5.77 5.26	10.
	CU PPN	96	137 197 220 38	101 338 625 228 228	158 82 179 179	79 50 240 280 203	3747 191 43 357 357	52 175 52 53 54	64 102 278 50	v-1
	PPN PPN	4	12 2 6 13 14 2 6	12.00 \$	23 16 18	52822	77 Q J Q	°°¥≻€18	15 15 13 13	~ 1
	50 242	Ъ,	17 33 33 88 N	57 25 57 F2	23 36 24	33 \$7 \$8 \$2 \$2	858 34	88485	8 7 8 5 8 7 9	-
-	5 H	4.5	5.7 11.1 3.6 3.6 2.8	2.2 2.2 2.8 2.8 2.8 2.8 2.8	2.3 2.4 2.7 2.7	2.5 2.8 10.3 10.3	33.1 3.7 3.8 3.8	លក់ខ្លួក។ ស្រុកខ្លួក។	2.8 3.1 3.1 3. 2.8 5 1 1 3.1 3.1 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2	
14825088	ъч	.37		.23 .68 .34 1.18	88 12 13 13 13 13 13 13 13 13 13 13 13 13 13	¥87284	347.88	28496	324338	.01
EPORT: 8	BI PPM	89	380 21 12 10 38	12 30 11 10 11	13 9 17	832 a g	37 B 2 3	85823	12 38 12 13 13	ŝ
HE GE	N9 M99	215	144 328 1271 179 99	330 313 313 313 274	213 274 326 139 151	250 328 167 140	75 160 132 132	4124 174 174 174	23 22 22 23 23 23 23 23 23 23 23 23 23 2	
R0JECT:	NN PPR	2	<u> </u>	99999 99999	22222	22222	999999	99999	292222	m
10958 P	NS AS	R	33 23 ⁸ 90 30	ជ • សស ស	14 15 26 15	22844	20 20 8 27 8	62885	288381	m
(OBA: 86	2 2 2	3.10	2.53 8.34 3.40 1.40	4.12 3.38 4.56 2.75 2.75 2.68	2.93 1.53 4.15 2.32 2.84	1.82 1.68 3.35 3.32 3.26	1.23 3.36 5.67 4.35	3.76 3.88 4.08 3.58 4.01	4.72 3.13 2.28 1.81	-01
BELL	A6 PPH	.2	0, - 0, -		40,80	15.9 4.5 9.9	210 21 21 21 21 21 20	<i></i>		
CLIENT: COLIN CAN	SAMPLE NAME	HE-140	来 141 第一 142 143 第一 143 143 143 143 143 143 143 143 143 143	HE-146 HE-147 HE-148 HE-148 HE-150 HE-150	HE-151 HE-152 HE-153 - HE-154 HE-155	#E-156 HE-157 HE-158 HE-158 HE-158 HE-159	RE-161 RE-162 RE-163 RE-163 RE-164	#E-166 HE-167 HE-168 HE-168 HE-169 HE-170	RE-171 RE-172 RE-173 RE-174 RE-175	DETECTION LIMIT

۰.

-25-

 \bigcirc

 \bigcirc

÷

 $\sum_{i=1}^{n}$

ANALYTICAL PROCEDURE FOR GOLD IN ROCK SAMPLES

Analytical procedure used to determine gold by fireassay method and detected by atomic absorption spec. in goelogical samples.

Method_of_Sample_Preparation

- (a) Geochemical soil, silt or rock samples were received in the laboratory in wet-strength 4" x 6" Kraft paper bags
 or rock samples sometimes in 8" x 12" plastic bags.
- (b) The dried soil and silt samples were sifted by hand using a 8" diameter 80-mesh stainles steel sieve. The plus 80-mesh fraction was rejected and the minus 80mesh fraction was transferred into a new bag for analysis later.
- (c) The dried rock samples were crushed by using a jaw crusher and pulverized to 100-mesh for finer by using a disc mill. The pulverized samples were then put in a new bag for later analysis.

Method_of_Extraction .

- (a) 20.0 30.0 grams of the pulp samples were used. Samples were weighed out by using a top-loading balance into fusion pot.
- (b) A Flux of litharge, soda ash, silica, borax, flour, or potassium nitrite is added, then fused at 1900 degrees F and a lead button is formed.
- (c) The gold is extract by cupellation and part with diluted nitric acid.
- (d) The gold bead is saved for measurement later.
- Method_of_Detection

4.

- (a) The gold bead is disolved by boiling with sodium cyanide, hydrogen peroxide and ammonium hydroxide.
- (b) The gold analyses were detected by using a Techtron model AA5 Atomic Absorption Spectrophotometer with a gold hollow cathode lamp. The results were read out on a strip chart recorder. The gold values in parts per billion were calculated by comparing them with a set of gold standards.

The analyses were supervised or determined by Mr. Conway Chun or Mr. David Chiu and his laboratory staff.

ANALYTICAL PROCEDURE FOR GOLD IN SOIL AND SILT

Analytical procedure used to determine Aqua Regia soluble gold in geochemical samples

Le Method_of_Sample_Preparation

- (a) Geochemical moil, milt or rock mamples were received in the laboratory in wet-strength 4" x 6" Kraft paper bags or rock mamples mometimes in 8" x 12" plastic bags.
- (b) The dried soil and silt samples were sifted by hand using a 8" diameter 80-mesh stainless steel sieve. The plus 80-mesh fraction was rejected and the minus 80mesh fraction was transferred into a new bag for analysis later.
- (c) The dried rock samples were crushed by using a jaw crusher and pulverized to 100-mesh or finer by using a diac mill. The pulverized samples were then put in a new bag for later analysis.

Method_of_Digestion

- (a) 5.00 10.00 grams of the minus 80-mesh samples were used. Samples were weighed out by using an electronic micro-balance into beakers.
- (b) 20 ml of Aqua Regia (3:1 HCl : HNO3) were used to digest the samples over a hot plate vigorously.
- (c) The digested samples were filtered and the washed pulps were discarded and the filtrate was reduced to about 5 ml.
- (d) The Au complex ions were extracted into diisobutyl ketone and thiourea medium. (Anion exchange liquids "Aliquot 336").
- (e) Separate Funnels were used to separate the organic layer.

Method_of_Detection

.

The gold analyses were detected by using a Techtron model AAS Atomic Absorption Spectrophotometer with a gold hollow cathode lamp. The results were read out on a strip chart recorder. A hydrogen lamp was used to correct any background interferences. The gold values in parts per billion were calculated by comparing them with a set of gold standards.

The analyses were supervised or determined by Mr. Conway Chun or Mr. Eddie Tang and his laboratory staff.

