District 0	Geologist,	Kamloops	Off Confidential: 89.11.24
ASSESSMENT	F REPORT 18	MINING DIVISION: V	Vernon
PROPERTY: LOCATION:	Kalama LAT UTM NTS	alka 50 12 20 LONG 119 05 30 11 5563360 350737 082L03E	0
CLAIM(S): OPERATOR(S	Gus 1- S): Triple	-6,Chance e Star Res.	
AUTHOR(S): REPORT YEA	Coombe AR: 1988,	es, S.F. 75 Pages	
SEARCHED I	SOR: Gold		
GEOLOGICAI	On th	ne property gold bearing quart	tz veins fill dilatant zones
	contact with 1942 fr	ith metasediments. The proper	rty produced 7000 tonnes prior gold. and 108 050 grams silver).
WORK			
DONE :	Geologica GEOL 60 IPOL 7 ROAD 9 SAMP 92	l,Geophysical,Geochemical,Dri 0.0 ha 3.2 km 5.2 km 1 sample(s) ;AU,AG	lling,Physical
	Map(s TOPO 12 TREN 500) - 1; Scale(s) - 1:1000 2.0 ha 0.0 m = 17 trench(es)	
	UNDD 309 Map(s	9.0 m 10 hole(s); BQ) - 2; Scale(s) - 1:250	
	UNDV 4	0.0 m	
RELATED	1 (1 ()		
REPORTS:	16442	w050	
MINFILE:	082LSI	WU50	

Searchlight Resources Inc.

218 - 744 West Hastings Street, Vancouver, British Columbia, Canada V6C 1A5

Phone: (604) 684-2361

LOG NO: 1130	$\left(\left(\mathbf{Y}\right) \right)$
ACTION:	
FILE NO:	

FILMED

REPORT

1988 TRENCHING, GEOPHYSICS and DRILLING PROGRAMME

on the

on the

KALAMALKA MINE PROPERTY

(GUS 1-6, and CHANCE CLAIMS)

VERNON MINING DIVISION

BRITISH COLUMBIA

Latitude: 050⁰ 12' 20"N Longitude: 119⁰ 05' 30"W

N.T.S. 82 L/3NE

Owner:

Operator:

Consultant:

Eugene Dodd 815-850 West Hastings Street Vancouver B.C. V6C 1E2

Triple Star Resource Corp. 530-800 West Pender Street Vancouver B.C. V6C 2V6

Searchlight Resources Inc. 218-744 West Hastings Street Vancouver B.C. V6C 1A5

GARTONLOGICA^{Steve}B^FR^CAMES, B.Sc. ADATSESSMF MAJEUSP12; 1988 TT

18,043

\int	SUB-RE RECE	CORDER	
M.R. #	ANCOUVER,	1988 S	

Searchlight Resources Inc.

218 - 744 West Hastings Street, Vancouver, British Columbia, Canada V6C 1A5 Phone: (604) 684-2361

REPORT

on the

1988 TRENCHING, GEOPHYSICS and DRILLING PROGRAMME

on the

KALAMALKA MINE PROPERTY

(GUS 1-6, and CHANCE CLAIMS)

VERNON MINING DIVISION

BRITISH COLUMBIA

Latitude: 050⁰ 12' 20"N Longitude: 119⁰ 05' 30"W

N.T.S. 82 L/3NE

Owner:

Operator:

Consultant:

Author:

Date:

Eugene Dodd 815-850 West Hastings Street Vancouver B.C. V6C 1E2

Triple Star Resource Corp. 530-800 West Pender Street Vancouver B.C. V6C 2V6

Searchlight Resources Inc. 218-744 West Hastings Street Vancouver B.C. V6C 1A5

August 12, 1988

TABLE OF CONTENTS

SUMMARY	1
INTRODUCTION	2
Location and Access Physiography and Vegetation Claim Information History Summary of work	2 2 3 4 6
PHYSICAL WORK	7
GEOLOGY	8
Regional Geology Property Geology Mineralization Alteration	8 9 9 . 10
GEOPHYSICS	. 11
Instrumentation Theory Survey Procedure Compilation of Data Discussion of Results	. 11 . 11 . 12 . 13 . 13
DIAMOND DRILLING	. 15
GEOCHEMISTRY	. 17
Method of Analysis Discussion of Results	. 17 . 18
CONCLUSIONS	. 19
COST STATEMENT	. 20
CERTIFICATE OF QUALIFICATIONS	. 22
BIBLIOGRAPHY	. 23

APPENDIX A: Assay Tables with Sample DescriptionsAPPENDIX B: Drill LogsAPPENDIX C: Assay CertificatesAPPENDIX D: I.P. Psuedosections

List of Figures

.

Figure 1	Location Map	Following Page 2
Figure 2	Claim Location Map	Following Page 3
Figure 3	Regional Geology	Following Page 8
Figure 4	Surface Sample and Trench Locations	.Following Page 17
Figure 5	Surface Sample and Trench Locations, Mine Area.	In Pocket
Figure 6	884 Level Plan and Drill Hole Locations	In Pocket
Figure 7	907 Level Plan	In Pocket

~~-

SUMMARY

The exploration programme on the Kalamalka property was designed to test the area of the old Kalamalka Mine for extensions of the previously mined ore shoot as well as to locate additional shoots. Work was carried out between April 8 and June 10, 1988, consisting of backhoe trenching, I.P. surveys, underground development, diamond drilling, geological mapping and sampling.

The mineralization encountered in the Kalamalka mine is typical of a mesothermal vein deposited within dilatant zones associated with regional and local faulting. There are at least two generations of quartz veins, the latter heavily mineralized with pyrite and pyrrhotite. The gold values increase within the central portion of the mine, characteristic of a central mineralizing path or "shoot".

The Kalamalka property appears to contain a series of these offset shoots stepping to the southwest along a main shear zone. One of these shoots was developed as the Kalamalka Mine. The shoots dip steeply to the northwest, plunge steeply to the southwest and are progressively deeper rooted towards the southwest.

The West Zone shoot, indicated by geophysics and structure, is the best target for a potentially economic deposit at this time.

INTRODUCTION

Mr. David Konnert, President of Triple Star Resource Corp., requested that Searchlight Resources Inc. carry out an exploration programme on their Kalamalka Mine property between April and June, 1988. This report describes the field programme, summarizes the data collected, and provides an interpretation of the results.

Location and Access

The claims are about 4 kilometres south of Lavington and 15 kilometres south east of Vernon, B.C. on NTS map 82 L/3E (figure 1). The property encompasses the old Kalamalka mine adits at 050° 12' 20" N latitude, 119° 05' 30" W longitude, and occupies the ridge between Craster and Brewer Creeks as well as most of the drainage basin of Craster Creek.

All-season access to the property is via Learmouth Road south of Lavington, then by Dawes Road and Angus Drive to the boundary of Mr. Ken Bellevue's property. The property access road begins at the corner where Angus Drive turns to the west, and goes through private land to the old mine workings. This dirt road provides good access to most parts of the claims between Craster and Brewer creeks.

Physiography and Vegetation

The claims encompass the ridge and most of the drainage basin of Craster Creek (figure 2). The majority of the property is covered by mature stands of conifer trees typical of the Interior Douglas fir biogeoclimatic zone. The more common species include Douglas fir, ponderosa and western white pine, and white spruce. Undergrowth is moderately dense on north facing slopes, while southern slopes tend to be dry and open. Logging companies are presently active southwest of the property and within the northern portion of the claims.

The mine site is on the south-eastern flank of the ridge between Craster Creek and Brewer Creek, characterized by moderately steep, relatively open slopes. The elevation of the lower portal is 884 metres (2900 feet), and the ridge above the mine 965 metres (3165 feet). The ridge gradually climbs to an elevation of 1220 metres (4000 feet) to the southwest where it merges with the Thompson Plateau.

Precipitation on the property varies from 36 to 56 centimetres per year, much of it falling as snow from November to March.

Claim Information

The Kalamalka property consists of the following six contiguous 2 post claims, and one 20 unit modified grid mineral claim, staked by Mr. Eugene Dodd.

Claim	Number	Record	Record
Name	of Units	Number	Date
GUS 1-2	2	2146-2147	29 September, 1986
GUS 3-6	4	2201-2204	12 November, 1986
CHANCE	20	2200	12 November, 1986

The above claims were grouped with the Grizzly 1 to 5 mineral claims on August 27, 1987 to form the Kalamalka Gold Mine Group, Number 323, consisting of 95 units. A fraction is shown between the Grizzly and Chance claims on the government claim map (figure 2), however, according to affidavits filed at the Vernon mining recorder, the claims are contiguous. The claims are owned by Mr. Eugene Dodd, but are under option to Triple Star Resource Corp. who financed the work programme described in this report.

A land title search shows that much of the Kalamalka property is on private land owned by Mr. W. Bakker of Edmonton, and that the present access road passes through six other private land lots. All land owners have agreed on conditions of access, or have provided free access for specified durations.

History

The property was first worked in 1896 following the finding of a large reddish quartz vein near the brow of the ridge dividing the two major creeks. The prospecting produced low gold values on surface, therefore, work was planned to drive a crosscut adit lower on the hillside to intersect the vein in search of better values. The records show no further activity until 1928 when 6.4 metres of tunnel was driven. By 1933 the 907 metre level crosscut had been completed, along with some drifting on the vein, and another short crosscut and shaft had been completed.¹

In 1934, 119 metres of tunnelling was reported on the affidavits of work and this was followed by 188 metres of tunnel (the 907 and 884 level drifting?) by April 1935. The first shipment of ore is reported in 1935 as 27.22 tonnes grading $34.3 \text{ g/tonne gold.}^2$

Production in 1936 was only 34.48 tonnes, then in 1937 more development is recorded, and production peaked at 2555 tonnes at 14.41 g/tonne gold. The following two years had mining tonnages of 1159 tonnes and 1066 tonnes respectively. At this time the mine was under the ownership of Kalamalka Gold Mines Ltd. The ownership changed to a lease to Messrs Stan and Cecil Penney of Vernon in 1940 and mined tonnes dropped to 464. The following years' records reflect the scalping operations of the Penney's operations with production of 832, 393, 34, and 29 tonnes. It was reported that in 1941 mining was by hand steeling only. This was confirmed by a discussion Mr. Peter Dasler, M.Sc. had with Mr. Aubrey Penny (a brother), who reported that the mine compressors were confiscated during the war³.

The mine closed in 1944. Then, in 1952 Mr. Aubrey Penney staked the property. He retained the ownership by occasional rehabilitation work, until it was optioned to Coin Canyon Mines around 1966. Coin Canyon drilled one surface hole that was reported in the 1966 and 1967 affidavits of work and in the B.C. Department of Mines annual report. There is no record of the drill information in this hole, however Mr. A. Penney provided photographs of the site sufficient for the drill collar to be approximately located.

There are various records of optioning companies buying surface land titles to the ground in the 1970s. The present owners of the surface rights, Mr. Bakker and Mr. Nyland, had the mineral claims until they expired in August 1986, and were subsequently staked by Mr. Eugene Dodd. During late 1987, an exploration programme was carried out by Searchlight Resources Inc. at the request of Triple Star Resource Corp., consisting of the following:

Compilation of existing data on the property;

Geological mapping at a scale of 1:250 of the mine workings;

Lithogeochemistry - 59 samples collected from surface and underground;

Rehabilitation of the portal and 91 metres of crosscut;

Underground drilling - 134 metres of AQ diamond drilling.

