Off Confidential: 89.09.09 District Geologist, Kamloops ASSESSMENT REPORT 18039 MINING DIVISION: Kamloops **PROPERTY:** CM 51 18 00 LOCATION: LAT LONG 120 07 00 UTM 10 5686916 701003 092P08E NTS CLAIM(S): CM 2-3 OPERATOR(S): Skylark Res. AUTHOR(S): Farmer, R. 1988, 84 Pages **REPORT YEAR:** COMMODITIES SEARCHED FOR: Copper, Zinc, Silver, Gold GEOLOGICAL The CM claims are underlain by a north-northwest striking, SUMMARY: steeply east dipping sequence of mafic volcanics and sediments of the Permian Fennell Formation. The sediments are host to two small massive sulphide occurrences consisting of pyrite, chalcopyrite and magnetite as exposed in old trenches. WORK DONE: Drilling DIAD 610.2 m 6 hole(s);NQ Map(s) - 7; Scale(s) - 1:5000SAMP 78 sample(s) ;ME 092P 101 *__*NFILE:

100	1130	RD.
P.C.		
aan oo ah		
214 IZ 6. /*		

ASSESSMENT REPORT

BARRIERE LAKES PROJECT

CM CLAIMS

1988 DIAMOND DRILLING

Kamloops Mining Division NTS: 92P/8E

FILMED

	SUB-RECORDER RECEIVED	-
	NOV 24 1988	
M.	.R. #\$ VANCOUVER, B.C.	

GEOLOGICAL BRANCH ASSESSMENT REPORT

R. Farmer November, 1988.

BPVR 88-10

SUMMARY

Diamond drilling was carried out in two separate programs on the CM claims.

Seven holes were drilled in the first program of which only one is being filed for assessment here (CM-88-3). This hole was drilled to follow up copper rich massive sulphides intersected in 1987 drilling. The massive sulphides were not intersected during the current program suggesting the mineralization is a small pod, or perhaps a ? fragment.

In the second program six holes were drilled, five of which are being reported on here (CM-88-8 to 12). This program was designed to test outcropping massive sulphide and magnetite here termed the Upper and Lower Showings. Results were disappointing as massive sulphide mineralization was not intersected. Two of the holes, however, CM-88-8 and CM-88-11 intersected strong alteration along with stringer and fracture fill base metal mineralization. The section is very complex due to prominent faulting and additional drilling is required along strike.

RECOMMENDATIONS

 Diamond drill geophysical targets to the south of the area currently drilled (Program 2), which appear to be on strike with Upper and Lower Showing mineralization.

i

TABLE OF CONTENTS

	PAGE NO.
SUMMARY	i
RECOMMENDATIONS	i
INTRODUCTION	1
LOCATION AND ACCESS	1
TOPOGRAPHY AND VEGETATION	2
LAND STATUS	2
GEOLOGY AND PREVIOUS WORK	3
a) Previous Work b) Geology	3 4
DIAMOND DRILLING	6
a) Program 1	7
i) DDH CM-88-3	8
b) Program 2	9
i) DDH CM-88-8 ii) DDH-CM-88-9 iii) DDH CM-88-10 iv) DDH CM-88-11 v) DDH CM-88-12	9 11 12 13 15
CONCLUSIONS	16
a) Program 1 b) Program 2	16 16
REFERENCES	17

LIST OF APPENDICES

		FOLLOWING	PAGE	NO.
APPENDIX I:	Statement of Costs		17	
APPENDIX II:	Certificate of Author		17	
APPENDIX III:	Diamond Drill Logs		17	
APPENDIX IV:	Sample Results - Acme Certificate	s	17	
APPENDIX V:	Analytical Procedures		17	

LIST OF FIGURES

• .

PAGE NO.

		· · · · · ·	OLLOWING P.	AGE NO.
FIGURE	1:	CM Claims Location Map		1
FIGURE	2:	Claim Map		2
FIGURE	3:	Regional Geology		4
FIGURE	4:	Area of Drilling		6
FIGURE	5:	Compilation and Drill Hole Location	IS	6
FIGURE	6:	Drill Section - Hole CM-88-3	In	Pocket
FIGURE	7:	Drill Section - Hole CM-88-8	11	11
FIGURE	8:	Drill Section - Hole CM-88-9	**	11
FIGURE	9:	Drill Section - Hole CM-88-10	88	**
FIGURE	10:	Drill Section - Hole CM-88-11	88	11
FIGURE	11:	Drill Section - Hole CM-88-12	11	99
FIGURE	12:	Diamond Drill Hole Locations	**	98

LIST OF TABLES

TABLE 1:	Claim Statistics	2
TABLE 2:	Diamond Drill Hole Data	

iii

INTRODUCTION

During 1988 follow-up diamond drilling was carried out on the CM 1-7 mineral claims. Drilling was done in two separate programs.

In the first program a total of seven holes were drilled, only one (CM-88-3) of which is being reported on in this report. Hole #3 was drilled to follow up massive sulphides intersected in 1987 drilling and was drilled to a total depth of 197.86 metres. Drilling was carried out from May 25th to May 31st, 1988.

The second program consisted of six holes, of which five are reported on here (CM-88-8 to 12) for a total of 412.34 metres. This program was designed to test exposed massive sulphide mineralization of the Upper and Lower Showings. Drilling for program 2 was carried out from August 9th to August 24th, 1988.

This report describes the programs and results.

LOCATION AND ACCESS

The CM claims are located near Chinook Mountain approximately 15 kilometres north of Barriere, B.C., (Figure 1). The geographic centre of the claims is at latitutde 51°18' north and longitude 120°07' west on N.T.S. mapsheet 92P8E.

Access to the property is gained via the Dunn Lake Road from Barriere, B.C. After following the Dunn Lake Road for approximately 17 kilometres a right turn is made onto the Cold Creek logging road which follows Newhykulston Creek. It is approximately two kilometres to the property from this point.

TOPOGRAPHY AND VEGETATION

Topography is fairly rugged as the claims are situated along a prominent ridge on the east side of the North Thompson River. Elevations vary between 2,000 feet (615 m) A.S.L. and 5,000 feet (1538 m) A.S.L.

Vegetation consists of a mixed forest of spruce, pine, fir, birch and poplar.

LAND STATUS

The CM 1-7 claims (Figure 2) lie within the Kamloops Mining Division on N.T.S. mapsheet 92P/8E. All claims are registered in the name of BP Minerals Limited.

Claim statistics are shown in Table I below:

TABLE I: Claim Statistics

Claim	Name	Record No.	Units	Record Date	Expiry
CM	1	6367	20	Sept. 13/85	1993
CM	2	6368	20	Sept. 13/85	1993
CM	3	6369	20	Sept. 13/85	1993
CM	4	6370	15	Sept. 13/85	1993
CM	5	6469	9	Dec. 30/85	1993
CM	6	6470	8	Dec. 30/85	1993
CM	7	7342	12	Nov. 3/87	1993

Total: 104 Units

CM 1, CM 3, CM 5, CM 6, CM 7, Grouped as CM A Group CM 2, CM 4, Grouped as CM B Group

Note: Expiry dates based on approval of this report.

.

-

GEOLOGY AND PREVIOUS WORK

a) Previous Work

In the Newhykulston Creek area a gossan was uncovered in the 1950's and subsequent trenching followed the gossan for several hundred metres. The property has had some small diameter drilling done on it sometime pre 1970. This drilling evidently intersected a two foot band of massive sulphide which was later exposed by further trenching.

During 1970 some trenching and approximately 1200 feet of diamond drilling in three holes were done by Rio Tinto Canada under an option agreement from Kel Glen Mines.

In 1978 Noranda optioned the property and carried out an airborne VLF survey, Shootback EM, and magnetometer surveys, and a grid controlled soil survey.

In 1979 Craigmont flew a Dighem III survey covering all of the Fennell Formation between Barriere and Clearwater, B.C., including the CM Claims area.

In 1986 BP Resources Canada Limited carried out ground Max/Min EM and magnetics, soil sampling and, geologic mapping on four small grids.

In 1987 BP Resources Canada Limited carried out linecutting (17.2 line KM), ground geophysics (22.65 line km Max/Min EM, 17.2 line

. 3.

km magnetics, 11.9 line km I.P.), soil sampling (563 samples), geological mapping, trenching (7 trenches) and, diamond drilling (2 holes for 242.99 metres).

b) Geology

The regional geology has been mapped by Preto and Schiarizza (1984) and Schiarizza (1983) of the British Columbia Ministry of Energy, Mines and Petroleum Resources.

The CM claims are located within the Fennell Formation of Mississippian age. Fennell Formation rocks consists of basalts, chert and minor argillite and conglomerate occurring in a belt roughly 10 km wide, extending northwards from Barriere, B.C. for at least 100 km. The section has been divided into an upper and lower structural unit by Preto and Schiarizza (1984), separated by a thrust fault (Figure 3), with chert being more common in the lower structural unit. Fennell rocks are locally intruded by Cretaceous granitic rocks of the Baldy and Raft Batholiths.

The CM claims are within the upper structural unit and are underlain predominantly by basalt. Minor sediments consisting of chert and argillite are also present and a small granitic plug, likely related to the nearby Baldy Batholith, intrudes the section in the northeast corner of the property (Figure 3). A narrow belt of sediments trends NNW throughout the central portion of the property. The sediments generally dip vertically, and consist primarily of grey to green chert with minor black argillite. This

belt of sediments is host to two small massive sulphide occurrences as exposed in old trenches, identified as the Upper and Lower Showings on Figure 5.

The Upper Showing consists of a zone of massive magnetite three to four metres thick, with local, narrow zones of mixed sulphide (pyrite-chalcopyrite) and magnetite. Mineralization is hosted by massive, grey, pyritic chert.

The Lower Showing is located approximately 70 metres downslope and along strike. This trench is largely sloughed in and characterized by a thick ferricrete development, up to three metres thick. Massive sulphide mineralization is exposd in the bottom of the trench. The mineralization is variably oxidized and consists of fine-grained pyrite and chalcopyrite with malachite and chalcocite and is 1.4 metres thick as exposed. Host rock exposed on the west side of the mineralization consists of grey, pyritic chert and black, cherty (silicified ?) and pyritic argillite. Rocks adjacent to the mineralization are strongly sheared. In the trench wall at the south end of the trench, shearing is very intense producing a breccia consisting of large clasts of chert and massive sulphide. This shear zone forms part of a prominent airphoto lineament trending SSE through the CM claims and it seems likely that mineralization may be related to this strucutre.

Unfortunately the mineralization is poorly exposed and hence its extent is unknown. Host rock is poorly exposed on the west

side and not exposed on east side at all, hence little information is available on detailed stratigraphy and alteration.

DIAMOND DRILLING

This report describes diamond drilling carried out in two separate programs, which are described separately below. The area of drilling is indicated on Figure 4 and drill locations plotted on Figure 5, and Figure 12. Table 2 summarizes all pertinent drill data.

The core was logged by R. Farmer and is stored at a warehouse in Barriere, B.C. For both programs core recovery averaged around 80% overall, however, numerous sections of broken, caving ground were encountered, resulting in recoveries in the 20%-40% range, as well as, slow, costly drilling. Newhykulston Creek was used as a water source, and water pumped to the drill sites.

Selected portions of the core were split and analysed for 30 elements by ICP plus gold by A.A. Samples were sent to Acme Analytical Labs Ltd., in Vancouver, B.C., for analysis.

Sample locations and lengths are shown on the drill sections (Figures 6-11 in pocket). Drill logs are included in Appendix III and Certificte of Analyses for all core samples are included in Appendix IV.

Program 1						
Hole No.	Grid Location	Elevation	Azimuth 1	Dip	Length	<u>Claim</u>
CM-88-3	106+55N- 95+50E	1190 m	270° –	45°	197.86	m CM 2
			Te	otal:	197.86	M
Program 2	:					
Hole No.	Grid Location	Elevation	Azimuth 1	Dip	Length	<u>Claim</u>
CM-88-8	111+95N- 98+19E	980 m	260° –	55°	102.44	m CM 3
CM-88-9	112+85N- 98+50E	956 m	260° –	50°	60.97	m CM 3
CM-88-10	112+50N- 98+55E	966 m	260° –	50°	60.21	m CM 3
CM-88-11	112+98N- 97+48E	970 m	080° –	50°	96.04	m CM 3
CM-88-12	111+50N- 98+22E	991 m	260° –	50°	92.68	m CM 3
					<u> </u>	
			Tota	al:	412.34	m

a) Program 1

In the first program a total of seven holes were drilled, however, only one hole (CM-88-3) is being filed here for assessment. Hole CM-88-3 was drilled from May 25th to May 31st, 1988, to a total depth of 197.86 metres. Ten samples were collected and sent for analysis. This hole was drilled to follow-up massive sulphide mineralization intersected in 1987 drilling (Hole CM-87-2, Assessement Report No. 16596). Diamond drilling was under contract to Iron Mountain Drilling Ltd., of Merritt, B.C. A Longyear 44 wireline rig was used to drill the NQ sized holes.

7.

TABLE 2: DIAMOND DRILL HOLE DATA

i) DDH CM-88-3 (Figure 6, in pocket)

This hole was drilled to follow-up massive sulphide mineralization intersected in hole CM-87-2 (Assessment Report No. 16596) and was designed to intersect the mineralization close to the 1987 intercept to confirm the direction of dip of the section prior to further drill testing along strike.

The hole intersected largely fine grained, massive Fennell basalts. Five narrow zones of sediments were intersected as follows: 104.57-105.23 m, 110.06-111.44 m, 115.01-116.87 m, 163.75-166.42 m and 174.22-175.40 m. Sediments consist primarily of grey to black argillite, locally graphitic, with lesser amounts of massive to banded grey to green chert. Sediments typically display strong soft sediment deformation, with slump breccias being very common. Direction of dip was confirmed to be steep to the east.

The massive sulphide mineralization was not intersected and could represent a small, discontinuous pod or perhaps a fragment ? Sediments are generally weakly pyritic and locally contain minor chalcopyrite (i.e., 110.6-111.44 m), however, results are poor. Best results are as follows:

Sample No. Section		Length m	Cu(ppm)	Results Zn(ppm) Ag(ppm) Au(p		
203019	110.96-111.43 m	0.47 m	2749	975	0.9	27

b) Program 2

A total of six holes were drilled in the second program, five of which are being filed for assessment (CM-88-8 to 12). The five holes were drilled between August 9th and 24th, 1988, for a total of 412.34 metres. This program was carried out to test an area of outcropping massive sulphide mineralization previously described (under Geology) as the Upper and Lower Showings. Diamond Drilling was under contract to Bergeron Drilling Ltd., of Greenwood, B.C. A Longyear 38 wireline rig was used to drill the NQ sized holes. A total of 68 samples were collected and analysed from the five holes.

i) DDH CM-88-8 (Figure 7 in pocket)

Hole 8 was drilled under the Upper Showing and was designed to test not only the surface mineralization but also mineralization encountered in a Rio Tinto (1970) drill hole which was not analysed for precious metals.

The hole intersected the usual fine grained and massive mafic volcanics as well as two sedimentary horizons which occur as follows; ? 31.10 m-47.78 m and 86.88 m-102.44 m E.O.H. Both consist of grey, green or black chert on the uphole side grading to, grey to black argillite, wacke and mudstone, with occasional chert bands down hole. The argillite/wacke sections are well laminated to bedded (steep east dip) and locally graphitic. The upper contact for the first horizon at 31.10 metres is an approximate location as the contact zone

occurs within a major zone of faulting and alteration. The section from 28.05-44.41 metres is likely a broad fault zone consisting of a series of more discrete fault gouge and breccia zones. This fault zone coincides with a prominent topographic lineament trending SSE through the property.

A broad zone of alteration is present at 16.77-42.68 metres, roughly coincident with the fault zone. Alteration consists of clay, carbonate and silicification, and starts out as a bleaching (pervasive clay/carbonate) of the mafic volcanics to a light grey/green colour. Narrow silicified zones are present which increase in fequency down hole. At 31.10-36.05 metres an intense silicified zone is present. The rock is aphanitic, light grey in colour and cherty-looking. As all textures are destroyed it is not clear whether this rock represents altered volcanics or sediments, however, the zone seems to occur at a sediment-volcanic contact. Below the silicified zone clay/carbonate alteration continues to about 42.68 m, weakening gradually.

The altered zone is strongly pyritized and minor chalcopyrite is present throughout. Native copper was identified at one location (25.61 m). Sulphides occur as fracture fillings, fine disseminations and sulphide-rich bands (to ~ 12 cm thick). Sulphide bands cross the core at all angles and in places appear to be matrix to a brecciated rock, perhaps suggesting a relationship to early faulting ?

The massive magnetite and sulphide exposed on surface was not encountered nor were the massive sulphides encountered in the Rio Tinto hole. Best results are as follows:

Section	Length (metres)*	<u>Results**</u>		
18.60-42.68 m including:	24.08 m	4634 ppm Cu		
(1) 24.39-36.10 m (2) 25.30-26.98 m	11.71 m 1.68 m	6859 ppm Cu 18028 ppm Cu		

Note: * - Core Length ** - Weighted average grade.

Precious metal (Au,Ag) values are all very low.

ii) DDH CM-88-9 (Figure 8 in pocket)

Hole 9 was drilled under the Lower Showing to test massive sulphide mineralization exposed in old trenches.

Under 15-24 metres of overburden a diorite to gabbro intrusive was intersected until 51.36 m. The intrusive is medium grained and dark green in colour. Hornblend crystals are locally evident, however, the dominant texture consists of indistinct chloritized patches to 1 cm in diameter, in a distinctive matrix of tiny, white, randomaly oriented, feldspar laths.

A major fault zone is present from approx. 40.0 m to 55.79 m. The intrusive here displays strong clay/carbonate alteration (bleached to light grey/green colour) with minor greenish ? talc on fracture surfaces. Black chert was intersected below the intrusive and at 53.81-54.57 m it contains probable bands of semimassive chalcopyrite and pyrite. Only a few ground marbles were recovered, however, (20% recovery) and the extent and nature of mineralization is not clear. The hole was lost in a fault at 54.57 metres and had to be triconed to 55.79 metres to continue. After triconing the remainder of the hole (to 60.97 E.O.H.) is in mafic volcanics which are not mineralized. Best results are as follows:

Sample No	. Section	Length m	Resu	Results		
-		Cu(ppm)		Zn(ppm)		
203095	53.81-54.57 m	0.76 m	20,692	1208		

Note: Since recovery for this interval is only 20% the grades may not be representative.

Mineralization of the type exposed on surface (Lower Showing) was not intersected in the drill hole and may have been cut off by the intrusive, or weakened at depth to that observed in the section above.

iii) DDH CM-88-10 (Figure 9 in pocket)

Hole No. 10 was collared 35 metres south of hole 9 and was drilled to test the mineralization outside of the intrusive encountered in hole 9. The dioritic intrusive was intersected again in this hole under 18.29 metres of overburden. The

diorite is the same as that described in hole 9 and was intersected until 43.49 metres. From 43.49 metres to the end of the hole at 60.21 metres sediments were intersected. Sediments consist of chert (black, grey, green) which are massive to locally banded and highly fractured. At about 56 metres sediment is no longer chert but has become a siliceous clastic sediment (wacke or siltstone ?). A major fault zone is present from about 54 metres to 60.21 metres where the hole is lost in the fault due to squeezing of the rods. Mineralization was not encountered in this hole. Only minor pyrite is present within the sediments.

iv) DDH CM-88-11 (Figure 10 in pocket)

Hole No. 11 was collared west of the Lower Showing and slightly north, and drilled back towards the 'mineralized trend'. This hole was drilled from the opposite side with respect to hole CM-88-9 in an attempt to intersect the mineralized zone prior to encountering the intrusive and also, to test a zone of fracture related pyrite, chalcopyrite mineralization, encountered in a similarly drilled Rio Tinto (1970) hole, for precious metals.

