ARIS SUMMARY SHEET

Off Confidential: 89.08.23 _District Geologist, Kamloops MINING DIVISION: Clinton ASSESSMENT REPORT 18033 PROPERTY: Bobcat LAT 51 17 00 LONG 122 33 00 LOCATION: 10 5681211 531384 MTU NTS 092007E Bobcat I-III CLAIM(S): OPERATOR(S): Lexington Res. Heine, T.H. AUTHOR(S): 1988, 161 Pages -REPORT YEAR: COMMODITIES SEARCHED FOR: Gold _ GEOLOGICAL Near Blackdome Mountain, the rocks are composed of ignimbrites SUMMARY: and possible ash-flows and lapilli tuffs, as well as volcanic and debris flows, ranging in composition from andesitic to rhyolitic. The entire sequence has been correlated with the Kamloops Group. Unconformally capping the Eocene rocks are basalt flows of Early Miocene or Late Oligocene age. WORK DONE: Geological, Geochemical, Physical

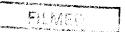
0.3 ha

ROCK 1058 sample(s); AU, HG, AG SOIL 980 sample(s); AU, HG, AG

Map(s) - 3; Scale(s) - 1:1000, 1:2500

TREN 2579.5 m 15 trench(es) Map(s) - 1; Scale(s) - 1:1500

ACTOR:	LOG NO:	1128	RD.
		g ing grand S	Security of the security of th


Assessment Report

for

Work Completed on the Bobcat Claims Clinton Mining Division, British Columbia

by

Lexington Resources Limited Suite 780 885 Dunsmuir Street Vancouver, British Columbia

V6C 1N8LOGICAL BRANCH ASSESSMENT REPORT

Location:

Latitude 51⁰17' North Longitude 122033' West

Camelsfoot Range, approximately 70 km WSW of

Clinton, B.C. and about 5 km southwest of the

Blackdome mine N.T.S. 92 O / 7 / SE

Subject:

Geological and geochemical surveys conducted on the Bobcat claims from 23 June to 10 August 1988.

Prepared by:

Thomas H. Heine, 430 7th Street East, Saskatoon, Saskatchewan

S7H 0X5

November 1988

Table of Contents

		Page
I.	Introduction	1
II.	Personnel	1
III.	Location and Access	1
IV.	Previous Work 1. Pre-1986	5
	2. 1986 Programme	5
	3. 1987 Programme	6
V.	Regional Geology	6
VI.	Exploration Model and Philosophy	7
VII.	1988 Programme 1. Phase I. a. Trenching	10
	b. Geological Mapping	11
	i. Argillic Alteration	
	ii. Silicification	66
	c. Geochemical Sampling	67
	d. Soil Sampling	68
VIII.	Statement of Expenditures	70
IX.	Statement of Qualifications	71
х.	References	72

- Appendices
 1. Geochemical Analyses of Trench Rock Samples
 2. Check Analyses
 3. Geochemical Analyses of Soil Samples

<u>Figures</u> Page Figure 1. Property Location Map Figure 2A. Regional Geology and Location Map 3 Figure 2B. Programme Location and Figure Location Map 4 Figure 3. Stratigraphic Column for the Blackdome area. 8 Figure 4. Trench and Diamond Drill Hole Location Map in pocket of the Bobcat II Claim. Figure 5A. Trench TR-88-01, Geology, Plan and Rib Views 15 (6+90 to 7+50 W.)Figure 5B. Trench TR-88-01, Geochemical Values from Rib 16 Samples (6+90 to 7+50 W.) Figure 6A. Trench TR-88-01, Geology, Plan and Rib Views 17 (6+50 to 6+90 W.)Figure 6B. Trench TR-88-01, Geochemical Values from Rib 18 Samples (6+50 to 6+90 W.) Figure 7A. Trench TR-88-01, Geology, Plan and Rib Views 19 (6+00 to 6+50 W.)Figure 7B. Trench TR-88-01, Geochemical Values from Rib 20 Samples (6+00 to 6+50 W.) Figure 8A. Trench TR-88-01, Geology, Plan and Rib Views 21 (5+50 to 6+00 W.)Figure 8B. Trench TR-88-01, Geochemical Values from Rib 22 Samples (5+50 to 6+00 W.)

Figure 9A. Trench TR-88-01, Geology, Plan and Rib Views

Figure 9B. Trench TR-88-01, Geochemical Values from Rib

Figure 10A. Trench TR-88-01, Geology, Plan and Rib Views

Figure 10B. Trench TR-88-01, Geochemical Values from Rib

Figure 11A. Trench TR-88-01, Geology, Plan and Rib Views

Figure 11B. Trench TR-88-01, Geochemical Values from Rib

(1+00 to 1+25 W.)

(0+10 E. to 0+10 W.)

(0+75 to 1+15 E.)

Samples (1+00 to 1+25 W.)

Samples (0+10 E. to 0+10 W.)

Samples (0+75 to 1+15 E.)

23

24

25

26

27

- Figure 12A. Trench TR-88-02, Geology, Plan and Rib Views 29 (3+50 to 4+06 W.)
- Figure 12B. Trench TR-88-02, Geochemical Values from Rib 30 Samples (3+50 to 4+06 W.)
- Figure 13A. Trench TR-88-02, Geology, Plan and Rib Views 31 (2+90 to 3+50 W.)
- Figure 13B. Trench TR-88-02, Geochemical Values from Rib 32 Samples (2+90 to 3+50 W.)
- Figure 14A. Trench TR-88-02, Geology, Plan and Rib Views 33 (1+00 to 1+50 W.)
- Figure 14B. Trench TR-88-02, Geochemical Values from Rib 34 Samples (1+00 to 1+50 W.)
- Figure 15A. Trench TR-88-02, Geology, Plan and Rib Views 35 (0+25 to 1+00 W.)
- Figure 15B. Trench TR-88-02, Geochemical Values from Rib 36 Samples (0+25 to 1+00 W.)
- Figure 16A. Trench TR-88-03, Geology, Plan and Rib Views 37 (0+00 to 0+33 W.)
- Figure 16B. Trench TR-88-03, Geochemical Values from Rib 38 Samples (taken at 0+10 W.)
- Figure 17A. Trench TR-88-04, Geology, Plan View (0+00 to 39 1+20 W.)
- Figure 17B. Trench TR-88-04, Geochemical Values from Rib 40 Samples (0+00 to 1+20 W.)
- Figure 18A. Trench TR-88-05, Geology, Plan and Rib Views 41 (0+35 to 0+93 W.)
- Figure 18B. Trench TR-88-05, Geochemical Values from Rib 42 and Floor Samples (0+35 to 0+75 W.)
- Figure 19A. Trench TR-88-06, Geology, Plan and Rib Views 43 (0+00 to 0+64.5 W.)
- Figure 19B. Trench TR-88-06, Geochemical Values from Rib 44 Samples (0+00 to 0+64.5 W.)
- Figure 20A. Trench TR-88-07, Geology, Plan and Rib Views 45 (0+40 to 0+92.6 W.)
- Figure 20B. Trench TR-88-07, Geochemical Values from Rib 46

- Figure 12A. Trench TR-88-02, Geology, Plan and Rib Views 29 (3+50 to 4+06 W.)
- Figure 12B. Trench TR-88-02, Geochemical Values from Rib 30 Samples (3+50 to 4+06 W.)
- Figure 13A. Trench TR-88-02, Geology, Plan and Rib Views 31 (2+90 to 3+50 W.)
- Figure 13B. Trench TR-88-02, Geochemical Values from Rib 32 Samples (2+90 to 3+50 W.)
- Figure 14A. Trench TR-88-02, Geology, Plan and Rib Views 33 (1+00 to 1+50 W.)
- Figure 14B. Trench TR-88-02, Geochemical Values from Rib 34 Samples (1+00 to 1+50 W.)
- Figure 15A. Trench TR-88-02, Geology, Plan and Rib Views 35 (0+25 to 1+00 W.)
- Figure 15B. Trench TR-88-02, Geochemical Values from Rib 36 Samples (0+25 to 1+00 W.)
- Figure 16A. Trench TR-88-03, Geology, Plan and Rib Views 37 (0+00 to 0+33 W.)
- Figure 16B. Trench TR-88-03, Geochemical Values from Rib 38 Samples (taken at 0+10 W.)
- Figure 17A. Trench TR-88-04, Geology, Plan View (0+00 to 39 1+20 W.)
- Figure 17B. Trench TR-88-04, Geochemical Values from Rib 40 Samples (0+00 to 1+20 W.)
- Figure 18A. Trench TR-88-05, Geology, Plan and Rib Views 41 (0+35 to 0+93 W.)
- Figure 18B. Trench TR-88-05, Geochemical Values from Rib 42 and Floor Samples (0+35 to 0+75 W.)
- Figure 19A. Trench TR-88-06, Geology, Plan and Rib Views 43 (0+00 to 0+64.5 W.)
- Figure 19B. Trench TR-88-06, Geochemical Values from Rib 44 Samples (0+00 to 0+64.5 W.)
- Figure 20A. Trench TR-88-07, Geology, Plan and Rib Views 45 (0+40 to 0+92.6 W.)

- Figure 20B. Trench TR-88-07, Geochemical Values from Rib 46
 Samples (0+50 to 0+92.6 W.)
- Figure 21A. Trench TR-88-07, Geology, Plan and Rib Views 47 (0+00 to 0+50 W.)
- Figure 21B. Trench TR-88-07, Geochemical Values from Rib 48 Samples (0+00 to 0+50 W.)
- Figure 22A. Trench TR-88-08, Geology, Plan and Rib Views 49 (0+00 to 0+40 W.)
- Figure 22B. Trench TR-88-08, Geochemical Values from Rib 50 Samples (0+00 to 0+40 W.)
- Figure 23A. Trench TR-88-08, Geology, Plan and Rib Views 51 (0+00 to 0+56 E.)
- Figure 23B. Trench TR-88-08, Geochemical Values from Rib 52 Samples (0+00 to 0+56 E.)
- Figure 24A. Trench TR-88-09, Geology, Plan and Rib Views 53 (0+00 to 0+30 E.)
- Figure 24B. Trench TR-88-09, Geochemical Values from Rib 54 Samples (0+00 to 0+30 E.)
- Figure 25A. Trench TR-88-10, Geology, Plan and Rib Views 55 (0+50 W. to 0+30 E.)
- Figure 25B. Trench TR-88-10, Geochemical Values from Rib 56 Samples (0+50 W. to 0+30 E.)
- Figure 26A. Trench TR-88-11, Geology, Plan and Rib Views 57 (0+00 to 0+45 E.)
- Figure 26B. Trench TR-88-11, Geochemical Values from Rib 58 Samples (0+00 to 0+45 E.)
- Figure 27A. Trench TR-88-13, Geology, Plan View (0+00 to 59 0+45.5 W.)
- Figure 27B. Trench TR-88-13, Geochemical Values from Rib 60 Samples (western end)
- Figure 28A. Trench TR-88-14, Geology, Plan and Rib Views 61 (0+00 to 1+92 W.)
- Figure 28B. Trench TR-88-14, Geochemical Values from Rib 62 Samples (0+00 to 1+92 W.)
- Figure 29A. Trench TR-88-15, Geology, Plan and Rib Views 63 (0+00 to 2+04 W.)

Page

Figure 29B. Trench TR-88-15, Geochemical Values from Rib 64
Samples (0+00 to 2+04 W.)

Figure 30. East Detailed Grid, Soil Geochemistry in pocket

Figure 31. Northwest Detailed Grid, Soil Geochemistry in pocket

Figure 32. Southwest Grid Extension, Soil Geochem- in pocket istry.

T.	a	b	1	e	s

Table :	1.	Trenching statistics for the 1988 programme.	Page 10
Table 2	2.	Table of symbols used for geological and geo- chemical sampling maps.	11
Table :	3.	Lithologic units used on the geological maps and sections, 1988 programme, Bobcat project.	12
Table ' Bobcat		Statistics for the 1988 diamond drill programme,	69

I. Introduction

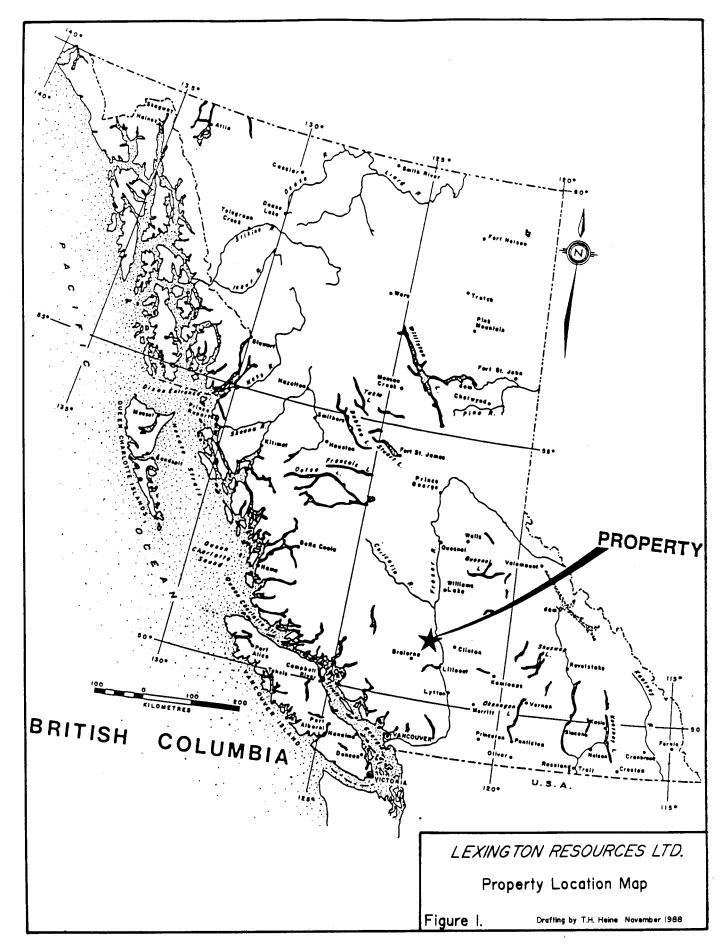
Lexington Resources Limited, owners of the Bobcat group of claims in the Clinton Mining Division, British Columbia, undertook a two phase exploration programme, concentrating on the Bobcat II claim. The first phase of this project ran from 23 June to 9 August, and consisted of trenching and trench mapping and sampling. The purpose of this phase was to define and delineate targets for subsequent diamond drill testing.

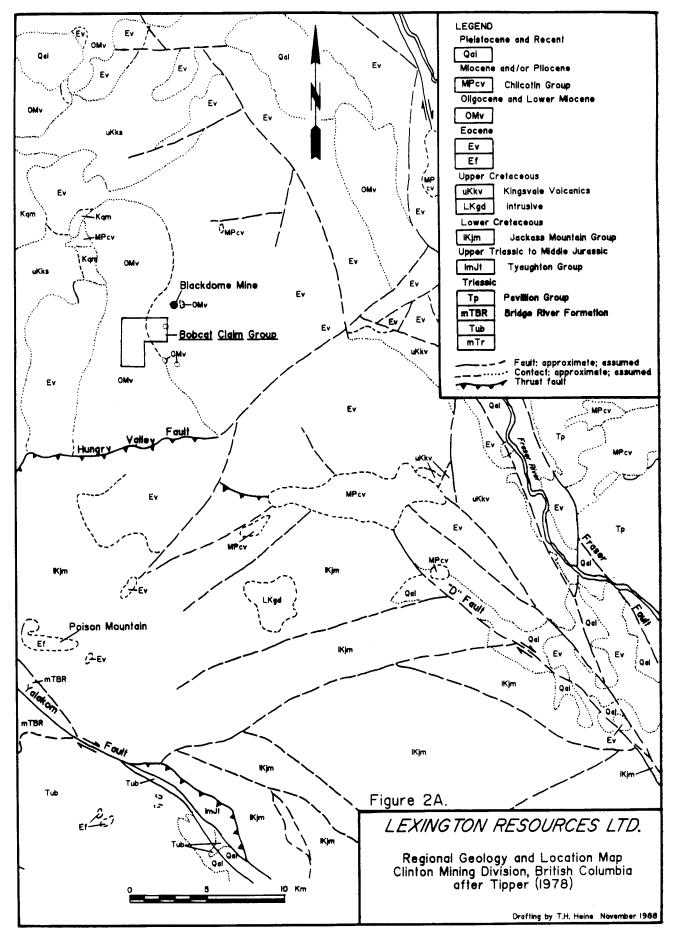
The second phase consisted of a diamond drilling programme to test the downdip and strike extensions of the targets defined during the first phase.

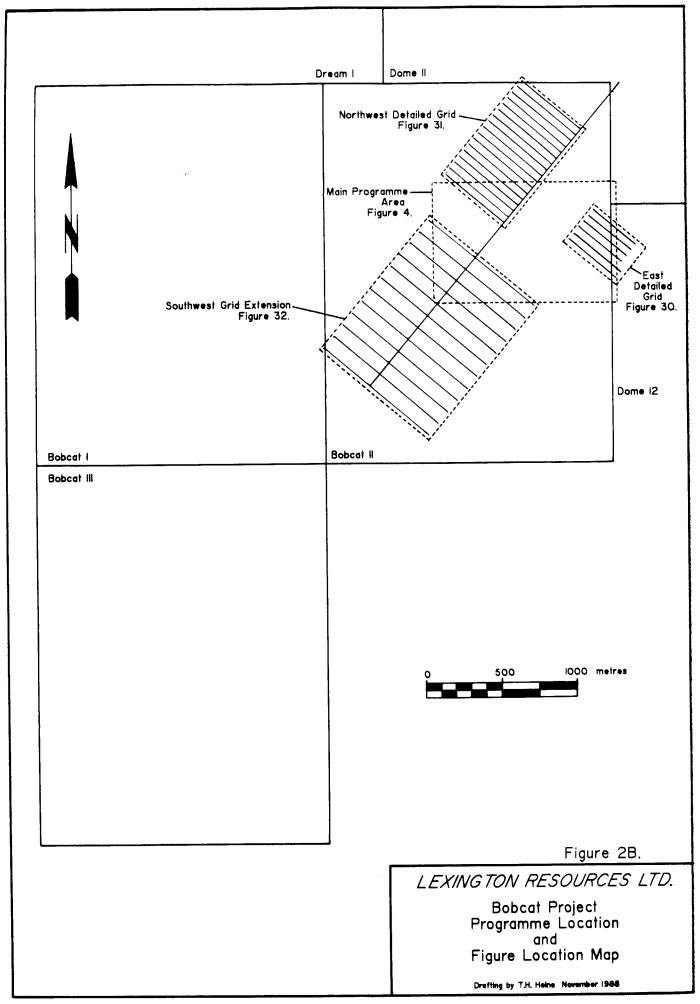
This report provides a review of previous work completed on these claims, and describes the programme undertaken on the Bobcat II claim during 1988.

II. Personnel

The following Lexington Resources Limited and Severn Explorations Limited personnel were employed during the course of this project:


Ms.	Karen D. Costello	Diamond Drill Geologist
Ms.	Christel Evers	Cook
Mr.	Dennis Froc	Camp Technician
Mr.	Thomas H. Heine	Project Geologist/Project
		Manager
Ms.	Suzanne Lee	Cook
Ms.	Maria Leong	Cook
Mr.	Duane Lucas	Project Manager
Ms.	Melissa Paulse	Field Assistant
Mr.	Donald Sergent	Field Assistant


In addition various personnel were employed from Ashworth Explorations Limited in order to assist with various parts of the project.


III. Location and Access

The Bobcat claims are located in the Camelsfoot Range on the Fraser Plateau, approximately 20 km west of the Fraser River and 70 km WNW of the town of Clinton (Figure 1). The claims are situated between latitudes 51 15' N and 51 19' N, and longitudes 122 31' W and 122 35' W. Their position can be located on N.T.S. map sheet 92 0/7 ("Churn Creek").

The centre of the Bobcat claims is about 5 km southwest of Blackdome Mountain (elevation 2253 m). The Blackdome Mine workings are located approximately 3 km northeast of the eastern boundary of the Bobcat II claim (Figure 2A).

Elevations range from about 2040 m along the ridge in the southeast corner of the Bobcat II claim to about 1650 m in the valleys north and south of Bobcat I and III. The trenching and drill programme area is located in an area of alpine meadow just above the treeline, at an elevation of approximately 1950 m.

Access to the property is gained via an all-weather gravel road that runs west from provincial highway 97 about 17 km north of Clinton. This road crosses the Fraser River at the Churn Creek bridge, after which the Empire Valley Road is followed south to the turnoff to the Blackdome Mine. This all-weather road is approximately 32 km long, and is maintained by the Blackdome Mining Corporation. At the Blackdome mine site a 4-wheel drive road provides access to the project area, approximately 4 km distant.

IV. Previous Work

1. Pre-1986

The ground presently covered by the Bobcat claims was originally staked in 1980 as the Pony claims. Although these claims are located along the southwestern extension of the auriferous veins presently being exploited by the Blackdome Mining Corporation, they had never been prospected in detail.

In 1981, Mr. R. Dunn, owner/operator of the Pony claims, found anomalous gold values in heavy mineral samples obtained from creek bottoms. The location of where these samples were collected from is not known. Altered and silicified rock chips from float returned assays of up to 2010 ppb gold. These samples were found along the southwestern projection of the Blackdome vein systems, but their absolute location is not known with certainty.

In 1982, 23 soil samples were collected near the northwestern corner of the Pony claims. Three were strongly anomalous in gold (1180 to 2555 ppb), one moderately anomalous in gold (105 ppb), and two weakly anomalous in silver (Fipke and Capell, 1983).

In 1983, chip samples were collected along 6 traverse lines over the Pony claims. All 35 samples, consisting mainly of intermediate volcanic lithologies, returned only background values for gold (Capell, 1984).

The Pony claims lapsed in early 1986, and were restaked as the Bobcat I, II, and III claims by Mr. John Fleishman. The claims were subsequently sold to Lexington Resources Limited. Because witness posts had been used for the original Bobcat staking, the same claims were re-staked in the fall of 1986 by Ashworth Explorations Limited for Lexington Resources Limited.

2. 1986 Programme

A brief report and exploration recommendation for the property was made in 1986 (Sorbara, 1986), in which a two-phase programme was suggested.

The services of Ashworth Explorations Limited were employed

from 20 August to 6 September, during which time an initial examination of the Bobcat property was carried out. Most of the work was carried out along the eastern boundary of the Bobcat II claim adjacent to the Blackdome property. The programme consisted of prospecting, geological mapping, soil sampling, and geophysical surveys (VLF-EM and magnetometer). Analyses of the soil samples indicated a broad zone of anomalous values (including gold, silver, mercury, and base metals) occurring over an area "...at least 1.5 km long, along strike, and averaging 500 m wide." (Laanela, 1986; pp.18).

The VLF-EM survey revealed the presence of a number of weak conductors, one of which is coincident with some anomalous geochemical soil values. The magnetic survey undertaken over the claims is of no value as no diurnal corrections were made for the data collected.

3. 1987 Programme

The services of Ashworth Explorations Limited were again employed from 24 June to 8 July. The project concentrated on the Bobcat II claim, and involved establishing a new grid (baseline oriented at 040), geochemical soil sampling, a geophysical survey (VLF-EM), trenching, and trench mapping and sampling. The soil surveys indicated a number of areas showing anomalous mercury values. The trenching exposed several alteration zones comprising, in part, silicified areas and "highly altered and sericitized (areas)...containing disseminated pyrite in bleached silicified material." (Harrop and Scroggins, 1987; pp.33). Seven alteration zones (described as "veins" in the final report) are indicated, but the disposition or location of these zones was not indicated on the plan map provided in the report.

The results of the VLF survey were Fraser filtered, and show the presence of a number of weak conductive responses, generally trending parallel to the strike of the baseline.

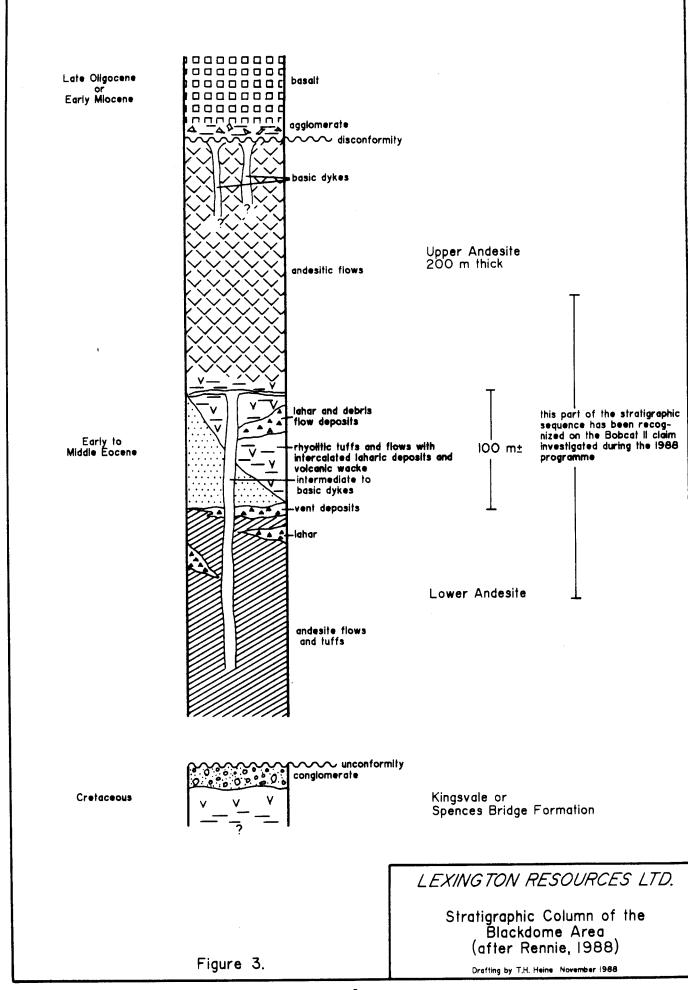
V. Regional Geology

The Bobcat claims lie in an area that is underlain by rocks of Tertiary to Triassic age (Figure 2A). The oldest of these in the property area is the Triassic Pavilion Group, which outcrops on the east bank of the Fraser River approximately 16 km east of the claim group. Ultrabasic rocks of possible Triassic age have been mapped by Tipper (1978) along the Yalakom Fault, 30 km south of the property. These are underlain by rocks that have been correlated with the Lower Cretaceous Jackass Mountain Group and Upper Cretaceous Spences Bridge or Kingsvale Formations (Mathews and Rouse, 1984).

Overlying the Cretaceous strata are sediments, tuffs and flows of Eocene age. Near Blackdome Mountain, the rocks are composed of ignimbrites and possible ash-flow and lapilli tuffs, as well as volcanic flows and debris flows, all ranging in composition from andesitic to rhyolitic. The entire sequence of

sedimentary and volcanic rocks has been correlated with the Kamloops Group, which occurs many kilometers to the south and east of the Bobcat claim group area (Duffell and McTaggart, 1952; Ewing, 1981; Mathew and Rouse, 1984). Unconformably capping the Eocene rocks are basalt flows of Early Miocene or Late Oligocene age (Church, 1980). The stratigraphic column for the Blackdome area is summarized in Figure 3.

Major and trace element investigations of the Eocene rocks show that they are derived from a calc-alkaline magma emplaced in a volcanic arc setting (Rennie, 1988). Eocene quartz monzonite stocks at Poison Mountain, 22 km southwest of Blackdome Mountain, host an auriferous porphyry copper-molybdenum deposit, and may represent the source magma of a volcanic system similar to the one that was the source of some of the the rocks in the Blackdome area.


The region is transected by four major fault zones: the Fraser, "d", Hungry Valley and Yalakom faults (Trettin, 1961; Tipper, 1978). The Fraser Fault lies to the east of the property, and is followed by the Fraser River. The "d" Fault is a northwesterly-striking branch of the Fraser Fault that has undergone an unknown amount of strike-slip displacement. It is related to the Hungry Valley Fault, a thrust along which Lower Cretaceous sediments have been emplaced over Upper Cretaceous and Tertiary rocks. Further to the south is the Yalakom Fault, a right lateral strike-slip northwesterly-trending splay from the Fraser Fault. It roughly parallels the Hungry Valley Fault.

Several minor faults have been mapped by Tipper (1978) and are probably related to the above structures.

VI. Exploration Model and Philosophy

The model most appropriate to use for the Bobcat claim group is the typical one for epithermal type precious matals deposits, outlined by numerous authors including Buchanan (1981), Panteleyev (), and White (1981). This model has been applied to the genesis of the Blackdome deposit (Rennie, 1988), a short distance to the northeast of the Bobcat claim group.

The following characteristics of epithermal precious metal deposits have been outlined by Panteleyev (op. cit.). They are formed near the surface in terranes where extensional tectonics are prevalent. Ore and associated minerals are deposited dominantly as open space fillings, and commonly show banded, crustiform, vuggy, drusy, colloform, and cockscomb textures. The mineralization occurs from surface to a maximum depth of about 1000 metres. The vertical range of ore averages about 350 metres, and rarely exceeds 600 metres. Ore zones bottom out in barren rock or pass downward into subeconomic zones containing base metal sulphides. The ore is usually hosted by quartz and calcitebearing veins, with lesser fluorite, barite, and pyrite. The veins can flare and branch upward into wedge-like or cone-shaped features, and at surface broad zones of argillic alteration can predominate. Breccia zones and stockworks also occur within the hydrothermal system. Gold and silver are presently the main metals being exploited from these deposits, but there is often an enrichment in Hg, As, Sb and rarely Tl, Se, and Te. The zones of

enrichment shown by these elements is often separate from the precious metal mineralization, reflecting the differing physicochemical conditions of the particular hydrothermal system that transported these elements.

The ore in the Blackdome gold-silver mine is hosted by epithermal quartz veins and breccias emplaced along steeply west-dipping, northeasterly striking fault zones in Eocene volcanic rocks and sedimentary equivalents. These rocks have been sheared, hydrothermally altered, and strongly silicified. The gold occurs as fine to medium grained disseminations, and is associated with electrum, acanthite, aguilarite, silver sulphosalts, pyrite, covellite, chalcocite, arsenopyrite, sphalerite and galena. Ore shoots range from 12 to 70 metres in strike length, up to 80 metres vertically, and are up to 3.5 metres thick (Rennie, 1988). There is very little clay associated with the veins in the main part of the Blackdome workings.

The Watson vein, a mineralized structure discovered in 1987 adjacent to the eastern boundary of the Bobcat II claim, is different from the main veins presently being exploited. The mineralization is hosted by a clay-cemented quartz breccia. The character of this structure appears to be identical with some of the alteration zones observed in the trenches mapped during the course of the present programme. Its relation to the quartz-dominated structures to the northeast has not been established.

A review of the work undertaken on the Bobcat claim group prior to the 1988 field programme, and a literature survey on articles published about the Blackdome mine, indicate that there are few exploration methods that are applicable to defining drill targets for detailed investigation. Geophysical surveys (magnetic and VLF-EM) conducted over the Bobcat claims did not delineate any detailed target areas, although a review of the methodology used to conduct these surveys indicates that they were either not properly executed, or the parameters used were not appropriate to the survey type.

Overburden geochemistry, particularly for mercury and gold, appears to be the most useful method for identifying prospective areas for more detailed investigations at this point. The B soil horizon is the most suitable sampling medium because of the immature nature of the surficial cover.

Once prospective areas have been delineated by geochemical means, the source of the anomalous elements has to be identified. In the case of the present programme this was accomplished most efficiently by trenching across the strike of the response using a backhoe. Detailed mapping and sampling the trench allowed the probable source of the geochemical anomalies to be identified.

With the delineation of alteration zones (in the case of this project, these consisted mainly of areas of intense argillic alteration with occasional silicified zones) and their geochemical characteristics, it was possible to prioritize specific zones or parts of zones into areas that appeared to have more economic potential than adjacent ones, and further evaluation could be undertaken. Thus the first phase of the exploration programme on the Bobcat II claim was completed.

In most epithermal precious metal-bearing deposits described to date, there is a well defined zoning to many of the

constituents to these systems (Buchanan, 1981; Panteleyev,). Thus it becomes important to know at what level the rocks affected by a particular fossil hydrothermal system are exposed at in order to come to some estimation as to the potential of these altered areas for containing precious metal mineralization. If the level of erosion has been too deep, any orebody may no longer be present.

The second phase of the programme consisted of diamond drill testing of several areas of alteration zones that were judged to have particular merit, based on elevated mercury values (often in excess of 5000 ppb) and the presence of silicified zones and quartz veins. The holes were generally designed to test the down-dip extrapolations of the alteration zones approximately 100 metres and, if the the geological characteristics warranted it, 150 to 175 metres below surface. A discrete quartz vein/silicified zone was tested at 50, 75, and 100 metres below surface.

The main objective of the drilling phase of the programme was to determine what part of the hydrothermal system was represented by the altered areas intersected, and if deeper parts of these alteration zones were indeed auriferous.

VII. 1988 Programme

1. Phase I.

a. Trenching

Trenches were excavated late in 1987 and during the course of the 1988 programme. Funk Brothers Excavating was contracted to do all of the work using a Caterpillar 235 excavator.

The locations of all the trenches is indicated in Figure 4, and important statistics for them are presented in Table 1. Prior to the start of the 1988 trenching, the existing trenches were examined and the locations of the areas of intense argillic alteration and silicified zones exposed in them were outlined. New trenches were located in altered areas extrapolated from known ones.

Additional trenches (TR-88-14 and -15) were excavated in an area that showed anomalous mercury-in-soil values in an effort to determine the source of these values.

The trenches average 2 metres in width, and range from 1 to 8 metres in depth. The quality of the exposures in the trench walls was quite variable, but was generally very good in the areas of intense argillic alteration. The 1987 excavations generally had a poorer quality of exposure than the more recent trenches, due mainly to overburden materials being washed over the rock exposures. Trench TR-88-02 was cleaned along its entire length at the start of the programme because of this. An attempt was made to expose bedrock in trench TR-88-12 but this proved to be unsuccessful. Only a few pieces of white clay were noted on the spoil heap from the excavation and may represent material from an underlying alteration zone.

Trench Number	Excavated	Total Length	Intervals Backfilled
TR-88-01	1987	954 m	1+75 to 3+00 W.; 3+50 to 3+75 W.; 3+85 to 5+25 W.
TR-88-02	1987, 1988	406 m	0+00 to 0+50 W.; 1+75 to 2+50 W.
TR-88-03	1.987	33 m	
TR-88-04	1987	120 m	
TR-88-05	1987	93 m	0+58 to 0+93 W.
TR-88-06	1987, 1988	63 m	
TR-88-07	1988	92 m	
TR-88-08	1988	95 m	
TR-88-09	1988	65 m	
TR-88-10	1988	82 m	
TR-88-11	1988	66 m	
TR-88-12	1987, 1988	68 m	
TR-88-13	1988	45.5 m	
TR-88-14	1988	193 m	
TR-88-15	1988	204 m	
TOTAL EXCAVATE	D	2579.5 m	
TOTAL BACKFILL	ED		450 m

Table 1. Trenching statistics for the 1988 programme, Bobcat Project, Bobcat II claim.

b. Geological Mapping

All of the trenches were examined and the altered areas were mapped at a scale of 1:200. These altered areas were sampled in detail for geochemical analysis, and this part of the programme is described separately below. The areas of the trenches that were mapped in detail are indicated in Figure 4, and the geological maps are presented in Figures 5A to 29A. Symbols used in the figures and geologic maps are outlined in Table 2. The compass declination was set at 22° east. Survey points were established with a chain, and pickets were put in at convenient intervals. End and intermediate points were surveyed in by Kidston and Hemingway between 10 and 14 August.

The main focus of the mapping portion of this programme was to define alteration zones, and less attention was paid to subdividing the primary lithologic assemblage present on the property. Thus most of the unaltered rocks mapped are indicated as dacites (Unit 1 on the geological maps). This should be used solely as a compositional term and does not have a genetic connotation. The geological units numbered on the geological maps are described in Table 3.

Fresh-looking rocks are grey-green to olive green in colour, fine grained, and are generally porphyritic, with phenocrysts occupying 10 to 20% of the rock volume. The phenocrysts comprise feldspar, quartz, and dark green to black mafic minerals (amphibole?). Feldspar is the most common phenocryst, occurring

as lath-shaped euhedral grains to 1.5 mm long. They are white and are often at least partially altered to calcite. Quartz occurs as

ر ر contacts: defined; assumed or gradational

joints: inclined; vertical
geological contact orientation: inclined; vertical
fault or fracture zone

outline of bottom of trench

1+00 w. geological traverse station and picket
sampled interval Note: These generally comprise panel samples 10-30 cm wide.

100 / 4300 / 0.3 geochemical values for gold (ppb) / mercury (ppb) / silver (ppm)
nd not detected
no not sampled

Table 2. Symbols used for geological and geochemical sampling maps.

rounded subhedral grains, averaging 1 mm in diameter. Mafic phenocrysts are an occasional constituent, occurring as subhedral to euhedral hexagonal grains to 1 mm in diameter. None of the phenocrysts show a preferred alignment.

The groundmass is fine grained and probably consists of an aggregate of feldspar grains. Pyrite is a very common accessory, comprising trace amounts up to 3% of the rock. It is probably the source of limonite commonly observed on joint surfaces.

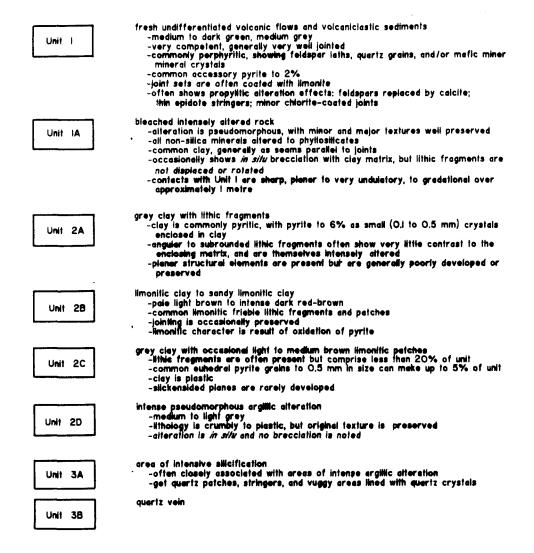
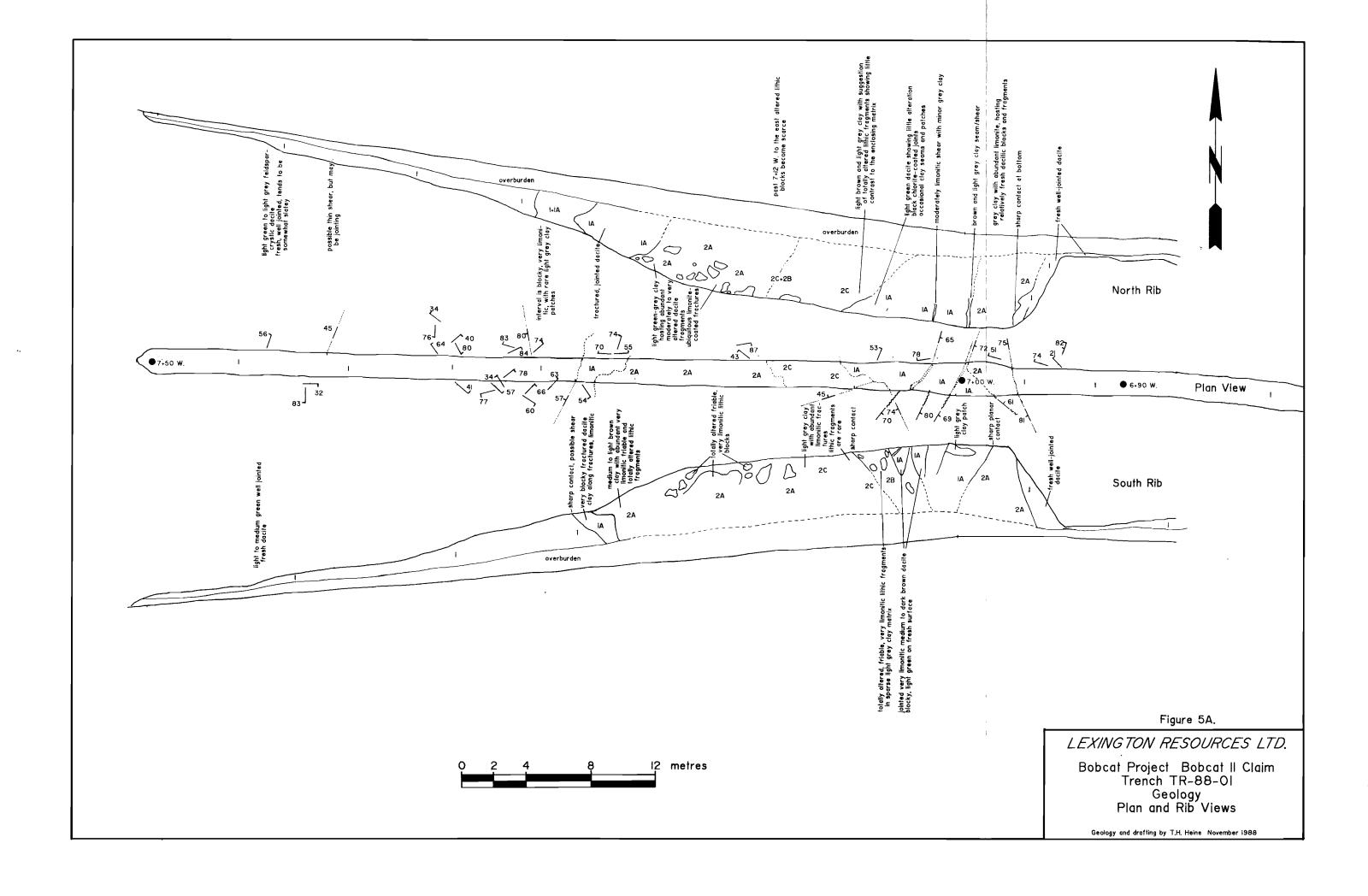
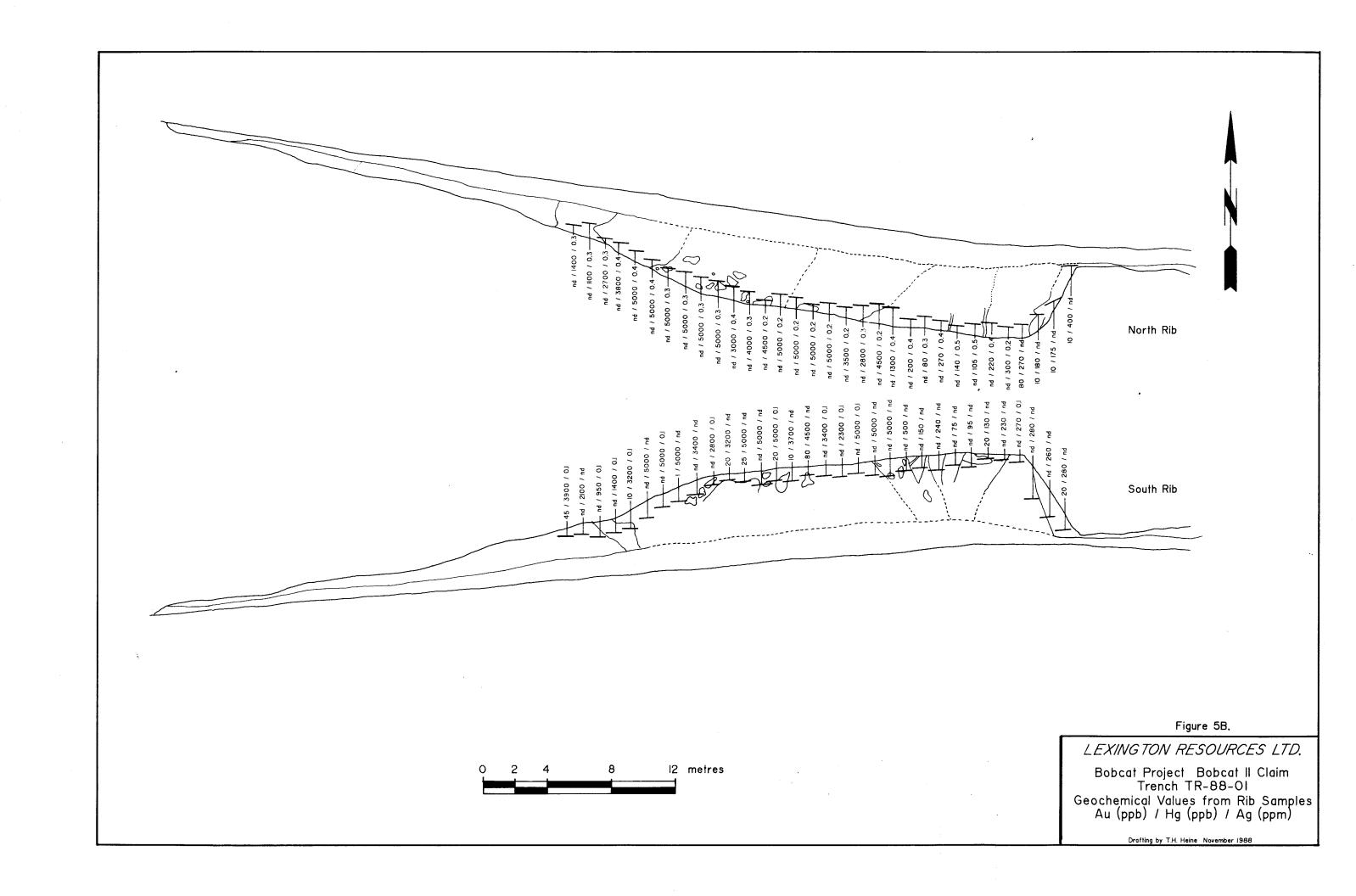
The rocks are generally very well jointed, this being the dominant structural element observed in exposure. There is the suggestion that the areas of intense argillic alteration are controlled to some extent by a northeast-trending joint set. Narrow shear zones are also locally present.