The results of this work are detailed in a report by P.G. Dasler, M.Sc. and F.M. Smith, P.Eng. dated September 24, 1987.⁴

Summary of Work

Work began with backhoe trenching of showings exposed on surface by earlier prospectors and an I.P. survey of six lines across the area of primary interest. The backhoe was then used to trench in the areas of geophysical anomalies that projected to surface. At the same time, a new drift was driven on the 884 level to bypass the old unstable workings and to provide underground drill stations. When this work was completed, a diamond drill was moved into the 884 level and 10 holes were drilled. Mapping and some sampling of the surface trenches was done at this time. On June 10, 1988 the field work supervised by Searchlight Resources Inc. was finished. In early July, Triple Star Resource Corp. had an additional I.P. survey of four lines carried out, the results of which have been included in this report.

The work program consisted of the following:

Physical Work:

- Access road rehabilitation: 5.2 kilometres on the Chance claim,
- Backhoe trenching: 7000 cubic metres on all claims,
- Underground development: 40 metres of 1.5 by 2.1 metre drift and one drill station on the Gus 2 and 4 claims,
- Surface and underground control surveys on Gus 1 to 4 claims,

Geology:

- Geological mapping of surface workings at 1:5000 (60 hectares) on all claims,

Geochemistry:

- Lithogeochemistry: 91 core and channel samples collected from all claims,

Geophysics:

- I.P. and resistivity survey: 3165 metres in 10 lines on the Gus 1 to 4 claims,

Diamond drilling:

- 309 metres of AW core drilling in 10 holes on the Gus 2 and 4 claims.

PHYSICAL WORK

Access Road Rehabilitation

Approximately 5.2 kilometres of preexisting dirt road were slashed out using a chainsaw and small bulldozer in order to make them passable by truck. These roads provide access to parts of the property west of the mine workings.

Backhoe Trenching

Seventeen backhoe trenches were dug on the property utilizing a Hitachi UD-07 track excavator. These were dug to expose bedrock for geological mapping and sampling. One trenched area, the west zone, was blown clear of rubble using an air compressor, after being stripped. Approximately 7,000 cubic metres of trenching was done. The majority of the trenches were backfilled after being mapped. The sides of those that were left open for future examination and sampling were sloped and contoured.

Underground Development

Forty metres of 1.5 by 2.1 metre (5 by 7 foot) drift was driven on the 884 metre level to bypass a section of unstable ground. The drift was established to gain access to the face of the old workings for diamond drilling. A drill station was also made approximately twenty-five metres along the new drift. Equipment used included an Atlas Copco 600 compressor, an electric loci, side dump ore car and mucking machine.

Surface and Underground Control Surveys

The underground workings on both levels and several control points on the surface were surveyed using a Kern DKM-2A theodolite equipped with a Kern DM-502 E.D.M.

GEOLOGY

Regional Geology (after Gilmour 1979)⁵

The Kalamalka property is located near the western margin of the metamorphic Shuswap Terrane. The regional geology is transitional between the Omineca crystalline belt, of which the Shuswap Terrane is part, and the Intermontane Belt of eugeosynclinal volcanic, sedimentary and intrusive rocks. The rocks in the area range in age from Lower Paleozoic (possibly Precambrian) to Miocene/Pliocene (figure 3).

The oldest rocks in the area belong to the "Monashee" metamorphic rocks of Proterozoic to Paleozoic age. This unit generally comprises layered gneiss with lesser amounts of pegmatite, marble, greenstone and gabbro. Less metamorphosed volcanic rocks of Carboniferous-Permian and Upper Triassic ages also occur in the area.

These rocks have been intruded by Jurassic to Eocene plutons. The "Nelson" plutonic rocks are biotite-hornblende diorites, granodiorites and granites with a strong to moderate foliation. The Late Jurassic "Valhalla" plutonic rocks are generally porphyritic quartz monzonite to granite and the Eocene Coryell plutonic rocks, mainly syenites, monzonite and granite. Both contain high background uranium values. In late Cretaceous to early Eocene times a profound erosional period levelled the entire region. Intense continental volcanic and tectonic (graben formation) activity with extensive deposition of volcanic and sedimentary rocks commenced in the Eocene.

A more mature topography existed in the Miocene with the formation of fluvial quartz pebble conglomerates and sandstone. In late Miocene to Pliocene times, olivine plateau basalt flows covered much of the area. Later uplift has resulted in the erosion of most of the Tertiary rocks.

(604) 684-2361 Searchlight Resources Inc. (604) 684-2361 218-744 West Hastings Street, Vancouver, B.C., Canada, V6C 1A5

Property Geology

Two general rock types have been mapped on the Kalamalka property (figure 4). Most of the property is underlain by a medium grained, hornblende diorite which intrudes a metasedimentary unit to the north. The metasediments are primarily grey to black phyllitic argillites which display extensive folding and shearing. Near the intrusive contact, the metasediments are silicified, partially brecciated and show an elevated chlorite content. Dykes and lenses of diorite intrude the metasediments making the contact somewhat indistinct over several metres. The contact dips shallowly to the south in the area of the old mine workings.

Within the mine, and on the surface near it, there is intense deformation along a major northeast-southwest trending shear zone. This shear zone is occupied by quartz veins and lenses discontinuously along its length. Apparent shear offsets are noted in a conjugate array local to the main shear, but their character becomes more subtle at distances over 15 metres from the main shear. Subparallel shear zones are seen to the northwest but are all smaller in width and traceable strike length.

Mineralization

The Kalamalka Mine was developed along the strike of the main shear zone where it widens into a "shoot" within the diorite near the contact with the metasediments. The ore shoot hosts the gold mineralization in quartz pods and veins, and in the chlorite-quartz matrix. The ore shoot has a strike of approximately 045°, dips vertically to steeply to the northwest and plunges steeply to the southwest.

In 1934, the B.C. Department of Mines Annual Report stated... "The main shear zone, about 22 feet wide, on which most of the work has been done, consists of nearly vertical bands of quartz from 2 to 10 inches wide, generally free on the walls, with alternating bands of argillaceous and altered diorite between accompanied by graphite, pyrite, and manganese oxide. Free gold can be panned from some of this material."...¹

This material, described in the early reports, has since been mined. However, mapping of the 884 level drift showed small amounts of similar material with a maximum gold value of 6.51 g/tonne. The ore shoot was drill tested to depth below the existing workings and was found to pinch out at approximately 15 metres below the 884 level. It is possible that the shoot widens again below the tested level, but the apparent shallow dip of the metasedimentary contact makes it unlikely that there is room for a deposit of economical tonnage.

There are at least two generations of vein fill currently seen in the main shear zone. The early veins are a massive, white quartz filling dilatant fault zones which show intense fracturing in places. These are seen in the West Zone trenches as "breccia blocks" within the fault zone. The first generation veins contain pyrite but are not auriferous.

Gold values are associated with the second generation of vein fill. The later veins generally follow the earlier systems but are also found as cross-cutting veins. Sulphide minerals present are pyrite, pyrrhotite and chalcopyrite with minor sphalerite and galena. Occasional calcite vein fill is seen in the main fault zone but no gold values are associated with it.

Away from the main vein zone there are several other smaller quartz veins with pyrite which sometimes carry significant gold values (sample 54385).

Where the main shear zone crosses into the metasediments, the dilations that are present in the diorite close and the veining becomes scattered and indistinct. The surface expression, as seen in the East Zone trench, is a slightly rusty silicified rib. There are no gold values in the samples collected of the metasediments.

Alteration

Bleaching caused by sericite alteration of the diorite occurs adjacent to most of the veins. It is up to 0.5 metres wide within the main shear zone and several millimetres wide beside the smaller fractures. Parts of the main shear zone are also highly chloritized, with total destruction of the original dioritic texture.

There appears to be carbonate flooding of the hanging wall of the main shear zone up to several metres wide. This is postulated from the resistivity profiles of the zone as well as the presence of calcite speleothems on the backs and walls of the old tunnels.

Along strike, within 40 to 60 metres of the previously mined ore shoot, there is a significant widening of the shear zone and the related alteration; up to ten metres in the West Zone trench. This widening is considered to be an excellent indicator for additional shoots, however, this degree of alteration and widening has not been seen elsewhere on the property.

On the surface, there is often a hematitic stain in quartz outcrops due to the presence of pyrite within the shear zones.

The lack of clay alteration in the hangingwall of the shoot and the presence of pyrrhotite in the vein indicate the mesothermal character of the deposit, hence, the potential for a vertical extent of gold mineralization exceeding 150 metres.

GEOPHYSICS

Ten lines, totalling 3165 metres, were surveyed by induced polarization and resistivity during April and July, 1988. The work was performed by Geotronics Surveys Ltd of Vancouver, B.C.

The survey was carried out in two phases: the first six lines were tested during late April, 1988 before any work, other than limited surface trenching, had been done. The last four lines were tested in early July, after the other work on the property had been completed. The psuedosections of the survey are attached as Appendix D.

Instrumentation

The transmitter and receiver used for the induced polarization-resistivity survey was the Model Mark IV, manufactured by Huntec ('70) Limited of Scarborough, Ontario. It was powered by a 7.5 kw motor-generator.

The Mark IV system is capable of time domain, frequency domain, and complex resistivity measurements.

Theory

INDUCED POLARIZATION

When a voltage is applied to the ground, electrical current flows, mainly in the electrolytefilled capillaries within the rock. If the capillaries also contain certain particles that transport current by electrons (most sulfides, some oxides and graphite), then the ionic charges build up at the particle-electrolyte interface: positive charges where the current enters the particle and negative charges where it leaves. This accumulation of charge creates a voltage that tends to oppose the current flow across the interface. When the current is switched off, the created voltage slowly decreases as the accumulated ions diffuse back into the electrolyte. This type of induced polarization phenomena is known as electrode polarization.

A similar effect occurs if clay particles are present in the conducting medium. Charged clay particles attract oppositely-charged ions from the surrounding electrolyte and, when the current stops, the ions slowly diffuse back to their equilibrium state. This process is known as membrane polarization and gives rise to induced polarization effects even in the absence of metallic-type conductors.

Most IP surveys are carried out by taking measurements in the "time-domain" or the "frequency-domain". Time-domain measurements involve sampling the waveform at intervals after the current is switched off to derive a dimensionless parameter, the chargeability "M" which is a measure of the strength of the induced polarized effect. Measurements in the frequency-domain are based on the fact that the resistance produced at the electrolyte-charged particle interface decreases with increasing frequency. The difference between apparent resistivity readings at a high and low frequency is expressed as the percentage frequency effect or "Pfe".

RESISTIVITY

The quantity, apparent resistivity, computed from electrical survey results is the true earth resistivity only in a homogenous sub-surface. Where vertical (and lateral) variations in electrical properties occur, the apparent resistivity is influenced by the various layers, depending on their depth relative to the electrode spacing. A single reading cannot therefore be attributed to a particular depth.

The ability of the ground to transmit electricity is, in the absence of metallic-type conductors, almost completely dependent on the volume, nature and content of the pore space. Empirical relationships can be derived linking the formation resistivity to the pore water resistivity, as a function of porosity. Such a formula is Archie's Law, which states (assuming complete saturation in clean formations):

$$R_{0}/R_{w} = 1/O^{2}$$

Where: R_0 is formation resistivity R_w is pore water resistivity O is porosity

Survey Procedure

The IP and resistivity measurements were taken in the time-domain mode using an eight second square wave charge cycle (2 seconds positive charge, 2 seconds off, 2 seconds negative charge, 2 seconds off). The delay time used after the charge shuts off was 200 milliseconds and the integration time used was 1500 milliseconds divided into 10 windows.