The hole collared into mafic volcanics under 15.24 metres of overburden. The volcanics start out as light green coloured fine grained, massive flows but become increasingly bleached (pervasive clay+carbonate alteration ?) down hole. At 19.56 metres the volcanics are in fault contact with grey to black

chert to cherty argillite. The chert is intensely brecciated and recovery is very poor. The section 20.12 m - 20.73 m contains bands of massive sulphide to 1 or 2 cm thick consisting of fine grained pyrite, chalcopyrite, and pyrrhotite. At 20.73 metres the hole was lost (in mineralization) in a fault and casing had to be advanced to 24.39 metres to continue.

The section 24.39 m - 68.86 m is mafic volcanics again, similar to that at the top of the hole, except, alteration is not evident.

Sediments consisting largely of chert are again encountered from 68.86 metres to the end of the hole at 96.04 metres. Chert is generally multicoloured here (grey, green, black) and often brecciated. The section is intruded by intensely altered diorite dykes, similar in appearance to the intrusive encountered in holes No. 9 and 10. The frequency of dykes increases down hole, and this section is also likely a broad fault zone.

Mineralization is present from 71.62 m to 82.32 metres and likely corresponds to the zone intersected by Rio Tinto. Mineralization consists of fracture fillings, bands and occasional fragments of pyrite with minor chalcopyrite which constitutes an estimated 2-5% of the rock. The zone does not carry significant precious metals. Best results are as follows:

Sample No. Section		Length m	Results			
-		-	Cu(ppm)	Zn(ppm)	Ag(ppm)	Au(ppb)
203105	20.12-20.73	0.61	8842	2200	7.4	102
203106	71.62-72.32	0.70	952	398	4.0	325
203107	72.32-73.62	1.30	2761	1147	4.3	103
203110	77.38-77.94	0.56	1479	2596	3.5	50

v) DDH CM-88-12 (Figure 11 in pocket)

Hole 12 is a stepout 50 metres to the south of hole CM-88-8 to test the strike extent of alteration/mineralization encountered in hole 8.

Bedrock consisting of argillaceous sediments was intersected at 27.44 metres. In general the hole intersected argillaceous sediments from 27.44 m - 53.98 m; then mafic volcanics 53.98 m - 80.09; followed by; argillaceous sediments until 92.68 m E.O.H. While the mafic volcanics and lower sediments seem correlative with those in hole 8, the mineralized chert and silicified section was not intersected. While hole 12 could have overshot the mineralized section due to overburden depth the upper argillaceous horizon has thickened considerably from hole 8 and it seems likely that the mineralized portion has either pinched out or been faulted off.

A total of nine samples were collected from this hole, however, no significant values in either base or precious metals were obtained.

CONCLUSIONS

Program 1

Hole CM-88-3 confirmed the direction of dip of the section (steep to the east) but failed to intersect the massive sulphide mineralization encountered in hole CM-87-2. It is not clear whether the mineralization was simply 'missed' or whether only a small pod or ? fragment is present. Additional drilling updip and along strike would be required to confirm the situation.

Program 2

Holes CM-88-8 to CM-88-12 were drilled to test an area of outcropping massive sulphide mineralization, referred to here as the Upper and Lower Showings. Massive sulphide mineralization was not encountered, however, two of the holes, No's. 8 and 11 intersected stringer and fracture fill mineralization associated with strong silicification and clay/carbonate alteration. Both holes were drilled close to known mineralization. In holes 9 and 10 the section appears to be cut off by a dioritic intrusive. In hole 12 the section either pinches out or is offset by the prevalent faulting.

The most significant intercept was in hole 8 where 24.08 metres averaged 4634 ppm Cu.

Additional drilling is required along strike to test possible extensions of the mineralized horizon.

REFERENCES

- Preto, V.A. and Schiarizza, P. (1984): Geology of the Adams Plateau-Clearwater Area. B.C. Ministry of Energy, Mines and Petroleum Resources; Preliminary Map No. 56.
- Schiarizza, P. (1983): Geology of the Barriere River-Clearwater Area. B.C. Ministry of Energy, Mines and Petroleum Resources; Preliminary Map No. 53.
- Dvorak, Z. and Fraser, D.C. (1979): Dighem III Survey of North Thompson River, British Columbia, for Craigmont Mines Limited by Dighem Limited; Assessment Report No. 7659.
- 4. Assessment Report #7555, Nook Claims by Noranda Exploration.
- 5. Assessment Report #16596, CM Claims (1987); BP Resources Canada Limited.

APPENDIX I

Statement of Costs

Cost Statement

CM B GROUP - PROGRAM 1

1. Diamond Drilling

	a)) Iron Mountain Drilling Ltd., Hole CM-88-3 197.8 metres @ \$107.53/metre all in cost May 25th - May 31st, 1988.				\$21,275.88	
	b)	Logging and splitting Core:					
		R. Farmer - Project Geologi: May 29,30; June 2, 1988. 3 days @ \$200/day.	st		\$	600.00	
			Sub Tot	al - Drilling:	\$21	,875.88	
2.	Ana	lytical					
	Acm 10	e Analytical Labs Ltd. samples for I.C.P.+Au @ \$15.3	24 each		\$	152.40	
			Sub Tot	al Analytical:	\$	152.40	
3.	Tra	nsportation					
	4 x fue	4 Pickup truck, including 1, rental, insurance			¢	175 00	
	, u	Sul	o Total T	ransportation:	* \$	175.00	
4.	Roo	m and Board					
	a)	Accommodation - Apartment 7 days @ \$10/day			\$	70.00	
	b)	Food 7 days @ \$20/day				140.00	
		Su	o Total R	oom and Board:	\$	210.00	
5.	Rep	ort Writing					
	R. 3 d	Farmer - Project Geologist ays @ \$200/day			\$	600.00	
		Sul	o Total R	eport Writing:	\$	600.00	

6. Drafting and Typing

a)	Drafting 10 hours @ \$17.00/hr.	\$ 170.00
b)	Typing 1 day @ \$100/day	100.00

Sub Total Drafting and Typing: \$ 270.00

TOTAL COST OF PROGRAM: \$23,283.28

• .

Work was done on the CM 2 mineral Claim. Work to be applied to CM B Group (CM 2, CM 4 claims) as indicated below:

CM B Group

- CM 2 20 units 3 years applied \$12,000.00 CM 4 - 15 units - 3 years applied - \$ 9,000.00
 - Total Value Applied \$21,000.00
 - Remainder applied to BP Minerals Limited PAC account - \$ 2,283.00

Cost Statement

CM A GROUP - PROGRAM 2

1. Diamond Drilling

- a) Drilling Costs
- i) Bergeron Drilling Ltd. 5 holes - CM-88-8 to CM 88-12 August 9-24, 1988. 412.5 metres @ \$93.05/metre all in cost \$38,383.12
 ii) Mobilization/Demob. - lump sum cost 336.00
 b) Drill Site Construction D6 Cat. - 15 hrs. @ \$74.50/hr. 1,117.50
- c) Logging and Splitting Core
 - i) Andres Mendosa Assistant August 11-24, 1988 - 13 days 13 days @ \$65.00/day 845.00
 - - Sub Total Drilling: \$43,281.62

2. Analytical

Acme Analytical Labs. Ltd.68 sample for I.C.P.+Au @ \$15.24 each\$ 1,036.32

Sub Total Analytical: \$ 1,036.32

- 3. Transporation
 - 4 x 4 Pickup truck, including fuel, rental, insurance - August 9-24, 1988 16 days @ \$25.00/day \$ 400.00
 - Sub Total Transportation: \$ 400.00

4. Room and Board

- a) Accommodation Apartment 16 days @ \$10.00/day \$ 160.00
- b) Food 32 man/days @ \$25.00/man/day 800.00

Sub Total Room and Board: \$ 960.00

5. Report Writing

6.

R. Farmer - Project Geologist						
5 days @ \$200/day	\$ 1,000.00					
Sub Total Report Wri	ting: \$ 1,000.00					
Drafting and Typing						
a) Drafting 40 hours @ \$17.00/hr.	\$ 680.00					
b) Typing 2 days @ \$100.00/day	200.00					
Sub Total Drafting and Ty	ping: \$ 880.00					
TOTAL COST OF PRO	GRAM: \$47,557.94					

Cost Allocation - Program 2

Work was carried out on the CM 3 mineral claim. Work to be applied to CM A Group (CM 1,3,5,6,7 claims) as indicated below:

CM A GROUP

CM 1	-	20 units	-	3 years applied	-	\$12,000.00
CM 3	-	20 units	-	3 years applied	-	\$12,000.00
CM 5	-	9 units	-	3 years applied	-	\$ 5,400.00
CM 6	-	8 units	-	3 years applied	_	\$ 4,800.00
CM 7	-	12 units	-	3 years applied	-	\$ 6,000.00

Total Value Applied - \$40,200.00

Remainder applied	to BP Minerals	
Limited PAC	account	 \$ 7,357.00

APPENDIX II

Certificate of Author

CERTIFICATE OF AUTHOR

I, Randy Farmer, of #103-4955 Newton Street, Burnaby, British Columbia, hereby certify that:

- 1. I am a geologist residing at the above address.
- 2. I am a graduate of Lakehead University, Thunder Bay, Ontario, with an Honours B.Sc. degree in Geology (1980).
- 3. I have practiced my profession for more than eight (8) years.
- 4. I supervised the diamond drilling on CM 1-7 claims and assembled the data described herein.
- 5. I hold no interest, direct or indirect, in the CM claims which are the subject of this report.

Respectfully submitted

amer

Randy Project Geologist

November, 1988.
APPENDIX III

Diamond Drill Logs

ъ. н. **BP** Resources Canada Limited OP DRILL LOG HOLE NO.... CM-88-3 MINING DIVISION LOCATION SKETCH TESTS DIP ANGLE DATE STARTED PROJECT : DRILLING CO. BARRIERE DEPTH AZIMUTH May 25, 1988. DATE COMPLETED: N. T. S. : 270⁰ COLLAR 92P/8E -45 May 31, 1988. IRON MOUNTAIN COLLAR ELEV .: LOCATION -50 DRILLING LTD. 195 m 1190 NORTHING : 106+55N EASTING: 95+50E AZIMUTH: 270 DEPTH: DATE LOGGED : May 29 - June 1/88 197.86 m HOLE TYPE CORE SIZE: LOGGED BY : DDH NQ R. Farmer. STRUCTURE INTERVAL DESCRIPTION REMARKS ROCK TYPE ORE FRACTURES MINERALS PER METRE (FRACTURES, FAULTS, FOLDING, BEDDING, FTC): MINERALIZATION, TYPE, AGE RELATIONS GRAIN TEXTURE ALTERATION COLOUR FROM то - o/c @ surface 0 3.05 Casing - casing later extended to 24.39 m due to bad, broken, caving ground. - usual flow breccia 3.05 104.57 Mafic Volcanics - dark brown quenched ? sections with irregular 1t. green brecciated bands and patches. Locally may be amygdaloidal ? (i.e., 13.45 m) - ground badly broken - recovery variable but poor - breccia continues until \sim 23.8 m - core badly ground (marbles) 13.23-15.66 m 20.03-21.04 - flow bx. with abundant irregular qtz. veinlets (\sim 3 mm wide) @ 23.8 m becomes fine grained, massive, lt. green amygdaloidal ? flow. Tiny 1 mm rounded black amygdules ? filled with chlorite ?

PAGE _____ OF ____

.

DRILL HOLE NO. _____CM-88-3____

		ces Canada Limite	d			DR			LO	G	HOLE NO. <u>CM-88-3</u>	
INTE	RVAL			· .	DESC	RIPTION	N.:	· · · · ·		STRUCTURE	REMARKS	
FROM	то	ROCK ITPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE		(FRACTURES, FAULTS, FOLDING, BEDDING, ETC)	MINERALIZATION, TYPE, AGE RELATIONS	
3.05	104.57									minor ff py @ ~ 28.5 m		
Contin	ued									- amygd. until ends 29.6 m	then back	
[into flow bx. 29.37-29.6	0.5-1% very	
										fine dissm. pyrrhotite.		
										- 1 cm qtz. vein @ ~ 29.65 m	(core broken)	
										- 3 cm qtz. vein @ 30° to C.A	. @ 30.00 m.	
										@~34.15-42.0 - fine grained		
										variety again - 'mottled' t	exture near	
						<u> </u>				top becoming anygdaloidal ? near bottom		
										 Lop becoming amygdaloidal ? near bottom local minor dissm. po again and some ff py 		
										- contacts indistinct		
										- back to flow bx. ? @ ~ 42 m	again	
							-	-		- doesn't look like usual bx.	here (i.e., have dense	
										brownish 'quenched' materia	l but lt. green breccia	
	· · · · · ·							-		'matrix' rare		
						['		-		have massive greenish bands	locally (ep rich ?)	
										e.g., 2 cm @ 44.45 m @ 45 ⁰	to C.A.	
					1					and this angle is common.		
										Po present throughout as fi	ne dissm. and ff	
							· ·			generally 1% or less.		
			1			<u> </u>			1	@ 52.44-53 m have variolites? (rare) to 1 cm		
	-									lt. green quenched interstitial material here		
					1					could be pillow margins ? Po still pres.		

PAGE _____ OF ____ 10

DRILL HOLE NO. ______

in the constant of the second s

UP BI	P Resourc	es Canada Limited	l			DR			LO	G	HOLE NO. CM-88-3
INTE	RVAL				DESC	RIPTION	v			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE		(FRACTURES, FAULTS, FOLDING, BEDDING, ETC)	MINERALIZATION, TYPE, AGE RELATIONS
3.05	104.57						1				
Continu	ed	Mafic Volcanics								- @ 56.52-~59.15 ?? have coa:	rser
		continued.								grained segment (med.gr.)w	nich
					1					may be central part of flor	«_?_or
										gabbroic intrusive ? - con	tacts indistinct
										almost appear gradational 1	pack into
										? flow bx. ?	
					1					- @ 65.5 5m - 3 cm white bleach	ed margins qtz.
									••	vein @ 40° to C.A.	
			1		1	-				- @ 66.5 5m - 3 cm qtz. veined	zone in
			1		1					part bx. vein @ 30° to C.A	•
						1					
										- becomes fine grained dark and	1 massive
										- avg. 3-5 veinlets per metre -	- usually
					1					qtz. loc. black chlorite (45	^o to C.A.
	-				1					most common	
			1		1					- trace py in venilets which an	ce generally
										l cm wide.	
	1										
					<u> </u>					- 83.09-83.34 m - med. grained	mafic dyke
							feldspar porph. ?	<u></u>			
							ton contact indistinct botto	$m = 30^{\circ} \pm 2$ C.A.			
					· · ·				dyke has chilled margins and	chunks of	
									wallrock have locally been as	ssimilated.	
						1					

PAGE______0F___10

	es Canada Limited	d			DR	ILL		LO	G	HOLE NO. CM-88-3	
VAL				DESC	RIPTION	1			STRUCTURE	REMARKS	
то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE		(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS	
104.57									@ 83.84-85.06 - medium grained	mafic dykes again -	
a.	Mafic Volcanics								similar to abo	ve except here	
	continued.								contains_round	ed amygdules ?	
									to 1 cm (felds	/epidote+calcite filled)	
									top contact @	70° to C.A chilled	
					1				bottom also @ f	∨70° and chilled	
									@ <u>85.96-87.2</u> - dyke same as ab	ove	
									- bottom contact $@ \sim 55^{\circ}$ to C.A.		
									- in both cases amygdules are larger		
									and more abunda	nt in the centre of	
									the dyke		
									- weakly magnetic		
									- narrow 'quenche	l' sections still	
									present in the	volcanics - (i.e. 10 cm	
									with lower conta	act @ 89.66 m	
									@~70° to C.A.)	
									- flow breccia sta	arts again @ 93.54 m	
									- 4 cm gouge zone	(fault bx.) @ 93.82	
									@ 60° to C.A.	· .	
									- flow bx. continu	ues until ~97.26 m	
									contact lost in	ground core section	
	> Resourc MINI VAL TO 104.57 1.	PRESOURCES Canada Limited MINING DIVISION VAL ROCK TYPE 104.57 a. Mafic Volcanics continued.	PResources Canada Limited MINING DIVISION VAL ROCK TYPE TO ROCK TYPE 104.57	PResources Canada Limited MINING DIVISION VAL ROCK TYPE COLOUR GRAIN SIZE 104.57 . . a. Mafic Volcanics . continued. 	PResources Canada Limited MINING DIVISION VAL TO ROCK TYPE TO COLOUR GRAIN SIZE COLOUR GRAIN TEXTURE COLOUR GRAIN TEXTURE COLOUR GRAIN TEXTURE COLOUR COLOUR SIZE COLOUR COLOUR SIZE COLOUR	PResources Canada Limited MINING DIVISION VAL DESCRIPTION TO ROCK TYPE COLOUR GRAIN SIZE TEXTURE ALTERATION 104.57 A Continued. Image: Continue.	Alexandress Canada Limited AL ROCK TYPE TO ROCK TYPE COLOUR GRAIN TEXTURE ALTERATION MINERALS COLOUR COLOUR	Alexandres Canada Limited MINING DIVISION VAL ROCK TYPE TO TO	Presources Canada Limited MINING DIVISION D RILL L O VAL ROCK TYPE COLOUR GRAIM SIZE TEXTURE ALTERATION ORE FRACTURES 104.57 Mafic Volcanics Image: Colour Size Image: Co	Presources Canada Limited uning official official yat DESCRIPTION STRUCTURES (PRACTURES, FAUTS, FAU	

. •

PAGE 4 OF 10

BI BI	BP Resources Canada Limite				<u>,</u>	DR			LO	G	HOLE NO	
INTER	RVAL			· · · · · · · · · · · · · · · · · · ·	DESC	RIPTION				STRUCTURE	REMARKS	
FROM	то	ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE	ALTERATION	ORE	FRACTURES PER METRE		(FRACTURES, FAULTS, FOLDING, BEDDING, ETC)	MINERALIZATION, TYPE, AGE RELATIONS	
3.05	104.57	Mafic Volcanics		[.]						- back to very fine grained ma	ssive volcanićs	
Continu	ed.	continued.								lt. brownish colour which se	ems to gradually	
	1				1					lighten down hole.		
· · · · · · · · · · · · · · · · · · ·										- ground clayey core last \sim 15	Cm	
							1			to 104.57 m - probable fault		
		· · · · · · · · · · · · · · · · · · ·										
104.57	105.23	Black Cherty								- 10 cm recovered on either	side	
		Argillite.								of 0.61 m ground core (los	t)	
<u> </u>										- recovered pieces strongly qt	z. veined	
							-	1		@ 30° to C.A. Tr. py.		
						•				- ground (lost) core again at bottom		
	1											
105.23	110.06	Mafic Volcanics								- back to very fine, massive,	indistinct	
					1					volcanics - lt. brown colour	here	
	1									Tr. dissm. py and black chlo	ritic ? microfractures	
110.06	111.44	Sediments		· .						- strange contact ? to grey/gr	een chert	
	1									- contact parallel to C.A.		
							1			- chert shows banding $30-50^{\circ}$ t	o C.A.	
					-					highly variable and even loc	al parallel to C.A.	
							1			110.06-110.98 - is chert wit	h 1-2% ff py	
										narrow hairline fractures al	so silica microveins	
										110.98-111.44 - becomes an a	rgillaceous	
										sediment but a breccia conta	ining - arg., chert,	
										and silty angular irregular,	sometimes wispy frags.	
										"SLUMP BX"		

DRILL HOLE NO. _____ CM-88-3

	P Resourd	es Canada Limited	1			DR			LO	G	HOLE NO. CM-88-3	
INTER	VAL				DESC	RIPTION	4			STRUCTURE	REMARKS	
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE		(FRACTURES, FAULTS, FOLDING, BEDDING, ETC)	MINERALIZATION, TYPE, AGE RELATIONS	
110.06	111.44									- 110.98 - 111.44 continued.		
Continued	1									This arg. slump bx. contains	: 2-4%	
	-									sulphide, as ff. stringers a	long foliation	
										and sulphide rich patches		
										- py, chalcopyrite (common) ar	d sphalerite	
										- bottom contact indistinct, i	e., seds. seem	
										to become a matrix for under	lying	
										volcanics before seds. disar	pear	
111.44	115.01	Mafic Volcanics?								- fine grained lt. to med. brown		
										quenched and divitrified hyaloclastic ?		
										local brecciated zones show	an irregular	
										wispy feature which looks li	ke	
										divitrification (i.e., @ 112	.5 m)	
										- sulphide contact drops to Tr		
115.01	116.87	Argillaceous								- upper contact not clear seem	is to	
		Breccia (Slump?)								be volc. w/sed. clasts then	sed.w/volc. clasts ?	
										@ 115.65 m alignment of clasts	e 70° to C.A.	
										becomes less clastic - more	mass.	
										black arg. @ 116.1 m then br	ecciated	
										again around lower contact (@~35° to C.A. ?)	
										- \sim 1% dissm. py No discern	able base metals.	
1		1		1								

ł

.

and a second second

BP Resources Canada Limited DRILL LOG D HOLE NO. CM-88-3 MINING DIVISION STRUCTURE REMARKS INTERVAL DESCRIPTION ROCK TYPE (FRACTURES, FAULTS, FOLDING, BEDDING, ETC) TEXTURE ALTERATION ORE FRACTURES PER METRE MINERALIZATION, TYPE, AGE RELATIONS GRAIN COLOUR FROM то - lt. greenish/brown and locally Mafic Volcanic 155.18 116.87 variolitic (& pillowed ?) until ~ 120.2 m - then intercolated green/brown_volcs. likely flow bx. type ? - locally variolitic again 130-135 m but still appear to be somewhat brecciated - 3-10 qtz/calcite veinlets/metre (<1 cm) throughout @ ∼ 136-149.23 becomes fine grained massive green volcanic - black chloritic microfractures abundant 139-141 m @ 143- \sim 143.5 m brecciated fault gouge $(20^{\circ}-30^{\circ})$ to C.A. @ 149.23-150.0 m becomes brecciated with strong qtz/calcite veinlets (10-45 $^{\circ}$ to C.A.) 150-155.18 m - becomes a locally slightly maroon colour with irregular white patches (- 1-3 mm) which may be irregular amygdules ? still locally brecciated. 155.18 156.71 Mafic Dyke - green/brown feldspar+pyroxene ? + olivine ? porphyritic (all phenos 1-3 mm) Tr py Upper and Lower contacts @ 50° and show weak chilling.