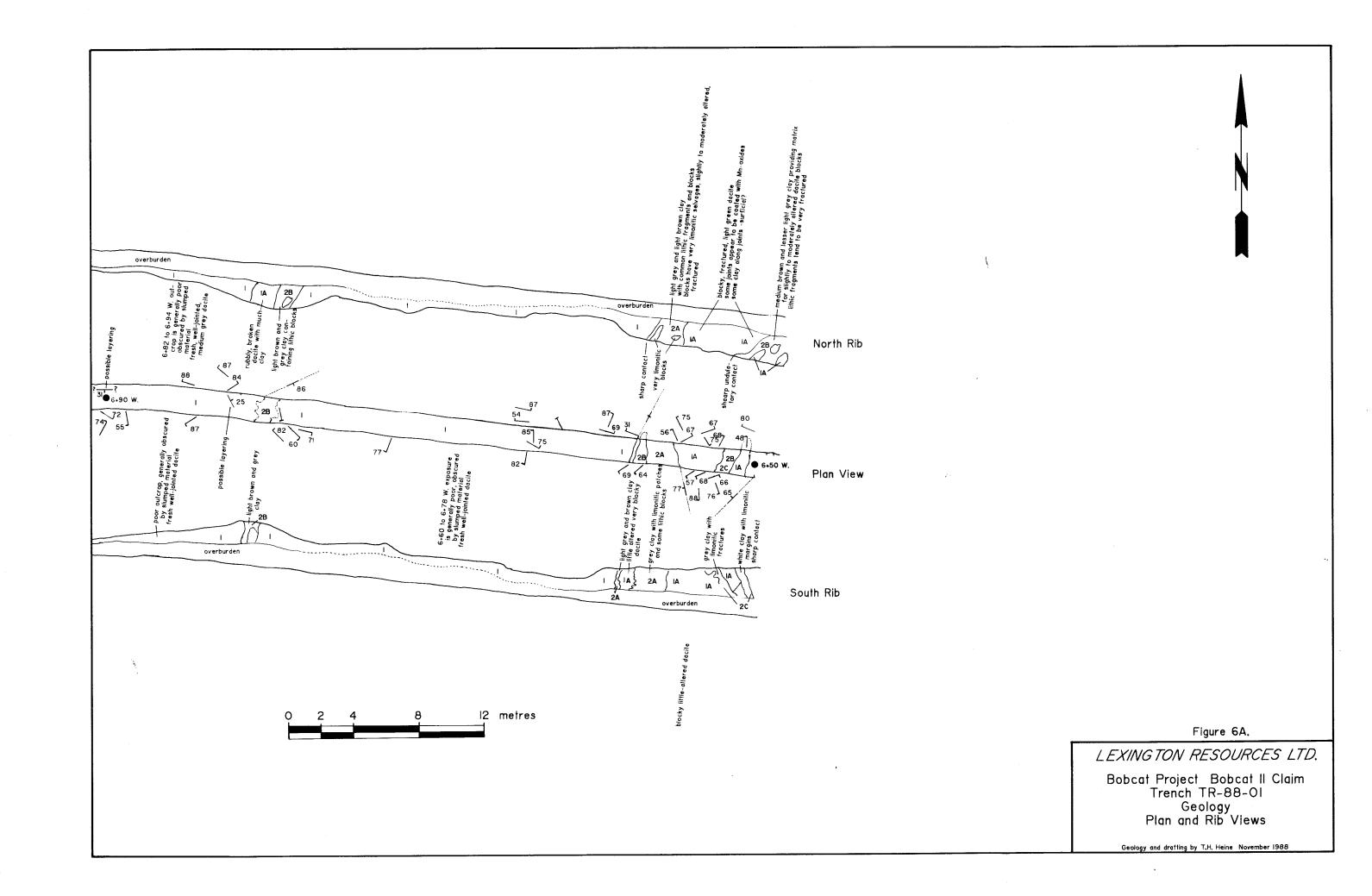
Primary depositional features such as bedding or layering are not well developed, although possible primary bedding is suggested in a number of areas.

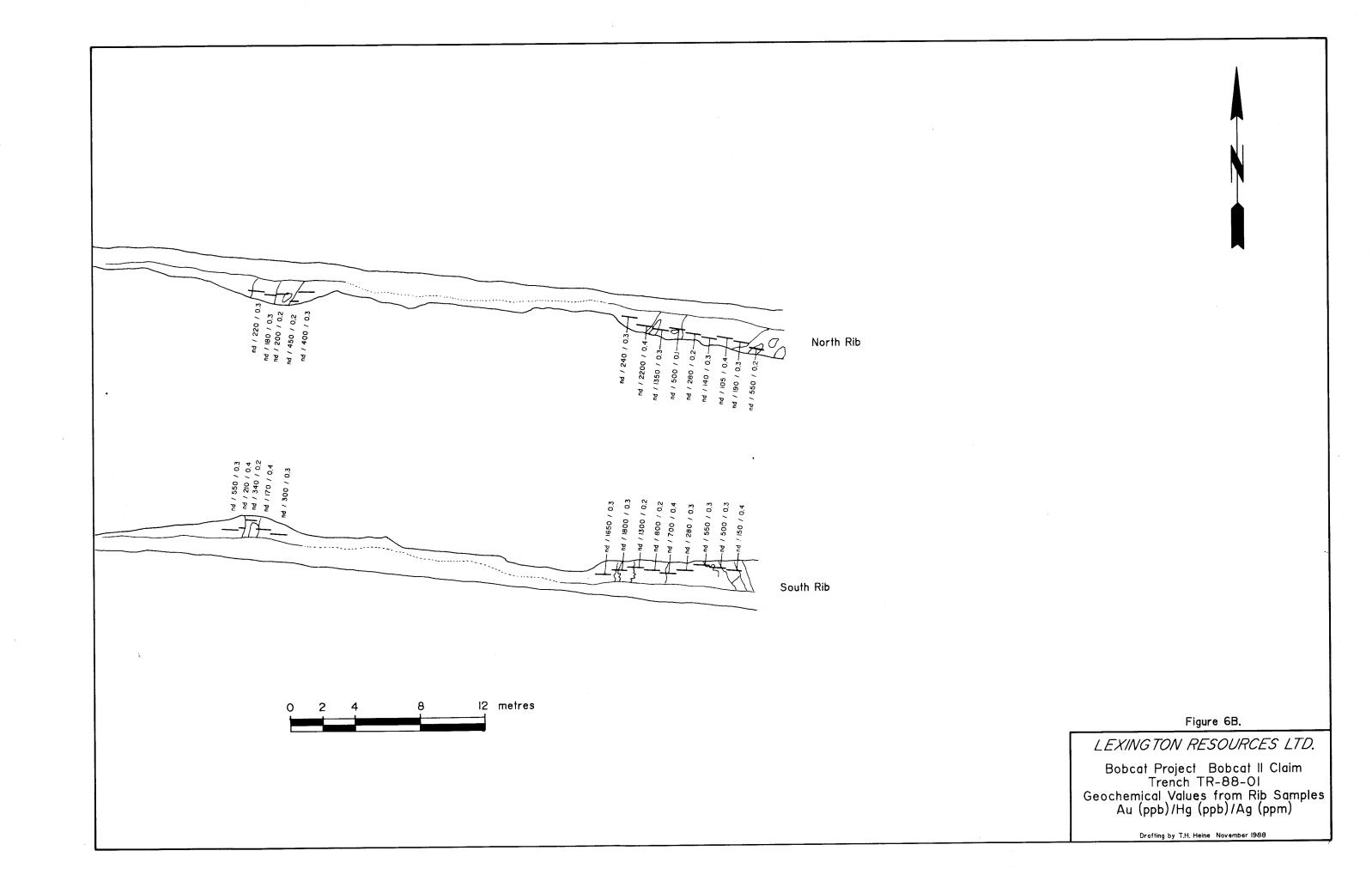
The types of alteration can be broadly classified into three main types: propylitic alteration, intense argillic alteration and silicification. Because of their potential economic significance, the latter two will be discussed separately.

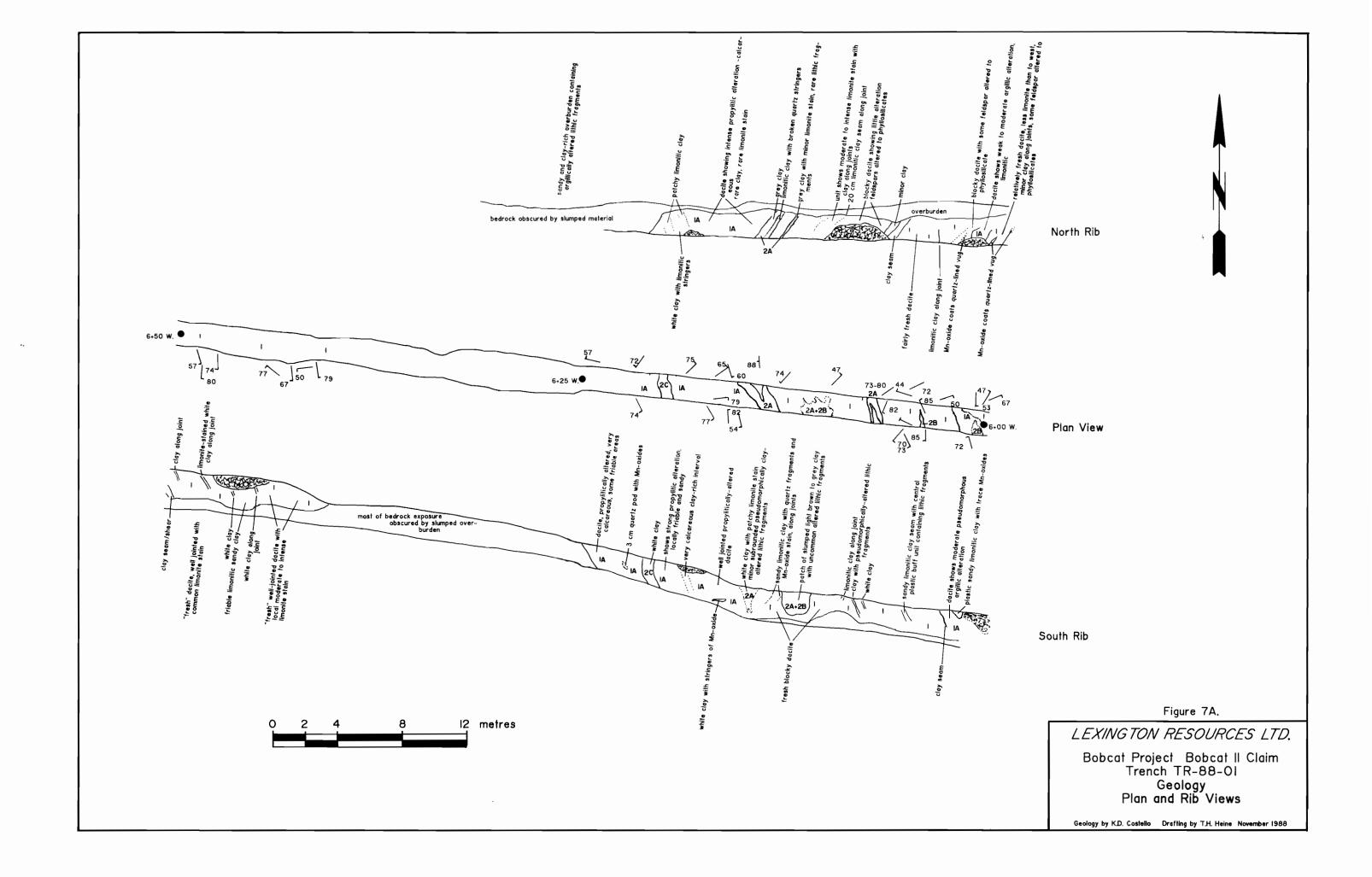
Propylitic alteration has affected most of the rocks to varying degrees. This is manifest mainly by the replacement of feldspar phenocrysts by calcite, and is strongly suggested in a number of areas by very calcareous intervals. In the latter case the calcite is most likely present as fine grained intergrowths

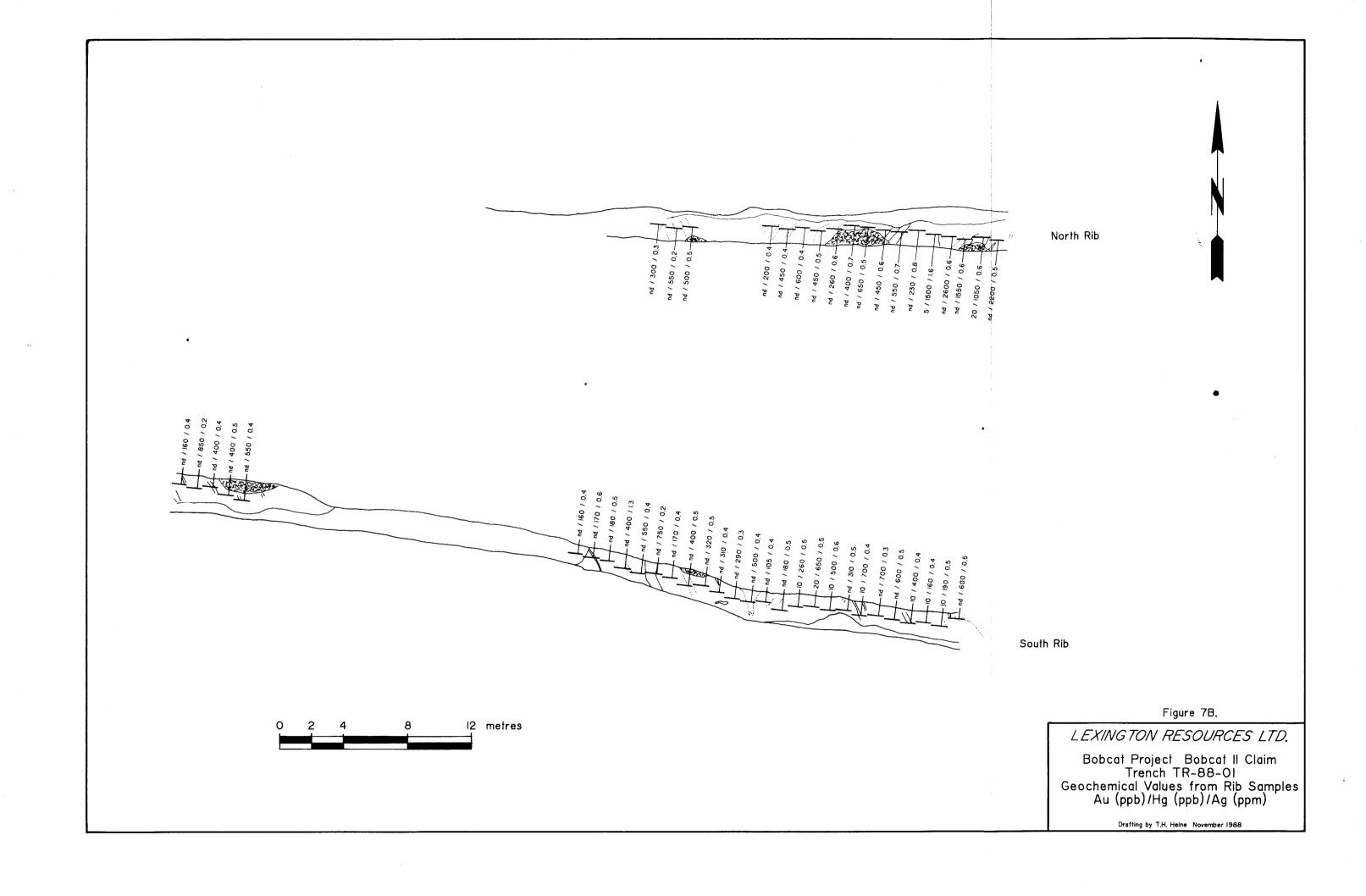
or replacements of matrix minerals. Another indicator of widespread propylitic alteration is the presence of epidote as

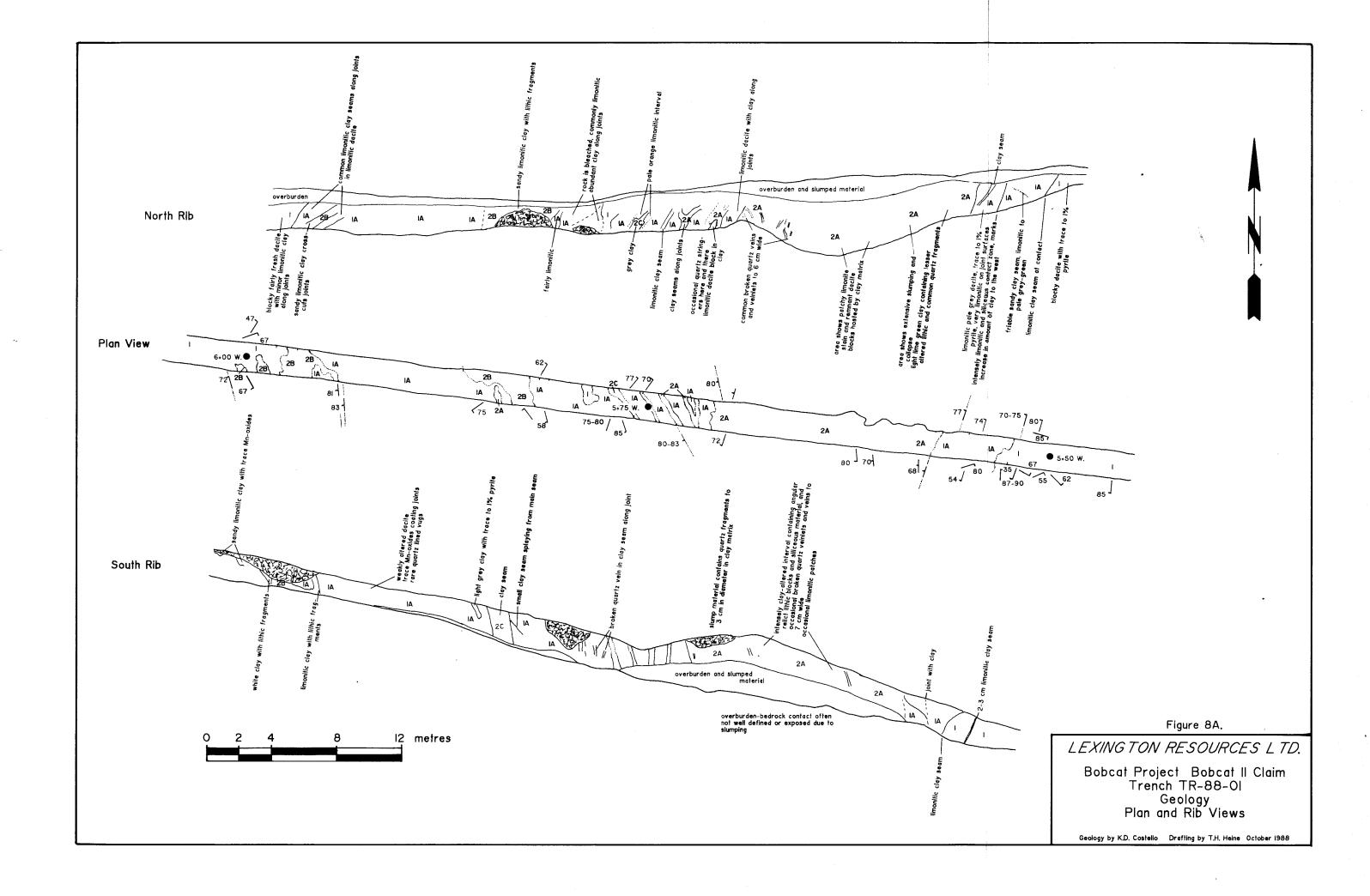




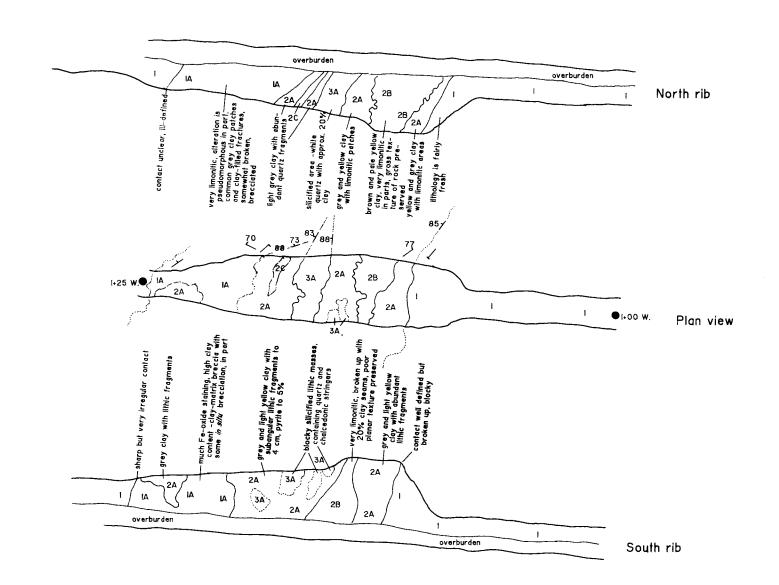

Table 3. Lithologic units used on the geologic maps and sections, 1988 programme, Bobcat project.

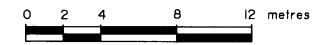
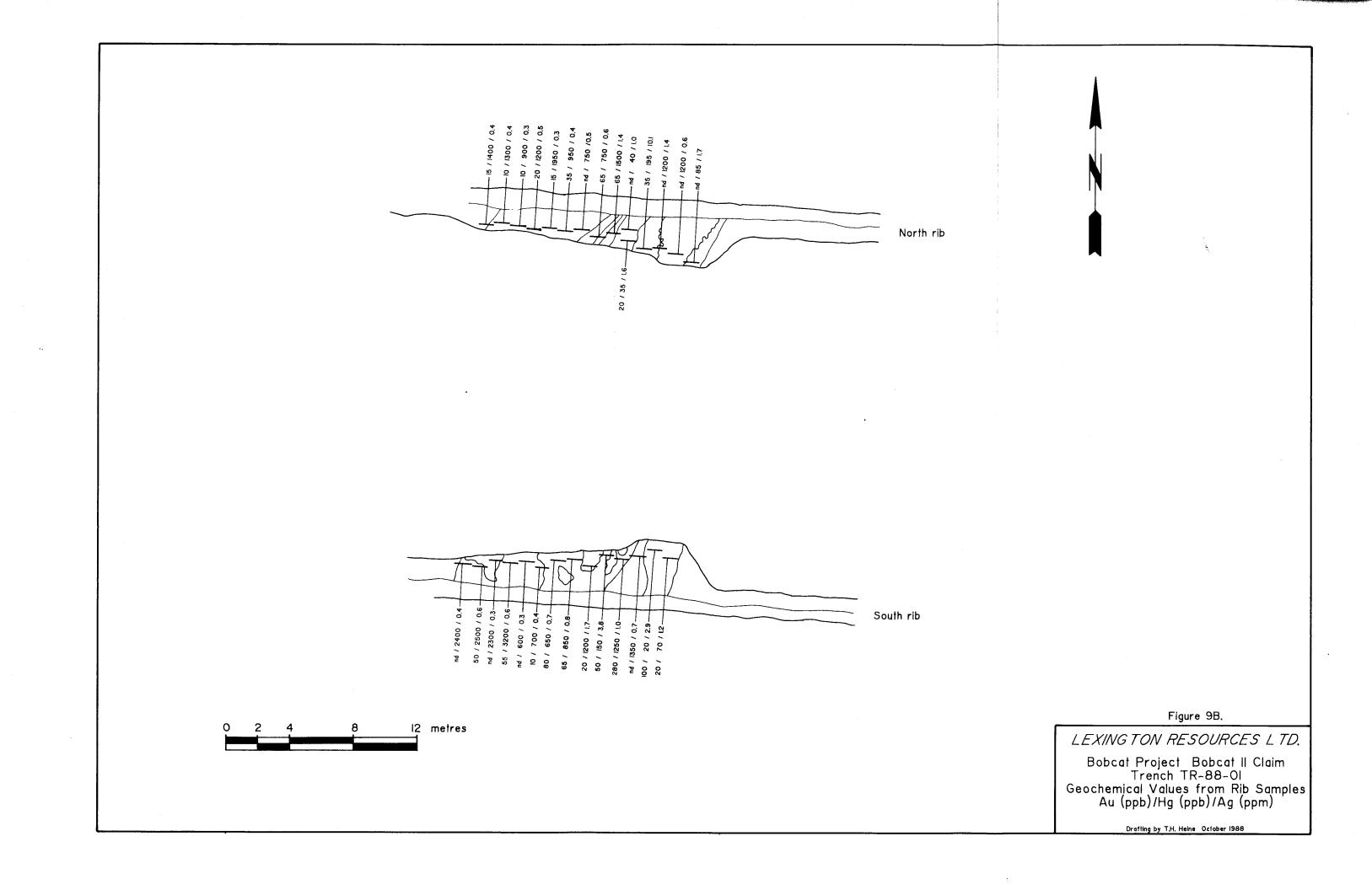

thin stringers and, rarely, as grain and grain masses to 2 mm in diameter. Chlorite is also sometimes present as fracture coatings, and is usually limited to areas immediately adjacent to zones of intense argillic alteration. Some of the mafic phenocrysts may also be altered to chlorite. The extent and intensity of the propylitic alteration is difficult to assess in the field because of the fine grained character of the alteration products.

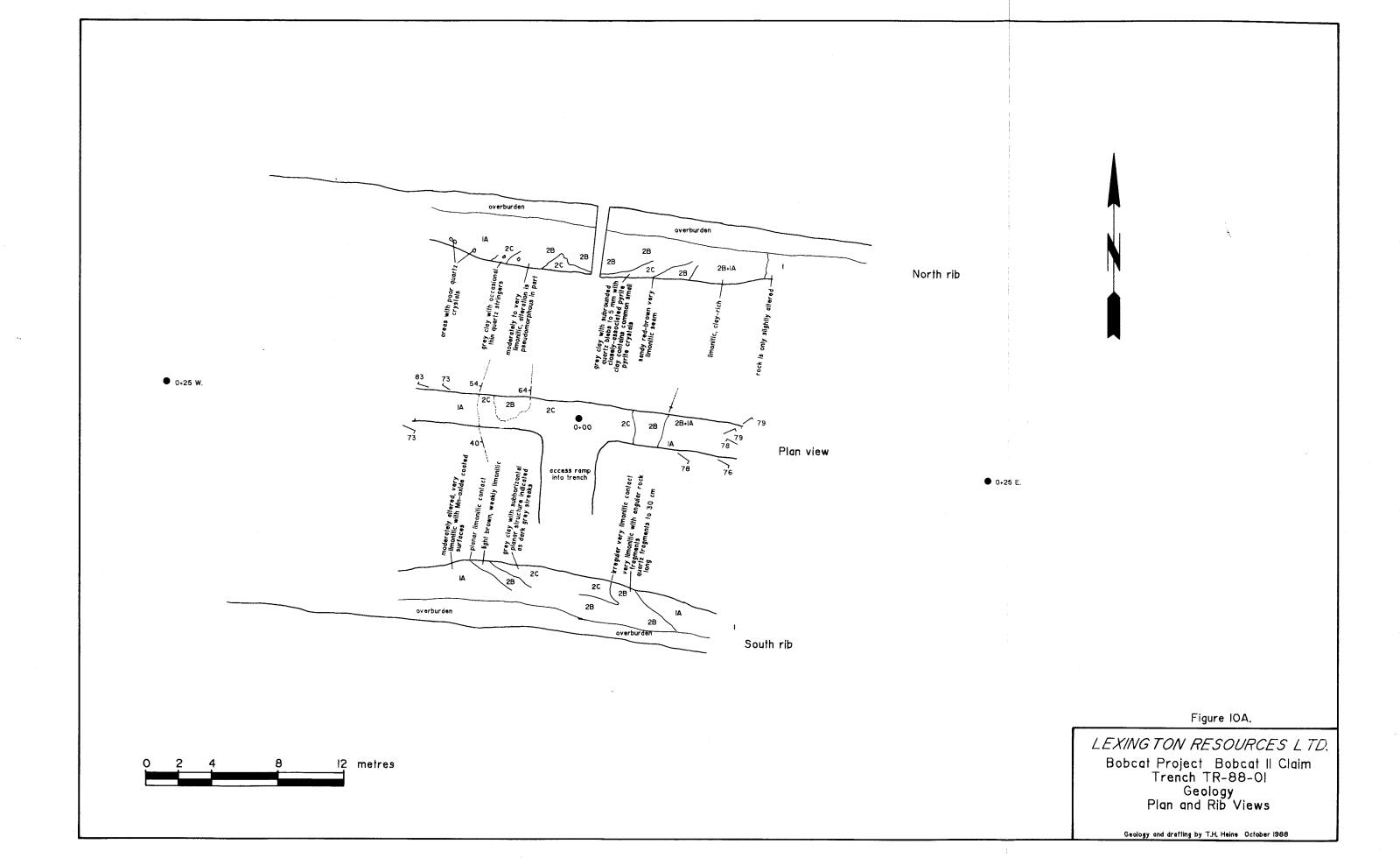

Limonite (undifferentiated iron oxides) is a common alteration product occurring as joint coatings on fresh lithologies, and as patches and irregular masses in areas of strong argillic alteration. It appears to be mainly a recent product, formed as a result of oxidation of pyrite by surficial waters.







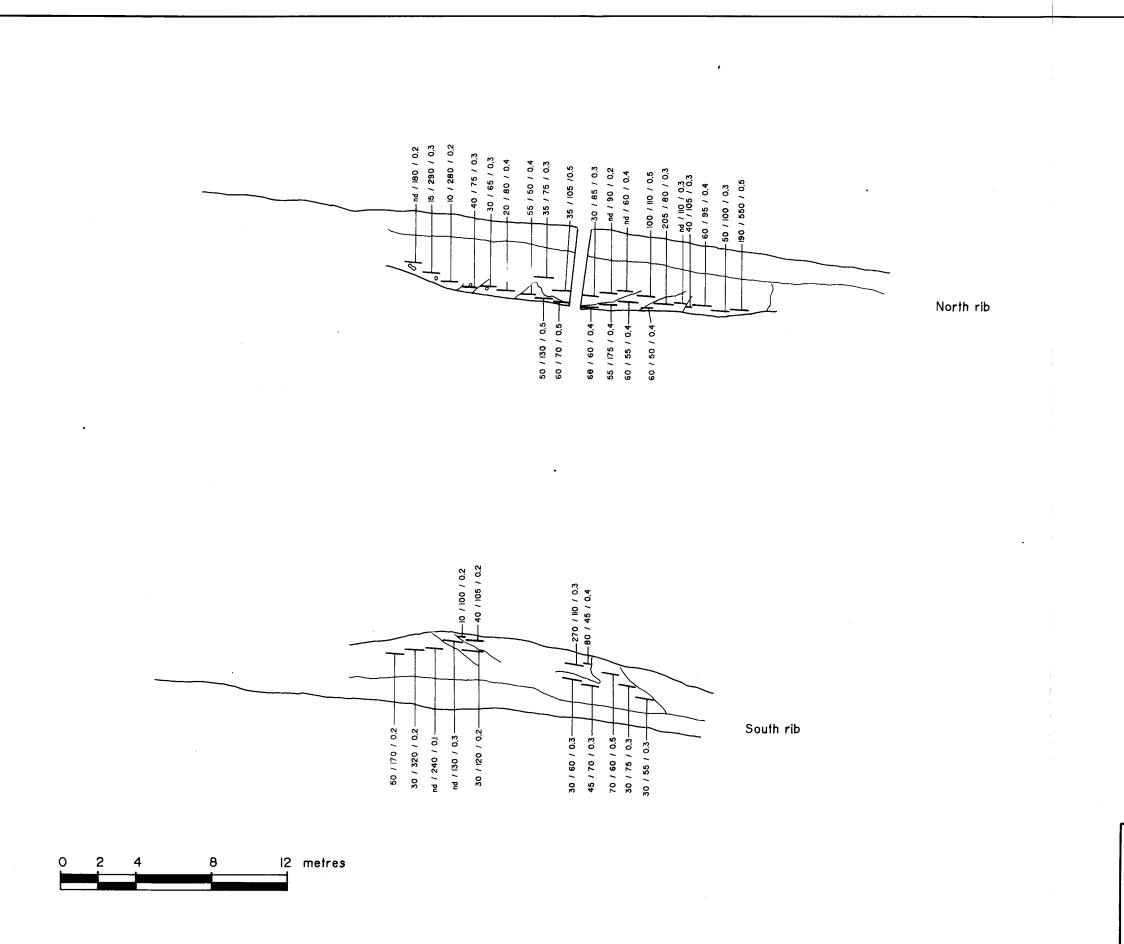
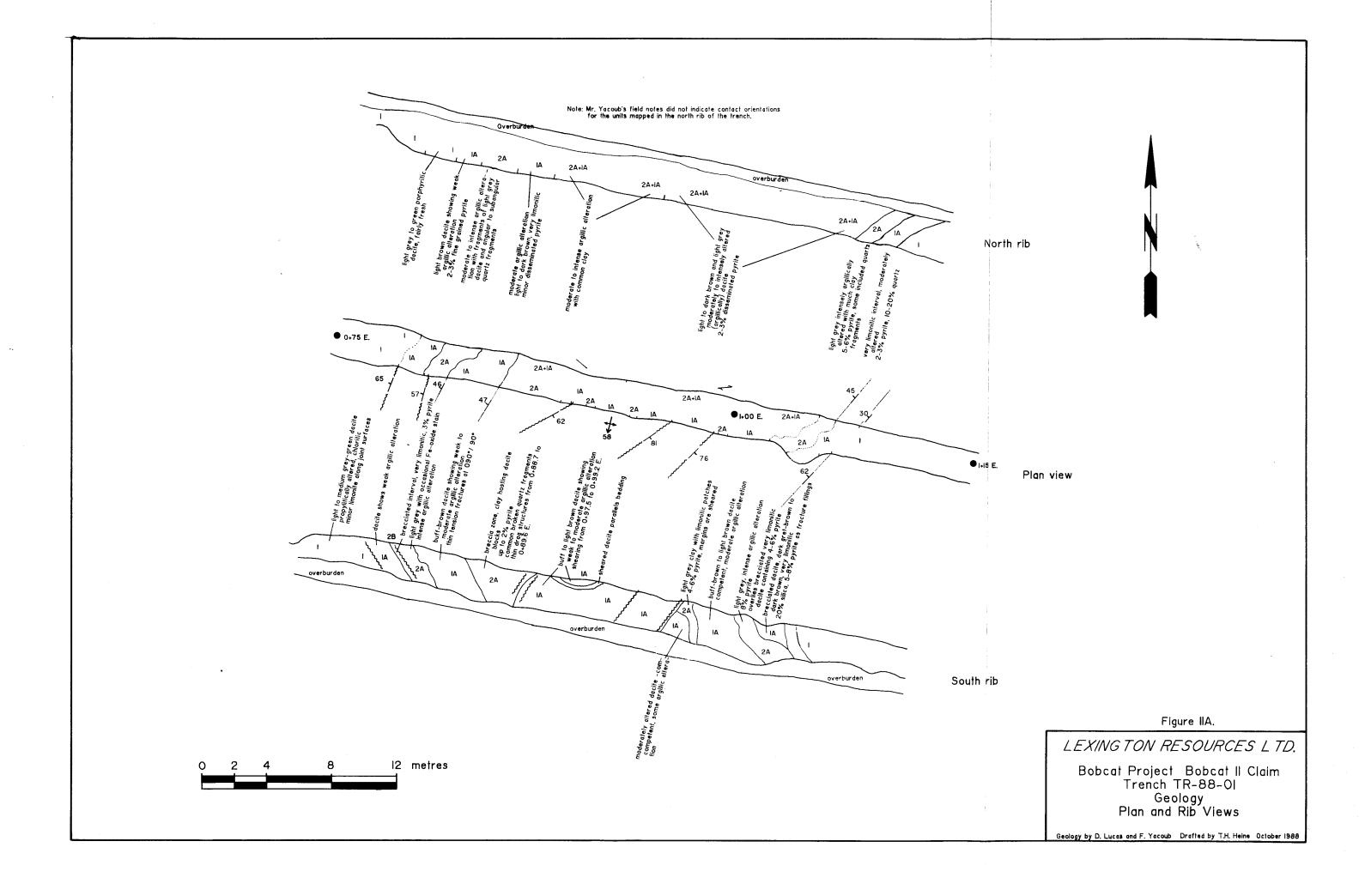



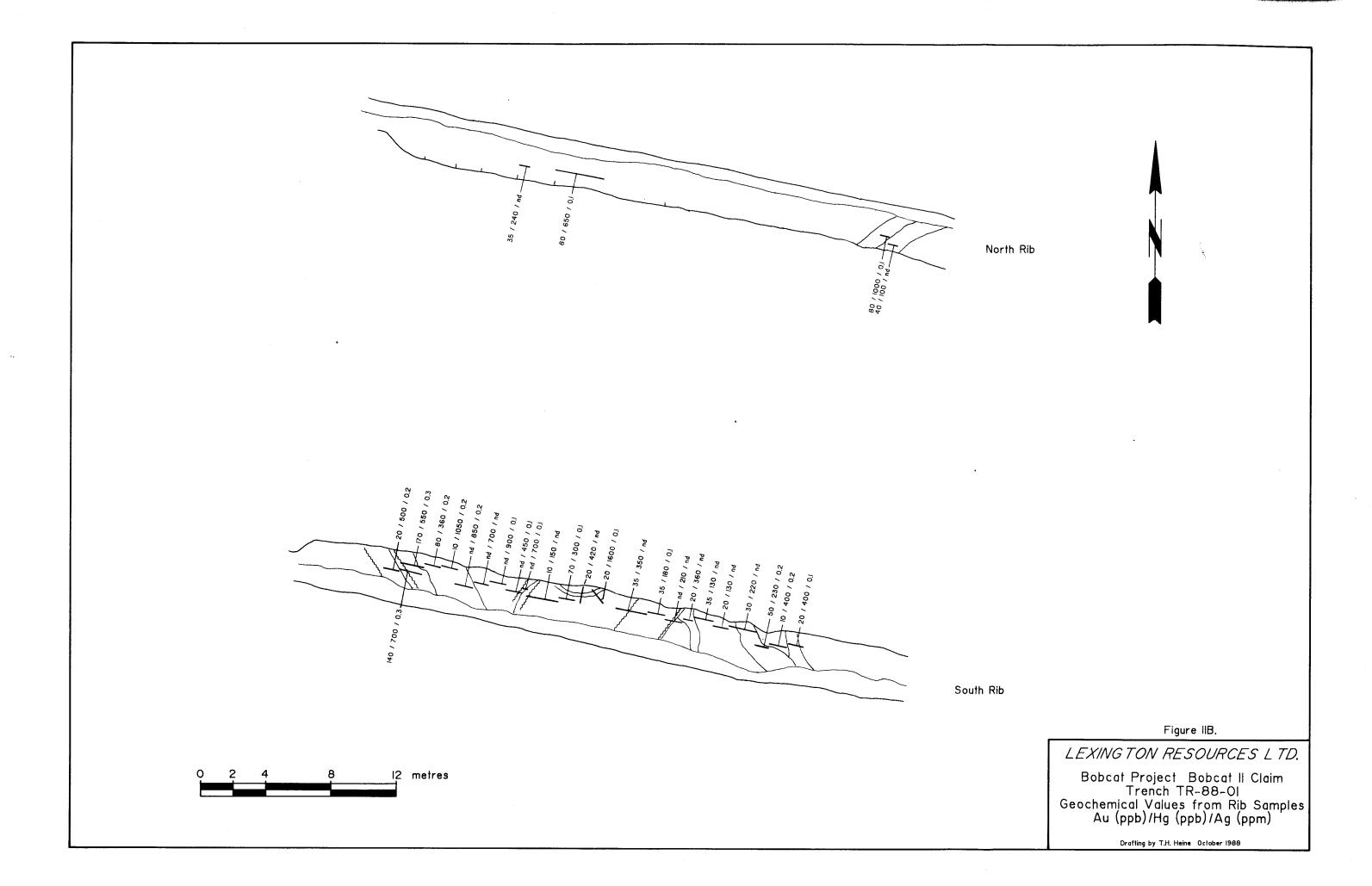

Figure 9A.

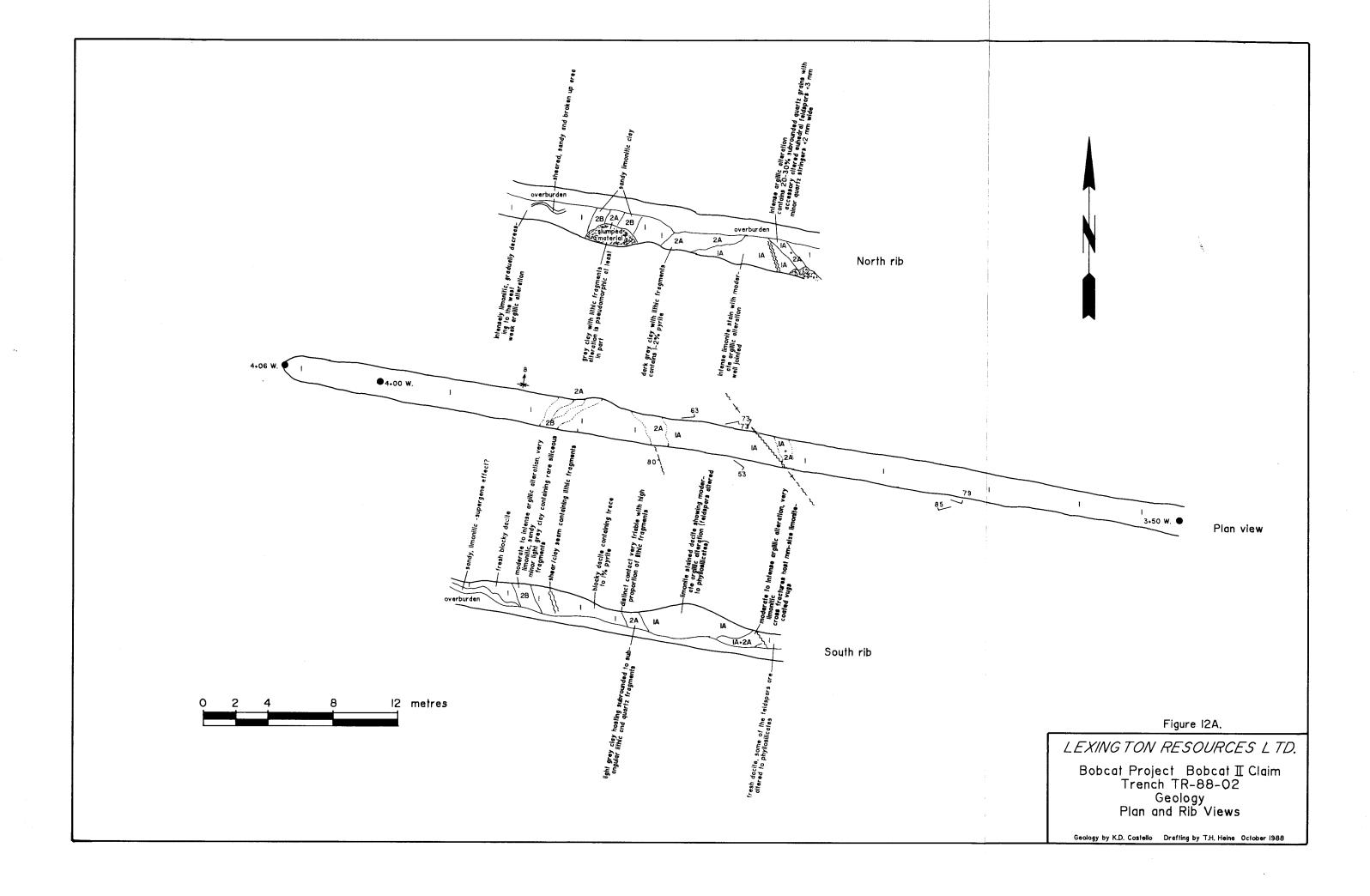
LEXINGTON RESOURCES LTD.

Bobcat Project Bobcat II Claim Trench TR-88-01 Geology Plan and Rib Views

Geology and drafting by T.H. Heine October 1988

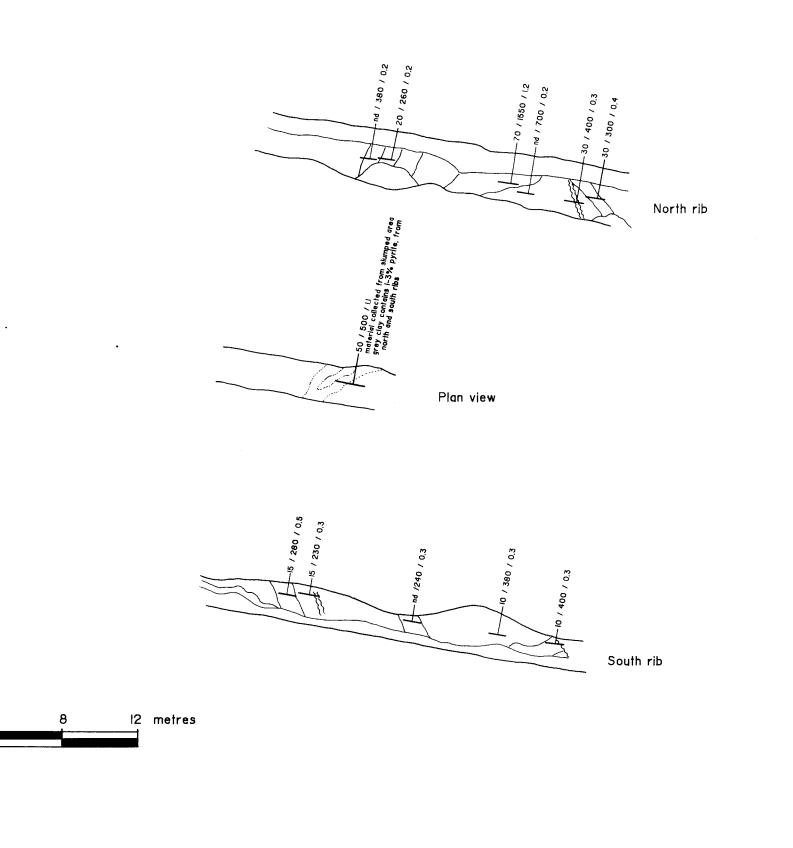
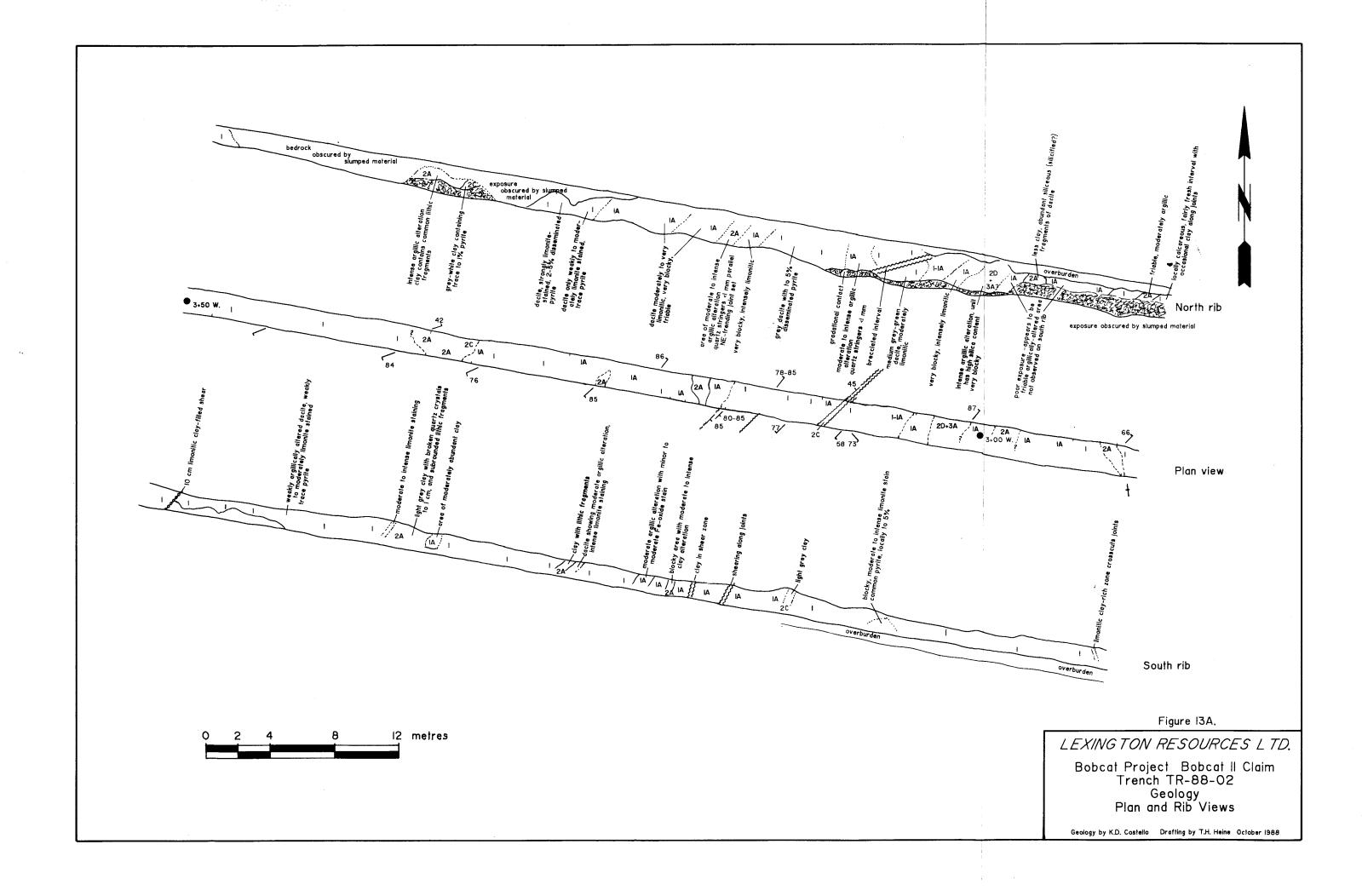



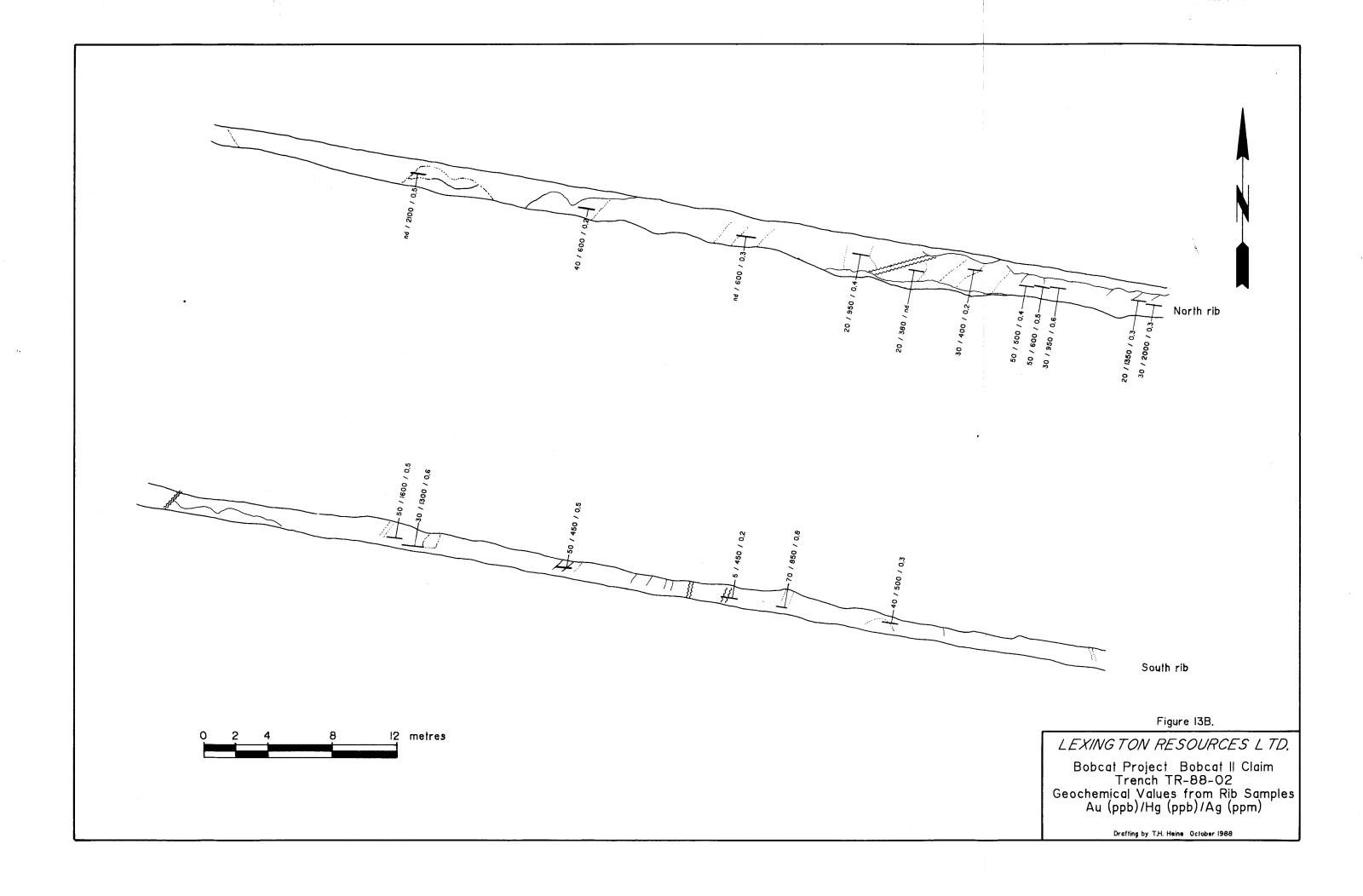

Figure IOB.