The electrode spacing (or dipole length) is denoted as a and was chosen as 15 meters. The n value varied from 1 to 10 so that the dipole separation (na) varied from 15 to 150 meters. This gives a theoretical depth penetration of 82.5 metres which depends not only on the "na" spacing but also on the ground resistivity.

The dipole-dipole array was chosen because of its symmetry. Non-symmetrical arrays such as pole-dipole present interpretational difficulties.

Stainless steel stakes were used for current electrodes, while the potential electrodes were comprised of metallic copper in copper sulfate solution, in non-polarizing, unglazed porcelain pots.

All survey measurements were carried out along concurrently-chained and flagged line.

Compilation of Data

The chargeability values are read directly from the instrument, therefore, no data processing is required prior to plotting. The resistivity values are derived from current and voltage readings taken in the field. These values are combined with the geometrical factor appropriate for the dipole-dipole array, to compute the apparent resistivities.

The data was plotted in pseudosection form along profiles at a scale of 1:1000. Values were plotted at a 45° angle from the location of the current dipole and the potential dipole and in such a way as to minimize topographical effects. All data was then contoured at reasonable intervals for interpretation (Appendix D).

Discussion of Results

In general, the chargeability response was flat over most of the lines. There is, however, a low amplitude, broad chargeability high which appears to be related to the dioritemetasediment contact. This is thought to be due to an increase in disseminated pyrite in both the diorite and the metasediments in the vicinity of the contact.

Line 1 showed the only obvious chargeability anomaly with a definite high at approximately 0+00. Line 1 was later bracketed by lines 7 and 8, 30 metres on either side, with no continuity of the anomaly. This is thought to indicate the presence of a mineralized shear zone at depth, although of limited strike length. This anomaly has not been tested by drilling.

Resistivity showed a number of linear lows on most of the sections. Surface trenching of several of these showed them to be indicative of shear zones within the diorite, although not mineralized in any of the trenches with the exception of the West Zone. The West Zone trenching showed rusty staining indicating the presence of sulphides in the system, but no gold values were obtained from sampling. The low response may be due to carbonate flooding of the hanging wall of the shears.

There is often a resistivity high associated with the diorite-metasediment contact, possibly due to silicification of the metasediments.

(604) 684-2361 Searchlight Resources Inc. (604) 684-2361 218-744 West Hastings Street, Vancouver, B.C., Canada, V6C 1A5

DIAMOND DRILLING

The 1988 diamond drilling programme on the Kalamalka property was carried out by Exploration Core Drilling of New Denver, B.C. A total of 309 metres of drilling was done using AW equipment. The drill used was a Boyles VAG powered by an Atlas Copco 600 compressor. Drilling started on May 18, 1988 and finished on June 4, 1988 with a short hiatus from May 25 to May 30 while awaiting a night shift driller. Core recovery was generally excellent with loss occurring only in the clay-rich shear zones, although this was kept to a minimum by slower drilling when the chlorite content of the return water increased.

The first three drill holes were planned to intersect the down dip extension of the mined ore shoot below the 884 level. The holes were drilled from a drill station established along the new tunnel and aimed towards the northeast. This was to test the area which the 1987 drill programme showed to have encouraging gold values. The shear zone was intersected in holes 1 and 3 but was narrow and had poor gold values. Hole 2 failed to locate the shear, possibly due to the tendency of the main shear zone to pinch where it rolls.

Drill holes 4 and 5 were drilled to test a possible extension of the mineralized shear that was stoped to the west of survey station U6 (figure 6), as well as to investigate the resistivity anomaly on line 4 at 2+00S. Neither hole encountered significant mineralization, however, hole 4 did intersect a rusty shear which roughly corresponds with the resistivity anomaly.

Drill hole 6 was designed to test the southwest extension of the shear drifted along in the south branch of the 884 level (station U8, figure 6). This hole intersected the only significant gold mineralization located by the 1988 drilling programme, an intersection of 0.70 metres grading 4.53 gram/tonne (Sample 32068).

Drill hole 7 was to determine if a subparallel shear zone exists to the northwest of the mine workings. No shear zone was found.

Drill holes 8 and 9 were drilled, like holes 1, 2 and 3, to test the down dip extension of the main ore shoot. Hole 8, at -35°, encountered old flooded workings from 12.65 metres to 18.29 metres, the projected intersection with the main ore shoot. These workings were not plotted on the available maps but, presumably, were in ore grade material. Drill hole 9, at -50°, went below the workings, but returned very poor gold values from the shear zone.

Drill hole 10 was to test the area to the east of the mine workings. It was hoped that the hole would intersect the shear zone exposed in the East Zone trenches at depth, however, the hole encountered metasediments before the projected intersection. This means that the contact dips shallowly to the south between the surface and the 884 level, thereby limiting the vertical potential of the East Zone mineralization.

The drill logs are attached as Appendix B.

(604) 684-2361 Searchlight Resources Inc. (604) 684-2361 218-744 West Hastings Street, Vancouver, B.C., Canada, V6C 1A5

١

GEOCHEMISTRY

A total of 91 rock samples, from the Kalamalka property, were collected and analyzed during the 1988 work programme. Of these: 9 were assayed for gold and silver, 78 were assayed for gold only, 1 was geochemically analyzed for gold and silver and 3 were geochemically analyzed for gold only. Twenty (20) of the samples assayed were collected from core which was drilled in 1987. A summary of results and sample descriptions is attached as Appendix A and assay certificates are attached as Appendix C. Sample locations, with the exception of the 1987 drill holes, are shown plotted on figures 4,5,6 and 7.

Most of the surface and underground samples were collected using a hammer and chisel, with the exception of the 907 level samples. These were collected using a pneumatic hammer. The core which was sampled was split using a Longyear hand splitter and sample locations were clearly marked on the core boxes. All of the samples were placed in 12×20 inch pvc bags for shipment to Chemex Labs in North Vancouver, B.C.

Method of Analysis

All sample analyses were performed by Chemex Labs Ltd. of Vancouver, B.C. Silver and gold analyses, reported in ounces per ton, were by standard fire assay techniques. A detailed description is as follows:

All the samples for gold and silver assay were first crushed, riffle split and pulverized to -150 mesh. In the sample preparation stage, the +150 mesh screens were checked for metallics which, if present, were assayed separately and calculated into the results obtained from the pulp assay. One assay ton sub samples were fused in litharge, carbonate and siliceous fluxes. The lead button containing the precious metals was cupelled in a muffle furnace. The combined silver and gold was weighed on a microbalance, parted, annealed and again weighed as gold. The difference in the two weights is the amount of silver. The detection limits are 0.002 oz/ton for gold and 0.01 oz/ton for silver. These values have been converted to grams per ton for comparison purposes (Appendix A).

For samples that were geochemically analyzed, the following technique was used:

A 1.0 gram sample was digested in a concentrated nitric acid-aqua regia solution for approximately two hours. The digested sample was cooled and made up to 25 millilitres with distilled water. The solution was mixed and solids were allowed to settle. Silver was determined by atomic absorption technique using background correction on analysis with a detection limit of 0.1 parts per million.

Gold geochemical analyses required ten gram subsamples to be fused with 10 milligrams of gold-free silver metal. The fusion was then cupelled and the resulting silver bead parted with dilute nitric acid and treated with aqua regia. The remaining salts were then dissolved in dilute HCl and analyzed for gold via atomic absorption spectrometer with a five parts per billion detection limit.

Discussion of results

Only five of the ninety-one gold values obtained can be considered significant. These are summarized in the following table.

Sample	Width	Description	Gold (oz/ton)	Gold (g/T)
8624	0.50	rusty quartz vein	.216	7.41
54382	0.85	quartz vein and diorite	.296	10.15
54383	1.00	rusty quartz vein	.232	7.95
54385	1.40	rusty quartz vein	.304	10.42
32068	0.70	88-6; shear with clay fill	.132	4.53

Sample numbers 8624, 54382 and 54383 were collected from the vein intersected by the No.1 open cut in the East Zone trenches. This vein carries good gold values but is limited in strike length to the northeast by the metasediment contact and to the southwest by the old mine workings. One drill hole, 88-10, was drilled to test this zone at depth, but instead it encountered metasediments before the projected vein intersection, thus severely limiting the potential to depth.

Sample 54385 was collected from a narrow shear zone approximately 75 metres west of the No.1 open cut. The shear is subparallel to the main shear zone. While it did return a high gold value over a significant width, it appears to be a localized occurrence with limited tonnage potential for the same reasons as apply to the East Zone.

Sample 32068 was from diamond drill hole 88-6. This hole was drilled to test beyond the face of the south branch of the 884 level of the mine. The value obtained indicates that an offset ore shoot may be present to the west of the old workings.

Other anomalous samples include numbers 8625, 54381, 8640, 32052 and 32058. All of these samples, with the exception of number 8625, were collected from within or near the mine workings from underground. Number 8625, containing 2.40 grammes per tonne across 0.10 metre, was collected from a narrow subparallel shear 130 metres northeast of the 884 level portal.

CONCLUSIONS

The Kalamalka property appears to contain a series of offset "shoots" stepping to the southwest along a main shear zone. One of these shoots was developed as the Kalamalka Mine. The shoots dip steeply to the northwest and plunge steeply to the southwest. They are approximately 30 metres in strike length and 50 metres in vertical extent with an average width of about 2.5 metres. They are progressively deeper rooted towards the southwest, presumably related to the diorite-metasediment contact.

Three of these shoots have been identified to date; the East Zone, the mined Kalamalka shoot and the West Zone. The East Zone appears to represent the bottom of a shoot which has mostly been eroded away. The Kalamalka shoot had its top just at surface and has been mined out. The West Zone exposure represents the alteration above a third shoot, probably the one indicated by the I.P. anomaly on line 1.

Additional shoots may be present along strike from the West Zone but their projected depth makes it unlikely that any indication of them will be found on surface. It is also possible that there are mineralized shoots along the subparallel shear zones located to the northwest of the main shear zone. Currently, the shoot indicated below the West Zone is the best target for a potentially economic deposit.

(604) 684-2361 Searchlight Resources Inc. (604) 684-2361 218-744 West Hastings Street, Vancouver, B.C., Canada, V6C 1A5

COST STATEMENT

The following expenses were incurred in the course of the work programme on the Kalamalka Mine Property between April 8 and August 15, 1988.

WAGES:

A. Caltagirone; 0.5 days @ \$157.50	\$78.75
A. Caltagirone; 0.7 days @ 195.00	\$136.50
S. Coombes; 16.4 days @ \$225.00	\$3,690.00
S. Coombes; 23 days @ \$262.50	\$6,037.50
B. Crockford; 10 days @ \$210.00	\$2,100.00
P. Dasler; 7.95 days @ \$300.00	\$2,385.00
P. Dasler; 19 days @ 325.00	\$6,175.00
D. Nelles; 0.1 days @ \$229.50	
T. Nielson; 8 hours @ \$22.50	\$180.00
V. Rokstad; 2 hours @ \$18.75	\$37.50

TOTAL WAGES.....