· · ·

PAGE 7 0F 10

BP Resources Canada Limited DRILL O MINING DIVISION DESCRIPTION INTERVAL ROCK TYPE GRAIN FROM то COLOUR 157.11 Mafic Volcanics 158.88 Mafic Dyke 159.75 Mafic Volcanics

STRUCTURE REMARKS (FRACTURES, FAULTS, FOLDING, BEDDING, MINERALIZATION, TYPE, AGE RELATIONS TEXTURE ALTERATION ORE FRACTURES - green fine grained and massive 156.71 - Same as previous. Upper contact $@\sim 40^{\circ}$ 157.11 Lower $@\sim 30^\circ$ to C.A. These dykes appear fresh and maybe younger ? 158.88 - Same as previous. Strong qtz/carb. veinlets $(20-40^{\circ} \text{ to C.A.})$ Tr Py and reddish mineral ? in veinlets Mafic Volcanics 159.75 163.75 - dykes @ follows 159.75-160.16 160.55-160.78 intruded by 163.01 163.75 same dykes - volcanics - same as 158.88 - 159.75 including veining - @ 162.45 - 10 cm of sheared and veined volc. - fault ? $@ \sim 10^{\circ}$ to C.A. - fairly massive looking black cherty Black Cherty 163.75 166.42 argillite. Banding locally as zones Argillite of breccia with wispy clasts of grey to maroon chert (at $30-40^{\circ}$ to C.A.) - \sim 1% dissm. Py as large crystals and groups of crystals which are subhedral - 8-10 qtz/calcite veinlets (<1 cm) per metre (900)

LOG

- appear barren.

PAGE 8 OF 10

~

DRILL HOLE NO. ______CM-88-3

HOLE NO. CM-88-3

and the second second

I BF	P Resourc	es Canada Limited	I			DR			LO	G	CM-88-3	
INTER	VAL				DESC	RIPTION	ł			STRUCTURE	REMARKS	
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE	FRACTURES PER METRE		(FRACTURES, FAULTS, FOLDING, BEDDING, ETC)	MINERALIZATION, TYPE, AGE RELATIONS	
163.75	166.42	Argillite								- becomes increasingly breccia	ted towards	
Continu										lower contact		
Concina	<u>-u</u> .			1	1					lower contact $@\sim 30^{\circ}$ to C.A.		
										and is with \sim 15 cm of fine gr	rained	
										volcanics which may be vario	litic ?	
166.57	167.88	Mafic Dyke								- Same as previous.		
										- Upper Contact @ 40	0	
					1					- Lower Contact @ 35	<u>.</u>	
167.88	174.22	Mafic Volcanics		1						- 167.88-168.94 - aphanitic, ha	ard, maroon	
										coloured volcanics, probably quenched ?		
					-					- minor py		
								1		- lower contact $@ \sim 55^{\circ}$ to find	e grained	
										green massive volcanics		
										- continues as alternating zone	es of	
·										maroon and green volc. to 174	4.22 m	
		· ·····		1	1					- maroon sections are variolit:	ic	
							r					
174.22	175.40	Argillite				1				- top and bottom of interval (3	20 cm or so ea.) are	
						1				banded consisting of black a	rg. bands + greenish	
						1	1			wispy to rounded volcanic ? :	fragments, banding	
			· · · · ·							@ 25 [°]		
										- contact ? @ $174.96 \text{ m} @ 40^{\circ}$ by	ut irregular	
								could be dominantly volcanic	below this ? rather			
										than seds> TR - 1% Pv.		

· .*

9 10 PAGE_____0F____

	BP Resources Canada Limite					DR			LO	G	HOLE NO		
INTE	RVAL	1	1		DESC	RIPTION				STRUCTURE	REMARKS		
FROM	то	ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE		(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS		
175.4	197.86	Mafic Volcanic								- Same alternating green and ma	roon		
										- volcanics to end of hole. Ma	aroon		
										variety still locally variol	itic, and		
										black-chlorite ? microfractu	ires common		
										contacts between marcon and c	green volcs.		
										e ~ 40°			
										- 186.16-186.63 - strong qtz/ca	licite veinlets		
										including 2 cm 'Bx vein' @ bottom			
										- @ <u>191.60</u> - 15 cm of black argillite, weakly			
										graphitic. 5-8% ff	and dissm. Py		
										- may be 10-15 cm of	core lost here		
										as core is ground	and contacts not		
										evident			
										- strong qtz/carb. v	reinlets to \sim 193 m		
										core badly broken			
										- 193.29-194.66 - fault zone w/	/gouge		
										(@ 40° to C.A.) core badly gr	cound and		
										broken, poor recovery. Agair	a strong veining		
										in this area.			
	_												
						[Е. О. Н.			
			L										
					1								

10 0F 10

BP F	Resources	Canada Li	imited 1			DR		O G		5	amp	le d	ata	
	SAI	MPLE			CORE	RECOVERY	VISUAL ESTIMATES		A	SSAY	RESU	LTS		
NUMBER	FROM	то	TOTAL METRES	Sp. Gr	%	AMT. LOST	(% ORE MINERALS)	Cu	Zn	Ag	Au	As		
203017	29.37	30.18	0.81		75.4%	15 cm		66	68	0.1	2	4		
203018	110.06	110.96	0.90	· •	90%		Ру	289	107	0.1	6	8		
203019	110.96	111.43	0.47		90%		Py,Cpy,Minor Sph.	2749	975	0.9	27	11		
203020	111.43	112.5	1.07		82.6%			76	59	0.1	1	2		<u> </u>
203021	115.01	116.01	1.00		72.8%		Ру	834	77	0.1	3	10		
203022	116.01	116.87	0.86		93.4%			503	94	0.1	3	7		
203023	163.75	164.75	1,00		92.8%		Py, Minor graphite	81	189	0.5	2	8		
203024	164.75	165.75	1.00		100%		Ру	122	348	0.5	4	10		
203025	165.75	166.42	0.67		95%			284	222	0.7	1	8		
203026	174.22	175.4	1.18		93.5%			272	112	0.1	16	10		
-					1									
	1				1									
	-													
				1	1							-		
					1									
							· · · · · · · · · · · · · · · · · · ·		-	_				
														1
					-			-						
		+												
<u></u>				+	-						-			
				+								-		
						· · · · · · · · · · · · · · · · · · ·				-				
									-		-		+	
		+		1	1			-				1	1	1

Í

PAGE _____ OF ____

BI BI	P Resource		anada Limited	J				DR	ILL		LO	G		HOLE NO. CM+88-8
DRILLING C	0.	<u>12</u>	LOCATION SKETC	эн	D	EPTI	н р	TESTS	AZIMUTI	H DAT	E STARTED:	میر <u>م</u> ۵/88	PROJEC	
		,	1		-14- C(OLLA	R	-55°	260.0	DAT	E COMPLETED	Aug. 9700	N. T. S. :	CHINOOK MOUNTAIN
BERGERO	N DRILLINC	; LTD.	,			102m	ı	-60°		COL	LAR ELEV.	980 m AST.	LOCATIC	 ON:
		,	1							NOF	THING	111+95N	1	
		'	1							. EAS	TING	98+19E	1	
		,								AZI	AUTH	260°		
USIE TYP		'						· · · ·		DEP	TH:	102.44m	DATE L	OGGED: Aug.10-14/88
HOLE ITE	•	<u></u> '	<u> </u>							COR	E SIZE:	NQ	LOGGED	BY: R. Farmer
INTE	RVAL	RC	ICK TYPE				DESCR	IPTION				STRUCTURE		REMARKS
FROM	то			COLOUR	G R A SIZ	E E	TEXTURE	ALTERATION	ORE MINERALS	FRACTURE	3	(FRACTURES, FAULTS, FOLDING, BE ETC):	DDING,	MINERALIZATION, TYPE, AGE RELATIONS
0	10.67m	Cas	ing		in_os	zerb	urden	·	'	L				
10.67	16.77 Mafic volcanic		-	gener	all	y a fine-	grained,	indistin	t, medj	um_green_	rock.			
				-	local	.ly	showns ir	regular v	ispy tex	ture sim	ilar to so	ome of the flows in the	area.	
	_		!		narrc	w g	reyish si	ilicic zor	nes are b	elieved	to be alte	eration? These zones car	ry <u>1-2%</u>	; fine
				l	dissm	a. +	ff py.	(i.e. arou	und 11m)	I				
				['	- @]	2.8	lm possir	le flow d	contact?	₽ 70° tc	. C.A.			· · ·
				'	TR py	/ ov	e <u>rall, b</u> u	t local r	narrow zo	hes up t	.0 1-2%	· · · · · · · · · · · · · · · · · · ·		
			· · ·	[<u> </u>	-@1	5.5	5 <u>- 15.8</u> C)m have fa	ault goug	e (+ fai	lt Bx). Se	eems to be @ approx. 60°	to C.A	
				<u> </u>	Cor	itai	ns 1-2% r	as diss	m. and as	sulphic	e rich fra	agments (tectonic).		
16.77		Maf	ic volcanics?	· · · · · · · · · · · · · · · · · · ·	- aft	er	16.77m rc	ck becom	a medi	hm to da	rk arev c	olour and very siliceous		
				<u> </u>	howev	ver	pelieve t	his is st	till volc	anics (s	ilicified'). as a very fine textur	e (feld	uspars?)
					can c	fte	n be seen	. Local r	arrow zor	hes look	cherty.	1	<u> </u>	
				'	Core	is	extremely	badly bi	roken + g	round wi	th very pr	por recovery.		
	,		.	· · ·	Entir	re s	ection he	re is a f	fault zon	<u>+</u> .	1			
				'	Sulph	ide	content	is increa	sing	ava. now	ADDTOX.	18 mostly as very fine (dissm.	
				[]			1			1			11.50	
	,			[]			,t	1		1	1			
				· · · · ·			 	1 1	+	1		· · · · · · · · · · · · · · · · · · ·		

PAGE _____ OF ____7

BP BP	BP Resources Canada Limited					DR			LO	G	HOLE NO.CM-88-8
INTER	VAL				DESC	RIPTION	N			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE	FRACTURES PER METRE		(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
16.77	31.10	Mafic volcanics?	-	volcanio	s may be	a fine t	uff which	has been	silicifi	ed + mineralized.	
		cont'd		(also cl	ay on fr	ctures)					
			-	fault B	18.80 -	19.00m -	angle un	known			
			-	fault go	uge - 5	m recove	red @ 19.	46 - 19.5	lm contai	ns approx. 1% Py - angle unknow	'n
· ···· ···				chalcopy	rite fir	st appear	s @ appro	k. 19.6m	as minor	grains assoc. with fracture fil	11 ру.
			_	19.51 -	21.04m-s	ries of	narrow fa	ult Bx an	i gouge z	ones - angles not clear.	
			-	23.17 -	24.39 (aj	prox.)-	very cher	ty lookin	g rock -	1-2% Py, Tr, cpy mostly ff	
	-		-	24.39 -	27.29m -	sulphide	content	increases	to avg.	3-5% and cpy more common.	
				- @ 25.6	1 - 10 ci	n piece h	eavily mi	heralized			
					- cont	ins a 2	cm sulphi	de rich (nearly ma	ssive) fracture @ 35° to C.A.	
	-				- sect	on has t	he appear	ance of a	brecciat	ed rock with sulphides in matri	Lx.
					- sulp	ides con	sists of	py with c	pnsiderab	le cpy. Native copper is also	
					pres	nt in se	veral pla	ces.			
					- over	ll this	0 cm con	cains app	rox. 20%	sulphides.	
				- @ 26.2	- 26.90	(approx.)-5-8%	py with	Fr cpy -	seems to be fracture controlled	l but
					core	s badly	ground (m	arbles)			
				- 26.9 -	-27.29 -	sulphide	s back to	approx.	3% - mino	r cpy + bornite locally	
					_	sulphide	s seem to	be taper	ing off t	owards 27.29m	
				- 27.29	-28.05 -	similar	only mino	r sulphid	es. Very	poor recovery.	
				- 28.05	-30.49 -	fault zo	ne - cons	lderable	gouge (no	angles as recovery very poor)	
·					-	advanced	casing h	ere - No	core appr	ox.29.0 - 30.49 m.	
							1				

۰.

1

÷.,

PAGE _____ 0F ____ 7

DRILL HOLE NO. CM-88-8

a a the second second

D BP	BP Resources Canada Limiter		•			DR			LO	G	HOLE NO CM-88-8	
INTER	VAL				DESC	RIPTION	4	•		STRUCTURE	REMARKS	
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE	FRACTURES PER METRE		(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS	
16.77	31.10		-	30.49 -	31.10 - g	round up	marbles n	ostly of	very sil	ceous rock with approx. 10% su	lphide (py).	
cont'	d				- 0	ccasional	volcanic	fragment	?			
31.10	36.05	Silicified zone	_	light gr	ey colour	, very ha	rd, inter	sely sil:	cified			
				not sure	if still	dealing	with alte	red volca	nics or	f now are seds?		
			-	weak ban	ding @ 30	° to C.A.	@ 31.20m			· .•		
			_	8-10% py	mostly a	s f.f. +	veins but	minor di	ssm.			
· · · · · · · · · · · · · · · · · · ·			-	sulphide	rich vei	ns and fr	actures a	re irregu	lar and a	t all angles, but seems to be		
				a predom	inance to	wards sub	parallel	to core a	xis?			
		,	-	sulphide	content	generally	increase	s downwai	d in sec	ion but is irregular		
			-	minor ch	alcopyrit	e is pres	ent throu	ghout.				
				- @ 32.7	9m - irre	gular mas	sive veir	lets to 1	cm thic	ick show a 'banded' texture parallel		
					to t	he veinle	t walls s	uggestive	of epis	dic mineralization filling ope	n fractures?	
				- 33.45	- 34.4m -	sulphide	s average	15%, fin	st 12 cm	massive py, Tr cpy, @ 33.82 -2	8 cm approx. 20% sulphide	
					_	20% sulp	hide last	10 cm 34	.35 - 34	45.	· ·	
				- believ	e are lik	ely origi	nally sec	s now?				
				_ 34.4 -	35.25m	- average	25 - 308	sulphide	local na	rrow zones 40 - 50%, i.e. 34.7	8 - 35.05m	
					•	- sulphid	es genera	11y cons:	st of coa	rse-grained py with minor cpy,	Tr? po occurring	
						as band	s and fra	cture fil	ls + dis	m. Matrix is very fine + very	siliceous.	
										· · · · · · · · · · · · · · · · · · ·		
							<u> </u>				·	
					-							

UP BF	Resourc	es Canada Limited	•			DR	ILL		LO	G	HOLE NO. CM-88-8
INTER	VAL				DESC	RIPTIO	N			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE		(FRACTURES, FAULTS, FOLDING, BEDDING, _ETC):	MINERALIZATION, TYPE, AGE RELATIONS
31.10	36.05	Silicified/	-	also con	siderable	clay alc	ng many :	fractures			
cont	s	Mineralized Zone		- @ 34.0	5m sulphi	de bands	1-2 cm w	ide @ 35°	to C.A.		
		(seds?) cont'd	•	- @ 34.8	lm bandir	g in sulp	hides @	5° to C.	.		
				- 1 cm s	ulphide b	and @ 35.	.30m @ 65	to C.A.			
				- gouge/	fault Bx	(10 cm) a	at 35.65m	@ 45° to	C.A. (su	phide bearing approx. 8%)	
			-	35.25 -	36.05m -	sulphide	es down to	approx.	10% but	a little more cpy here.	
					-	becoming	increas	ingly brea	ciated to	wards bottom.	
					-	also a l	ight gree	nish cast	becomin	g apparent.	
36.05	36.8	Fault Zone		gouge zo	nes seem	to be @ a	pprox. 40	° to C.A.	?		
			-	fault is	in green	ish chert	y looking	rock.			
			-	sulphide	s down to	1-2% - n	ost commo	n in gou	e.		
36.8	37.57	Chert?	-	massive	greenish	chert, st	ill 1-2%	f.f. sul	hide same	e as above.	
37.57	40.55	Fault Zone	-	upper co	ntact @ 3	0° to C.F					
				- still	in greeni	sh chert,	with app	rox. 2%	ulphides	py, minor cpy.	· · · · · · · · · · · · · · · · · · ·
				- consis	t of narr	pw, fract	ured but	competent	section	s surrounded by narrow gouge zo	ones.
				Recove	ry poor.						
40.55	42.68	Sediments	-	becoming	more sed	imentary	looking.				· · · · · · · · · · · · · · · · · · ·
			_	zone @ 4	0.55 - is	bleached	white +	contains	1-2 mm g:	reenish patches. Also soft.	
				- may be	dyke?? -	min. 20	cm thick	(core bac	ly ground	4).	
				- 2 cm g	buge in t	his zone	@ 45° to	C.A.			
					· ·	l					

. •

1

PAGE _____ OF ____ 7

C BP	Resourc	es Canada Limited	•			DR			LO	G	HOLE NO. CM-88-8
INTER	VAL				DESC	RIPTION	N			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE	ALTERATION	ORE	FRACTURES PER METRE		(FRACTURES, FAULTS, FOLDING, BEDDING, ETC)	MINERALIZATION, TYPE, AGE RELATIONS
40.55	42.68	Sediments	-	@ approx	. 40.75 -	41.05m -	- 5-8% su	phide as	wispy ir	regular bands.	
						-	locally	the sulp	ide disp	ay a colloform? texture.	
			-	10 cm sc	ft white	bleached	zone aga:	n @ appro	x. 41.6m	seems to be related to fault	
				gouge. <u>V</u>	/ery poor	recovery.					
				- @ appr	px. 41.65	m black d	herty ar	illite ba	nd @ 40°	to C.A.	
				- rock o	radually	becoming	darker in	colour.			
				- 1-2% s	ulphide a	vg., loca	1 narrow	zones (10	cm)@a	pprox. 5% py+cpy to 42.68	
42.68	44.41	Black argillite	_	hard, so	mewhat ch	erty?, ma	ssive + 1	ighly fra	ctured +	brecciated (still in fault zor	ne).
		or greywacke	-	sulphide	content	has drop	ed to Tr	•			
		······································		· ·							
44.41	47.78	Lt grey greywack	e/ -	similar	to above	except fo	r colour	•			
		siltstone?		- @ 44.5	6m gouge	@ 30° to	с.а.				
				- sulphi	de contac	t has dro	pped to '	race			
				- bottom	contact	@ 40°					
			· · · · · · · · · · · · · · · · · · ·	- includ	les narrow	zones of	black a	gillite.			
					·.						
47.78	86.88	Mafic volcanics	_	bleached	to a buf	f colour	near cont	act, gen	arally li	ght green here otherwise (still	l altn'n?)
		· · · · · · · · · · · · · · · · · · ·	-	very fir	ne-grained	+ massiv	e				
				- @ 50.2	29 - 53.27	m - shear	ed strong	ly veine	i zone (c	alcite?, dolomite (black))	
						- veini	ing @ 10°	to C.A.,	Tr py as	soc. with veining.	
						- some	of the b	lack vein	ing may b	e argillaceous material?	
		-					1				
							1		1		

.