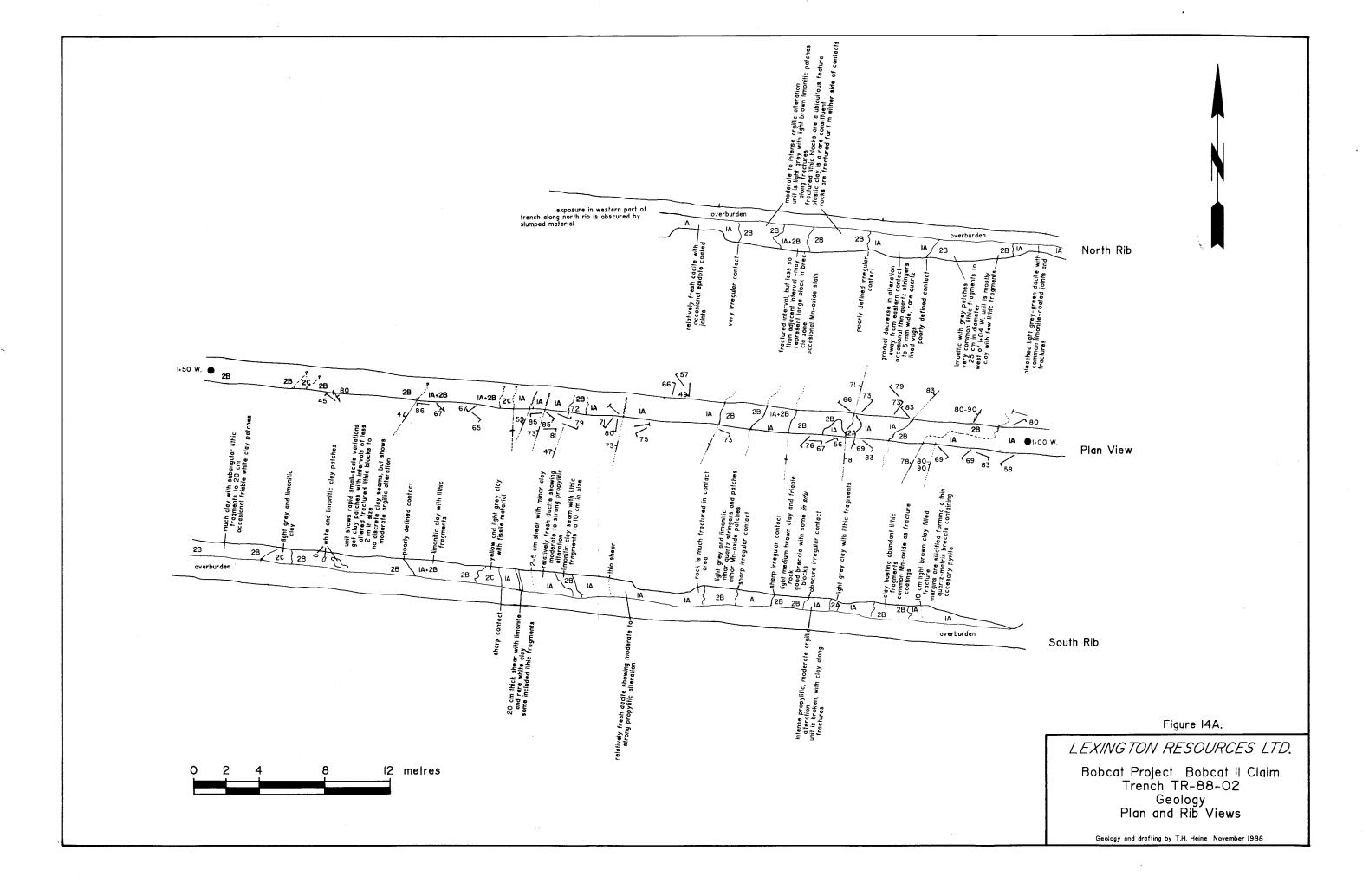

LEXINGTON RESOURCES LTD.

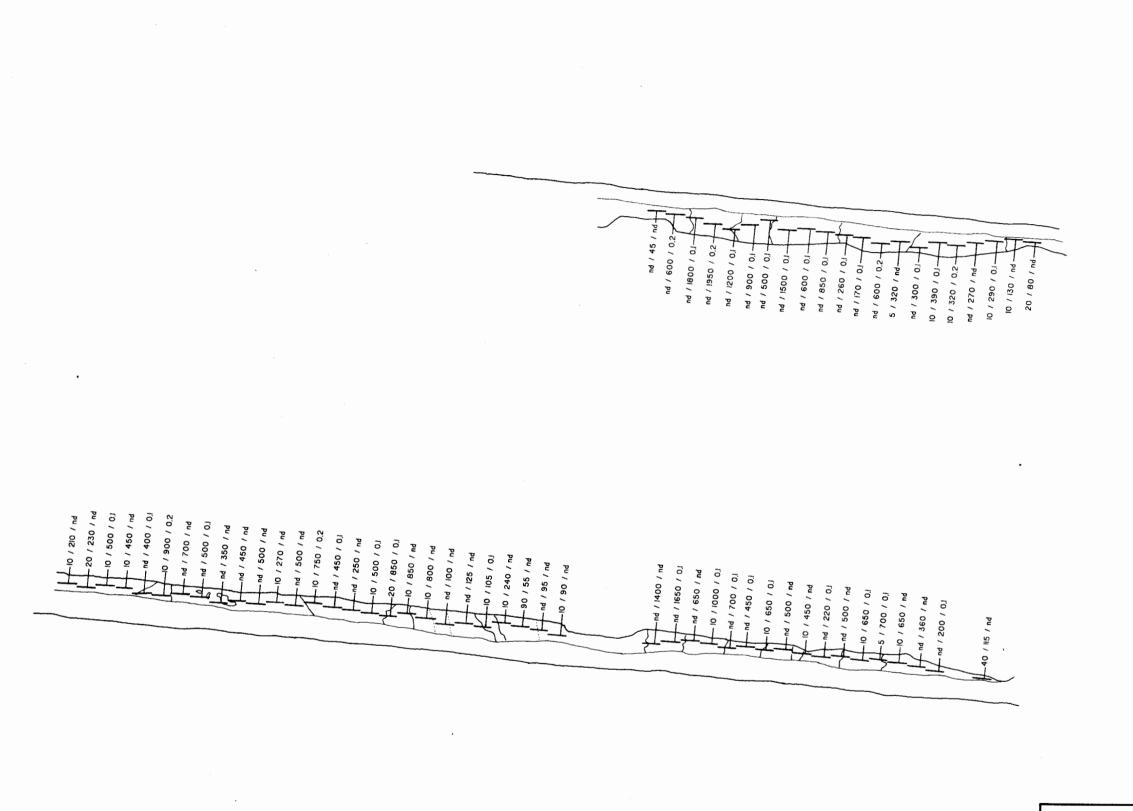
Bobcat Project Bobcat II Claim Trench TR-88-OI Geochemical Values from Rib Samples Au (ppb)/Hg (ppb)/Ag (ppm)

Drafting by T.H. Helne October 1988

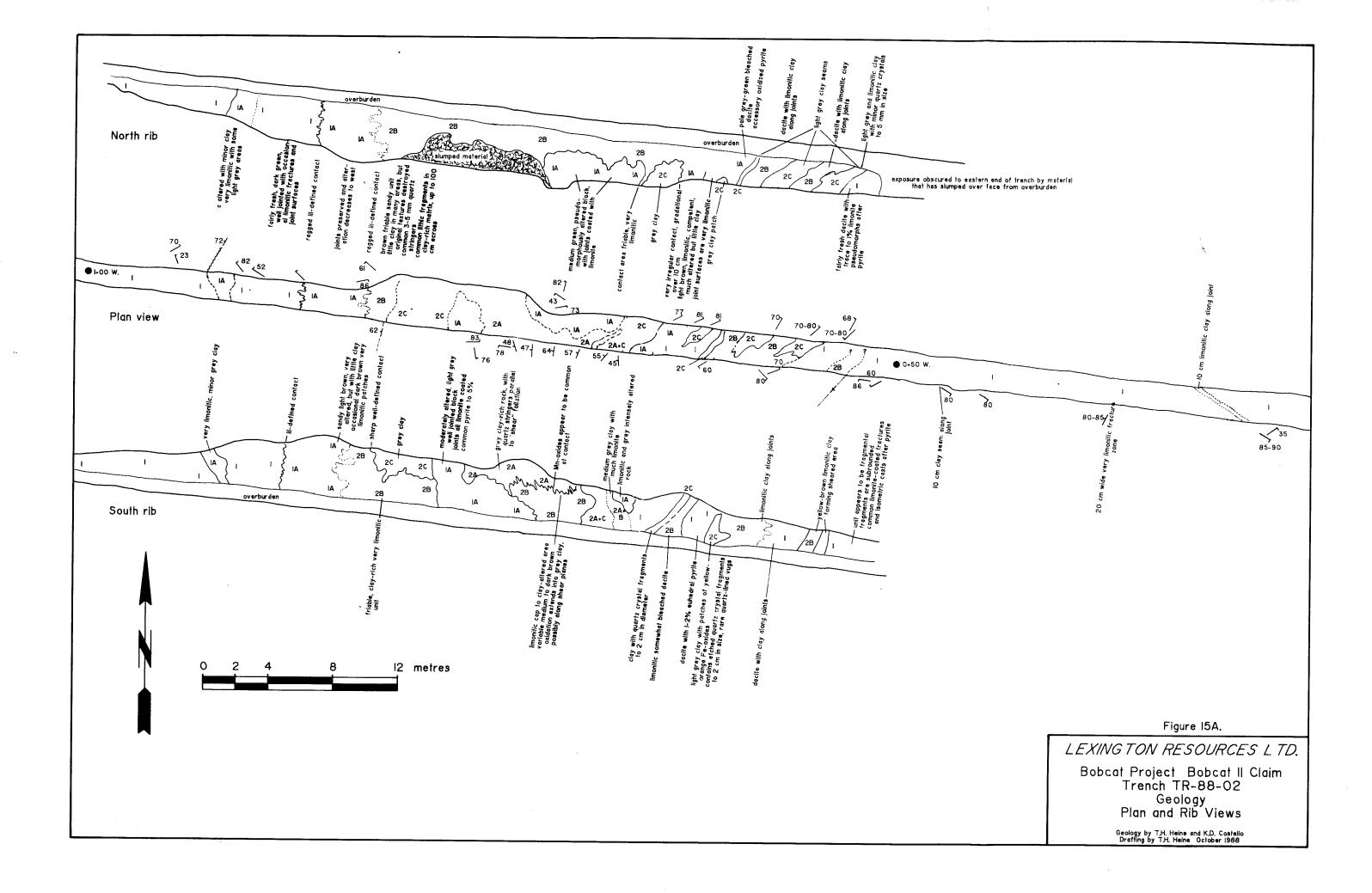



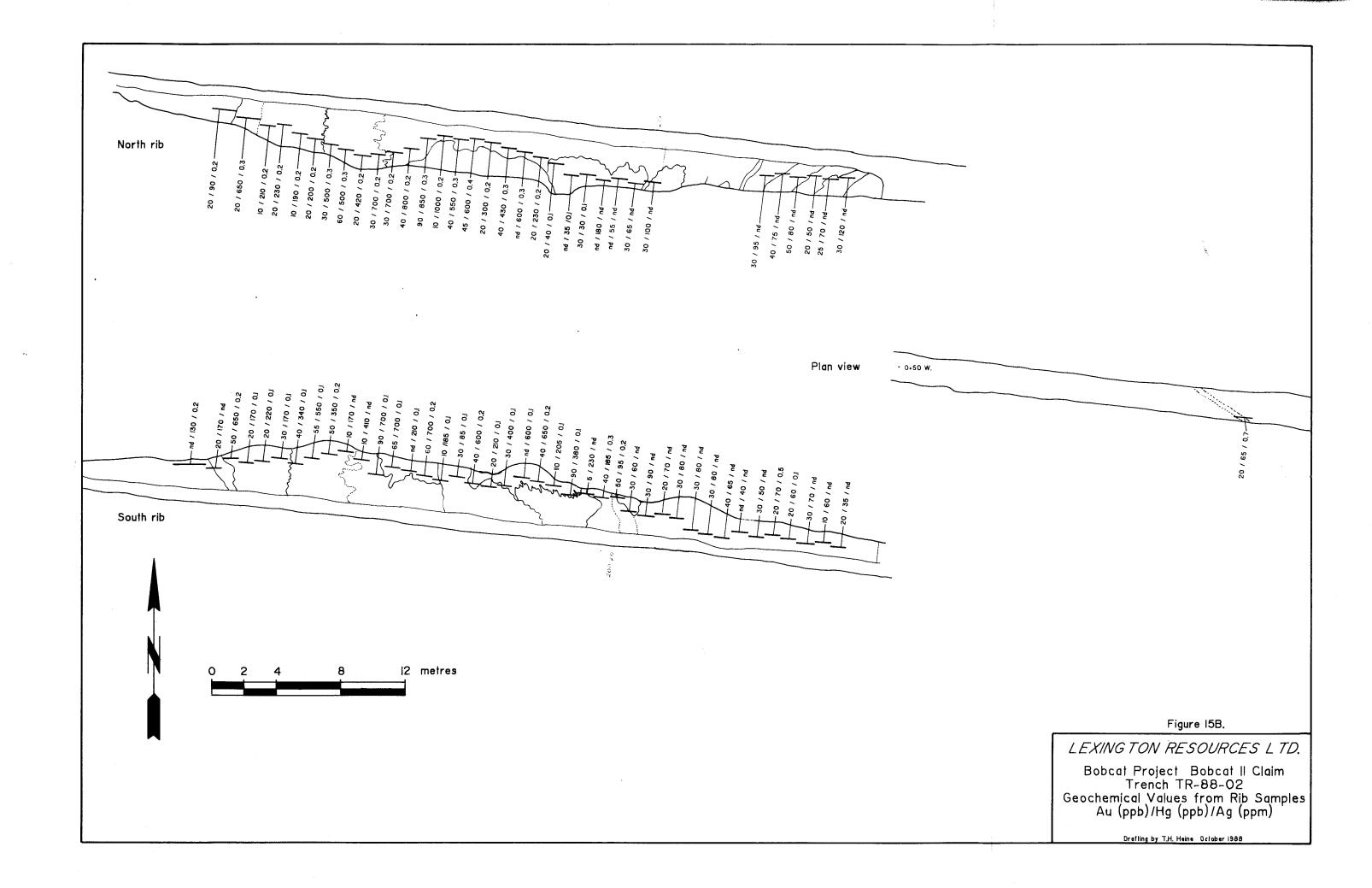

Figure 12B.

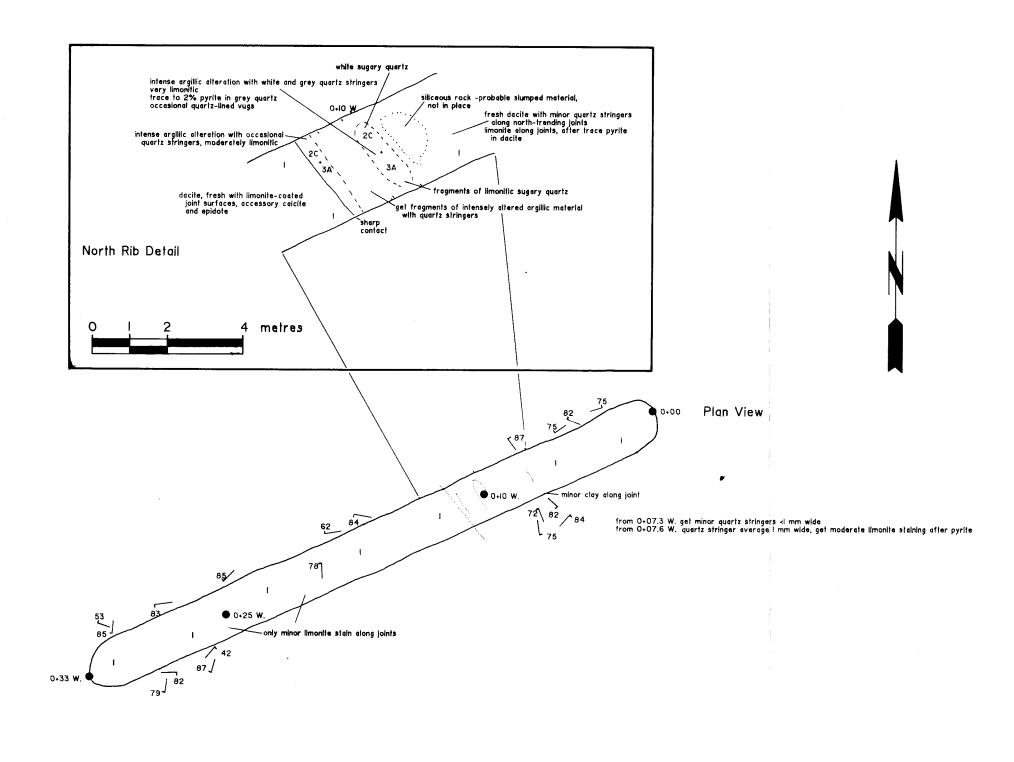

LEXINGTON RESOURCES LTD.


Bobcat Project Bobcat II Claim Trench TR-88-02 Geochemical Values from Rib Samples Au (ppb)/Hg (ppb)/Ag (ppm)

Drafting by T.H. Heine October 1988

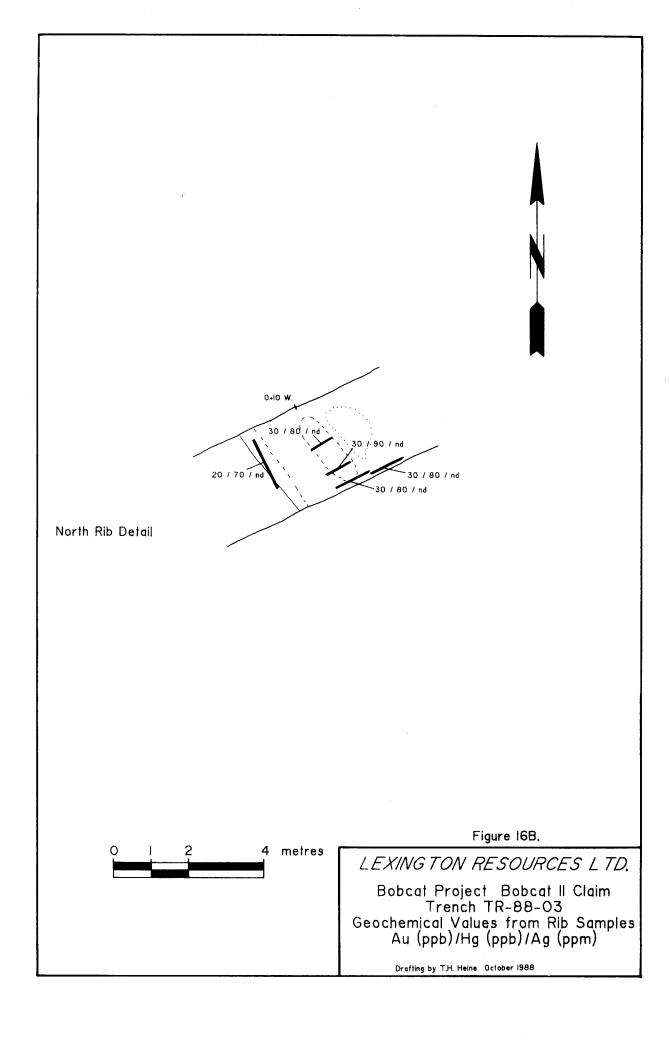

12 metres

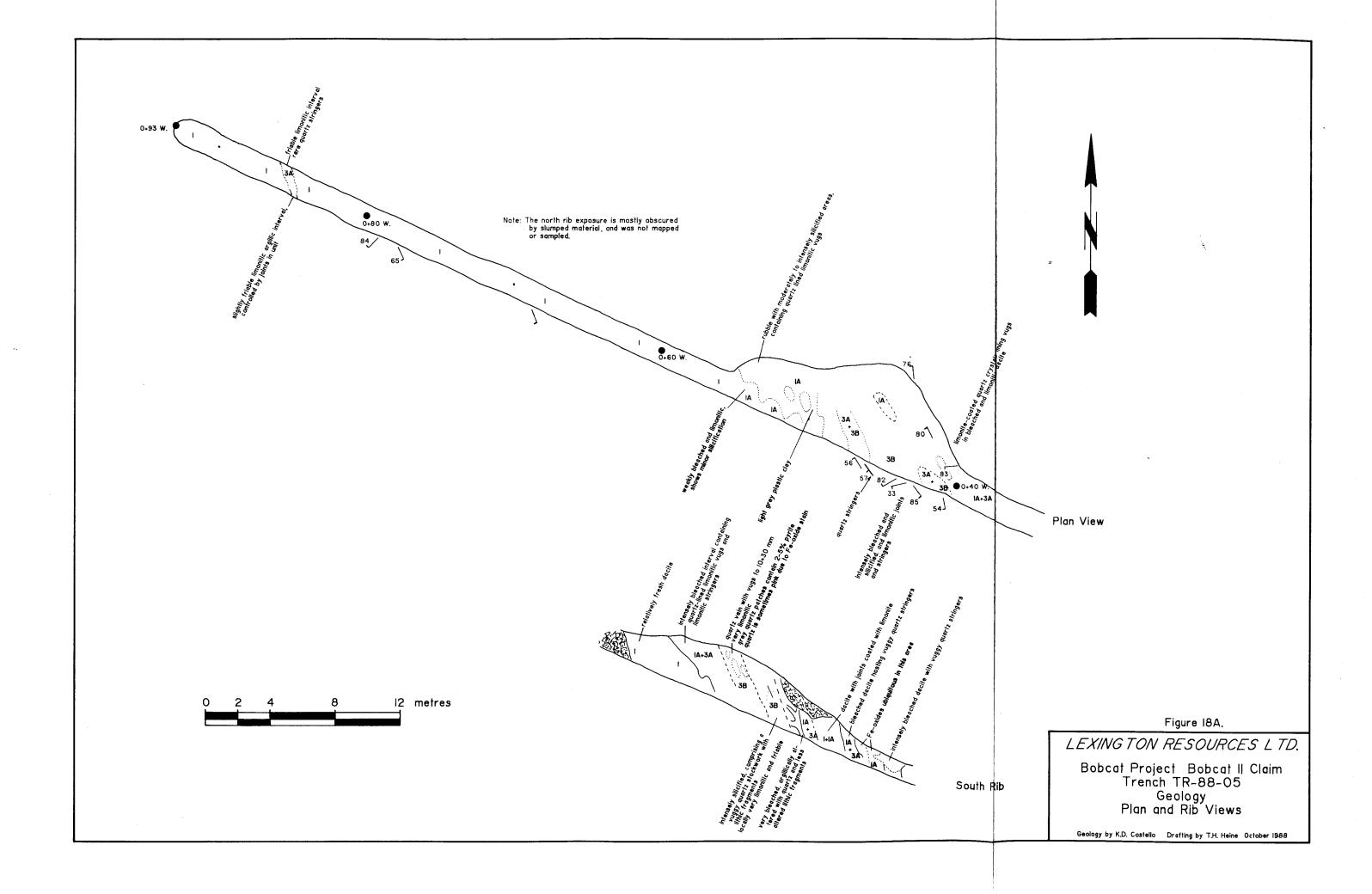

Figure 14B.

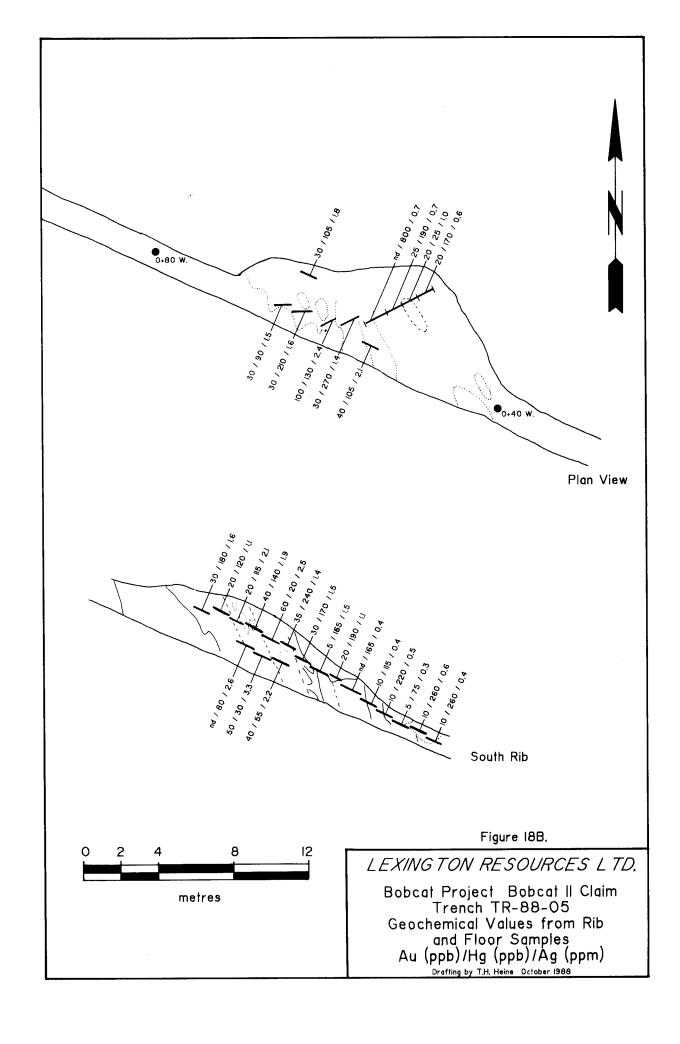

LEXINGTON RESOURCES LTD.

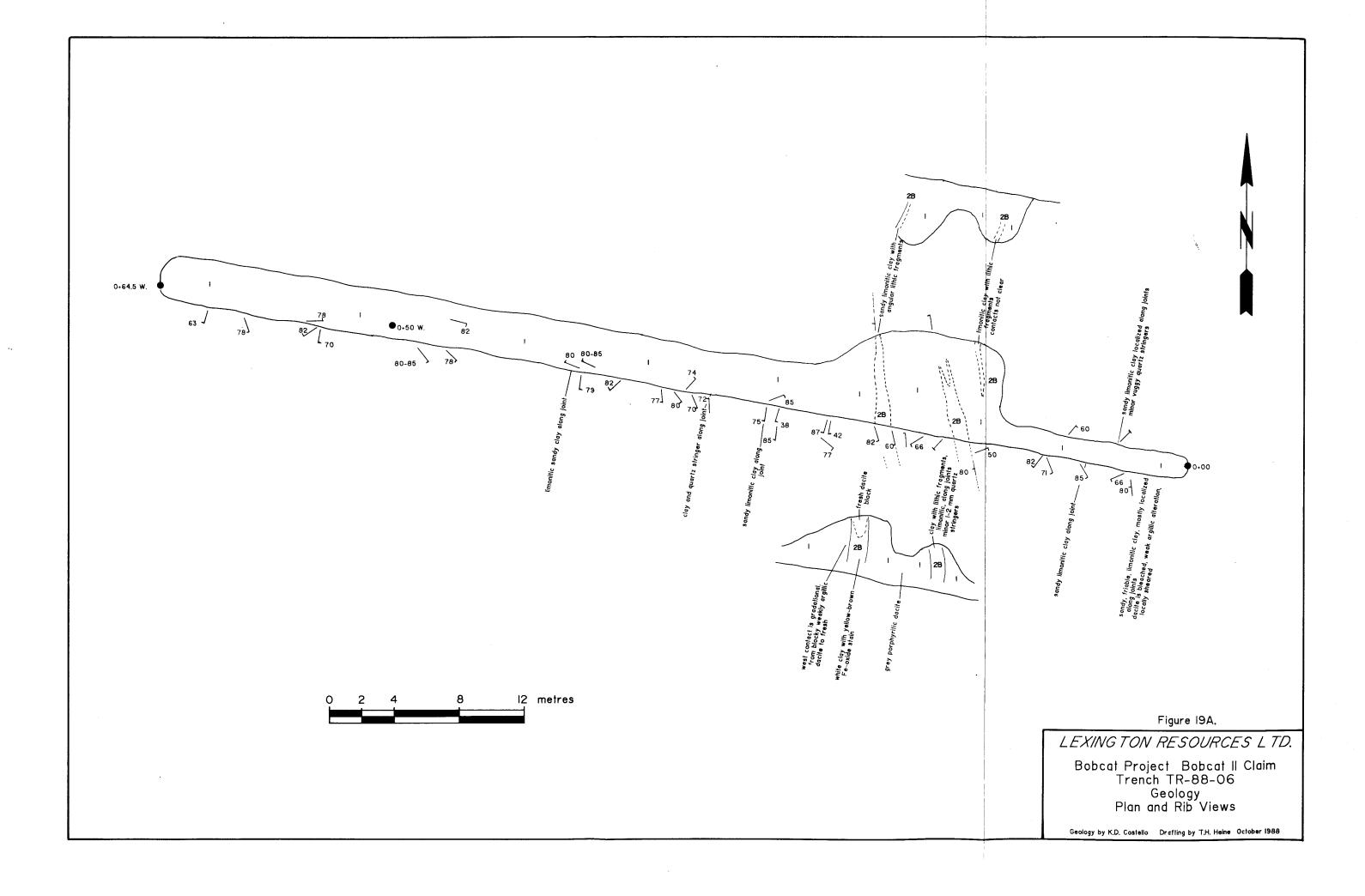
Bobcat Project Bobcat II Claim Trench TR-88-02 Geochemical Values from Rib Samples Au (ppb)/Hg (ppb)/Ag (ppm)

Drafting by T.H. Heine November 1988

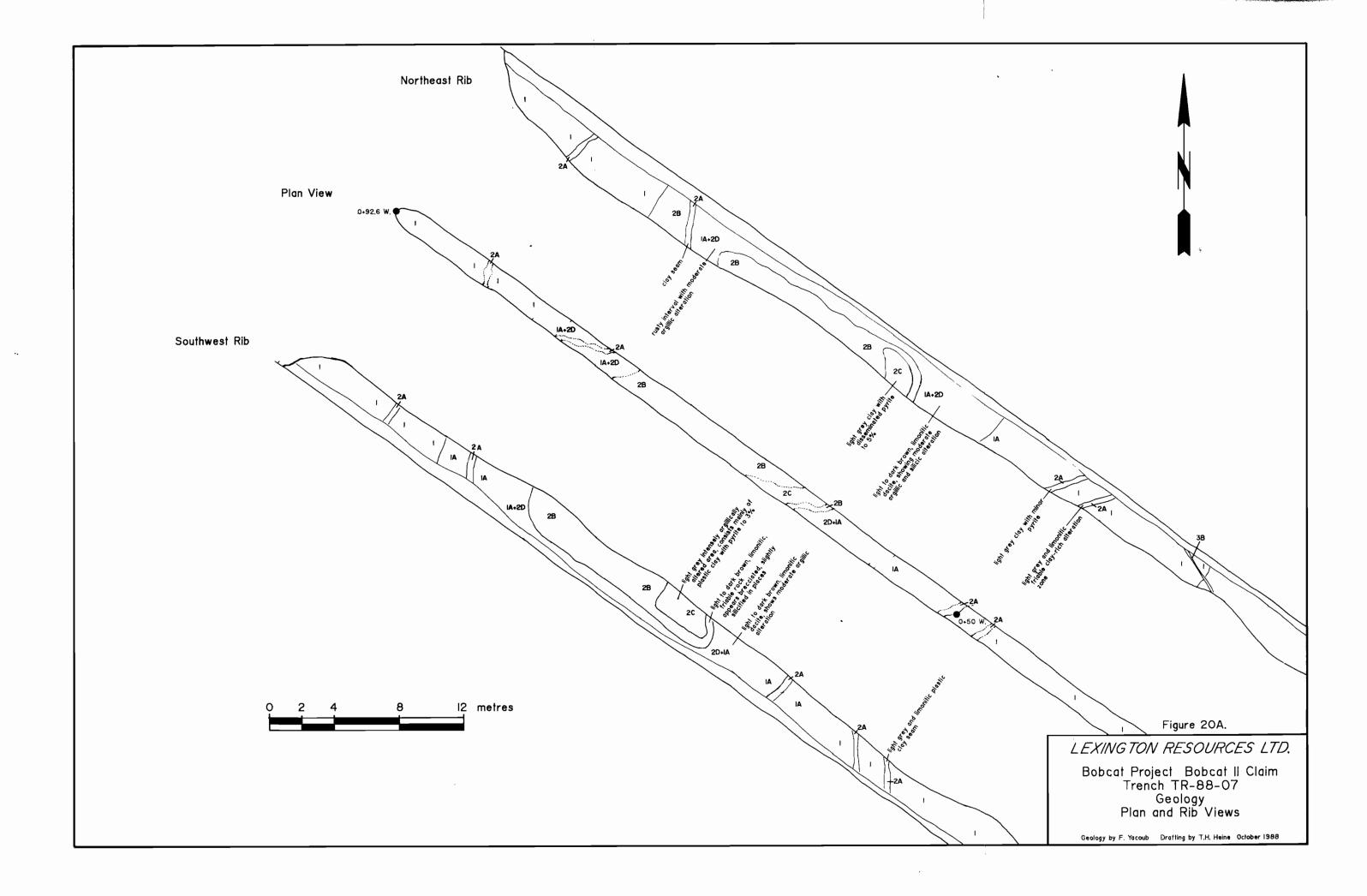

12 metres

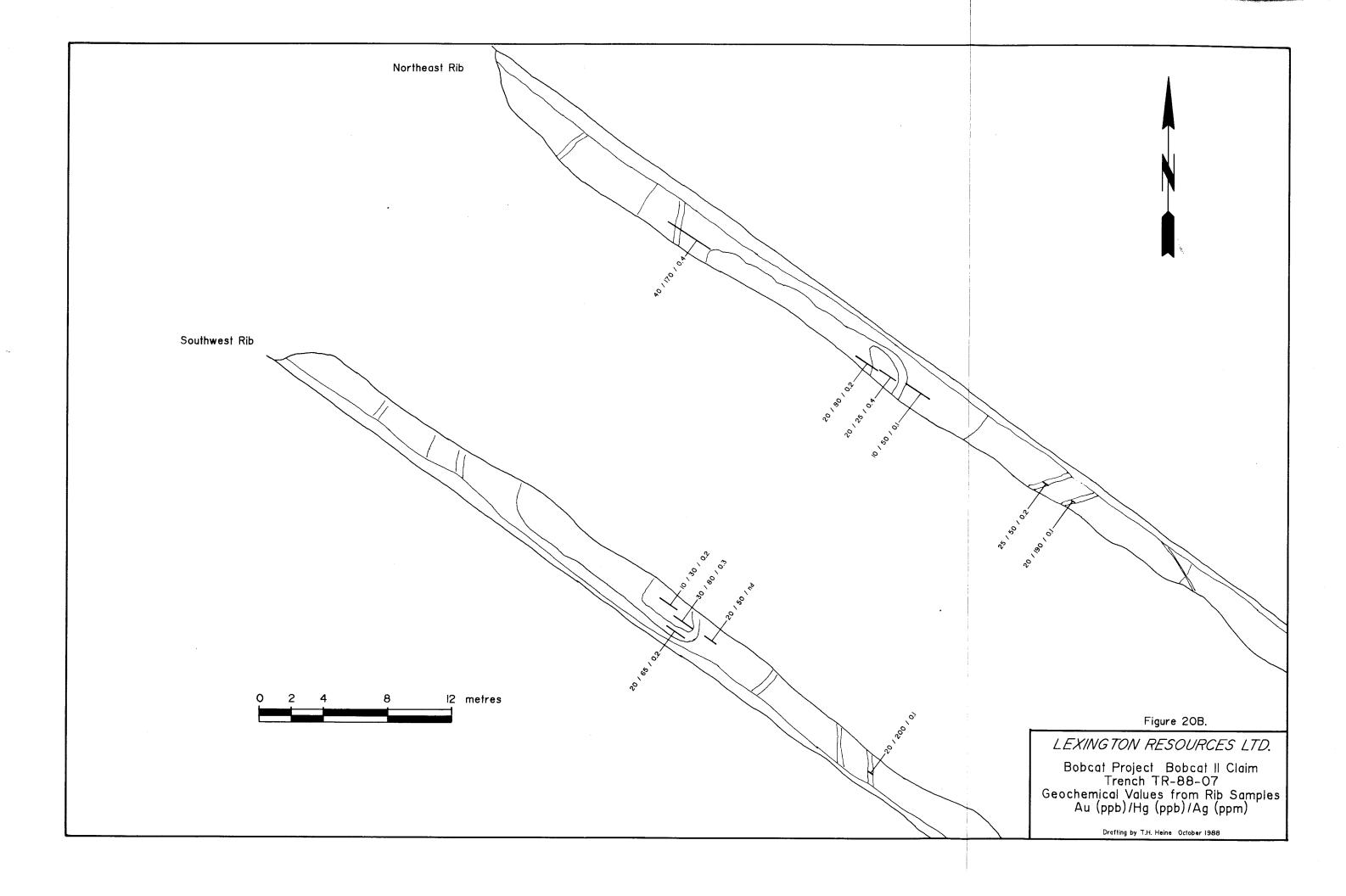


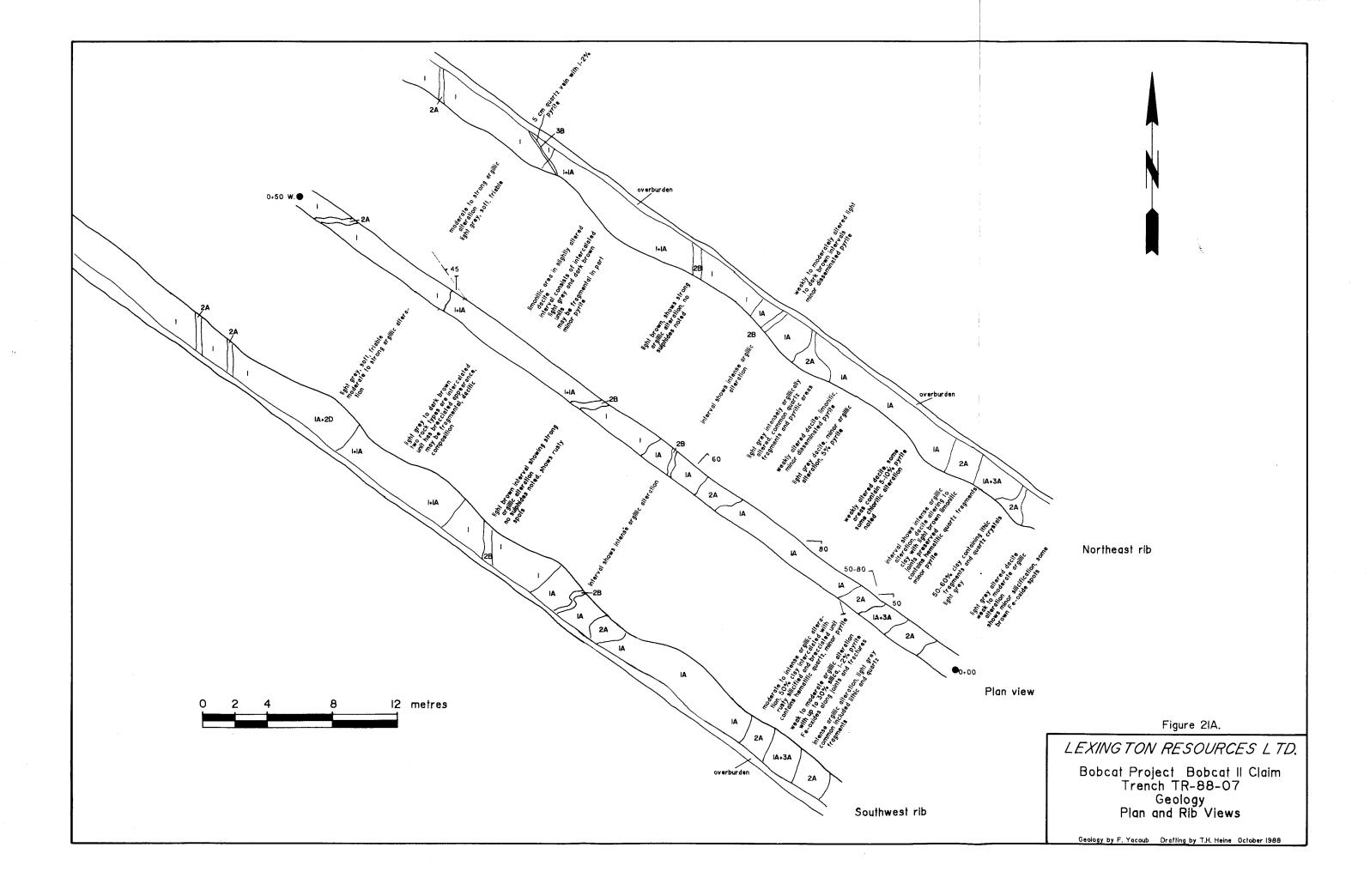

LEXINGTON RESOURCES LTD.