\$20,843.20

DIRECT EXPENSES:

Accommodation and board	\$2,902.72
Assays, analytical expenses	\$1,868.95
Drafting, maps	\$691.58
Contract wages (shift boss, cat operator)	\$8,109.15
Loader rental	\$262.50
Equipment rental	\$851.70
Supplies, consumables	\$1,357.46
Office, telephone expenses	\$1,229.84
Repairs	\$21.60
Transportation and fuel	\$3,373.24
Truck rental	\$319.40
TOTAL	\$20,988.14
Add: 20% overhead	\$4,197.63
TOTAL DIRECT EXPENSES	

\$25,185.77

CONTRACT EXPENSES

•

Nemo Resources, underground development L.W. Tools, Hitachi excavator Exploration Core Drilling	\$62,719.23 \$10,000.00 \$17,255.00	
TOTAL	\$89,974.23	
Add: 10% overhead	\$8,997.42	
TOTAL CONTRACT EXPENSES		\$98,971.65

Field equipment rental Photocopying Truck rental, 1 ton pickup Truck rental, GMC Jimmy Honda 4X4 rental Engineering, F.M. Smith; 3 days @ \$450.00 plu W.C.B	\$1,659.00 \$128.00 \$1,125.00 \$902.00 \$360.00 \$1,395.36	
TOTAL	ψ1,393.30	\$5,569.36

TOTAL EXPENDITURES ON PROJECT),569.98
-------------------------------	----------

CERTIFICATE OF QUALIFICATIONS

I, Steven F. Coombes, do hereby certify that:

- 1. I am a geologist with offices at 218-744 West Hastings Street, Vancouver, British Columbia.
- 2. I am a graduate at the University of British Columbia with a degree of B.Sc., Geology.
- 3. I have practiced my profession continuously since 1983.
- 4. This report is based on reports by Professional Engineers and others working for the previous owners and operators of the property and field work carried out on the property between April and June, 1988.
- 5. I have no interest in the property or shares of Triple Star Resource Corporation or in any of the companies with contiguous property to the Kalamalka claims.

Steven F. Coombes, B.Sc. August 12, 1988.

(604) 684-2361 Searchlight Resources Inc. (604) 684-2361 218-744 West Hastings Street, Vancouver, B.C., Canada, V6C 1A5

BIBLIOGRAPHY

1. B.C. Dept of Mines, 1934: Annual Report, pp D32.

2. B.C. Dept of Mines, Bureau of Economics and Statistics: File Kalamalka

- 3. Penney, A, 1987: Personal Communication with P.G. Dasler.
- 4. Dasler, P.G. and Smith, F.M., 1987: Assessment Report of the Geological Survey and Drilling Programme on the Kalamalka Mine Property, dated September 24, 1987; private report for Triple Star Resource Corp., 18 pp plus appendices.
- 5. Gilmour, W., 1979: Geological, Geochemical and Geophysical Assessment Report on the Channel Property, Vernon Mining District, dated November 6, 1979; private report for Banquest Resources Ltd.

(604) 684-2361 Searchlight Resources Inc. (604) 684-2361 218-744 West Hastings Street, Vancouver, B.C., Canada, V6C 1A5

APPENDIX A

-

Assay Tables with Sample Descriptions

Surface samples - shown on Figure 5

ł

Sample Number	Width (m)	Description	Gold oz/ton	Silver oz/ton	Gold g/tonne	Silver g/tonne
8621	0.10	quartz vein, chloritic, minor pyrite	0.002	0.02	0.07	0.69
8622	grab	altered diorite from 884 dump	0.020	0.02	0.69	0.69
8624	0.50	rusty quartz vein	0.216	0.04	7.41	1.37
8625	0.10	pyritic lense in quartz vein	0.070	0.03	2.40	1.03
8626	0.75	limey vein fill in shear	0.002	0.02	0.07	0.69
8627	grab	rusty shear zone with minor veining	0.002	0.02	0.07	0.69
8628	3.00	rusty vein material	0.008	0.02	0.27	0.69
8629	1.20	chloritized diorite with quartz stringers	0.001		0.03	÷.
8630	5.00	white and rusty quartz veining	0.001		0.03	
8631	grab	quartz filled dilatant zone	0.001		0.03	
8632	grab	quartz vein	0.001		0.03	
8634	2.00	white quartz vein	0.032		1.10	
8635	5.00	quartz vein and diorite	0.005		0.17	
8636	grab	quartz veining	0.001		0.02	
8637	0.40	rusty quartz in shear zone	0.001		0.03	
8638	0.70	rusty quartz in shear zone	0.006		0.21	
54382	0.85	quartz vein and diorite from pillar	0.296		10.15	
54383	1.00	rusty quartz vein	0.232		7.95	
54384	0.80	rusty, shattered quartz	0.010		0.34	
54385	1.40	rusty quartz vein in small shear	0.304		10.42	
54386	0.50	quartz vein	0.024		0.82	
54387	1.50	quartz vein and diorite	0.048		1.65	
54388	0.70	quartz vein and diorite	0.028		0.96	

884 level sampling - shown on Figure 6

Sample Number	Width (m)	Description	Gold oz/ton	Silver oz/ton	Gold g/tonne	Silver g/tonne
54381	grab	quartz vein with minor pyrite	0.060		2.06	
8640	0.10	quartz vein	0.078	0.08	2.67	2.74
8641	0.10	quartz vein with pyrite	0.034	0.08	1.17	2.74
YHKAL 001	0.10	quartz vein	0.036		1.23	
YHKAL 002	0.10	quartz vein	0.001		0.03	
YHKAL 003	0.10	quartz vein	0.001		0.03	

1

Surface samples - analyzed by geochemistry - shown on Figure 5

 d^{i}

Sample Number	Width (m)	Description	Gold (ppb)	Silver (ppm)
8623	grab	silicified shear zone	25	0.4
8639	grab	quartz and sheared diorite	3	
8639	grab	quartz and sheared diorite	3	

1987 drill core resampling

Sample Number	Width (m)	Description	Gold oz/ton	Gold g/tonne
54352	0.91	K-87-2 11' to 14'	0.019	0.65
54353	0.61	K-87-2 23' to 25'	0.001	0.03
54354	1.17	K-87-6 8' to 11' 10"	0.010	0.34
54355	1.07	K-87-6 13' to 16' 6"	0.003	0.10
54356	0.46	K-87-6 16' 6" to 18'	0.005	0.17
54357	0.61	K-87-6 18' to 20'	0.001	0.02
54358	0.61	K-87-6 45' to 47'	0.017	0.58
54359	1.52	K-87-7 2' to 7'	0.003	0.10
54360	1.52	K-87-7 7' to 12'	0.004	0.14
54361	1.22	K-87-7 12' to 16'	0.001	0.03
54362	0.91	K-87-7 16' to 19'	0.020	0.69
54363	0.91	K-87-7 19' to 22'	0.001	0.02
54364	0.91	K-87-7 22' to 25'	0.001	0.03
54365	0.91	K-87-7 25' to 28'	0.001	0.02
54366	0.91	K-87-7 28' to 31'	0.001	0.03
54367	0.91	K-87-7 31' to 34'	0.001	0.02
54368	0.91	K-87-7 34' to 37'	0.002	0.07
54369	0.91	K-87-7 37' to 40'	0.001	0.03
54370	0.91	K-87-7 40' to 43'	0.001	0.02
54371	0.91	K-87-7 43' to 46'	0.001	0.03

907 level sampling - shown on Figure 7

Sample Number	Width (m)	Description	Gold oz/ton	Gold g/tonne
54372	0.50	vein and shear on wall	0.010	0.34
54373	1.60	continuation of previous vein and shear	0.002	0.07
54374	1.60	mainly white quartz	0.008	0.27
54375	1.20	rusty quartz vein on north side of drift	0.001	0.02
54376	1.00	white quartz to centre of drift	0.001	0.02
54377	1.20	quartz vein with minor sulphides	0.012	0.41
54378	0.70	white quartz vein	0.001	0.02
54379	1.60	silicified shear zone	0.005	0.17
54380	1.50	altered diorite with calcite	0.001	0.02

.

1988 drill core sampling - shown on Figure 6

Sample Number Width (m)		Description	Gold oz/ton	Gold g/tonne
32051	1.20	88-1: 10.30-11.50, quartz vein and shear	0.002	0.07
32052	1.10	88-1: 11.50-12.60, breccia and shear	0.083	2.85
32053	1.00	88-3: 15.60-16.60, sheared diorite	0.005	0.17
32054	1.25	88-3: 16.60-17.85, sheared diorite	0.002	0.07
32055	1.25	88-3: 20.65-21.90, sheared diorite	0.020	0.69
32056	0.50	88-4: 27.50-28.00, quartz vein and diorite	0.002	0.07
32057	1.00	88-4: 35.5-36.5, oxidized diorite	0.003	0.10
32058	0.50	88-4: 38.85-39.35, chloritic quartz vein	0.070	2.40
32059	1.53	88-5: 0.91-2.44, sheared diorite	0.001	0.03
32060	1.52	88-5: 2.44-3.96, sheared diorite	0.001	0.03
32061	1.53	88-5: 3.96-5.49, sheared diorite	0.001	0.03
32062	1.52	88-5: 5.49-7.01, sheared diorite	0.001	0.03
32063	1.52	88-5: 7.01-8.53, sheared diorite	0.001	0.03
32064	1.53	88-5: 8.53-10.06, sheared diorite	0.001	0.03
32065	1.52	88-5: 14.63-16.15, sheared diorite	0.001	0.03
32066	1.30	88-6: 0.80-2.10, quartz veins in diorite	0.001	0.03
32067	0.50	88-6: 3.00-3.50, quartz vein and diorite	0.001	0.03
32068	0.70	88-6: 10.50-11.20, shear with clay fill	0.132	4.53
32069	0.50	88-7: 5.35-5.85, shear, quartz and clay	0.020	0.69
32070	1.53	88-8: 5.79-7.32, chloritic diorite	0.002	0.07
32071	1.52	88-8: 7.32-8.84, chloritic diorite	0.007	0.24
32072	1.52	88-8: 8.84-10.36, chloritic, clayey diorite	0.038	1.30
32073	1.53	88-8: 10.36-11.89, bleached diorite	0.001	0.02
32074	0.76	88-8: 11.89-12.65, bleached diorite	0.001	0.02
32075	1.30	88-9: 6.60-7.90, sheared diorite	0.001	0.02
32076	0.95	88-9: 13.45-14.40, chloritic diorite	0.036	1.23
32077	1.10	88-9: 14.40-15.50, chloritic diorite	0.006	0.21
32078	1.72	88-10: 34.55-36.27, fractured diorite	0.001	0.02

Surface samples - analyzed by geochemistry - shown on Figure 4

Sample Number	Width (m)	Description	Gold (ppb)
54220	grab	pyritic conglomerate	3
54221	grab	quartz vein in diorite	165

Surface samples - shown on Figure 4

Sample Number	Width (m)	Description	Gold oz/ton	Gold g/tonne
8633	2.50	quartz veining in chloritized diorite	0.002	0.07
APPENDIX B