I BI	P Resource	es Canada Limited	•		<u></u>	DR			LO	G	ноle NO, См-88-8
INTE	RVAL				DESC	RIPTION	٩			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE	FRACTURES PER METRE		(FRACTURES, FAULTS, FOLDING, BEDDING, ETC)	MINERALIZATION, TYPE, AGE RELATIONS
47.78	86.88	Mafic volcanics		- @ 53.2	<u>7m - 20 c</u>	n of vein	ed black	argillace	ous? sedi	ment	
		ont'd			- cont	ains appr	px. 1% py	,			
					- frag	nent?					
					- 20 c	n bleache	d (buff)	volcanics	on down	hole side.	
						4					
	-			mafic vo	cs here	generally	fine-gra	ined. mas	sive, loc	ally displaying 1-2 mm chlorit	ic
				patches	(chloriti	zed mafic	ь?)				
			_	after 57	n occasio	hal white	quartz d	arbonate	vein to]	or 2 cm usually @ approx. 40°	to C.A.
	-	•	-	continue	s same to	86.88				· · · · · · · · · · · · · · · · · · ·	
86.88	102.44	Sediments		starts o	ut as gre	y to blac	k chert				
00100				contact	rregular	and stra	nge - see	ms to be	approx.	90° to C.A., however	
				banding	n chert	a 86 95m	a 65° to	C.A.			
				approx.	18 pv (d	issm and	E.f.) in	chert			
		-	_	sulphide	content	bick up c	uickly	i.e. by	88.0m 2-	3% very fine-grained	
				py, ofte	n occurri	ng as wis	by bands	(@ 10° to	C.A. @ 88	. Om)	
					x .						
	-			- 88.1 -	89.0m f	ault zone	- severa	al gouge 2	ones, com	e badly broken	
		· · · · · · · · · · · · · · · · · · ·			to of and	le but be	lieve to	be d anni	ox 45° t		
	-			- still	2-3% py	LE DUC DE	11000.00			<u> </u>	
				- after	Fault sed	s more va	ried - a	evwacke/a	rg. with	local chert bands i.e. @ 8	9.44m
				bandin	a 30° +	D C.A.	y-				
		1		- 6 80 0		rox 20 c	m fault i	ex and go	ge @ unki	lown angle.	
				Bx con	tains pyr	itic clas	stsfo	llowed by	approx.	cm calcite vein @ 40° to C.A.	
		_								· · · · · · · · · · · · · · · · · · ·	

(· · · ·

1

PAGE 6 0F 7

DRILL HOLE NO. CM-88-8

UP BP	Resource	es Canada Limited	,			DR	ILL		LO	G	HOLE NO, <u>CM-88-8</u>
INTER	VAL	_			DESC	RIPTIO	V			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE	ALTERATION	ORE	FRACTURES PER METRE		(FRACTURES, FAULTS, FOLDING, BEDDING, ETC)	MINERALIZATION, TYPE, AGE RELATIONS
86.88	102.44	Seds cont'd	-	seds af	er this	fault avg	approx.	5% very	fine py.		·
со	nt'd			seds her	e become	somewhat	of a bre	ccia (slu	mp) and c	ontains rare bleached	
			-	volcanio	fragmen						
			1	banding	@ 90.88	35° to	¢.a			-	
	Е.О.Н.										
			-	from <u>91</u>	.18 - 92.	<u>38m</u> s	ulphide c	ontent av	erages ap	prox. 15% as very fine pyritic	
				bands (j	rimary) '	r cpy no	ted in cr	osscuttin	g microfr	actures.	
			-	banding	@ 92.3 @	40° to C	А.				
		;	-	very fi	e, bande	a pyrite	primary?) is cros	scut by c	parser f.f. py.	
			-	locally	Tr Mt or	Po?i.e.	, weakly i	magnetic.			
			_	@ 92.5m ·	silty b	ed 2 cm t	hick @ 45	to C.A.			
					1						
			_	from 92.	8 - 94:0	6m - appr	ox. 10% s	ulphide a	vq.		· · · · · · · · · · · · · · · · · · ·
				94 06 -	4.21m v	plcanic?	Fragment				
				after 94		hide cont	ent drops	to appro	x. 1 or 2		
				grev sil	v hed @	45° to C	a d appr				
				9107 011	<u> </u>	<u> </u>					
				97 09 -		8-10% pv	again - b	anding @	150		
				0 07 01	5 cm pv	rich ban	a = 8 = 108				
				0 00 11	<u> </u>	FOR Foll	$\frac{1}{2}$	20	cm of gr		
				99.44	Panaring @	120 1011	weu by a	1001. 20		uge e 40 00 0.A.	
			<u> </u>	and 00	102	4m (DOII)	haa	black -	h	and more argillaccous	
				102 ·	94 <u>- 102.</u> 102.44m	- weakly	graphiti	ic (on fra	ctures).	Locally somewhat cherty	·····
			_	Tr - 1%	sulphide	py ± Po (weakly ma	gnetic)			
						1	1	T		Е.О.Н.	

PAGE _____ OF ____

IDENTION TO BEARS OF ALL COTENESINDUAL ESTIMATES (% ORE MINERALS)INDUAL ESTIMATES (% ORE MINERALS)INDUALINDUALINDUAL20306610.41.0.41.121.0.41.121.0.41.121.0.41.121.0.41.121.0.41.121.0.41.121.0.41.121.0.41.121.0.41.121.0.41.121.0.41.121.0.41.121.0.41.121.0.41.121.0.41.121.0.41.0.41.0.41.0.41.0.41.0.41.0.41.0.41.0.41.0.41.0.41.0.41.0.41.0.41.0.41.0.41.0.41.0.41.0.4	BP Resour	urces Canada	Limited			DR) G		S	ampl	le	data	
NMMERFAOMTOLot Math SOutput </th <th>S</th> <th>SAMPLE</th> <th></th> <th></th> <th>CORE</th> <th>RECOVERY</th> <th></th> <th></th> <th>A</th> <th>SSAY</th> <th>RESUL</th> <th>тѕ</th> <th></th> <th></th>	S	SAMPLE			CORE	RECOVERY			A	SSAY	RESUL	тѕ		
203063 18.60 19.51 0.91 60 0.31 m 2387 338 0.5 2 1 203064 19.51 21.04 1.53 51 0,75 m 7067 367 1.2 3 1.2 3 1.2 203065 21.04 22.26 1.22 1.2 47 0.64 m 1299 301 0.4 1 1 1 203067 22.17 24.39 1.22 16 1.03 m 525 246 0.3 2 1	BER FRO	OM TO	TOTAL METRES	Sp. Gr	%	AMT. LOST	(% ORE MINERALS)	Cu(ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)			
20306419.5121.041.5351 0.75 m 7067 367 1.2 3 3 20306521.0422.26 1.22 47 0.64 m 1229 301 0.4 1 1 203066 22.26 23.17 0.91 44 0.60 m 5083 373 1.0 1 1 203067 23.17 24.39 1.22 16 1.03 m 525 246 0.3 2 14 1 203068 24.39 25.30 0.91 42 0.53 m 5790 2144 1.2 144 1 203069 25.30 26.22 0.92 422 0.53 m 13826 292 1.6 122 16 203070 26.22 28.98 0.76 38 0.47 m 23114 591 2.1 10 1 203072 28.05 1.07 39 0.65 m 2147 185 0.7 1 1 203073 31.10 31.00 3.05 10 2.75 m $t^{1-coned}$ 1046 0.5 4 1 1 203074 32.10 31.00 1.00 96 0.02 m 1319 42 0.6 9 1 203075 33.10 34.10 1.00 93 0.07 m 164 73 1.1 8 1 203075 35.10 35.10 1.40 59 0.57 m 116 1.6 <	63 18.6	60 19.51	0.91		60	0.31 m		2387	338	0.5	2			
203065 21.04 22.26 1.22 47 0.64 m 1229 301 0.4 1 1 203066 22.62 23.17 0.91 34 0.60 m 5083 373 1.0 1 1 203067 23.17 24.39 1.22 16 1.03 m 529 244 0.3 2 1 203068 24.39 25.30 0.91 42 0.53 m 5290 214 1.2 144 1 203069 25.30 26.22 0.92 0.65 m 1386 0.47 m 23114 591 2.1 100 1 1 203071 26.98 28.05 1.07 39 0.65 m 11 55 4 1	64 19.5	51 21.04	1.53		51	0.75 m		7067	367	1.2	3			
203066 22,26 23,17 0.91 34 0.60 m 5083 373 1.0 1 1 203.067 23.17 24.39 1.22 16 1.03 m 525 246 0.3 2 203068 24.39 25.30 0.91 42 0.53 m 5290 214 1.2 14 1 203069 25.30 26.22 0.92 0.66 m 23114 591 2.1 10 1 203070 26.22 6.98 0.76 38 0.47 m 2314 591 2.1 10 1 203071 26.98 0.76 38 0.47 m 110 2117 185 0.7 1 1 203072 28.05 31.10 3.05 10 2.75 m tri-coned (po, gore for 2147 185 0.7 1	65 21.0	04 22.26	1.22		47	0.64 m		1229	301	0.4	1			
203.06723.1724.391.22161.03 m 525 2460.32 1 1 20306824.3925.300.91420.53 m 5290 214 1.2 14 1 20306925.3026.220.92 42 $0.53 m$ 13826 292 1.6 12 1 20307026.2226.98 0.76 38 $0.47 m$ 23114 591 2.1 10° 1 20307126.9828.05 1.07 39 $0.65 m$ 6263 500 1.1 55 44 1 20307228.05 31.10 3.05 10 $2.75 m$ $tri-coned (p_{1.4} c) c p r r r r c)$ 1167 10° 1 <td>66 22.2</td> <td>26 23.17</td> <td>0.91</td> <td></td> <td>34</td> <td>0.60 m</td> <td></td> <td>5083</td> <td>373</td> <td>1.0</td> <td>1</td> <td></td> <td></td> <td></td>	66 22.2	26 23.17	0.91		34	0.60 m		5083	373	1.0	1			
203068 24.39 25.30 0.91 42 0.53 m 5290 214 1.2 14 14 14 203069 25.30 26.22 0.92 0.92 42 0.53 m 13826 292 1.6 12 16 12 203070 26.22 26.98 0.76 38 0.47 m 23114 591 2.1 10 16 <td>067 23.1</td> <td>17 24.39</td> <td>1.22</td> <td></td> <td>16</td> <td>1.03 m</td> <td></td> <td>525</td> <td>246</td> <td>0.3</td> <td>2</td> <td></td> <td></td> <td></td>	067 23.1	17 24.39	1.22		16	1.03 m		525	246	0.3	2			
203069 25.30 26.22 0.92 0.92 42 0.53 m 13826 292 1.6 12 1 203070 26.22 26.98 0.76 38 0.47 m 23114 591 2.1 10 1 1 203071 26.98 28.05 1.07 39 0.65 m 6263 500 1.1 55 1 203072 28.05 31.10 3.05 10 2.75 m ti-comed (no.490m) for 2147 185 0.7 1	68 24.3	39 25.30	0.91		42	0.53 m		5290	214	1.2	14			
203070 26.22 26.98 0.76 10 39 0.47 m 23114 591 2.1 10 10 10 203071 26.98 28.05 1.07 39 0.65 m 10 6263 500 1.1 5 10 203072 28.05 31.10 3.05 10 2.75 m $t^{11-coned} (the definition of the definition of$	69 25.3	30 26.22	0.92		42	0.53 m		13826	292	1.6	12			
20307126.9828.051.07390.65 m 10^{-1} 5001.150010020307228.0531.103.05102.75 m t^{1-} coned $(p_{0} dycm)^{e}$ for21471850.711120307331.1032.101.00960.04 m3196450.541120307432.1033.101.00980.02 m3139420.6911120307533.1034.101.00910.09 m15021471.181120307634.1035.101.00930.07 m11674731.12111120307735.1036.101.00780.12 m19356161.001411 <td< td=""><td>26.2</td><td>22 26.98</td><td>0.76</td><td></td><td>38</td><td>0.47 m</td><td></td><td>23114</td><td>591</td><td>2.1</td><td>10 ·</td><td></td><td></td><td></td></td<>	26.2	22 26.98	0.76		38	0.47 m		23114	591	2.1	10 ·			
20307228.0531.10 3.05 10 $2.75 m$ $tri-coned (no degree for low leggee f$	71 26.9	98 28.05	1.07		39	0.65 m		6263	500	1.1	5			
203073 31.10 32.10 1.00 96 0.04 m 3196 45 0.5 4 4 203074 32.10 33.10 1.00 98 0.02 m 3139 42 0.6 9 -6 -6 <	72 28.0	05 31.10	3.05		10	2.75 m	tri-coned (no core for	2147	185	0.7	1			
203074 32.10 33.10 1.00 98 0.02 m 3139 42 0.6 9 0 0 203075 33.10 34.10 1.00 91 0.09 m 5021 47 1.1 8 1 203076 34.10 35.10 1.00 93 0.07 m 11674 73 1.1 21 1 1 203076 36.10 35.10 1.00 78 0.12 m 8935 616 1.00 14 1 <td>173 <u>31.1</u></td> <td>10 32.10</td> <td>1.00</td> <td></td> <td>96</td> <td>0.04 m</td> <td></td> <td>3196</td> <td>45</td> <td>0.5</td> <td>4</td> <td></td> <td></td> <td></td>	173 <u>31.1</u>	10 32.10	1.00		96	0.04 m		3196	45	0.5	4			
20307533.1034.101.00910.09 m5021471.18120307634.1035.101.00930.07 m11674731.121120307735.1036.101.00780.12 m89356161.014120307836.1037.501.40590.57 m1398520.51120307937.5039.021.52400.91 m1729650.32120308039.0240.551.53520.74 m2100960.51120308140.5542.682.13351.38 m1752740.83120308289.9491.191.24870.16 m3711243.0211120308492.381.20860.17 m3711243.0211120308597.0997.560.47720.13 m176842.6361	74 32.1	10 33.10	1.00		98	0.02 m		3139	42 .	0.6	9			
20307634.1035.101.00930.07 m11674731.121120307735.1036.101.00780.12 m89356161.00141420307836.1037.501.40590.57 m1398520.51120307937.5039.021.52400.91 m1729650.32120308039.0240.551.53520.74 m2100960.51120308140.5542.682.13520.16 m1752740.83120308289.9491.191.24870.16 m2691781.623120308492.3894.211.83790.39 m3762322.340120308597.0997.560.47720.13 m176842.6361	75 33.1	10 34.10	1.00		91	0.09 m		5021	47	1.1	8			
20307735.1036.101.00780.12 m89356161.0141420307836.1037.501.40590.57 m1398520.51120307937.5039.021.52400.91 m1729650.32120308039.0240.551.53520.74 m2100960.511120308140.5542.682.13351.38 m1752740.831120308289.9491.191.24870.16 m2691781.6231120308391.1892.381.20860.17 m3711243.0211120308492.3894.211.83790.39 m3762322.3401120308597.0997.560.47720.13 m176842.63611	76 34.1	10 35.10	1.00		93	0.07 m		11674	73	1.1	21			
20307836.1037.501.40590.57 m1398520.51120307937.5039.021.52400.91 m1729650.32120308039.0240.551.53520.74 m2100960.51120308140.5542.682.13520.74 m1752740.83120308289.9491.191.24351.38 m1752740.83120308391.1892.381.20860.17 m3711243.021120308492.3894.211.83790.39 m3762322.340120308597.0997.560.47720.13 m176842.6361	35.1	10 36.10	1.00		78	0.12 m		8935	616	1.0	14			
20307937.5039.021.52400.91 m1729650.32120308039.0240.551.53520.74 m2100960.511120308140.5542.682.13351.38 m1752740.831120308289.9491.191.24870.16 m2691781.6231120308391.1892.381.20860.17 m3711243.0211120308492.3894.211.83790.39 m3762322.3401220308597.0997.560.47720.13 m176842.63611	78 36.1	10 37.50	1.40		59	0.57 m		1398	52	0.5	1			
203080 39.02 40.55 1.53 52 0.74 m 2100 96 0.5 1 1 1 203081 40.55 42.68 2.13 35 1.38 m 1752 74 0.8 3 1<	i79 37.5	50 39.02	1.52		40	0.91 m		1729	65	0.3	2			
203081 40.55 42.68 2.13 35 1.38 m 1752 74 0.8 3 1 203082 89.94 91.19 1.24 87 0.16 m 269 178 1.6 23 1 203083 91.18 92.38 1.20 86 0.17 m 371 124 3.0 21 1 203084 92.38 94.21 1.83 79 0.39 m 376 232 2.3 40 1 203085 97.09 97.56 0.47 72 0.13 m 176 84 2.6 36 1	80 39.0	02 40.55	1.53		52	0.74 m		2100	96	0.5	1			
203082 89.94 91.19 1.24 87 0.16 m 269 178 1.6 23 1.21 203083 91.18 92.38 1.20 86 0.17 m 371 124 3.0 21 1.21 203084 92.38 94.21 1.83 79 0.39 m 376 232 2.3 40 1.23 203085 97.09 97.56 0.47 72 0.13 m 176 84 2.6 36 1.24	81 40.5	55 42.68	2.13		35	1.38 m		1752	74	0.8	3			
203083 91.18 92.38 1.20 86 0.17 m 371 124 3.0 21 1 203084 92.38 94.21 1.83 79 0.39 m 376 232 2.3 40 20 203085 97.09 97.56 0.47 72 0.13 m 176 84 2.6 36 16	82 89.9	94 91.19	1.24		87	0.16 m		269	178	1.6	23			
203084 92.38 94.21 1.83 79 0.39 m 376 232 2.3 40 203085 97.09 97.56 0.47 72 0.13 m 176 84 2.6 36 16	83 91.1	18 92.38	1.20		86	0.17 m		371	124	3.0	21			
203085 97.09 97.56 0.47 72 0.13 m 176 84 2.6 36	84 92.3	38 94.21	1.83		79	0.39 m		376	232	2.3	40			
	85 97.0	09 97.56	0.47		72	0.13 m		176	84	2.6	36			
<u>203086 97.56 98.26 0.70 84 0.11 m 159 104 1.9 45</u>	86 97.5	56 98.26	0.70		84	0.11 m		159	104	1.9	45			
			_											

ť

PAGE _____ OF ____

DRILL HOLE NO. CM-88-8

. .