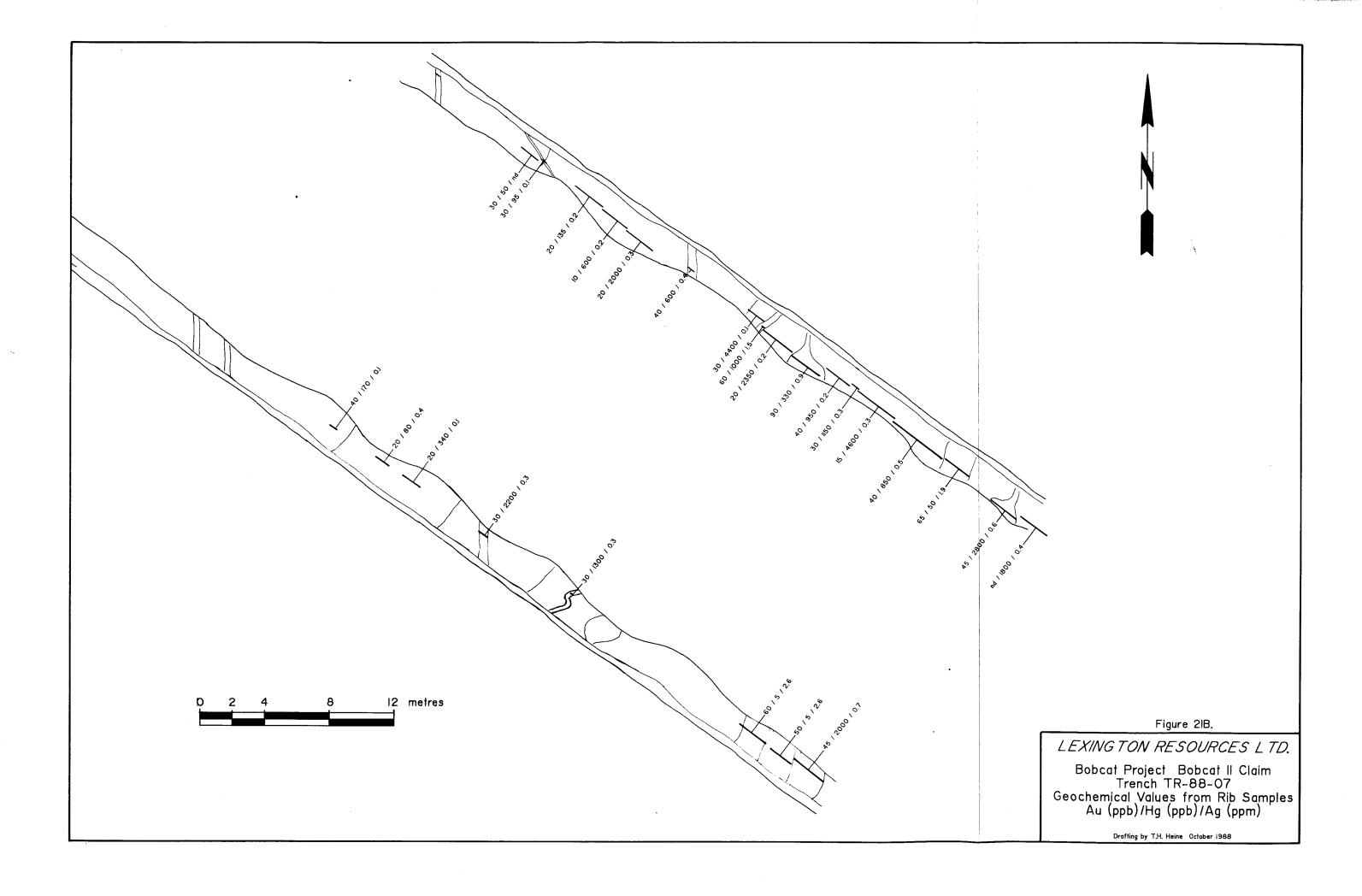

Bobcat Project Bobcat II Claim Trench TR-88-03 Geology Plan and Rib Views

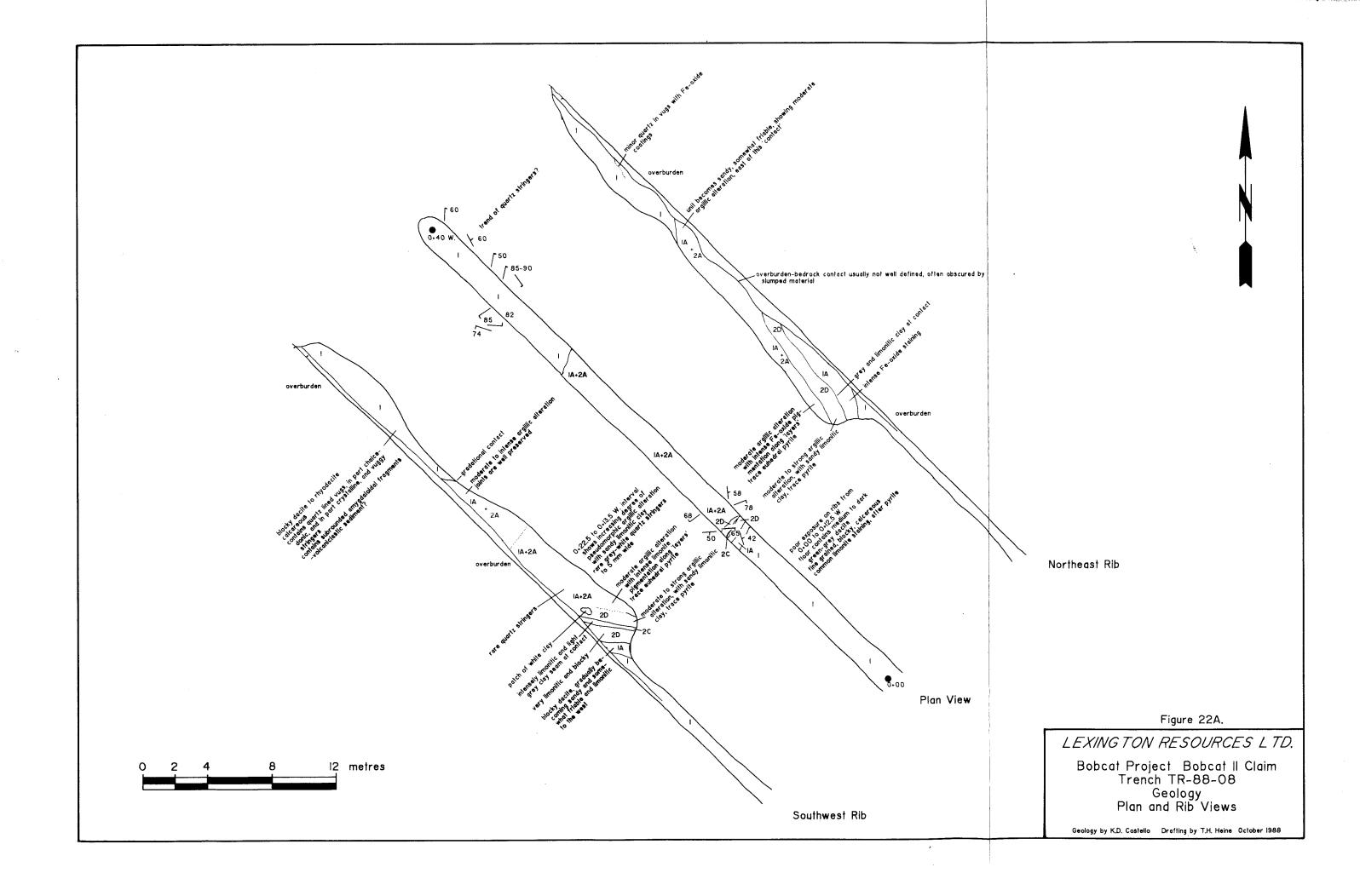
Geology by K.D. Costello Drafting by T.H. Heine October 1988

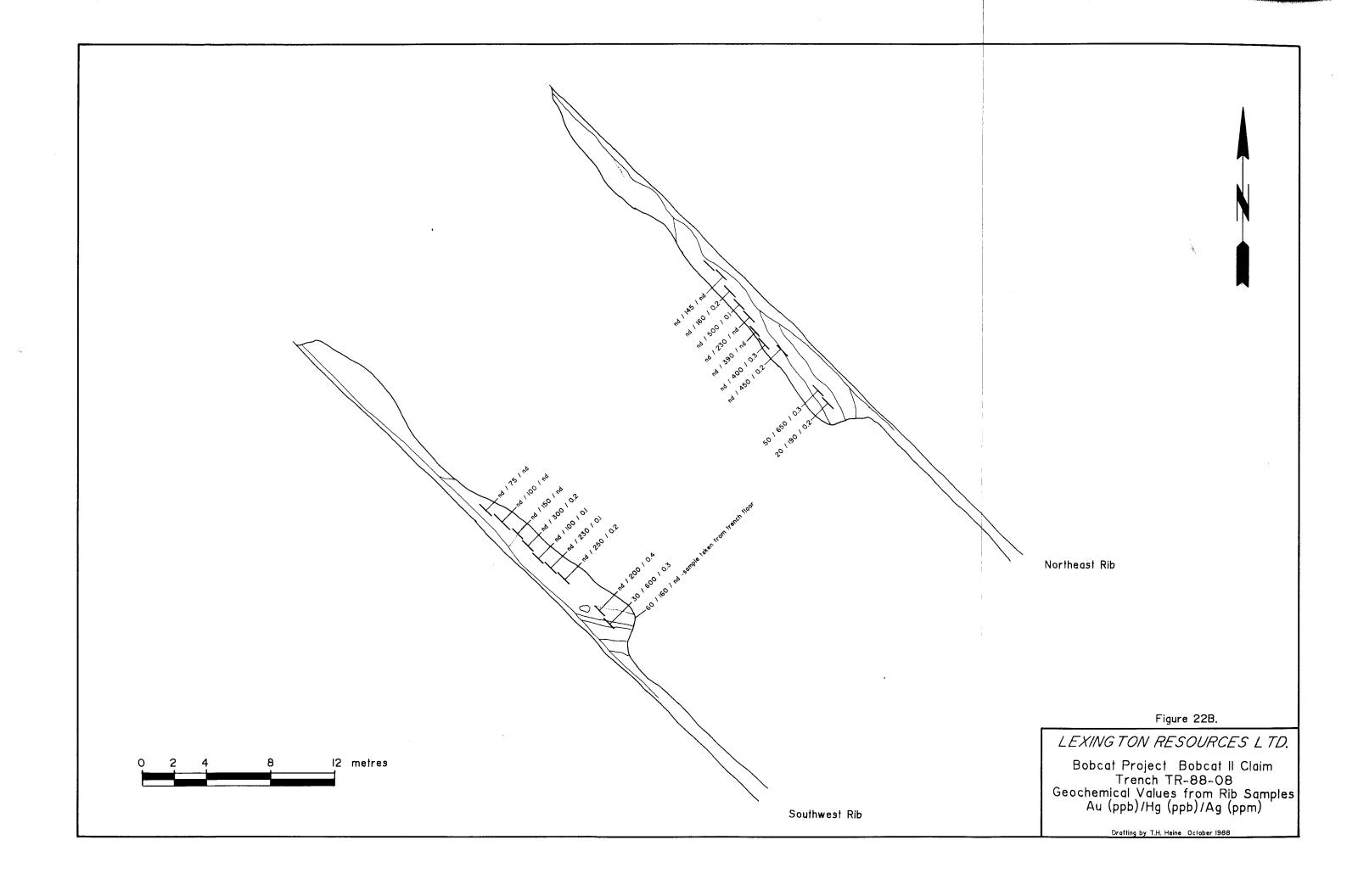


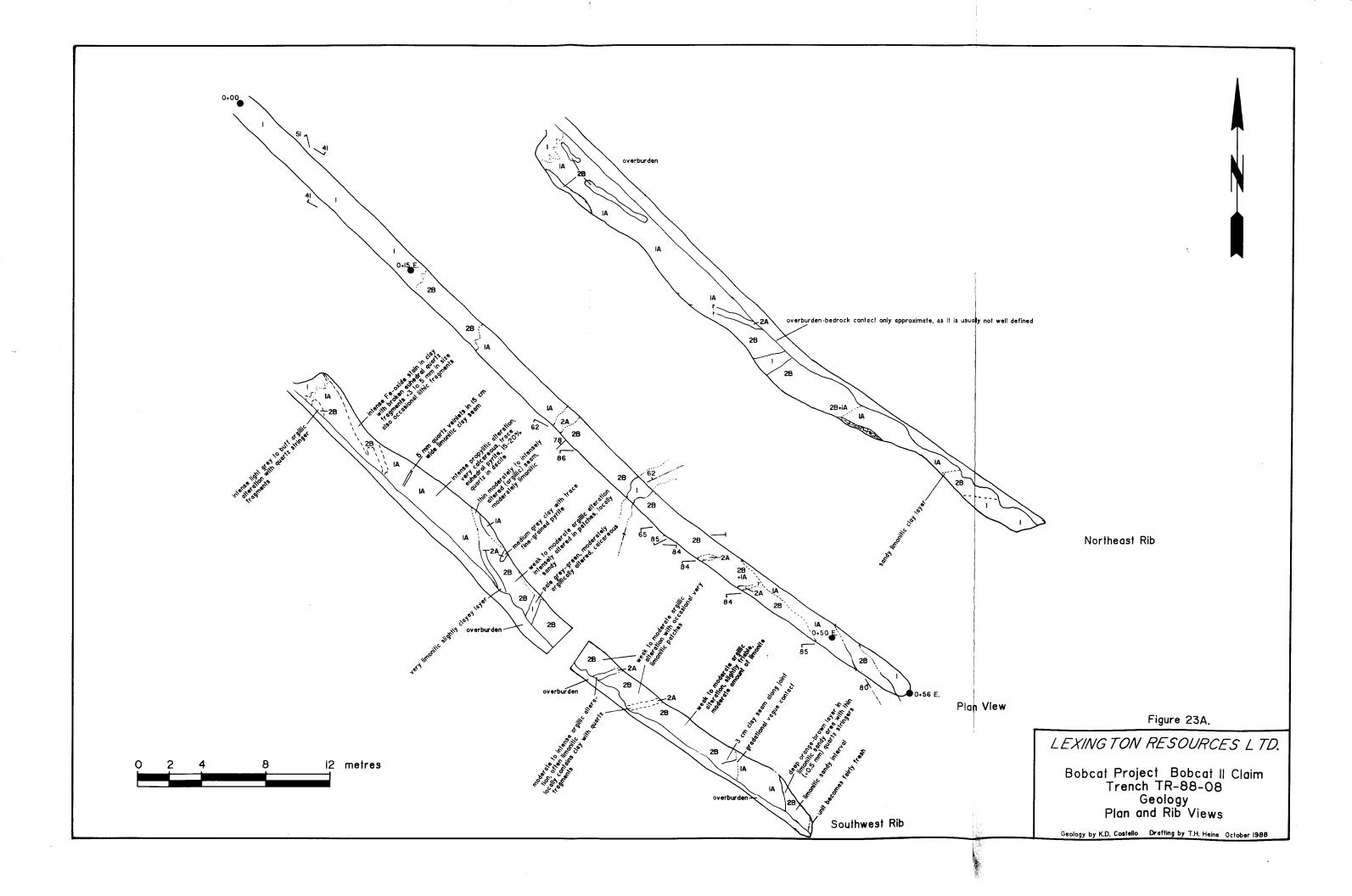


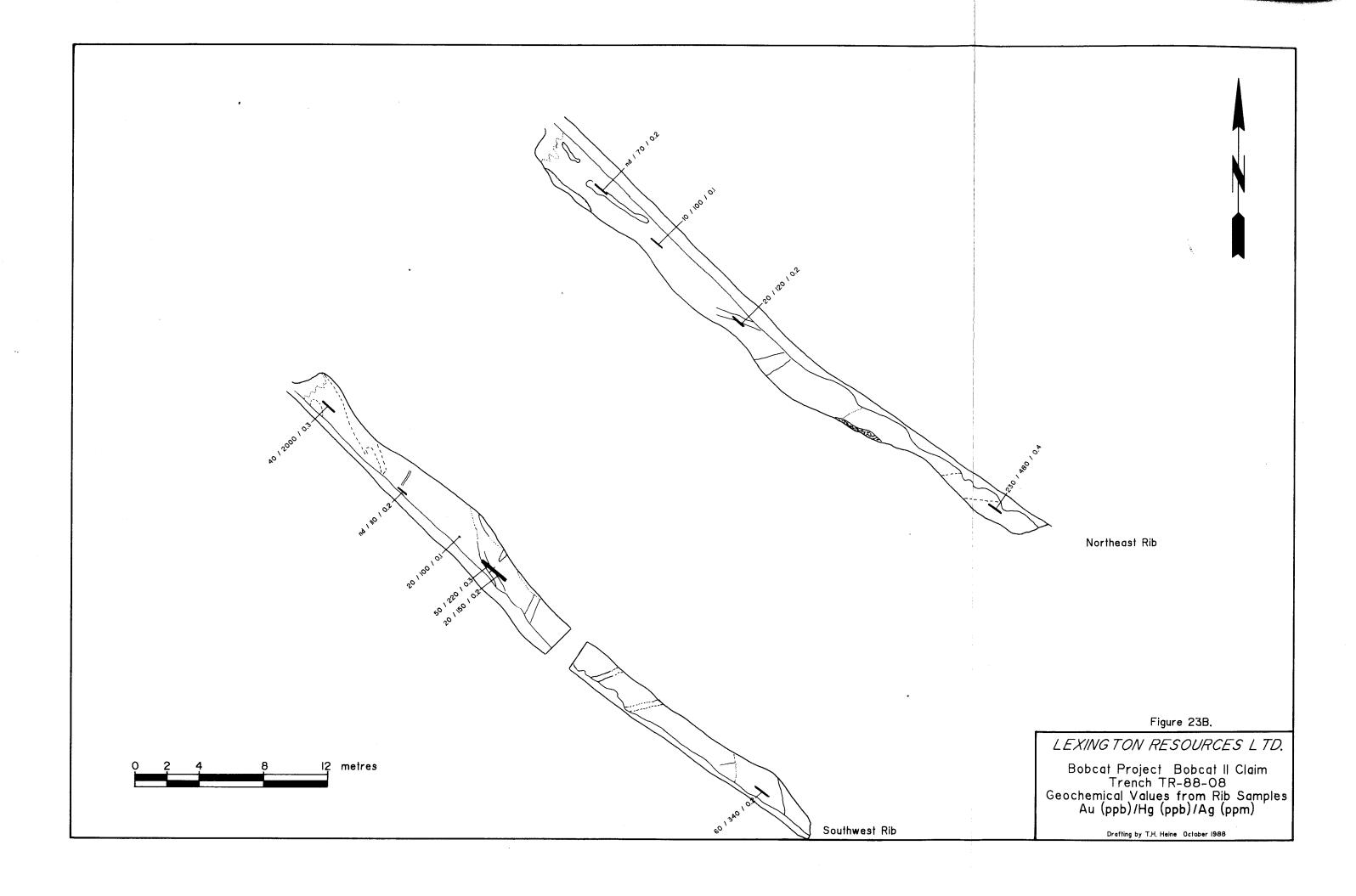


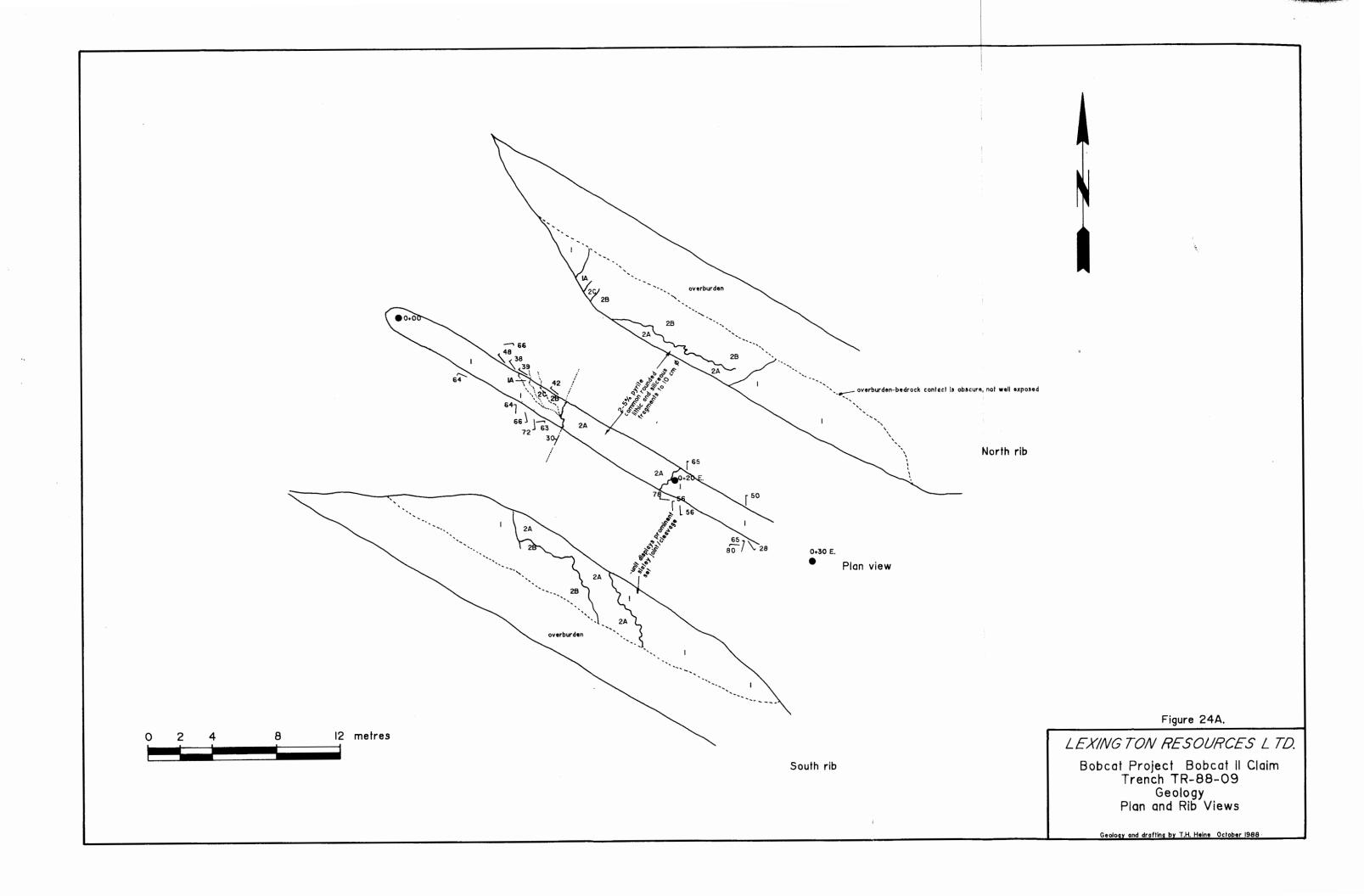


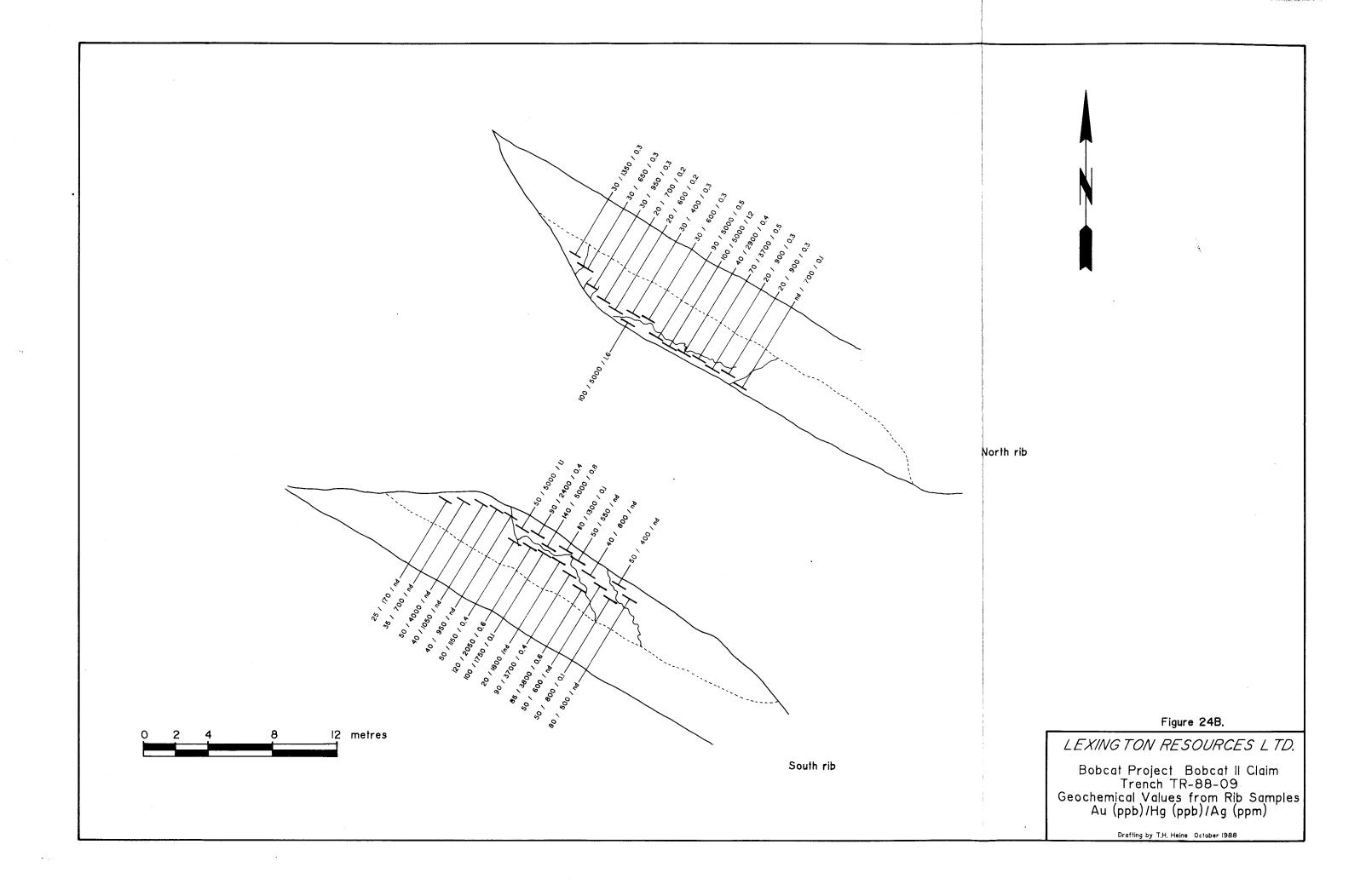


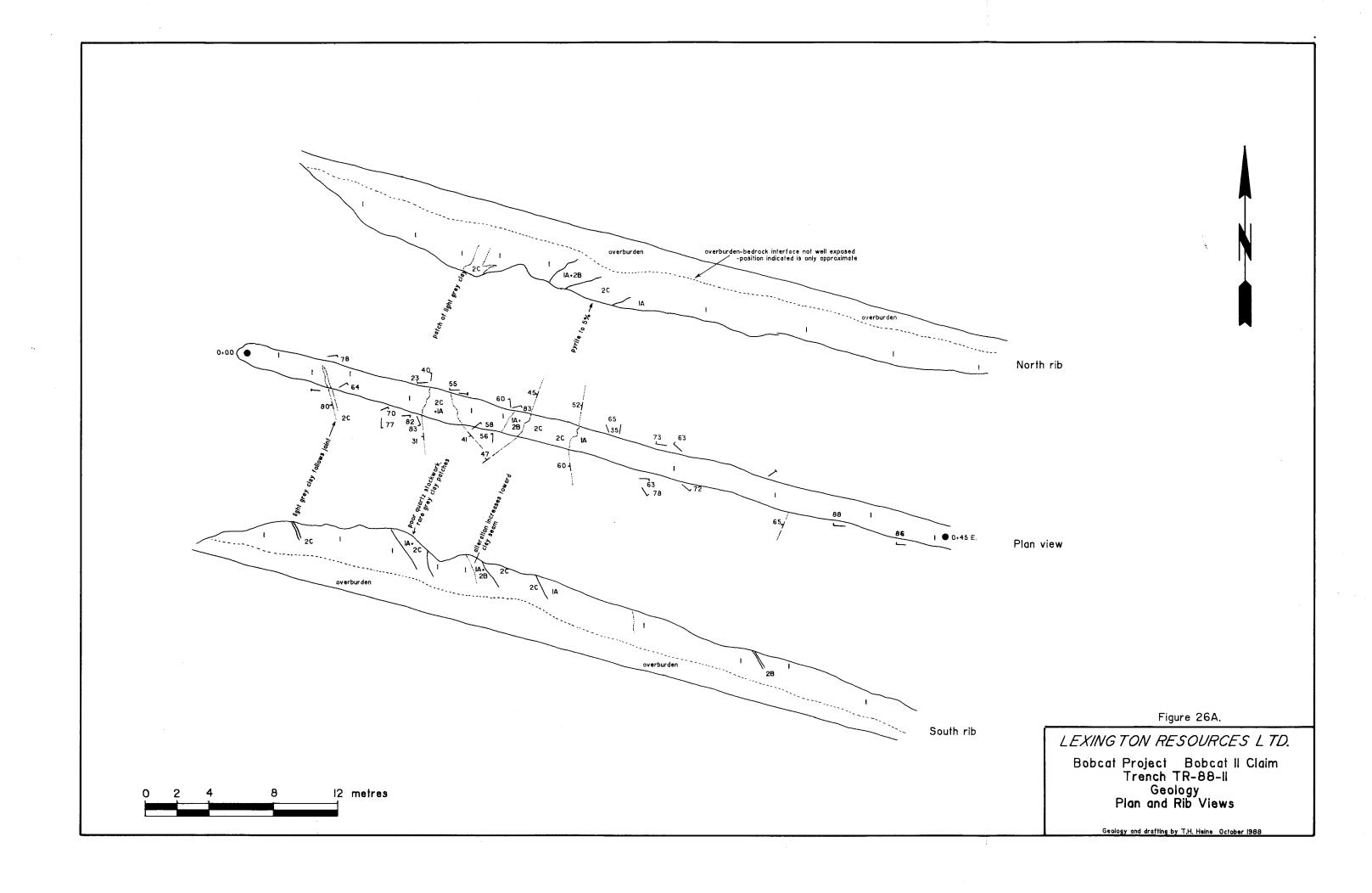


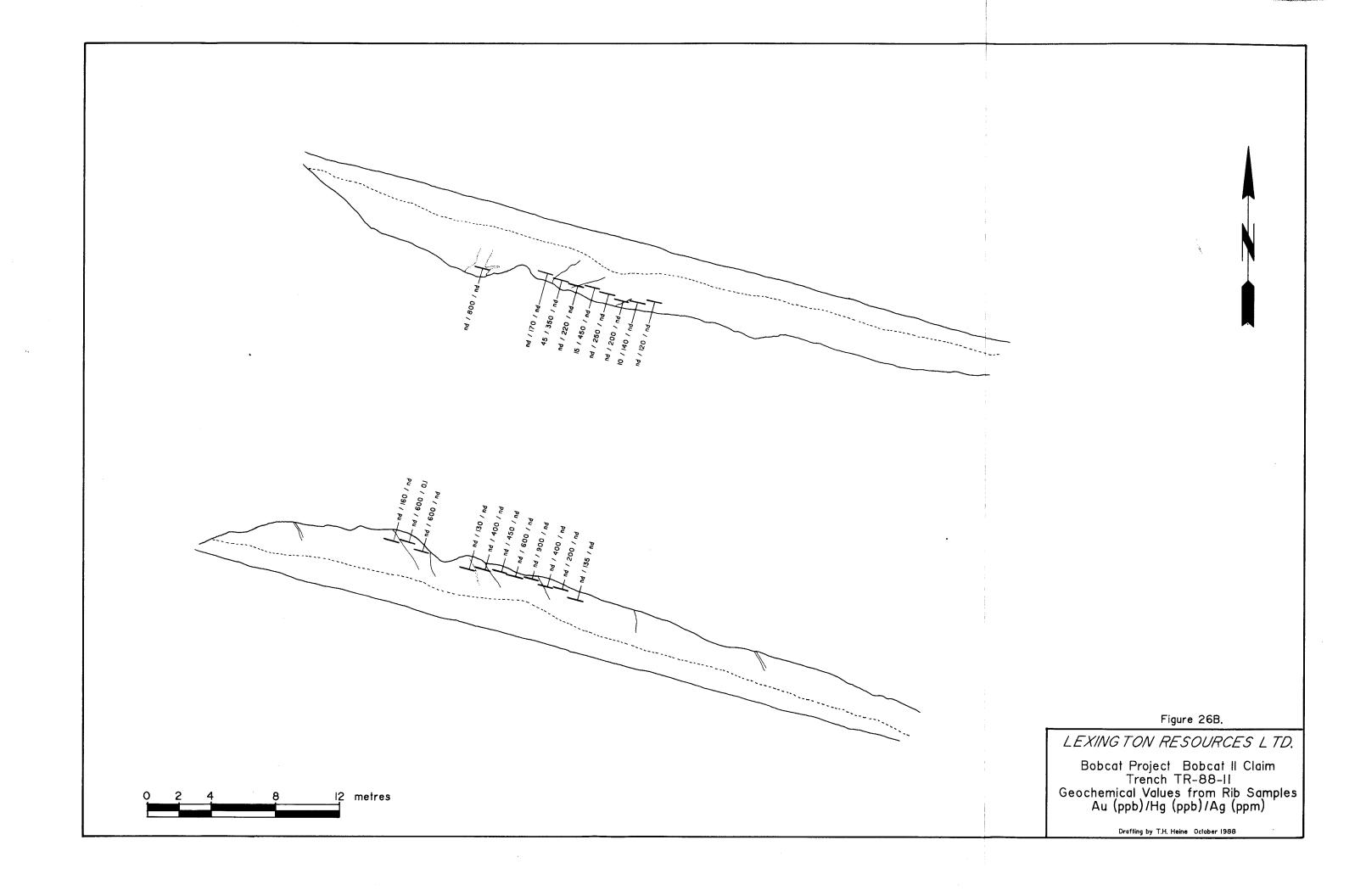


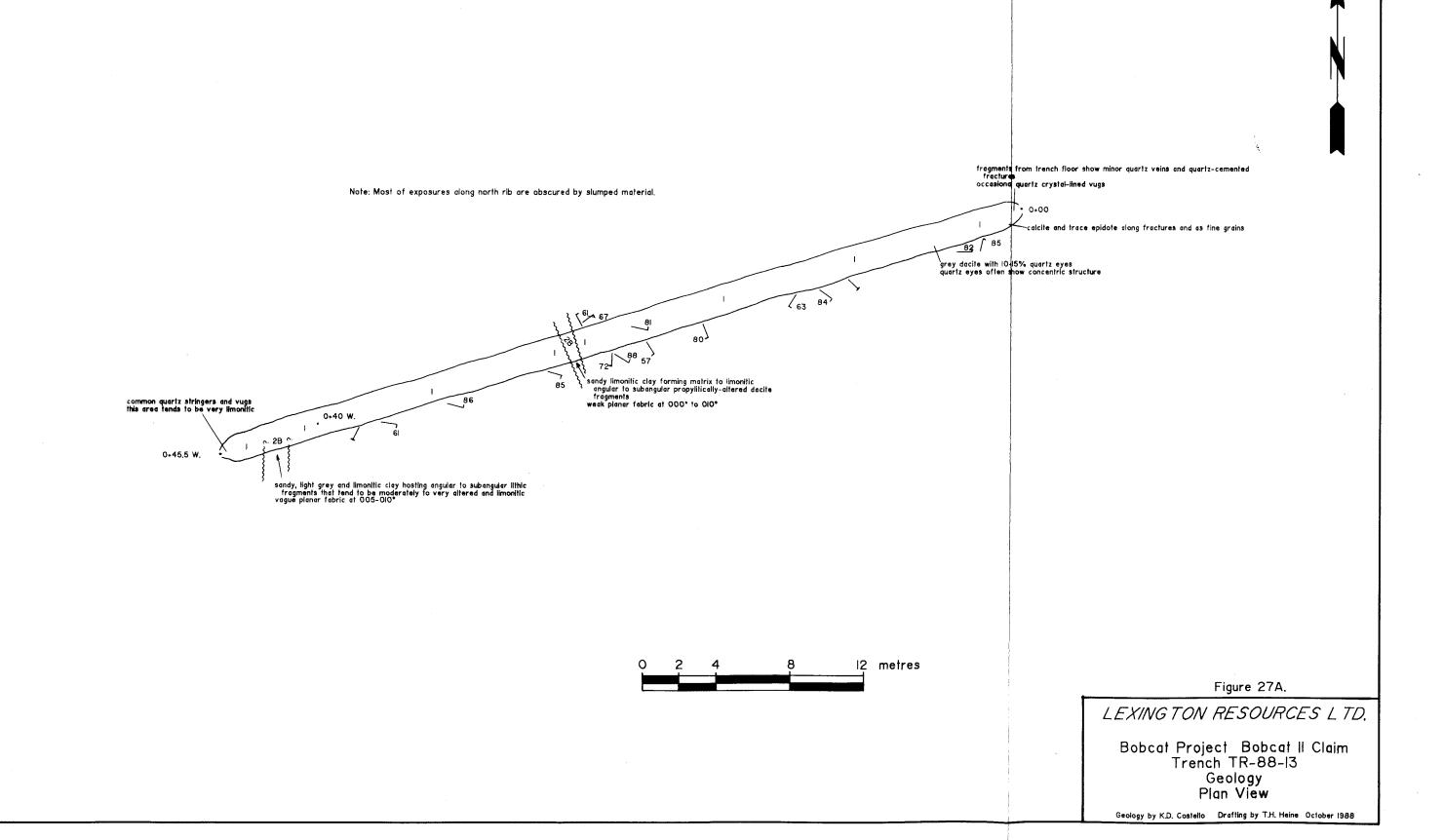


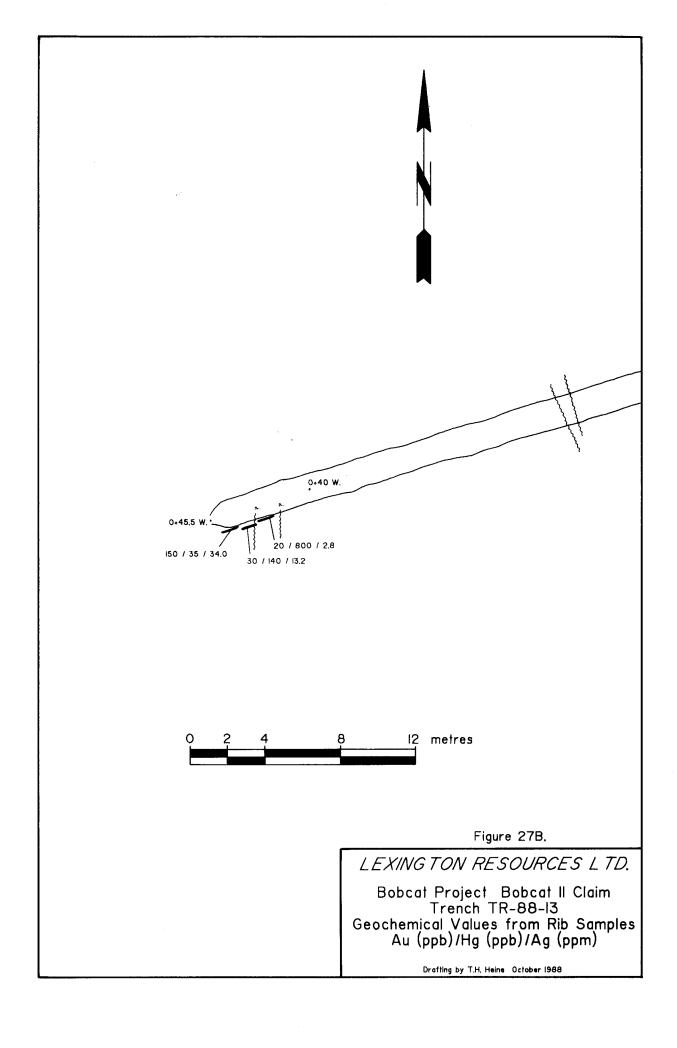












i. Argillic Alteration

The main alteration type observed in the trenches consists of areas or zones of intense argillic alteration (Unit 2). These are represented by areas of pseudomorphous replacement of the host lithology by fine grained phyllosilicates, and by the formation of clay seams and units of clay-hosted lithic breccias. The margins to these areas of intense alteration are generally sharp and well defined, but are often very irregular.

The clay is usually light grey, but ranges from being almost white to streaked dark grey to black areas. Some clay rich areas are also pale greenish yellow. Pure clay seams containing no extraneous lithic material are uncommon.

Limonitic patches and irregular fractures are a common feature. The limonitic patches often represent intensely altered, friable lithic fragments that have suffered considerable oxidation. The clay itself is often pyritic, containing up to 7% euhedral pyrite crystals up to 1 mm in diameter. The grey pigmentation of the clay may be due to fine grained disseminated pyrite not visible with a hand lens. The contacts of the clay rich areas with the surrounding less altered rock is often marked by an intensely limonitic selvage. This appears to have been caused by surface waters that circulated along the outer margins and more permeable areas of the clay-rich areas and oxidized the contained pyrite. No other sulphides were noted in the areas of argillic alteration.

Usually the clay in the areas of intense argillic alteration is the host for strongly altered lithic fragments. In this case the unit is a proper breccia (Unit 2A). The fragments consist of similar lithologies as the enclosing less-altered sequence, and no exotic blocks were noted. The breccia pieces show considerable size variation, from less than 10 mm to more than 100 cm across. Considerable variation in the proportion of matrix also exists, ranging from fractured lithologies containing clay filled fractures to clay seams containing uncommon lithic fragments. The disposition of the fragments within the altered areas suggests that most of the alteration and attendant breccia formation has been in situ. The fragments have suffered little or no displacement and no appreciable transport within the hydrothermal conduit during the history of the formation of these breccias.

Quartz is a common minor fragmental constituent of the clayrich areas. It usually occurs as angular to subangular fragments up to 5 cm in diameter. Occasionally, as in the western end of trench TR-88-01, the quartz fragments form linear stringers that represent quartz veins and veinlets deposited within the clay seams and broken up by subsequent tectonic activity. Euhedral quartz crystals comprise a rare constituent within the clay seams, and have been noted in several areas in the eastern end of trench TR-88-02 (Figure 15A). These are up to several centimetres in diameter, show etched faces, and are completely enclosed in clay. Their mode of formation remains problematic but they may represent material transported from deeper parts of the hydrothermal system.

The areas of strong argillic alteration form distinctive

units that can be correlated between adjacent trenches. Their extension along strike beyond the limits of the present trenching can also be inferred with a moderate degree of confidence by observing subtle depressions in the topography.

The detailed morphology of the alteration zones both along strike and across their width often shows considerable variation, as can be seen by examining the geological trench maps provided with this report.

ii. Silicification

Although quartz crystals and fragments occasionally form an appreciable fragmental component in some of the areas showing intense argillic alteration, only a single continuous quartz vein has been identified on the property to date. This is exposed most prominently in trenches TR-88-03 and -05. Correlative silicified areas are also present in trenches TR-88-01, -04, -06, and possibly -13.

Trench TR-88-05 exposes the widest part of the quartz vein, between 0+40 and 0+52 W. (Figure 18A). This consists of a zone of silicifica-tion rather than a discrete quartz vein. This series of stringers trends between 145 and $150^{\rm O}$, and dips southwesterly between 55 and $60^{\rm O}$. This silicified zone shows a stockwork character, consisting of quartz veinlets and stringers hosting angular lithic fragments.

Several textural varieties of quartz are present. Some of it is sucrosic, and this provides the main host for the lithic fragments. It is not clear if the sugary nature is a reflection of cataclasis. This alteration zone is vuggy in some areas, with quartz-lined open cavities up to 30 cm in diameter. These are often lined with white to pale grey (due to fine grained pyrite?) quartz crystals up to 2 cm in size. The vugs are often filled with limonitic clay, and the quartz crystals themselves are often coated by yellow iron oxides.

Although clay is present within the silicified zone, it forms only a minor component: a single clay seam is exposed in trench TR-88-05 within the silicified area, but the margins to this zone tend to show intense argillic alteration.

The margins to the silicified zone are sharp, well-defined features, and appear to be joint controlled.

Along strike to the southeast the silicified area decreases considerably in width. It is exposed in trench TR-88-03 between 0+09.2 and 0+10.1 W., and strikes 132°, dipping 85°SW (Figure 16A). It is closely associated with an area of intense argillic alteration (0+10.1 to 0+11.6 W.). Again the silicification appears to be joint controlled.

The quartz occurs as fracture fillings and veinlets, and consists of sucrosic white and grey pyritic varieties. Some of the pyrite has been oxidized to limonite, probably by surficial waters. Occasional quartz lined vugs are also present, but constitute an uncommon component. Minor silicification, as quartz stringers, extends into the argillic alteration zone.

In trench TR-88-04, located between TR-88-03 and -05, an interval of irregular quartz-cemented fractures is exposed between 0+35.5 and 0+58 W. (Figure 17A). Quartz comprises only about 2% of this crackle zone. Thin limonite stained quartz-

filled fractures continue to approximately 0+73 W.

An additional altered interval is also present in this trench, from 0+77 to 0+91.5 W. This is an area of moderate argillic alteration, with the rock having a bleached appearance. Quartz is present as thin stringers, vug linings, and as wholesale replacement zones. The latter often contains minor pyrite as disseminations and fracture fillings. Much of the pyrite appears to have been oxidized as indicated by the ubiquitous Fe-oxide stain along joints and fractures. A yellow and medium grey clay seam is poorly exposed between 0+89.5 and 0+91 W. It hosts subrounded to subangular lithic and quartz fragments. To the west of this last alteration zone the rocks become fresh, showing only propylitic alteration effects (calcite replacing feldspars, epidote stringers).

A short distance to the northwest of trench TR-88-05, trench TR-88-06 exposes a silicified area in its south rib, from 0+48 to approximately 0+56 W. (Figure 19A). This is represented as a quartz-cemented fractured area with rare quartz-lined vugs. There is the suggestion that this silicified zone is joint controlled, with a prominent set trending $140^{\circ}/70^{\circ}$ SW. The veinlets tend to be narrow, the widest one being 4 mm. This zone could not be identified with certainty on the north rib of the trench, but may be represented by a narrow interval exposing very rare quartz cemented fractures.

The northwesternmost trench, TR-88-13, exposed a silicified area at its western end (Figure 27A). The bedrock in this area hosts micro-crystalline quartz in vugs. Some of the bedrock also shows pervasive silicification. It is not clear if this represents the northwestern extension of the main quartz vein/silicified zone. If this is indeed the case, it takes a significant swing to the west from the main 140 trend.

The southeastern extension of the silicified zone is exposed in trench TR-88-01 between 3+06 and 3+09 W. It consists of a zone showing pervasive silicification as well as massive quartz up to 30 cm wide and areas of quartz stringers generally less than 2 mm wide. The quartz usually shows moderate to intense limonite staining, probably as a result of oxidation of accessory pyrite, which is noted as a common minor constituent. The quartz is often associated with massive white to light grey clay. The trend of this alteration zone appears to be controlled by a prominent northwesterly-striking (120 to 145°) joint set. The adjacent rocks to the alteration zone show a typical propylitic alteration mineral assemblage (calcite and epidote).

West of this area, between 3+79.5 and 3+83.5 W., an interval of bleached and silicified rock was noted in the trench floor. A number of quartz-lined vugs and silicified rock fragments were found in this area. Pyrite is a common accessory to the quartz veins and stringers.

c. Geochemical Sampling

Samples were collected, usually from both ribs, of all the alteration zones exposed in the trenches. These took the form of channel or panel samples 5 to 30 cm wide and averaging 1 metre in length. Samples were chipped off the trench ribs and placed into polyethylene bags. The amount collected was quite variable but

ranged from 5 to 10 kilograms.

All of the samples were sent to Vangeochem Laboratories Ltd. in Vancouver. Care was taken when the samples were dried so that there would be minimal mercury loss. A 500 gram split was taken from each sample, and this was crushed in a jaw crusher and subsequently pulverized in a disc mill to -100 mesh.

For the gold analyses 20 to 30 gm of pulp sample were weighed out and deposited into individual fusion pots. A flux of litharage, soda ash, silica, borax, and either flour or potassium nitrite was added, and the mixture fused at 1040 C to form a lead button. The gold was extracted by cupellation and parted with dilute nitric acid. The gold bead was dissolved by boiling in aqua regia, then diluted with deionized water to 10 ml volume. A Techtron AAS atomic absorption spectrometer, using a gold hollow cathode lamp, was used for the final determination. The results were presented on a strip chart recorder, and gold values in parts per billion determined by comparison with a set of gold standards.

Mercury was determined by digesting some of the pulp sample with aqua regia in a hot water bath for one hour. The samples were agitated, diluted with demineralized water to a fixed volume, and left to settle. An aliquot of the digested sample was mixed with sulphuric acid, sodium chloride, and hydroxylamine sulphate-stannous sulphate, used as the reductant. The vapour of this mixture was drawn into an absorption cell and the Hg vapour detected by a Techtron AAS atomic absorption spectrophotometer.