Drill Logs

~ KALAMALKA	LOCATION VERNON B.C. DIMEN			TRIPLE		TAR			
nced MAY. 19 198	B Completed MAY 19 1988 Core Size BQ	101e No. <u>82</u>	2-1	12°	Ler	igḿ	24.6	<u>7 m</u>	<u> </u>
1049~	Dep 931 E Elev	rue Bearing			Cor	r. Dip		.35	
overy <u>98 %</u>	Collar Dip - 35° Date <u>MAY 20 1988</u> 0	bjective	84	Level	Ver	t. Comp		<u>-</u>	<u> </u>
DEPTH from to	DESCRIPTION	RECO	VERY	Sample Interval	Samore	Length		ANALYS	SIS .
0 -7 10.30	granodicrite -	0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		No.	- (m)	Au-02/10	ni40-ænni	
	- unaltered, minor prite along fractures	7.83	<u> </u>	 			1	+	
	- 10 mm quartz stringer @ 2.90 m 45° T.C.A	4.88	100			1		+	
	- minor chlorite,	12.40	100					+	
	= 30 mm quartz stringer @ 6.35m 50° T.C.A.	7.92	100		†	1	<u> </u>	<u> </u>	
	-minor chlorite à pyrite (coarse stalline).	19.45	100		1	1			
•.	- weak alteration associated with fractures increas	sing 10.97	90		+			+	
	from 9.50 m.	12.49	90						
		14.0Z	100		1				
10.30-212.60	mineralized shear zone -	15,54	100	10.30 +11.50	32051	1.Z.	.002	i	
	- 18,30 -> 10.95: dark altered granodiorite w/quartz stringers	s 17.07	100	11.50 -7 12.60	32052	1.1	.083		
	pyrite chloritic fractures.	18.59	100				1000		
· · · · · · · · · · · · · · · · · · ·	-10.95 -> 11.50: quartz vein w/ chloritic partings, core	20-12 1	'CC						
	Very broken (~60% recovery), minor sulphides.	21.64	100						
	-11.50-712.20: Vein breccin, squartz frags. (410mm) in	23.16	100	,					
	chlorite /pyrite matrix, ~ 20-> 30% sulphiles (pyri	te). 24.69	100						
	-12.20 7 black low gauge zone, 40 T.C.A.								\neg
	-12.20 -> 12.60: clayer, partially brecciated granodiorite.						1		1
1200-22400	1 No								\neg
C IO W INC I	M. W. W. C. C.								
l									
	Longed by S. LOOMBES				^				

DRILL HOLE RECORD

DRILL HOLE RECORD

TRIPLE STAR

	DEPTH	DECORPTION	RECO	VERY	Samole Interval	Sample			ANAL	YSIS	
	trom to		run	%		Na.	- Spin	Au-az/ton	Ag-az/ton		
	12.60-724.69	granodiorite -					I				
		- alteration (weak) from 12.60 => 13.50.									
		- augentz flooding 15,15 = 15,35.		1							
		- sulphides along some fractures, esp. at 17,15					Į		ų.		
		± 18.15.					1				
		- quartz flocding w/ minor pyrite 20.95 -> 21.10		1	1	1]			
	1			;		1					
		END OF HOLE		1							
							1				
				1		<u> </u>	<u> </u>				
		6 Boyes		 			<u> </u>				
		<u></u>					<u> </u>				
				<u>.</u>							
							<u> </u>				
				:							
				; }	<u></u>						
	<u>`</u>			1							
							<u> </u>				
							<u> </u>		L		
				:							1
Project	KALAMALKA	Logged by <u>S. CoomBES</u> Checked by	u		Hole No		8-	-/			
ocation	VERNON B.C	Date MAY 20 1988 Date			Page	2_		. 7	2		

1

MAY ZO 1988	Location_ <u>VERNON</u>	District_VERNON		- 88	<u>3-2</u>		Len	gth	36 E	E m	
1049 N	Den $931F$	Core Size2Q	True Bear	ring	28	·	Cor	r. Dip	-4	<u>5°</u>	
ery <u> 100 °</u> 7	Collar Dip 45°	Date 2128	Hor. Comp	·	884	Level	Ver	t. Com	ó`		
DEPTH		DESCRIPTION		REC	OVERY	Sample Internet	Sample	1.	T	AN	ALYSIS
D -77/80	are director			run	3		No.	(m)		niAg-ar/a	n/
30.00	gi unallorite -			1.63	15						1
<u>t.3</u>	J. J. Scmm guartz stri	nger w/ minor pyrite, chlori	tic fractures,	3.35	100						
18.0	<u>45</u> 7.C.A.			4.88	100			1	1		1
0.0	C. Exteritie shear 50	TCA minor presciption o	1 sides.	6.40	100			1		1	<u> </u>
8.44	-38,60: chloritized	shear zone, breccieted	granodiorite.	7.92	100				1	1	
/b. t	0-1145: brecc, ated o	pranodicrite in a chlorite	matrix.	9.45	100			1	<u> </u>	1	
17.4	5-17.65: quartz stri	nger (-50mm) and chloritic st	ear zone	10.97	100			1	<u> </u>		
10 1	<u>(a) ~ 35</u> 7.C.A	., miner sulphides.		12.50	100			1			÷-
18.3	O: chloritic shear 1	45°.	/	14.0Z	100		· · · · · · · · · · · · · · · · · · ·				1
27.0	20 20mm quertz strin	ger, 50° minor sulphide.		5.54	100						
25.7	C: LOmm quartz str	inger, 50°, minor sulphide.	/	707	100						
25.3	00: 10 mm quartz st;	inger, 55°, minor sulphide.	//	8.59	100						
$4t_e$	0 = 27.95: bleached	z partially brecciated.	2	0.12	100						
28.7	5-719.05: hleached	partially brecciated, mine	- sulphides li	21.64	100						
50.	10 ° 30mm quartz str	inger w/ chlorite, 50°,	Ž	23.16	100						n
51.	53 : Chloritic Shear	w/ blebs of pyrite.	2	4.69	100						<u>.</u>
			12	26.21	100						
			Z	7.74	100						
			2	9.26	100						
			30	0.78	100						
			3	2.31	100						

(

Ĺ

DRILL HOLE RECORD

i

TRIPLE STAR

	DEPTH		RECO	ERY		Somole	Ī.	1	ANAL	YSIS	
	from to		run	%	Sample interval	No.	Length	Au-az/ton	Ag-oz/ton		
		- granodicrite	33.83	100							
			35 36	100	·		i	· · · ·			
			34 45	100	··						·
			1000				¦				
		FAID OF HOLE				<u> </u>	¦				
								l			
			!								
		7 77					<u> </u>				
		<u>7 DOXES</u>					\				
						<u> </u>					
				}							
			:								
			:								
				†							
											<u> </u>
										+	
				1						1	
			1								
Project	KALAMALKA	Locard by S. Coombes Charling by					5-2	~ <u>_</u>		L	
ocation	VERNON B	C. May 70 19FR			Hote No.		- <u> </u>	2			

r <u>y KA</u> nced_ /C	LAMALKA May_ZI'88	(DAY) Completed MAY 22 '88	C DISTRICT VERNON B (DRY) CORE SIZEBR	Hole No.	£	292	3 2°	Leni Con		<u>24.</u> -4	<u>69 m</u> 9°	
overy_	99 %	$\frac{1}{2} Collar Din - 49^{\circ}$	Elev	Hor. Com, 7 - C:	p			Veri	. Com	D		
				Objective	²	<u>881</u>	Level		·			
ti	DEPTH rom to		DESCRIPTION		RECO	OVERY	- Sample Interval	Sample	Length		ANAL	rsis
F	0 ->15.60	granodiorite -			0-2	5			+	1		
F		- ~ 1.80 ? : quartz	vein (-100mm) w/ abunda	t pyrite.	335	100					<u>†</u> ── <u>†</u>	
Ļ		- 2.00: quartz 1	ien (70mm) w/ minor pyrite	in chloritic	4.88	100		·	 		<u>├</u>	
-		clay shear, 70° T.C.	<u>A,</u>		6.40	100			 			
-		- 7.80 -> 7.90 : quia	tz vin 70° T.C.A., chl	with sections.	7.92	100	1					
L		- 7 75-> 8.00 : quar	to vein 70°, minor or	rite.	9.45	100			†			
-		- 11.85 -> 12.00 : dark	chloritic shear zone.		10.97	100		<u> </u>				
-	16 10 1700	-			12.50	100						
	<u> 5,60→ †.85</u>	shear zone -			1402	100	15.60 ->14.60	32053	1.00	.005		
-		- 17.30: minor gtz	veining over - 15m		15.54	100	16.60 717.85	32054	1,25	.002		
-		- zone consists of	illouitized partially br	eccicted	17 07	95						
\vdash		granchierite, chayey	matrix, occasional qua	-tz frags,	18.59	95						
-	7 66 - 2 70/6	terminates at it m c	lay gouge @ - 20° T.C.A	-	20. IZ	100						
μ	T. 23 - 40.00	grandiorite -	· · · · · · · · · · · · · · · · · · ·		21.64	100						
	016-2196	- partially attered			Z3.16	100						
4	W.EJ7 L1.13	shear zone -			74.69	100	20.65 -> 21.90	32055	1.25	.020		
+		auternating quartz strin	agers and altered grandic	rite								
		- atz vois V - 1.1.1	0.21.26 (;)									
-		, c. vern wi Sulphides	14 21.45 (~.1m)									
	2195-2469	grance diorite -										
			E.O.H	. (5 BOARS)								