											······		4
	Resource	es Ca	Inada Limited	<u>,</u>			DR	ILL		LO	G		HOLE NOCM-88-9
DRILLING CO			LOCATION SKETC	Эн	DEPT	н р	TESTS	AZIMUTI	I DAT	E STARTED:	Aug.13/88	PROJEC	T: CHINOOK MOUNTAIN
	<u> </u>				-N- COLLA	R	-50°	260°	DAT	E COMPLETED	Aug.15/88	N. T. S. :	· 92₽/8E
BERGERON	DRILLING	LTD.							COL	AR ELEV.	956 m ASL	LOCATIO	N :
									NOR	THING :	112+85N		
									EAS	FING:	98+50E		
									AZIN	1UTH:	260°		
									DEP	TH :	60.97 m	DATE LO	Aug.14/88
HOLE TYPE	D.D.H.								COR	E SIZE:	<u></u>	LOGGED	BY: R. Farmer
INTE	RVAL					DESCR	IPTION				STRUCTURE		REMARKS
FROM	TO	RU		COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES	5	(FRACTURES, FAULTS, FOLDING, BED	DING,	MINERALIZATION, TYPE, AGE RELATIONS
0	15.24m	Casi	inq		in_overb	urden - c	pred seve	ral boul	ers				
15.24	51.36	Dior	tite?		dark gre	en, mediu	m-grained	- consi	ts of t	iny amphib	ples and feldspar laths	(to 3 o	or 4 mm)
			-	relative	ly fresh	at beginn	ing, Tr	y, only	rare qtz/	carb veinlet (<1 cm)			
					intrusiv	e at this	point, no	t like a	y of th	e dykes or	intrusives seen to date		
					texture	dominated	by mosai	c of rand	iom, tin	feldspar	laths		
					- @ 18.6	0 - 19.37	m- strong	ly qtz/ca	rb vein	ed zone (25° & 50° to C.A.)		
							- intrus	ive here	is fine	grained a	nd lt. grey/green colour	as if	veining
							provid	es a chi	ling ef	Eect			
							- @ 18.8	3m - 10 d	m silica	a rich (gr	ey) 'Bx' vein @ 50° to C	.A.	
							- contai	ns wallro	ck clas	s and app	rox. 5% py, locally vugg	У	
							- this w	hole zone	averag	es approx.	1-2% py mostly vein and	fractu	ire
				[relate	d - appro	x. 10-1	2 veinlets	in this interval.		
					- 23.09	- 23.60m	- coarse	-grained	section	- contain	s a pinkish alteration?	mineral	
							- again	may be re	lated to	veining?			
							- py sti	ll presen	t assoc	. with vei	nlets		
			• • • • • • • • • • • • • • • • • • • •							-			
			·						· · · · · · · · · · · ·				

.

PAGE _____ OF _____ 4

DRILL HOLE NO. _____CM-88-9

I BP	Resource	es Canada Limited	•			DR		· · · · · · · · · · · · · · · · · · ·	LO	G	HOLE NO. CM-88-9
INTER	VAL				DESC	RIPTION	1			STRUCTURE	REMARKS
FROM	τo	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE	FRACTURES PER METRE		(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
15.24	51.36	Diorite	_	drv frac	tures are	often py	ritic whe	re they	ross vei	lets	
cont'd		cont'd				r_					
				- @ 29.1	B - 30.15	m - veine	d zone ad	ain, sim	lar to a	ove except intrusive doesn't d	lisplay
		· · · · · · · · · · · · · · · · · · ·				the c	hilled te	xture			
						- the r	inkish al	teration	mineral	is abundant again and continue	29
						after	veined a	one	MILLIGE GL	<u>15 usund ugun und contrint</u>	•••
						- @ 29 5		grev sil	ca 'By'	ein again similar to above	
						and @	55° to C	A Again	i contain	= approx 5-68 py	······································
				- @ appr	by 30.0m	intruciv	e hecomes	coarser	grained	with greenish to brownish mafic	
				e uppr	54. 50.00	natcho	e becomes	Totru	gramed i	in greenish to brownish marit	N 00 7
						pacene		. incru	sive is no	w similar to diorite of note c	M-00-/
				- after	ennrox 3	6 6m - at	z/carb ve	inlets b	come mor	common as does breadiation an	ud gougo
				urcer	approx. 5					Common as does precention an	
						zones	Taulting) and all	eration (of intrusive increases in inten	sity, first displayed
						as inc	rease in	trequency	<u>of alte</u>	<u>red patches (plus breakdown of</u>	mafics
						and pi	nkish mir	erai			,,
					26.0		0.50				
				- @ appr	px. 36.2m	- gouge	zone @ 50	° to C.A			
				26.74	20,02						
		·····		- 36.74	- 39.02 -	strong w	nite to f	lack qtz	+ calcite	veining @ approx. 40° to C.A.	but variable
						only min	or py her	e			
					-	gouge zo	he around	37.80m (unknown	angle, again @ 38.92 - 39.22m	
						veining	then mode	rate til	approx.	40m.	
									·		
1							t		I		

.

PAGE_____ OF____4

I BP	Resource	es Canada Limited	,	<u>د</u>		DR			LO	G	HOLE NO
INTER	VAL				DESC	RIPTION	4			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE	FRACTURES PER METRE		(FRACTURES, FAULTS, FOLDING, BEDDING, ETC)	MINERALIZATION, TYPE, AGE RELATIONS
15.24	51.36	Diorite	-	generall	y is like	ly a broa	d shear z	one with	local go	ge zones after 40m	
cont'd		cont'd		(difficu	lt to get	core ang	les)				
			_	alterati	on mod -	strong -	chloriti2	ed mafic	s, strong	clay (fract.rel.), pinkish mir	neral.
				and mino	r fractur	e greenis	h, greasy	mineral	talc?		
				veinlets	common b	ut genera	lly calci	te, pyri	te common	but generally <1%	
				fault	approx.	43.29 - 4	3.79m)			``	
					approx.	41.9 - 4	2.2) ar	gles unki	own		
				approx.	20 cm gou	ge around	45.12m				
				after 45	.12m alte	ration st	rong c	lay + gr	enish-ye	1. mineral-sericite? and pink	mineral
				after 46	.89 - 48.	17 - seri	cite? pa	rticular	ly strong	as is qtz/carb veining qtz ge	enerally
						grey	and carb	white,	y presen	but generally minor.	
						- vein	ing conti	nues mod	-strong a	fter 48.17.	
						- appr	px. 10 cm	gouge @	48.57m		
									ļ		·
				<u>Major</u> fa	ult - Bx	and gouge	49.39 -	prob. 55	.79m		
					.49.65 -	51.36m -	fault go	uge - mi	led Bx c	ntains up to 1% py. But py he	ere is as
							massive	sulphide	clasts ra	ther than grains (max. clast s	size approx.
							0.5 cm)	gouge	@ approx	50° to C.A.	······································
51.36	55.79	Sediments		in middl	e of faul	t zone cl	asts and	róck are	sediment	rather than intrusive, largely	v multicoloured chert.

PAGE _____ OF ____ 4____

.

DRILL HOLE NO. CM-88-9

.

I BP	Resource	es Canada Limited				DR	ILL		LO	G	ноle NO, СМ-88-9
INTER	VAL				DESC	RIPTION	N			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE		(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
51.36	55.79	Sediments	-	51.36 -	52.13 _m - i	is fault h	reccia w	ich is q	z/carb v	eined and matrix silicified - 2	-3% py
cont'd		cont'd		mostly w	ith veins	silicifi	cation, 1	ut some	ithin ch	ert clasts as well.	_
			· ···· · · · · · · · · ·								
			-	52.26 -	52.82m -	fault go	uge here	appears	to be int	usive again (large_fragment?)_	
			_	52.82 -	53.81m -	chert ho	sted fau	lt Bx aga	n approx	1% py locally as clasts -	
						3 cm mil	led faul	breccia	band @ 4	• to C.A.	
			-	53.81 -	approx. 5	5.79 -	black cl	ert with	gtz vein	ets from 53.81 - 54.57m (recov	ered
							approx.	20 cm wo:	th of ma	rbles)	
						_	perhaps	1 doz mai	bles con	tain 30-40% sulphide (py,cpy) w	hich
							is cpy-1	ich (fg a	nd stony	. May be vein related but not	sure.
							54.47 -	55.79m -	Triconed	(lost hole in gouge)	
								-	in first	0.3m or so (diamond drilled) o	nly
									core rec	vered is intrusive and likely	cave
									material	as cuttings remained black. C	ontact
									somewher	e in this interval.	
55.79	60.97	Mafic volcanics	-	light gr	een, very	fine-gra	ined, mas	sive, ind	istinct	volcanic	
			-	contains	minor ca	lcite vei	nlets and	dk gree	, soft g	reasy fracture fillings -	
	Е.О.Н.			possibly	talc?						
					-	Е.О.Н.					
					1				1		

. .-

.

t

	Resources MINING	Canada DIVISION	Limited			DA		OG	S	amp	le d	ata	
	S A I	WPLE			CORE	RECOVERY	VISUAL ESTIMATES		ASSAY	RESUL	ΤS		
NUMBER	FROM	τo	TOTAL METRES	Sp. Gr	%	AMT. LOST	(% ORE MINERALS)	Cu(ppm)		Zn(ppn) <u>Ac</u> (ppm)	Au(ppb)	
203087	18.60	19.37	0.77		94	0.05		38	 	ļ			
203088	29.18	30.15	0.97		91	0.09		47					
203089	36.74	37.80	1.06		58	0.44		32					
203090	37.80	39.02	1.22		70	0.37		43					
203091	46.89	48.17	1.28		94	0.08		50 .					
203092	49.65	51.36	1.71		51	0.83		42					
203093	51.36	52.13	0.77		82	0.15		182					
203094	52.82	53.81	0.99		76.8	0.23		423					
203095	53.81	54.57	0.76		20	0.61	Сру	(20,692)					
203096	52.44	55.49	3.05		Slu	dge Sample		(2,702)		1208	7.4	50	
							· · · · · · · · · · · · · · · · · · ·		·				
					1								
	-	-											
						-		_					
							-	-					
							· · ·						
										-			
<u>.</u>					-						·		
					-			-					
	1	1					-	-					
								-		-			
	1						· · · · · · · · · · · · · · · · · · ·						
	1	1		1									

(

÷

in entre antique antique de la construcción de la construcción de la construcción de la construcción de la cons

			and a literation	1									1
	Hesource	BS CE	anada Limiteo	3			DR			LO	G		HOLE NOCM-88-10
DRILLING CO).		LOCATION SKET	СН	DEP	тн с	TESTS	AZIMUTI	d DATE	STARTED	August 15, 1988.	PROJEC	T: CHINOOK MTN.
BERGERO	NDRTLLIN				-N- COLL	AR	-50	260	DATE	COMPLETED	August 17, 1988.	N. T. S. :	. 92P/8E
LTD.	N DRIBBIN							-	COLL	AR ELEV.	966 m ASL	LOCATIC	DN:
									NOR	THING :	112+50N		
									EAST	ING	98+55 E		······································
									AZIM	UTH:	260 [°]		· · · · · · · · · · · · · · · · · · ·
									DEPT	H:	60.21	DATE LO	OGGED: August 17, 1988.
HOLE TYPE	D.D.H.								CORE	SIZE	NQ .	LOGGED	BY R. Farmer.
INTE	RVAL					DESCR	IPTION				STRUCTURE		REMARKS
FROM	to	RO	СК ТҮРЕ	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES		(FRACTURES, FAULTS, FOLDING, BED	DING,	MINERALIZATION, TYPE, AGE RELATIONS
0	18.29	Cas	ing	-	IN OVERB	URDEN							
18.29	43.49	Dic	orite		same as	in Hole #	g						
					- dark g	reen colo	ur, mediu	n to coar	se graine	d in appe	arance.		
					- contai	.ns roundi	sh green	atches t	o 1 cm -	chloritiz	ed mafics		
					- matr	ix of ran	dom, tiny	feldspar	laths an	nd tiny bi	ownish grains ?		
					- weakly	magnetic	when fre	sh					
					- may be	a gabbro	rather t	han diori	ce ?				
					- bleach	ied to a p	ale grey	colour pl	us pinki:	h mineral	(same as Hole #9) adjac	ent	
					to vei	ning							
				-	@ 22.67	-~ 20 c	n fault g	ouge - an	gle not d	lear but	believe to be 50° to C	.A.	
						- prec	eded by /	/10 cm w	hite qtz,	carb vein	ing (Tr py)		
						- belo	w gouge i	s zone of	intense	white qt2	/carb. veining (also bla	ck ? cl	hlorite)
						- till	23.87 m	then mode	rate vei	ing till	24.37 m		
						- vein	s vary fr	om∼ 10	to C.A	to ~ 45	with higher angle ones	seemin	gly later
						TR p	y.						
				-	again s	trong vei	ning 27.0	7 - 27.98	m - qtz,	carb. oft	en black TR py.		·····
				- majori	y @~ 45	to C.A.	, but 10	also cor	mon. 2 cm gouge @ 80° t	o C.A.			
													and a second

DRILL HOLE NO CM-88-10

and a second second

I BP	Resource	es Canada Limited	1			DR	ILL		LO	G	HOLE NO. CM-88-10
INTER	VAL				DESC	RIPTION	N			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE	FRACTURES PER METRE		(FRACTURES, FAULTS, FOLDING, BEDDING, ETC)	MINERALIZATION, TYPE, AGE RELATIONS
18.29	43.49	Diorite/Gabbro	- 0	graduall	y becomin	g lighte	in colo	ar by 32	n.		
Continu	¢d	Continued	- 6	also hav	e grey-bl	eached zo	nes show	ng up in	ermitten	ly which are	
			1	not obvi	ously rel	ated to	eins or	eining i	ntensity.		
			- (qtz/carb	. veinlet	s general	lly avg.	2-5/metr	e to~39	n.	
			-	10 cm fa	ult gouge	@ 32.95	m (rough	y 1 m bl	eached in	trus. here - mostly on down hol	e side)
·				veins lo	cally can	ry minor	ру.	· · · · · ·		``	
			- 6	after≁	40 m intr	usive gen	erally b	comes fi	ner grain	ed and	
		•		lighter	in colour	(increa:	sing alt'	a. ?)			
										· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·			- (@~ 42.6	9 - ~ 15	cm fault	gouge un	nown ang	le		
											· · · · · · · · · · · · · · · · · · ·
				41.4 -	43.49 -	intrusiv	e is now	intensly	altereda	and all original	
						textures	destrov	a			· · · · · · · · · · · · · · · · · · ·
					_	is light	brownis	(buff)	coloured	and very soft (clav-rich)	
		· · · · · · · · · · · · · · · · · · ·			-	cut by a	lear to v	hiteto g	rey qtz/c	carb. veinlets (< 1 cm) often mi	croveins
					-	TR to m	inor py a	soc. wit	h veins.		
										· · · · · · · · · · · · · · · · · · ·	
				Contact	@ 43.49	consists	of brok	n/ground	core - p	ossible fault.	
· · ·								-			
43 49	60.21	Chert		varicolo	ured - bl	ack throu	ah light	to dk a	rev to gr		
				<u>var 10010</u>	- 76	norally	naccivo t	fractur	ad at z /o	rb migroveing common	
					- or	ly rare '	IR py	, Traceur	que/c		
					- +1	is inter	val is al	to a majo	fault 7	one in its entirety	
				44.58 -	45.12 -	fault go	ige and B	c. 0.61 m	No cor	e.	
	- <u>-</u> -			46 95 -	40. 22	fault go	ige and B	- poor		$(0 \sim 47.7 - 45^{\circ} = 0 \sim 40.00 = 5$	

· . ·

PAGE _____ 0F ___ 4

I BP	Resource	es Canada Limited	,			DR			LO	G	HOLE NO. CM-88-10
INTER	VAL				DESC	RIPTION	4			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE		(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
43.49	60.21	Chert.	-	from 49.	08 - 54.8	8 - recov	ery good	still f	liated t	hough	
Continu	ed	Continued		48.37 -	10 cm 19	py (faul	t Bx.)				
				48.47 -	48.78 -	rock is b	uff colou	red, int	ensely cl	ay alt'd. Minor dissem. py	
				1	-	altered v	olc. ? ir	itrus. ?	or clast	ic sed. (fine) ?	
				49.38 -	49.68m -	cherty ro	ck has a	'mottled	texture	- looks like chert clasts	
					_	in an int	ensely a	t'd. mat	rix ? bot	tom contact is fault to usual	
						chert @	60 ⁰				
		·····, ·			-	approach:	ing 1% py	here.			
		· · · · · · · · · · · · · · · · · · ·		50.85 -	51.52m -	chert is	intensly	brecciat	ed		
		· · · · · · · · · · · · · · · · · · ·			_	@ 51.20 r	- 2.5 cr	n zone wi	th ~ 3% P	y + minor cpy.	
						seems to	be fractu	ire relat	ed and @,	- 80° to C.A.	
			,	51.52 -	52.44m -	back to :	ine alte	ed rock	first l) cm buff	
					-	first 10	cm 1-2% p	y dissem	and ff	and this diminishes quickly	
						down hole	3				
					-	has the 1	look of an	altered	volcanic	or intrus. ?	
					-	last 10 d	m fault o	jouge			
			-	after 52.	44 back t	o greyis	h chert				
					-	52.8 bai	nding @ 70	to C.A			
					-	54.8 bai	nding ? @	40° to C	А.		
						@ 55.8	fault gou	je 2 cm @	60 ⁰		
										<u> </u>	· · · · · · · · · · · · · · · · · · ·

(

PAGE_____3 OF____4

DRILL HOLE NO. CM-88-10

UP BP	BP Resources Canada Limited					DR		·····	LO	G	HOLE NO.CM-88-10
INTER	VAL				DESC	RIPTION	4			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE	FRACTURES PER METRE		(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
43.49	60.21	Chert	-	54.88 to	60.21 (1	.о.н.) -	major FA	ULT zone	with very	poor recovery	
Continue	d	Continued									
			-	after 50	.40 m ro	k is dar	ker grey.	Still v	ery silic	eous but with	
				a very i	aint cla	stic look	ng textu	re - prob	ably c las	tic	
				sediment	but cou	d be an	altered f	ine tuff	similar t	o that in Hole #8 ?	
	<u> </u>		-	only rai	e Trace	₽у∙					
				Hole is	lost in	ault zon	e at 60.2	1 m.			
		•					<u> </u>				
				Е. О. Н			-				
								·			
										· · · · · · · · · · · · · · · · · · ·	
										· · · · · · · · · · · · · · · · · · ·	
											· · ·
		·									
									i		· · · · · · · · · · · · · · · ·
									·		
		······									

PAGE ______ 0F _____

DRILL HOLE NO. CM-88-10

(

СМ-88-10

.