For the silver determinations pulp samples were heated in test tubes on a sand bath in a nitric and concentrated perchloric acid solution (15% and 85% by volume, respectively). Digested samples were diluted with demineralized water to a fixed volume, and agitated to obtain a homogeneous solution. Silver concentrations were determined using a Techtron AAS atomic absorption spectrophotometer using the appropriate hollow cathode lamp. A hydrogen continuum lamp was used to correct for background interferences. The results, in parts per million, were calculated by comparing them to a set of standards.

The analytical results are presented in Appendix 1. A number of samples were sent to Chemex Laboratories Limited to check the reproducibility of the results obtained from Vangeochem. These are presented in Appendix 2. The results obtained from each laboratory indicate good comparability.

The sample intervals and analytical results obtained from them are indicated in Figures 5B to 29B.

d. Soil Sampling

The soil sampling part of this programme was carried out by Ashworth Explorations Limited. Samples were taken from three areas on the Bobcat II claim: the east detailed grid (Figure 30); the northwest detailed grid (Figure 31); and the southwest extension to the existing grid (Figure 32).

New grid lines were established by means of compass and hip chains, and station intervals marked with 1"x2" pickets at 50 metre intervals. An auger was used to collect samples from the B

horizon at a depth of 40 cm. Different sample intervals were used in the various areas sampled: 20 metres over the east detailed grid, 10 metres over the west detailed grid, and 50 metres over the southwest grid extension.

All of the samples were analysed by Vangeochem Laboratories Limited. The soil samples were carefully dried and screened through -80 mesh. The material remaining in the screen was discarded. Five to 10.0 gm of the -80 mesh material was digested in hot aqua regia. The digested samples were filtered and the washed pulps discarded. The filtrate was reduced in volume to about 5 ml. Gold complex ions were extracted into a di-isobutyl ketone and thiourea medium ("Aliquot 336"). The gold content was determined with a Techtron AAS atomic absorption spectrophotometer, using a gold hollow cathode lamp. A hydrogen lamp was used to correct any background interferences. The results were read out onto a strip chart recorder, and the gold values, in parts per billion, calculated by comparing them with a set of standards. Mercury and silver determinations used the same preparatory and determinative techniques as those used for the rock smple determinations, and are described under Section VII.1.c, above. The analytical results are presented in Appendix 3.

VIII. Statement of Expenditures

Project preparation Mobilization / Demobilization	\$2,000.00 6,000.00
Personnel \$275/day x 60 days 16,500.00 Project manager \$275/day x 49 days 15,925.00 Project geologist \$325/day x 49 days 15,925.00 Field geologist \$270/day x 45 days 12,150.00 Technician \$210/day x 43 days 9.030.00 Field assistant \$200/day x 41 days 8,200.00 Party geotech \$210/day x 9 days 1,890.00 Cook \$225/day x 4 days 900.00	64,595.00
Field Costs 1 4x4 pickup truck \$110/day x 45 days 4,950.00 1 4x4 pickup truck \$110/day x 55 days 6,050.00 1 4x4 pickup truck \$110/day x 15 days 1,650.00	12,650.00
communications equipment \$50/day x 55 days 2,750.00 food at \$50/person per day (191 man-days) 9,550.00 field and camp supplies 10,000.00 camp rental at \$250/day x 55 days 13,750.00 water pump at \$25/day x 55 days 1,375.00 telephone and courier expenses 2,116.00	
1 Caterpillar 225 excavator at \$200/hr. x 156.5 hrs	•
services rendered by Ashworth Explorations Ltd.	52,820.00
Laboratory analyses for Au, Ag, Hg 1058 rock samples at \$19.00 each 20,102.00 980 soil samples at \$15.00 each 14,700.00 oversize and wet sample charge 990.50	25 702 50
Report Preparation	35,792.50 5,300.00
TOTAL EXPENDITURES	\$249,998.50
TOTAL BALBAUTTORES	9447,770.70

This Report of Expenditures was prepared from figures supplied by Mr. Douglas F. Cochrane, President, Severn Explorations Ltd.

IX. Statement of Qualifications

CERTIFICATE

I, THOMAS HERMANN HEINE, of 430 7th Street East, Saskatoon, Saskatchewan, do hereby declare that:

- I am a geologist, graduate of the University of Windsor, Windsor, Ontario in 1977, with a Master of Science degree in Geology;
- I have practiced my profession as a mining exploration geologist since 1970, and on a full-time basis since 1977;
- 3. I have supervised the programmes carried out during the 1988 season, and I affirm that the personnel involved in these programmes are qualified geologists and geotechnicians;
- 4. I have no interest in the subject property of this report, nor any shares of the company, Lexington Resources Limited;

Dated at Saskatoon, Saskatchewan this 24th day of November, 1988

Thomas H. Heine Project Manager

X. References

- Buchanan, L.J. 1981: Precious metal deposits associated with volcanic environments in the southwest, in W.R. Dickinson and W.D. Payne, eds., Relations of Tectonics to Ore Deposits in the Southern Cordillera; Arizona Geological Society Digest, V.XIV, pp. 237-262.
- Carter, N.C. 1988: Report on the Bobcat I, II, and III mineral claims, Clinton Mining Division, B.C.; internal report prepared for Lexington Resources Ltd.,
- Church, B.N. 1980: Exploration for gold in the Blackdome Mountain area, B.C.; B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1980-1, pp.52-54
- Duffell, S. and K.C. McTaggart 1952: Ashcroft Map-area, British Columbia; Geological Survey of Canada, Memoir 262, 122pp.
- Dunn, R. 1981: Prospecting Report, Pony Group, Clinton Mining Division, N.T.S. 92 O/7; B.C.A.R. #9884, 6pp.
- Ewing, T.E. 1981: Regional stratigraphy and structural setting of the Kamloops Group, south-central British Columbia; Canadian Journal of Earth Sciences, 18, pp.1464-1477
- Fipke, C. and R. Capell 1983: Assessment Report, Pony I and Pony IV claims, Clinton Mining Division, N.T.S. 92 0/7; B.C.A.R. #10773, 2pp.
- Harrop, J. and E. Scroggins 1987: Interim Geological-Geochemical-Geophysical Report on the Bobcat II claim; internal report prepared for Lexington Resources Ltd., 43pp.
- Hermary, R. and G.E. White 1988: Airborne magnetometer and VLF-EM survey, Bobcat I, II, and III claims; report prepared for Lexington Resources Ltd., 20pp.
- Laanela, H. 1986: Progress Report on the Bobcat I, II, and III claims, Clinton Mining Division; internal report prepared for Lexington Resources Ltd., 30pp.
- Mathews, W.H. and G.E. Rouse 1984: The Gang Ranch-Big Bar area, south-central British Columbia: Stratigraphy, geochronology and palynology of Tertiary beds and their relationship to the Fraser Fault; Canadian Journal of Earth Sciences, 21, pp.1132-1144
- Panteleyev, A. 1987: Ore deposits #10. A Canadian Cordilleran model for epithermal gold-silver deposits; Geoscience Canada, V.13, No.2, pp.101-111.

- Pasieka, C.T. 1988: Bobcat claims, Blackdome Mountain area; internal report prepared for Lexington Resources Ltd.,
- Rennie, D.W. 1988: An update from the Blackdome Mine, Clinton, B.C.; paper presented at C.I.M.M. meeting, Calgary, Alta., May 1988, 14 pp.
- Sorbara, J.P. 1986: Report on the Bobcat I, II, and III claims, Clinton Mining Division, B.C., N.T.S. 92 O/7; report prepared for Ashworth Explorations Ltd.
- Tipper, H.W. 1978: Taseko Lakes (920) Map-area; Geological Survey of Canada, Open File Report 534
- Trettin, H.P. 1961: Geology of the Fraser River valley between Lillooet and Big Bar Creek; B.C. B.C. Department of Mines and Petroleum Resources, Bulletin 44
- Vivian, G., R.D. Morton, A. Changkakoti, and J. Gray 1987: The Blackdome epithermal Ag-Au deposit, British Columbia, Canada- Nature and genesis of ore fluids; Transactions of the Institute of Mining and Metallurgy-Applied Earth Sciences, 21pp.
- White, D.E. 1981: Active geothermal systems and hydrothermal ore deposits; Economic Geology 75th Anniversary Volume, pp. 392-423.

Appendix 1

Geochemical Analyses of Trench Rock Samples

1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

GEOCHEMICAL ANALYTICAL REPORT

CLIENT: SEVERN EXPLORATIONS LTD.

ADDRESS: 575 - 885 Dunsmuir St.

: Vancouver, B.C.

: V6C 1N9

DATE: July 15 1988

REPORT#: 880655 GA JOB#: 880655

PROJECT#: None given

SAMPLES ARRIVED: July 05 1988

REPORT COMPLETED: July 15 1988

ANALYSED FOR: Ag Au (FA/AAS) Hg

INVOICE#: 880655 NA

TOTAL SAMPLES: 85

SAMPLE TYPE: 85 Rocks

REJECTS: SAVED

SAMPLES FROM: Clinton, B.C.

COPY SENT TO: Vancouver Office

PREPARED FOR: Mr. Caisey Harlingten

ANALYSED BY: VGC Staff

SIGNED:

GENERAL REMARK: Invoice sent to Vancouver Office

#419 SFF102 400 LABCS47300 1998 Triumpe Sinest Vancolver, Bin. V5. 105 1504)251-5850 F44:254-5717

REPORT NUMBER: 880655 GA	JOB NUM	BER: 880	655	SEVERN EXPLORATIONS LTD.	PAGE	1	OF	
SAMPLE #	Ag	Au	Hg					
	ppm.	ppb	ррb					
20001	 5	60	70					
20002	5	35	105					
20003	.5	50	130					
20004	.3	35	75					
20005	.4	55	50					
20006	.4	20	80					
20007	.3	30	65					
20008	.3	40	75					
20009	.2	10	280					
20010	.3	15	290					
20011	.2	nd	180					
20012	.2	30	120					
20013	.2	40	105					
20014	.3	nd	130					
20015	.2	10	100					
20016	.1	nd	240					
20017	.2	30	320					
20018	.2	50	170					
20019	.3	30	85					
20020	.4	60	60					
20021	.2	nd	90					
20022	.4	55	175					
20023	.4	nd	60					
20024	.4	60	55					
20025	.4	60	50					
20026	.5	100	110					
20027	.3	205	80					
20028	.3	nd	110					
20029	.3	40	105					
20030	.4	60	95					
20031	.3	50	100					
55032	.5	190	550					
20033	.3	30	60					
20034	.3	270	110					
20035	.3	45	70					
20036	.4	80	45					
20037	.5	70	60					
20038	.3	30	75					
20039	.3	30	55					
DETECTION LIMIT	0.1	5	5					
nd = none detected	- = not ana	lvsed	is = in	sufficient sample				

VANGEOCHEM LAB LIMITED 1999 Priumon Street 1999 Priumon Street 1999 Priumon Street 1990 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

REPORT NUMBER: 880655 GA	JOB NU	IMBER: 88	0655	SEVERN EXPLORATIONS LTD.	PAGE	2	0
SAMPLE #	Ag	Au	Hg				
	ppm	ppb	ppb				
20040	1.2	20	70				
20041	. 2.9	100	20				
20042	.7						
20042		nd ana	1350				
	1.0	280	1250				
20044	3.8	50	150				
20045	1.7	20	1200				
20046	.8	65	850				
20047	.7	80	650				
20048	.4	10	700				
20049	.3	nd	600				
20050	,	cc	2200				
20050	.6	55	3200				
20051	.3	nd	2300				
20052	.6	50	2500				
20053	.4	nd	2400				
20054	1.7	nd	85				
20055	.6	nđ	1200				
20056	1.4	nd	1200				
20057	10.1	35	195				
20058	1.0	nd	40				
20059	1.6	20	35				
20060	1.4	65	1500				
20061	.6	65	750				
20062	.5	nd	750				
20063	.4	35	950				
20064	.3	15	1950				
00055	_		4000				
20065	.5	20	1200				
20066	.3	10	900				
20067	.4	10	1300				
200 68	. 4	15	1400				
20101	1.9	10	1450				
20102	.1	nd	30				
20103	1.1	nd	20				
20104	7.1	nd	90				
20105	1.1	20	50				
20106	.2	10	110				
20107	.4	10	70				
20201	.2	20	500				
20202	.3	170	550				
20203	.3	140	700				
DETECTION LIMIT nd = none detected	0.1	. 5	5				
		. 1		sufficient sample			

Miss (1996)8 408 LABRANTSY 1998 Friumpo Street Vannaivan, 8.8. VSL 185 14:41251-5856 FAN1254-5717

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

REPORT NUMBER: 880655 GA	JOB NU	IMBER: 880	655	SEVERN EXPLORATIONS LTD.	PAGE	3 (OF	3
SAMPLE #	Ag	Au	Hg					
	ppm	bbp	ppb					
20204	.2	80	360					
20205	.2	10	1050					
20 206	.2	nd	850					
20207	nd	nd	700					
20208	. 1	nd	900					
20209	.1	nd	450					
20210	.1	nd	700					

5

M4IN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. V5L 1K5 (504)251-5656 FAX:254-5717

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

GEOCHEMICAL ANALYTICAL REPORT

CLIENT: SEVERN EXPLORATIONS LTD.

DATE: July 22 1988

ADDRESS: 510 - 850 W. Hastings St.

: Vancouver, B.C.

REPORT#: 880680 GA

: V6C 1E1

JOB#: 880680

PROJECT#: None given

INVOICE#: 880680 NA

SAMPLES ARRIVED: July 11 1988

TOTAL SAMPLES: 184

REPORT COMPLETED: July 22 1988

SAMPLE TYPE: Rock

ANALYSED FOR: Ag Au (FA/AAS) Hg

REJECTS: SAVED

SAMPLES FROM: Clinton, B.C.

COPY SENT TO: Vancouver & Clinton Offices

PREPARED FOR: Mr. Thomas H. Heine

ANALYSED BY: VGC Staff

SIGNED:

GENERAL REMARK: Invoice sent to Vancouver Office

VANGEOCHEM LAB LIMITED

MAIN OFFICE AND LABORATORY
1988 Triumph Street
Vancouver, B.C. V5L 1K5
(604) 251-5656 FAX: 254-5717

BRANCH OFFICE
1630 PANDORA ST.
VANCOUVER, B.C. V5L 1L6
(604) 251-5656

VANCOUVER, B.C. V5L 1L6 (604) 251-5656

REPORT NUMBER: 8806	80 GA JOB	NUMBER: 88	10680	SEVERN EXPLORATIONS LTD.	P	AGE	1	OF	5
SAMPLE #	Ag	Au	Hg						
	pp∎	ppb	ppb						
20069	27.0	40	5						
20070	.2	50	95						
20071	.3	40	185						
20072	nd	5	230						
20073	.1	90	380						
20074	.1	110	205						
20075	.2	40	650						
20076	.1	nd	600						
20077	.1	30	400						
20078	.1	20	210						
20079	.2	40	600						
20080	.1	30	85						
20081	.1	10	185						
20082	.2	60	700						
20083	.1	nd	210						
20084	.1	65	700						
20085	.1	90	700						
20086	nd	10	410						
20087	nd	10	170						
20088	.2	50	350						
200 89	.1	55	550						
20090	.1	40	340						
20091	.1	30	170						
20092	.1	20	220						
20093	.1	20	170						
20094	.2	50	650						
20095	nd	20	170						
20096	.2	nd	130						
20097	nd	30	100						
20098	nd	30	65						
20099	nd	nd	55						
20100	nd	nd	180						
20108	nd	40	100						
20109	.1	80	1000						
20110	.1	80	650						
20111	nd	35	240						
20112	.4	65	35						
20113	.1	30	165						
20114	.4	nd	1800						
DETECTION LIMIT	0.1	5	5						
nd = none detected	= not a			ufficien t sample					
	- 1104 8		** - 1113	elitatella ambar					

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. V5L 1K5 (604)251-5656 FAX:254-5717

REPORT NUMBER: 880680 GA	JOB NUM	BER: 880	680	SEVERN EXPLORATIONS LTD.	PAGE	2	OF	5
SAMPLE #	Ag	Au	Hg					
2	.ppa	ppb	ppb					
20115	.6	45	2800					
20116	.7	45	2000					
20117	2.6	50	5					
20118	2.6	60	5					
20119	1.9	65	50					
20120	.5	40	850					
20121	.3	15	4600					
20122	.3	30	1150					
20123	.2	40	950					
20124	.9	90	330					
20125	.2	20	2350					
20126	1.5	60	1000					
20127	.1	30	4400					
20128	.3	30	1300					
20129	.4	40	600					
20130	.3	30	2200					
20131	.3	20	2000					
20132	.2	10	600					
20133	.2	20	135					
20134	.1	20	340					
20135	.4	20	80					
20136	.1	30	95					
20137	nd	30	50					
20138	.1	40	170					
20211	nd	10	150					
20212	.1	70	300					
20213	nd	20	420					
20214	.1	20	1600					
20215 20216	nd .1	35 35	350 180					
20217	nd	nd an	210					
20218	nd	20 25	360					
20219 20220	nd nd	35 20	130 130					
20221	nd	30	220					
20222	.2	50	230					
20223	.2	10	400					
20224	.1	20	400					
20225	nd	25	170					
DETECTION LIMIT nd = none detected	0.1 - = not ana	5 alvsed	5 is = in	sufficient sample				

VANGEOCHEM LAB LIMITED MAIN OFFICE AND LABORATORY BRANCH OFFICE

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. VSL 1KS (604)251-5656 FAX:254-5717

REPORT NUMBER: 880680 (GA JOB	NUMBER: 88	0830	SEVERN EXPLORATIONS LTD.	PAGE 3 0	F
SAMPLE #	Ag	Au	Hg			
	pp∎	ppb	ppb			
20226	nd	35	700			
20227	nd	50	4000			
20228	nd	40	1050			
20229	nd	40	950			
20230	.4	50	1150			
20231	1.1	50	5000			
20232	.6	120	2050			
20233	.4	90	2400			
20234	.1	100	1750			
20235	.8	140	>5000			
20236	nd	20	1800			
20237	.1	110	1300			
20238	nd	50	550			
20239	.4	90	3700			
20240	nd	40	800			
20241	.6	85	3800			
20242	nd	50	600			
20243	.1	50	800			
20244	nd	50	400			
20245	nd	80	500			
20301	1.5	40	400			
20302	.7	20	65			
20303	nd	20	3 5			
20 304	nd	10	60			
20305	nd	30	70			
20306	.1	20	60			
20307	.5	20	70			
20308	nd	30	50			
2030 9	nd	nd	40			
20310	nd	40	65			
20311	nd	30	80			
20312	nd	30	80			
20313	nd	30	80			
20314	nd	20	70			
20315	nd	30	90			
20316	nd	30	60			
20317	nd	30	120			
20318	nd	25	70			
20319	nd	20	50			
DETECTION LINIT	0.1	5	5			
nd = none detected	= not a	a a l vend	ie = in	sufficient sample		

VANGEOCHEM LAB LIMITED

MAIN OFFICE AND LABORATORY
1988 Triumph Street
Vancouver, B.C. V5L 1K5
(604) 251-5656 FAX: 254-5717

BRANCH OFFICE
1630 PANDORA ST.
VANCOUVER, B.C. V5L 1L6
(604) 251-5656

(604) 251-5656

REPORT NUMBER: 880680	GA JOB NUM	BER: 880	680	SEVERN EXPLORATIONS LTD.	PAGE	4	0F	5
SAMPLE #	Ag	Au	Hg					
	pp∎	ppb	ppb					
20320	nd	50	80					
20321	· nd	40	75					
20322	nd	30	95					
20323	.1	20	490					
20324	.1	nd	190					
20325	.1	5	170					
20326	.2	nd	220					
20327	.3	10	360					
20328	.1	10	150					
20329	.2	50	380					
20330	.2	10	110					
20331	.4	10	1450					
20332	.3	30	500					
20333	.3	10	200					
20334	.3	5	400					
20335	.3	nd	2600					
20336	.2	nd	1000					
20337	.1	nd	90					
20338	.2	10	1000					
20339	.2	nd	800					
20340	.3	10	1100					
20341	.2	nd	160					
20342	.4	20	750					
20343	.3	40	290					
20401	.1	30	30					
20402	.1	nd	35					
20403	.1	20	40					
20404	.2	20	230					
20405	.3	nd	600					
20406	.3	40	430					
20407	.2	20	300					
20408	.4	45	600					
20409	.3	40	550					
20410	.2	10	1000					
20411	.3	3 0	850					
20412	.2	40	800					
20413	.2	30	700					
20414	.2	30	700					
20415	.2	20	420					
DETECTION LIMIT	0.1	5	5					
nd = none detected	= not anal			ufficient sample				

MAIN OFFICE AND LABORATORY 1988 Triumph Street
Vancouver, B.C. V51 1K5
(604) 251-5656 FAX: 254-5717

REPORT NUMBER: 880680 GA	JOB NUM	1BER: 88	10680	SEVERN EXPLORATIONS LTD.	PAGE	5	OF	5
SAMPLE #	Ag	Au	Hg					
	ppm	ppb	ppb					
20416	.3	60	500					
20417	.3	30	500					
20418	.2	20	200					
20419	.2	10	190					
20420	.2	20	230					
20421	.2	10	210					
20422	.3	20	650					
20423	.2	20	90					
20424	.3	30	1350					
20425	.3	30	650					
20426	.3	30	950					
20427	.2	20	700					
20428	.2	20	600					
20429	.3	30	400					
20430	1.6	100	>5000					
20431	.3	30	600					
20432	.6	60	2300					
20433	.5	90	>5000					
20434	1.2	100	≻ 5000					
20435	.4	40	2900					
20436	.5	70	3700					
20437	.3	20	900					
20438	.3	20	900					
20439	.1	nd	700					
SCAR/HELINDA	.1	30	420					
TR - 88 - 09	.7	90	>5000					
SAMPLE X	.1	20	20					
SAMPLE Y	.2	20	25					

MAIN OFFICE AND LABORATORY
1988 Triumph Street
Vancouver, B.C. V5L 1K5 is
(604)251-5656 FAX:254-57178

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

GEOCHEMICAL ANALYTICAL REPORT

CLIENT: SEVERN EXPLORATIONS LTD.

DATE: July 22 1988

ADDRESS: 510 - 850 W. Hastings St.

: Vancouver, B.C.

REPORT#: 880715 GA

: V6C 1E1

JOB#: 880715

PROJECT#: None given

SAMPLES ARRIVED: July 15 1988

REPORT COMPLETED: July 22 1988

ANALYSED FOR: Ag Au (FA/AAS) Hg

INVOICE#: 880715 NA

TOTAL SAMPLES: 90

SAMPLE TYPE: Rock

REJECTS: SAVED

SAMPLES FROM: Clinton, B.C.

COPY SENT TO: Vancouver & Clinton Offices

PREPARED FOR: Mr. Thomas H. Heine

ANALYSED BY: VGC Staff

SIGNED:

GENERAL REMARK: Invoice sent to Vancouver Office

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. VSL 1K5 (604)251-5656 FAX:254-5717

REPORT NUMBER: 880715 GA	JOB NU	MBER: 88	0715	SEVERN EXPLORATIONS LTD.	PAGE	1	OF
SAMPLE #	Ag	Au	Hg				
	ppe	ppb	ppb				
20139	.1	20	190				
20140	.1	20	200				
20141	.2	25	50				
20142	.1	10	50				
20143	nd	20	15				
20144	.4	20	25				
20145	.2	20	80				
20146	.3	30	80				
20147	.2	20	65				
20148	.2	10	30				
20149	.4	40	170				
20150	.2	25	1300				
20151	.5	20	600				
20152	1.5	20	40				
20153	1.6	40	70				
20154	1.5	40	115				
20155	1.4	nd	90				
20156	3.0	90	160				
20246	1.5	40	165				
20247	2.4	80	140				
20248	2.3	60	80				
20249	1.6	70	550				
20250	1.6	nd	60				
20344	.3	25	750				
20345	.1	20	105				
20346	.1	10	400				
20347	.1	20	550				
20348	.2	25	800				
20349	.2	20	600				
20350	.2	40	1000				
20351	.1	20	750				
20352	.3	30	2000				
20353	.3	20	1350				
20354	.6	30	9 50				
20355	.5	50	600				
20356	.4	50	500				
20357	.2	30	400				
20358	nd	20	380				
20359	.4	20	950				
DETECTION LINIT	0.1	5	5				
	= not ana			ufficient sample			

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. V5L 1K5 \$3 (604)251-5656 FAX:254-57178

REPORT NUMBER: 88071	5 GA JOB	NUMBER: 8	80715	SEVERN EXPLORATIONS LTD.	PAGE	2 0	F
SAMPLE #	Ag		Hg				
	pp∎	ppb	ppb				
20360	.3		600				
20361	2		600				
20362	.5		2100				
20363	.3		500				
20364	.8	70	850				
20365	.2		450				
20366	.5		450				
20367	.6	30	1300				
20368	.5		1600				
20369	.3	10	400				
20370	.3	10	380				
20371	.3	nd	240				
20372	.3	30	400				
20373	.2	nd	700				
20374	1.2	70	1550				
20375	.4	30	300				
20376	.3	15	230				
20377	.5	15	280				
20378	.2	20	260				
20379	.2	nd	380				
20380	1.1	50	500				
20381	.3	40	2000				
20382	.2	nd	170				
20383	.2	nd	110				
20384	.1	10	100				
20385	.3	50	220				
20386	.2	20	120				
20387	.2	20	150				
20388	.1	20	100				
20389	.2	60	340				
20390	.4	230	480				
20440	4.5	50	390				
20441	.9	20	480				
20442	.5	10	260				
20443	.3	10	300				
20444	.4	10	550				
20445	.3	nd	550				
20446	.4	20	450				
20447	.5	30	900				
DETECTION LIMIT	0.1	5	5				
nd = none detected	= not a			ufficient sample			

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. V5L 1K5 53 (604)251-5656 FAX:254-57178

REPORT NUMBER: 880715 GA	JOB NU	IMBER: 88	0715	SEVERN EXPLORATIONS LTD.	PAGE	3	OF	3
SAMPLE #	Ag	Au	Hg					
	ppm	ppb	ppb					
20448	.3	nd	1450					
20449	.2	20	1050					
20450	.4	nd	1000					
20451	.5	20	1250					
20452	.3	nd	1100					
20453	.9	10	700					
20454	.5	10	1200					
20455	.5	10	1300					
20456	.3	20	3600					
20457	.3	10	1400					
TR 88 - 10	1.1	30	400					
CASEY #2	.2	nd	25					

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. V5L 1K5 3 (604)251-5656 FAX:254-5717 BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

GEOCHEMICAL ANALYTICAL REPORT

CLIENT: SEVERN EXPLORATIONS LTD.

ADDRESS: 510 - 850 W. Hastings St.

: Vancouver, B.C.

: V6C 1E1

DATE: Aug 05 1988

REPORT#: 880781 GA

JOB#: 880781

PROJECT#: None given

SAMPLES ARRIVED: July 25 1988 REPORT COMPLETED: Aug 05 1988

ANALYSED FOR: Ag Au (FA/AAS) Hg

INVOICE#: 880781 NA

TOTAL SAMPLES: 186 SAMPLE TYPE: Soil REJECTS: SAVED

SAMPLES FROM: Clinton, B.C.

COPY SENT TO: CLinton & Vancouver Office

PREPARED FOR: Duane Lucas

ANALYSED BY: VGC Staff

SIGNED:

GENERAL REMARK: Invoice sent to Vancouver Office

VANGEOCHEM LAB LIMITED

MAIN OFFICE AND LABORATORY
1988 Triumph Street
Vancouver, B.C. V5L 1K5
(604) 251-5656 FAX: 254-5717

VANCOUVER, B.C. V5L 1L6
(604) 251-5656

REPORT NUMBER: 88078		MBER: 8	00/01	SEVERN EXPLORATIONS LTD.	PAGE	•	٠
SAMPLE #	Ag	Au	Hg				
	pp a	ppb	ppb				
20157	.8	nd	125				
20158	1.1	nd	1700				
20159	.1	nd	30				
20160	.5	nd	310				
20161	nd	nd	30				
20162	nd	nd	230				
20163	1.6	nd	750				
20164	nd	nd	95				
20165	nd	nd	125				
20166	nd	nd	>5000				
20167	nd	nd	>5000				
20168	nd	nd	> 5000				
20169	nd	nd	> 5000				
20170	nd	nd	>5000				
20171	nd	nd	>5000				
20172	nd	nd	>5000				
20173	nd	nd	>5000				
20174	nd	nd	>5000				
20175	nd	nd	> 5000				
20176	nd	nd	>5000				
20177	nd	nd	4000				
20178	nd	nd	>5000				
20179	nd	nd	> 5000				
20180	nd	nd	4500				
20181	nđ	nd	>5000				
20182	nd	nd	>5000				
20183	nd	nd	>5000				
20184	nd	nd	>5000				
20185	nd	nd	>5000				
20186	nd	nd	>5000				
20391	nd	60	160				
20392	.2	20	190				
20393	.3	30	600				
20394	.4	nd	200				
20395	.3	50	650				
20396	nd	nd	145				
20397	nd	nd	75				
20398	nd	nd	100				
20399	nd	nd	150				
DETECTION LINIT	0.1	5	5				

VANGEOCHEM LAB LIMITED

MAIN OFFICE AND LABORATORY
1988 Triumph Street
Vancouver, B.C. V5L 1K5
(604) 251-5656 FAX: 254-5717

NANCOUVER, B.C. V5L 1L6
(604) 251-5656

REPORT NUMBER: 88078	B1 GA JOB	NUMBER: 88	0781	SEVERN EXPLORATIONS LTD.	PAGE	2 ()F
SAMPLE #	Ag	Au	Hg				
	ppm	ppb	ppb				
20400	.2	nd	300				
20458	9	nd	600				
20459	1.4	50	400				
20460	1.0	70	500				
20461	.9	45	350				
20462	1.2	40	750				
20463	.8	20	450				
20464	1.4	45	450				
20465	.6	20	500				
20466	.5	nd	1900				
20467	.3	nd	2000				
20468	.4	20	3000				
20469	.5	nd	2400				
20470	.9	10	2200				
20471	.6	nđ	850				
20472	.8	30	700				
20473	.9	nd	290				
20474	.7	40	250				
20475	.8	50	270				
20476	.8	80	400				
20477	.9	50	400				
20478	.9	60	1100				
20479	.8	10	1550				
20480	1.4	40	750				
20481	.8	nd	1200				
20482	.3	20	900				
20483	.6	nd	850				
20484	.3	10	550				
20485	.2	nd	650				
20486	nd	nd	1350				
20487	.4	20	1250				
20488	.2	nd	750				
20489	.4	nd	330				
20490	.4	nd	290				
20491	.2	nd	240				
20492	.4	nd	260				
20493	.4	nd	250				
20494	.6	10	450				
20495	.4	10	900				
DETECTION LINIT	0.1	5	5				
nd = none detected	= not an	alysed	is = ins	ufficient sample			

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. V5L 1K5 (604)251-5656 FAX:254-5717

REPORT NUMBER: 88078	1 GA JOB NE	JMBER: 88	0781	SEVERN EXPLORATIONS LTD.	PAGE	3	0
SAMPLE #	Ag	Au	Hg				
	ppm	ppb	ppb				
20496	.3	20	1600				
20497	.2	40	1150				
20498	.1	nd	1500				
20499	.2	10	1900				
20500	.1	nd	1800				
20501	.1	nd	100				
20502	.1	nd	230				
20503	.2	nd	250				
20504	.2	nd	160				
20505	.1	nd	500				
20506	nd	nd	230				
20507	nd	nd	390				
20508	.3	nd	400				
20509	.2	nd	450				
20510	nd	nd	70				
20511	.3	nd	450				
20512	1.4	nd	180				
20513	2.3	10	120				
20514	.4	nd	650				
20515	.8	nd	180				
20516	.2	40	180				
20517	.2	40	320				
20518	nd	nd	45				
20519	nd	nd	40				
20520	nd	nd	45				
20521	nd	nd	35				
20522	nd	nd	35				
20523	.4	nd	220				
20524	.2	nd	135				
20525	.6	nd	150				
20526	.4	nd	240				
20527	.5	nd	700				
20528	.7	nd	700				
20529	12.0	50	15				
20530	16.4	150	nd				
20531	.4	nd	160				
20532	.4	nd	280				
20533	.7	nd	500				
20534	11.2	nd	500				
DETECTION LIMIT	0.1	5	5				
nd = none detected	= not ana	lysed	is = ins	ufficient sample			

MAIN OFFICE
MAIN OFFICE AND LABORATORY
1988 Triumph Street
Vancouver, B.C. V5L 1K5
(604)251-5656 FAX:254-5717

REPORT NUMBER: 880781	GA JOB NUN	IBER: 880	781	SEVERN EXPLORATIONS LTD.	PAGE 4
SAMPLE #	Ag	Au	Hg		
	pp∎	ppb	ppb		
20535	87.0	80	40		
20536	1.0	nd	170		
20537	1.1	40	180		
20538	.9	30	160		
20539	1.1	nd	160		
20540	.5	nd	240		
20541	.7	30	340		
20542	.6	nd	500		
20543	1.7	30	1900		
20544	nd	nd	400		
20545	1.1	30	35		
20546	.3	30	210		
20547	.3	nd	800		
20548	nd	nd	85		
20549	nd	nd	80		
20550	.1	nd	70		
20551	.1	nđ	50		
20552	.3	nd	160		
20553	.1	nd	70		
20554	nd	nd	40		
20555	.4	nđ	550		
20601	.4	25	900		
20602	.5	30	1700		
20603	.3	20	1700		
20604	.4	30	1600		
20605	.8	30	1000		
20606	.5	20	700		
20607	.2	10	1100		
20608	.2	nd	1000		
20609	.1	20	350		
20610	.2	nd	400		
20611	.2	10	280		
20612	.2	10	240		
20613	.3	nd	850		
20614	.1	nd	230		
20615	.2	nd	2200		
20616	.4	nd	1100		
20617	.8	20	900		
20618	.7	nd	1450		
DETECTION LIMIT nd = none detected	0.1 = not anal	5	5		

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. V5L 1K5 (604)251-5656 FAX:254-5717

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

 REPORT NUMBER: 880781 GA	JOB	NUMBER:	880781	SEVERN EXPLORATIONS LTD.	PAGE	5	OF	5
SAMPLE #	Ag	A	ı Hg					
	₽₽₽	ppi						
20619	.3	2						
20620	.2	10						
20621	.3	n						
20622	.7	70						
20623	.3	20	750					
20624	.2	n	1800					
20625	. 1	20	1850					
20626	.3	no	1200					
20627	.3	10						
20628	.9	60						
20629	nd	ne	160					
20630	.1	no						
20631	nd	n						
20632	nd	no						
20633	nd	กด						
20634	nd	no	450					
20635	nd	no	600					
20636	nd	กด	900					
20637	nd	ne	400					
20638	nd	no	200					
20639	nd	no	135					
20640	nd	no	800					
20641	nd	no	170					
20642	nd	45						
20643	nd	ne	220					
20644	nd	15						
20645	nd	กด	250					
20646	nd	no	200					
20647	nd	10						
20648	nd	no	120					

5

VANGEOCHEM LAB LIMITED

MAIN OFFICE AND LABORATORY
1988 Triumph Street
Vancouver, B.C. V5L 1K5
(604) 251-5656 FAX: 254-57178

BRANCH OFFICE
1630 PANDORA ST.
VANCOUVER, B.C. V5L 1L6
(604) 251-5656

GEOCHEMICAL ANALYTICAL REPORT

CLIENT: SEVERN EXPLORATIONS LTD.

DATE: Aug 12 1988

ADDRESS: 510 - 850 W. Hastings St.

: Vancouver, B.C.

REPORT#: 880913 GA

: V6C 1E1

JOB#: 880913

PROJECT#: None given

SAMPLES ARRIVED: Aug 06 1008

REPORT COMPLETED: Aug 12 1988

ANALYSED FOR: Ag Au (FA/AAS) Hg

INVOICE#: 880913 NA

TOTAL SAMPLES: 14

SAMPLE TYPE: Rock

REJECTS: SAVED

SAMPLES FROM: Clinton, B.C.

COPY SENT TO: Clinton & Vancouver Office

PREPARED FOR: Mr. Duane Lucas

ANALYSED BY: VGC Staff

SIGNED:

GENERAL REMARK: Invoice sent to Vancouver Office

BRANCH OFFICE

1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

 REPORT NUMBER: 880913 6A	JOB 1	NUMBER: 880	913	SEVERN EXPLORATIONS LTD.	PAGE I OF	į
SAMPLE #	Ag	Аu	Hg			
	ppm	ppb	ppb			
20556	1.4	20	105			
20 557	2.2	40	50			
20586	2.8	20	800			
20587	13.2	30	140			
20 58 8	34.0	15 0	35			
20816	1.3	nd	170			
20826	1.3	50	240			
20827	.7	30	130			
20835	.7	70	850			
20842	.8	60	850			
20856	.9	90	1200			
20857	.6	50	500			
20 858	.5	40	340			
20878	. 4	30	230			

Talk DFRLE exp Laggrings LASS Tribado Straet Manipuser, 800, VII 173 3 TasAniEstaSSE BAY:254-57;7

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. VSL 1K5 3 (604)251-5656 FAX:254-5717

BRANCH OFFICE

1630 PANDORA ST.

VANCOUVER, B.C. V5L 1L6

(604) 251-5656

GEOCHEMICAL ANALYTICAL REPORT

CLIENT: SEVERN EXPLORATIONS LTD.

DATE: August 24 1988

ADDRESS: 510 - 850 W. Hastings St.

: Vancouver, B.C.

REPORT#: 880905 GA

: V60 1E1

JOB#: 880905

FROJECT#: None given

SAMPLES ARRIVED: Aug 09 1988
REPORT COMPLETED: August 24 1988

ANALYSED FOR: Ag Au (FA/AAS) Hg

INVOICE#: 880905 NA

TOTAL SAMPLES: 347

SAMPLE TYPE: Rock

REJECTS: SAVED

SAMPLES FROM: Clinton, B.C.

COPY SENT TO: Clinton & Vancouver Office

PREPARED FOR: Mr. Duane Lucas

ANALYSED BY: VGC Staff

SIGNED:

GENERAL REMARK: Invoice sent to Vancouver office

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. V5L 1K5 33 (604)251-5656 FAX:254-57178

SAMPLE #	. A-	٨	u_		
SHULLS #	· Ag	Au ppb	Hg ppb		
20187	.3	uq hha	2 9 0		
20251	.2	nd	600		
20252	.1	nd	170		
20253	.1	nd	260		
20254	. 1	nd	850		
LVLUT	••		000		
20255	.1	nd	600		
20256	.1	nd	1500		
20257	. 1	nd	500		
20258	.1	nd	900		
20259	. 1	nd	1200		
20260	.2	nd	1950		
20261	.1	nd	1800		
20262	.2	nd	600		
20263	nd	nd	45		
20264	.1	45	3900		
20275			2100		
20265	nd	nd	2100		
20266	.1	nd	950		
20267	.1	nd	1400		
20268	.1	10	3200		
20269	nd	nd	5000		
20270	.1	nd	5000		
20271	nd	1	5000		
20272	nd	nd	3400		
20273	.1	nd	2800		
20274	nd	20	3200		
20275	nd	25	5000		
20276	nd	nd	5000		
20277	.1	20	5000		
20278	nd	10	3700		
20279	nd	80	4500		
20280	.1	nd	3400		
20281	.1	nd	2300		
20282	.1	nd	5000		
20283	nd	nd	5000		
20284	nd	nd	5000		
20204	IIU	HU	3000		
20285	nd	nd	500		
20286	nd	nd	150		
20287	nd	nd	240		
20288	nd	nd	75	,	
DETECTION LIMIT	0.1	5	5		

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. V5L 1K5 (604)251-5656 FAX:254-5717

REPORT NUMBER: 880905	GA JOB	NUMBER: 88	0905	SEVERN EXPLORATIONS LTD.	PAGE	2 0
SAMPLE #	Ag	Au	Hg			
	ppm	ppb	ppb			
20289	nd	nd	95			
20290	nd	20	130			
20292	nd	nd	230			
20293	.1	nd	270			
20294	nd	nd	280			
20295	nd	nd	260			
20296	nd	20	280			
20297	nd	10	400			
20298	nd	10	175			
20299	nd	10	180			
20300	nd	80	270			
20558	.4	10	260			
20559	.6	10	260			
20560	.3	5	75			
20561	.5	10	220			
20562	.4	10	115			
20563	.5	nd	165			
20564	1.1	20	190			
20565	1.5	5	165			
20566	1.5	30	170			
20567	2.2	40	55			
20568	1.4	35	240			
20569	3.3	50	30			
20570	2.5	60	20			
20571	2.6	nd	80			
20572	1.9	40	140			
20573	2.1	20	115			
20574	1.1	20	120			
20575	1.6	30	180			
20576	2.1	40	105			
20577	.6	20	170			
20578	1.0	20	25			
20579	.7	25	190			
20580	.7	nd	800			
20581	1.4	30	270			
20582	2.4	100	130			
20583	1.6	30	210			
20584	1.5	30	90			
20585	1.8	30	105	,		
DETECTION LIMIT	0.1	5	5			
nd = none detected	= not a			sufficient sample		

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. V5L 1KS 3 /604)251-5656 FAX:254-5717

SAMPLE #	Ag	Åu	Hg		
orna cc a	pp#	bbp	ppb		
20589	.3	nd	160		
20590	.2	nd	145		
20591	.5	50	120		
20592	.6	10	105		
20593	.3	20	165		
20594	.7	10	230		
20595	2.0	15	160		
20596	.6	40	1600		
20597	.7	70	320		
20598	.5	nd	1000		
20599	1.0	40	700		
20600	.5	10	700		
20646	.1	nd	160		
20647	nd	nd	190		
20648	nd	nd	100		
00540					
20649	nd	40	115		
20650	.1	nd	200		
20651	nd	nd	360		
20652	nd	10	650		
20653	. 1	5	700		
20654	.1	10	650		
20655	nd	nd	500		
20656	.1	nd	220		
20657	nd	10	450		
20658	nd	nd	500		
20659	.1	10	650		
20660	.1	nd	450		
20661	.1	nd	700		
20662	.1	10	1000		
20663	nd	nd	650		
20004		,	,,,,,		
20664	.1	nd	1650		
20665	nd	nd	1400		
20666	nd	10	90		
20667	nd	nd	95		
20668	nd	90	55		
20669	nd	10	240		
20670	. 1	10	105		
20671	nd	nd	125		
20672	nd	пd	100		
				-	

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. VSL 1K5 3 (604)251-5656 FAX:254-5717

REPORT NUMBER: 880905	GA JOB NUMBER	: 880905	SEVERN EXPLORATIONS LTD.	PAGE 4 OF
SAMPLE #	Ag	Au Hg		
	рр∎ р	pb ppb		
20673		10 800		
20674	nd	10 850		
20675	.1	20 850		
20676	.1	10 500		
20677	nd	nd 250		
20678	.1	nd 450		
20679	.2	10 750		
20680	nd	nd 500		
20681	nd	10 270		
20682	nd	nd 500		
20683	nd	nd 450		
20684		n d 350		
20685		nd 500		
20686		nd 700		
20687		10 900		
20688	.1	nd 400		
20689		10 450		
20690		10 500		
20691		20 230		
20692		10 210		
20693	nd	20 80		
20694		10 130		
20695		10 290		
20696	nd	nd 270		
20697		10 320		
20698	. 1	10 390		
20699		nd 300		
20700	nd	5 320		
20701	.1	nd 800		
20702	.3	10 230		
20703	2.1	10 250		
20704	nd	5 20		
20801	.6	30 210		
20802	.4	10 1500		
20803	.6	30 800		
20804	1.4	10 1000		
20805	.3	30 900		
20806	.5	20 350		
20807	.9	20 650	/	
DETECTION LIMIT	0.1	5 5		
nd = none detected	= not analys	ed is = in	sufficient sample	

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. V5L 1K5 → 2S3 (604)251-5656 FAX:254-57172578

REPORT NUMBER: 880905 6	A JOB NUM	BER: 880905	SEVERN EXPLORATIONS LTD.	PAGE 5 OF 9
SAMPLE #	. Ag	Au Họ		
	pp∎	ppb ppt		
20808	.5	20 280		
20809	.4	50 600	ı	
20810	.3	20 170)	
20811	.1	20 150	1	
20812	.1	10 150		
20813	.1	5 120		
20814	.1	5 140	l	
20815	.1	10 80	•	
20817	.2	nd 175		
20818	.2	10 105		
20819	.3	nd 120)	
20820	.2	nd 110		
20821	.3	nd 160		
20822	.6	nd 12:		
20823	.2	nd 31		
20824	.4	10 34)	
20825	2.1	30 60		
20828	.5	20 26		
20829	.6	50 30		
20830	.9	30 29		
20831	.5	30 32)	
20832	.2	45 33		
20833	.5	100 55		
20834	.3	60 60		
20836	.4	20 16		
20837	.4	20 18)	
20838	.2	20 26		
20839	.3	10 30		
20840	.1	nd 31		
20841	.2	nd 37		
20843	.9	nd 12)	
20844	.4	nd 15		
20845	.1	nd 35		
20846	.3	10 70		
20847	1.7	nd 8		
20848	1.7	30 14	5	
20849	3.3	70 12		
20850	.5	40 34		
20851	1.3	60 60	0	
DETECTION LIMIT	0.1	5	5	
nd = none detected	= not anal	ysed is =	insufficient sample	

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. VSL 1K5 (604)251-5656 FAX:254-5717

BRANCH OFFICE 1630 PANDORA ST.