ŕ

ł

1

•

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	KALAMALKA MAY 23 '88	Location VERNON B.C. District VE	RNON Hole NO. 88	3-4	Leng	gth	46.63	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1016 N	Dep. 889 E Elev.	Hor Comp		Lorr	. Dip		
DEPTH DESCRIPTION RECOVERT Some mand Some mand ANALY 1000 NO Coler collering hole 1385 00 100	rery	Collar Dio O Date May 2	24 '88 Objective	884 Leve	(. Comp.		
Iron In <	DEPTH	DESCRIPTION	RECO	Sample inter	val Sample	i erretti	A	MALYSIS
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	from to		nın	3.0	No.		Au-aznani49-az	/m
1.40 -> 820 GRANODIORITE: 17.62 35 - shattered core, chloritic 17.62 35 1 - gtz vein in clay show @ 4.60 (~50°) 10.67 95 1 8.20-346.65 GRANODIORITE: 17.82 95 1 9.21-36-32.60 State @ 13.40 15.29 10.67 95 1 9.20-346.65 GRANODIORITE: 13.72 90 27.50-32.60 32052 0.50 002 - sourcubat chloritic 15.24 95 35.50-32.60 32052 0.00 003 - stattered i: sopratineed @ 13.40 -> 13.70 16.76 95 32.69.00.070 1 - gtz vein @ 27.55 - Son 19.00 1 1 1 1 1 - gtz vein @ 27.55 - Zm) 19.61 100 1	0 -> 1.40	No CORE - collaring hole	5.05	90	_			
1:40 -> 820 GRANODIORITE: 1:42 35 - shattered core, chloritic 9:14 95 1 - gtz vein in clay shear @ 4.60 (-50°) 10.67 95 1 8.20->46.63 GRAND DIORITE: 12.9 10.67 95 - stattered core, chloritic 12.9 10.67 95 1 - some what chloritic 13.72 90 21.50-28.00 2006 0.002 - stattered i. serpestive (@ 13.40 > 13.40 16.16 75 38.85 > 33.50 32.05 0.50 0.70 - gtz vein @ 27.55 (~ .2m) 19.80 100 1 1 - gtz vein @ 27.55 (~ .2m) 19.80 100 1 1 - gtz vein @ 27.55 (~ .2m) 19.80 100 1 1 - gtz vein @/ chlorite @ 39.10 - 20.50 22.86 100 1 1 - gtz vein @/ chlorite @ 39.10 22.86 100 1 1 1 - gtz vein @/ chlorite @ 39.10 22.86 100 1 1 1 1 - gtz vein @/ chlorite @ 39.10 32.00 1			4.57	- 20				
- skattered core chloritic 9,14 95 - gtz vein in clay shew @ 4.60 (~50°) 10.67 95 12.19 100 12.19 100 8.20->46.63 GRAND DIORITE: 13.72 90 27.50>20.00 2005 0.002 - some what chloritic 13.72 90 27.50>20.00 2005 7.000 0.003 - skattered i. serpentineed @ 13.40 > 13.20 16.76 95 35.60>32.60 2005 7.000 0.003 - skattered gtz stringers 18.29 1/00 - gtz vein @ 27.55 (* .2m) 19.61 1/00 - gtz vein @ 27.55 (* .2m) 19.81 1/00 - gtz vein @ 27.55 (* .2m) 19.81 1/00 - gtz vein @ 27.65 (* .2m) 19.81 1/00 - gtz vein @ 27.65 (* .2m) 19.81 1/00 - gtz vein @ 27.65 (* .2m) 19.81 1/00 - gtz vein @ 27.65 (* .2m) 19.80 1/00 - gtz vein @ 27.65 (* .2m) 19.81 1/00 - gtz vein @ 27.65 (* .2m) 19.81 1/00 - gtz vein @ 19.10 (-20 mm) 22.86 1/00 - gtz vein @ 19.10 (-20 mm) 22.86 1/00 - gtz vein @ 27.43 1/00 19.40 - gtz vein @ 27.43 1/00 19.40 - gtz vein @ 37.10 (-20 mm) 23.85 1/00 - gtz vein @ 37.10 (-20 mm) 33.65 1/00 - gtz vein @ 33.55 1/00	1.40-78,20	GRANODIORITE :	7.62	25				
- gtz vein in clay shear @ 4.60 (~ 50°) 12.9 100 12.9 100 12.9 100 12.9 100 13.20 12.50 728.00 32052 0.50,002 - somewhat chloritic - shattord gtz stringers 18.29 100 - gtz vein @ 27.55 (~ .2 m) - core onidized (rusty) @ 35.50 35.80 21.34 100 - gtz vein w/ chlorite @ 39,10 (~ 20 m) 22.86 100 23.90 100 24.90 100 24.90 100 24.90 100 24.90 100 24.90 100 25.90 100 25		- shattered core, chloritic	9,14	95				
8.20->46.63 GRAND DIORITE: 12.19 100 - some what chloritic 13.72 90 27.50-78.00 2005 0.50 002 - some what chloritic 15.24 95 35.50 7.00 0.003 - shattered is serpertiment @ 13.40 13.20 16.76 75 58.85 28.55 0.50 0.70 - shattered gtz stringers 18.29 100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.003 1 1 1 1 1 1 1 1 1 0		-gtz vein in clay shear @ 4.60 (-	. <u>50°)</u> (10.67)	95				
8.20->46.63 GRAND DIOR ITE: 13.72 90 2.1.50-2.8.00 20056 0.50 ,002 - same what chloritic 15.24 95 35.50-33.00 32057 1,00 ,003 - shattered i. serpentineed @ 13.40 => 13.20 16.76 95 38.85>39.35 32056 0.50 ,002 - scattered gtz stringers 18.29 100 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0.50 .003 1 - stattered gtz stringers 18.29 100 1		· · · · · · · · · · · · · · · · · · ·		100		1		1
- some what chloritic 15 29 95 35.50 > 32.50 100,003 - shettered i. serpentinzed @ 13.40 > 13.40 16.76 75 38.85 > 39.35 32058 0.50 070 - scattered gtz stringers 16.29 100 1<	8.20-746.63 (RANDDIORITE	13.72	90 27.50-728	.00 32056	0.50	002	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		- somewhat chloritic	15.24	95 35.50 -736.	50 32057	1.00	.003	1
- scatted gtz stringers 16.29 100 1000 1000 1000 - gtz vein @ 27.55 (~.2m) 19.80 100 1 1 - core onidized (rusty) @ 35.50> 35.80 21.34 100 1 1 - gtz vein w/ chlorite @ 39.10 (-20mm) 22.86 100 1 1 - gtz vein w/ chlorite @ 39.10 (-20mm) 22.86 100 1 1 25.91 100 100 1 1 1 1 1 - gtz vein w/ chlorite @ 39.10 (-20mm) 22.86 100 1 1 25.91 100 100 1 1 1 1 1 25.91 100 100 1 1 1 1 1 1 33.63 100 33.63 100 1		- shattered is serpentinized @ 13.40 ->	13.70 16.76	95 38.85-739	35 32058	0.60	070	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		- scattered atz stringers	18.29	100		1		1
- core onidized (rusty) @ 35.50> 35.80 - etz vein w/ chlorite @ 39.10 (-20 mm) 24.38 100 25.91 100 27.43 100 27.43 100 28.96 90 39.48 100 33.53 100 33.53 100 35.65 9.5		- gtz vein @ 27.55 (~. 2m)	19.B(100				
- qtz vein w/ chlorite @ 39.10 (-20mm) 22.86 100 24.38 100 25.91 100 27.43 100 27.43 100 28.96 90 30.46 100 32.00 100 33.53 100 33.53 100		- core oxidized (rusty) @ 35. D-> 35	80 21.34	100				1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		- qtz vein w/ chlorite @ 39,10 (-20	22.86	100				
25.91 100 27.43 100 100 27.43 100 100 100 100 100 39.48 100 100 100 100 100 100 33.63 100 100 100 100 100 100 100 33.65 100 100 100 100 100 100 100			24,38	100				
27,43,100 28,96,90 39,48,100 32,00,100 33,53,100 33,53,100 35,05,95			25.91	100				
ZB.96 90 39.46 100 32.00 180 33.53 100 35.05 9.5			27.47	100				
3,48 100 32.00 160 33.53 100 35.05 9.5			28.96	90				
32.00 /00 33,53 /00 35.05 9.5			204B	100				-
33.53 100 35.05 95			32.09	100				
35.05 9 5			32 43	100				
			3505	95				+
Longer by STEVEN COOMBES charted by		LODGED by STEVEN COOMBES	Checked by					_1

1

DRILL HOLE RECORD

	DEPTH		DESCRIPTION	RECO	NERY	6	Somple		<u> </u>	ANA	LYSIS	
	trom	ot		<i>ร</i> บก	1%	Somple Intervol	Na	Langth	Au-oz/to	niAg-oz/ton		[
				36.58	100		Τ			1		
				38.10	100							
	_			41.15	100		1	1				<u> </u>
				44.22	100	<u> </u>	<u> </u>	<u> </u>		<u> </u>		
				46.63	100		+				<u> </u>	
						<u> </u>	+					
				-	<u>.</u>	<u> </u>	<u>}</u>					<u> </u>
					1			<u> </u>				
								├				
												<u></u>
					<u> </u>							
					1	<u> </u>						
								<u> </u>		ļ		<u> </u>
				<u> </u>								
					:			l				
							_					
					ļ							
				1	1							
					;							1
	[1								
)				+		<u> </u>			<u> </u>	·	
				+						┼───┤		<u> </u>
				+	1					+		<u> </u>
	KRIDALA	· ^	5 Causer		1	L	<u> </u>		,	1		1
roject	NHLAIMALK	H	Logged byCoombet			Hole No.	<u> </u>	8-4	<u>/</u>	<u></u>		
ocation	VERNON					Peec	2		4			

ĺ

nced May 24 '88	Location VERNOX/ Completed May 31 (D)' 88	DistrictV	BQ	Hole No	<u>88 -</u> 2	<u>5</u> 98° ·		$\frac{37}{44.0}$	<u>81</u>	
Dovery	Dep <u>889 E</u> Collar Dip O	Elev Dote Jи	ne 1 '88	Hor. Comp Objective	88	4 Level	Vert. (Comp		· · · · · · · · · · · · · · · · · · ·
Irom to		DESCRIPTION		F	RECOVERY	Somple Interval	Sample No.	ength Au-az/ta	ANALYS	515
	-very broken -dz stringers	Moritized @ 3.90 43	5 Sheared thro D 825 \$ 15 20	ughait. 3	44 80 96 70 19 15	$2,44 \rightarrow 3.96$	32059	1.53 ×.002		
	- core loss we - u. minoj- sulph	rst @ ~ 4.00 des .	2 8.50 m	7.	01 9 <u>5</u> 53 95	5,10-5,49 5,49-7701 701-78,53	32061 32062	1.52 < 002 1.52 < 002		
15.80->448	Grandionite :	<u> </u>		10.0	06 65 58 85	8.53 710.06 14.63716,15	32064 32065 1	1,53 < ,002		
	- core bleached	@ +6.50 ZZ	,20 ,20 (0,2500-22)		1 95 63 95 16 95					
	- rusty oxidation Worite @ 30.5	along fractu 0 -> 30.70	(I.P. monuly?	<u>50 /6.0</u> <u>77,0</u> <u>77,0</u> <u>77,0</u> <u>77,0</u>	68 100 Lo 100					
	<u>shattered</u> 2 5.	erp. @ 37.70 er,	->38.00 assoc	<i>عا</i> ر 20.7 22.7	13 100. 25 80			•		
	sect. xenel.ths	wp to ~ plm	dia @ 41.00-	25.3	1495 1095			•		
				28,3 79,9	465 570 790			· · ·		
	· · · · · · · · · · · · · · · · · · ·			31.3	9/00	•				

	DEPTH			RECOVERY		Sample			ANAL	YSIS	
	trom			run %		Na	Length	Au-cz/toni	Ag-oz/ton	. 1	
-				34 44 95		1					
				35.97 100	,						- <u></u>
				37.49/88	>						
				39.62 8	57						
	 			42,06.100	•						
				44.81 90							
		END OF	HOLE	1							
	ļ			!							
				· · · · · · · · · · · · · · · · · · ·							
				:							
	ļ		· · · · · · · · · · · · · · · · · · ·								
			· · · · · · · · · · · · · · · · · · ·								
	ļ										
		<u>`</u>									
	L	1									
Project		Logged by	Checked by		Hole No.		88	3 5			
Location		Date	Date		Page	2	of .	Z			

DRILL HOLE RECORD

ſ

ĺ

DRILL HOLE RECORD

	IRIPLE STAR
Property KALAMALKA Location VERNON District VERNON Hole No. 88 - 6	Length 24.38
commenced May 31 '88 (N) completed May 31 '88 (N) Core Size BR True Begring 180°	
Lot. 1014 N Dep. 890 E Elev Hor. Comp.	Vert. Como
% Recovery Collar DipO DateJUNE 1 188 Objective 884 Li	evel

t

DEPTH	DESCRIPTION	REC	OVERY		Sample	I enth		NALYSIS	
trom to		ามก	å		No.		Au-aznoniazi-a	/m	1
0 -724,38	Granodionito	3.05	80	0.80-72,10	32066	1.30	<,002		
	- at veining & sublides (a 100 -> 2.00 m	4.75	95		1	1			1
	- q+2 Vin = 3.00 -> 3.30 m	6.10	100	3.00-73.50	3205=	0.50	5.002		
	- Soft i clayer @ 7.50 = 7.60	7.62	95			1			
	- clay Shear @ 10.50 -> 10.65	9.14	100	10,50 = 11.20	32068	0.70	.132		
	- atz vein @ 10.90 -> 11.10 clucrite partinge	10.67	95			0110			
	- slightly bleached @ 20.90.	12.19	95		<u> </u>				1
		13.72	100		<u> </u>			1	
		15.24	100				i		
	END OF HOLE	16.76	100						
		18.29	100						+
		19.81	100						-
		21.34	100						
		22.86	100						+
		Z4.38	100						
		1-1							
	×	1						_	
:		1							
		11						1.	
		<u>†</u> †							+
	Looped by S. COOMBES Cherry h.	لل	4	<u> </u>		<u></u> _	- 6		
analog many and for				Hole Na.		OO	0		