BP F	Resources MINING	Canada I	Limited			DR		sample data						
	SAN	NPLE			CORE	RECOVERY	VISUAL ESTIMATES		Α 9	S S A Y	RESUL	тз		
NUMBER	FROM	то	TOTAL METRES	Sp. Gr	%	AMT. LOST	(% ORE MINERALS)	<u>Cu</u>	Zn	Ag	Au			
203096	22.57	23.87	1.30		92%	0.10		24	48					
203097	27.07	27.98	.91		81%	0.17		34	60					
203098	42.99	43.49	.50		86%	0.06		20	58					
203099	48.37	48.78	.41		56%	0.18		15	32					
203100	49.08	49.75	.67		88%	0.08		83	43					
203101	50.85	51.52	.67		98%	0.01		713	20					
203102	51.52	52.02	.50		98%	0.01		225	64					
														·····
													_	
													· · · · · · · · · · · · · · · · · · ·	
							· · · · · · · · · · · · · · · · · · ·							
												<u> </u>		
			<u> </u>											
			<u> </u>											
		I	<u> </u>		I		1	I	I	I	1	L		<u> </u>

PAGE _____ OF ____

DRILL HOLE NO. _____

ł

1.1

UP BI		es Canac	la Limited			 	DR	ILL	·	LO	G		HOLE NO.CM-88-11			
DRILLING CO).	LOC	ATION SKETC	H	DEPT	H D	TESTS	AZIMUT	DATE	STARTED	August 17 1988	PROJEC				
			•		-N- COLLA	R	-50 ⁰	0800	DATE	COMPLETED	hugust 20, 1000.	N. T. S. 1	CHINOCK MIN.			
BERGER	ON DRILLIN	IG			96	.0 m	-49 ⁰		COLL	AR ELEV.:	970 m A.S.L.	LOCATI	5217 8E			
LTD.								-	NOR	HING :	112+98N		· · · · · · · · · · · · · · · · · · ·			
									EAST	ING	97+48E					
								-	AZIM	UTH:	0800					
								DEPTH: 96			96.04	DATE LOGGED: August 19-21				
HOLE TYPE	D.D.H.								CORE SIZE NQ				BY: R. Farmer.			
INTE	INTERVAL ROCK TYP		TYPE			DESCR	IPTION				STRUCTURE	3	REMARKS			
FROM	to	NUCK	ITPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE	FRACTURES		(FRACTURES, FAULTS, FOLDING, BEI	DDING,	MINERALIZATION, TYPE, AGE RELATIONS			
0	15.24	Casing		-	in overb	urden										
15.24	19.56	Mafic V	Volcanics	-	light gr	ey/green	colour -	becomes	increasir	gly greyi	/ish towards bottom					
					of inter	val (alte	ration -	bleachin	g - perva	sive clay	s ?) <u>+</u> carbonate					
					texture	also inci	reasingly	destroye	l down ho	le and gr	easy talc-like mineral					
					on fract	ures.										
				-	volcanic	s are ve	ry fine g	ained an	l contair	irregula	r greenish (chloritic ?)					
					patches	1 mm in s	size. No	sure if	these we	re origin	ally phenocrysts or amy	gdules	?			
				-	black ve	inlets an	d microf	actures	also com	on (chlor	ite/carbonate) and conta	in				
					TR py.					· ·	· · · · · · · · · · · · · · · · · · ·		······································			
				-	TR to -	minor fra	cture fi	1 Py thr	pughout 1	hese alte	red volcanics					
19.56	20.73	Sedimer	nts	-	approx.	first 20	cm groun	d broken	core (fa	ult conta	ct)					
				-	fragment	s a mixtu	re of al	ered vol	canics an	d grey to	black cherty/argillaced	ous				
					sediment	s - proba	bly a br	ecciated	or trans:	tional co	ntact zone ?					
					core is	very brol	ken and g	round thr	oughout :	nterval -	poor recovery.		· · · · · · · · · · · · · · · · · · ·			
				_	to 20.12	rock co	sists of	a brecci	ated grey	chert, ma	trix consists	······································				
					of qtz/o	arb. veim	materia	l contain	ing frag	ents of a	hert and black					
					argillit	e (~10%	matrix).	Sulphid	es restr:	cted to m	inor ff py.		· · · · · · · · · · · · · · · · · · ·			
											· · · · · · · · · · · · · · · · · · ·					
							· · · · · · · · · · · · · · · · · · ·	·								

. .

PAGE _____ OF ____ 5

U BP	Resource	es Canada Limited	•			DR		•:	LO	G	HOLE NO.CM-88-11				
INTER	VAL				DESC	RIPTION	1			STRUCTURE	REMARKS				
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE	FRACTURES PER METRE		(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS				
19.56	20.73	Seds. Continued	-	20.12 -	20.73 -	rock is	essential	ly a ligł	t grey to	black chert to cherty					
Continue	d					argillit	e contair	ing ff ar	d bands	to 1 or 2 cm) of sulphide. Ban	nds are massive				
					-	sulphide	s consist	of Py, C	y, Po and	nd local reddish-brown oxidiation spots suggest					
						TR sph.	? Also m	inor blac	k minera	of uncertain composition					
					-	section	averages	perhaps 2	0% sulph:	de overall - very poor recover	y - hard				
						to estim	ate.								
					-	sulphide	bands @	15-20° to	core ax	s					
20.73	24.39	No core				at 20.73	rock is	still mir	eralized	but hole is lost in fault. Have	ve				
						to advan	ce casing	to 24.39	m to con	tinue No core 20.73 - 24.3	9 m				
					-	entire s	ediment z	one is l:	kely a fa	ault zone ?					
24	68.86	Mafic Volcanics			-	same as	top of ho	le except	here are	re light green and not altered,					
					1	or at le	ast much	less so	i.e., com	tains 1-2 mm cream coloured see	condary				
						mineral,	I have t	ermed a 1	ydrother	al carbonate ? in past					
						@ 54.25	- 54.86m	- moderat	ely stro	g qtz/carb. veining - @ all and	gles				
								though	ones @ 4	o or greater contain TR Py and	one @ 54.25				
								also co	ntains b	ack, metallic looking mineral	?				
								and the	se are c	t by barren veins @ angles gen	erally <45 ⁰				
								1. j.							
					-	@ 59.66	- 60.36m	- again r	oderate	eining and volc's. here bleach	ed				
								to ligh	t brown o	olour.					
								Ì							
					-	@ 60.82	- 63.72m	- core ba	dly brok	en - poor recovery.					
						last 0.3	m - weal	ly bleach	ed to a	ighter green colour.					
				1	1										

PAGE_____ OF____5

DRILL HOLE NO. CM-88-11

٠

UP BP	BP Resources Canada Limite					DR	ILL		LO	G	HOLE NO.CM-88-11
INTER	VAL				DESC	RIPTION	1	<u></u>		STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE	FRACTURES PER METRE		(FRACTURES, FAULTS, FOLDING, BEDDING, ETC)	MINERALIZATION, TYPE, AGE RELATIONS
68.86	96.04	Sediments	-	contact	irregular	but seem	s to be (2 15° to	С,А.		
			-	starts o	ut as mas	sive grey	/green cl	ert which	is fract	ured and	
				qtz/carb	. microve	ined					
			-	minor ff	РУ					14	
			-	contains	minor bla	ck chert	fragments				
				Minerali	zation -	starts @	71.62 m	where ff	py increa	ses to 1-2%	
					-	71.92-72	.32 - abo	ut 5% ff	py, poss:	ble TR Cpy (also sulph. as dis	continuous bands
		•					0.	cm thic	.)		
							- ir:	egular bi	ack cher	bands $@ \sim 55^{\circ}$ to C.A.	
	- <u>h-</u>				-	72.32-73	.62 - bre	cciated o	hert/cher	t Bx. ? dominately	
							gre	y with fo	ags. of (reen and black chert.	-
····							ру	down to	∼ 2% hei	e	
				·			- @	2.86 m si	lphide c	ot (~3 cm) (frag. ? part of b	and ?)
							- es	entially	m.s., mo	stly py, TR Cpy ?	
							72	76 - 73.0	2 - back	to 3-5% sulphide.	
					_	73.62-75	.51 - gr	y to gree	en chert,	locally banded @ ~ 10°	
							10	ally brea	ciated		
							- av	. 2-4% s	lphide		
					-	75.51-7	.38 - fa	lt zone	- gouge @	45° @ top, contact	
							@	00 at bo	tom - lo	oks like altered	
							vo	canics ?	at 77.1	3 have hble. laths to 0.5 cm	
							pa	tially r	eplaced b	y py this zone altered hble. d	iorite dyke.
		L					I			[

(

PAGE______ 0F____5

U BP	Resource	es Canada Limited	•			DR	ILL		LO	G	HOLE NO. CM-88-11
INTER	VAL				DESC	RIPTIO	N			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	MINERALS	FRACTURES PER METRE		(FRACTURES, FAULTS, FOLDING, BEDDING, ETC)	MINERALIZATION, TYPE, AGE RELATIONS
68.86	96.04		-	№ 2% cl	otty sulp	hide in t	his fault	/dyke zoi	е-ру,	ю, <u>+</u> Сру	
											•
			-	77.38 -	77.94 m	- black	argillace	ous brec	ia (qtz.	veined) - Bx. alignment	
,						@~10	P to C.A.	- conta	ins 2-3%	sulphide as ff and fragments to	∼ 1 cm
	<u></u>		-	77.94 - 6	/ 83.Om	- fault	zone agai	n			······································
						- seems	to be mos	tly in g	ey chert	but	
						81.24	- 81.89 -	probabl	altered	dyke again	
		•				- 1-2% s	ulphide				
						- unsure	of angle	but prol	ably 40-	so°	
		· · · · · · · · · · · · · · · · · · ·				- poor 1	ecovery 7	8.96 - 7	.57 m		
					· · · · · · · · · · · · · · · · · · ·						
			- /	283.0 -	84.Om	- grey d	hert agai	n - frac	ured		
						only 1	IR ff py.				
	·										
				84.0 -	85.67m	- altere	d intrus:	ve ? aga	n -~1%	py+po	
				85.67 -	88.47m	- grey d	hert aga:	in w/blac	microfr	actures abd white	
		·			····	atz. v	einlets	· · · ·			
		· · · · · · · · · · · · · · · · · · ·				TR-1%	ff py.				
				88.47 -	92.30m	- alter	d intrus	ve again	(also fa	ult zone)	
						- shear:	ing 10-20 ⁶	to C.A.	?		
						- 1-2%	y. Alter	ation is	clay and	carbonate	
						@ 90.	3-90.76	- a remn	ant intru	sive-looking texture	
						is pro	sent (ve	y felds.	rich - s	milar to intrus. in Holes #9 a	nd 10 ?)
				I			1				

٠,

. •

PAGE _____ 0F ____ 5

	Descure	e Canada Limitad									·
	MINI	es Canada Limited Ng division	•			DR		,	LO	G	HOLE NO.CM-88-11
INTER	IVAL	· · · · · · · · · · · · · · · · · · ·	1		DESC	RIPTIO	N			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE		(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
68.96	96.04		-	back to	usual hi	ghly alte	red intru	sive ?	90.76-92	.30 m	
<u>E.O.H</u> .			-	local p	nkish mi	neral pre	sent ? re	lated to	veining 3		
									··		
				92.30 -	93.45 m	- black	chert, w/	pccasiona	l grey cł	ert fragments ?	
						- highly	qtz. vei	ned in pa	rticular	@ top of interval	
						- top an	d bottom	contact i	rregular	but @~80° to C.A.	
						- black	colour du	e largely	to black	microfractures (Mn ?)	
						- @ 92.5	m - 4 cn	Bx. zone	- chert	frags. in white silica	
						matrix	cut by c	lear sili	ca veinle	ts	
						- only I	R py pres	ent.			
				93.45 -	95.39 m	- intrus	ive agair	- very f	ine grain	ed, brownish	
						colour	, only we	akly alte	red. Min	or - 1% ff Po.	
						- bottom	30 cm st	rong cald	ite <u>+</u> qt:	. veining probable fault contac	et to -
											·
				95.39 -	96.04 m	- chert	again; gr	ey to bla	ck - frac	tured strongly calcite veined	
						- no sig	nficant s	ulphide.			
				<u>E.O.H</u>	<u>.</u>						
				-							
				·							
				l	1		1				

ĺ

•

PAGE_____5____5

DRILL HOLE NO. ______

.

<u>CM-88-11</u>

BP I	Resources Mining	Canada I	Limited			DR		sample data							
	SAI	WPLE			CORE	RECOVERY	VISUAL ESTIMATES		Α	SSAY	RESUL	TS			
NUMBER	FROM	то	TOTAL METRES	Sp. Gr	%	AMT. LOST	(% ORE MINERALS)	<u>Cu</u>	Zn	Ag	Au				
203103	19.00	19.56	0.56		75%	0.14		93	91	0.9	1				
203104	19.56	20.12	0.56		39%	0.34		666	754	1.1	13				
203105	20.12	20.73	0.61		52%	0.29		8842	2200	7.4	102				
203106	71.62	72.32	0.70		87%	0.09		952	398	4.0	325				
203107	72.32	73.62	1.30		86%	0.18		2761	. 1147	4.3	103				
203108	73.62	75.51	1.89		84%	0.30		791	426	1.4	19				
203109	75.51	77.38	1.87		79%	0.39	· ·	253	631	1.2	36				
203110	77.38	77.94	0.56		86%	0.08		1479	2596	3.5	50				
203111	77.94	78.96	1.02		70%	0.31		33	45	0.6	1				
203112	78.96	80.79	1.83		37%	1.16		23	20	0.7	1				
203113	80.79	82.32	1.53		75%	0.38		12	34	0.5	1				
203114	84.00	85.67	1.67		79%	0.35		160	87	0.7	1				
203115	85.67	86.89	1.22		72%	0.34		234	64	0.4	1				
203116	86.89	88.47	1.58		64%	0.57		9	17	0.4	1				
203117	88.47	89.33	0.86		67%	0.28		7	44	0.7	1				
203118	89.33	90.33	1.00		90%	0.10		7	48	0.8	2				
203119	90.33	92.30	1.97		58%	0.83		8	55	0.5	1				
203120	92.30	93.45	1.15		80%	0.23		32	91	0.3	11				
								<u> </u>			_				
															
			·		l						_				
L	<u> </u>	<u>l</u>	1	L	<u>I</u>]			J		1			

1

.

PAGE _____ OF ____
				·····	·····						····		۱
UP B	P Resourc	es Ca Ng divi	anada Limiteo Ision	d 			DR		•	L. C)	G		HOLE NO.CM-88-12
DRILLING C	0.		LOCATION SKET	CH	DEPT	н р	TESTS IP ANGLE	AZIMUTI	DA1	E STARTED	August 24, 1988.	PROJEC	CHINOOK MTN.
				-	COLL	AR	-50 ⁰	260 ⁰	DAT	E COMPLETE	August 24, 1988.	N. T. S. :	92P/8E
BERGE	RON DRILLI	ING			92.0	m	-50 ⁰	-	COL	LAR ELEV.:	991 m A.S.L.	LOCATIO	DN:
DID.									NO	RTHING	111+50N		
									EAS	TING	98+22E		
			-						AZI	MUTH:	260 ⁰		
			-						DEF	TH	92.68 m	DATE LO	OGGED: August 22, 1988
HOLE TYPE	D.D.H.		<u> </u>						COR	E SIZE:	NQ	LOGGED	BY: R. Farmer
INTE	RVAL					DESCR	IPTION				STRUCTURE		REMARKS
FROM	TO	RU	CK TIPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURE PER METRE	S	(FRACTURES, FAULTS, FOLDING, BI	EDDING,	MINERALIZATION, TYPE, AGE RELATIONS
0	27.44	Cas	sing	-	In Over	burden							
27.44	53.98	Sed	liments	-	starts	out as bl	ack argil	lite (son	ewhat c	herty)			
				-	contair	15 1-2% Py	through	ut as fra	cture f	illings,	fine dissem, and associa	ted	
					with qu	artzose 1	enses and	qtz/carl	. micro	veins			
				-	@ 31.64	- lamina	tion (bed	ding) @ 4	5° to C				· · · · · · · · · · · · · · · · · · ·
				_	@ 31.56	- 2 cm g	puge @ 50	to C.A.					······································
	1			-	@ 31.86	- sedime	nts becom	ne light o	rey in	colour an	d more siliceous		
					- proba	bly more	of a grey	wacke; Se	ds. her	e also mo	re frequently bedded.		
					only	fr - Minc	c Py - mc	stly ff 1	ere	-		<u> </u>	
					- bandi	ng @ 31.8	5 m @ 40 ^C	to C.A.)	-			
					- bandi	ng @ 33.3	B m @ 35 ^C	to C.A.	j beđ	aing			
					@ 35	40 m @ 4	po to C.A	¥.					
·					- proba	ble shear	zone 34-	36 m - bi	oken -	ground co	re		
					- aroun	a 35.2 -	35.4 str	ong qtz/c	arb. vei	nlets - b	recciated appearance		ndaanaa inaa
											-		
	1						I				-		
						t				-			· · · · · · · · · · · · · · · · · · ·

PAGE _____ OF ____4

DRILL HOLE NO. CM-88-12

BP BP	Resource	es Canada Limited	,			DR	ILL		LO	G	HOLE NO. CM-88-12
INTER	VAL				DESC	RIPTIO	N			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	G RAIN SIZ E	TEXTURE	ALTERATION	ORE	FRACTURES PER METRE		(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
27.44	53.98	Sediments	-	fault zo	ne from	<u>36.88 -</u>	41.0 m ((.91 m lo	t @ 40.0	9 m)	
Continu	ed	Continued	-	<u>37.96 -</u>	N 39.33	- dk. gro	y chert :	-2% ff a	d fine d	ssem. py again	
			_	39.33 -	40.09	- argilla	ceous fai	lt zone	x. and g	uge - 2-4% py, TR Cpy ?	
						- calcite	microve:	ning loc	lly inter	ise	
]						- after	41.0 ba	ck to dk.	grey bed	ded arg/greywacke	
						- only m	inor py in	this		•••	
					1						
				@ 42.8	4 - 44.92	m – fau	ult zone •	broken	round con	re, local gouge zones	
		·				- mi2	ture of t	he grey a	rg/greywa	cke, and black argillite	
						- the	section	43.14 -	4.51 m l·	2% py again generally assoc. w	ith
						the	blacker,	more are	illaceous	sections (fault gouge and Bx.	generally).
										· · · · · · · · · · · · · · · · · · ·	
				after 44	.92 m bac	k to grey	bedded o	revwacke	- beds ge	nerally ~ 0.5 cm	
	<u> </u>			thick an	d are liq	hter grey	in colou	r. Mino	py only		· · · · · · · · · · · · · · · · · · ·
					a	45.42 @ 2	$\frac{1}{5}$ to C.7		<u></u>		
					@	46.17 @	15° to	C A		· · · · · · · · · · · · · · · · · · ·	
					Q	16.45 @ r	arallel t		d highly	discusted by micro functions	· · · · · · · · · · · · · · · · · · ·
						10145 C F	several o	m offset	<u>a nigniy</u>	distupted by micro fractures	
						46.04 - 4	7.0 - ~	1% ff py	and occu	rring along lighter beds.	
·				@ 48.83	m - becom	ing darke	r and mor	e argilla	Ceous aga	in	
					also	Fault zor	e againe	49 0-53	83 (0 -	50° (bottom)	
					18 83	- 50 76	- 1_24	49.0 55			
					52 50	- 50.70	- 1-28	py, possi	DIE IK CH	<u>Y</u> :	
	- <u>-</u>			·	- 52.59	- 53.20	<u>n - ~ 1%</u>	py - plac	<u>k arg. h</u> e	re	
		· · · · ·	- <u> </u>		- 100		L OF Sed	5. 8 45		[- <u></u>	

PAGE _____ OF ____4

DRILL HOLE NO. CM-88-12

UP BF	Resourc	es Canada Limited	1			DR	ILL		LO	G	HOLE NO. CM-88-12
INTER	VAL				DESC	RIPTION	۷	•		STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	OR E MINERALS	FRACTURES PER METRE		(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
53.98	80.09	Mafic Volcanics	-	fine gra	ined, med	ium green	massive	with 1-2	mm chlor:	tic patches	
			-	first 0.	33 m clay	altered	(faulted)	(~ 50 [°]	?) (5 cı	gouge @ 54.26 m)	
				59.52 -	50.10 m	- probabl	e mafic d	yke, uppe	r contac	@ 50 ⁰ to C.A. and chilled	
						lower c	ontact of	scure (d	abase)		
				60.10 -	69.26 m	- mafic v	plcanics	, likely i	n part in	trusive but difficult to	
						disting	uish. Mi	nor qtz/a	arb. vei	lets.	
		• • • • • • • • • • • • • • • • • • •									
				69.26 -	70.23 m	- mafic d	yke - thi	is time ha	s 'spotte	d' appearance due	
						to 3-5	nm felds	ar crysta	ls		
						- both co	ntacts sh	eared			
			-	usual vo	canics (+ intrusi	ve) to 80	.09 m			
80.09	92.68	Sediments	-	contact	is a frac	ture @ 20	to C.A.				
			-	last 10	cm of vol	canics ha	ve a chil	led appea	rance and	are highly	
				qtz/carb	. veined						
			-	starts o	ut as lig	nt grey c	ploured n	assive cl	ert, only	тв ру	
		· · · · · · · · · · · · · · · · · · ·	-	@ 80.60	n becomes	bedded w	ith grey	acke			
					bedding	@ 80.89	m@40 [°]				
					by 81.2	m chert	is gone a	nd have I	ight to a	ark grey coloured wacke	
					TR - 1%	ру					
					bedding	@ 83.1 m	0 45 [°]				
						1					