VANCOUVER, B.C. V5L 1L6 (604) 251-5656

 00000 WW000 BRANC 0								_
REPORT NUMBER: 880905 G	A JOB	NUMBER: 88	0905	SEVERN EXPLORATIONS LTD.	PAGE	6	OF	9
SAMPLE #	. Ag	Au	Hg					
	ppm	ppb	ppb					
20852	1.1	70	600					
20853	.6	85	550					
20854	.8	70	600					
20855	.7	70	900					
20859	.3	20	550					
20860	.6	20	700					
20861	.3		700					
20862	.2		900					
20863	.3		700					
20864	.5		900					
20865	.2	10	600					
20866	.2		600					
20867	.2		950					
20868	.4		1000					
20869	.5		600					
20007			800					
20870	.3	10	450					
20871	.3	20	600					
20872	.2		450					
20873	.1	nd	500					
20874	.1	5	400					
20875	.2	nd	500					
20876	.2		1500					
20877	.2		900					
20879	.4		600					
20880	.5		1050					
20881	.6	20	700					
20882	.5		800					
20883	.4	10	500					
20884	.4		600					
20885	.5		340					
20000		20	340					
20886	.4	20	290					
20887	.4	10	500					
20888	.5		500					
20889	.5		550					
20890	.5	10	360					
20891	.5		310					
20892	.5	10	160					
20893	.6	nd	280					
20894	.5		340	,				
DETECTION LIMIT	0.1	5	5					
nd = none detected		anal ysed		sufficient sample				
		-		•				

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. VSL 1KS 3 1604)251-S656 FAX:254-5717

 REPORT NUMBER: 880905 6	A JOB	NUMBER:	880905	SEVERN EXPLORATIONS LTD.	PAGE	7	OF	9
SAMPLE #	Ag	Au	Hg					
	ppa	ppb						
20895	.4	nd						
20896	.5	10						
20897	.4	nd						
20898	.5	nd						
20899	.4							
20900	.3	nd	390					
20901	.3	nd						
20902	.3							
20903	.5	nd						
20904	.5	10						
20905	.4	10	160					
20906	.4	10						
20907	.5							
20908	.3							
20909	.4							

20910	.5	nd	310					
20911	.6							
20912	.5							
20913	.5							
20914	.5							
20915	.4	nd	105					
20916	.4							
20917	.3							
20918	.4							
20919	.5							
20920	.5	nd	400					
20921	. 4	nd	170					
20922	.2	nd	750					
20923	.4	nd	550					
20924	1.3	nd	400					
20925	.5							
20926	.6							
20927	.4	nd	160					
20928	.5	nd	2200					
20929	.6	20	1050					
20930	.6							
20931	.6							
20932	1.6		1500					
20933	.8	nd	230	•				
**************************************		_						
DETECTION LINIT	0.1							
nd = none detected	= not	analysed	15 = 10	nsufficient sample				

MAIN OFFICE AND LABORATORY 1989 Triumph Street Vancouver, B.C. VSL 1K5 (604)251-5656 FAX:254-5717_

REPORT NUMBER: 880905	GA JOB N	UMBER: 880	905	SEVERN EXPLORATIONS LTD.	PAGE	8	OF
SAMPLE #	Àg	Áu	Hg				
	pp∎	ppb	ррь				
20934	.7	nd	550				
20935	.6	nd	450				
20936	.5	nd	650				
20937	.7	nd	400				
20938	.6	nd	260				
20939	.5	nd	450				
20940	.4	nd	600				
20941	.4	nd	450				
20942	.4	nd	200				
20943	.5	nd	500				
20944	.2	nd	550				
20945	.3	nd	300				
20949	.4	nd	550				
20950	.5	nd	400				
20951	.2	nd	300				
20952	.4	nd	220				
20953	.5	nd	105				
20954	.5	nd	140				
20955	.4	nd	270				
20956	.3	nd	80				
20957	.4	nd	200				
20958	.4	nd	1300				
20959	.2	nd	4500				
20960	.3	nd	2800				
20961	.2	nd	3500				
20962	.2	nd	5000				
20963	.2	nd	5000				
20964	.2	nd	5000				
20965	.2	nd	5000				
20966	.2	nd	4500				
20967	.3	nd	4000				
20968	.4	nd	3000				
20969	.3	nd	5000				
20970	.3	nd	5000				
20971	.3	nd	5000				
20972	.3	nd	5000				
20973	.4	nd	5000				
20974	.4	nd	5000				
20975	.4	nd	3800	✓.			
DETECTION LIMIT	0.1	5	5				
nd = none detected	= not an			sufficient sample			

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. V5L 1K5 (504)251-5656 FAX:254-5717 BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

REPORT NUMBER: 880905 GA	JOB	NUMBER:	880905	SEVERN EXPLORATIONS LTD.	PAGE	9	0F	9
SAMPLE #	Ag	Au	Нд					
	pp.	ppb	ppb					
20976	.3	nd						
20977	.3	nd	1100					
20978	.3	nd						
20979	.3	nd						
20980	. 4	nd						
20981	.2	nd	340					
20982	.4	กต้	210					
20983	.3	nd	550					
20984	.3	nd	400					
20985	.2	nd	450					
20986	.2	nd	200					
20987	.3	nd						
20 988	.3	nd	220					
44101	.4	nd	150					
44102	.3	nd	500					
44103	.3							
44104	.3		280					
44105	.4		700					
44106	.2	nd	800					
44107	.2	nd	1300					
44108	.3							
44109	.3							
44110	.2		550					
44111	.3	nd	190					
44112	.4	nd	105					
44113	.3							
44114	.2	nd						
44115	.1	nd						
44116	.3							
44117	.4	nd	2200					
44118	.3							
44151	.4							
44152	.2		850					
44153	.4	nd	160					
44154	.4	nd	140	,				

DETECTION LIMIT nd = none detected 0.1 5

5

ted -- = not analysed

is = insufficient sample

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. V5L 1K5 (604)251-5656 FAX:254-5717 BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

GEOCHEMICAL ANALYTICAL REPORT

CLIENT: SEVERN EXPLORATIONS LTD.

DATE: August 26 1988

ADDRESS: 510 - 850 W. Hastings St.

: Vancouver, B.C. : V6C 1E1

REPORT#: 880964 GA

JOB#: 880964

PROJECT#: None given

SAMPLES ARRIVED: Aug 12 1988

REPORT COMPLETED: August 26 1988

ANALYSED FOR: Ag Au (FA/AAS) Hg

INVOICE#: 880964 NA

TOTAL SAMPLES: 90

SAMPLE TYPE: Rock

REJECTS: SAVED

SAMPLES FROM: Clinton, B.C.

COPY SENT TO: Clinton & Vancouver Office

PREPARED FOR: Mr. Duane Lucas

ANALYSED BY: VGC Staff

SIGNED:

GENERAL REMARK: Invoice sent to Vancouver Office

MAIN OFFICE

1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578

REPORT NUMBER: 880964 6A	JOB NUI	IBER: 8	80964	SEVERN EXPLORATIONS LTD.	PAGE	1	OF	3
SAMPLE #	Ag	Au	Hg					
	pp m	ppb	ppb					
44155	nd	10	50					
44156	nd	15	10					
44157	nd	nd	20					
44158	nd	nd	2100					
44159	nd	nd	2400					
44160	nd	nd	1200					
44161	nd	nd	1200					
44162	nd	nd	1000					
44163	nd	5	2900					
44164	nd	nd	4100	•				
44165	nd	10	>5000					
44166	nd	nd	2300					
44167	nd	nd	2300					
44168	nd	nd	>5000					
44169	nd	nd	3600					
44170	nd	nď	>5000					
44171	nd	nd	>5000					
44172	nd	10	3400					
44173	nd	nd	4500					
44174	nd	nd	>5000					
44175	nd	20	>5000					
44176	nd	10	>5000					
44177	nd	nď	>5000					
44178	nd	nd	>5000					
44179	nd	nd	>5000					
44180	nď	5	>5000					
44181	nd	10	>5000 >5000					
44182	nd	10	> 5000					
44183	nd	nd	800					
44184	nd	nd	> 5000					
44185	nd	nd	>5000					
44186	nd	nd	> 5000					
44187	nd	nd	>5000					
44188	nd	nd	>5000					
44189	nd	nd	≻5000					
44190	nd	nd	3400					
44191	nd	nd	>5000					
44192	nd	nd	1200					
44193	nd	nd	1100					
DETECTION LIMIT	0.1	5	ŧ					
	U.i = not anal	5 vend	5	ufficient com-1-				
na - none acteries	- not and!	yseu	15 = 109	sufficient sample				

MAIN OFFICE

1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578

REPORT NUMBER: 880964	GA JOB NUMI	BER: 8	B0964	SEVERN EXPLORATIONS LTD.	PAGE	2	DF 3
SAMPLE #	Ag	Au	Hg				
	ppa	ppb	ppb				
44194	nd	nd	>5000				
44195	nd	20	1600				
44196	nd	nd	1900				
44197	.1	10	>5000				
44198	nd	nd	>5000				
44400	- 4		050				
44199	nd	nd	850				
44200	nd	nd	1300				
44201	nd	nd	1200				
44202	nd	30	1150				
44203	nd	nd	1250	•			
44204	nđ	nd	600				
44205	nd	nd	1400				
44206	nd	nd	1550				
44207	nd	nd	>5000				
44208	nđ	nd	>5000				
44209	nd	nd	> 5000				
44210	nd	20	> 5000				
44211	nd	nd	>5000				
44212	nd	nd	>5000				
44213	nd	nd	>5000				
44014	a.d		4000				
44214 44215	nd	nd	4000 4500				
44216	nd nd	nd 9 0	> 5000				
44217	nd	nd	> 5000				
44218	nd	10	2500				
11210	n u		2000				
44219	nd	nď	2600				
44220	.1	nd	>5000				
44221	nd	กต่	>5000				
44222	nd	nd	3100				
44223	nd	nd	2900				
44224	nd	nd	2600				
44225	nd	nd	2400				
44226	nd	nd	4800				
44227	nd	nd	2300				
44228	nd	nd	2500				
44229	nd	n.d	2100				
44230	nd nd	nd nd	> 5000				
44231	nd	nd	>5000				
44232	nd	nd	7 5000				
7777	HU	110	/ 3000				
DETECTION LIMIT	0.1	5	5				
nd = none detected	= not analy	ysed	is = ins	sufficient sample			

MAIN OFFICE
1521 PEMBERTON AVE.
NORTH VANCOUVER. B.C. V7P 2S3
(604) 986-5211 TELEX. 04-352578

REPORT NUMBER: 880964 GA	JOB NU	MBER: 8	B0964	SEVERN EXPLORATIONS LTD.	PAGE	3	OF	3
SAMPLE #	Ag	Au	Hg					
	ρр∎	ppb	ppb					
44233	nd	nd	>5000					
44234	nd	nd	>5000					
44235	nd	nd	> 5000					
44236	กฮ	nd	> 5000					
44237	nd	nd	> 5000					
44238	nd	nd	>5000					
44239	nd	nd	2600					
44240	nd	10	1400					
44241	nd	10	700					
44242	nd	nd	700					
44243	nd	10	800	•				
44244	nd	10	1100					

Appendix 2 Check Analyses

Chemex Labs Ltd

nalytical Chemists • Geochemists • Registered Assayers
212 BROOKSBANK AVE., NORTH VANCOUVER,
BRITISH COLUMBIA, CANADA V7J-2C1
PHONE (604) 984-0221

WESEVERY EXPLORATIONS LIMITED

510 - 850 W. HASTINGS ST. VANCOUVER, BC V6C 1E2

Project :

Comments: OC: THOMAS HEINE

Page No :1 Tot. s: 3

Date :12-SEP-88 Invoice #:I-8822215 P.O. #:NONE

CERTIFICATE OF ANALYSIS A8822215

SAMPLE DESCRIPTION	PREP CODE	Au ppb FA+AA	Ag ppm Aqua R	Hg ppb				
20023 20024 20025 20026 20027	214 214 214 214 214	65 75 95	0 · 3 0 · 2 0 · 2	60				
20028 20029 20030 20031 20032	214 — 214 — 214 — 214 — 214 —	45 70 55	0 . 1 0 . 1 0 . 1	1 1 0 9 0 1 1 0 8 0 4 7 0		1		
20069 20070 20071 20072 20073	214	15 20 10	0 · 3 0 · 1 0 · 1					
20074 20075 20076 20077 20078	214	35 15 10	0.1	190 340 460 330 170				
20079 20080 20081 20082 20083	214 — 214 — 214 — 214 —	10	0.1	380 110 190 470 180				
20084 20085 20086 20087 20088	214 214 214 214	5 20	0.1	380 520 290 250 260				
20089 20090 20091 20092 20093	214 214 214 214	20 25 5	0.1	3 3 0 2 7 0 1 7 0 1 8 0 1 6 0				
20094 20095 20096 20113 20153	214 214 214 214	5 5 5 5 5	0.1	360 170 130 140 280				

CERTIFICATION: This Work

Chemex Labs Ltd

nalytical Chemists * Geochemists * Registered Assayers
212 BROOKSBANK AVE . NORTH VANCOUVER.
BRITISH COLUMBIA. CANADA V7J-2C1
PHONE (604) 984-0221

W SEVERN EXPLORATIONS LIMITED

510 - 850 W. HASTINGS ST. VANCOUVER, BC V6C 1E2

Project :

Comments: CC: THOMAS HEINE

Page No : 2 Tot. :s: 3

Date : 12-SEP-88 Invoice #: I-8822215 P.O. #: NONE

CERTIFICATE OF ANALYSIS A8822215

SAMPLE DESCRIPTION	PREP CODE	Au ppb FA+AA	Ag ppm Aqua R	Hg ppb				
20154 20155 20158 20558 20559	214 214 214 214	- < 5 - < 5 - < 5	1 . 2 1 . 1 1 . 3 0 . 1 0 . 1	260 1600 280				
20560 20561 20562 20563 20564	214 - 214 - 214 - 214 - 214 -	< 5< 5< 5	0 . 1 0 . 1 0 . 1 0 . 2 0 . 7	90 250 190 250 280				
20565 20566 20567 20568 20569	214	- 15 - 35 - 35	1 . 0 1 . 4 0 . 9	200 340				
20570 20571 20572 20573 20574	214	3 5 3 5 2 5	2 · 5 1 · 8 2 · 0	3 2 0 4 1 0 3 3 0				
20575 20576 20577 20578 20579	214 214 214 214 214	2 5 - < 5 1 0	1 . 9 0 . 4 0 . 8	350 250				
20580 20581 20582 20583 20584	214 214 214 214 214	2 5 1 2 0 2 5	1 . 3 2 . 4 1 . 4	380 560				
20585 20817 20818 20819 20820	214 214 214 214 214	<pre></pre>	1 . 4 0 . 1 0 . 1 0 . 1 0 . 1	190 200 140 150 120				
20821 20822 20823 20824 20825	214 214 214 214	< 5 < 5 < 5 < 5 < 5	0 . 1 0 . 3 0 . 1 0 . 1 2 . 1	180 260 320 380 610	 			

CERTIFICATION: Mark Vinh

212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221

To SEVERN EXPLORATIONS LIMITED

510 - 850 W. HASTINGS ST. VANCOUVER, BC V6C 1E2

Project:

Comments: CC: THOMAS HEINE

Page N Tot.

: 12-SEP-88 Date Invoice #: I-8822215

P.O. # NONE

CERTIFICATE OF ANALYSIS A8822215

SAMPLE DESCRIPTION	PREI	Au ppb F A+ AA	Ag ppm Aqua R	Hg ppb				
20826 20827 20828 20829 20830	214 214 214 214 214 214	15 10 < 5 40 40	0 · 4 0 · 6	2 7 0 1 7 0 2 7 0 3 1 0 3 2 0				
20831 20832 20833 20834 20835	214 214 214 214 214 214	 40 45 70 80 35	0 · 4 0 · 3 0 · 3	370 310 420 470 730		 		
20836 20837 20838 20839 20840	214 214 214 214 214	 25 15 < 5 < 5 < 5	Λ 2	1 8 0 1 7 0 2 5 0 3 0 0 2 9 0				
20841 20842	214 214	 < 5 50	0 . 1 0 . 3	4 1 0 8 1 0				

CERTIFICATION: Jack Vinh

212 BROOKSBANK AVE , NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221

DEVERT EXPLORATION LID. 780 - 885 DUNSMUIR ST. VANCOUVER, BC V6C 1N8

Project : Comments: ATTN: DUANE LUCAS

Tot. Pa P.O. NONE

A8819777 CERTIFICATE OF ANALYSIS

	•												
SAMPLE DESCRIPTION	PRE		Au tot	Au - g/tonne	Au		Wt.	•	Wt grams	Ag ppm Aqua R	Hg ppb		
20152 20153 20154 20155	236 236 236 236 236	 	0 · 1 0 · 0 0 · 0 0 · 0 0 · 2	7 < 0.0		0.001 0.001 0.001 0.001		6.60 6.90 6.90 5.10 4.90	264	1 . 4 1 . 4 1 . 3 2 . 9	34(30(51(
20246 20247 20248 20249	236 236 236 236 236 236	=======================================	<pre></pre>	7	7 < 7 < 4	0.00		5.80 5.20 5.70 6.40 5.60	241 234 276	2 . 6	37	0	
20250	130												
	,												

Appendix 3

Geochemical Analyses of Soil Samples

MAIN OPFICE
1621 PEMBERTON AVE.
NORTH VANCOUVER, B.C. V/P 253
(804) 988-5211 TELEX. 04-352578

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

GEOCHEMICAL ANALYTICAL REPORT

CLIENT: SEVERN EXPLORATIONS LTD.

ADDRESS: 575 - 885 Dunsmuir St.

: Vancouver, B.C.

: V6C 1N9

DATE: July 19 1988

REPORT#: 880681 GA

JOB#: 880681

PROJECT#: None

SAMPLES ARRIVED: July 11 1988

REPORT COMPLETED: July 19 1988

ANALYSED FOR: Ag Au Hg

INVOICE#: 880681 NA

TOTAL SAMPLES: 147

SAMPLE TYPE: ROCK SOIL

REJECTS: DISCARDED

SAMPLES FROM: Mr. Fayz Yacoub COPY SENT TO: Clinton, B.C.

PREPARED FOR: Mr. Fayz Yacoub

ANALYSED BY: VGC Staff

SIGNED:

GENERAL REMARK: Invoice sent to Courtenay Office

ಟಾ:1:

VANGEOCHEM LAB LIMITED

MAIN OPFICE 1521 PEMBERTON AVE NORTH VANCOUVER, B.C. V7P 263 (804) 886-6211 TELEX 04-362578

REPORT NUMBER: 880681	SA JOS NU	MBER: 8801	581	SEVERN EXPLORATIONS LTD.	PAGE	1 08	-
SAMPLE #	Ag	Αu	Нд				
	pp a	p pb	ppb				
L 7+505 4+00E	nd	5	45				
L 7+50S 4+20E	nd	10	70				
L 7+505 4+40E	nd	nd	125				
L 7+50S 4+60E	nđ	nd	80				
L 7+50S 4+80E	nd	nd	50				
L 7+50S 5+00E	nd	5	55				
L 7+50S 5+20E	nd	nd	60				
L 7+50S 5+40E	១៨	10	75				
L 7+50S 5+60E	nd	nģ	5 0				
L 7+50S 5+80E	.1	nd	55				
L 7+50\$ 6+00E	.1	10	55				
L 7+50S 6+20E	nd	10	80				
L 7+50S 6+40E	nd	nd	45				
L 7+50S 6+60E	nd	nd	160				
L 7+50S 6+80E	nd	15	330				
L 7+50S 7+00E	nd	nd	65				
L 7+50S 7+20E	nd	nd	45				
L 7+50S 7+40E	nd	nd	90				
L 7+50S 7+60E	nd	nd	60				
L 8+005 4+00E	กด์	nd	45				
L 8+00\$ 4+20E	.1	S	60				
L 8+005 4+40E	.5	nđ	70				
L 8+00S 4+60E	-1	nd	240				
L 8+00S 4+80E	.1	nd	65				
L 8+00S 5+00E	nd	20	50				
L 8+00S 5+20E	กต์	10	50				
L 8+00S 5+40E	nd	10	45				
L 8+00S 5+60E	.2	10	45				
L 8+00S 5+80E	nd	10	50				
L 8+00\$ 6+00E	nd	nd	70				
L 8+00S 6+20E	nd	5	175				
L 8+005 6+40E	nd	nd	60				
L 8+00S 6+60E	nd	nđ	100				
L 8+00\$ 6+80E	nd	10	60				
L 8+00S 7+00E	nd	กฮ์	45				
L 8+005 7+20E	nd	nd	160				
L 8+00\$ 7+40E	nđ	nd	60				
L 8+00\$ 7+60E	nd	5	55				
L 8+50S 4+00E	nd	5	45				
DETECTION LIMIT	0.1	5	5				
				ufficient sample			

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 283 (604) 986-5211 TELEX 04-352578

REPORT NUMBER: 880681 GA	108 NN	MBER: 88	0681	SEVERN EXPLORATIONS LTD.	PAGE	2 (OF	4
SAMPLE 1	Ag	Aŭ	Hg					
	ppe	ppb	ppb					
L 8+50S 4+20E	.1	10	70					
L 8+50S 4+40E	2	10	90					
L 8+505 4+60E	.1	nd	70					
L 8+50S 4+80E	.1	nd	65					
L 8+505 5+00E	nd	5	60					
L 8+50S 5+20E	nd	nd	70					
L 8+50S 5+40E	.2	20	40					
L 8+50S 5+60E	nd	15	35					
L 8+50S 5+80E	. 1	nd	330					
L 8+50S 6+00E	.1	10	140					
L 8+50S 6+20E	.3	5	65					
L 8+50S 6+40E	.1	30	40					
L 8+50S 6+60E	กฮ์	5	60					
L 8+50S 6+80E	nd	5	55					
L 8+50S 7+00E	nđ	5	65					
L 8+50S 7+20E	nd	5	40					
L 8+50S 7+40E	nd	5	30					
8+50S 7+60E	nd	nd	50					
L 9+00\$ 4+00E	.3	5	50					
9+005 4+20E	.3	5	80					
L 9+005 4+40E	.4	15	500					
L 9+005 4+60E	.2	30	95					
. 9+00S 4+80E	nd	nd	40					
9+00S 5+00E	nđ	5	75					
L 9+00\$ 5+20E	.1	nd	100					
L 9+00S 5+40E	.1	nd	50					
L 9+00\$ 5+60E	.1	5	65	*				
9+005 5+80E	.1	nd	50					
L 9+00\$ 6+00£	nd	5	60					
L 9+00\$ 6+20E	nd	5	40					
L 9+00S 6+40E	nd	nd	45					
L 9+005 6+60E	.1	15	45					
L 9+00S 6+80E	nd	nd	75					
L 9+00S 7+00E	nd	5	60					
L 9+005 7+20E	nd	5	60					
L 9+005 7+40E	nd	5	75					
L 9+005 7+60E	nd	10	65					
. 9+50S 4+00E	.1	10	140					
L 9+50\$ 4+20E	. 8	nd	240					
DETECTION LINIT	0.1	5	5					
nd = none detected =	not anal	vsed	is = ins	ufficient sample				

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-6211 TELEX, 04-352678

REPORT NUMBER: 880681 6A	10B MUH	IBER: 880	681	SEVERN EXPLORATIONS LTD.	PAGE	3 0	٢
SAMPLE #	Ag	Au	Hg				
	ppe	ppb	ppb				
L 9+50S 4+40E	.2	5	90				
L 9+50S 4+60E	nd	5	80				
L 9+50S 4+80E	nd	nd	50				
L 9+50S 5+00E	.1	nd	155				
L 9+50S 5+20E	nd	nd	50				
L 9+50S 5+40E	nd	nd	60				
L 9+50\$ 5+60E	nd	nd	65				
L 9+50S 5+80E	nd	10	165				
L 9+50S 6+00E	nd	nd	55				
L 9+50S 6+20E	nd	nd	45				
L 9+505 6+40E	nd	nđ	40				
L 9+50S 6+60E	nd	nd	40				
L 9+50S 6+80E	nd	nd	60				
L 9+50S 7+00E	nd	nd	65				
L 9+50S 7+20E	nd	nd	400				
L 9+505 7+40E	nd	5	110				
L 9+50S 7+60E	nď	nđ	110				
L 9+50S 7+80E	nd	nd	60				
L 9+50S 8+00E	nd	nd	60				
L10+00S 4+20E	nd	nd	85				
L10+00S 4+40E	nd	nd	55				
L10+00S 4+60E	.1	nd	60				
L10+005 4+80E	.7	nd	25				
L10+005 5+00E	n d	nd	50				
L10+00S 5+20E	nd	nđ	125				
L10+00S 5+40E	nd	nd	80				
L10+00S 5+60E	nd	nd	40				
L10+005 5+80E	nd	nd	50				
L10+00S 6+00E	nd	nd	50				
L10+00S 6+40E	nd	5	65				
L10+00S 6+60E	nd	5	160				
L10+00S 6+80E	nd	5	70				
L10+00\$ 7+00E	nd	nd	385				
L10+00S 7+20E	nd	nd	65				
110+005 7+40E	nd	nd	70				
L10+005 7+60E	nd	5	40				
L10+00S 7+80E	nd	nd	70				
L10+00\$ 8+00E	nd	nd	55				
L 6+00S 0+00	nd	nd	35				
DETECTION LINIT	0.1	5	5				
	= not analy			ufficient sample			

MAIN OFFICE 1821 PEMBERTON AVE NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C., V5L 1L6 (604) 251-5656

 REPORT NUMBER: 880681 GA	JOB NU	MBER: 880	681	SEVERN EXPLORATIONS LTD.	PAGE	4 OF	4
SAMPLE #	Ag	Au	Hg				
	ppa	ppb	ppb				
L 6+00S 0+20W	nd	5	80				
L 6+00S 0+40W	nd	10	60				
L 6+00S 0+60W	nd	nd	75				
L 6+005 0+80W	ńđ	nd	260				
L 6+00S 1+00W	nd	n¢	70				
L 6+00S 1+20W	nd	5	75				
L 6+00S 1+40W	nd	nd	60				
L 6+005 1+60W	nd	ind	75		,		
L 6+00S 1+80W	nd	nd	90				
L 6+00S 2+00W	nd	nd	50				
L 6+00S 2+20W	nd	5	65				
L 6+005 2+40W	nd	nd	90				
L 6+00S 2+60W	nd	nd	85				
L 6+00 s 2+80W	nd	nd	115				
L 6+005 3+00W	nd	nd	100				
L 6+00S 3+20W	nd	5	50				
L 6+00S 3+40W	กต์	5	50				
L 6+005 3+60W	nd	nd	50				
£ 6+005 3+80W	nđ	nd	60				
L 6+005 4+00W	nd	nd	45				
L 6+00S 4+10N	nd	nd	60				
L 6+00S 4+20W	nd	nd	35				
L 6+00S 4+30W	nd	nd	50				
L 6+00S 4+40W	nd	nd	80				
L 6+00S 4+50W	nd	nd	35				
L 6+005 4+60W	nd	nd	40				
L 6+005 4+70W	nd	nd	40				
L 6+005 4+80W	nd	nd	40				
L 6+00S 4+90W	nd	nd	35				
L 6+00S 5+00W	nd	nd	40				

DETECTION LIMIT nd = none detected 0.1

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. VSL 1K5 (604)251-5656 FAX:254-5717

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

GEOCHEMICAL ANALYTICAL REPORT

CLIENT: SEVERN EXPLORATIONS LTD.

DATE: July 22 1988

ADDRESS: 510 - 850 W. Hastings St.

•

REPORT#: 880716 GA

: Vancouver, B.C. : V6C 1E1

JOB#: 880716

PROJECT#: None given

INVOICE#: 880716 NA

SAMPLES ARRIVED: July 15 1988 REPORT COMPLETED: July 22 1988 TOTAL SAMPLES: 341 SAMPLE TYPE: Soils

ANALYSED FOR: Ag Au Hg

REJECTS: DISCARDED

SAMPLES FROM: Clinton, B.C.

COPY SENT TO: Vancouver & Clinton Offices

PREPARED FOR: Mr. Thomas H. Heine

ANALYSED BY: VGC Staff

SIGNED:

GENERAL REMARK: Invoice sent to Vancouver Office

VANGEOCHEM LAB LIMITED

MAIN OFFICE AND LABORATORY
1988 Triumph Street
Vancouver, B.C. V5L 1K5
(604) 251-5656 FAX: 254-5717

WANCOUVER, B.C. V5L 1L6
(604) 251-5656

L 7+00S 00H L 7+00S 0+20H L 7+00S 0+40H L 7+00S 0+60H L 7+00S 0+80H L 7+00S 1+00H L 7+00S 1+20H	Ag ppm .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	Au ppb 5 5 5 5 5	Hg ppb 40 55 55 45 30		
L 7+00S 0+20W L 7+00S 0+40W L 7+00S 0+60W L 7+00S 0+80W	ppm .1 .1 .1 .1 .1 .1 .1	5 5 5 5 5	ppb 40 55 55 45		
L 7+00S 0+20W L 7+00S 0+40W L 7+00S 0+60W L 7+00S 0+80W	.1 .1 .1 .1 .1 .1	5 5 5 5 5	40 55 55 45		
L 7+00S 0+40W L 7+00S 0+60W L 7+00S 0+80W	.1 .1 .1	5 5 5 5	55 55 45		
L 7+00S 0+40W L 7+00S 0+60W L 7+00S 0+80W	.1 .1 .1	5 5 5	55 45		
L 7+00S 0+60W L 7+00S 0+80W	.1 .1 .1	5 5 15	45		
L 7+00S 0+80W L 7+00S 1+00W	.1	5 15			
	.1				
	.1		70		
L / TVU3 1 TZV#		5	30		
L 7+00S 1+40W		5	260		
L 7+00S 1+60W	.1	5	50		
L 7+00S 1+80W	nđ	5	80		
L 7+00S 2+00W	nď	nd	40		
L 7+00S 2+20W	.1	10	35		
L 7+00S 2+40W	.1	10	105		
L 7+00S 2+60W	.1	10	350		
L 7+00S 2+80W	.1	10	80		
L 7+00S 3+00W	.1	5	75		
L 7+00S 3+10W	.1	10	45		
L 7+00S 3+20W	.2	5	55		
L 7+005 3+30W	.1	10	60		
L 7+00S 3+40W	.1	nd	55		
L 7+00S 3+50W	.2	5	30		
L 7+00S 3+60W	.1	10	110		
L 7+00S 3+70W	.1	5	45		
L 7+00S 3+80W	.4	5	40		
L 7+00S 3+90W	.2	5	40		
L 7+00S 4+00W	.3	5	40		
L 7+00S 4+10W	.2	5	40		
L 7+005 4+20W	.2	10	40		
L 7+00S 4+30W	.1	25	20		
L 7+00S 4+40W	.1	10	20		
L 7+00S 4+50W	.3	10	45		
L 7+00S 4+60W	.2	nd	30		
L 7+00S 4+70W	.1	10	25		
L 7+005 4+80W	.1	15	20		
L 7+00S 4+90W	.1	5	30		
L 7+00S 5+00W	.2	10	45		
L 8+00S 000 BL	.2	10	25		
L 8+00S 0+10W	.1	nd	20		
L 8+00S 0+20W	.1	5	260		
DETECTION LIMIT nd = none detected	0.1	5	5		

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. V5L 1K5 (604)251-5656 FAX:254-5717

REPORT NUMBER: 880716 GA	JOB NUM	BER: 880	716	SEVERN EXPLORATIONS LTD.	PAGE	2 0	IF S
SAMPLE #	Ag	Au	Hg				
	pps	ppb	ppb				
L 8+00S 0+30W	.1	10	20				
	2	5	65				
L 8+00S 0+50W	.3	10	50				
L 8+00S 0+60W	.3	10	45				
L 8+00S 0+70W	.1	10	90				
L 8+00S 0+80W	.1	5	65				
L 8+00S 0+90W	.1	15	45				
L 8+00S 1+00W	.1	5	45				
L 8+00S 1+10W	.2	10	55				
L 8+005 1+20W	.2	15	10				
L 8+00S 1+30W	.6	25	160				
L 8+00S 1+40W	.1	5	140				
L 8+00S 1+50W	.2	5	200				
L 8+00S 1+60W	.2	10	60				
L 8+00S 1+70W	.2	10	105				
L 8+00S 1+80W	.2	15	120				
L 8+00S 1+90W	.2	nd	65				
L 8+005 2+00W	.1	nd	70				
L 8+00S 2+10W	nd	nd	80				
L 8+00S 2+20W	.1	nd	60				
L 8+00S 2+30W	.1	nd	50				
L 8+005 2+40W	.2	nd	85				
L 8+00S 2+50W	.2	nd	35				
L 8+00S 2+60W	.2	10	45				
L 8+005 2+70W	.2	10	65				
L 8+00S 2+80W	.1	nd	240				
L 8+00S 2+90W	.1	5	60				
L 8+00S 3+00W	.3	10	30				
L 8+00S 3+10W	.1	10	50				
L 8+00S 3+20W	.1	5	30				
L 8+00S 3+30W	nd	5	80				
L B+005 3+40W	nd	nd	30				
L 8+005 3+50W	.1	10	50				
L 8+00S 3+60W	.2	15	30				
L 8+00S 3+70W	.1	15	40				
L 8+00S 3+80W	.2	15	40				
L 8+00S 3+90W	.1	10	30				
L 8+00S 4+00W	.1	20	50				
L 8+00S 4+10W	.1	10	30				
DETECTION LIMIT	0.1	5	5				
	not anal			ufficient sample			

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. VSL 1K5 (604)251-5656 FAX:254-5717

REPORT NUMBER: 880716 GA	JOB NU	MBER: 880	716	SEVERN EXPLORATIONS LTD.	PAGE	3	OF	•
SAMPLE #	Ag	Au	Hg					
	ppm	ppb	ppb					
L 8+00S 4+20W	.2	30	25					
L 8+00\$ 4+30W	nd	10	30					
L 8+005 4+40W	.1	10	40					
L 8+00S 4+50W	.1	nd	40					
L 8+00S 4+60W	.1	10	90					
L 8+005 4+70W	.2	5	50					
L 8+00S 4+80W	.1	15	30					
L 8+005 4+90W	.2	5	35					
L 8+00S 5+00W	.1	10	45					
L 9+005 BL	.2	5	40					
L 9+00S 0+10W	nd	5	85					
L 9+00S 0+20W	.1	10	70					
L 9+00S 0+30W	.2	10	60					
L 9+005 0+40W	.2	10	60					
L 9+00S 0+50W	.2	20	90					
L 9+005 0+60W	.2	15	60					
L 9+00S 0+70W	.2	10	70					
9+005 0+80W	.1	nd	80					
L 9+00S 0+90W	.2	nd	155					
L 9+00S 1+00W	.2	10	80					
L 9+00S 1+10W	.1	10	50					
9+005 1+20W	.1	10	80					
9+00S 1+30W	.2	5	55					
9+005 1+40W	.2	15	80					
L 9+00S 1+50W	1	nđ	80					
_ 9+005 1+60W	.4	nd	90					
L 9+00S 1+70W	.1	10	110					
L 9+005 1+80W	.1	5	100					
L 9+005 1+90W	.2	5	55					
L 9+00S 2+00W	.1	nd	60					
L 9+00S 2+10W	.1	5	95					
L 9+005 2+20W	.1	nd	75					
L 9+00S 2+30W	.1	5	80					
9+005 2+40W	.1	15	105					
9+00S 2+50W	2.5	10	65					
9+005 2+60W	.1	5	45					
L 9+00S 2+70W	.1	nd	110					
9+005 2+90W	nd	10	40					
9+00S 3+00W	.1	10	90					
DETECTION LIMIT	0.1	5	5					
nd = none detected	= not ana	lysed	is = ins	ufficient sample				

VANGEOCHEM LAB LIMITED

MAIN OFFICE AND LABORATORY
1988 Triumph Street
Vancouver, B.C. VSL 165
(604) 251-5656 FAX: 254-5717

WANCOUVER, B.C. VSL 1L6
(604) 251-5656

REPORT NUMBER: 880716 GA	JOR MOU	BER: 880	/16	SEVERN EXPLORATIONS LTD.	PAGE	4 OF	F
SAMPLE #	· Ag	Au	Hg				
	ppm	ppb	ppb				
L 9+00S 3+10W	1.	20	165				
L 9+00S 3+20W	.1	20	60				
L 9+00S 3+30W	.5	nd	70				
L 9+005 3+40W	.2	5	40				
L 9+00S 3+50W	.2	5	440				
L 9+005 3+60W	.2	10	90				
L 9+00S 3+70W	.2	nd	60				
L 9+005 3+80W	.2	nd	205				
L 9+00S 3+90W	nd	nd	60				
L 9+00S 4+00W	.2	5	50				
L 9+005 4+10W	.2	10	50				
L 9+00S 4+20W	.2	10	30				
L 9+00S 4+30W	.6	10	100				
L 9+00S 4+40W	.4	10	145				
L 9+00S 4+50W	.2	15	80				
L 9+00S 4+60W	nd	nd	55				
L 9+00S 4+70W	.1	5	40				
L 9+00S 4+80W	.3	5	45				
L 9+00S 4+90W	.2	5	40				
L 9+00S 5+00W	nd	10	30				
27,000 3,004	nu	10	30				
L10+50S BL	.1	10	85				
L10+50S 0+10W	.1	10	50				
L10+50S 0+20W	.1	25	500				
L10+50S 0+30W	.1	10	65				
L10+50S 0+40W	.1	10	95				
LAA. BAB. A. BAU		_					
L10+50S 0+50W	.1	5	110				
L10+50S 0+60W	.1	uq	110				
L10+50S 0+70W	.1	5	140				
L10+50S 0+80W	.2	10	90				
L10+50S 0+90N	.4	10	90				
L10+50S 1+00W	.3	10	140				
L10+50S 1+10W	.3	25	120				
L10+50S 1+20W	.3	10	110				
L10+50S 1+30W	.2	5	85				
L10+50S 1+40W	.2	5	45				
	_	-					
L10+50S 1+50W	.3	10	130				
L10+50S 1+60W	.3	5	260				
L10+50S 1+70W	.2	15	65				
L10+50S 1+80W	.3	10	55				
DETECTION LIMIT	0.1	5	5				

VANGEOCHEM LAB LIMITED

MAIN OFFICE AND LABORATORY
1988 Triumph Street
Vancouver, B.C. V5L 1k5
(604) 251-5656 FAX: 254-5717

VANCOUVER, B.C. V5L 1L6
(604) 251-5656

REPORT NUMBER: 880716 GA	JOB NU	MBER: 88	0716	SEVERN EXPLORATIONS LTD.	PAGE	5	OF	Ç
SAMPLE #	. Ag	Au	Hg					
	pp e	ppb	ppb					
L10+50S 1+90W	.4	5	120					
L10+50S 2+00W	.5	15	400					
L10+50S 2+10W	.2	10	160					
L10+50S 2+20W	.2	5	450					
L10+50S 2+30W	.3	5	155					
L10+50S 2+40W	.2	15	85					
L10+50S 2+50W	.2	10	125					
L10+50S 2+60W	.4	20	120					
L10+50S 2+70W	.4	5	120					
L10+50S 2+80W	.2	nd	190					
L10+50S 2+90W	.1	10	120					
L10+50S 3+00W	.2	5	60					
L10+50S 3+10W	.2	10	60					
L10+50S 3+20W	.2	10	70					
L10+50S 3+30W	nd	15	50					
L10+50S 3+40W	.2	10	100					
L10+50S 3+50W	.2	15	60					
L10+505 3+60W	.2	15	65					
L10+50S 3+70W	.2	nd	65					
L10+50S 3+80W	.2	5	60					
L10+50S 3+90W	.1	15	90					
L10+50S 4+00W	.1	20	150					
L10+50S 4+10W	.1	5	65					
L10+50S 4+20W	.1	20	80					
L10+50S 4+30W	.2	10	45					
L10+50S 4+40W	.2	10	50					
L10+50S 4+50W	.2	10	60					
L10+50S 4+60W	.2	10	130					
L10+50S 4+70W	.3	5	160					
L10+50S 4+80W	.2	15	120					
L10+50S 4+90W	.2	15	5 5					
L10+50S 5+00W	.1	20	80					
L11+00S BL	.3	15	75					
L11+00S 0+10W	.2	10	700					
L11+00S 0+20W	.3	20	75					
L11+00S 0+30W	.2	10	85					
L11+00S 0+40W	.2	15	45					
L11+00S 0+50W	.3	10	115					
L11+00S 0+60W	.2	5	115					
DETECTION LIMIT	0.1	5	5					
nd = none detected =	not anal			ufficient sample				

VANGEOCHEM LAB LIMITED

MAIN OFFICE AND LABORATORY
1988 Triumph Street
Vancouver, B.C. V5L 1K5
(604) 251-5656 FAX: 254-5717;

BRANCH OFFICE
1630 PANDORA ST.
VANCOUVER, B.C. V5L 1L6
(604) 251-5656

REPORT NUMBER: 880716 GA	300 NO!	BER: 880	/10	SEVERN EXPLORATIONS LTD.	PAGE	ь	OF
SAMPLE #	. Ag	Au	Hg				
	рр∎	ppb	ppb				
L11+00S 0+70W	.2	10	110				
L11+00S 0+80W	2	10	60				
L11+00S 0+90W	.2	5	80				
L11+00S 1+00W	.2	nd	105				
L11+005 1+10W	.1	nd	90				
L11+005 1+20W	.1	10	185				
L11+00S 1+30W	.2	5	120				
L11+00S 1+40W	.2	10	110				
L11+005 1+50W	.2	5	75				
L11+005 1+60W	.2	10	70				
L11+005 1+70W	.2	15	75				
L11+00S 1+80W	.2	5	80				
L11+00S 1+90W	.2	10	230				
L11+00S 2+00W	.1	5	230				
L11+00S 2+10W	.3	10	450				
L11+00S 2+20W	.2	10	145				
L11+00S 2+30W	.1	15	85				
L11+00S 2+40W	.i	nd	260				
L11+00S 2+50W	.1	5	90				
L11+00S 2+60W	.1	5	120				
L11+00\$ 2+70W	.1	nd	420				
L11+00S 2+80W	nď	nd	145				
L11+00S 2+90W	.1	nd	180				
L11+005 3+00W	nd	กd	125				
L11+00S 3+10W	.1	nd	500				
L11+00S 3+20W	.1	5	55				
L11+00S 3+30W	nd	5	165				
L11+005 3+40W	.1	10	85				
L11+00S 3+50W	nd	5	120				
L11+00S 3+60W	nd	10	90				
L11+00S 3+70W	nd	10	75				
L11+00S 3+80W	.1	10	140				
L11+005 3+90W	nd	nd	70				
L11+005 4+00W	nd	nd	60				
L11+00S 4+10W	.1	10	70				
L11+00S 4+20W	.1	10	55				
L11+005 4+30W	.1	5	60				
L11+00S 4+40W	-1	20	80				
L11+00S 4+50W	.1	5	45				
DETECTION LIMIT	0.1	5	5				

VANGEOCHEM LAB LIMITED

MAIN OFFICE AND LABORATORY
1988 Triumph Street
Vancouver, B.C. V5L 1K5
(604) 251-5656 FAX: 254-5717

VANCOUVER, B.C. V5L 1L6
(604) 251-5656

REPORT NUMBER: 880716	GA JOB NUI	MBER: 88	0716	SEVERN EXPLORATIONS LTD.	PAGE 7 OF
SAMPLE #	· Ag	Au	Hg		
	ppa	ppb	ppb		
L11+00S 4+60W	nd	nd	60		
L11+00S 4+70W	nd	15	65		
L11+00S 4+80W	nd	50	260		
L11+005 4+90W	nd	20	90		
L11+00S 5+00W	nd	. 5	60		
L11+50S BL	.1	15	140		
L11+50S 0+10W	.2	15	70		
L11+505 0+20W	-1	10	85		
L11+50S 0+30W	.1	nd	50		
L11+505 0+40W	.2	15	55		
L11+50S 0+50W	.3	20	70		
L11+50S 0+60W	.1	5	90		
L11+50S 0+70W	.1	15	90		
L11+50S 0+80W	.1	nd	70		
L11+50S 0+90W	.1	20	60		
L11+50S 1+00W	.1	15	75		
L11+50S 1+10W	.1	10	100		
L11+50S 1+20W	.1	5	175		
L11+50S 1+30W	nd	10	115		
L11+50S 1+40W	.1	10	450		
L11+50S 1+50W	.1	5	160		
L11+50S 1+60W	.1	10	280		
L11+50S 1+70W	nd	nd	260		
L11+50S 1+80W	nd	10	280		
L11+50S 1+90W	.1	nd	145		
L11+50S 2+00W	.2	20	650		
L11+50S 2+10W	.2	10	230		
L11+50S 2+20W	.1	10	210		
L11+50S 2+30W	.1	10	165		
L11+50S 2+40W	.1	10	130		
L11+50S 2+50W	.1	10	190		
L11+50S 2+60W	.2	5	160		
L11+50S 2+70W	.1	10	30		
L11+50S 2+80W	.1	nd	65		
L11+50S 2+90W	.1	20	60		
L11+50S 3+00W	.1	10	100		
L11+50S 3+10W	.1	10	95		
L11+50S 3+20W	.1	10	40		
L11+50S 3+30W	nd	10	50		
DETECTION LIMIT	0.1	5	5		
nd = none detected	= not anal	ysed	is = ins	ufficient sample	

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. V5L 1K5 (604)251-5656 FAX:254-5717

REPORT NUMBER: 880716 GA	JOB NUI	1BER: 880	716	SEVERN EXPLORATIONS LTD.	PAGE	8	OF	
SAMPLE #	, Ag	Au	Hg					
	pp∎	ppb	ppb					
L11+50S 3+40W	nd	5	60					
L11+50S 3+50W	nd	5	60					
L11+50S 3+60W	nd	5	45					
L11+50S 3+70W	nd	5	50					
L11+50S 3+80W	nd	20	70					
L11+505 3+90W	nd	10	85					
L11+50S 4+00W	nd	10	60					
L11+50S 4+10W	nd	20	65					
L11+50S 4+20W	nd	10	45					
L11+505 4+30W	nd	10	90					
L11+50S 4+40W	nd	10	185					
L11+50S 4+50W	nd	20	60					
L11+50S 4+60W	nd	10	70					
L11+50S 4+70W	nd	10	50					
L11+50S 4+80W	nd	5	60					
L11+505 4+90W	nd	15	50					
L11+50S 5+00W	nd	nd	30					
L12+005 BL	nd	15	635					
L12+00S 0+10W	.1	10	50					
L12+00S 0+20W	.1	10	70					
L12+00S 0+30W	.2	nd	90					
L12+00S 0+40W	.2	10	70					
L12+00S 0+50W	.1	5	290					
L12+005 0+60W	.1	10	110					
L12+00S 0+70W	. i	10	145					
L12+00S 0+80W	.1	5	110					
L12+00S 0+90W	.1	nd	260					
L12+005 1+00W	.1	5	130					
L12+005 1+10W	.1	10	60					
L12+00S 1+20W	nd	10	90					
L12+00S 1+30W	nd	10	80					
L12+005 1+40W	.1	10	95					
L12+005 1+50W	uq . ı	20	150					
L12+005 1+60W	na nd	10	105					
L12+00S 1+70W	. 1	5	50					
L12+005 1+80W		4.6	(18					
L12+005 1+80W	nd nd	10 10	115 130					
L12+005 2+00W	.1							
L12+005 2+10W		nd s	90 70					
CITAOA2 TAIAM	.1	5	70					
DETECTION LIMIT	0.1	5	5					

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. V5L 1K5 (604)251-5656 FAX:254-5717

REPORT NUMBER: 880716 GA	JOB NU	IMBER: 880	716	SEVERM EXPLORATIONS LTD.	PAGE	9	OF	9
SAMPLE #	Ag	Au	Hg					
	ppe	ppb	ppb					
L12+00S 2+20W	nd	5	130					
L12+005 2+30W	nd	5	130					
L12+00S 2+40W	nd	5	95					
L12+00S 2+50W	.1	5	140					
L12+00S 2+60W	.1	nd	80					
L12+00S 2+70W	.1	nd	55					
L12+00S 2+80W	.1	nd	630					
L12+005 2+90W	.i	20	55					
L12+005 3+00W	.1	10	75					
L12+005 3+10W	.1	10	70					
L12+00S 3+20W	.1	10	75					
L12+005 3+30W	.1	15	55					
L12+00S 3+40W	.1	5	90					
L12+00S 3+50W	.1	10	70					
L12+00S 3+60W	.1	5	60					
L12+00S 3+70W	.1	5	80					
L12+00S 3+80W	nd	10	50					
L12+00S 3+90W	.1	20	60					
L12+00S 4+00W	.2	5	160					
L12+00S 4+10W	•1	5	185					
L12+00S 4+20W	.1	10	6					
L12+00S 4+30W	.1	10	145					
L12+00S 4+40W	.1	10	65					
L12+005 4+50W	.1	10	200					
L12+00S 4+60W	.1	10	45					
L12+00S 4+70W	.1	nd	40					
L12+005 4+80W	.1	25	140					
L12+005 4+90W	.2	5	105					
L12+00S 5+00W	.1	15	90					

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. VSL 1K5 (604)251-5656 FAX:254-5717

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

GEOCHEMICAL ANALYTICAL REPORT

CLIENT: SEVERN EXPLORATIONS LTD.

DATE: Aug 05 1988

ADDRESS: 510 - 850 W. Hastings St.