ł

JONG 1 '88 (1 30 N	Completed June Dep. 9012 Collar Dip - C	<u> '88 (</u> ^	District	BQ 2 '88	Hole No. True Bec Hor. Com Objective	8 pring p	8- 31 884	7° / Leve	Lenç Corr Vert	эт : Dip : Comp	<u> </u>	<u>18</u>	
DEPTH			DESCRIPTION	·····		REC	OVERY	Somole Intervol	Sample		1	ANALYSI	<u>s </u>
$\alpha \rightarrow 30.16$	61.00 - 2					run	%		No.		44-02/101	Aq-ar/an	
	DRANDDIORITE					2.44	80						
420-7457 54	Hard dill	il. + 1	<u> </u>			3.96	95			ļ			
5357585 L	arered singhtly	bleached	2 mm atz.	stringer & 060	>	5,49	100						
20.20 11	chan clayey ch	sorifized, p	OOT FECTIVETY	, shattered atz	~ sulphite	7.01	90	5.35->5.85	32069	0.50	.020		
22.75 70	mm g1z stri	nger w/ clu	Aorite (* CB	0		8,53	100	ļ					
	<u> </u>	inge w/ ch	orite (080			10.06	100		Ļ				
		En Or				11.58	100				2		
	······	LND OF	MOLE			13,11	100						
						14.63	100		ļ				
						16.15	100						
						11.68	100						
· ·					·	17.20	160						
						20,75	100						
						22,25	100						
						25.74	100						
						25,30	100						
						1504	100						
						10.55	100						
	······································					17.0+ 20 10	100						
				······································		0.18	100						
			<u>^</u>					<u> </u>					

KALAMALKA	Location_	VERNON	/	District	VERNON	Hole No	<u> </u>	8- E	3	Len	gth	18	29		
JONE L OD		BZI F	50 (ŋ)	Core Size _	<u>BQ</u>	True Be	aring	3	<u>18°</u>	Cor	r. Dip _	- 3	5.0		
· · · / / ·	Dep	75/E 7/0		Elev		Hor, Con	ър			Ver	t. Com	p			
· · · · · · · · · · · · · · · · · · ·	Collar Dip		·····	Date	une 3 88	Objectiv	e	384	Level						
DEPTH			D	ESCRIPTION			REC	OVERY	Sample Interval	Sample	l eor		ANAL	TSIS	i
0 -7/22	No Colo	· · ·		1			run	30		No.		Au-az/107	14g-arran		
	100 CDRE	((·	ollaring				2,74	195							
1.27 -> 5.80	GRANDDINON		1.1		10		4.27	100							
1.22	- ata	14. Ch	Circle con	Tent highe	- than usual	<u> </u>	5,79	195							
	of lost	n in	TIPSI CL	m of c	ore @ -045	<u></u>	1,32	40		<u> </u>	<u> </u>	<u> </u>			
	CNCFIL	¢					8.84	70		<u> </u>		L			
5.80 -> 12.65	ALTERERED	GRANDOW	e				10.36	75		<u> </u>					
	580-7880	- J. K	CIL I	i /.			11.89	90	<i>5,79 → 7,3</i> 2	32070	1.53	.002			
	8.80 -7 10 40	- dore	Choritic,	proken g	rain ocundarie	s blurred	112.65	65	7.32 - 8.84	32071	1.5Z	.007			
	6,10	@ ~ O	WORING /	Clarey 5	cattered atz	stringers	18.29	0	8.84 -> 10,36	37072	1.52	.038		<u> </u>	
	10.40 -> 12.50	- bleach	tert	, icx ure	almost complet	ely obscurred.			10.36 → 11.89	32073	1.53	<.001			
		atz	structure	Q 070	ity determined	, scatted			<u>11.89→12.65</u>	32074	0.76	<.001			
	12.50 -7 17 65	- Very a	Llocitic	i classic	<u>د</u>					ļ					
			ioro mic	- Chyey											
12.65 -> 18.29	No Cok	PE 2				<u></u>		<u></u>							
		appears	to be	stoped o	ut doil di	1 .7									
		ht an	, rock	<u></u>	a an Al	un l'									
· ·			E.O.	H,	······································	· · · · · · · · · · · · · · · · · · ·									
		•			(7	Barrs)									-+
-		mand by ST	EVEN C	DOMBES			1				<u> </u>				J ·

(

(

RALAMALK, ed June 2 '8.	A Location VERNON District VERNON HI B (D) completed June Z '88 (N) Core Size BQ	ole No. <u> </u>	318	7	Ler	igth	22.	56	
1049 N	Dep931 EElevHk Collor Dip50°DateJune_3'880	or. Comp bjective	E	384 Le	Cor Ver we(r. Dip 1. Com)		
	DESCRIPTION	REC	OVERY	Sample interval	Sarrow No.	Lengt		ANALY!	sis
0 -> 1.40	NO CORE - collaring hole	0-7 1.52	10		1		1		
1.40 → 6.60	GRANODIORITE:	3.05 4.57	100						
	- accessional V. narrow gtz stringers	6,10	100						
6.60 -> 7.90	ALTERED GRANDUORITE :	9.14	100	6.60 = 7.90	32075	1.30	<.001		
	- Shearing occasional pyrite pods, chloritis - fractures @ ~045	10.67	100						
	- clayey shear zone (broken core) @ 7.90	13,72	100					<u> </u>	
790->13.45	GRANODIORITE :	15.24	100						
	- Shear zone w/ sublides @ 8.45-> 8.85	18.29	100						
13.45→15.50	ALTERED GRANODIORITE :	<u> </u>	100 100	1245-1110	22071	nac	07(
	- Shearing chloritic scattered atz stringers, minor sulphide	s 22.56	100	<u>19.40 ≠15.50</u> 14.40 ≠15.50	32077	1.10	,006		
	- clay zone @ 14.60								
	- broken @ 15,35 -> 15.50								
15.50 ->22.5	GRANODIORITE :								
	- sulphide stringer follows core axis @ 17.50 -> 18.40 (~ 10 mm	,)		END DE	HALF	+			

(

<u>KALAMALKA</u>	Location VERNON District VERNON Hole	NO8	<u>8- k</u>	2	Lend		36.27	
ed June 5 88	(D) Completed $Jone 4$ (B) Core Size BQ True	Bearing	0Z	-2 "	Corr.	. Dip	0°.	
1056 N	Dep 956 E Elev Hor. (Comp			Vert	. Como).	
ery	Collor DipO"Done <u>June_5_88</u> Object	ctive	88	4 Leve	(
СЕРТН	DESCRIPTION	REC	OVERY		Samole	T		NALYSIS
from to		nun	%	Sample Interval	No.	Length	Au-aznanijag-az	101
0 -7 1.40	No CORE : collaring hole	1.52	10		1	1		1
		3.05	9.0			1		
1.40 -7 19.80	GRANO, DIORITE:	4.57	100			<u> </u>		
	- 15,65 - fracture @ 60° 7mm gtz stringer w/ chlorite	6.10	100					
		7.62	100			1	i	+
19.80 → 36.27	ALTERED SEDIMENTS W/ SECTIONS OF GRANDDIORITE:	9.14	100					
	-sediments silicified textures & bedding obscurred	10.97	100					
	- cierk grey colour	12.80	100					+
	- pyrite along some fractures	15,24	95					
	- rare v. narrow etz stringers	18:39	100					
-	- patches of dark diorite in places	20,73	100					
	-relatively fresh granodiarite @ 23,60 -> 24.10, 24.75->25.65	ZZ.86	100					
	25.80 -> 28.10	24.69	100					
	29.25 → 29.90 - core very shattered	26.82	100					
	- possible bedding towards and of hole @ 60°	31.39	95					
	- fractured is silicified 34.70 -> 36.00.	32.92	95	34.55->36.77	27028	177		
		34.44	95		50101	<u>,,,,,,</u>	.,	+
		36.27	100		+			
· · · · · · · · · · · · · · · · · · ·	END OF HOLE							+
	(5 BORES)							+
								+

APPENDIX C

Assay Certificates

hemex Analytical Chemists * Geochemists * Registered Assayers

212 BROOKSBANK AVE . NORTH VANCOUVER. BRITISH COLUMBIA: CANADA V7J-2C1 PHONE (694) 984-0221

... : SEARCHLIGHT RESOURCES INC.

Í

218 - 744 W. HASTINGS ST. VANCOUVER, B.C. V6C 1A5 Project : KALAMALKA Comments:

Page Nu. :1 Tot. Pages: 1 Date :14-APR-88 Invoice # : I-8814099 P.O. # :NONE

CERTIFICATE OF ANALYSIS A8814099

SAMPLE DESCRIPTION	PREP CODE	Au FA oz/T	width (m)
54352 54353 54354 54355 54356	207 207 207 207 207	$\begin{array}{c} 0 & . & 0 & 1 & 9 \\ 0 & . & 0 & 0 & 1 \\ 0 & . & 0 & 1 & 0 \\ 0 & . & 0 & 0 & 3 \\ 0 & . & 0 & 0 & 5 \end{array}$.91 .61 1.17 1.07 .46
54357 54358 54359 54360 54361	207 207 207 207 207 207	$< \begin{array}{c} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 7 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 1 \end{array}$. 61 . 61 1. 52 1. 52 1. 22
54362 54363 54364 54365 54366	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} 0 & 0 & 2 & 0 \\ < & 0 & 0 & 0 & 1 \\ & 0 & 0 & 0 & 1 \\ < & 0 & 0 & 0 & 1 \\ & 0 & 0 & 0 & 1 \\ \end{array} $.91 .91 .91 .91 .91 .91
54367 54368 54369 54370 54371	207 207 207 207 207	$ \begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$.9/ .91 .91 .91 .91
ALL ASSAY DETERMINATIO	ONS ARE PER	FORMED OR SUPERVISED	BY B.C. CERTIFIED ASSAYERS CERTIFICATION : AURITE

emex Analytical Chemists * Geochemists * Registered Assayers

212 BROOKSBANK AVE .. NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221

SEARCHLIGHT RESOURCES INC.

218 - 744 W. HASTINGS ST. VANCOUVER, B.C. V6C IAS Project : KAL Comments:

Pað 0. .] Toi Pages: 1 Date :18-APR-88 Invoice # : I-8814237 P.O. # NONE

CERTIFICATE OF ANALYSIS A8814237

SAMPLE DESCRIPTION	PREP CODE	Ag oz/T Au oz/T RUSH FA RUSH FA					
8621 D 8622 D 8624 D 8625 D 8626 D	236 236 236 236 236	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
8627 D 8628 D	236	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					•••
ALI. ASSAY DETERMINATI	ONS ARE PER	RFORMED OR SUPERVISED I	BY BC CERTIFIED ASSAY	ERS CER	TIFICATION :	W. Sun Pa	enin

Chemex Labs

Analytical Chemists * Geochemists * Registered Assayers

212 BROOKSBANK AVE., NORTH VANCOUVER.

BRITISH COLUMBIA. CANADA V7.1-2C1

PHONE (6+4) 984-0221

Ltd.

.'o : SEARCHLIGHT RESOURCES INC.

218 - 744 W. HASTINGS ST. VANCOUVER, B.C. V6C 1A5 Project : KAL Comments: Pag. 0. :1 Tot. Pages:1 Date :18-APR-88 Invoice #:1-8814238 P.O. # :NONE

CERTIFICATE OF ANALYSIS A8814238

SAMPLE DESCRIPTION	PREP CODE	Ag ppm Aqua R	Ац ррь RUSH						
8623 D	256	0.4	2 5			÷			
			- - -						
									and the second se
							Jant	Sichle	in

Chemex Labs Ltd.