1

DRILL HOLE NO. CM-88-12

U BF	Resource	es Canada Limited	•			DR			LO	G	HOLE NO. CM-88-12
INTER	VAL				DESC	RIPTION	1			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE		(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
80.09	92.68	Sediements	_	by 84.0	becomes 1	lack arg	lllite an	d greywac	ke mixtur	e - well laiminated throughout	
Continue	 1	Continued	-	gouge z	ne @ 84.	15 @ 55 ⁰					
			-	laminat	ons (bed	s) @ 85.2	2 @ 45 ⁰				
			-	@ 86.0	86.91 m	- light	greenish	grey, cla	y altered	mafic dyke ?	
						- textur	es destro	yed	-		
						- contai	ns black	microfrac	tures and	TR ff py	
	<u> </u>					- bottom	contact	@ 50 ⁰ to	C.A.		
		······			6 -						
			-	86.91	- 92.68m	- black	graphitic	argillit	e, only m	inor py	
						mostly	ff				
		· · · · · · · · · · · · · · · · · · ·				- local	harrow zo	nes of qt	z/carb. v	eining related	
						to fau	lting.				
				E.O.H							· · ·
				<u> </u>		i					
		· · · · · · · · · · · · · · · · · · ·									
										· · · · · · · · · · · · · · · · · · ·	

Ú.,

PAGE _____ 0F ____

DRILL HOLE NO. CM-88-12

a a construction of the second sec

CM-88-12

I BP F	Resources MINING	Canada I	Limited			DR		O G		S	amp	le d	ata	
	S A I	APLE			CORE	RECOVERY	VISUAL ESTIMATES		A	SSAY	RESUL	. T S		
NUMBER	FROM	то	TOTAL METRES	Sp. Gr	%	AMT. LOST	(% ORE MINERALS)	Cu	Zn	Ag	Au			
203121	28.96	30.49	1.53		79%	0.32		151	178	0.7	1			
203122	30.49	31.86	1.37		89%	0.15		159	271	0.9	1			
203123	34.00	36.00	2.00		58%	0.84		139	137	0.8	2			
203124	37.96	39.33	1.37		51%	0.67		303	104	3.2	1			·····
203125	39.33	40.09	0.76		53%	0.36		59	. 50	1.2	2			
203126	43.14	44.51	1.37		23%	1.05		116	213	0.7	1			
203127	48.86	50.76	1.90		25%	1.42	۹. 	167	138	1.9	1			
203128	83.23	84.45	1.22		74%	0.32		. 75	88	1.1	1			····
203129	89,48	90.24	0.76	· · · · · · · · · · · · · · · · · · ·	56%	0.33	· · · · · · · · · · · · · · · · · · ·	55	199	1.2	1			
						~								
														
									· · · · · · · · · · · · · · · · · · ·					
														·
												<u> </u>		
		-				- ·								
														·
	L	l		I		l	L	<u> </u>]		<u> </u>		l
PAG	ε	OF1	_								DRILE	HOLE NO.	СМ-88-12	

1.1

.

DRILL HOLE NO. -

APPENDIX IV

Sample Results - Acme Certificates

ACME ANALYTICAL LABORATORIES LTD.

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HHO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR MG BA TI B W AND LIMITED FOR WA K AND AL. AU DETECTION LIMIT BT ICP IS 3 PPM. - SAMPLE TTPE: CORE AU* ANALYSIS BI ACID LEACH/AA FROM 10 GM SAMPLE.

DATE REPORT MAILED: June 9/89 ASSAYER. DATE RECEIVED: JUN 06 1988 **BP RESOURCES PROJECT-10112** File # 88-1772 CIVITE ۰. Ън. mL. 6. 64 ch p i v **C** 2 11 ¥ 1.11 . . ¥ a

	<u>ovul pp</u>	PPK	PPN	PPK	PPK	PPN	PPN	PPN	PPN	1	PPM	PPN	PPX	PPN	PPN	PPN	PPN	PPX	PPK	1	ŧ	PPK	PPN	ł	PPK	1	PPK	1	1	ŝ	PPN	PPB	
	203017	1	66	2	68	.1	30	19	707	4.99	4	5	ND	1	18	1	2	2	144	4.23	.042	2	35	1.83	5	.41	5	3.80	.04	.01	1	2	
	203018	2	289	14	107	.1	70	19	2509	5.54	8	5	ND	2	40	1	2	2	155	2.11	.090	10	54	1.49	13	.17	2	2.55	.03	.03	1	6	
	203019	24	2749	43	975	. 9	64	27	1561	5.77	11	5	ND	1	30	3	2	2	132	2.89	.144	1	105	2.09	9	.24	7	3.14	.08	.03	1	27	
3	203020	1	76	2	59	.1	51	20	1108	4.81	2	5	ND	1	24	1	2	2	. 116	2.86	.047	2	35	2.15	13	.40	5	2.88	.07	.04	1	1	
-	RE 203026	2	268	19	113	.1	57	15	1466	5.22	9	5	ND	2	33	1	2	2	118	2.81	.164	1	113	1.56	20	.19	2	2.51	.06	.06	1	13	
	203021	5	834	5	11	.1	58	22	1209	5.32	10	5	ND	2	27	1	2	2	126	1.69	.140	6	105	2.29	12	.24	2	2.53	.06	.05	1	3	
	203022	9	503	1	94	.1	64	19	1224	5.66	1	5	ND	2	32	1	2	2	134	2.51	.155	10	181	2.09	1	. 23	6	2.53	.04	.02	1	3	
	203023	4	81	12	189	.5	54	5	389	1.62	8	5	ND	4	40	1	2	2	47	6.69	.412	19	199	.36	39	.10	9	1.59	.01	.03	1	2	
	203024	5	122	12	348	.5	100	. 1	352	2.21	10	5	ND	- 4	38	1	2	2	61	4.04	.296	17	355	.51	74	.11	- 4	1.51	.04	.07	2	4	
	203025	10	284	19	222	.1	92	11	452	3.08	8	5	ND	5	63	1	· 2	2	93	3.95	.235	14	258	.73	33	.10	1	1.72	.06	.09	1	1	
	203026	2	272	16	112	.1	58	16	1492	5.35	19	5	ND	3	34 -	1	2	2	121	2.85	.159	1	114	1.61	21	.21	2	2.58	.07	.08	1	15	

- ' CM 3

RANDH. CHINOOLE 'ITH.

PHONE(604)253-8158

ACME ANALYTICAL LABORATORIES LTD.

٦

3

3

٦

2

SHAL SHAL

AUG 22,88,16:17

508 P01

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-BAO3-H2O AY 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 HL WITH WATER. This leach is partial for HN PE SE CA P LA CE NG BA TI B N AND LINITED FOR HA E AND AL. AN DETECTION LINIT BE ICP IS 3 PPN. - SAMPLE TYPE: CORE AND ANALISIS BE ACID LEACH/AA PAON 10 GM SAMPLE. BP RESOURCES - Initing VANCOUVER, B.C.

FAX (604) 253-1716 AUG 2 3 1988

BP RESOURCES CANADA LTD. PROJECT 10146 File # 88-3584

DUH	8	SAMPLES	No Reh	CU PPH	Pb PPX	Zn PPN	Ag PPN	Nİ PPN	Co PPN	Mn PPN	Fe 1	As PPN	U PPN	Au Pfx	Th PPH	9r PPN	Cd PPN	5D PPN	Bİ PPK	V 895	Ca 1	} 1	la PPN	CT PPN	Ng S	Ba PPN	71 1	B PPK	A1 1	Xa X	1 1	¥ PPX	An* PPB
000	0	203063	2	2387	1	338	.5	55	27	410	5.73	10	5	ND	1	5	4	2	2	83	.21	.080	8	81	3.63	30	.01	7	5.15	.01	.01	1	2
		- RB -20 3060		. 6179 -		-215-	-1.2-		102		-8,90-	-23-		¥0			}	-11-		- 52	_11_	-1236-		-107-	-3.94-	y		y	7.81-		01-		18
		203064	17	7067	13	367	1.2	51	30	351	5.34		5	NÐ	4	-	-	- E	2	95	. 20	.067		92	3.76	31	.01	13	3.96	.01	. 11		3
		203065	li	1229	5	301	.4	60	78	125	30.46	12		ND		!	4	3	~ 2	100	.26	.087	10	110	3.57	40	. 01	14	1.43	. V1	.61	1	1
		203066	41	5083	10	373	1.0	41	85	377	7.28	46	5	nd	4	5	5	4	2	75	.16	. 852	12	86	3.55	38	. 91	12	3.13	.01	. 91	1	1
		203067	32	525	7	246	.3	21	30	295	4.60	10	5	RD	2	4	1	2	2	30	.n	.035	4	53	2.22	28	.01	8	1.81	.01	.01	1	2
		203068	30	5290	13	214	1.2	55	103	296	9.01	23	5	¥Ð	3	- 4	3	18	2	52	.13	.031	6	107	2.98	12	. 01	10	2.89	.01	.01	1	14
		.STD C	_11_	58-		-126-	-7:0-	- 68-	29	989 -	1.00-	- 39	21 -	8	37			18	- 19	59-	- ,46	089 -			90	_159_	07_	34-	-1:94-	06	14-	13-	
		203069	3	13826	10	292	1.6	25	79	317	7.75	н	5	ND	3	3	5	19	3	12	.15	.046	6	73	3.14	14	.01	9	2.73	.01	.01	1	12
		203070	3 3	23114	11	591	2.1	30	104	120	9.74	18	5	RD	3	1	6	5	1	57	.29	.117	5	95	2.26	17	. 01	13	2.06	.01	.01	1	10
		203071	32	6263	12	500	1.1	58	32	493	7.81	14	5	RD	3	6	4	Ŧ	2	75	.37	.144	9	204	1.15	40	.11	8	3.45	.01	. 01	1	5
		203072	40	2147	11	185	.1	74	16	355	7.06	11	5	RD.	3	6	2	6	2	105	.37	.104	10	176	4.57	33	. \$2	7	3.35	.01	.01	1	1
		203073	11	3196	11	45	.5	29	12	175	12.45	18	5	ND	3	10		13	2	55	.76	.050	12	48	2.26	9	.01	12	1.89	.01	.01	1	4
		203074	14	3139	10	42	.6	10	19	219	17.36	19	5	ND	- 1	1	3	13	2	13	.61	.123	12	75	2.70	9	.01	8	2.27	.01	.01	1	9
		203075	14	5021	25	47	1.1	24	16	225	17.28	23	5	RD	4	18	1	20	2	244	1.66	.\$77	12	326	2.36	15	.01	11	1.83	.01	.01	1	8
		203076	8	11674	15	73	1.1	17	23	214	18.14	23	5	ND	4	16	4	30	2	228	1.68	.681	11	259	1.73	9	. 01	8	1.32	.01	.01	1	21
		203077	3	8935	23	616	1.0	53	78	297	17.42	21	5	ND	5	9	4	19	2	202	.73	.329	17	213	3.19	18	.01	11	2.67	.01	.01	1	1
		203078	6	1398	8	52	.5	32	98	329	9.00	15	5	RD	3	3	3	11	2	56	.13	.034	12	14	4.22	11	.01	11	2.96	.01	.01	1	1
		203079	2	1729	4	65	.3	22	73	346	7.93	12	5	NB	3	3	3	12	2	46	.09	.026	8	48	4.31	17	.01	10	2.99	.01	.01	2	2
		203080	11	2100	15	96	.5	42	67	588	8.87	15	5	ND	3	5	2	13	2	76	.46	.064	17	155	4.39	17	.01	1	3.33	.01	. 61	i	1 ·
		203081	6	1752	13	74	. 8	63	27	1967	9.57	14	5	¥Đ	2	17	5	7	2	252	1.14	.211	15	166	4.32	21	.01	10	3.59	.01	.02	1	3.
		STD C/AU-R	19	62	42	134	1.2	73	31	1108	4.16	41	19	8	38	52	19	22	19	63	.52	.093	41	52	.93	182	. 08	34	2.03	.06	.15	13	505

CHINDOL MTN .

ACHE ANALYTICAL LABORATORIES LTD.

)

.

•

1

510 F01 (

)

ł

)

)

)

)

CHCYELLAES

AUG 22, 28 16:40

)

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

BP RESOURCES - MINING VANCOUVER, B.C.

HECEIVED

PHONE (604) 253-3158 FAR 64 7253 4986

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3HL 3-1-2 RCL-HRO3-H2O AT 95 DEG. C FOR ONE BOUN AND IS DILUTED TO 10 HL WITH WATHR. This leach is partial for HE IS be ca p in Ce mg ba yi b w and limited for HA K and AL. An detection limit be icp is 3 PPM. - Sample tere: core/sludge Aut Analtsis de acid leach/aa from 10 gm sample.

BP RESOURCES CANADA LTD. PROJECT 10146 File # 88-3622

. D	SAMPLE #	Xo 7Pk	Cu PPX	Pb PPN	Zn PPX	Ag ₽PN	Ni PPX	Co PPK	Hn PPX	Te X	X5 PPH	bex D	Au Pen	47 898	ST PPX	Cd PPK	5b PPX	Bİ PPN	V Kef	Ca 1	P X	La PPX	CT PPN	Ng L	Ba PPN	TÍ L	B PPH	AT R	111 }	K 1	¥ FEK	Aar PPB
DDHD	203082	1	269	79	178	1.6	49	14	5831	5.59	29	5	ND	2	32	1		2	125	5.33	.145	13	34	2.16	37	.12	2	2.71	.01	.03	1	23
V	203093	1	371	83	124	3.0	61	17	7299	8.35	40	5	ĸD		30	1	- 17	2	115	1.74	.415	25	130	2.15	24	.01	1	2.58	.01	.95	1	23
	203084	t	376	100	232	2.3	12	17	{ 520	5.35	91	5	ND	3	20	1	1	2	- 78	1.18	.61	23	- 71	2.40	32	. 11	2	2.25	.01	. 08	1	60
	203085	1	176	- ()	84	2.6	56	15	4450	1.75	51	5	RD	3	12	1	9	~ 2	- 144	1.41	.213	30	122	2.06	12	.01	3	2.23	.01	. 09	1	36
	203886	1	159	13	104	1.3	57	13	4077	5.62	41	5	HD	3	16	1	1	2	97	1.11	.226	29	- 93	2.07	27	.01	2	2.14	.01	.09	1	45
						_						-																				
	203017	1	31	- 6	57	.5	35	21	1005	6.01	11	5	WD	1	14	1	13	2	134	5.36	.942	2	70	1.58	33	. 98	1	2.36	.01	.93	1	- 11
	203088	5	- (1	6	67	.1	27	23	1125	6.18	20	5	ND	1	37	1		2	143	3.66	.052	2	35	2.09	62	.15	- 1	3.21	.02	.01	1	1
	203989	2	32	1	65	.5	17	15	1063	4.65	11	_ 5	KD	1	17	1	5 ·	2	100	6.51	.437	2	23	2.02	202	.01	1	2.63	.01	.10	1	4
. 0	203090	1	- (3	1	76	. 6	24	22	1155	5.37	11	5	ND	1	53	1	- 4	· 2	157	3.87	.052	3	33	2.87	336	.05	- 1	3.58	.01	.03	1	1 -
THO	203091	1	50	1	64	.1	21	21	1017	5.57	11	5	HD	1	47	1	5	2	107	6.61	.011	1	34	1.83	150	.01	2	3.03	.01	. 16	1	1
Dr.					• •										••			•											••			
•	203092	1	12	I	82		51	20	313	3.38	10		UK	1	20	1			106	2.11	.015	3		1.94	99	.91	3	3.06	.01	. 06	1	- 21
	203093	1	182	5	92	1.0	21		642	2.14	11	5	ХD	1	21	1	н	2	35	6.67	.074	4	0	.82	52	.01	1	1.23	.01	.9(1	15
	203094	JB	123	•		1.9	58	13	519	3.10	- 22	5	ND	2	- 41	1	10	3	- 44	6.11	.187		136	1.21	55	.01	- 1	1.12	.01	.03	2	20
	203095	10 2	10692	9	1208	1.0	42	30	245	7.29	21	5	ND	3	21	5	13	2	33	1.67	.174	•	156	1.72	18	.01	3	3.97	.01	. 93	1	50
	203096	10	2702	12	160	3.3	63	43	736	6.75	16	5	ND	2	32	1	Н	2	\$1	4.18	.120	1	144	2.16	33	. 02	3	2.91	.01	.03	61	13
	STD C/AG-R	17	55	37	133	7.4	65	28	1078	4.07	41	16	1	. 31	Ð	18	13	21	56	.19	,090	38	55	.90	169	.05	. 31	1.96	.04	.12	12	520

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN PE SR CA P LA CR NG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPN. - SAMPLE TYPE: COPP. AND ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. SEPERAD

Ent

PHONE (604) 253-3 58- FAX (604) 253-1716

1 Li

1301 max

THINOUK

MITN .