REPORT#: 880736 GA

: Vancouver, B.C. : V6C 1E1

JOB#: 880736

PROJECT#: None given

INVOICE#: 880736 NA

SAMPLES ARRIVED: July 20 1988

TOTAL SAMPLES: 340

REPORT COMPLETED: Aug 05 1988

SAMPLE TYPE: Soil

ANALYSED FOR: Ag Au Hg

REJECTS: DISCARDED

SAMPLES FROM: Clinton, B.C.

COPY SENT TO: CLinton & Vancouver Office

PREPARED FOR: Duane Lucas

ANALYSED BY: VGC Staff

SIGNED:

GENERAL REMARK: Invoice sent to Vancouver Office

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. V5L 1K5 3 (604)251-5656 FAX:254-57173

REPORT NUMBER: 880736 GA	JOB NU	MBER: 880	736	SEVERN EXPLORATIONS LTD.	PAGE	1 (OF
SAMPLE #	Ag	Αu	Hg				
	pps	bbp	ppb				
L 4+00S BL	nd	20	50				
L 4+00S 0+10W	nd	15	45				
L 4+005 0+20W	nd	5	45				
L 4+00S 0+30W	nd	10	65				
£ 4+00S 0+40W	nd	15	70				
L 4+00S 0+50W	.1	10	50				
L 4+00S 0+60W	กd	30	75				
£ 4+00S 0+70W	.1	10	70				
L 4+00S 0+80W	nď	10	110				
L 4+00S 0+90W	nd	15	35				
L 4+00S 1+00W	nđ	nd	50				
L 4+00S 1+10W	nd	10	60				
L 4+00S 1+20W	nd	10	80				
L 4+00S 1+30W	nd	10	50				
L 4+00S 1+40W	nd	10	40				
L 4+00S 1+50W	nd	5	45				
L 4+00S 1+60W	nd	5	55				
L 4+00S 1+70W	nd	15	70				
L 4+00S 1+80W	nd	10	70				
L 4+00S 1+90W	nd	10	40				
L 4+00S 2+00W	nd	20	35				
L 4+00S 2+10W	nd	5	60				
L 4+00S 2+20W	nd	15	40				
L 4+005 2+30W	nd	15	50				
L 4+00S 2+40N	nd	10	30				
L 4+00S 2+50W	nd	20	45				
L 4+00S 2+60W	nd	nd	20				
L 4+00S 2+70W	nd	10	35				
L 4+00S 2+80W	nd	10	80				
L 4+00S 2+90W	nd	20	25				
L 4+00S 3+00W	nd	5	30				
L 4+00S 3+10W	nd	nd	30				
L 4+00S 3+20W	nd	nd	30				
L 4+00S 3+30W	nd	nd	40				
L 4+00S 3+40W	nd	nd	25				
1 44000 24500		- 4	35				
L 4+00S 3+50W	nd	nd					
L 4+00S 3+60W	nd	nd	35 20				
L 4+005 3+70W	nd	nd	30 25				
L 4+00S 3+80W	nd	30	35				
DETECTION LINIT	0.1	. 5	. 5				
nd = none detected	= not ana	l ysed	15 = in	sufficient sample			

VANGEOCHEM LAB LIMITED

MAIN OFFICE AND LABORATORY
1988 Triumph Street
Vancouver, B.C. V5L 1K5
(604) 251-5656 FAX: 254-5717

WANCOUVER, B.C. V5L 1L6
(604) 251-5656

REPORT NUMBER: 880736	GA JOB NU	MBER: 880736	SEVERN EXPLORATIONS LTD.	PAGE 2 OF
SAMPLE #	Ag	Au H	1	
	pp s	ppb ppl		
L 4+00S 3+90W	nd	nd 30		
L 4+00S 4+00W	· nd	nd 60		
L 4+00S 4+10W	nd	10 30		
L 4+00S 4+20W	nd	30 30	1	
L 4+00S 4+30W	nd	10 340	•	
L 4+00S 4+40W	nd	20 50		
L 4+00S 4+50W	nd	5 30	•	
L 4+00S 4+60W	nd	nd 30	i e	
L 4+00S 4+70W	nd	10 30		
L 4+00S 4+80W	nd	5 55		
L 4+00S 4+90W	nd	nd 40		
L 4+00S 5+00W	nd	15 50		
L 4+50S BL	nd	5 40		
L 4+50S 0+10W	nd	15 45		
L 4+50S 0+20W	nd	10 50		
L 4+50S 0+30W	nd	nd 50		
L 4+50S 0+40W	nd	nd 50		
L 4+50S 0+50W	nd	10 85		
L 4+50S 0+60W	nd	nd 40		
L 4+50S 0+70W	nd	5 65		
L 4+50S 0+80W	nd	10 55		
L 4+50S 0+90W	.3	20 100		
L 4+50S 1+00W	nd	10 55		
L 4+50S 1+10W	nd	20 50		
L 4+50S 1+20W	nd	15 65		
L 4+50S 1+30W	nd	10 40		
L 4+50S 1+40W	nd	nd 60		
L 4+50S 1+50W	nd	20 90		
L 4+50S 1+60W	nd	10 50		
L 4+50S 1+70W	.2	nd 100		
L 4+50S 1+80W	.5	20 450		
L 4+50S 1+90W	.6	25 210		
L 4+50S 2+00W	.2	nd 110		
L 4+50S 2+10W	nd	nd 40		
L 4+50S 2+20W	nd	5 50		
L 4+50S 2+30W	nd	10 45		
L 4+50S 2+40W	nd	5 95		
L 4+50S 2+50W	nd	nd 70		
L 4+50S 2+60W	nd	5 35		
DETECTION LIMIT	0.1	5 5		
nd = none detected	= not ana)	ysed is = :	nsufficient sample	

VANGEOCHEM LAB LIMITED

MAIN OFFICE AND LABORATORY
1988 Triumph Street
Vancouver, B.C. V5L 1K5
(604) 251-5656 FAX: 254-5717

VANCOUVER, B.C. V5L 1L6
(604) 251-5656

REPORT NUMBER: 880736	GA JOB NU	MBER: 880	0736	SEVERN EXPLORATIONS LTD.	PAGE	3 0	F
SAMPLE #	Ag	Au	Hg				
	pρ∎	ppb	ppb				
L 4+50S 2+70W	nd	nđ	65				
L 4+50S 2+80W	nd	10	35				
L 4+50S 2+90W	nđ	10	40				
L 4+50S 3+00W	nd	5	40				
L 4+50S 3+10W	nd	15	25				
L 4+50S 3+20W	nd	20	55				
L 4+50S 3+30W	nd	20	55				
L 4+50S 3+40W	กd	nd	20				
L 4+50S 3+50W	nd	10	35				
L 4+50S 3+60¥	nd	nd	35				
L 4+50S 3+70W	nd	5	45				
L 4+50S 3+80W	nd	10	40				
L 4+50S 3+90W	nđ	5	25				
L 4+50S 4+00W	nd	5	30				
L 4+50S 4+10W	nd	10	30				
L 4+50S 4+20W	nd	nd	40				
L 4+50S 4+30W	nd	10	40				
L 4+50S 4+40W	nd	5	25				
L 4+50S 4+50W	nd	5	30				
L 4+50S 4+60W	nď	5	55				
L 4+50S 4+70H	nd	10	45				
L 4+50S 4+80W	nd	nd	30				
L 4+50S 4+90W	.2	5	40				
L 4+50S 5+00W	nd	5	30				
L 5+00S BL	.1	5	65				
L 5+00S 0+00W	nd	15	75				
L 5+00S 0+10W	nd	10	180				
L 5+00S 0+20W	nd	10	110				
L 5+00S 0+30W	nd	nd	60				
L 5+00S 0+40W	nd	20	65				
L 5+00S 0+50W	nd	10	60				
L 5+00S 0+60W	nd	10	85				
L 5+00S 0+70W	nd	10	70				
L 5+00S 0+80W	nd	5	45				
L 5+00S 0+90W	nd	20	40				
L 5+00S 1+10W	nđ	5	70				
L 5+00S 1+20W	nd	10	70				
L 5+00S 1+30W	nd	nd	95				
L 5+00S 1+40W	nd	20	70				
DETECTION LINIT	0.1	5	5				
nd = none detected	= not ana	lvsed	is = ins	sufficient sample			

VANGEOCHEM LAB LIMITED

MAIN OFFICE AND LABORATORY
1988 Triumph Street
Vancouver, B.C. V5L 1K5 s3
(604) 251-5656 FAX: 254-5717 78

WANCOUVER, B.C. V5L 1L6
(604) 251-5656

REPORT NUMBER: 880736	A JOB NUI	1BER: 880	736	SEVERN EXPLORATIONS LTD.	PAGE	4 Of	. 9
SAMPLE #	Ag	Au	Hg				
	ppm	рpb	ppb				
L 5+00S 1+50W	1.	nd	70				
L 5+00S 1+60W	. nd	30	70				
L 5+00S 1+70W	nd	10	75				
L 5+00S 1+80W	nd	5	180				
L 5+00S 1+90W	nď	10	60				
L 5+00S 2+00W	nd	5	45				
L 5+00S 2+10W	nd	10	55				
L 5+00S 2+20W	nd	15	40				
L 5+00S 2+30W	nd	15	40				
L 5+00S 2+40W	nd	20	85				
L 5+00S 2+50W	nd	5	50				
L 5+00S 2+60W	nd	20	50				
L 5+00S 2+70W	nd	20	70				
L 5+00S 2+80W	nd	5	60				
L 5+00S 2+90W	nd	10	60				
L 5+00S 3+00W	nd	15	105				
L 5+00S 3+10W	nd	10	65				
L 5+00S 3+20W	nd	15	35				
L 5+00S 3+30N	nd	nd	40				
L 5+00S 3+40W	nd	10	30				
L 5+00S 3+50N	nd	5	50				
L 5+00S 3+60W	nd	10	30				
L 5+00S 3+70W	nd	5	35				
L 5+00S 3+80W	nd	nd	55				
L 5+00S 3+90W	nd	"u 5	30				
L 5+00S 4+00W	nd	5	30				
L 5+00S 4+10W	nd	20	50				
L 5+00S 4+20W	nd	10	30				
L 5+00S 4+30W	nd	10	35				
L 5+00S 4+40W	nd	20	50				
L 5+00S 4+50W	nd	5	80				
£ 5+00S 4+60W	nd	nd	75				
L 5+00S 4+70W	nd	hd	40				
L 5+00S 4+80W	nd	5	40				
L 5+00S 4+90W	nd	15	40				
L 5+00S 5+00W	nd	5	50				
L 5+50S BL	ná	25	75				
L 5+50S 0+10W	nd	25	55				
L 5+50S 0+20W	nd	10	50				
DETECTION LIMIT	0.1	5	5				
	= not anal			ufficient sample			
				 			

VANGEOCHEM LAB LIMITED

MAIN OFFICE AND LABORATORY
1988 Triumph Street
Vancouver, B.C. V5L 1K5 3
(604) 251-5656 FAX:254-5717 8

BRANCH OFFICE
1630 PANDORA ST.
VANCOUVER, B.C. V5L 1L6
(604) 251-5656

REPORT NUMBER: 880736 GA	JOB NUMBI	ER: 880736	SEVERN EXPLORATIONS LTD.	PAGE 5 0
SAMPLE #	Ag	Au Hg		
	ppm	ppb ppb		
L 5+50S 0+30W	nd	20 60		
L 5+50S 0+40W	nd	nd 70		
L 5+50S 0+50W	nd	10 75		
L 5+50S 0+60W	nd	10 65		
L 5+50S 0+70W	nd	5 70		
L 5+50S 0+80W	nd	10 185		
L 5+50S 0+90W	nd	nd 55		
L 5+50S 1+00W	nd	5 70		
L 5+50S 1+10W	nd	10 85		
L 5+50S 1+20W	nd	5 60		
L 5+50S 1+30W	nd	10 200		
L 5+50S 1+40W	nd	10 70		
L 5+50S 1+50W	nd	10 1800		
L 5+50S 1+60W	nd	nd 100		
L 5+50S 1+70W	nd	nd 80		
L 5+50S 1+80W	nd	5 55		
L 5+50S 1+90W	nd	20 300		
L 5+50S 2+00W	nd	nd 50		
L 5+50S 2+10W	nd	5 60		
L 5+50S 2+20W	nd	10 45		
L 5+50S 2+30W	nd	nd 105		
L 5+50S 2+40W	nd	5 90		
L 5+50S 2+50W	.1	nd 250		
L 5+50S 2+60W	nd	nd 210		
L 5+50S 2+70W	nd	5 20		
L 5+50S 2+80W	nd	5 75		
L 5+50S 2+90W	nd ·	nd 45		
L 5+50S 3+00W	nd	nd 160		
L 5+50S 3+10W	nd	nd 70		
L 5+50S 3+20W	nd	nd 75		
L 5+50S 3+30W	nd	nd 60		
L 5+50S 3+40W	nd	5 50		
L 5+50S 3+50W	nd	nd 30		
L 5+50S 3+60W	nd	15 50		
L 5+50S 3+70H	nd	nd 60		
L 5+50S 3+80W	nd	15 50		
L 5+50S 3+90W	nd	nd 50		
L 5+50S 4+00W	nd	nd 70		
L 5+50S 4+10N	nđ	5 35		
DETECTION LIMIT	0.1	5 5		
	= not analys		sufficient sample	

MAIN OFFICE AND LABORATORY
1988 Triumph Street
Vancouver, B.C. V5L 1K5
(604)251-5656 FAX:254-5717

REPORT NUMBER: 880736 6	A JOB NU	MBER: 88	10736	SEVERN EXPLORATIONS LTD.	PAGE 6 OF 9
SAMPLE #	Ag	Au	Hg		
	pp∎	ppb	ppb		
L 5+50S 4+20W	nd	10	60		
L 5+50S 4+30W	· .1	15	70		
L 5+50S 4+40W	nd	20	30		
L 5+50S 4+50W	nd	5	40		
L 5+50S 4+60W	nd	nđ	40		
L 5+50S 4+70W	nd	15	35		
L 5+50S 4+80W	nđ	10	45		
L 5+50S 4+90W	nd	5	30		
L 5+50S 5+00W	nd	5	145		
L 6+00S 0+10W	nd	25	140		
L 6+00S 0+30W	nd	15	75		
L 6+00S 0+50W	.1	5	75		
L 6+00S 0+70W	.1	10	165		
L 6+00S 0+90W	nd	nd	80		
L 6+00S 1+10W	nd	5	75		
L 6+00S 1+30W	nd	5	170		
L 6+00S 1+50W	nd	5	250		
L 6+00S 1+70W	nd	nd	135		
L 6+00S 1+90W	nd	5	80		
L 6+00S 2+10W	nd	5	175		
L 6+00S 2+30W	nd	10	100		
L 6+00S 2+50W	nd	10	85		
L 6+00S 2+70W	nd	10	260		
L 6+00S 2+90W	nd	10	250		
L 6+00S 3+10W	nd	10	50		
L 6+00S 3+30W	nd	nd	60		
L 6+00S 3+50W	nd	nd	45		
L 6+00S 3+70W	nd	20	30		
L 6+00S 3+90W	nd	15	45		
L 6+50S BL	nd	10	60		
L 6+50S 0+10W	nd	10	40		
L 6+50S 0+20W	nd	5	60		
L 6+50S 0+30W	nd	5	65		
L 6+50S 0+40W	.1	5	55		
L 6+50S 0+50W	nd	5	55		
L 6+50S 0+60W	nd	nd	60		
L 6+50S 0+70W	nd	10	45		
L 6+50S 0+80W	nd	nd	50		
L 6+50S 0+90W	nd	nd	80		
DETECTION LIMIT	0.1	5	5		
	= not anal			ufficient sample	

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. V5L 1K5 (604)251-5656 FAX:254-5717

REPORT N	JMBER:	880736	6A JOB	NUMBER:	880736	SEVERN EXPLORATION	ONS LTD.	PAGE	7	OF	9
SAMPLE #			Ag	A	u Hg						
			pps	ppt	pp b						
L 6+50S			nd	10							
	1+10W		nd	5	5 70						
	1+20¥		nd	10							
L 6+50S			nd	20							
L 6+50S	1+40W		nd	;	5 70						
L 6+50S	1+50W		nd	10	50						
	1+60W		nd	10	0 60						
	1+70W		nd	10							
	1+80W		nd	ne							
L 6+50S	1+90W		nd	no	5 75						
L 6+50S	2+00₩		nd	10	0 50						
L 6+50S	2+10W		nd	10	130						
L 6+50S	2+20¥		nd	20	0 60						
L 6+50S			nd	10							
L 6+50S	2+40W		nd	10	0 65						
L 6+50S	2+50W		nd	20	1700						
L 6+50S	2+60W		nd	20	300						
L 6+50S	2+70¥		nd	5	100						
L 6+50S	2+80W		nd	10	115						
L 6+50S	2+90W		nd	5	5 60						
L 6+50S	3+00W		nd	•	5 50						
L 6+50S	3+10W		nd	10	75						
L 6+50S	3+20W		nd	5	5 55						
L 6+50S	3+30W		nd	nd	30						
L 6+50S	3+40W		.1	5	30						
L 6+50S	3+50¥		.1	20	30						
₹ 6+50S	3+60W		nd	20	25						
L 6+50S	3+70¥		กต่	15	30						
L 6+50S	3+80W		nd	5	60						
L 6+50S	3+90W		nd	15	40						
L 6+50S	4+00W		nd	10	40						
L 6+50S	4+10W		nd	5	20						
L 6+50S	4+20W		nd	nd	40						
L 6+50S	4+30W		nd	5	30						
L 6+50S	4+40W		nd	10	35						
L 6+50S	4+50¥		.2	15	30						
L 6+50S			nd	15							
L 6+50S			nd	10							
L 6+50S	4+80¥		nd	15							
DETECTION	LIMIT		0.1	5	5						
nd = none	detec	ted	= not a	nalysed	is = i	insufficient sample					

VANGEOCHEM LAB LIMITED

MAIN OFFICE AND LABORATORY
1988 Triumph Street
Vancouver, B.C. V5L 1K5 53
(604) 251-5656 FAX: 254-5717'8

BRANCH OFFICE
1630 PANDORA ST.
VANCOUVER, B.C. V5L 1L6
(604) 251-5656

REPORT N	JMBER:	880736 6A	JOB	NUMBER:	880736	SEVERN EXPLORATIONS LTD.	PAGE	8	OF	9
SAMPLE #			Ag	A	u Hg					
			ppa	рp						
L 6+50S	4+90¥		.2	1						
L 6+50S	5+00₩		nd	n	d 55					
L 7+00S	0+10W		nd		5 5 0					
L 7+00S	0+30₩		nd	3	0 50					
L 7+00S	0+50W		nd	1	0 55					
L 7+00S	0+70W		nd		5 50					
	0+90W		nd							
L 7+00S	1+10W		nd		5 45					
L 7+00S	1+30W		nd	1	5 55					
L 7+00S	1+50W		nd		5 100					
£ 7+00S	1+70W		nd	1	0 75					
	1+90W		nd							
	2+10W		nd		5 90					
	2+30W		nd							
L 7+00S			nd							
L 7+00S	2+70≌		.1	1	0 45					
	2+90W		nd							
L10+005	BL		nd							
	0+10W		nd							
L10+00S			nd		5 70					
L10+00S	いもろいれ		nd	n	d 95					
	0+40W		nd	10						
	0+50W		nd							
	0+60W		nd		5 60					
L10+00S			nd							
L10+00S	0+80W		nd		5 240					
	0+90W		nd		5 190					
	1+00W		nd		5 90					
L10+00S			nd							
L10+00S			nd							
L10+00\$	1+300		nd		5 130					
	1+40W		nd	15						
	1+50W		.1							
	1+60W		.1	10						
L10+00S			.1							
F14.003	1 - 7 ON		• 1	1	· J0					
L10+00S	1+80W		nd	3						
	1+90W		กต่	n	d 85					
L10+00S	2+00W		nd	1						
L10+00S	2+10W		nd	1	0 75					
DETECTION	LIMIT	Ī	0.1		5 5					
				anal ysed	is =	insufficient sample				

VANGEOCHEM LAB LIMITED

MAIN OFFICE AND LABORATORY
1988 Triumph Street
Vancouver, B.C. V5L 1K5
(604) 251-5656 FAX: 254-5717 8

BRANCH OFFICE
1630 PANDORA ST.
VANCOUVER, B.C. V5L 1L6
(604) 251-5656

REPORT NUMBER: 880736 GA	JOB NL	IMBER: 880	736	SEVERN EXPLORATIONS LTD.	PAGE	9	OF	9
SAMPLE #	Ag	Au	Hg					
	pps	ppb	ppb					
L10+00S 2+20W	nd	nd	90					
L10+00S 2+30W	nd	10	95					
L10+00S 2+40W	nd	10	95					
L10+00S 2+50W	nd	20	45					
L10+00S 2+60W	nd	5	500					
L10+00S 2+70W	.3	nd	650					
L10+00S 2+80W	.6	5	120					
L10+005 2+90W	.7	5	550					
L10+00S 3+00W	.3	nd	600					
L10+00S 3+10W	.3	10	310					
L10+00S 3+30W	nd	nd	110					
L10+005 3+40W	nd	35	70					
L10+00S 3+50W	nd	5	95					
L10+00S 3+60W	.1	15	75					
L10+00S 3+70W	.3	5	450					
L10+00S 3+80W	nd	nd	65					
L10+00S 3+90W	. 1	10	30					
L10+00S 4+00W	nd	10	50					
L10+00S 4+10W	nd	nd	220					
L10+00S 4+20W	nd	nd	75					
L10+00S 4+30W	nď	nd	240					
L10+005 4+40W	nd	nđ	55					
L10+00S 4+50W	nd	nd	70					
L10+00S 4+60W	nd	nd	55					
L10+00S 4+70W	nd	nd	55					
L10+00S 4+80W	nd	nd	30					
L10+00S 4+90W	nd	10	40					
L10+00S 5+00W	nd	10	45					
L10+00S 5+00W	nd	10	45					

MAIN OFFICE AND LABORATORY 1988 Triumph Street
Vancouver, B.C. V5L 1K5
(604) 251-5656 FAX: 254-5717

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

GEOCHEMICAL ANALYTICAL REPORT

CLIENT: SEVERN EXPLORATIONS LTD. ADDRESS: 510 - 850 W. Hastings St.

: Vancouver, B.C.

: V6C 1E1

DATE: Aug 05 1988

REPORT#: 880787 GA

JOB#: 880787

PROJECT#: None given

SAMPLES ARRIVED: July 26 1988 REPORT COMPLETED: Aug 05 1988

ANALYSED FOR: Ag Au Hg

INVOICE#: 880787 NA

TOTAL SAMPLES: 153

SAMPLE TYPE: Soil REJECTS: DISCARDED

SAMPLES FROM: Clinton, B.C.

COPY SENT TO: Vancouver & Clinton Office

PREPARED FOR: Mr. Duane Lucas

ANALYSED BY: VGC Staff

SIGNED:

GENERAL REMARK: Invoice sent to Vancouver & Copy sent to Clinton

VANGEOCHEM LAB LIMITED

MAIN DFFICE AND LABORATORY
1988 Triumph Street
Vancouver, B.C. V5L 1K5
(604) 251-5656 FAX: 254-5717

VANCOUVER, B.C. V5L 1L6
(604) 251-5656

REPORT	NUMBER:	880787	6A JOB	NUMBER:	880787	SEVERN EXPLORATIONS LTD.	PAGE	1	0F	4
SAMPLE	•		Ag	A	u Hg					
			ppe	ppi	o ppb					
L7+50S	8t.		nd		5 65					
L7+50S	0+10W		nd	26	145	i				
L7+50S	0+20W		nd	13	5 60	1				
L7+50S	0+30W		nd	15	5 50					
L7+50\$	0+40W		nd	;	5 85	i				
L7+50S	0+50W		nd	;	5 40	•				
L7+50S	0+60W		nd		5 30	•				
L7+50S	0+70W		nd	no	50					
L7+50S	0+80W		nd	13	5 50					
L7+50S	0+90W		nd	:	5 60					
L7+50S	1+00W		nd		5 55					
L7+50S	1+10W		nd							
L7+50S	1+20W		nd							
L7+50S			nd							
L7+509			.1							
L7+506	1+50W		.4	15	250					
	1+60W		.3							
	1+70W		1.1							
	1+80W		1.5							
L7+50S			.2							
L7+508	2+00¥		.2	25	i 145					
L7+50S	2+10W		nd	nd	120					
L7+50S	2+20W		nd	5						
L7+50S	2+30W		.2	10						
L7+50\$	2+40W		.6							
L7+50S	2+50W		.7	10	195					
L7+50S	2+60W		.4	15	185					
L7+50S	2+70W		.5	10	200					
L7+508	2+80W		.7	10	300					
L7+50S	2+90W		.1							
L7+50S			.2	20	85					
L7+50S			.1	15	40					
L7+50S	3+20W		.1	15	70					
L7+50S	3+30W		.2	5	55					
L7+50S	3+40W		.3							
L7+50\$			nd	10	50					
L7+50S			.1	10	55					
L7+50S	3+70W		.1	nd	30					
L7+50S	3+80W		.3							
BETECTIO			0.1							
nd = no	ne detec	ted	= not a	analysed	is = :	insufficient sample				

VANGEOCHEM LAB LIMITED

MAIN OFFICE AND LABORATORY
1988 Triumph Street
Vancouver, B.C. V5L 1K5
(604) 251-5656 FAX: 254-5717

VANCOUVER, B.C. V5L 1L6
(604) 251-5656

REPORT	NUMBER:	880787 6A JOB	NUMBER:	880787	SEVERN EXPLORATIONS LTD.	PAGE	2	OF	4
SAMPLE		Ag	Au	ı Hg					
		ppe		_					
L7+50S	3+90¥	.2	10	50					
L7+50S	4+00W	.1	5	45					
L7+50S		nd	15	5 40					
L7+50S	4+20₩	nd	nd	60					
L7+50S	4+30¥	nd	:	5 30					
L7+50\$	4+40¥	nd	nd	50					
L7+50S	4+50¥	.1	5	40					
L7+50S	4+60W	nd	5	35					
L7+50S	4+70W	nd	nd	50					
L7+50S	4+80¥	nd	nd	35					
L7+50S	4+90¥	.1	10	55					
L7+50S	5+00W	nd							
L8+50S		.2							
L8+50S		.1							
L8+50S	0+20W	nd							
L8+50S	0+30¥	.3	10	80					
L8+50S		.3							
L8+50S		.3							
L8+50S		nd							
L8+50S		nd	nd						
L8+50S	0+80N	nd	10	70					
L8+50S		nd							
L8+50S		né							
L8+505		nd	5						
L8+50S		nd	15						
L8+50S	1+30W	nd	10	60					
	1+40W	nd	10						
L8+50S		nd	nd						
L8+50S		.4	15						
L8+50S		nd							
L8+50S	1+804	.2	10	70					
L8+50S		.3							
L8+50S		.2							
L8+50S		.2							
L8+50S		nd							
L8+50S	2+30₩	nd	nd	100					
L8+50S		.1	15						
L8+50S		nd	nd						
L8+50S		nd	nd						
DETECTION	DN LIMIT	0.1	5	5					
	ne detec				nsufficient sample				

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. VSL 1K5 (604)251-5656 FAX:254-5717

KETUKI	MUNDER: 000/	0/ 0M . JUD NU	MDEK; DOV	101	SEVERN EXPLORATIONS LTD.	PAGE	J	Uľ
SAMPLE	•	Ag	Au	Hg				
	A . WALL	pp a	bbp	ppb				
L8+50S		.2	5	70				
L8+50S		.1	20	100				
L8+50S		.2	20	75				
L8+50S		.3	5	40				
L8+50S	3+10 W	.1	5	65				
L8+50S	3+20¥	.3	15	45				
L8+50S	3+30 11	.5	10	65				
L8+50S	3+40W	.1	10	60				
L8+50S	3+50W	nđ	10	45				
L8+505	3+60N	nd	15	35				
L8+50S	3+70W	nd	10	70				
L8+50S	3+80¥	nd	5	40				
L8+50S		nd	10	25				
L8+50S	4+00W	nd	10	35				
L8+50S	4+10W	.1	10	95				
L8+50S	4+20¥	.1	15	30				
L8+50S		nd	10	55				
L8+50S		.1	15	40				
L8+50S		.1	10	45				
L8+50S		nd	10	50				
L8+50\$	4+70¥	.1	5	500				
L8+50S		.2	10	65				
	4+90H	.4	nd	100				
L8+50S		nd	10	25				
L9+50S		nd	10	60				
L9+50S	0+104	nd	nd	55				
L9+50S		nd	25	35				
L9+50S		nd	10	45				
L9+50\$		nd	5	30				
L9+505		nd	10	35				
L9+50S	0+60#	.2	15	55				
L9+50S		nd	5	90				
L9+50S		.1	10	60				
L9+50S		nd	10	70				
L9+50S		.2	15	70				
L9+50S	1+104	nd	20	70				
L9+50S		nd	15	80				
L9+50S		nd	nd	100				
L9+50S		.2	10	85				
	ON LIMIT	0.1	5	5				
DETECTI	1 1 1 1 1 1 1 1 1							

VANGEOCHEM LAB LIMITED

MAIN OFFICE AND LABORATORY
1986 Triumph Street
Vancouver, B.C. V5L 1K5
(604) 251-5656 FAX: 254-5717

BRANCH OFFICE
1630 PANDORA ST.
VANCOUVER, B.C. V5L 1L6
(604) 251-5656

REPORT	NUMBER:	890787	6A -	JOB	NUMBER:	880787		SEVER	I EXPLOR	ATIONS	LTD.		PA6E	4	OF	4
SAMPLE	•			Ag	A	u ł	łg									
				ppe			-									
L9+50S	1+50W			.2			nd									
L9+50S	1+60W			.1	10		' 5									
L9+50S	1+70W			.2			30									
L9+50S	1+80W			. 2			5									
L9+50S	1+90W			.1	10	0 9)5									
L9+50S	2+00₩			.2	:	5 3 2	20									
L9+50S				.1			iO									
L9+50S				.1			0									
L9+50S				.1												
L9+50S				.1			5									
L9+50S	2+50W			.1	9	5 14	5									
L9+50S				.1	10											
L9+50S				.2			5									
L9+50S	2+80W			.1	20) 8	0									
L9+50S	2+90₩			.3	ne		i 5									
L9+50S	3+00W			.3	no	1 6	.0									
L9+50S				.4			0									
L9+50S				.9												
L9+50S				.4	10											
L9+50S				.6	10											
L9+50S	3+50N			nd	no	1 4	5									
L9+50S				.3	5											
L9+50S				nd	กด											
L9+50S				.3	5											
L9+50S				.2	5											
L9+50S	4+00¥			. 1	5	4:	5									
L9+50S				nd	10											
L9+50S				nd	nd											
L9+50S				nd	10											
L9+50S				nd	nd											
L9+50S	4+504			nd	5	i 4 4	A									
L9+50S				nd	nd											
L9+50S				nd	nd											
L9+50S				nd												
L9+50S				nd	nd An											
L9+50S	ETVVII															
F3+7/9	D.A.A.M			nd	nd	30	,									

5

MAIN OFFICE AND LABORATORY 1983 Triumph Street Vancouver, B.C. VSL 1K5 (604/251-5656 FAX:254-5717

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

GEOCHEMICAL ANALYTICAL REPORT

CLIENT: SEVERN EXPLORATIONS LTD.

ADDRESS: 510 - 850 W. Hastings St.

: Vancouver, B.C.

: V6C 1E1

DATE: August 19 1988

REPORT#: 880911 GA JOB#: 880911

PROJECT#: None given

SAMPLES ARRIVED: Aug 08 1988 REPORT COMPLETED: August 19/1988

ANALYSED FOR: Ag Au Hg

INVDICE#: 880911 NA

TOTAL SAMPLES: 223
SAMPLE TYPE: Soil

REJECTS: DISCARDED

SAMPLES FROM: Clinton, B.C.

COPY SENT TO: Clinton & Vancouver Office

PREPARED FOR: Mr. T. H. Heine

ANALYSED BY: VGC Staff

SIGNED:

GENERAL REMARK: Invoice sent to Vancouver Office

MAIN OFFICE AND LABORATORY 1988 Triumoh Street Vancouver, B.C. VSL 1K5 (604)251-5656 FAX:254-5717

REPORT	MUMBER: 880911 (SA JOB NU	MBER: 880	911	SEVERN EXPLORATIONS LTD.	PAGE	1	Of
SAMPLE	•	Ag	¥α	Hg				
		pp ≈	ppb	ppb				
LISS		.1	5	60				
L158		nd	10	600				
L158	1+00E	nd	10	45				
L159		nd	10	40				
L155	2+00E	nd	5	50				
L158 :		nd	nd	20				
L158	3+00E	nd	nd	30				
L158	3+50E	nd	5	40				
L158	4+00E	nd	nd	25				
L155	4+50 E	.3	25	165				
L158	5+00E	.1	5	40				
	0+50 1/	nd	5	75				
	1+00W	nd	15	300				
L158		nd	15	500				
LISS	2+00W	nd	10	170				
L158	2+50W	nd	5	130				
L158	3+00N	nd	5	800				
L15S	3+50N	nd	5	360				
L165	0+00E	nd	5	65				
L165	0+50E	nd	25	50				
L16 8	1+00E	nd	nd	35				
L16S	1+50E	nd	5	90				
L168	2+00E	nd	5	40	×			
L16S	2+50E	nd	nd	60				
LISS	3+00E	nd	10	80	•			
L16S		nd	nd	50				
L16S		nd	15	80				
L165		nd	nd	40				
L16S		nd	10	35				
L16S	0 +50W	nd	nd	55				
L16S		nđ	nd	55				
L16S		nd	nd	220				
LI6S		nd	nd	140				
L165		nd	nd	240				
L16S	3+00W	nd	nd	650				
L16S		nd	15	175				
L168		nd	10	80				
L175		nd	5	80				
L17 S	1+00E	nd	10	55				
	ION LINIT	0.1	5	5				
nd = n	one detected	= aat .aa	1		sufficient sample			

MAIN OFFICE AND LABORATORY 1989 Triumph Street Vanccuver, B.C. VSL 1K5 (604)251-5656 FAX:254-5717

BRANCH OFFICE 1630 PANDORA ST.

VANCOUVER, B.C. V5L 1L6 (604) 251-5656

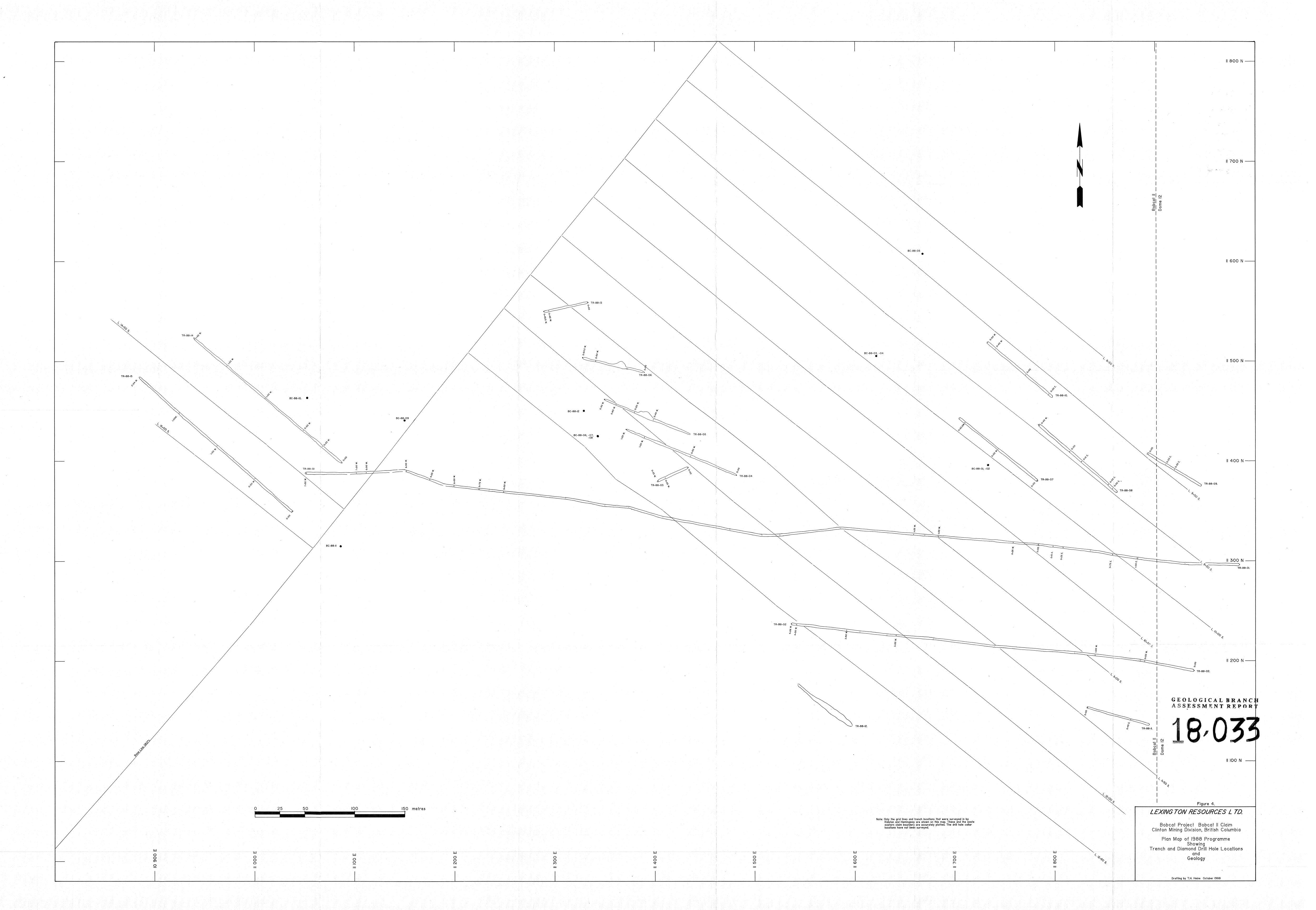
L17S 2+00E L17S 2+50E L17S 3+00E	Ag ppa nd nd .1 .3	Au ppb nd 5 5 20	Hg ppb 115 40 40		
L175 2+00E L17S 2+50E L17S 3+00E	nd nd .1 .3	nd 5 5 20	115 40		
L17S 2+50E L17S 3+00E	nd nd .1 .3	nd 5 5 20	115 40		
L17S 2+00E L17S 2+50E L17S 3+00E L17S 3+50E	.1 .3	5 20			
L175 3+00E	.3	20	40		
	.3	20			
L17S 3+50E			100		
		15	110	•	
L17S 4+00E	.1	10	30		
L17S 4+50E	.1	15	20		
L17S 5+00E	nd	10	50		
L17S 0+50W	nd	nd	85		
L17S 1+00W	nd	20	65		
L17S 1+50W	.1	10	95		
L17S 2+00W	nd	5	70		
L17S 2+50W	nd	nd	95		
L17S 3+00W	nd	10	195		
L17S 3+50W	nd	20	85		
L17S 4+00W	nd	5	20		
L18S 0+00E	nd	10	55		
L18S 0+50E	.i	nd	75		
L18S 1+00E	nd	5	50		
L18S 1+50E	nd	10	50		
L185 2+00E	nđ	nd	35		
L18S 2+50E	.i	15	75		
L18S 3+00E	ha	10	35		
L18S 3+50E	.1	15	80		
L18S 4+00E	.1	15	150		
L18S 4+50E	nd	5	70		
L18S 5+00E	nd	nd	85		
L18S 0+50W	nd	nd	700	*	
L18S 1+00W	nd	5	25		
L18S 1+50W	.3	nd	400		
L18S 2+00W	nd	10	120		
L18S 2+50W	.1	5	450		
L18S 3+00W	.1	nd	45		
L185 3+50W	.1	25	40		
L18S 4+00W	nd	5	70		
L195 0+00E	.1	10	105		
L19S 0+50E	.1	10	65		
L19S 1+00E	nd	20	40		
L19S 1+50E	nđ	10	30		
DETECTION LINIT	0.1	5	5		
nd = none detect	:ed = not :	ınal ysed	is = in	mufficient sample	

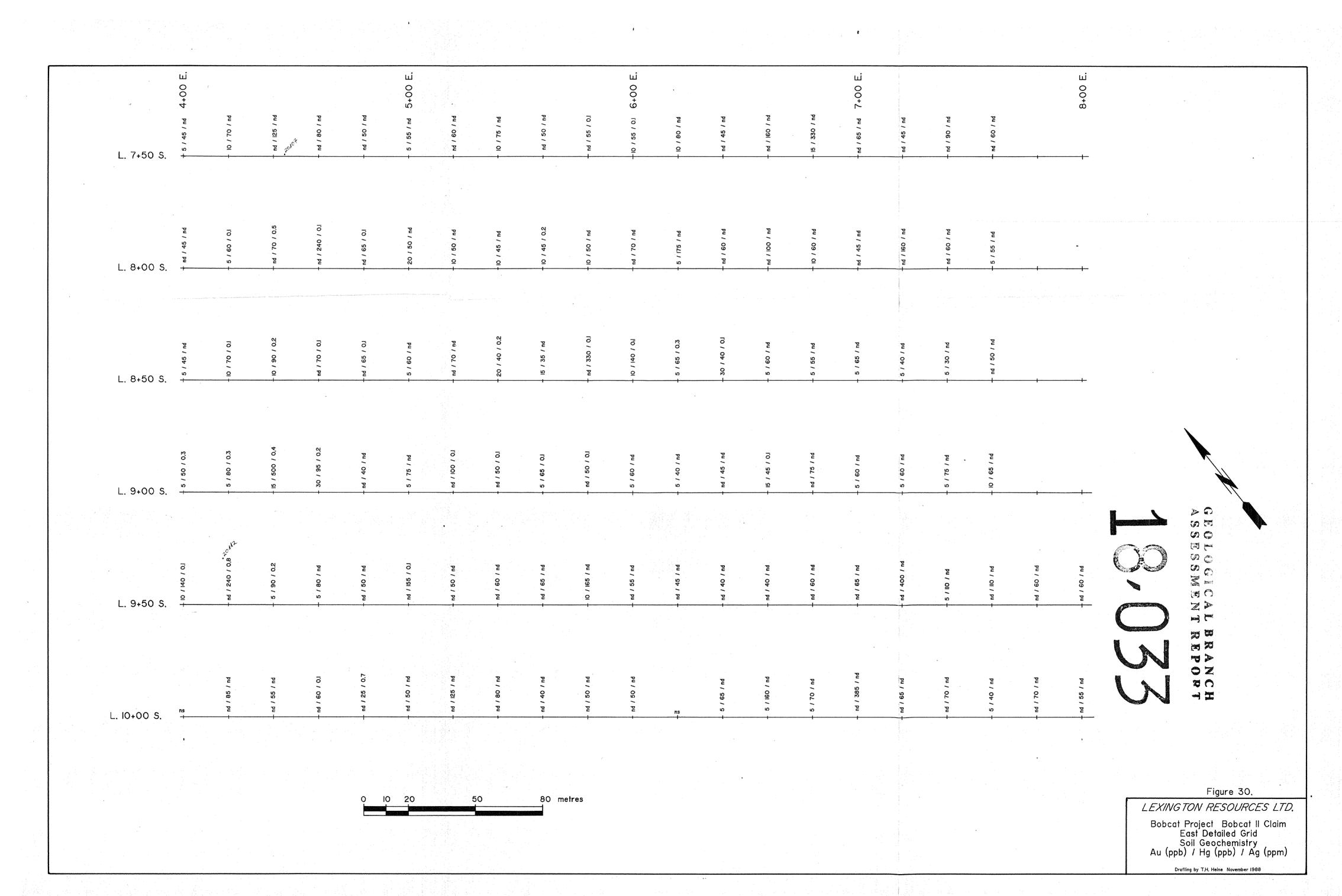
MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. V5L 1K5 (604)251-5656 FAX:254-5717

SAMPLE I	•	Ag	Au	Hg		
		pp≋	bbp	ppb		
L19S 2+		nd	10	50		
	50E	nd	15	25		
L195 3+	-00E	nd	30	20		
L19S 3+	50E	nd	10	20		
L19S 4+	-00E	nd	15	30		
L195 4+	50E	nd	5	50		
L195 5+	300-	nd	nd	65		
L19S 0+	50₩	nd	nd	240		
L19S 1+	-00 11	nd	nd	50		
L195 1+	50W	nd	5	25		
L19S 2+	100W	nd	5	30		
L195 2+	50W	nď	nd	20		
	+0 0W	nd	10	20		
L195 3+	50W	nd	20	36		
L19S 44	HOOW	nd	10	30		
L205 14	50E	nd	5	40		
L20S 24	100E	nd	20	40		
L205 24	-50E	nd	5	20		
L20S 34	100E	nd	10	75		
L205 34	-50E	nd	5	70		
L20S 44	+00E	.1	nd	70		
L205 44	-50E	nd	5	40		
L205 5	100E	nd	15	25		
L205 04	50W	.i	15	30		
L205 1	HOON	.1	5	55		
L20S 14	+50¥	nd	nd	20		
L208 24	HOON	nd	10	30		
L205 24	+50¥	nd	10	30		
L20S 3		nd	5	50		
L205 34	+50₩	.1	nd	30		
L208 4	+00W	nd	10	280		
L215 04	+00E	nd	20	45		
L215 0	+50E	.3	5	55		
L215 14	100E	.2	nd	70		
L215 1	+50E	.2	5	90		
L215 24		.2	5	130		
L215 2		nd	nd	50		
L215 3		nđ	nd	40		
L215 3	+50E	nd	15	30		
DETECTION		0.1	5			

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. V5L 1K5 (604)251-5655 FAX:254-3717

KEFUKI	MUMBER: 880911	aw 108	NUMBER:	22021J	SEVERN EXPLORATIONS LTD.	PAGE	4	Of
SAMPLE	•	· Ag	A	ı Hg				
		ppa	ppt	-				
L215 -	4+00E	nd						
L215	1+50E	nd						
L2IS		nd						
L218		nd						
L21S		nd		5 40				
L215	1+50¥	nd	:	5 35				
L215		nd						
L215		nd						
L2IS		nd						
L21S		nd						
L21S	4+00 W	nd	13	5 35				
	0 +00E	nd		5 35				
L22S		nd		5 60				
	1+00E	nd		5 40				
L228		nd		5 35				
L225 :	2+ 6 0E	nd	:	5 35				
	2+50E	nd						
L225		nd						
L228		nd						
L225		nd						
L225	4+50E	nd	10	0 45				
L225	5+00E	· nd		5 60				
	0+50 11	nd		5 35				
L225	1+00W	nd						
L22S	1+50W	nd		5 30				
L225	2+00W	nd		5 30				
L225	2+50 1/	nd		5 20				
L225	3+00 W	nd						
L225	3+50W	nd						
L229	4+00 U	nd						
L235		nd	;	5 35				
L235		nd		5 25				
L23S		nd	10	30				
L235		nd	10	40				
L235	2+00E	.1	19	5 50				
L235		nd						
L235		nd	20	0 40				
L235		nd	:	5 40				
L235	4+00E	nd	16	50				
	ION LINIT	0.1	:	5 5				
-4	one detected	= not .	!4	4	nsufficient sample			


MAIN OFFICE AND LABORATORY 1998 Triumph Street Vancouver, B.C. V5L 1K5 (604)251-5656 FAX:254-5717