212 BROOKSBANK AVE., NORTH VANCOUVER,

BRITISH COLUMBIA. CANADA V7J-1C1

PHONE (604) 984-0221

SEARCHLIGHT RESOURCES INC.

218 - 744 W. HASTINGS ST. VANCOUVER, B.C. V6C 1A5 Project : KAL Comments: Page 1 :1 Tot. I ::1 Date :22-APR-88 Invoice #:I-8814425 P.O. # :NONE

Stermanin

..

CERTIFICATE OF ANALYSIS A8814425

SAMPLE DESCRIPTION	PRE COD	P E	Au FA oz/T					
8629 8630 8631 8632 8633	207 207 207 207 207 207		$\begin{array}{c} 0 & . & 0 & 0 & 1 \\ 0 & . & 0 & 0 & 1 \\ 0 & . & 0 & 0 & 1 \\ 0 & . & 0 & 0 & 1 \\ 0 & . & 0 & 0 & 2 \end{array}$					
8634 8635 8636 8637 8638	207 207 207 207 207 207		$< \begin{array}{c} 0 \cdot 0 3 2 \\ 0 \cdot 0 05 \\ 0 \cdot 001 \\ 0 \cdot 001 \\ 0 \cdot 006 \end{array}$					

212 BROOKSBANK AVE , NORTH VANCOUVER BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221

SEARCHLIGHT RESOURCES INC.

218 - 744 W. HASTINGS ST. VANCOUVER, B.C. V6C 1A5 Project : KAL Comments:

Page 1 1 Tot. Pages: 1 Date :24-APR-88 Invoice # : I-8814427 P.O. # :NONE

CERTIFICATE OF ANALYSIS A8814427

SAMPLE DESCRIPTION	PRE COE	EP DE	Au ppb FA I AA							
8639	212		< 5							
								÷,		
							-			
		d		L '	 	 CERI		tart	Bichl	ا

Chemex Labs Ltd

alytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221 ... : SEARCHLIGHT RESOURCES INC.

218 - 744 W. HASTINGS ST. VANCOUVER, B.C. V6C 1A5 Project : KAL Comments:
 Image
 No.
 :1

 Tot.
 Pages: 1
 1

 Date
 :28-APR-88

 Invoice #: I-8814653
 P.O.

 P.O.
 #

moun

CERTIFICATE OF ANALYSIS A8814653

SAMPLE DESCRIPTION	PRE COD	P E	Au oz/T	width (m)				
54372 54373 54374 54375 54376	207 207 207 207 207 207		$\begin{array}{c} 0 \cdot 0 1 0 \\ 0 \cdot 0 0 2 \\ 0 \cdot 0 0 8 \\ < 0 \cdot 0 0 1 \\ < 0 \cdot 0 0 1 \end{array}$.50 1.60 1.60 1.10 1.00			 ,	
54377 54378 54379 54380	207 207 207 207 207		$\begin{array}{c c} 0 & 0 & 1 & 2 \\ < 0 & 0 & 0 & 1 \\ 0 & 0 & 5 \\ < 0 & 0 & 1 \end{array}$	1.20 .70 1.60 1.50				
								× .

ALL ASSAY DETERMINATIONS ARE PERFORMED OR SUPERVISED BY B.C. CERTIFIED ASSAYERS

CERTIFICATION : \mathcal{V}

Chemex Labs Ltd.

212 BROOKSBANK AVE . NORTH VANCOUVER. BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (664) 984-0221

T EARCHLIGHT RESOURCES INC.

218 - 744 W. HASTINGS ST. VANCOUVER, B.C. V6C 1A5 Project : KAI Comments: Page N 1 Tot. Pages: 1 Date : 3-MAY-88 Invoice # : 1-8814848 P.O. # : NONE

CERTIFICATE OF ANALYSIS A8814848

SAMPLE DESCRIPTION	PRE COE	EP DE	Au FA oz/T	width							
54381 54382 54383 54384 54384 54385	207 207 207 207 207 207		0 · 060 0 · 296 0 · 237 0 · 010 0 · 304	grab .85 } E 1.00 } Z .80 } Z 1.40	ast one				-		
54386 54387 54388	207 207 207		0.024 0.048 0.028	 .50 1.50 .70	vo.3 one	JUI JUI	2 8 1988				
	L			 				· · · · · · · · · · · · · · · · · · ·		¥,	

CERTIFICATION : 17/ 4 march

Chemex Labs Ltd.

Analytical Chemiats • Geuchemiats • Registered Assayers 212 BROOKSBANK AVE , NORTH VANCOUVER, BRITISH COLUMBIA. CANADA V7J-2C1 PHONE (604) 984-0221

Ę	EARCHLIGHT	RESOURCES	INC
4			

218 - 744 W. HASTINGS ST. VANCOUVER, B.C. V6C 1A5 Project : KAL Comments: Page Not 1 Tot. Pa 1 Date : 9-MAY-88 Invoice # : I-8814989 P.O. # : NONE

CERTIFICATE OF ANALYSIS A8814989

SAMPLE DESCRIPTION	PREP CODE	Au ppb FA+AA						
54420 54220 54421 54221	205	< 5 165						
					2 8 1988		÷.	•
						-		

Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE NORTH VANCOUVER, BRITISH COLUMETA, CANADA V7J-2C1 PHONE (6000) 984-00221 SEARCHLIGHT RESOURCES INC.

218 - 744 W. HASTINGS ST. VANCOUVER, B.C. V6C 1A5 Project : KALAMALKA MINE Comments:

1

Page 1 Tot. Pages: 1 Date : 12-MAY-88 Invoice #: I-8815276 P.O. # : NONE

CERTIFICATE OF ANALYSIS A8815276

SAMPLE DESCRIPTION	PREP CODE	Au FA oz/T	Ag FA oz/T							
8640 D 8641 D	207 207	0.078 0.034	0 - 0 8 0 - 0 8							
						-		- - - - - - -		
	- - -					:				
						1		: : :		
	11 - 1 			-		· · · · · · · · · · · · · · · · · · ·	- - -			
						- -				
	-								: • •	

ALL ASSAY DETERMINATIONS ARE PERFORMED OR SUPERVISED BY B.C. CERTIFIED ASSAYERS

CERTIFICATION : 11. Alm Amorian

Chemex Labs

Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA. CANADA V7J-2C1 PHONE (604) 984-0221

To : SEARCHLIGHT RESOURCES INC.

218 - 744 W. HASTINGS ST. VANCOUVER, B.C. V6C 1A5 Project : Comments:

Pag o. :1 Tot. Pages:1 Date :24-MAY-88 Invoice # : I-8815569 P.O. # : NONE

CERTIFICATE OF ANALYSIS A8815569

SAMPLE DESCRIPTION	PREP CODE	Au oz/T			
YHKAL 001 YHKAL 002 YHKAL 003	207 207 207	$ \begin{array}{c} 0.036 \\ < 0.002 \\ < 0.002 \\ \end{array} $			
					-
ALL ASSAY DETERMINATIO	ONS ARE PE	RFORMED OR SUPERVISED I	BY B.C. CERTIFIED ASSAY	ERS CER	warten

To SEARCHLIGHT RESOURCES INC.

218 - 744 W. HASTINGS ST. VANCOUVER, B.C. V6C 1A5 Project : KALAMALKA Comments: H No. :1 Tc.. Pages:1 Date :26-MAY-8; Invoice # :1-881580 P.O. # :NONE

CERTIFICATE OF ANALYSIS A8815809

SAMPLE DESCRIPTION	PREP CODE	 Au FA oz/T	Width (m)				
32051 H 32052 H	207 207	 0.002 0.083	1.20 1.10				
						4	
		1					-
		-					

ALL ASSAY DETERMINATIONS ARE PERFORMED OR SUPERVISED BY B.C. CERTIFIED ASSAYERS

Chemex

Labs

Analytical Chemists * Geochemists * Registered Assayers

PHONE (604) 984-0221

212 BROOKSBANK AVE., NORTH VANCOUVER. BRITISH COLUMBIA, CANADA V7J-2C1

CERTIFICATION : N: Ston America

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE , NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221 IJ : SEARCHLIGHT RESOURCES INC.

218 - 744 W. HASTINGS ST. VANCOUVER, B.C. V6C 1A5 Project : KALAMALKA Comments: Page No. : 1 Tot. Pages: 1 Date : 31-MAY-88 Invoice #: I-8816029 P.O. # : NONE

CERTIFICATE OF ANALYSIS A8816029

SAMPLE DESCRIPTION	PREP CODE	Au FA oz/T	width (m)	
32053 32054 32055 32056 32057	207 207 207 207 207	$\begin{array}{c} 0 & . & 0 & 0 & 5 \\ 0 & . & 0 & 0 & 2 \\ 0 & . & 0 & 2 & 0 \\ 0 & . & 0 & 0 & 2 \\ 0 & . & 0 & 0 & 3 \end{array}$	1.00 1.25 1.25 0.50 1.00	
32058	207	0.070	0.50	
				Urig
ALL ASSAY DETERMINATI	ONS ARE PEF	RFORMED OR SUPERVISED	BY B.C. CERTIFIED ASSAYERS	CERTIFICATION : N. Ser. Muline

Analytical Chemists * Geochemists * Registered Assayers

212 BROOKSBANK AVE., NORTH VANCOUVER. BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221 SEARCHLIGHT RESOURCES INC.

218 - 744 W. HASTINGS ST. VANCOUVER, B.C. V6C 1A5 Project : KALAMALKA Comments: Page 100. : 1 Tot. Pages: 1 Date : 13-JUN-88 Invoice #: I-8816733 P.O. # : NONE

HIMRE

CERTIFICATE OF ANALYSIS A8816733

SAMPLE DESCRIPTION	PREP CODE	Au oz/T RUSH	width		-	
32059 32060 32061 32062 32063	236 236 236 236 236	$ \begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1.53 (.52 1.53 7.52 7.52			
32064 32065 32066 32067 32068 32069	236 236 236 236 236 236	$ \begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1.53 1.51 1.30 0.50 0.70 0.50			
					$\sqrt{2}$	Pr.

ALL ASSAY DETERMINATIONS ARE PERFORMED OR SUPERVISED BY B.C. CERTIFIED ASSAYERS

CERTIFICATION :

Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA. CANADA V7J-2C1 PHONE (604) 984-0221

J : SEARCHLIGHT RESOURCES INC.

218 - 744 W. HASTINGS ST. VANCOUVER, B.C. V6C 1A5 Project : KALAMALKA Comments:

Page 1 Tot. Pages: 1 Date :13-JUN-88 Invoice # : I-8816772 P.O. # :NONE

CERTIFICATE OF ANALYSIS A8816772

SAMPLE DESCRIPTION	PREP CODE	Au oz/T RUSH	width (m)					:			
3 2 0 7 0 3 2 0 7 1 3 2 0 7 2 3 2 0 7 3 3 2 0 7 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.52 1.52 1.52 1.53 0.76								
32075 32076 32077 32078	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1.30 0.95 1.10 1.72								
								er en			
		-									
രെഭാന	سال										
JUN 1 4 19	88										
	ĬĿŨ						1 1	- -	$ \land \land$		
ALL ASSAY DETERMINAT!	ONS ARE PER	FORMED OR S	UPERVISED	BY DC CERT	TIFIED ASSAY	ERS	CFR	TIFICATION :	D.	Twal	tes

APPENDIX D

.....

I.P. Psuedosections

í

The Provide States and the second second

1

i

í

÷

i

ł

÷.

!

2.4

1