-1

f

É

1

C

									• • • • •		· •				1					ρ										112	建铁工	a .		
	DATI	E RECE	EIVED	:	λUG	23 19	88)	DATE	RE	POR	г ма	ILED	. S	ept	1/	88	1	ASSA	YER		·	,,	D.	TOYE	OR	C.1	EON	G, C	^{er} t	IFIE	DB	.c.	ASS	AYERS
										BP	RES	OURC	ES C	ANA	I AC	LTD.	PRC	JEC	т 10	147	1	File	. # 8	38-3	818									
		SANPLE ‡	NC PPN	o (I Pi	Cu PN	Pb PPH	Zn PPM	Ag PPX	NÍ PPN	CO PPN	Nn PPN	Fe %	As PPH	U PPM	Au PPN	Th PPM	ST PPN	Cd PPM	SD PPM	BÍ PPN	V PPN	Ca ł	P %	La PPM	CT PPK	Ng %	Ba PPN	Ti ł	B PPM	A1 %	Na 8	K K	W PPM	Au* PPB
ų	,10 ,10	203096 203097 203098 203098 203099 203100	1 1 1 1 1		24 34 20 15 83	11 9 25 9 6	48 60 58 32 43	.9 .9 .9 .8	30 24 61 45 49	19 17 24 21 21	825 780 1195 990 1261	5.14 4.82 5.96 4.61 5.31	8 4 5 4 4	5 5 5 5 5	ND ND ND ND ND	4 4 4 5	56 41 84 39 55	1 1 1 1	2 2 2 2 2	2 2 2 2 2	145 132 164 69 90	6.98 7.94 5.19 5.97 6.74	.045 .040 .054 .064 .059	3 3 6 4 6	65 47 146 58 94	2.03 2.06 3.70 1.55 2.35	164 60 47 25 59	.20 .21 .01 .01 .01	6 9 2 2 2	4.65 4.71 4.96 2.24 3.28	.01 .01 .02 .02 .02	.08 .12 .09 .09 .07	1 1 1 2 1	1 1 2 1
		203101 203102 203103 203104 S TD-C	1 1 34 	7 2 6	13 25 93 66 58	3 9 10 63 36	20 64 91 754 127	.6 .8 .9 1.1 -6.6	20 77 73 47 65	9 31 27 16 	670 1068 3766 2974 1042	2.21 9.47 7.87 5.44 4.05	2 3 29 23 40	5 5 5 5 	ND ND ND ND SD	4 3 1 4 	24 20 33 25 	1 1 3 	2 2 2 2 	2 2 2 2	17 167 174 95 56-	4.61 2.86 2.24 3.77 51-	.036 .061 .060 .099	7 5 7 15 38 -	31 151 116 97 	.64 3.77 3.16 1.76 90~	63 85 61 40 ~~175	.01 .01 .01 .01	2 2 2 2 33	.98 5.77 4.54 2.86 2.01	.02 .02 .01 .01 .06	.07 .07 .05 .05 .17	2 1 1 1 1 	1 1 13
		203105 203106 203107 203108 203109	11 2 10 6 2	82 9 27 5 7 2	42 52 61 91 53	125 165 107 12 31	2200 398 1147 426 631	7.4 4.0 4.3 1.4 1.2	37 48 47 35 60	48 17 27 12 23	3005 1423 849 765 1124	11.37 11.47 9.42 4.92 6.53	54 59 65 39 17	5 6 5 7	ND ND ND ND ND	5 5 4 5 3	12 42 20 29 42	9 2 5 1 4	10 51 20 2 2	5 3 4 3 2	82 242 54 47 97	1.17 2.72 .95 2.27 5.14	.102 .553 .182 .090 .061	11 15 9 6 4	80 154 45 31 87	1.71 .83 .99 1.13 3.07	11 5 4 24 35	.01 .01 .01 .01 .01	4 20 2 3 2	2.59 1.64 1.35 1.53 3.97	.01 .02 .01 .01 .01	.06 .11 .10 .08 .07	2 2 4 3 1	102 325 103 19 36
1-11		203110 203111 RE-203108 203112 203113	3 6 	14	79 33 89 23 12	116 5 	2596 45 420 20 34	3.5 .6 1.2 .7 .5	38 34 35 26 30	13 11 12 7 15	1172 775 772 422 709	4.81 2.84 4.89 1.86 4.01	12 5 41 8 2	5 5 5 5 5	ND ND ND ND ND	4 4 5 4	48 38 30 25 33	9 1 1 1 1	2 2 2 2 2 2	5 2 2 2 2 2	58 50 46 24 87	7.28 5.62 2.30 3.39 3.58	.104 .048 	4 4 9 8	56 74 31 55 39	1.06 1.26 ~1.13 ~ .78 1.78	41 51 20 64 67	.01 .01 01 - .01 .01	2 3 3 2 2	1.81 1.99 1.53 1.20 2.77	.01 .01 .02 .01 .01	.05 .07 .06 .07 .06	4 1 2 1 1	50 1 17 1 1
2		203114 203115 203116 203117 203118	1 1 1 1		60 34 9 7 7	10 4 2 8 9	87 64 17 44 48	.7 .4 .4 .7 .8	68 24 25 66 70	28 . 6 . 6 . 24 . 26	1456 339 312 1577 2072	7.04 1.13 1.13 4.45 5.74	5 2 2 3 4	5 5 5 5 5	NĎ ND ND ND ND	2 4 4 2	52 27 20 46 59	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	164 26 28 98 139	3.77 2.16 1.46 4.02 5.04	.060 .093 .078 .077 .062	5 12 12 8 5	157 78 100 154 165	4.14 .85 .95 3.43 4.38	83 50 31 134 83	.01 .01 .01 .01 .01	2 7 4 3 2	5.39 1.14 1.08 4.37 5.39	.01 .01 .01 .02 .01	.04 .04 .02 .10 .08	1 2 1 1 1	1 1 1 1 2
		203119 203120 STD C/AU-	-R 10	L 1 B	8 32 57	11 3 38	55 91 127	.5 .3 7.2	91 15 64	32 5 27	1653 444 1057	6.25 1.11 4.02	9 2 43	5 5 17	ND ND 7	2 3 36	51 24 47	1 1 17	2 2 17	2 2 17	194 19 55	1.77 2.33 .49	.053 .013 .084	4 6 37	225 27 55	5.96 .70 .89	205 302 170	.01 .01 .06	2 2 34	6.37 1.01 1.95	.01 .01 .06	.04 .06 .14	1 1 12	1 1 485

PHONE(604)253-3158 FAX(604)253-1716

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 ACME ANALYTICAL LABORATORIES LTD.

GEOCHEMICAL ANALYSIS CERTIFICATE

SEL

VANCOUVER, D.O

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3NL 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 NL WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIWITED FOR WA K AND AL. AU DETECTION LIWIT BY ICP IS 3 PPN. DP NESCULOLO - 1 - SAMPLE TYPE: COLE AU* AMALYSIS BY ACID LEACH/AA FROM 10 GN SAMPLE.

DATE RECEIVED: ANG 31 1988 DATE REPORT MAILED: 28/88 star ASSAYER. CHINOOK MTN.

BP RESOURCES CANADA LTD. PROJECT 10146 File # 88-4086

	SANF LE‡	NC P2N	Cu PPN	PE PPN	Zn PPN	Àg PPN	NI PPN	CC PPM	Nn PFN	īe 1	As P?N	U PPK	Au PPN	Th PPK	Sr PPN	Cd PPN	SD PPN	BI PPH	V PPM	Ca ł	P 1	La ?PN	CT PPM	Hg 1	Ba PPM	Ti 1	B PPN	ג ۲	Na ł	Ř ł	¥ ?PX	Au* PPB
						_		_																								
	203121	5	151	19	178	.7	79	9	1638	2.61	5	5	ND	4	19	1	2	2	26	1.24	.099	15	128	1.27	70	.01	4	1.27	.01	.12	1	1
	203122	5	159	76	271	.9	12	10	1770	2.51	2	5	ND	- 4	25	1	2	2	22	1.42	.095	14	103	1.01	75	.01	2	1.07	.01	.12	1	1
~1	203123	4	139	16	137	.8	48	13	2619	2.71	2	5	ND	3	17	1	2	2	28	1.19	.941	9	33	.87	54	.01	6	.93	.01	.07	1	2
N.	203124	3	303	16	104	3.2	69	17	10742	4.55	1.	5	ND	3	34	1	3	2	36	1.34	.062	8	22	. 82	40	.01	12	.11	.01	.07	1	1
8	RE 203128	1	76	11	89	1.0	29	9	1146	2.06	11	5	ND	3	36	1	2	2	22	1.95	.061	20	41	.79	90	.01	4	. 89	.01	.08	1	1
V -											••				••			•			475	•					•	17	41			•
	203125	1	59	ŝ	50	1.4	23	14	4001	2.83	14	2	ND.	1	31	1	8	4	3	2.08	.020	3	5	.91	20	.01	4	•41	.01	. VO	1	4
	203126	- 4	116	11	213	.7	63	11	1345	2.57	2	5	ND	3	15	1	4	2	- 14	1.91	.085	9	63	. 55	69	.01		- . 7i	.01	.09	1	1
	203127	4	167	31	133	1.9	65	10	1355	3.50	2	5	ND	4	16	1	2	2	23	1.03	.076	11	- 90	.81	59	.01	- 4	.96	.01	.09	1	ł
	203128	1	75	14	88	1.1	29	9	1062	2.02	10	5	KD	4	35	1	2	2	21	1.91	.059	19	- 41	.7?	98	.01	1	.88	.01	.09	1	1
	203129	6	55	8	199	1.2	59	- 4	539	1.40	6	5	ND	4	39	1	2	2	13	3.81	.281	35	91	.62	176	.01	1	.78	.01	.13	1	1

APPENDIX V

Analytical Procedures

•.

.

ACME ANALYTICAL LAEGRATORIES LTD.

Azzying & Trace Analysis ESI E Hanning SL Vancourd, B.C. VEA IRE Telephone : 252-3753

GEOCHEMICAL LABORATORY METHODOLOGY - 1984

Sample Preparation

71

1. Soil samples are dried at 60°C and sleved to -80 mesh.

2. Rock samples are pulverized to -100 mesh.

Geochemical Analysis (AA and ICP)

0.5 gram samples are digested in hot dilute agua regia in a boiling water bath and diluted to 10 ml with demineralized water. Extracted metals are determined by :

A. Atomic Absorption (AA)

Ag*, Bi*, Cd*, Co, Cu, Fe, Ga, In, Mn, Mo, Ni, Pb, Sb*, Tl, Y, Zn (* denotes with background correction.)

8. Inductively Coupled Argon Plasma (ICP)

Ag, Al. As, Au. B, Ba, Bi, Ca, Cd, Co, Cu, Cr, Fe, K, La, Mg, Mn, Mo, Na, Ni, P. Pb, So, Sr, Th, Ti, U, Y, W; Zn.

Generatical Analysis for Au*

· 10.0 gram samples that have been ignited overmite at 600°C are digested with not dilute agua regia, and the clear solution obtained is extracted with Methyl Risobutyl Katone.

Au is determined in the MIBK extract by Atomic Absorption using background correction (Detection Limit = 5 ppb direct AA and 1 ppb graphite AA.)

Geochemical Analysis for Aut, Pd. Pt. Rh

10.0 - 30.0 gram samples are subjected to Fire Assay preconcentration techniques to produce silver beads.

The silver beads are dissolved and Au. Pd. Pt and Rh are determined in the solution by graphite furnace Atomic Absorption.

Geochemical Analysis for As

0.5 gram samples are digested with hot dilute aqua regia and diluted to 10 ml. As is determined in the solution by Graphite Furnace Atomic Absorption (AA) or by Inductively Coupled Argon Plasma (ICP).

Geochemical Analysis for Barium

0.1 gram samples are digested with hot NaOR and EDTA solution, and diluted to 10 ml.

Ba is determined in the solution by Atomic Absorption or ICP.

Geochemical Analysis for Tungstan

1.0 gram samples are fused with KCL, KNO₃ and Na₂CO₃ flux in a test tube. Ind the fusions are leached with 20 mL water. W in the solution determined by CP with a detection of 1 pcm.

	LEGEND
2	
	-Granodiorite, quartz monzonite
	A HORNBLENDE DIORITE / GABBRO -age uncertain
	FENNELL FORMATION PERMIAN ?
	5 Mafic dykes and sills , locally hornblende-feldspar porphyritic age uncertain , may be related to A above
	4 Massive sulphide ($Py\pm Po\pm Cpy$), and massive magnetite
	3 Intense quartz carbonate veining and brecciation a) discrete quartz and/or carbonate vein
	2 MAFIC VOLCANICS a) flows-massive,locally pillowed,variolitic or amygdaloidal b) tuffs to breccias , may in part be brecciated
	 c) quenched flow breccia, in part may be quenched tuffs ? d) diabase – synvolcanic ? dykes and sills
	a) chert, cherty tuff ?
	b) argillite , minor shale , greywacke , mudstone
	SYMBOLS
	V7 /7 Fault score angle measured ages and and
	203051 Sample location & number
	Foliation direction
	Bedding direction relative to core axis
	Max/min conductor axis , surface position
	Surface trace of IP anomalous zone - definite
	probable possible
	Py Pyrite
	Cpy Chalcopyrite Sph Sphalerite
Pv. tr Cov 2	Sphalerite
Py Potr Cov	GEOLOGICAL BRANCH ASSESSMENT REPORT
2-3% Py * INTENSE CLAY/CARBO	NATE
10 1-2% Py	18,039
A*	
	0 2 4 8 12 16 18 METRES
l'd A I a	BP Resources Canada Limited
96.04 m E.O. H.	BARRIERE LAKES PROJECT CM CLAIMS
	DRILL SECTION
	CM 88-11
	SCALE: 1:200 DRAWN BY: R. FARMER FIG.

N.T.S. 92P/8E

PROJ.: 10112 REPORT: BPVR 88- 10

CM 88-9 -50°, Az. 260°

		RESUL	TS.		
ample#	Length,m.	Cu,ppm	Zn,ppm	Ag,ppm	Au,ppb
203087	0.77	38	57	0.5	11
203088	0.97	47	67	0.7	8
203089	1.06	32	65	0.5	4
203090	1.22	43	76	0.6	1
203091	1.28	50	64	0.7	7
203092	1.71	42	62	0.8	21
203093	0.77	182	92	1.0	15
203094	0.99	423	48	1.0	20
203095	0.76	20692	1208	7.4	50
203096	3.05 sludge	2702	160	3.3	13

LE	GEND
CRETACE	EOUS
B BAI	LDY BATHOLITH Granodiorite , quartz monzonite
A HO	RNBLENDE DIORITE / GABBRO
FENNELL	FORMATION
PERMIA	AN ? fic dykes and sills , locally hornblende-feldspar porphyritic
L a	ge uncertain , may be related to A above
4 Mas	ssive sulphide (Py±Po±Cpy), and massive magnetite
3 a) discrete quartz and/or carbonate vein
2 MA b c d	FIC VOLCANICS) flows-massive,locally pillowed,variolitic or amygdaloidal) tuffs to breccias , may in part be brecciated) quenched flow breccia , in part may be quenched tuffs ?) diabase – synvolcanic ? dykes and sills
	DIMENTS) chert , cherty tuff ?) argillite , minor shale , greywacke , mudstone
	SYMBOLS
	Geological contact
ZA	Fault :core angle measured,core angle unknown
[203051	Sample location & number
1	Foliation direction
/	Bedding direction } relative to core axis
×	Max/min conductor axis , surface position
	Surface trace of IP anomalous zone - definite
	probable possible
Ру	Pyrite
Сру	Chalcopyrite
Spn	Sphalerite
•	n han k
e E	2 4 8 12 16 18
n ≊	METRES
E	3P Resources Canada Limited
	MINING DIVISION
F	
1	CM CLAIMS
	DRILL SECTION
	CM 88-9
· ·	18.039
SCALE: 1	I: 200 DRAWN BY: R. FARMER FIG.
DATE: Aug.	88 REV.: DRAFTED BY: CHONG 8

SCALE: 1:200 DATE: Aug. '88 REV.:

N.T.S. 92P/8E PROJ.: 10112 REPORT: BPVR 88-10

CM 88 - 10 - 50°, Az. 260°

ngth,m.	Cu,ppm	Zn,ppm	Ag,ppm	Au,ppb
1.30	24	48	0.9	1
0.91	34	60	0.9	1
0.50	20	58	0.9	× 1
0.41	15	32	0.9	2
0.67	83	43	0.8	1
0.67	713	20	0.6	T
0.50	225	64	0.8	1

	LEGEND
B	ACEOUS BALDY BATHOLITH -Granodiorite, quartz monzonite
Α	HORNBLENDE DIORITE / GABBRO -age uncertain
FENN PEF	ELL FORMATION RMIAN ?
5	Mafic dykes and sills , locally hornblende-feldspar porphyritic age uncertain , may be related to A above
4	Massive sulphide ($\mathtt{Py\pm Po\pm Cpy}$) , and massive magnetite
3	Intense quartz carbonate veining and brecciation a) discrete quartz and/or carbonate vein
2	MAFIC VOLCANICS a) flows-massive,locally pillowed,variolitic or amygdaloidal b) tuffs to breccias, may in part be brecciated c) quenched flow breccia, in part may be quenched tuffs ? d) diabase - synvolcanic ? dykes and sills
1	SEDIMENTS a) chert , cherty tuff ? b) argillite , minor shale , greywacke , mudstone

SYMBOLS

.

BARRIERE LAKES PROJECT CM CLAIMS DRILL SECTION			
BP ^E	BP Resources Canada Limited		
- 	METRES		
o	2 4 8 12 16 18		
	18,039		
	GEOLOGICAL BRANCH ASSESSMENT REPORT		
Sph	Sphalerite		
Сру	Chalcopyrite		
Pv	Pyrite		
27777	possible		
0TTTT	Surface trace of IP anomalous zone – definite probable		
¥	Max/min conductor axis , surface position		
/	Bedding direction } relative to core axis		
1	Foliation direction		
[203051	Sample location & number		
ZA	Fault :core angle measured,core angle unknown		
۔ 	Geological contact		

CM 88-10

SCALE: 1:200		DRAWN BY: R, FARMER		FIG.	
DATE: Aug. '88	REV.:	DRAFT	ED BY:	CHONG	9
N.T.S. 92P/8	E PROJ.: 10)112	REPOR	T: BPVR 8	8- 10

Sample#	Length,m.	Cu,ppm	Zn,ppm	Ag,ppm	Au,ppb
203063	0.91	2387	338	0.5	2
203064	1.53	7067	367	1.2	3
203065	1.22	1229	301	0.4	1
203066	0.91	5083	373	1.0	1
203067	1.22	525	246	0.3	2
203068	0.91	5290	214	1.2	14
203069	0.92	13 826	292	1.6	12
203070	0.76	23114	591	2.1	10
203071	1.07	6263	500	1.1	5
203072	3.05	2147	185	0.7	1
203073	1.00	3196	45	0.5	4
203074	1.00	3139	42	0.6	9
203075	1.00	5021	47	1.1	8
203076	1.00	11 674	73	1.1	21
203077	1.00	8935	616	1.0	14
203078	1.40	1398	52	0.5	1
203079	1.52	1729	65	0.3	2
203080	1.53	2100	96	0.5	1
203081	2.13	1752	74	0.8	3
203082	1.24	269	178	1.6	23
203083	1.20	371	124	3.0	21
203084	1.83	376	232	2.3	40
203085	0.47	176	84	2.6	36
203086	0.70	159	104	1.9	45

LEGEND
CRETACEOUS
B BALDY BATHOLITH -Granodiorite, guartz monzonite
A HORNBLENDE DIORITE / GABBRO
FENNELL FORMATION
PERMIAN ?
5 Mafic dykes and sills , locally hornblende-feldspar porphyritic age uncertain , may be related to A above
4 Massive sulphide (Py±Po±Cpy), and massive magnetite
3 Intense quartz carbonate veining and brecciation a) discrete quartz and/or carbonate vein
2 MAFIC VOLCANICS a) flows-massive,locally pillowed,variolitic or amygdaloidal b) tuffs to breccias, may in part be brecciated c) quenched flow breccia, in part may be quenched tuffs? d) diabase - synvolcanic? dykes and sills
1 SEDIMENTS
a) chert , cherty tuff ? b) argillite , minor shale , greywacke , mudstone
SYMBOLS
Geological contact
ZZ S Fault :core angle measured,core angle unknown
[203051 Sample location & number
Foliation direction
Bedding direction relative to core axis
Max/min conductor axis , surface position
Surface trace of IP anomalous zone - definite
probable
possible
Py Pyrite
Cpy Chalcopyrite
Sph Sphalerite
Cu Native copper
GEOLOGICAL BRANCH ASSESSMENT REPORT
18,039
0 2 4 8 12 16 18 METRES
BP Resources Canada Limited
MINING DIVISION
BARRIERE LAKES PROJECT
DRILL SECTION
CM 99_9
SCALE: 1:200 DRAWN BY: R. FARMER FIG.
DATE: Aug. '88 REV.: DRAFTED BY: CHONG 7

PROJ.: 10112 REPORT: BPVR 88-10

N.T.S. 92P/8E

	95+50E	
	CM 88-3	
	-45, Az. 270°	
	OVERBURDEN	
	20	
	20	
20	2	
		v v v v v v v v v v v v v v v v v v v
		B BALDY BATHOLITH -Granodiorite, quartz monzo
		FENNELL FORMATION
		5 Mafic dykes and sills , locally h age uncertain , may be relate
		Intense quartz carbonate veinir 3 a) discrete quartz and/or carbonate
		2 MAFIC VOLCANICS a) flows-massive,locally pillov b) tuffs to breccias , may in p
		c) quenched flow breccia , in p d) diabase – synvolcanic ? dy 1 SEDIMENTS
		a) chert , cherty tuff ? b) argillite , minor shale , grey
		SYMBOLS
		Geological contact χ^{2}_{X} Fault :core angle measured
		[203051 Sample location & number Foliation direction
		Bedding direction relat
		Surface trace of IP anomalo
Length,m	RESULTS	
0.90	00 00 2 289 107 0.1 6 2747 975 0.9 27	Py Pyrite Cpy Chalcopyrite
I. 00 0.86	834 77 0.1 3 503 94 0.1 3 81 189 0.5 2	Sph Sphalerite
1.00 1.00 0.67	122 348 0.5 4 284 222 0.7 1 272 112 0.1 16	GEOLOGICAL ASSESSMENT
		100
		BARRIERE LAKES CM CLAIM
		DRILL SEC
		SCALE: 1:200
		DATE: Aug. '88 REV.: DRAFT