NEI DNI	NUNBER: 880911	un jub nu	MBER: 880	711	SEVERN EXPLORATIONS LTD.	PAGE	J	١
SAMPLE	•	Ag	Au	Hg				
		pp s	ppb	ppb				
L23\$		nd	5	40				
	5+00E	nd	nd	60				
	0+50W	nd	15	40				
	1+00W	nd	nd	40				
L23S	1+50W	nd	10	60				
L235	2+00W	nd	15	45				
L23S	2+50W	nd	5	25				
L23S	3+00W	nd	5	30				
L235	3+50W	nd	nd	45				
L235	4+00¥	nd	10	30				
L248	0+00E	nd	nd	40				
L245	0+50E	nd	5	30				
L24S	1+00E	nd	nd	40				
L24S	1+50E	nd	10	55				
L24S	2+00E	nd	10	70				
L245	2+50E	nd	15	45				
L24S	3+00E	nd	nd	45				
L245	3+50E	nd	15	30				
L24S	4+00E	nd	10	50				
L24 S	4+50E	nd	5	35				
L24S	5+00E	nd	nd	30				
L245	0+50¥	nd	10	30				
L248	1+00W	nd	20	45				
L248	1+50W	nd	15	30				
L24S	2+00W	nd	15	30				
L245	2+50¥	nd	5	35				
L24S	3+00W	nd	10	95				
L24S	3+50W	nd	10	155				
L245	4+00W	nd	nd	30				
L25S	0+00E	nd	20	30				
L25S	0+50E	nd	nd	50				
L25\$	1+00E	nd	5	85				
L25S	1+50E	nđ	10	40				
L259	2+00E	nd	25	95				
L255	2+50E	nd	10	35				
	3+00E	nd	15	60				
	3+50€	nd	nd	115				
	4+00E	nd	15	55				
L25S	4+50E	nd	nd	60				
				-				
DETECT	TION LIMIT	0.1	5	5				

MAIN OFFICE AND LABORATORY 1983 Triumph Street Vancouver, B.C. V5L 1K5 (604)251-5656 FAX:254-5717

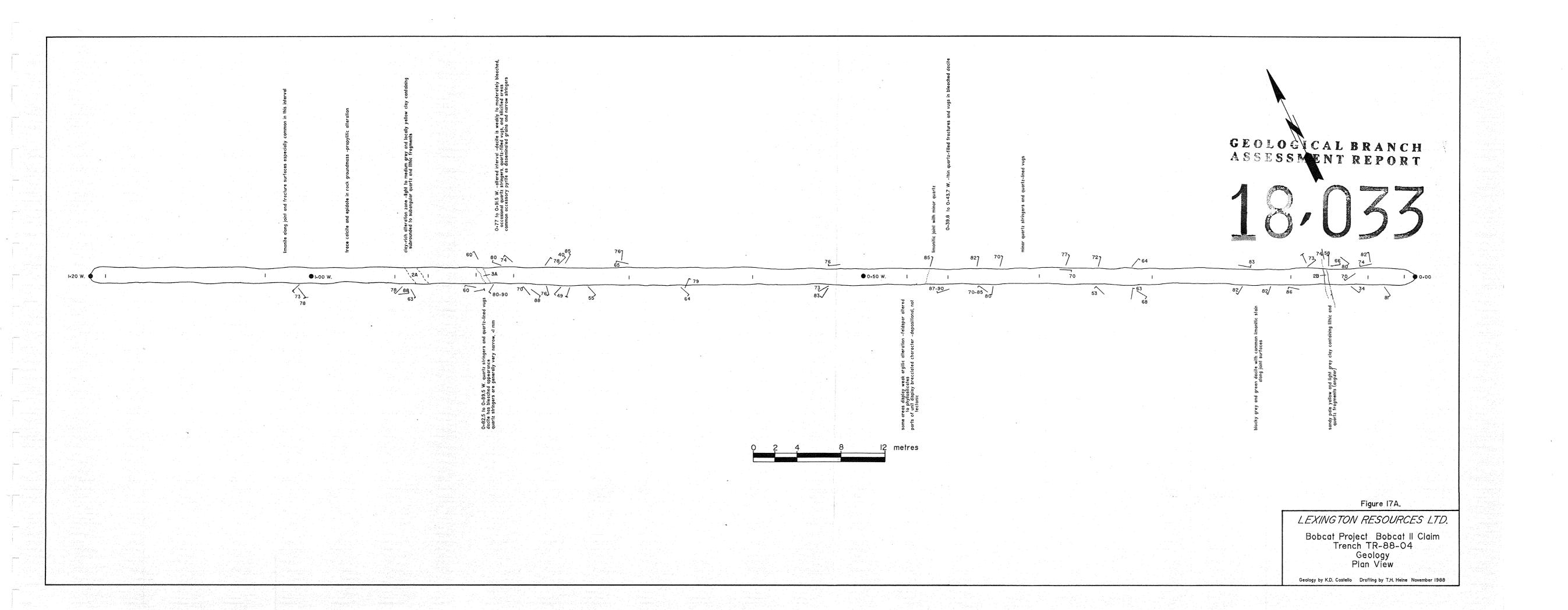
REPORT	NUMBER:	880911 GA	JOB	NUMBER:	880911	SEVERN EXPLORATIONS LTD.	PAGE	6	0F	6
SAMPLE	#		Ag	A	u Hg					
			ppe	ppi	ppb ppb					
L25S			nd	n	d 50					
	0+50W		nd	R	i 30					
	1+00W		nd	n	d 30					
L258			nd	ļ	5 50					
L25S	2+00W		nd	n	d 35					
L25\$	2+50¥		nd	i	5 25					
	3+00M		nd		5 30					
	3+50W		nd	1	5 40					
	4+00W		nd	1:	0 20					
L26S	0+00E		nd	1	0 35					
L26S	0+ 50E		nd	i	5 75	i e				
L265	1+00E		nd	n	d 30					
L26S	1+50E		nd		5 45					
L26 S	2+00E		nd	n	25	i				
L26S	2+50E		nd	1	0 30	•				
L26 S	3+00E		nd	n	d 45	i				
L26S	3+50E		nd	n	d 55					
L26S	4+00E		nd	n	d 70					
L26S	4+50E		nd	1	0 50					
L26S	5+00E		né	· n	d 65	i				
L269	0+50N		.1		5 60					
L26S	1+00W		.1	n	d 95					
L26S	1+50W		nd		5 43					
L26S	2+00W		nd	1	0 20					
L269	2+50N		nd	n	d 2:					
	3+00W		nd	1	0 30	•				
	3+50W		nd	i	5 40					
L26S	4+00W		nd	1	5 30					

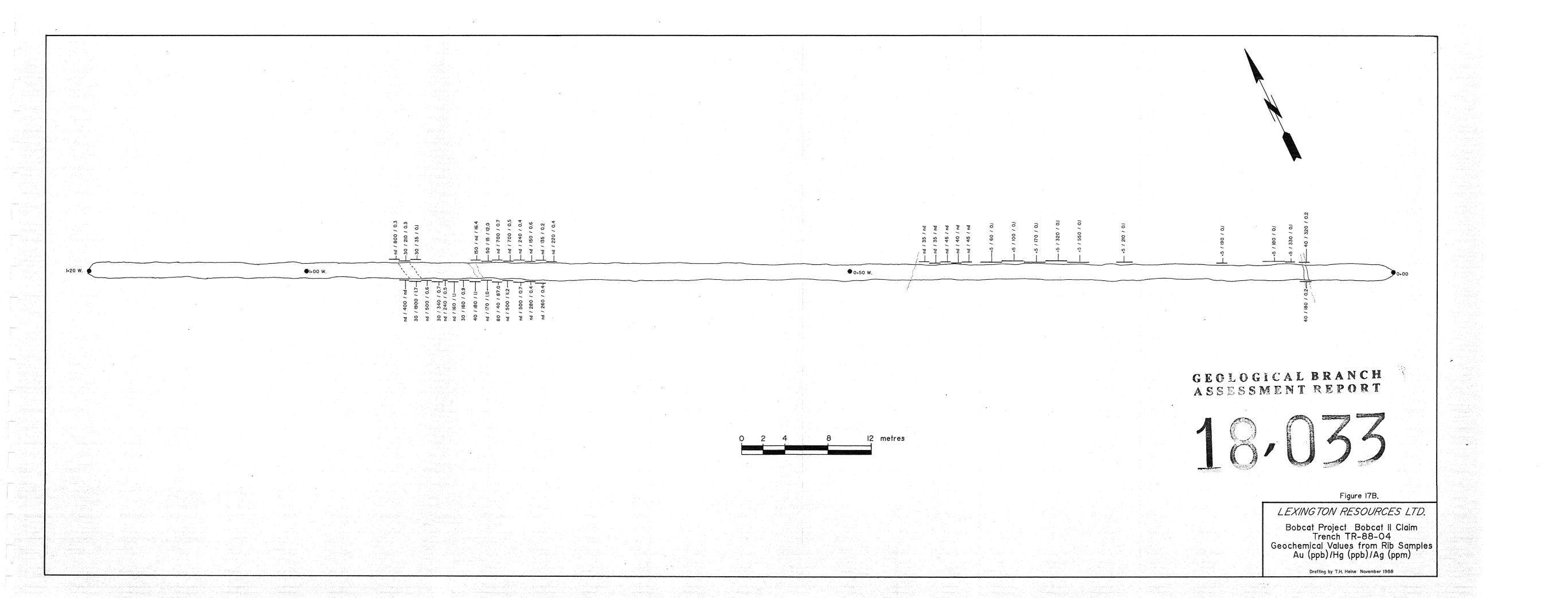
	5+00 W.				*				4+00 W.									3+00 W.								2+00 W.									I+00 W.								• <u>c.</u>	
L. 4+00 S.	15 / 50 / nd	nd / 40 / nd	+ 5 / 55 / nd - 10 / 30 / nd	- nd / 30 / nd	pu / 30 / uq	- 20 / 50 / nd - 10 / 340 / nd	- 30 / 30 / nd	- 10 / 30 / nd	- nd / 60 / nd	- nd / 30 / nd	- 30 / 35 / nd - 30 / 30 / nd	- nd / 35 / nd	pu / 32 / pu 	nd / 25 / nd	nd / 40 / nd	- nd / 30 / nd	pu / 30 / pu -	5 / 30 / nd	pu / cz / Cz +	- 10 / 35 / nd	- nd / 20 / nd	- 20 / 45 / nd	- 10 / 30 / nd	- 15 / 50 / nd	- 15 / 40 / nd - 5 / 60 / nd	- 20 / 35 / nd	- 10 / 40 / nd	pu / O2 / OI -	- 15 1 70 1 nd	- 5 / 55 / nd - 5 / 45 / nd	- 10 / 40 / nd	- 10 / 50 / nd	- 10 / 80 / nd	Pu / 09 / 01 -	nd / 50 / nd	- 15 / 35 / nd	bu / 00 / 01 + 01 + 01 + 01 + 01 + 01 + 01	- 30 / 75 / nd	10 / 05 / 01 +	- 15 / 70 / nd	- 10 / 65 / nd	- 5 / 45 / nd	- 15 / 45 / nd 20 / 50 / nd BGS	
L. 4+50 S.	- 5 / 30 / nd	5 / 40 / 0.2	+ nd / 30 / nd - 10 / 45 / nd	5 / 55 / nd	Pu / 02 / 9	5 / 25 / nd - 10 / 40 / nd	nd / 40 / nd	Pu / 30 / uq	- 5 / 30 / nd	- 5 / 25 / nd	- 10 / 40 / nd - 5 / 45 / nd	- nd / 35 / nd	- 10 / 35 / nd	- nd / 20 / nd	- 20 / 55 / nd	- 20 / 55 / nd	+ 15 / 25 / nd	5 / 40 / nd	+ 10 / 40 / nd + 10 / 35 / nd	- pu / <u>65</u> / ud	- 5 / 35 / nd	pu / O/ I pu +	Pu / 96 / 9 —	- 10 / 45 / nd	- 5 / 50 / nd - nd / 40 / nd	- nd / IIO / 0.2	- 25 / 210 / 0.6	- 20 / 450 / 0.5	- nd / 100 / 0.2	—10 / 50 / nd —20 / 90 / nd	pu / 09 / pu —	- 10 / 40 / nd	- 12 / 63 / nd	- 20 / 50 / nd	- 10 / 55 / nd	- 20 / 100 / 0.3	- 10 / 00 / 10 H	- 5 / 65 / III	Pu / 98 / 01 +	- nd / 50 / nd	nd / 50 / nd	Pu / 20 / 01 -	- 15 / 45 / nd 5 / 40 / nd	
L. 5+00 S.	F 5 / 50 / nd	- 15 / 40 / nd	+ 5 / 40 / nd - nd / 40 / nd	- nd / 75 / nd	5 / 80 / nd	- 20 / 50 / nd - 10 / 35 / nd	Pu / 30 / 01 —	- 20 / 50 / nd	- 5 / 30 / nd	- 5 / 30 / nd	- nd / 55 / nd - 5 / 35 / nd	- 10 / 30 / nd	- 5 / 50 / nd	- 10 / 30 / nd	nd / 40 / nd	+ 15 / 35 / nd	10 / 65 / nd	105 / nd	PU / 09 / 2 +	- 20 / 70 / nd	- 20 / 50 / nd	- 5 / 50 / nd	- 20 / 85 / nd	- 15 / 40 / nd	- 15 / 40 / nd - 10 / 55 / nd	- 5 / 45 / nd	Pu / 09 / 01 -	- 5 / 180 / nd	- 10 / 75 / nd	+ 30 / 70 / nd + nd / 70 / 0,l	+ 20 / 70 / nd	Pu / 36 / pu -	- 10 / 20 / ud	Pu / 02 / 9		- 20 / 40 / nd 5 / 45 / nd	DU / 52 / 61 -		Pu / 09 / 01 -	- 20 / 65 / nd	pu / 09 / pu -	pu / 0 / 0 +	- 10 / 180 / nd 15 / 75 / nd	
L. 5+50 S.	5 / 145 / nd	5 / 30 / nd	- 10 / 45 / nd - 15 / 35 / nd	- nd / 40 / nd	5 / 40 / nd	- 20 / 30 / nd - 15 / 70 / 0.1	- 10 / 60 / nd	- 5 / 35 / nd	pu / 02 / pu -	- nd / 50 / nd	- 15 / 50 / nd - nd / 60 / nd	- 15 / 50 / nd	- nd / 30 / nd	- 5 / 50 / nd	- nd / 60 / nd	na / 75 / nd	pu / 02 / pu	- nd / 160 / nd	bii / 64 / bii -	- 5 / 20 / nd	- nd / 210 / nd	- nd / 250 / 0,1	5 / 90 / nd	- nd / 105 / nd	- 10 / 45 / nd - 5 / 60 / nd	pu / 09 / pu -	- 20 / 300 / nd	- 5 / 55 / nd	pu / 80 / nd	- nd / 100 / nd - 10 / 1800 / nd	- 10 / 70 / nd	- 10 / 200 / nd		- 10 / 85 / nd	- 5 / 70 / nd	bu / 55 / nd - 1 55 / nd - 1 55 / nd	- 10 / 100 / 10d - 5 / 70 / 10d	PU / 69 / 01 -	- 10 / 75 / nd	pu / 0/ / pu —	- 20 / 60 / nd	- 10 / 50 / nd	- 25 / 55 / nd 25 / 75 / nd	
L. 6+00 S.	nd / 40 / nd	- Pu / 32 / Pu	nd / 40 / nd -	nd / 40 / nd	nd / 35 / nd	nd / 80 / nd 	nd / 35 / nd	- pu / 09 / pu	nd / 45 / nd	15 / 45 / nd	nd / 60 / nd +	pu / 09 / pu	nd / 45 / nd	5 / 50 / nd	d / 60 / nd	/ 50 / nd	/ 50 / nd	/ 100 / nd	- pu / SII /	260 / nd -	85 / nd	85 / nd	- pu / 06 /	Pu / O	- pu / 9:	pu /	Pu		- Puu	- Pu -			-											
			15 / 20 / nd 10 / 40 / nd																																									
L. 6+50 S.	45 / 0.2 T	30 / 01	25 / 0.1 - 10	30 / 0.2	45 / 0.3	20 / 0.1 + 10	7 0.2	0.2	10 / 0.3	10 / 0.2	5 / 0.1	0/01	2.0 / 0.2	35 / O.I + 5	0 / O:	5 / 0.2	15 / 0.1		IO IO	·	o.	pu	1'0		5 / 0.1 + 2C	P	pu /		Pu	0 PL	·	- 20 - 1	3		01 +	pu / O		Pu - l'O	/ uq	101) / nd	/ 9 -	/ nd + 10.	
L. 7+00 S.	7 0 1	6 9 1 1 1 1 1 1 1 1 1 1	10 / 2	* / pu	./0!-	- 10 /	4 / 0	- 5 / 4(1 2 4	5 4	33 + 5 / 45	01 / 01	- 5 / 30	\$ / Pu	9 / 01	- 5 / 5	4 / 0	0.2 + 5 / 75	7.00 / 61 / 61 / 60 / 60 / 60 / 60 / 60 /		-	2	.6 1 105 1)	e l	25	•	10 / 75	0.3 +5 / 50 / 60 / 6.4 + 5 / 100 / 6.4	- 5 / 260	- 15 - 56	- 5 / 30	2 4 5 7	02 / 50	20 / 46	0,20	- 5 / 45 /	10 / 55	2 / 92 /	- 30 / 50	- 5 / 55 /	nd - 5 / 50	
L. 7+50 S.	pu / 02 / 25 L	10 / 22 / 01 -	- nd / 35 / nc - nd / 50 / nd	- 5. / 35. / nd	- 5 / 40 / 0.1	- nd / 50 / nu - 5 / 30 / nd	pu / 09 / pu -	- 15 / 40 / nd	5 / 45 / 0.1	. 10 / 50 / 0.	- 15 / 45 / 0. - nd / 30 / 0.	10 / 99 / 01 -	Pu / 09 / 01	- 5 / 60 / 03	+ 5 / 55 / 0.2	- 15 / 70 / 01	- 15 / 40 / 0,) / (8 / 05 	2/002/01 -	- 10 / 200 / C	- 15 / 185 / 0.	0 / 961 / 01 -	·0 / 081 / 2 	0 7 06 7 01	- 5 / 75 / nd - nd / 120 / nd	- 25 / 145 / 0.	70 / 96 8 / Pu	1/ 002 / 01 -	- 15 / 550 / 1.	- 10 / 220 / 0 - 15 / 250 / 0	- 15 / 120 / 01	- 5. 50 / nd	27 / 32 - 14	- 5 / 50 / 15	5 / 5 / 2 / 4 / 4 / 4 / 4 / 4 / 4 / 4 / 4 / 4	5 / 60 / nd		1	5 / 40 / nd	- 55 / 95 / nd	- 15 / 50 / nd	- 15 / 60 / nd	- 20 / 45 / n 5 / 65 / nd	
L. 8+00 S.	T 10 / 45 / 0.I	-5 / 35 / 0.2	+ 15 / 30 / 0.1 + 5 / 50 / 0.2	10 / 06 / 01 +	- nd / 40 / 0.j	+ 10 / 40 / 0.1 + 10 / 30 / nd	- 30 / 25 / 0,2	- 10 / 30 / 01	- 20 / 50 / 0.1	- 10 / 30 / 0.1	+ (5 / 40 / 0.2 + (5 / 40 / 0.1	- 15 / 30 / 0.2	10 / 09 / 01 +	pu / 30 / pu —	Pu / 08 / 9 -	5 / 30 / 0.1	ro / 09 / 01 -	10 / 30 / 0.3	- 3 / 60 / 0.1 - nd / 240 / 0.1	- 10 / 65 / 0.2	- 10 / 45 / 0.2	- nd / 35 / 0.2	- nd / 85 / 0.2	- nd / 50 / 0.1	1.0 / 09 / bn + hn / 08 / bn +	l,0 / 07 / bn —	- nd / 65 / 0.2	- 15 / 120 / 0.2	- 10 / 105 / 0.2	+ 10 / 60 / 0.2 + 5 / 200 / 0.2	- 57140 / 0.1	- 25 / 160 / 0.6	- 15710702	- 10 / 55 / 0,2	- 5 / 45 / 0,1	15 / 45 / 0.1	10 / 06 / OI +	- 10 / 45 / 0.3	- 10 / 50 / 0.3	- 5 / 65 / 0.2	- 10 / 20 / 0.]	- 5 / 260 / 0.1	- nd / 20 / 0.1 10 / 25 / 0.2	
L. 8+50 S.	T 10 / 25 / nd	- nd / 100 / 0.4	- 10 / 65 / 0.2 - 5 / 500 / 0.1	- 10 / 50 / nd	10 / 45 / 0,1	- 15 / 40 / 0. - 10 / 55 / nd	- 15 / 30 / 01	- 10 / 36 / 01	- 10 / 35 / nd	- 10 / 25 / nd	5 / 40 / nd - 10 / 70 / nd	- 15 / 35 / nd	- 10 / 45 / nd	10 / 60 / 0.1	- 10 / 65 / 0.5	- 15 / 45 / 0.3	5 / 65 / O.I	5 / 40 / 0.3	20 / 10 / 10	- 5 / 70 / 0.2	Pu / 80 / pu -	pu / 09 / pu -	- 15 / 90 / 0,1	pu / 001 / pu -	- 15 / 80 / nd - nd / 85 / 0.2	- 5 / 85 / 0.2	- 10 / 80 / 0.3	- 10 / 70 / 0.2	- 15. / 6.5 / nd	- 15 / 80 / 0,4 - nd / 65 / nd - nd / 65 / nd	- 10 / 50 / nd	pu / 09 / 01	- 15 / 85 / nd	Pu / 08 / 9 -	bu / 08 / 51	- 15 / 65 / nd - 17 / 70	10 / 70 / 10 + 10 / 40 / 10 d	nu / 45 / nu - 5 / 75 / nd	- 25 / 75 / 0.3	- 10 / 70 / 0.3	- 10 / 80 / 0.3	- 10 / 45 / nd	- 5 / 60 / 0.1	
L. 9+00 S.	Pu / 30 / uq	- 5/40/0.2	+ 5 / 45 / 0.3 - 5 / 40 / 0.1	- nd / 55 / nd	- 15 / 80 / 0.2	- 10 / 145 / 0.4 - 10 / 100 / 0.6	- 10 / 30 / 0.2	- 10 / 50 / 0.2	- 5 / 50 / 0.2	pu / 09 / pu -	+ nd / 205 / 0.2 + nd / 60 / 0.2	- 10 / 90 / 0.2	- 5 / 440 / 0.2	- 5 / 40 / 0.2	- nd / 70 / 0.5	- 20 / 60 / 0.1	- 20 / 165 / O.I	10 / 06 / 01		10 / 011 / pu +	- 5 / 45 / 0.1	- 10 / 65 / 2,5	10 / 501 / 51	5 / 80 / 0.1	- nd / 75 / 0.1 - 5 / 95 / 0.1	l'0 / 09 / pu –	- 5 / 55 / 0.2	10 / 001 / 9 -	- 10 / 110 / 0.1	- nd / 90 / 0.4 - nd / 80 / 0.1	- 15 / 80 / 0.2	+ 5 / 55 / 0.2	10 / 08 / 01 -	10 / 09 / 01 -	- IO / 80 / 0.2	- nd / 155 / 0.2	+ 10 / 70 / 0.2	- 15 / 60 / 0.2	- 20 / 90 / 0.2	- 10 / 60 / 0.2	- 10 / 60 / 0.2	-10 / 20 / 01	- 5 / 85 / nd 5 / 40 / 0,2	
L. 9+50 S.	nd / 30 / nd	- nd / 65 / nd	- nd / 25 / nd - nd / 30 / nd	nd / 55 / nd	- 5 / 40 / nd	- nd / 40 / nd - 10 / 50 / nd	- nd / 40 / nd	- IO / 75 / nd	5 / 45 / 0.1	5 / 70 / 0,2	+ 5 / 55 / 0.3 - nd / 95 / nd	- 5 / 95 / 0.3	- nd / 45 / nd	- 10 / 75 / 0.6	- 10 / 85 / 0,4	- 15 / 120 / 0.9	5 / 60 / 0.4	10 / 00 / 00 / 00 / 00 / 00 / 00 / 00 /		- 20 / 95 / 0.2	ro / OII / OI -	- 5 / 145 / 0.1	- 5 / 55 / 0.1	nd / 140 / 0,1	+ 5 / 90 / 0.1 + 5 / 50 / 0.1	- 5 / 320 / 0.2	ro / 36 / 0r -	- 5 / 75 / 0.2	- 10 / 80 / 0.2	- 10 / 73 / 0.1 - nd / nd / 0.2	- 10 / 85 / 0.2	- nd / 100 7-nd	Pu / 80 / ud	- 20 / 70 / nd	+ (5 / 70 / 0.2	- 10 / 70 / nd - 10 / 60 / 01	10 100 101 10 100 101 10 100 101	- 15 / 55 / 0.2	Pu / 32 / 01 -	5 / 30 / nd	- 10 / 45 / nd	- 25 / 35 / nd	- nd / 55 / nd - 10 / 60 / nd	
	pu / 9:	pu / 0	- nd / 30 / nd - nd / 55 / nd	pu / 50	pu / O ₂	5 / nd 40 / nd	pu / s	20 / nd	pu / O:	10 / 01	50 / 0,3	2 / 0,1	ри / 9	pu / O/	pu / 0		10 / 0.3	000 / 0.3	90/0	50 / 0.3	ри / ОС	45 <i>l</i> nd	bn / 8	pu/g	5 / nd	Pu / OC	5 / nd	Pu / 06	0 / 01	0 / 0.1	pu/, o	0 / md	pu / 0	pu / o	PE (O	bu / ou	280 / nd	pu / c	pu / OC	pu / 0	2 / uq	Pu / C	5 / nd 5 / nd	
L. 10+00 S.						and the second s	magamatan tika kacamatan salah s		Sample of Street Control	and the second s		and the second s																																
L. 10+50 S.			+ 15 / 120 / 0.2 + 15 / 160 / 0.3 + 5 / 160 / 0.3	·					1		1			4		- ·																												
L. II+00 S.	F 5 / 60 / nd	20 / 90 / nd	+ 50 / 260 / nd - 15 / 65 / nd	pu / 09 / pu -	- 5 / 45 / 0.1	+ 20 / 80 / 0,1	+ 10 / 55 / 01	- 10 / 70 / 0.1	pu / 09 / pu -	pu / 02 / pu +	10 / 140 / 0.1 10 / 75 / nd	Pu / 06 / 01 -	5 / 120 / nd	- 10 / 85 / 0.1	pu / 99 / 9 -	5 / 55 / 0.1	10 / 009 / pu -	DU / CZI / DU -	nd / 145 / nd	nd / 420 / 0.1	. 5/ 120 / 0.1	- 5 / 90 / 01	nd / 260 / 0.1	- 15 / 85 / 0.1	+ 10 / 45 / 0.2 + 10 / 450 / 0.3	- 5 / 230 / 0.1	- 10 / 230 / 0.2	- 5 / 80 / 0.2	- 15 / 75 / 0.2	+ 10 / 70 / 0.2 + 5 / 75 / 0.2	- 10 / 110 / 0.2	- 6 / 120 / 0.2	- 10 / 188 / 01	[0 / 06 / pu -	- nd / 105 / 0.2	- 5 / 80 / 0.2 - 10 / 60 / 0.2	70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 / 115 / 0.2	- 10 / 115 / 0.3	- 15 / 45 / 0.2	- 10 / 85 / 0.2	- 20 / 75 / 0.3	+ 10 / 700 / 0.2	
L. II+50 S.	pu / 30 / uq	l5 / 50 / nd	bu / 09 / 61 —	Pu / 0/ / 01 —	- 20 / 60 / nd	pu / 06 / 01 —	- 10 / 45 / nd	- 20 / 65 / nd	- 10 / 60 / nd	- 10 / 85 / nd	+ 20 / 70 / nd + 5 / 50 / nd	- 5 / 45 / nd	- 5 / 60 / nd	- 5 / 60 / nd	Pu / 20 / ud	- 10 / 40 / 0.1	10 / 36 / 01 +	10 / 00 / 01	nd / 65 / 0.1	10 / 30 / 01	- 5 / 160 / 0.2	10 / 061 / 01 +	10 / 130 / 07	- 10 / 165 / 0,1	+ 10 / 210 / 0.1 + 10 / 230 / 0.2	- 20 / 650 / 0.2	- nd / 145 / 0,1	- 10 / 280 / nd	- nd / 260 / nd	- (0 / 280 / 0) - 5 / (60 / 0)	+ (0 / 450 / 0,1	- 10 / IIIS / ud	- 5/175/0	10 / 001 / 01 -	- IS / 75 / 0.J	+ 20 / 60 / 0.1 + nd / 70 / 0.1	10 / 06 / 91 +	FO / 06 / 9	- 20 / 70 / 0.3	- 15 / 55 / 0.2	1,0 / 05 / bn -	10 / 88 / 01 +	- 15 / 70 / 0,2	
L. 12+00 S.	LO / 06 / SI	5 / 105 / 0.2	- 25 / 140 / 0.1 - nd / 40 / 0.1	- 10 / 45 / 0.1	- 10 / 500 / 01	+ 10 / 65 / 0.I - 10 / 145 / 0.I	10 / 9 / 01	5 / 185 / 0,1	- 5 / 160 / 0.2	20 / 60 / 0.1	5 / 80 / 0.1	- 5 / 60 / 03	10 / 02 / 01	ro / 06 / 9 -	- 15 / 55 / 0.1	- 10 / 75 / 0.1	10 / 07 / 01 +	10 / 69 / 03	LO / 050 / 01	10 / 22 / pu —	l.O / 08 / bn -	- 5 / 140 / 0.1	pu / 96 / 9 -	- 5 / 130 / nd	- 5 / i30 / nd - 5 / 70 / 0,1	l,0 / 06 / bn -	- 10 / 130 / nd	- 10 / 115 / nd	- 5 / 50 / 0.1	- 10 / 103 / nd - 20 / 150 / nd	- 10 / 35 / 0]	pu / 06 / 01 -	Pu / 06 / 01 -	10 / 69 / 01	- 5 / 130 / 0.1	- nd / 260 / 0.1 - 5 / 110 / 0.1	O 784 / O 1	TO / OII / OI -	- 5 / 290 / 0.1	- 10 / 70 / 0.2	- nd / 90 / 0.2	10 / 02 / 01	- 10 / 50 / 0.1 , 15 / 635 / nd	

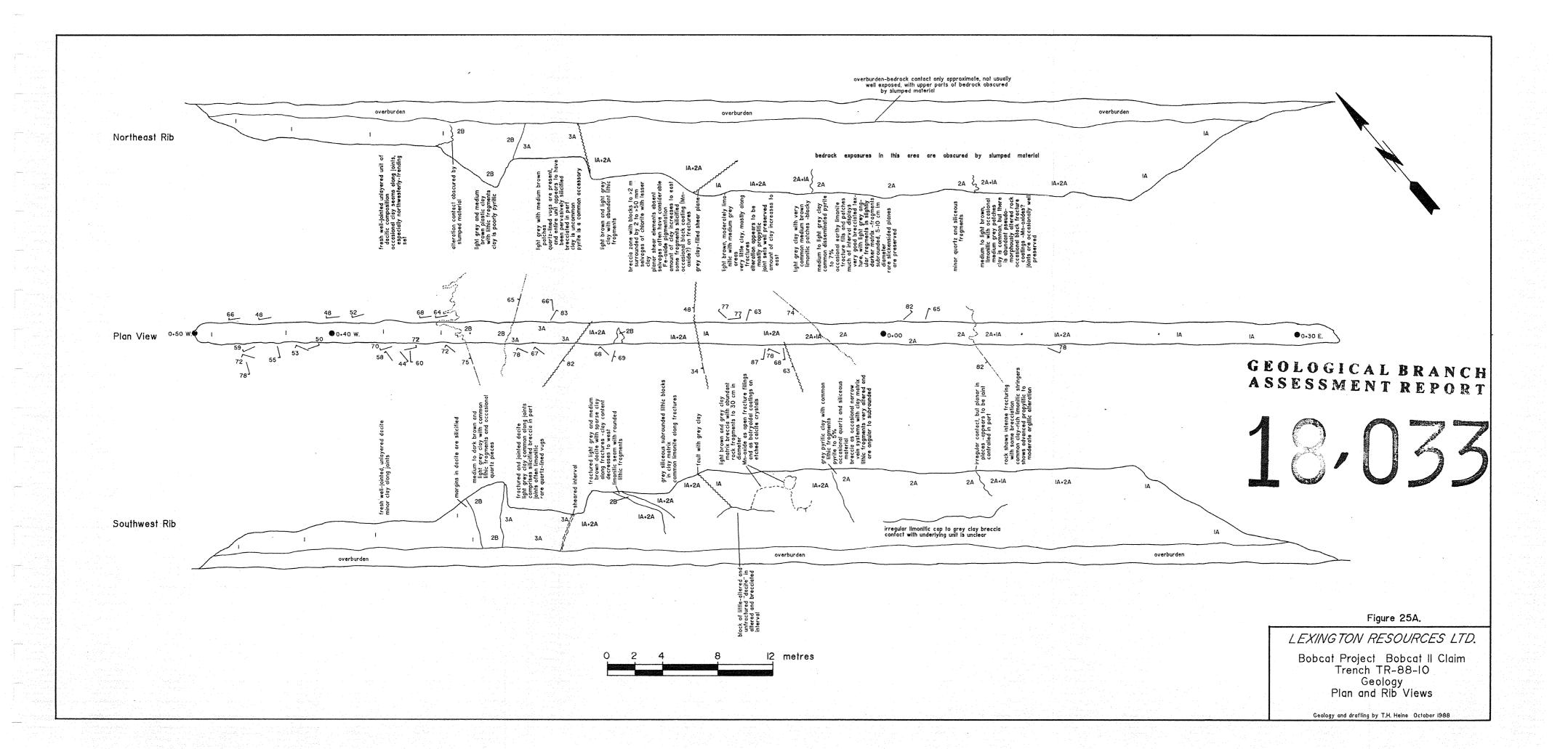
GEOLOGICAL BRANCH ASSESSMENT REPOPT

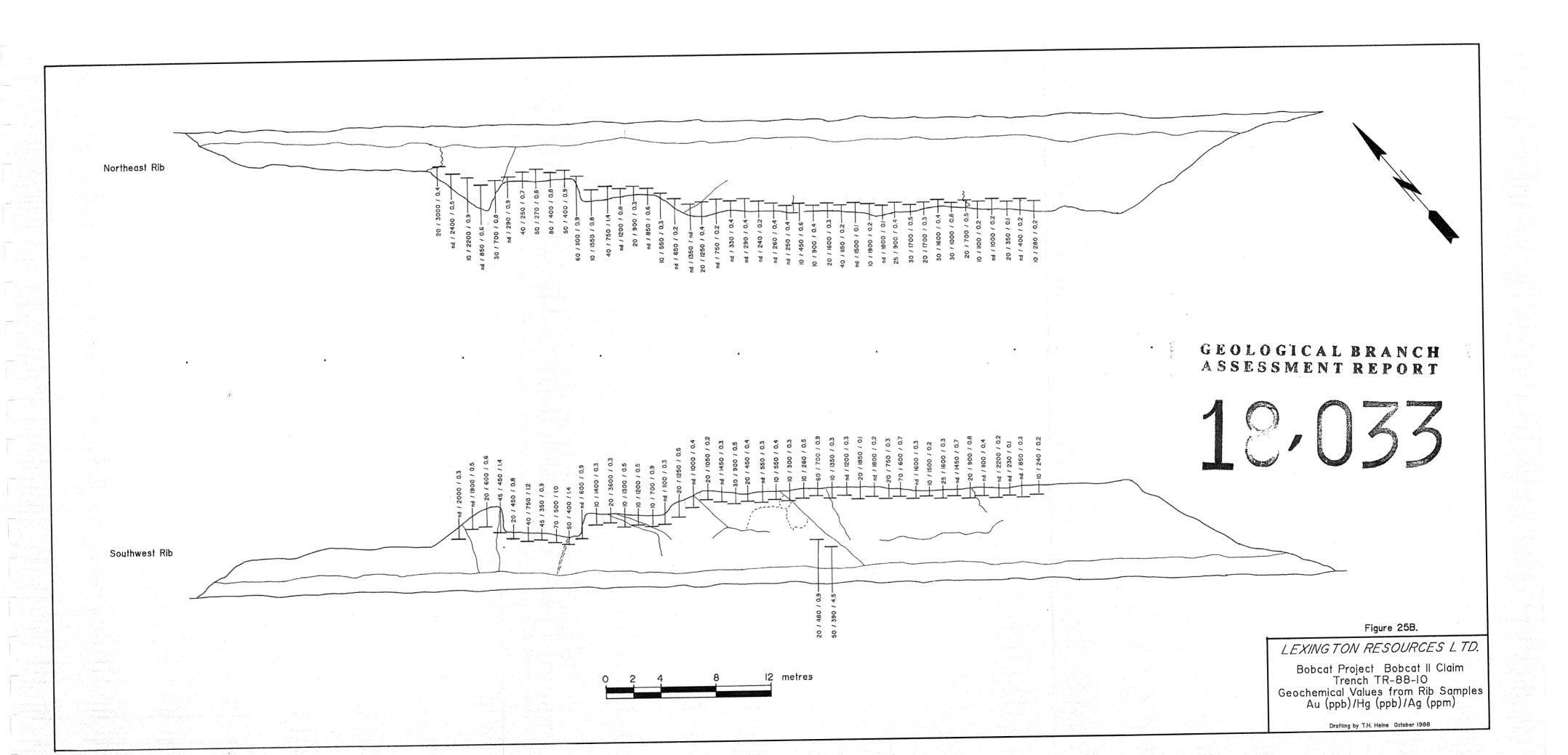
10,035

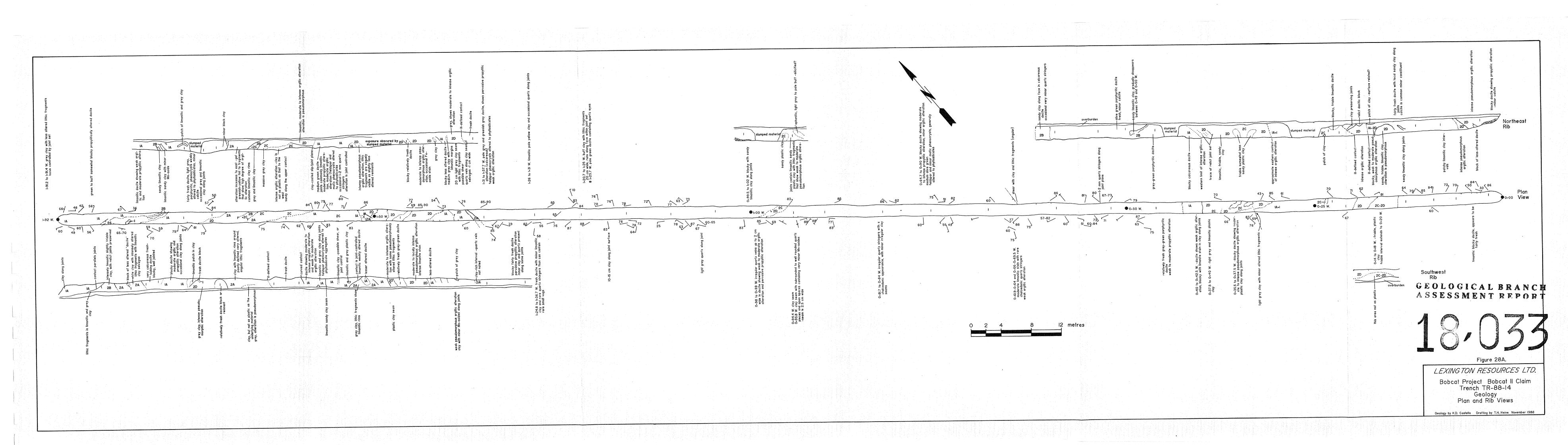
Note: This is an idealized grid, part of which was drawn from a sketch supplied by Ashworth Explorations Ltd., who was responsible for collecting the soil samples.


Figure 31.


LEXINGTON RESOURCES LTD.


Bobcat Project Bobcat Il Claim
Northwest Detailed Grid
Soil Geochemistry
Au (ppb) / Hg (ppb) / Ag (ppm)


Drafting by T.H. Heine November 1988


		/ 360 / nd	900 / uq	130 / nd	pu / 021 /	pu / 009 /	/ 300 / nd	175 / nd	lo / 09	Pu/ 009 /	/ 45 / nd	/ 40 / nd	Pu / 09 /	/ 20 / nd	nd / 30 / nd	/ 40 / nd	/ 25 / nd	25 / 165 / 0,3	/ 40 / 0.1	
		, vo	S	io.	9	<u>, 70</u>	15	10	5/2	<u>Q</u>	<u>o</u>	9	, v	Pu	PE		Pu	- 25 /		L. 15+00 S.
	Pu / 08 / 01	- 15 / 175 / nd	- nd / 650 / nd	nd / 240 / nd	bu / 041 / pu -	- nd / 220 / nd	nd / 55 / nd	- nd / 55 / nd	5 / 65 / nd	- 25 / 50 / nd	nd / 35 / nd	Pu / 06 / 9 -	- 5 / 40 / nd	pu / 09 / pu -	- i0 / 80 / nd	- nd / 50 / nd	- 15 / 80 / nd	nd / 40 / nd	——————————————————————————————————————	L. 16+00 S.
		ри / 9	pu /	ри <i>/</i>	pu /	101	2 / nd	Pu /		ри /	pu /	pu/	, pu /	10 / 0	00 / 0.3	/ 110 / 0.4	10 / 07	10 / 0	pu / C	
	15 / 20 / nd	- 20 / 85	961 / 01 -	96 / Pu -	-5/70/	0 / 98 / 0	- 20 / 65	- nd / 85 /		2 / 80 /	1 9 1 0 1	/ 9II / Pu -	- 5 / 40 /	- 5 / 40 / 0.	- 20 / 100	OII / SI +	- 10 / 30	- 15 / 20 / 0.1	10 / 20	L. 17+00 S.
	5 / 70 / nd	25 / 40 / 0.1	nd / 45 / 0.1	5 / 450 / 0.1	10 / 120 / nd	nd / 400 / 0.3	5 / 25 / nd	Pu / 002 / Pu	IO / 55 / nd	nd / 75 / 0.1	-5 / 50 / nd	10 / 50 / nd	- nd / 35 / nd	- 15 / 75 / 0.1	- 10 / 35 / nd	15 / 80 / 01	- 15 / 150 / 0.1	Pu / O/ / 9	Tuq/85/úq	L. 18+00 S.
	P	P.	b	7	g.			рu	17	1	2		,							
	10/30/	- 20 / 30 /	- 10 / 50 / 1	- nd / 20 /	5 / 30 / 1	5 / 25 / 17	- nd / 50 / n	nd / 240 /	0 / 105 / 0	0 / 65 / 0	- 20 / 40 / 1	- 10 / 30 / ud	Pu / 09 / 01	- 15 / 25 / nd	- 30 / 20 / nd	- 10 / 20 / nd	- 15 / 30 / nd	5 / 30 / nd	T nd / 65 / nd	L. 19+00 S.
	/ 280 / nd	/30 / 01	/ 50 / nd	/ 30 / nd	/ 30 / nd	/ 20 / nd	/ 55 / 0,1	/ 30 / 07				/ 40 / nd	/ 40 / nd	5 / 20 / nd	Dn / 25 / Ol	5 / 70 / nd	1 70 / 0.1	5 / 40 / nd	/ 25 / nd	
	Q 	Pr +	ι ο	O! 	Q +	P	ι ດ	<u>+</u>			·			ko 	<u>o</u>	بن ا	<u>P</u>	ю 	1 2	L. 20+00 S.
···	ри / 32 / 19	nd / 40 / nd	- nd / 25 / nd	- 40 / 30 / nd	- 10 / 30 / nd	- 5 / 35 / nd	5 / 40 / nd	Pu / 32 / OI +	20 / 45 / nd	6 / 65 / 0.3	nd / 70 / 0.2	5 / 90 / 0.2	- 5 / 130 / 0.2	Pu / 20 / pu —	- nd / 40 / nd	- 15 / 30 / nd	- 10 / 40 / nd	pu / 09 / pu —	20 / 60 / nd	L. 21+00 S. GEOLOGICAL BRANCH
	0 / 40 / nd	Pu / 0£ /	/ 25 / nd	/ 20 / nd	/ 30 / nd	30 / nd	/ 30 / nd	/ 35 / nd	35 / nd	/ 60 / nd	pu / o	pu / 9	ри /	pu /	pu /	pu ,	pu .	7		ASSESSMENT PEPORT
		<u> </u>		ن ا	نه +	φ 	<u>o</u> 	2	6	ις 	- 5 / 40	- 5/35	- 5 35	- 10 / 40 /	/ 96 / pu +	Pu / 09 / 01	pu / 08 / SI -	- 10 / 45 / nd	£ 5 / 60 / nd	L. 22+00 S.
	pu / 30 / uq	- nd / 45 / nd	- 5 / 30 / nd	- 5 / 25 / nd	- 15 / 45 / nd	- IO / 60 / nd	nd / 40 / nd	- 15 / 40 / nd	5 / 35 / nd	- 5 / 25 / nd	- 10 / 30 / nd	- 10 / 40 / nd	ro / 09 / 91 +	nd / 30 / nd	- 20 / 40 / nd	- 5 / 40 / nd	ри / 20 / и	- 5 / 40 / nd	nd / 60 / nd ,	
) n nd	pu / S	/ nd	pu /	pu / c	pu /	ри / с) nd	pu /	pu /	ри /		Pu /	рu	ę	P.	2	P	Pu	L. 23+00 S.
)E / pu +	101		-5/36	- 15 / 30	- 15 / 30	- 20 / 45	- 10 / 30	nd / 40	- 5 / 30	- nd / 40	+ 00 + 28	- 10 / 70		- nd / 45 /	- 15 / 30 /	0 / 0 /	- 5 / 35 / 1	T nd / 30 /	L. 24+00 S. Note: The grid as it is drafted is idealized, and was transferred from a field sketch supplied by Ashworth Explorations Ltd., who was responsible for collecting the soil samples.
	- 10 / 20 / nd	- 5 / 40 / nd	5 / 30 / nd	.15 / 25 / nd	nd / 35 / nd	5 / 50 / nd	nd / 30 / nd	nd / 30 / nd	20 / 30 / nd	nd / 50 / nd	5 / 85 / nd	10 / 40 / nd	25 / 95 / nd	10 / 35 / nd	is / 60 / nd	pu / SII / pu	l5 / 55 / nd	nd / 60 / nd	nd / 50 / nd	
	<u> </u>	19	þ	٩			-	_			1		77			7				L. 25+00 S. 0 25 50 100 150 metres
	T 15 / 30 / nc	15 / 40 / nc	10 / 30 / 0	nd / 25 / n	+ 10 / 20 / nc	- 5 / 45 / nd	O / 96 / Pu -	-5 / 60 / 01	10 / 35 / nd	Pu / 52 / 51 -	nd / 30 / nd	- 5 / 45 / nd	nd / 25 / nd	Pu / 30 / 01 -	- nd / 45 / nd	ou / 99 / pu -	hn / 07 / bn -	Pu / 05 / 01 +	nd / 65 / nd	L. 26+00 S. Figure 32.
	4+00 W. —				2+00 W. —				Baseline				2+00 E. —				4+00 E		5+00 E	LEXINGTON RESOURCES LTD. Bobcat Project Bobcat II Claim Southwest Grid Extension Soil Geochemistry Au (ppb) / Hg (ppb) / Ag (ppm)

